
AbortProc (3.1)
BOOL CALLBACK AbortProc(hdc, error)
HDC hdc; /* handle of device context */
int error; /* error value */

The AbortProc function is an application-defined callback function that is called when a print job is to be
canceled during spooling.

Parameter Description
hdc Identifies the device context.
error Specifies whether an error has occurred. This parameter is zero if no error has occurred;

it is SP_OUTOFDISK if Print Manager is currently out of disk space and more disk
space will become available if the application waits. If this parameter is
SP_OUTOFDISK, the application need not cancel the print job. If it does not cancel the
job, it must yield to Print Manager by calling the PeekMessage or GetMessage function.

Returns
The callback function should return TRUE to continue the print job or FALSE to cancel the print job.

Comments
An application installs this callback function by calling the SetAbortProc function. AbortProc is a
placeholder for the application-defined function name. The actual name must be exported by including it
in an EXPORTS statement in the application's module-definition file.

See Also
GetMessage, PeekMessage, SetAbortProc

CallWndProc (3.1)
LRESULT CALLBACK CallWndProc(code, wParam, lParam)
int code; /* process-message flag */
WPARAM wParam; /*
current-task flag *
/
LPARAM lParam; /
* address of structure with message data *
/

The CallWndProc function is a library-defined callback function that the system calls whenever the
SendMessage function is called. The system passes the message to the callback function before passing the
message to the destination window procedure.

Parameter Description
code Specifies whether the callback function should process the message or call the

CallNextHookEx function. If the code parameter is less than zero, the callback function
should pass the message to CallNextHookEx without further processing.

wParam Specifies whether the message is sent by the current task. This parameter is nonzero if
the message is sent; otherwise, it is NULL.

lParam Points to a structure that contains details about the message. The following shows the
order, type, and description of each member of the structure:

Member Description
lParam Contains the lParam parameter of the message.
wParam Contains the wParam parameter of the message.
uMsg Specifies the message.
hWnd Identifies the window that will receive the message.

Returns
The callback function should return zero.

Comments
The CallWndProc callback function can examine or modify the message as necessary. Once the function
returns control to the system, the message, with any modifications, is passed on to the window procedure.

This callback function must be in a dynamic-link library.

An application must install the callback function by specifying the WH_CALLWNDPROC filter type and
the procedure-instance address of the callback function in a call to the SetWindowsHookEx function.

CallWndProc is a placeholder for the library-defined function name. The actual name must be exported by
including it in an EXPORTS statement in the library's module-definition file.

See Also
CallNextHookEx, SendMessage, SetWindowsHookEx

CBTProc (3.1)
LRESULT CALLBACK CBTProc(code, wParam, lParam)
int code; /* CBT hook code */
WPARAM wParam; /*
depends on the code parameter *
/
LPARAM lParam; /
* depends on the code parameter *
/

The CBTProc function is a library-defined callback function that the system calls before activating,
creating, destroying, minimizing, maximizing, moving, or sizing a window; before completing a system
command; before removing a mouse or keyboard event from the system message queue; before setting the
input focus; or before synchronizing with the system message queue.

The value returned by the callback function determines whether to allow or prevent one of these
operations.

Parameter Description
code Specifies a computer-based-training (CBT) hook code that identifies the operation about

to be carried out, or a value less than zero if the callback function should pass the code,
wParam, and lParam parameters to the CallNextHookEx function. The code parameter
can be one of the following:

Code Meaning
HCBT_ACTIVATE Indicates that the system is about to activate a window.
HCBT_CLICKSKIPPED Indicates that the system has removed a mouse

message from the system message queue. A CBT
application that must install a journaling playback filter
in response to the mouse message should do so when it
receives this hook code.

HCBT_CREATEWND Indicates that a window is about to be created. The
system calls the callback function before sending the
WM_CREATE or WM_NCCREATE message to the
window. If the callback function returns TRUE, the
system destroys the window--the CreateWindow
function returns NULL, but the WM_DESTROY
message is not sent to the window. If the callback
function returns FALSE, the window is created
normally.
At the time of the HCBT_CREATEWND notification,
the window has been created, but its final size and
position may not have been determined, nor has its
parent window been established.
It is possible to send messages to the newly created
window, although the window has not yet received
WM_NCCREATE or WM_CREATE messages.
It is possible to change the Z-order of the newly
created window by modifying the hwndInsertAfter
member of the CBT_CREATEWND structure.

HCBT_DESTROYWND Indicates that a window is about to be destroyed.
HCBT_KEYSKIPPED Indicates that the system has removed a keyboard

message from the system message queue. A CBT
application that must install a journaling playback filter
in response to the keyboard message should do so
when it receives this hook code.

HCBT_MINMAX Indicates that a window is about to be minimized or
maximized.

HCBT_MOVESIZE Indicates that a window is about to be moved or sized.
HCBT_QS Indicates that the system has retrieved a

WM_QUEUESYNC message from the system
message queue.

HCBT_SETFOCUS Indicates that a window is about to receive the input
focus.

HCBT_SYSCOMMAND Indicates that a system command is about to be carried
out. This allows a CBT application to prevent task
switching by hot keys.

wParam This parameter depends on the code parameter. See the following Comments section for
details.

lParam This parameter depends on the code parameter. See the following Comments section for
details.

Returns
For operations corresponding to the following CBT hook codes, the callback function should return zero to
allow the operation, or 1 to prevent it:

HCBT_ACTIVATE
HCBT_CREATEWND
HCBT_DESTROYWND
HCBT_MINMAX
HCBT_MOVESIZE
HCBT_SYSCOMMAND

The return value is ignored for operations corresponding to the following CBT hook codes:

HCBT_CLICKSKIPPED
HCBT_KEYSKIPPED
HCBT_QS

Comments
The callback function should not install a playback hook except in the situations described in the
preceding list of hook codes.

This callback function must be in a dynamic-link library.

An application must install the callback function by specifying the WH_CBT filter type and the procedure-
instance address of the callback function in a call to the SetWindowsHookEx function.

CBTProc is a placeholder for the library-defined function name. The actual name must be exported by
including it in an EXPORTS statement in the library's module-definition file.

The following table describes the wParam and lParam parameters for each HCBT_ constant.

Constant wParam lParam
HCBT_ACTIVATE Specifies the handle of the window

about to be activated.
Specifies a long pointer to a
CBTACTIVATESTRUCT structure
that contains the handle of the
currently active window and specifies
whether the activation is changing
because of a mouse click.

HCBT_CLICKSKIPPED Identifies the mouse message removed
from the system message queue.

Specifies a long pointer to a
MOUSEHOOKSTRUCT structure that
contains the hit-test code and the
handle of the window for which the
mouse message is intended. For a list
of hit-test codes, see the description of
the WM_NCHITTEST message.

HCBT_CREATEWND Specifies the handle of the new
window.

Specifies a long pointer to a
CBT_CREATEWND data structure
that contains initialization parameters
for the window.

HCBT_DESTROYWND Specifies the handle of the window
about to be destroyed.

This parameter is undefined and
should be set to 0L.

HCBT_KEYSKIPPED Identifies the virtual key code. Specifies the repeat count, scan code,
key-transition code, previous key state,
and context code. For more

information, see the description of the
WM_KEYUP or WM_KEYDOWN
message.

HCBT_MINMAX Specifies the handle of the window
being minimized or maximized.

The low-order word specifies a show-
window value (SW_) that specifies the
operation. For a list of show-window
values, see the description of the
ShowWindow function. The high-
order word is undefined.

HCBT_MOVESIZE Specifies the handle of the window to
be moved or sized.

Specifies a long pointer to a RECT
structure that contains the coordinates
of the window.

HCBT_QS This parameter is undefined; it should
be set to 0.

This parameter is undefined and
should be set to 0L.

HCBT_SETFOCUS Specifies the handle of the window
gaining the input focus.

The low-order word specifies the
handle of the window losing the input
focus. The high-order word is
undefined.

HCBT_SYSCOMMAND Specifies a system-command value
(SC_) that specifies the
systemcommand. For more
information about system command
values, see the description of the
WM_SYSCOMMAND message.

If wParam is SC_HOTKEY, the low-
order word of lParam contains the
handle of the window that task
switching will bring to the foreground.
If wParam is not SC_HOTKEY and a
System-menu command is chosen with
the mouse, the low-order word of
lParam contains the x-coordinate of the
cursor and the high-order word
contains the y-coordinate. If neither of
these conditions is true, lParam is
undefined.

See Also
CallNextHookEx, SetWindowsHookEx, CBTACTIVATESTRUCT, CBT_CREATEWND, RECT

CPlApplet (3.1)
LONG CALLBACK* CPlApplet(hwndCPl, msg, lParam1, lParam2)
HWND hwndCPl; /* handle of Control Panel window */
UINT msg; /* message *
/
LPARAM lParam1; /
* first message parameter *
/
LPARAM lParam2; /
* second message parameter *
/

The CPlApplet function serves as the entry point for a Control Panel dynamic-link library (DLL). This
function is supplied by the application.

Parameter Description
hwndCPl Identifies the main Control Panel window.
msg Specifies the message being sent to the DLL.
lParam1 Specifies 32 bits of additional message-dependent information.
lParam2 Specifies 32 bits of additional message-dependent information.

Returns
The return value depends on the message.

Comments
Use the hwndCPl parameter for dialog boxes or other windows that require a handle of a parent window.

DdeCallback (3.1)
#include <ddeml.h>

HDDEDATA CALLBACK DdeCallback(type, fmt, hconv, hsz1, hsz2, hData, dwData1, dwData2)
UINT type; /* transaction type */
UINT fmt; /* clipboard data
format *
/
HCONV hconv; /
* handle of conversation *
/
HSZ hsz1; /
* handle of string *
/
HSZ hsz2; /
* handle of string *
/
HDDEDATA hData; /
* handle of global memory object *
/
DWORD dwData1; /
* transaction-specific data *
/
DWORD dwData2; /
* transaction-specific data *
/

The DdeCallback function is an application-defined dynamic data exchange (DDE) callback function that
processes DDE transactions sent to the function as a result of DDE Management Library (DDEML) calls
by other applications.

Parameter Description
type Specifies the type of the current transaction. This parameter consists of a combination of

transaction-class flags and transaction-type flags. The following table describes each of
the transaction classes and provides a list of the transaction types in each class.

Value Meaning
XCLASS_BOOL A DDE callback function should return TRUE

or FALSE when it finishes processing a
transaction that belongs to this class. Following
are the XCLASS_BOOL transaction types:

XTYP_ADVSTART
XTYP_CONNECT

XCLASS_DATA A DDE callback function should return a DDE
data handle, CBR_BLOCK, or NULL when it
finishes processing a transaction that belongs to
this class. Following are the XCLASS_DATA
transaction types:

XTYP_ADVREQ
XTYP_REQUEST
XTYP_WILDCONNECT

XCLASS_FLAGS A DDE callback function should return
DDE_FACK, DDE_FBUSY, or
DDE_FNOTPROCESSED when it finishes
processing a transaction that belongs to this
class. Following are the XCLASS_FLAGS
transaction types:

XTYP_ADVDATA
XTYP_EXECUTE
XTYP_POKE

XCLASS_NOTIFICATION The transaction types that belong to this class
are for notification purposes only. The return
value from the callback function is ignored.
Following are the XCLASS_NOTIFICATION
transaction types:

XTYP_ADVSTOP
XTYP_CONNECT_CONFIRM
XTYP_DISCONNECT
XTYP_ERROR
XTYP_MONITOR
XTYP_REGISTER
XTYP_XACT_COMPLETE
XTYP_UNREGISTER

fmt Specifies the format in which data is to be sent or received.
hconv Identifies the conversation associated with the current transaction.
hsz1 Identifies a string. The meaning of this parameter depends on the type of the current

transaction. For more information, see the description of the transaction type.
hsz2 Identifies a string. The meaning of this parameter depends on the type of the current

transaction. For more information, see the description of the transaction type.
hData Identifies DDE data. The meaning of this parameter depends on the type of the current

transaction. For more information, see the description of the transaction type.
dwData1 Specifies transaction-specific data. For more information, see the description of the

transaction type.
dwData2 Specifies transaction-specific data. For more information, see the description of the

transaction type.

Returns
The return value depends on the transaction class.

Comments
The callback function is called asynchronously for transactions that do not involve creating or terminating
conversations. An application that does not frequently accept incoming messages will have reduced DDE
performance because DDEML uses messages to initiate transactions.

An application must register the callback function by specifying its address in a call to the DdeInitialize
function. DdeCallback is a placeholder for the application- or library-defined function name. The actual
name must be exported by including it in an EXPORTS statement in the application's module-definition
file.

See Also
DdeEnableCallback, DdeInitialize

DebugProc (3.1)
LRESULT CALLBACK DebugProc(code, wParam, lParam)
int code; /* hook code */
WPARAM wParam; /
* type of hook about to be called *
/
LPARAM lParam; /
* address of structure with debugging information *
/

The DebugProc function is a library-defined callback function that the system calls before calling any
other filter installed by the SetWindowsHookEx function. The system passes information about the filter
about to be called to the DebugProc callback function. The callback function can examine the information
and determine whether to allow the filter to be called.

Parameter Description
code Specifies the hook code. Currently, HC_ACTION is the only positive valid value. If this

parameter is less than zero, the callback function must call the CallNextHookEx
function without any further processing.

wParam Specifies the task handle of the task that installed the filter about to be called.
lParam Contains a long pointer to a DEBUGHOOKINFO structure.

Returns
The callback function should return TRUE to prevent the system from calling another filter. Otherwise, the
callback function must pass the filter information to the CallNextHookEx function.

Comments
An application must install this callback function by specifying the WH_DEBUG filter type and the
procedure-instance address of the callback function in a call to the SetWindowsHookEx function.

CallWndProc is a placeholder for the library-defined function name. The actual name must be exported by
including it in an EXPORTS statement in the library's module-definition file.

See Also
CallNextHookEx, SetWindowsHookEx, DEBUGHOOKINFO

DialogProc (2.x)
BOOL CALLBACK DialogProc(hwndDlg, msg, wParam, lParam)
HWND hwndDlg; /* handle of dialog box */
UINT msg; /* message */
WPARAM wParam; /
* first message parameter *
/
LPARAM lParam; /
* second message parameter *
/

The DialogProc function is an application-defined callback function that processes messages sent to a
modeless dialog box.

Parameter Description
hwndDlg Identifies the dialog box.
msg Specifies the message.
wParam Specifies 16 bits of additional message-dependent information.
lParam Specifies 32 bits of additional message-dependent information.

Returns
Except in response to the WM_INITDIALOG message, the dialog box procedure should return nonzero if
it processes the message, and zero if it does not. In response to a WM_INITDIALOG message, the dialog
box procedure should return zero if it calls the SetFocus function to set the focus to one of the controls in
the dialog box. Otherwise, it should return nonzero, in which case the system will set the focus to the first
control in the dialog box that can be given the focus.

Comments
The dialog box procedure is used only if the dialog box class is used for the dialog box. This is the default
class and is used if no explicit class is given in the dialog box template. Although the dialog box procedure
is similar to a window procedure, it must not call the DefWindowProc function to process unwanted
messages. Unwanted messages are processed internally by the dialog box window procedure.

DialogProc is a placeholder for the application-defined function name. The actual name must be exported
by including it in an EXPORTS statement in the application's module-definition file.

See Also
CreateDialog, CreateDialogIndirect, CreateDialogIndirectParam, CreateDialogParam, DefWindowProc,
SetFocus, WM_INITDIALOG

DriverProc (3.1)
LRESULT CALLBACK DriverProc(dwDriverIdentifier, hDriver, msg, lParam1, lParam2)
DWORD dwDriverIdentifier; /* identifies installable driver */
HDRVR hDriver; /*
handle of installable driver *
/
UINT msg; /
* message *
/
LPARAM lParam1; /
* first message parameter *
/
LPARAM lParam2; /
* second message parameter *
/

The DriverProc function processes the specified message.

Parameter Description
dwDriverIdentifier Specifies an identifier of the installable driver.
hDriver Identifies the installable driver. This parameter is a unique handle that Windows

assigns to the driver.
msg Identifies a message that the driver must process. Following are the messages that

Windows or an application can send to an installable driver:

Message Description
DRV_CLOSE Notifies the driver that it should decrement

(decrease by one) its usage count and unload
the driver if the count is zero.

DRV_CONFIGURE Notifies the driver that it should display a
custom-configuration dialog box. (This
message should be sent only if the driver
returns a nonzero value when the
DRV_QUERYCONFIGURE message is
processed.)

DRV_DISABLE Notifies the driver that its allocated memory
is about to be freed.

DRV_ENABLE Notifies the driver that it has been loaded or
reloaded, or that Windows has been enabled.

DRV_FREE Notifies the driver that it will be discarded.
DRV_INSTALL Notifies the driver that it has been

successfully installed.
DRV_LOAD Notifies the driver that it has been

successfully loaded.
DRV_OPEN Notifies the driver that it is about to be

opened.
DRV_POWER Notifies the driver that the device's power

source is about to be turned off or turned on.
DRV_QUERYCONFIGURE Determines whether the driver supports the

DRV_CONFIGURE message. The message
displays a private configuration dialog box.

DRV_REMOVE Notifies the driver that it is about to be
removed from the system.

lParam1 Specifies the first message parameter.
lParam2 Specifies the second message parameter.

Returns
The return value is nonzero if the function is successful. Otherwise, it is zero.

Comments

The DriverProc function is the main function within a Windows installable driver; it is supplied by the
driver developer.

When the msg parameter is DRV_OPEN, lParam1 is the string following the driver filename from the
SYSTEM.INI file and lParam2 is the value given as the lParam parameter in the call to the OpenDriver
function.

When the msg parameter is DRV_CLOSE, lParam1 and lParam2 are the same values as the lParam1 and
lParam2 parameters in the call to the CloseDriver function.

See Also
CloseDriver, OpenDriver

EnumChildProc (2.x)
BOOL CALLBACK EnumChildProc(hwnd, lParam)
HWND hwnd; /* handle of child window */
LPARAM lParam; /* application-defined
value *
/

The EnumChildProc function is an application-defined callback function that receives child window
handles as a result of a call to the EnumChildWindows function.

Parameter Description
hwnd Identifies a child window of the parent window specified in the EnumChildWindows

function.
lParam Specifies the application-defined value specified in the EnumChildWindows function.

Returns
The callback function must return nonzero to continue enumeration; to stop enumeration, it must return
zero.

Comments
The callback function can carry out any desired task.

An application must register this callback function by passing its address to the EnumChildWindows
function. The EnumChildProc function is a placeholder for the application-defined function name. The
actual name must be exported by including it in an EXPORTS statement in the application's module-
definition (.DEF) file.

See Also
EnumChildWindows

EnumFontFamProc (3.1)
int CALLBACK EnumFontFamProc(lpnlf, lpntm, FontType, lParam)
LOGFONT FAR* lpnlf; /* address of structure with logical-font data */
TEXTMETRIC FAR* lpntm; /
* address of structure with physical-font data *
/
int FontType; /
* type of font *
/
LPARAM lParam; /
* address of application-defined data *
/

The EnumFontFamProc function is an application-defined callback function that retrieves information
about available fonts.

Parameter Description
lpnlf Points to a NEWLOGFONT structure that contains information about the logical

attributes of the font. This structure is locally-defined and is identical to the Windows
LOGFONT structure except for two new members. The NEWLOGFONT structure has
the following form:

struct tagNEWLOGFONT { /* nlf */
int lfHeight;
int lfWidth;
int lfEscapement;
int lfOrientation;
int lfWeight;
BYTE lfItalic;
BYTE lfUnderline;
BYTE lfStrikeOut;
BYTE lfCharSet;
BYTE lfOutPrecision;
BYTE lfClipPrecision;
BYTE lfQuality;
BYTE lfPitchAndFamily;
BYTE lfFaceName[LF_FACESIZE];
BYTE lfFullName[2 * LF_FACESIZE]; /* TrueType only *

/
BYTE lfStyle[LF_FACESIZE]; /* TrueType only */

} NEWLOGFONT;
The lfFullName and lfStyle members are appended to a LOGFONT structure when a
TrueType font is enumerated in the EnumFontFamProc function.
The lfFullName member is a character array specifying the full name for the font. This
name contains the font name and style name.
The lfStyle member is a character array specifying the style name for the font.
For example, when bold italic Arial®is enumerated, the last three members of the
NEWLOGFONT structure contain the following strings:

lfFaceName = "Arial";
lfFullName = "Arial Bold Italic";
lfStyle = "Bold Italic";
See the description of the LOGFONT structure for a description of the other members of
the structure.

lpntm Points to a NEWTEXTMETRIC structure that contains information about the physical
attributes of the font, if the font is a TrueType font. If the font is not a TrueType font,
this parameter points to a TEXTMETRIC structure.

FontType Specifies the type of the font. This parameter can be a combination of the following
masks:

DEVICE_FONTTYPE

RASTER_FONTTYPE
TRUETYPE_FONTTYPE

lParam Points to the application-defined data passed by EnumFontFamilies.

Returns
This function must return a nonzero value to continue enumeration; to stop enumeration, it must return
zero.

Comments
An application must register this callback function by passing its address to the EnumFontFamilies
function. The EnumFontFamProc function is a placeholder for the application-defined function name. The
actual name must be exported by including it in an EXPORTS statement in the application's module-
definition (.DEF) file.

The AND (&) operator can be used with the RASTER_FONTTYPE, DEVICE_FONTTYPE, and
TRUETYPE_FONTTYPE constants to determine the font type. If the RASTER_FONTTYPE bit is set,
the font is a raster font. If the TRUETYPE_FONTTYPE bit is set, the font is a TrueType font. If neither
bit is set, the font is a vector font. A third mask, DEVICE_FONTTYPE, is set when a device (for example,
a laser printer) supports downloading TrueType fonts or when the font is a device-resident font; it is zero
if the device is a display adapter, dot-matrix printer, or other raster device. An application can also use the
DEVICE_FONTTYPE mask to distinguish GDI-supplied raster fonts from device-supplied fonts. GDI can
simulate bold, italic, underline, and strikeout attributes for GDI-supplied raster fonts, but not for device-
supplied fonts.

See Also
EnumFontFamilies, EnumFonts, LOGFONT, NEWTEXTMETRIC, OUTLINETEXTMETRIC,
TEXTMETRIC

EnumFontsProc (3.1)
int CALLBACK EnumFontsProc(lplf, lpntm, FontType, lpData)
LOGFONT FAR* lplf; /* address of logical-font data structure */
NEWTEXTMETRIC FAR* lpntm; /
* address of physical-font data structure *
/
int FontType; /
* type of font *
/
LPARAM lpData; /
* address of application-defined data *
/

The EnumFontsProc function is an application-defined callback function that processes font data from the
EnumFonts function.

Parameter Description
lplf Points to a LOGFONT structure that contains information about the logical attributes of

the font.
lpntm Points to a NEWTEXTMETRIC structure that contains information about the physical

attributes of the font, if the font is a TrueType font. If the font is not a TrueType font,
this parameter points to a TEXTMETRIC structure.
The TEXTMETRIC structure is identical to NEWTEXTMETRIC except that it does not
include the last four members.

FontType Specifies the type of the font. This parameter can be a combination of the following
masks:

DEVICE_FONTTYPE
RASTER_FONTTYPE
TRUETYPE_FONTTYPE

lpData Points to the application-defined data passed by the EnumFonts function.

Returns
This function must return a nonzero value to continue enumeration; to stop enumeration, it must return
zero.

Comments
An application must register this callback function by passing its address to the EnumFonts function. The
EnumFontsProc function is a placeholder for the application-defined function name. The actual name must
be exported by including it in an EXPORTS statement in the application's module-definition (.DEF) file.

The AND (&) operator can be used with the RASTER_FONTTYPE, DEVICE_FONTTYPE, and
TRUETYPE_FONTTYPE constants to determine the font type. If the RASTER_FONTTYPE bit is set,
the font is a raster font. If the TRUETYPE_FONTTYPE bit is set, the font is a TrueType font. If neither
bit is set, the font is a vector font. A third mask, DEVICE_FONTTYPE, is set when a device (for example,
a laser printer) supports downloading TrueType fonts or when the font is a device-resident font; it is zero
if the device is a display adapter, dot-matrix printer, or other raster device. An application can also use the
DEVICE_FONTTYPE mask to distinguish GDI-supplied raster fonts from device-supplied fonts. GDI can
simulate bold, italic, underline, and strikeout attributes for GDI-supplied raster fonts, but not for device-
supplied fonts.

See Also
EnumFonts, EnumFontFamilies, LOGFONT, NEWTEXTMETRIC, OUTLINETEXTMETRIC,
TEXTMETRIC

EnumMetaFileProc (3.1)
int CALLBACK EnumMetaFileProc(hdc, lpht, lpmr, cObj, lParam)
HDC hdc; /* handle of device context */
HANDLETABLE FAR* lpht; /
* address of table of object handles *
/
METARECORD FAR* lpmr; /
* address of metafile record *
/
int cObj; /
* number of objects in handle table *
/
LPARAM lParam; /
* address of application-defined data *
/

The EnumMetaFileProc function is an application-defined callback function that processes metafile data
from the EnumMetaFile function.

Parameter Description
hdc Identifies the special device context that contains the metafile.
lpht Points to a table of handles associated with the objects (pens, brushes, and so on) in the

metafile.
lpmr Points to a metafile record contained in the metafile.
cObj Specifies the number of objects with associated handles in the handle table.
lParam Points to the application-defined data.

Returns
The callback function must return a nonzero value to continue enumeration; to stop enumeration, it must
return zero.

Comments
An application must register this callback function by passing its address to the EnumMetaFile function.

The EnumMetaFileProc function is a placeholder for the application-defined function name. The actual
name must be exported by including it in an EXPORTS statement in the application's module-definition (.
DEF) file.

See Also
EnumMetaFile

EnumObjectsProc (3.1)
int CALLBACK EnumObjectsProc(lpLogObject, lpData)
void FAR* lpLogObject; /* address of object */
LPARAM lpData; /*
address of application-defined data *
/

The EnumObjectsProc function is an application-defined callback function that processes object data from
the EnumObjects function.

Parameter Description
lpLogObject Points to a LOGPEN or LOGBRUSH structure that contains information about the

attributes of the object.
lpData Points to the application-defined data passed by the EnumObjects function.

Returns
This function must return a nonzero value to continue enumeration; to stop enumeration, it must return
zero.

Comments
An application must register this callback function by passing its address to the EnumObjects function.
The EnumObjectsProc function is a placeholder for the application-supplied function name. The actual
name must be exported by including it in an EXPORTS statement in the application's module-definition (.
DEF) file.

Example
The following example retrieves the number of horizontally hatched brushes and fills LOGBRUSH
structures with information about each of them:

#define MAXBRUSHES 50
GOBJENUMPROC lpProcCallback;
HGLOBAL hglbl;
LPBYTE lpbCountBrush;
lpProcCallback = (GOBJENUMPROC) MakeProcInstance(

(FARPROC) Callback, hinst);
hglbl = GlobalAlloc(GMEM_FIXED, sizeof(LOGBRUSH)

* MAXBRUSHES);
lpbCountBrush = (LPBYTE) GlobalLock(hglbl);
*lpbCountBrush = 0;
EnumObjects(hdc, OBJ_BRUSH, lpProcCallback,

(LPARAM) lpbCountBrush);
FreeProcInstance((FARPROC) lpProcCallback);
int FAR PASCAL Callback(LPLOGBRUSH lpLogBrush, LPBYTE pbData)
{

/*
* The pbData parameter contains the number of horizontally
* hatched brushes; the lpDest parameter is set to follow the
* byte reserved for pbData and the LOGBRUSH structures that
* have been filled with brush information.
*/

LPLOGBRUSH lpDest =
(LPLOGBRUSH) (pbData + 1 + (*pbData * sizeof(LOGBRUSH)));
if (lpLogBrush->lbStyle ==

BS_HATCHED && /* if horiz hatch */
lpLogBrush->lbHatch == HS_HORIZONTAL) {
*lpDest++ = *lpLogBrush; /* fills structure with brush info */

(*pbData) ++; /* increments brush count*/
if (*pbData >= MAXBRUSHES)
return 0;
}
return 1;

}
See Also
EnumObjects, FreeProcInstance, GlobalAlloc, GlobalLock, MakeProcInstance, LOGBRUSH, LOGPEN

EnumPropFixedProc (2.x)
BOOL CALLBACK EnumPropFixedProc(hwnd, lpsz, hData)
HWND hwnd; /* handle of window with property */
LPCSTR lpsz; /* address of
property string or atom *
/
HANDLE hData; /
* handle data of property data *
/

The EnumPropFixedProc function is an application-defined callback function that receives a window's
property data as a result of a call to the EnumProps function.

Parameter Description
hwnd Identifies the handle of the window that contains the property list.
lpsz Points to the null-terminated string associated with the property data identified by the

hData parameter. The application specified the string and data in a previous call to the
SetProp function. If the application passed an atom instead of a string to SetProp, the
lpsz parameter contains the atom in the low-order word and zero in the high-order word.

hData Identifies the property data.

Returns
The callback function must return TRUE to continue enumeration; it must return FALSE to stop
enumeration.

Comments
This form of the property-enumeration callback function should be used in applications and dynamic-link
libraries with fixed data segments and in dynamic libraries with movable data segments that do not contain
a stack.

The following restrictions apply to the callback function:
The callback function must not yield control or do anything that might yield control to other tasks.
The callback function can call the RemoveProp function. However, RemoveProp can remove only

the property passed to the callback function through the callback function's parameters.
The callback function should not attempt to add properties.

The EnumPropFixedProc function is a placeholder for the application-defined function name. The actual
name must be exported by including it in an EXPORTS statement in the application's module-definition (.
DEF) file.

See Also
EnumPropMovableProc, EnumProps, RemoveProp, SetProp

EnumPropMovableProc (2.x)
BOOL CALLBACK EnumPropMovableProc(hwnd, lpsz, hData)
HWND hwnd; /* handle of window with property */
LPCSTR lpsz; /* address of
property string or atom *
/
HANDLE hData; /
* handle of property data *
/

The EnumPropMovableProc function is an application-defined callback function that receives a window's
property data as a result of a call to the EnumProps function.

Parameter Description
hwnd Identifies the handle of the window that contains the property list.
lpsz Points to the null-terminated string associated with the data identified by the hData

parameter. The application specified the string and data in a previous call to the SetProp
function. If the application passed an atom instead of a string to SetProp, the lpsz
parameter contains the atom.

hData Identifies the property data.

Returns
The callback function must return TRUE to continue enumeration; to stop enumeration, it must return
FALSE.

Comments
This form of the property-enumeration callback function should be used in applications with movable data
segments and in dynamic libraries whose movable data segments also contain a stack. This form is
required since movement of the data will invalidate any long pointer to a variable on the stack, such as the
lpsz parameter. The data segment typically moves if the callback function allocates more space in the local
heap than is currently available.

The following restrictions apply to the callback function:
The callback function must not yield control or do anything that might yield control to other tasks.
The callback function can call the RemoveProp function. However, RemoveProp can remove only

the property passed to the callback function through the callback function's parameters.
The callback function should not attempt to add properties.

The EnumPropMovableProc function is a placeholder for the application-defined function name. The
actual name must be exported by including it in an EXPORTS statement in the application's module-
definition (.DEF) file.

See Also
EnumPropFixedProc, EnumProps, RemoveProp, SetProp

EnumTaskWndProc (2.x)
BOOL CALLBACK EnumTaskWndProc(hwnd, lParam)
HWND hwnd; /* handle of a window */
LPARAM lParam; /* application-defined
value *
/

The EnumTaskWndProc function is an application-defined callback function that receives the window
handles associated with a task as a result of a call to the EnumTaskWindows function.

Parameter Description
hwnd Identifies a window associated with the task specified in the EnumTaskWindows

function.
lParam Specifies the application-defined value specified in the EnumTaskWindows function.

Returns
The callback function must return TRUE to continue enumeration; to stop enumeration, it must return
FALSE.

Comments
The callback function can carry out any desired task.

The EnumTaskWndProc function is a placeholder for the application-defined function name. The actual
name must be exported by including it in an EXPORTS statement in the application's module-definition (.
DEF) file.

See Also
EnumTaskWindows

EnumWindowsProc (2.x)
BOOL CALLBACK EnumWindowsProc(hwnd, lParam)
HWND hwnd; /* handle of parent window */
LPARAM lParam; /* application-defined
value *
/

The EnumWindowsProc function is an application-defined callback function that receives parent window
handles as a result of a call to the EnumWindows function.

Parameter Description
hwnd Identifies a parent window.
lParam Specifies the application-defined value specified in the EnumWindows function.

Returns
The callback function must return nonzero to continue enumeration; to stop enumeration, it must return
zero.

Comments
The callback function can carry out any desired task.

The EnumWindowsProc function is a placeholder for the application-defined function name. The actual
name must be exported by including it in an EXPORTS statement in the application's module-definition (.
DEF) file.

See Also
EnumWindows

GetMsgProc (3.1)
LRESULT CALLBACK GetMsgProc(code, wParam, lParam)
int code; /* process-message flag */
WPARAM wParam; /* undefined */
LPARAM lParam; /
* pointer to MSG structure *
/

The GetMsgProc function is a library-defined callback function that the system calls whenever the
GetMessage function has retrieved a message from an application queue. The system passes the retrieved
message to the callback function before passing the message to the destination window procedure.

Parameter Description
code Specifies whether the callback function should process the message or call the

CallNextHookEx function. If this parameter is less than zero, the callback function
should pass the message to CallNextHookEx without further processing.

wParam Specifies a NULL value.
lParam Points to an MSG structure that contains information about the message.

Returns
The callback function should return zero.

Comments
The GetMsgProc callback function can examine or modify the message as desired. Once the callback
function returns control to the system, the GetMessage function returns the message, with any
modifications, to the application that originally called it. The callback function does not require a return
value.

This callback function must be in a dynamic-link library (DLL).

An application must install the callback function by specifying the WH_GETMESSAGE filter type and
the procedure-instance address of the callback function in a call to the SetWindowsHookEx function.

GetMsgProc is a placeholder for the library-defined function name. The actual name must be exported by
including it in an EXPORTS statement in the library's module-definition (.DEF) file.

See Also
CallNextHookEx, GetMessage, SetWindowsHookEx

GrayStringProc (2.x)
BOOL CALLBACK GrayStringProc(hdc, lpData, cch)
HDC hdc; /* handle of device context */
LPARAM lpData; /* address of
string to be drawn *
/
int cch; /
* length of string to be drawn *
/

The GrayStringProc function is an application-defined callback function that draws a string as a result of a
call to the GrayString function.

Parameter Description
hdc Identifies a device context with a bitmap of at least the width and height specified by the

cx and cy parameters passed to the GrayString function.
lpData Points to the string to be drawn.
cch Specifies the length, in characters, of the string.

Returns
The callback function should return TRUE to indicate success. Otherwise it should return FALSE.

Comments
The callback function must draw an image relative to the coordinates (0,0).

GrayStringProc is a placeholder for the application-defined function name. The actual name must be
exported by including it in an EXPORTS statement in the application's module-definition (.DEF) file.

See Also
GrayString

HardwareProc (3.1)
LRESULT CALLBACK HardwareProc(code, wParam, lParam)
int code; /* hook code */
WPARAM wParam; /
* undefined *
/
LPARAM lParam; /
* address of structure with event information *
/

The HardwareProc function is an application-defined callback function that the system calls whenever the
application calls the GetMessage or PeekMessage function and there is a hardware event to process.
Mouse events and keyboard events are not processed by this hook.

Parameter Description
code Specifies whether the callback function should process the message or call the

CallNextHookEx function. If this value is less than zero, the callback function should
pass the message to CallNextHookEx without further processing. If this value is
HC_NOREMOVE, the application is using the PeekMessage function with the
PM_NOREMOVE option, and the message will not be removed from the system queue.

wParam Specifies a NULL value.
lParam Points to a HARDWAREHOOKSTRUCT structure.

Returns
The callback function should return zero to allow the system to process the message; it should be 1 if the
message is to be discarded.

Comments
This callback function should not install a playback hook because the function cannot use the
GetMessageExtraInfo function to get the extra information associated with the message.

The callback function must use the Pascal calling convention and must be declared FAR. An application
must install the callback function by specifying the WH_HARDWARE filter type and the procedure-
instance address of the callback function in a call to the SetWindowsHookEx function.

HardwareProc is a placeholder for the library-defined function name. The actual name must be exported
by including it in an EXPORTS statement in the library's module-definition (.DEF) file.

See Also
CallNextHookEx, GetMessageExtraInfo, SetWindowsHookEx, HARDWAREHOOKSTRUCT

JournalPlaybackProc (3.1)
LRESULT CALLBACK JournalPlaybackProc(code, wParam, lParam)
int code; /* process-message flag */
WPARAM wParam; /*
undefined *
/
LPARAM lParam; /
* address of structure for message *
/

The JournalPlaybackProc function is a library-defined callback function that a library can use to insert
mouse and keyboard messages into the system message queue. Typically, a library uses this function to
play back a series of mouse and keyboard messages that were recorded earlier by using the
JournalRecordProc function. Regular mouse and keyboard input is disabled as long as a
JournalPlaybackProc function is installed.

Parameter Description
code Specifies whether the callback function should process the message or call the

CallNextHookEx function. If this parameter is less than zero, the callback function
should pass the message to CallNextHookEx without further processing.

wParam Specifies a NULL value.
lParam Points to an EVENTMSG structure that represents the message being processed by the

callback function.

Returns
The callback function should return a value that represents the amount of time, in clock ticks, that the
system should wait before processing the message. This value can be computed by calculating the
difference between the time members of the current and previous input messages. If the function returns
zero, the message is processed immediately.

Comments
The JournalPlaybackProc function should copy an input message to the lParam parameter. The message
must have been recorded by using a JournalRecordProc callback function, which should not modify the
message.

Once the function returns control to the system, the message continues to be processed. If the code
parameter is HC_SKIP, the filter function should prepare to return the next recorded event message on its
next call.

This callback function should reside in a dynamic-link library.

An application must install the callback function by specifying the WH_JOURNALPLAYBACK filter
type and the procedure-instance address of the callback function in a call to the SetWindowsHookEx
function.

JournalPlaybackProc is a placeholder for the library-defined function name. The actual name must be
exported by including it in an EXPORTS statement in the library's module-definition file.

See Also
CallNextHookEx, JournalRecordProc, SetWindowsHookEx, EVENTMSG

JournalRecordProc (3.1)
LRESULT CALLBACK JournalRecordProc(code, wParam, lParam)
int code; /* process-message flag */
WPARAM wParam; /*
undefined *
/
LPARAM lParam; /
* address of structure for message *
/

The JournalRecordProc function is a library-defined callback function that records messages that the
system removes from the system message queue. Later, a library can use a JournalPlaybackProc function
to play back the messages.

Parameter Description
code Specifies whether the callback function should process the message or call the

CallNextHookEx function. If this parameter is less than zero, the callback function
should pass the message to CallNextHookEx without further processing.

wParam Specifies a NULL value.
lParam Points to an MSG structure.

Returns
The callback function should return zero.

Comments
A JournalRecordProc callback function should copy but not modify the messages. After control returns to
the system, the message continues to be processed. The callback function does not require a return value.

This callback function must be in a dynamic-link library.

An application must install the callback function by specifying the WH_JOURNALRECORD filter type
and the procedure-instance address of the callback function in a call to the SetWindowsHookEx function.

JournalRecordProc is a placeholder for the library-defined function name. The actual name must be
exported by including it in an EXPORTS statement in the library's module-definition file.

See Also
CallNextHookEx, JournalPlaybackProc, SetWindowsHookEx

KeyboardProc (3.1)
LRESULT CALLBACK KeyboardProc(code, wParam, lParam)
int code; /* process-message flag */
WPARAM wParam; /*
virtual-key code *
/
LPARAM lParam; /
* keyboard-message information *
/

The KeyboardProc function is a library-defined callback function that the system calls whenever the
application calls the GetMessage or PeekMessage function and there is a WM_KEYUP or
WM_KEYDOWN keyboard message to process.

Parameter Description
code Specifies whether the callback function should process the message or call the

CallNextHookEx function. If this value is HC_NOREMOVE, the application is using
the PeekMessage function with the PM_NOREMOVE option, and the message will not
be removed from the system queue. If this value is less than zero, the callback function
should pass the message to CallNextHookEx without further processing.

wParam Specifies the virtual-key code of the given key.
lParam Specifies the repeat count, scan code, extended key, previous key state, context code,

and key-transition state, as shown in the following table. (Bit 0 is the low-order bit):

Bit Description
0-15 Specifies the repeat count. The value is the number of times the keystroke is

repeated as a result of the user holding down the key.
16-23 Specifies the scan code. The value depends on the original equipment

manufacturer (OEM).
24 Specifies whether the key is an extended key, such as a function key or a key

on the numeric keypad. The value is 1 if it is an extended key; otherwise, it is
0.

25-26 Not used.
27-28 Used internally by Windows.
29 Specifies the context code. The value is 1 if the ALT key is held down while

the key is pressed; otherwise, the value is 0.
30 Specifies the previous key state. The value is 1 if the key is down before the

message is sent, or it is 0 if the key is up.
31 Specifies the key-transition state. The value is 1 if the key is being released,

or it is 0 if the key is being pressed.

Returns
The callback function should return 0 if the message should be processed by the system; it should return 1
if the message should be discarded.

Comments
This callback function must be in a dynamic-link library.

An application must install the callback function by specifying the WH_KEYBOARD filter type and the
procedure-instance address of the callback function in a call to the SetWindowsHookEx function.

KeyboardProc is a placeholder for the library-defined function name. The actual name must be exported
by including it in an EXPORTS statement in the library's module-definition file.

See Also
CallNextHookEx, GetMessage, PeekMessage, SetWindowsHookEx

LibMain (2.x)
int CALLBACK LibMain(hinst, wDataSeg, cbHeapSize, lpszCmdLine)
HINSTANCE hinst; /* handle of library instance */
WORD wDataSeg; /* library data
segment *
/
WORD cbHeapSize; /
* default heap size *
/
LPSTR lpszCmdLine; /
* command-line arguments *
/

The LibMain function is called by the system to initialize a dynamic-link library (DLL). A DLL must
contain the LibMain function if the library is linked with the file LIBENTRY.OBJ.

Parameter Description
hinst Identifies the instance of the DLL.
wDataSeg Specifies the value of the data segment (DS) register.
cbHeapSize Specifies the size of the heap defined in the module-definition file. (The LibEntry

routine in LIBENTRY.OBJ uses this value to initialize the local heap.)
lpszCmdLine Points to a null-terminated string specifying command-line information. This parameter

is rarely used by DLLs.

Returns
The function should return 1 if it is successful. Otherwise, it should return 0.

Comments
The LibMain function is called by LibEntry, which is called by Windows when the DLL is loaded. The
LibEntry routine is provided in the LIBENTRY.OBJ module. LibEntry initializes the DLL's heap (if a
HEAPSIZE value is specified in the DLL's module-definition file) before calling the LibMain function.

Example
The following example shows a typical LibMain function:

int CALLBACK LibMain(HINSTANCE hinst, WORD wDataSeg, WORD cbHeap,
LPSTR lpszCmdLine)

{
HGLOBAL hgblClassStruct;
LPWNDCLASS lpClassStruct;
static HINSTANCE hinstLib;
/* Has the library been initialized yet? */
if (hinstLib == NULL) {
hgblClassStruct = GlobalAlloc(GHND, sizeof(WNDCLASS));
if (hgblClassStruct != NULL) {
lpClassStruct = (LPWNDCLASS) GlobalLock(hgblClassStruct);
if (lpClassStruct != NULL) {
/* Define the class attributes. */
lpClassStruct->style = CS_HREDRAW | CS_VREDRAW |
CS_DBLCLKS | CS_GLOBALCLASS;
lpClassStruct->lpfnWndProc = DllWndProc;
lpClassStruct->cbWndExtra = 0;
lpClassStruct->hInstance = hinst;
lpClassStruct->hIcon = NULL;
lpClassStruct->hCursor = LoadCursor(NULL, IDC_ARROW);
lpClassStruct->hbrBackground =
(HBRUSH) (COLOR_WINDOW + 1);
lpClassStruct->lpszMenuName = NULL;
lpClassStruct->lpszClassName = "MyClassName";

hinstLib = (RegisterClass(lpClassStruct)) ?
hinst : NULL;
GlobalUnlock(hgblClassStruct);
}
GlobalFree(hgblClassStruct);
}
}
return (hinstLib ? 1 : 0); /* return 1 = success; 0 = fail */

}
See Also
GlobalAlloc, GlobalFree, GlobalLock, GlobalUnlock, WEP

LineDDAProc (3.1)
void CALLBACK LineDDAProc(xPos, yPos, lpData)
int xPos; /* x-coordinate of current position */
int yPos; /* y-coordinate
of current position *
/
LPARAM lpData; /
* address of application-defined data *
/

The LineDDAProc function is an application-defined callback function that processes coordinates from the
LineDDA function.

Parameter Description
xPos Specifies the x-coordinate of the current point.
yPos Specifies the y-coordinate of the current point.
lpData Points to the application-defined data.

Returns
This function does not return a value.

Comments
An application must register this function by passing its address to the LineDDA function.

LineDDAProc is a placeholder for the application-defined function name. The actual name must be
exported by including it in an EXPORTS statement in the application's module-definition file.

See Also
LineDDA

LoadProc (2.x)
HGLOBAL CALLBACK LoadProc(hglbMem, hinst, hrsrcResInfo)
HGLOBAL hglbMem; /* handle of object containing resource */
HINSTANCE hinst; /*
handle of application instance *
/
HRSRC hrsrcResInfo; /
* handle of a resource *
/

The LoadProc function is an application-defined callback function that receives information about a
resource to be locked and can process that information as needed.

Parameter Description
hglbMem Identifies a memory object that contains a resource. This parameter is NULL if the

resource has not yet been loaded.
hinst Identifies the instance of the module whose executable file contains the resource.
hrsrcResInfo Identifies the resource. The resource must have been created by using the

FindResource function.

Returns
The return value is a global memory handle for memory that was allocated using the
GMEM_DDESHARE flag in the GlobalAlloc function.

Comments
If an attempt to lock the memory object identified by the hglbMem parameter fails, this means the
resource has been discarded and must be reloaded.

LoadProc is a placeholder for the application-defined function name. The actual name must be exported by
including it in an EXPORTS statement in the application's module-definition file.

See Also
FindResource, GlobalAlloc, SetResourceHandler

MessageProc (3.1)
LRESULT CALLBACK MessageProc(code, wParam, lParam)
int code; /* message type */
WPARAM wParam; /*
undefined *
/
LPARAM lParam; /
* address of structure with message data *
/

The MessageProc function is an application- or library-defined callback function that the system calls after
a dialog box, message box, or menu has retrieved a message, but before the message is processed. The
callback function can process or modify the messages.

Parameter Description
code Specifies the type of message being processed. This parameter can be one of the

following values:

Value Meaning
MSGF_DIALOGBOX Messages inside a dialog box or message box procedure

are being processed.
MSGF_MENU Keyboard and mouse messages in a menu are being

processed.
If the code parameter is less than zero, the callback function must pass the message to
CallNextHookEx without further processing and return the value returned by
CallNextHookEx.

wParam Specifies a NULL value.
lParam Points to an MSG structure.

Returns
The callback function should return a nonzero value if it processes the message; it should return zero if it
does not process the message.

Comments
The WH_MSGFILTER filter type is the only task-specific filter. A task may install this filter.

An application must install the callback function by specifying the WH_MSGFILTER filter type and the
procedure-instance address of the callback function in a call to the SetWindowsHookEx function.

MessageProc is a placeholder for the library-defined function name. The actual name must be exported by
including it in an EXPORTS statement in the library's module-definition file.

See Also
CallNextHookEx, SetWindowsHookEx, MSG

MouseProc (3.1)
LRESULT CALLBACK MouseProc(code, wParam, lParam)
int code; /* process-message flag */
WPARAM wParam; /
* message identifier *
/
LPARAM lParam; /
* address of MOUSEHOOKSTRUCT structure *
/

The MouseProc function is a library-defined callback function that the system calls whenever an
application calls the GetMessage or PeekMessage function and there is a mouse message to be processed.

Parameter Description
code Specifies whether the callback function should process the message or call the

CallNextHookEx function. If this value is less than zero, the callback function should
pass the message to CallNextHookEx without further processing. If this value is
HC_NOREMOVE, the application is using a PeekMessage function with the
PM_NOREMOVE option, and the message will not be removed from the system queue.

wParam Specifies the identifier of the mouse message.
lParam Points to a MOUSEHOOKSTRUCT structure containing information about the mouse.

The callback function should return 0 to allow the system to process the message; it should return 1 to
discard the message.

Comments
This callback function should not install a JournalPlaybackProc callback function.

An application must install the callback function by specifying the WH_MOUSE filter type and the
procedure-instance address of the callback function in a call to the SetWindowsHookEx function.

MouseProc is a placeholder for the library-defined function name. The actual name must be exported by
including it in an EXPORTS statement in the library's module-definition file.

See Also
CallNextHookEx, GetMessage, PeekMessage, SetWindowsHookEx

NotifyProc (2.x)
BOOL CALLBACK NotifyProc(hglbl)
HGLOBAL hglbl; /* handle of global memory object */

The NotifyProc function is a library-defined callback function that the system calls whenever it is about to
discard a global memory object allocated with the GMEM_NOTIFY flag.

Parameter Description
hglbl Identifies the global memory object being discarded.

Returns
The callback function should return nonzero if the system is to discard the memory object, or zero if it
should not.

Comments
The callback function is not necessarily called in the context of the application that owns the routine. For
this reason, the callback function should not assume it is using the stack segment of the application. The
callback function should not call any routine that might move memory.

The callback function must be in a fixed code segment of a dynamic-link library.

NotifyProc is a placeholder for the application-defined function name. The actual name must be exported
by including it in an EXPORTS statement in the library's module-definition statement.

See Also
GlobalNotify

ShellProc (3.1)
LRESULT CALLBACK ShellProc(code, wParam, lParam)
int code; /* process-message flag */
WPARAM wParam; /* current-task flag *
/
LPARAM lParam; /
* undefined *
/

The ShellProc function is a library-defined callback function that a shell application can use to receive
useful notifications from the system.

Parameter Description
code Specifies a shell-notification code. This parameter can be one of the following values:

Value Meaning
HSHELL_ACTIVATESHELLWINDOW The shell application should activate

its main window.
HSHELL_WINDOWCREATED A top-level, unowned window was

created. The window exists when the
system calls a ShellProc function.

HSHELL_WINDOWDESTROYED A top-level, unowned window is
about to be destroyed. The window
still exists when the system calls a
ShellProc function.

wParam Specifies additional information the shell application may need. The interpretation of
this parameter depends on the value of the code parameter, as follows:

code wParam
HSHELL_ACTIVATESHELLWINDOW Not used.
HSHELL_WINDOWCREATED Specifies the handle of the window

being created.
HSHELL_WINDOWDESTROYED Specifies the handle of the window

being destroyed.
lParam Reserved; not used.

Returns
The return value should be zero.

Comments
An application must install this callback function by specifying the WH_SHELL filter type and the
procedure-instance address of the callback function in a call to the SetWindowsHook function.

ShellProc is a placeholder for the library-defined function name. The actual name must be exported by
including it in an EXPORTS statement in the library's module-definition file.

See Also
DefHookProc, SendMessage, SetWindowsHook

SysMsgProc (3.1)
LRESULT CALLBACK SysMsgProc(code, wParam, lParam)
int code; /* message type */
WPARAM wParam; /* undefined *
/
LPARAM lParam; /
* pointer to an MSG structure *
/

The SysMsgProc function is a library-defined callback function that the system calls after a dialog box,
message box, or menu has retrieved a message, but before the message is processed. The callback function
can process or modify messages for any application in the system.

Parameter Description
code Specifies the type of message being processed. This parameter can be one of the

following values:

Value Meaning
MSGF_DIALOGBOX Messages inside a dialog box or message box procedure

are being processed.
MSGF_MENU Keyboard and mouse messages in a menu are being

processed.
If the code parameter is less than zero, the callback function must pass the message to
the CallNextHookEx function without further processing and return the value returned
by CallNextHookEx.

wParam Must be NULL.
lParam Points to the MSG structure to contain the message. The MSG structure has the

following form:

Returns
The return value should be nonzero if the function processes the message. Otherwise, it should be zero.

Comments
This callback function must be in a dynamic-link library (DLL).

An application must install this callback function by specifying the WH_SYSMSGFILTER filter type and
the procedure-instance address of the callback function in a call to the SetWindowsHookEx function.

SysMsgProc is a placeholder for the library-defined function name. The actual name must be exported by
including it in an EXPORTS statement in the library's module-definition file.

See Also
CallNextHookEx, MessageBox, SetWindowsHookEx

TimerProc (2.x)
void CALLBACK TimerProc(hwnd, msg, idTimer, dwTime)
HWND hwnd; /* handle of window for timer messages */
UINT msg; /* WM_TIMER
message *
/
UINT idTimer; /
* timer identifier *
/
DWORD dwTime; /
* current system time *
/

The TimerProc function is an application-defined callback function that processes WM_TIMER messages.

Parameter Description
hwnd Identifies the window associated with the timer.
msg Specifies the WM_TIMER message.
idTimer Specifies the timer's identifier.
dwTime Specifies the current system time.

Returns
This function does not return a value.

Comments
TimerProc is a placeholder for the application-defined function name. The actual name must be exported
by including it in an EXPORTS statement in the application's module-definition file.

See Also
KillTimer, SetTimer, WM_TIMER

WEP (3.0)
int CALLBACK WEP(nExitType)
int nExitType; /* type of exit */

The WEP (Windows exit procedure) callback function performs cleanup for a dynamic-link library (DLL)
before the library is unloaded. This function is called by Windows. Although a WEP function was required
for every dynamic-link library in previous versions of the Windows operating system, for version 3.1 the
WEP function is optional. Most dynamic-link libraries use the WEP function.

Parameter Description
nExitType Specifies whether all of Windows is shutting down or only the individual library. This

parameter can be either WEP_FREE_DLL or WEP_SYSTEM_EXIT.

Returns
The return value should be 1 if the function is successful.

Comments
For Windows version 3.1, WEP is called on the stack of the application that is terminating. This enables
WEP to call Windows functions. In Windows version 3.0, however, WEP is called on a KERNEL stack
that is too small to process most calls to Windows functions. These calls, including calls to global-
memory functions, should be avoided in a WEP function for Windows 3.0. Calls to MS-DOS functions go
through a KERNEL intercept and can also overflow the stack in Windows 3.0. There is no general reason
to free memory from the global heap in a WEP function, because the kernel frees this kind of memory
automatically.

In some low-memory conditions, WEP can be called before the library initialization function is called and
before the library's DGROUP data-segment group has been created. A WEP function that relies on the
library initialization function should verify that the initialization function has been called. Also, WEP
functions that rely on the validity of DGROUP should check for this. The following procedure is
recommended for dynamic-link libraries in Windows 3.0; for Windows 3.1, only step 3 is necessary.
1 Verify that the data segment is present by using a lar instruction and checking the present bit. This

will indicate whether DS has been loaded. (The DS register always contains a valid selector.)

2 Set a flag in the data segment when the library initialization is performed. Once the WEP function
has verified that the data segment exists, it should test this flag to determine whether initialization
has occurred.

3 Declare WEP in the EXPORTS section of the module-definition file for the DLL. Following is an
example declaration:

WEP @1 RESIDENTNAME
The keyword RESIDENTNAME makes the name of the function (WEP) resident at all times. (It is
not necessary to use the ordinal reference 1.) The name listed in the LIBRARY statement of the
module-definition file must be in uppercase letters and must match the name of the DLL file.

Windows calls the WEP function by name when it is ready to remove the DLL. Under low-memory
conditions, it is possible for the DLL's nonresident-name table to be discarded from memory. If this
occurs, Windows must load the table to determine whether a WEP function was declared for the DLL.
Under low-memory conditions, this method could fail, causing a fatal exit. Using the RESIDENTNAME
option forces Windows to keep the name entry for WEP in memory whenever the DLL is in use.

In Windows 3.0, WEP must be placed in a fixed code segment. If it is placed instead in a discardable
segment, under low-memory conditions Windows must load the WEP segment from disk so that the WEP
function can be called before the DLL is discarded. Under certain low-memory conditions, attempting to
load the segment containing WEP can cause a fatal exit. When WEP is in a fixed segment, this situation
cannot occur. (Because fixed DLL code is also page-locked, you should minimize the amount of fixed
code.)

If a DLL is explicitly loaded by calling the LoadLibrary function, its WEP function is called when the
DLL is freed by a call to the FreeLibrary function. (The FreeLibrary function should not be called from
within a WEP function.) If the DLL is implicitly loaded, WEP is also called, but some debugging
applications will indicate that the application has been terminated before WEP is called.

The WEP functions of dependent DLLs can be called in any order. This order depends on the order in
which the usage counts for the DLLs reach zero.

See Also

FreeLibrary, LibMain, RegisterClass, UnRegisterClass

WindowProc (2.x)
LRESULT CALLBACK WindowProc(hwnd, msg, wParam, lParam)
HWND hwnd; /* handle of window */
UINT msg; /* message */
WPARAM wParam; /
* first message parameter *
/
LPARAM lParam; /
* second message parameter *
/

The WindowProc function is an application-defined callback function that processes messages sent to a
window.

Parameter Description
hwnd Identifies the window.
msg Specifies the message.
wParam Specifies 16 bits of additional message-dependent information.
lParam Specifies 32 bits of additional message-dependent information.

Returns
The return value is the result of the message processing. The value depends on the message being
processed.

Comments
The WindowProc name is a placeholder for the application-defined function name. The actual name must
be exported by including it in an EXPORTS statement in the application's module-definition file.

See Also
DefWindowProc, RegisterClass, WNDCLASS

WinMain (2.x)
int PASCAL WinMain(hinstCurrent, hinstPrevious, lpCmdLine, nCmdShow)
HINSTANCE hinstCurrent; /* handle of current instance */
HINSTANCE hinstPrevious; /
* handle of previous instance *
/
LPSTR lpszCmdLine; /
* address of command line *
/
int nCmdShow; /
* show-window type (open/icon) *
/

The WinMain function is called by the system as the initial entry point for a Windows application.

Parameter Description
hinstCurrent Identifies the current instance of the application.
hinstPrevious Identifies the previous instance of the application.
lpszCmdLine Points to a null-terminated string specifying the command line for the application.
nCmdShow Specifies how the window is to be shown. This parameter can be one of the following

values:

Value Meaning
SW_HIDE Hides the window and passes activation to

another window.
SW_MINIMIZE Minimizes the specified window and activates

the top-level window in the system's list.
SW_RESTORE Activates and displays a window. If the window

is minimized or maximized, Windows restores it
to its original size and position (same as
SW_SHOWNORMAL).

SW_SHOW Activates a window and displays it in its current
size and position.

SW_SHOWMAXIMIZED Activates a window and displays it as a
maximized window.

SW_SHOWMINIMIZED Activates a window and displays it as an icon.
SW_SHOWMINNOACTIVE Displays a window as an icon. The window that

is currently active remains active.
SW_SHOWNA Displays a window in its current state. The

window that is currently active remains active.
SW_SHOWNOACTIVATE Displays a window in its most recent size and

position. The window that is currently active
remains active.

SW_SHOWNORMAL Activates and displays a window. If the window
is minimized or maximized, Windows restores it
to its original size and position (same as
SW_RESTORE).

Returns
The return value is the return value of the PostQuitMessage function if the function is successful. This
function returns NULL if it terminates before entering the message loop.

Comments
The WinMain function calls the instance-initialization function and, if no other instance of the program is
running, the application-initialization function. It then performs a message retrieval-and-dispatch loop that
is the top-level control structure for the remainder of the application's execution. The loop is terminated
when a WM_QUIT message is received, at which time this function exits the application instance by
returning the value passed by the PostQuitMessage function.

Example

The following example uses the WinMain function to initialize the application (if necessary), initialize the
instance, and establish a message loop:

int PASCAL WinMain(HINSTANCE hinstCurrent, HINSTANCE hinstPrevious,
LPSTR lpszCmdLine, int nCmdShow)

{
MSG msg;
if (hinstPrevious == NULL) /* other instances? */
if (!InitApplication(hinstCurrent)) /* shared items*/
return FALSE; /* initialization failed */
/* Perform initializations for this instance. */
if (!InitInstance(hinstCurrent, nCmdShow))
return FALSE;
/* Get and dispatch messages until WM_QUIT message. */

while (GetMessage(&msg, NULL, 0, 0)) {
TranslateMessage(&msg); /* translates virtual key codes */
DispatchMessage(&msg); /* dispatches message to window */
}
return (int) msg.wParam; /* return value of PostQuitMessage */

}
See Also
DispatchMessage, GetMessage, PostQuitMessage, TranslateMessage

WordBreakProc (3.1)
int CALLBACK WordBreakProc(lpszEditText, ichCurrentWord, cbEditText, action)
LPSTR lpszEditText; /* address of edit text */
int ichCurrentWord; /* index of starting point *
/
int cbEditText; /
* length of edit text *
/
int action; /
* action to take *
/

The WordBreakProc function is an application-defined callback function that the system calls whenever a
line of text in a multiline edit control must be broken.

Parameter Description
lpszEditText Points to the text of the edit control.
ichCurrentWord Specifies an index to a word in the buffer of text that identifies the point at which the

function should begin checking for a word break.
cbEditText Specifies the number of bytes in the text.
action Specifies the action to be taken by the callback function. This parameter can be one

of the following values:

Value Action
WB_LEFT Look for the beginning of a word to the left of the

current position.
WB_RIGHT Look for the beginning of a word to the right of the

current position.
WB_ISDELIMITER Check whether the character at the current position is a

delimiter.

Returns
If the action parameter specifies WB_ISDELIMITER, the return value is non zero (TRUE) if the character
at the current position is a delimiter, or zero if it is not. Otherwise, the return value is an index to the
begining of a word in the buffer of text.

Comments
A carriage return (CR) followed by a linefeed (LF) must be treated as a single word by the callback
function. Two carriage returns followed by a linefeed also must be treated as a single word.

An application must install the callback function by specifying the procedure-instance address of the
callback function in a EM_SETWORDBREAKPROC message.

WordBreakProc is a placeholder for the library-defined function name. The actual name must be exported
by including it in an EXPORTS statement in the library's module-definition file.

See Also
SendMessage, EM_SETWORDBREAKPROC

Callback functions (3.1)
AbortProc Processes a canceled print job
CallWndProc Filters messages sent by the SendMessage function
CBTProc Allows a CBT application to prevent an operation
CPlApplet Processes messages for a Control Panel DLL
DdeCallback Processes DDEML transactions
DebugProc Examines data before it is sent to a hook
DialogProc Processes messages sent to a modeless dialog box
DriverProc Processes messages for an installable driver
EnumChildProc Receives child window handles during enumeration
EnumFontFamProc Retrieves information about available fonts
EnumFontsProc Retrieves information about available fonts
EnumMetaFileProc Processes metafile data
EnumObjectsProc Processes object data
EnumPropFixedProc Receives enumerated property data for a window
EnumPropMovableProc Receives enumerated property data for a window
EnumTaskWndProc Processes task window handles during enumeration
EnumWindowsProc Receives parent window handles during enumeration
GetMsgProc Filters messages retrieved by the GetMessage function
GrayStringProc Outputs text for the GrayString function
HardwareProc Filters nonstandard hardware messages
JournalPlaybackProc Places recorded events into the system queue
JournalRecordProc Records event messages
KeyboardProc Filters keyboard messages
LibMain Initializes a dynamic-link library
LineDDAProc Processes line data
LoadProc Receives and processes resource information
MessageProc Filters dialog box, message box, or menu messages
MouseProc Filters mouse messages
NotifyProc Determines whether to discard a global memory object
ShellProc Receives notifications from the system
SysMsgProc Filters dialog box, message box, or menu messages
TimerProc Processes WM_TIMER messages
WEP Cleans up and exits a dynamic-link library
WindowProc Processes messages sent to a window
WinMain Initializes an application and processes message loop
WordBreakProc Determines line breaks in an edit control

CommDlgExtendedError (3.1)
#include commdlg.h

DWORD CommDlgExtendedError(void)

The CommDlgExtendedError function identifies the cause of the most recent error to have occurred during
the execution of one of the following common dialog box procedures:

ChooseColor
ChooseFont
FindText
GetFileTitle
GetOpenFileName
GetSaveFileName
PrintDlg
ReplaceText

Returns
The return value is zero if the prior call to a common dialog box procedure was successful. The return
value is CDERR_DIALOGFAILURE if the dialog box could not be created. Otherwise, the return value is
a nonzero integer that identifies an error condition.

Comments
Following are the possible CommDlgExtendedError return values and the meaning of each:

Value Meaning
CDERR_FINDRESFAILURE Specifies that the common dialog box procedure failed to find

a specified resource.
CDERR_INITIALIZATION Specifies that the common dialog box procedure failed during

initialization. This error often occurs when insufficient
memory is available.

CDERR_LOADRESFAILURE Specifies that the common dialog box procedure failed to load
a specified resource.

CDERR_LOCKRESFAILURE Specifies that the common dialog box procedure failed to lock
a specified resource.

CDERR_LOADSTRFAILURE Specifies that the common dialog box procedure failed to load
a specified string.

CDERR_MEMALLOCFAILURE Specifies that the common dialog box procedure was unable to
allocate memory for internal structures.

CDERR_MEMLOCKFAILURE Specifies that the common dialog box procedure was unable to
lock the memory associated with a handle.

CDERR_NOHINSTANCE Specifies that the ENABLETEMPLATE flag was set in the
Flags member of a structure for the corresponding common
dialog box but that the application failed to provide a
corresponding instance handle.

CDERR_NOHOOK Specifies that the ENABLEHOOK flag was set in the Flags
member of a structure for the corresponding common dialog
box but that the application failed to provide a pointer to a
corresponding hook function.

CDERR_NOTEMPLATE Specifies that the ENABLETEMPLATE flag was set in the
Flags member of a structure for the corresponding common
dialog box but that the application failed to provide a
corresponding template.

CDERR_REGISTERMSGFAIL Specifies that the RegisterWindowMessage function returned
an error value when it was called by the common dialog box
procedure.

CDERR_STRUCTSIZE Specifies as invalid the lStructSize member of a structure for
the corresponding common dialog box.

CFERR_NOFONTS Specifies that no fonts exist.
CFERR_MAXLESSTHANMIN Specifies that the size specified in the nSizeMax member of

the CHOOSEFONT structure is less than the size specified in
the nSizeMin member.

FNERR_BUFFERTOOSMALL Specifies that the buffer for a filename is too small. (This
buffer is pointed to by the lpstrFile member of the structure
for a common dialog box.)

FNERR_INVALIDFILENAME Specifies that a filename is invalid.
FNERR_SUBCLASSFAILURE Specifies that an attempt to subclass a list box failed due to

insufficient memory.
FRERR_BUFFERLENGTHZERO Specifies that a member in a structure for the corresponding

common dialog box points to an invalid buffer.
PDERR_CREATEICFAILURE Specifies that the PrintDlg function failed when it attempted to

create an information context.
PDERR_DEFAULTDIFFERENT Specifies that an application has called the PrintDlg function

with the DN_DEFAULTPRN flag set in the wDefault member
of the DEVNAMES structure, but the printer described by the
other structure members does not match the current default
printer. (This happens when an application stores the
DEVNAMES structure and the user changes the default
printer by using Control Panel.)
To use the printer described by the DEVNAMES structure, the
application should clear the DN_DEFAULTPRN flag and call
the PrintDlg function again. To use the default printer, the
application should replace the DEVNAMES structure (and the
DEVMODE structure, if one exists) with NULL; this selects
the default printer automatically.

PDERR_DNDMMISMATCH Specifies that the data in the DEVMODE and DEVNAMES
structures describes two different printers.

PDERR_GETDEVMODEFAIL Specifies that the printer driver failed to initialize a
DEVMODE structure. (This error value applies only to printer
drivers written for Windows versions 3.0 and later.)

PDERR_INITFAILURE Specifies that the PrintDlg function failed during initialization.
PDERR_LOADDRVFAILURE Specifies that the PrintDlg function failed to load the device

driver for the specified printer.
PDERR_NODEFAULTPRN Specifies that a default printer does not exist.
PDERR_NODEVICES Specifies that no printer drivers were found.
PDERR_PARSEFAILURE Specifies that the PrintDlg function failed to parse the strings

in the [devices] section of the WIN.INI file.
PDERR_PRINTERNOTFOUND Specifies that the [devices] section of the WIN.INI file did not

contain an entry for the requested printer.
PDERR_RETDEFFAILURE Specifies that the PD_RETURNDEFAULT flag was set in the

Flags member of the PRINTDLG structure but that either the
hDevMode or hDevNames member was nonzero.

PDERR_SETUPFAILURE Specifies that the PrintDlg function failed to load the required
resources.

See Also
ChooseColor, ChooseFont, FindText, GetFileTitle, GetOpenFileName, GetSaveFileName, PrintDlg,
ReplaceText

CDERR_FINDRESFAILURE

Specifies that the common dialog box procedure failed to find a specified resource.

CDERR_INITIALIZATION

Specifies that the common dialog box procedure failed during initialization. This error often occurs when
insufficient memory is available.

CDERR_LOADRESFAILURE

Specifies that the common dialog box procedure failed to load a specified resource.

CDERR_LOCKRESFAILURE

Specifies that the common dialog box procedure failed to lock a specified resource.

CDERR_LOADSTRFAILURE

Specifies that the common dialog box procedure failed to load a specified string.

CDERR_MEMALLOCFAILURE

Specifies that the common dialog box procedure was unable to allocate memory for internal structures.

CDERR_MEMLOCKFAILURE

Specifies that the common dialog box procedure was unable to lock the memory associated with a handle.

CDERR_NOHINSTANCE

Specifies that the ENABLETEMPLATE flag was set in the Flags member of a structure for the
corresponding common dialog box but that the application failed to provide a corresponding instance
handle.

CDERR_NOHOOK

Specifies that the ENABLEHOOK flag was set in the Flags member of a structure for the corresponding
common dialog box but that the application failed to provide a pointer to a corresponding hook function.

CDERR_NOTEMPLATE

Specifies that the ENABLETEMPLATE flag was set in the Flags member of a structure for the
corresponding common dialog box but that the application failed to provide a corresponding template.

CDERR_REGISTERMSGFAIL

Specifies that the RegisterWindowMessage function returned an error value when it was called by the
common dialog box procedure.

CDERR_STRUCTSIZE

Specifies as invalid the lStructSize member of a structure for the corresponding common dialog box.

CFERR_NOFONTS

Specifies that no fonts exist.

CFERR_MAXLESSTHANMIN

Specifies that the size specified in the nSizeMax member of the CHOOSEFONT structure is less than the
size specified in the nSizeMin member.

FNERR_BUFFERTOOSMALL

Specifies that the buffer for a filename is too small. (This buffer is pointed to by the lpstrFile member of
the structure for a common dialog box.)

FNERR_INVALIDFILENAME

Specifies that a filename is invalid.

FNERR_SUBCLASSFAILURE

Specifies that an attempt to subclass a list box failed due to insufficient memory.

FRERR_BUFFERLENGTHZERO

Specifies that a member in a structure for the corresponding common dialog box points to an invalid
buffer.

PDERR_CREATEICFAILURE

Specifies that the PrintDlg function failed when it attempted to create an information context.

PDERR_DEFAULTDIFFERENT

Specifies that an application has called the PrintDlg function with the DN_DEFAULTPRN flag set in the
wDefault member of the DEVNAMES structure, but the printer described by the other structure members
does not match the current default printer. (This happens when an application stores the DEVNAMES
structure and the user changes the default printer by using Control Panel.) To use the printer described by
the DEVNAMES structure, the application should clear the DN_DEFAULTPRN flag and call the PrintDlg
function again. To use the default printer, the application should replace the DEVNAMES structure (and
the DEVMODE structure, if one exists) with NULL; this selects the default printer automatically.

PDERR_DNDMMISMATCH

Specifies that the data in the DEVMODE and DEVNAMES structures describes two different printers.

PDERR_GETDEVMODEFAIL

Specifies that the printer driver failed to initialize a DEVMODE structure. (This error value applies only to
printer drivers written for Windows versions 3.0 and later.)

PDERR_INITFAILURE

Specifies that the PrintDlg function failed during initialization.

PDERR_LOADDRVFAILURE

Specifies that the PrintDlg function failed to load the device driver for the specified printer.

PDERR_NODEFAULTPRN

Specifies that a default printer does not exist.

PDERR_NODEVICES

Specifies that no printer drivers were found.

PDERR_PARSEFAILURE

Specifies that the PrintDlg function failed to parse the strings in the [devices] section of the WIN.INI file.

PDERR_PRINTERNOTFOUND

Specifies that the [devices] section of the WIN.INI file did not contain an entry for the requested printer.

PDERR_RETDEFFAILURE

Specifies that the PD_RETURNDEFAULT flag was set in the Flags member of the PRINTDLG structure
but that either the hDevMode or hDevNames member was nonzero.

PDERR_SETUPFAILURE

Specifies that the PrintDlg function failed to load the required resources.

ChooseColor (3.1)
#include commdlg.h

BOOL ChooseColor(lpcc)
CHOOSECOLOR FAR* lpcc; /* address of structure with initialization data */

The ChooseColor function creates a system-defined dialog box from which the user can select a color.

Parameter Description
lpcc Points to a CHOOSECOLOR structure that initially contains information necessary to

initialize the dialog box. When the ChooseColor function returns, this structure contains
information about the user's color selection.

Returns
The return value is nonzero if the function is successful. It is zero if an error occurs, if the user chooses the
Cancel button, or if the user chooses the Close command on the System menu (often called the Control
menu) to close the dialog box.

Errors
Use the CommDlgExtendedError function to retrieve the error value, which may be one of the following:

CDERR_FINDRESFAILURE
CDERR_INITIALIZATION
CDERR_LOCKRESFAILURE
CDERR_LOADRESFAILURE
CDERR_LOADSTRFAILURE
CDERR_MEMALLOCFAILURE
CDERR_MEMLOCKFAILURE
CDERR_NOHINSTANCE
CDERR_NOHOOK
CDERR_NOTEMPLATE
CDERR_STRUCTSIZE

Comments
The dialog box does not support color palettes. The color choices offered by the dialog box are limited to
the system colors and dithered versions of those colors.

If the hook function (to which the lpfnHook member of the CHOOSECOLOR structure points) processes
the WM_CTLCOLOR message, this function must return a handle for the brush that should be used to
paint the control background.

Example
The following example initializes a CHOOSECOLOR structure and then creates a color-selection dialog
box:

/* Color variables */
CHOOSECOLOR cc;
COLORREF clr;
COLORREF aclrCust[16];
int i;
/* Set the custom color controls to white. */
for (i = 0; i < 16; i++)

aclrCust[i] = RGB(255, 255, 255);
/* Initialize clr to black. */
clr = RGB(0, 0, 0);
/* Set all structure fields to zero. */
memset(&cc, 0, sizeof(CHOOSECOLOR));

/* Initialize the necessary CHOOSECOLOR members. */
cc.lStructSize = sizeof(CHOOSECOLOR);
cc.hwndOwner = hwnd;
cc.rgbResult = clr;
cc.lpCustColors = aclrCust;
cc.Flags = CC_PREVENTFULLOPEN;
if (ChooseColor(&cc))

.

. /* Use cc.rgbResult to select the user-requested color. */

.
See Also
CHOOSECOLOR

The following shows how the dialog box normally appears:

ChooseFont function (3.1)
#include commdlg.h

BOOL ChooseFont(lpcf)
CHOOSEFONT FAR*lpcf; /* address of structure with initialization data */

The ChooseFont function creates a system-defined dialog box from which the user can select a font, a font
style (such as bold or italic), a point size, an effect (such as strikeout or underline), and a color.

Parameter Description
lpcf Points to a CHOOSEFONT structure that initially contains information necessary to

initialize the dialog box. When the ChooseFont function returns, this structure contains
information about the user's font selection.

Returns
The return value is nonzero if the function is successful. Otherwise, it is zero.

Errors
Use the CommDlgExtendedError function to retrieve the error value, which may be one of the following:

CDERR_FINDRESFAILURE
CDERR_INITIALIZATION
CDERR_LOCKRESFAILURE
CDERR_LOADRESFAILURE
CDERR_LOADSTRFAILURE
CDERR_MEMALLOCFAILURE
CDERR_MEMLOCKFAILURE
CDERR_NOHINSTANCE
CDERR_NOHOOK
CDERR_NOTEMPLATE
CDERR_STRUCTSIZE
CFERR_MAXLESSTHANMIN
CFERR_NOFONTS

Example
The following example initializes a CHOOSEFONT structure and then displays a font dialog box:

LOGFONT lf;
CHOOSEFONT cf;
/* Set all structure fields to zero. */
memset(&cf, 0, sizeof(CHOOSEFONT));
cf.lStructSize = sizeof(CHOOSEFONT);
cf.hwndOwner = hwnd;
cf.lpLogFont = &lf;
cf.Flags = CF_SCREENFONTS | CF_EFFECTS;
cf.rgbColors = RGB(0, 255, 255); /* light blue */
cf.nFontType = SCREEN_FONTTYPE;
ChooseFont(&cf);
See Also

CHOOSEFONT

The following shows how the dialog box normally appears:

FindText (3.1)
#include commdlg.h

HWND FindText(lpfr)
FINDREPLACE FAR* lpfr; /* address of structure with initialization data */

The FindText function creates a system-defined modeless dialog box that makes it possible for the user to
find text within a document. The application must perform the search operation.

Parameter Description
lpfr Points to a FINDREPLACE structure that contains information used to initialize the

dialog box. When the user makes a selection in the dialog box, the system fills this
structure with information about the user's selection and then sends a message to the
application. This message contains a pointer to the FINDREPLACE structure.

Returns
The return value is the window handle of the dialog box if the function is successful. Otherwise, it is
NULL. An application can use this window handle to communicate with or to close the dialog box.

Errors
Use the CommDlgExtendedError function to retrieve the error value, which may be one of the following
values:

CDERR_FINDRESFAILURE
CDERR_INITIALIZATION
CDERR_LOCKRESFAILURE
CDERR_LOADRESFAILURE
CDERR_LOADSTRFAILURE
CDERR_MEMALLOCFAILURE
CDERR_MEMLOCKFAILURE
CDERR_NOHINSTANCE
CDERR_NOHOOK
CDERR_NOTEMPLATE
CDERR_STRUCTSIZE
FRERR_BUFFERLENGTHZERO

Comments
The dialog box procedure for the Find dialog box passes user requests to the application through special
messages. The lParam parameter of each of these messages contains a pointer to a FINDREPLACE
structure. The procedure sends the messages to the window identified by the hwndOwner member of the
FINDREPLACE structure. An application can register the identifier for these messages by specifying the
"commdlg_FindReplace" string in a call to the RegisterWindowMessage function.

For the TAB key to function correctly, any application that calls the FindText function must also call the
IsDialogMessage function in its main message loop. (The IsDialogMessage function returns a value that
indicates whether messages are intended for the Find dialog box.)

If the hook function (to which the lpfnHook member of the FINDREPLACE structure points) processes
the WM_CTLCOLOR message, this function must return a handle of the brush that should be used to
paint the control background.

Example
The following example initializes a FINDREPLACE structure and calls the FindText function to display
the Find dialog box:

FINDREPLACE fr;

/* Set all structure fields to zero. */
memset(&fr, 0, sizeof(FINDREPLACE));
fr.lStructSize = sizeof(FINDREPLACE);
fr.hwndOwner = hwnd;
fr.lpstrFindWhat = szFindWhat;
fr.wFindWhatLen = sizeof(szFindWhat);
hDlg = FindText(&fr);
break;
In addition to initializing the members of the FINDREPLACE structure and calling the FindText function,
an application must register the special FINDMSGSTRING message and process messages from the
dialog box.

The following example registers the message by using the RegisterWindowMessage function:

UINT uFindReplaceMsg;
/* Register the FindReplace message. */
uFindReplaceMsg = RegisterWindowMessage(FINDMSGSTRING);
After the application registers the FINDMSGSTRING message, it can process messages by using the
RegisterWindowMessage return value. The following example processes messages for the Find dialog box
and then calls its own SearchFile function to locate the string of text. If the user is closing the dialog box
(that is, if the Flags member of the FINDREPLACE structure is FR_DIALOGTERM), the handle is
invalidated and the procedure returns zero.

LRESULT CALLBACK MainWndProc(HWND hwnd, UINT msg, WPARAM wParam,
LPARAM lParam)

{
FINDREPLACE FAR* lpfr;
if (msg == uFindReplaceMsg) {
lpfr = (FINDREPLACE FAR*) lParam;
if (lpfr->Flags & FR_DIALOGTERM) {
hDlg = NULL;
return 0;
}
SearchFile((BOOL) (lpfr->Flags & FR_DOWN),
(BOOL) (lpfr->Flags & FR_MATCHCASE));
return 0;
}

See Also
IsDialogMessage, RegisterWindowMessage, ReplaceText, FINDREPLACE

The following shows how the find dialog box appears:

GetFileTitle (3.1)
#include commdlg.h

int GetFileTitle(lpszFile, lpszTitle, cbBuf)
LPCSTR lpszFile; /* pointer to filename (including drive and directory) */
LPSTR lpszTitle; /
* address of buffer that receives filename *
/
UINT cbBuf; /
* length of buffer *
/

The GetFileTitle function returns the title of the file identified by the lpszFile parameter.

Parameter Description
lpszFile Points to the name and location of an MS-DOS file.
lpszTitle Points to a buffer into which the function is to copy the name of the file.
cbBuf Specifies the length, in bytes, of the buffer to which the lpszTitle parameter points.

Returns
The return value is zero if the function is successful. The return value is a negative number if the filename
is invalid. The return value is a positive integer that specifies the required buffer size, in bytes, if the buffer
to which the lpszTitle parameter points is too small.

Comments
The function returns an error value if the buffer pointed to by the lpszFile parameter contains any of the
following:

An empty string
A string containing a wildcard (*), opening bracket ([), or closing bracket (])
A string that ends with a colon (:), slash mark (/), or backslash (\)
A string whose length exceeded the length of the buffer
An invalid character (for example, a space or unprintable character).

The required buffer size includes the terminating null character.

GetOpenFileName (3.1)
#include commdlg.h

BOOL GetOpenFileName(lpofn)
OPENFILENAME FAR* lpofn; /* address of initialization data structure */

The GetOpenFileName function creates a system-defined dialog box that makes it possible for the user to
select a file to open.

Parameter Description
lpofn Points to an OPENFILENAME structure that contains information used to initialize the

dialog box. When the GetOpenFileName function returns, this structure contains
information about the user's file selection.

Returns
The return value is nonzero if the user selects a file to open. It is zero if an error occurs, if the user chooses
the Cancel button, if the user chooses the Close command on the System menu to close the dialog box, or
if the buffer identified by the lpstrFile member of the OPENFILENAME structure is too small to contain
the string that specifies the selected file.

Errors
The CommDlgExtendedError function retrieves the error value, which may be one of the following values:

CDERR_FINDRESFAILURE
CDERR_INITIALIZATION
CDERR_LOCKRESFAILURE
CDERR_LOADRESFAILURE
CDERR_LOADSTRFAILURE
CDERR_MEMALLOCFAILURE
CDERR_MEMLOCKFAILURE
CDERR_NOHINSTANCE
CDERR_NOHOOK
CDERR_NOTEMPLATE
CDERR_STRUCTSIZE
FNERR_BUFFERTOOSMALL
FNERR_INVALIDFILENAME
FNERR_SUBCLASSFAILURE

Comments
If the hook function (to which the lpfnHook member of the OPENFILENAME structure points) processes
the WM_CTLCOLOR message, this function must return a handle of the brush that should be used to
paint the control background.

Example
The following example copies file-filter strings into a buffer, initializes an OPENFILENAME structure,
and then creates an Open dialog box.

The file-filter strings are stored in the resource file in the following form:

STRINGTABLE
BEGIN
IDS_FILTERSTRING "Write Files(*.WRI)|*.wri|Word Files(*.DOC)|*.

doc|"
END
The replaceable character at the end of the string is used to break the entire string into separate strings,
while still guaranteeing that all the strings are continguous in memory.

OPENFILENAME ofn;
char szDirName[256];
char szFile[256], szFileTitle[256];
UINT i, cbString;
char chReplace; /* string separator for szFilter */
char szFilter[256];
HFILE hf;

/* Get the system directory name, and store in szDirName */
GetSystemDirectory(szDirName, sizeof(szDirName));
szFile[0] = '\0';
if ((cbString = LoadString(hinst, IDS_FILTERSTRING,

szFilter, sizeof(szFilter))) == 0) {
ErrorHandler();
return 0L;

}
chReplace = szFilter[cbString - 1]; /* retrieve wildcard */
for (i = 0; szFilter[i] != '\0'; i++) {

if (szFilter[i] == chReplace)
szFilter[i] = '\0';

}
/* Set all structure members to zero. */
memset(&ofn, 0, sizeof(OPENFILENAME));
ofn.lStructSize = sizeof(OPENFILENAME);
ofn.hwndOwner = hwnd;
ofn.lpstrFilter = szFilter;
ofn.nFilterIndex = 1;
ofn.lpstrFile= szFile;
ofn.nMaxFile = sizeof(szFile);
ofn.lpstrFileTitle = szFileTitle;
ofn.nMaxFileTitle = sizeof(szFileTitle);
ofn.lpstrInitialDir = szDirName;
ofn.Flags = OFN_SHOWHELP | OFN_PATHMUSTEXIST | OFN_FILEMUSTEXIST;
if (GetOpenFileName(&ofn)) {

hf = _lopen(ofn.lpstrFile, OF_READ);
.
. /* Perform file operations. */
.

}
else

ErrorHandler();
See Also
GetSaveFileName, OPENFILENAME

The following shows how the open dialog box normally appears:

GetSaveFileName (3.1)
#include commdlg.h

BOOL GetSaveFileName(lpofn)
OPENFILENAME FAR* lpofn; /* address of initialization data */

The GetSaveFileName function creates a system-defined dialog box that makes it possible for the user to
select a file to save.

Parameter Description
lpofn Points to an OPENFILENAME structure that contains information used to initialize the

dialog box. When the GetSaveFileName function returns, this structure contains
information about the user's file selection.

Returns
The return value is nonzero if the user selects a file to save. It is zero if an error occurs, if the user clicks
the Cancel button, if the user chooses the Close command on the System menu to close the dialog box, or
if the buffer identified by the lpstrFile member of the OPENFILENAME structure is too small to contain
the string that specifies the selected file.

Errors
The CommDlgExtendedError retrieves the error value, which may be one of the following values:

CDERR_FINDRESFAILURE
CDERR_INITIALIZATION
CDERR_LOCKRESFAILURE
CDERR_LOADRESFAILURE
CDERR_LOADSTRFAILURE
CDERR_MEMALLOCFAILURE
CDERR_MEMLOCKFAILURE
CDERR_NOHINSTANCE
CDERR_NOHOOK
CDERR_NOTEMPLATE
CDERR_STRUCTSIZE
FNERR_BUFFERTOOSMALL
FNERR_INVALIDFILENAME
FNERR_SUBCLASSFAILURE

Comments
If the hook function (to which the lpfnHook member of the OPENFILENAME structure points) processes
the WM_CTLCOLOR message, this function must return a handle for the brush that should be used to
paint the control background.

Example
The following example copies file-filter strings (filename extensions) into a buffer, initializes an
OPENFILENAME structure, and then creates a Save As dialog box.

The file-filter strings are stored in the resource file in the following form:

STRINGTABLE
BEGIN
IDS_FILTERSTRING "Write Files(*.WRI)|*.wri|Word Files(*.DOC)|*.

doc|"
END
The replaceable character at the end of the string is used to break the entire string into separate strings,
while still guaranteeing that all the strings are continguous in memory.

OPENFILENAME ofn;
char szDirName[256];
char szFile[256], szFileTitle[256];
UINT i, cbString;
char chReplace; /* string separator for szFilter */
char szFilter[256];
HFILE hf;
/*
* Retrieve the system directory name, and store it in
* szDirName.
*/
GetSystemDirectory(szDirName, sizeof(szDirName));
if ((cbString = LoadString(hinst, IDS_FILTERSTRING,

szFilter, sizeof(szFilter))) == 0) {
ErrorHandler();
return 0;

}
chReplace = szFilter[cbString - 1]; /* retrieve wildcard */
for (i = 0; szFilter[i] != '\0'; i++) {

if (szFilter[i] == chReplace)
szFilter[i] = '\0';

}
/* Set all structure members to zero. */
memset(&ofn, 0, sizeof(OPENFILENAME));
/* Initialize the OPENFILENAME members. */
szFile[0] = '\0';
ofn.lStructSize = sizeof(OPENFILENAME);
ofn.hwndOwner = hwnd;
ofn.lpstrFilter = szFilter;
ofn.lpstrFile= szFile;
ofn.nMaxFile = sizeof(szFile);
ofn.lpstrFileTitle = szFileTitle;
ofn.nMaxFileTitle = sizeof(szFileTitle);
ofn.lpstrInitialDir = szDirName;
ofn.Flags = OFN_SHOWHELP | OFN_OVERWRITEPROMPT;
if (GetSaveFileName(&ofn)) {

.

. /* Perform file operations. */

.
}
else

ErrorHandler();
See Also
GetOpenFileName, OPENFILENAME

The following shows how the save dialog box appears:

PrintDlg function (3.1)
#include commdlg.h

BOOL PrintDlg(lppd)
PRINTDLG FAR* lppd; /* address of structure with initialization data */

The PrintDlg function displays a Print dialog box or a Print Setup dialog box. The Print dialog box makes
it possible for the user to specify the properties of a particular print job. The Print Setup dialog box makes
it possible for the user to select additional job properties and configure the printer.

Parameter Description
lppd Points to a PRINTDLG structure that contains information used to initialize the dialog

box. When the PrintDlg function returns, this structure contains information about the
user's selections.

Returns
The return value is nonzero if the function successfully configures the printer. The return value is zero if
an error occurs, if the user chooses the Cancel button, or if the user chooses the Close command on the
System menu to close the dialog box. (The return value is also zero if the user chooses the Setup button to
display the Print Setup dialog box, chooses the OK button in the Print Setup dialog box, and then chooses
the Cancel button in the Print dialog box.)

Errors
Use the CommDlgExtendedError function to retrieve the error value, which may be one of the following:

CDERR_FINDRESFAILURE PDERR_CREATEICFAILURE
CDERR_INITIALIZATION PDERR_DEFAULTDIFFERENT
CDERR_LOADRESFAILURE PDERR_DNDMMISMATCH
CDERR_LOADSTRFAILURE PDERR_GETDEVMODEFAIL
CDERR_LOCKRESFAILURE PDERR_INITFAILURE
CDERR_MEMALLOCFAILURE PDERR_LOADDRVFAILURE
CDERR_MEMLOCKFAILURE PDERR_NODEFAULTPRN
CDERR_NOHINSTANCE PDERR_NODEVICES
CDERR_NOHOOK PDERR_PARSEFAILURE
CDERR_NOTEMPLATE PDERR_PRINTERNOTFOUND
CDERR_STRUCTSIZE PDERR_RETDEFFAILURE

PDERR_SETUPFAILURE

Example
The following example initializes the PRINTDLG structure, calls the PrintDlg function to display the Print
dialog box, and prints a sample page of text if the return value is nonzero:

PRINTDLG pd;
/* Set all structure members to zero. */
memset(&pd, 0, sizeof(PRINTDLG));
/* Initialize the necessary PRINTDLG structure members. */
pd.lStructSize = sizeof(PRINTDLG);
pd.hwndOwner = hwnd;
pd.Flags = PD_RETURNDC;

/* Print a test page if successful */
if (PrintDlg(&pd) != 0) {

Escape(pd.hDC, STARTDOC, 8, "Test-Doc", NULL);
/* Print text and rectangle */
TextOut(pd.hDC, 50, 50, "Common Dialog Test Page", 23);
Rectangle(pd.hDC, 50, 90, 625, 105);
Escape(pd.hDC, NEWFRAME, 0, NULL, NULL);
Escape(pd.hDC, ENDDOC, 0, NULL, NULL);
DeleteDC(pd.hDC);
if (pd.hDevMode != NULL)

GlobalFree(pd.hDevMode);
if (pd.hDevNames != NULL)

GlobalFree(pd.hDevNames);
}
else

ErrorHandler();
See Also
PRINTDLG

The following shows how the print dialog box normally appears:

ReplaceText (3.1)
#include commdlg.h

HWND ReplaceText(lpfr)
FINDREPLACE FAR* lpfr; /* address of structure with initialization data */

The ReplaceText function creates a system-defined modeless dialog box that makes it possible for the user
to find and replace text within a document. The application must perform the actual find and replace
operations.

Parameter Description
lpfr Points to a FINDREPLACE structure that contains information used to initialize the

dialog box. When the user makes a selection in the dialog box, the system fills this
structure with information about the user's selection and then sends a message to the
application. This message contains a pointer to the FINDREPLACE structure.

Returns
The return value is the window handle of the dialog box, or it is NULL if an error occurs. An application
can use this handle to communicate with or to close the dialog box.
Errors

Use the CommDlgExtendedError function to retrieve the error value, which may be one of the following:

CDERR_FINDRESFAILURE
CDERR_INITIALIZATION
CDERR_LOADRESFAILURE
CDERR_LOADSTRFAILURE
CDERR_LOCKRESFAILURE
CDERR_MEMALLOCFAILURE
CDERR_MEMLOCKFAILURE
CDERR_NOHINSTANCE
CDERR_NOHOOK
CDERR_NOTEMPLATE
CDERR_STRUCTSIZE
FRERR_BUFFERLENGTHZERO

Comments
The dialog box procedure for the ReplaceText function passes user requests to the application through
special messages. The lParam parameter of each of these messages contains a pointer to a
FINDREPLACE structure. The procedure sends the messages to the window identified by the hwndOwner
member of the FINDREPLACE structure. An application can register the identifier for these messages by
specifying the commdlg_FindReplace string in a call to the RegisterWindowMessage function.

For the TAB key to function correctly, any application that calls the ReplaceText function must also call the
IsDialogMessage function in its main message loop. (The IsDialogMessage function returns a value that
indicates whether messages are intended for the Replace dialog box.)

Example
This example initializes a FINDREPLACE structure and calls the ReplaceText function to display the
Replace dialog box:

FINDREPLACE fr;
char szFindWhat[256] = ""; /* string to find */
char szReplaceWith[256] = ""; /* string to replace */
/* Set all structure fields to zero. */

memset(&fr, 0, sizeof(FINDREPLACE));
fr.lStructSize = sizeof(FINDREPLACE);
fr.hwndOwner = hwnd;
fr.lpstrFindWhat = szFindWhat;
fr.wFindWhatLen = sizeof(szFindWhat);
fr.lpstrReplaceWith = szReplaceWith;
fr.wReplaceWithLen = sizeof(szReplaceWith);
hDlg = ReplaceText(&fr);
In addition to initializing the members of the FINDREPLACE structure and calling the ReplaceText
function, an application must register the special FINDMSGSTRING message and process messages from
the dialog box. Refer to the description of the FindText function for an example that shows how an
application registers and processes a message.

See Also
FindText, IsDialogMessage, RegisterWindowMessage, FINDREPLACE

The following shows how the replace dialog box appears:

Common dialog box functions (3.1)
CommDlgExtendedError Retrieves error data for common dialog box procedure
ChooseColor Creates a color-selection dialog box
ChooseFont function Creates a font-selection dialog box
FindText Creates a find-text dialog box
GetFileTitle Retrieves a filename
GetOpenFileName Creates an open-filename dialog box
GetSaveFileName Creates a save-filename dialog box
PrintDlg function Creates a print-text dialog box
ReplaceText Creates a replace-text dialog box

DdeAbandonTransaction (3.1)
#include <ddeml.h>

BOOL DdeAbandonTransaction(idInst, hConv, idTransaction)
DWORD idInst; /* instance identifier */
HCONV hConv; /* handle of
conversation *
/
DWORD idTransaction; /
* transaction identifier *
/

The DdeAbandonTransaction function abandons the specified asynchronous transaction and releases all
resources associated with the transaction.

Parameter Description
idInst Specifies the application-instance identifier obtained by a previous call to the

DdeInitialize function.
hConv Identifies the conversation in which the transaction was initiated. If this parameter is

NULL, all transactions are abandoned (the idTransaction parameter is ignored).
idTransaction Identifies the transaction to terminate. If this parameter is NULL, all active

transactions in the specified conversation are abandoned.

Returns
The return value is nonzero if the function is successful. Otherwise, it is zero.

Errors
Use the DdeGetLastError function to retrieve the error value, which may be one of the following:

DMLERR_DLL_NOT_INITIALIZED
DMLERR_INVALIDPARAMETER
DMLERR_NO_ERROR
DMLERR_UNFOUND_QUEUE_ID

Comments
Only a dynamic data exchange (DDE) client application should call the DdeAbandonTransaction function.
If the server application responds to the transaction after the client has called DdeAbandonTransaction, the
system discards the transaction results. This function has no effect on synchronous transactions.

See Also
DdeClientTransaction, DdeGetLastError, DdeInitialize, DdeQueryConvInfo

DdeAccessData (3.1)
#include <ddeml.h>

BYTE FAR* DdeAccessData(hData, lpcbData)
HDDEDATA hData; /* handle of global memory object */
DWORD FAR* lpcbData; /
* pointer to variable that receives data length *
/

The DdeAccessData function provides access to the data in the given global memory object. An
application must call the DdeUnaccessData function when it is finished accessing the data in the object.

Parameter Description
hData Identifies the global memory object to access.
lpcbData Points to a variable that receives the size, in bytes, of the global memory object

identified by the hData parameter. If this parameter is NULL, no size information is
returned.

Returns
The return value points to the first byte of data in the global memory object if the function is successful.
Otherwise, the return value is NULL.

Errors
Use the DdeGetLastError function to retrieve the error value, which may be one of the following:

DMLERR_DLL_NOT_INITIALIZED
DMLERR_INVALIDPARAMETER
DMLERR_NO_ERROR

Comments
If the hData parameter has not been passed to a Dynamic Data Exchange Management Library (DDEML)
function, an application can use the pointer returned by DdeAccessData for read-write access to the global
memory object. If hData has already been passed to a DDEML function, the pointer can only be used for
read-only access to the memory object.

Example
The following example uses the DdeAccessData function to obtain a pointer to a global memory object,
uses the pointer to copy data from the object to a local buffer, then frees the pointer:

HDDEDATA hData;
LPBYTE lpszAdviseData;
DWORD cbDataLen;
DWORD i;
char szData[128];
lpszAdviseData = DdeAccessData(hData, &cbDataLen);
for (i = 0; i < cbDataLen; i++)

szData[i] = *lpszAdviseData++;
DdeUnaccessData(hData);
See Also
DdeAddData, DdeCreateDataHandle, DdeFreeDataHandle, DdeGetLastError, DdeUnaccessData

DdeAddData (3.1)
#include <ddeml.h>

HDDEDATA DdeAddData(hData, lpvSrcBuf, cbAddData, offObj)
HDDEDATA hData; /* handle of global memory object */
void FAR* lpvSrcBuf; /*
address of source buffer *
/
DWORD cbAddData; /
* length of data *
/
DWORD offObj; /
* offset within global memory object *
/

The DdeAddData function adds data to the given global memory object. An application can add data
beginning at any offset from the beginning of the object. If new data overlaps data already in the object,
the new data overwrites the old data in the bytes where the overlap occurs. The contents of locations in the
object that have not been written to are undefined.

Parameter Description
hData Identifies the global memory object that receives additional data.
lpvSrcBuf Points to a buffer containing the data to add to the global memory object.
cbAddData Specifies the length, in bytes, of the data to be added to the global memory object.
offObj Specifies an offset, in bytes, from the beginning of the global memory object. The

additional data is copied to the object beginning at this offset.

Returns
The return value is a new handle of the global memory object if the function is successful. The new handle
should be used in all references to the object. The return value is zero if an error occurs.

Errors
Use the DdeGetLastError function to retrieve the error value, which may be one of the following:

DMLERR_DLL_NOT_INITIALIZED
DMLERR_INVALIDPARAMETER
DMLERR_MEMORY_ERROR
DMLERR_NO_ERROR

Comments
After a data handle has been used as a parameter in another Dynamic Data Exchange Management Library
(DDEML) function or returned by a DDE callback function, the handle may only be used for read access
to the global memory object identified by the handle.

If the amount of global memory originally allocated is not large enough to hold the added data, the
DdeAddData function will reallocate a global memory object of the appropriate size.

Example
The following example creates a global memory object, uses the DdeAddData function to add data to the
object, and then passes the data to a client with an XTYP_POKE transaction:

DWORD idInst;/* instance identifier*/
HDDEDATA hddeStrings; /* data handle */
HSZ hszMyItem; /* item-name string handle */
DWORD offObj = 0; /* offset in global object */
char szMyBuf[16]; /* temporary string buffer */
HCONV hconv; /* conversation handle*/
DWORD dwResult; /* transaction results*/
BOOL fAddAString; /* TRUE if strings to add */
/* Create a global memory object. */
hddeStrings = DdeCreateDataHandle(idInst, NULL, 0, 0,

hszMyItem, CF_TEXT, 0);

/*
* If a string is available, the application-defined function
* IsThereAString() copies it to szMyBuf and returns TRUE. Otherwise,
* it returns FALSE.
*/
while ((fAddAString = IsThereAString())) {

/* Add the string to the global memory object. */
DdeAddData(hddeStrings, /* data handle */
&szMyBuf, /* string buffer */
(DWORD) strlen(szMyBuf) + 1, /* character count */
offObj); /* offset in object */
offObj = (DWORD) strlen(szMyBuf) + 1; /* adjust offset */

}
/* No more data to add, so poke it to the server. */
DdeClientTransaction((void FAR*) hddeStrings, -1L, hconv, hszMyItem,

CF_TEXT, XTYP_POKE, 1000, &dwResult);
See Also
DdeAccessData, DdeCreateDataHandle, DdeGetLastError, DdeUnaccessData

DdeClientTransaction (3.1)
#include <ddeml.h>

HDDEDATA DdeClientTransaction(lpvData, cbData, hConv, hszItem, uFmt, uType, uTimeout,
lpuResult)

void FAR* lpvData; /* address of data to pass to server */
DWORD cbData; /*
length of data *
/
HCONV hConv; /
* handle of conversation *
/
HSZ hszItem; /
* handle of item-name string *
/
UINT uFmt; /
* clipboard data format *
/
UINT uType; /
* transaction type *
/
DWORD uTimeout; /
* timeout duration *
/
DWORD FAR* lpuResult; /
* points to transaction result *
/

The DdeClientTransaction function begins a data transaction between a client and a server. Only a
dynamic data exchange (DDE) client application can call this function, and only after establishing a
conversation with the server.

Parameter Description
lpvData Points to the beginning of the data that the client needs to pass to the server.

Optionally, an application can specify the data handle (HDDEDATA) to pass to the
server, in which case the cbData parameter should be set to -1. This parameter is
required only if the uType parameter is XTYP_EXECUTE or XTYP_POKE. Otherwise,
this parameter should be NULL.

cbData Specifies the length, in bytes, of the data pointed to by the lpvData parameter. A value
of -1 indicates that lpvData is a data handle that identifies the data being sent.

hConv Identifies the conversation in which the transaction is to take place.
hszItem Identifies the data item for which data is being exchanged during the transaction. This

handle must have been created by a previous call to the DdeCreateStringHandle
function. This parameter is ignored (and should be set to NULL) if the uType parameter
is XTYP_EXECUTE.

uFmt Specifies the standard clipboard format in which the data item is being submitted or
requested. For more information about standard clipboard formats, see the Clipboard
formats topic.

uType Specifies the transaction type. This parameter can be one of the following values:

Value Meaning
XTYP_ADVSTART Begins an advise loop. Any number of distinct advise

loops can exist within a conversation. An application can
alter the advise loop type by combining the
XTYP_ADVSTART transaction type with one or more of
the following flags:
Value Meaning
XTYPF_NODATA Instructs the server to notify the

client of any data changes
without actually sending the
data. This flag gives the client
the option of ignoring the

notification or requesting the
changed data from the server.

XTYPF_ACKREQ Instructs the server to wait until
the client acknowledges that it
received the previous data item
before sending the next data
item. This flag prevents a fast
server from sending data faster
than the client can process it.

XTYP_ADVSTOP Ends an advise loop.
XTYP_EXECUTE Begins an execute transaction.
XTYP_POKE Begins a poke transaction.
XTYP_REQUEST Begins a request transaction.

uTimeout Specifies the maximum length of time, in milliseconds, that the client will wait for a
response from the server application in a synchronous transaction. This parameter
should be set to TIMEOUT_ASYNC for asynchronous transactions.

lpuResult Points to a variable that receives the result of the transaction. An application that does
not check the result can set this value to NULL. For synchronous transactions, the low-
order word of this variable will contain any applicable DDE_ flags resulting from the
transaction. This provides support for applications dependent on DDE_APPSTATUS
bits. (It is recommended that applications no longer use these bits because they may not
be supported in future versions of the DDE Management Library.) For asynchronous
transactions, this variable is filled with a unique transaction identifier for use with the
DdeAbandonTransaction function and the XTYP_XACT_COMPLETE transaction.

Returns
The return value is a data handle that identifies the data for successful synchronous transactions in which
the client expects data from the server. The return value is TRUE for successful asynchronous transactions
and for synchronous transactions in which the client does not expect data. The return value is FALSE for
all unsuccessful transactions.

Errors
Use the DdeGetLastError function to retrieve the error value, which may be one of the following:

DMLERR_ADVACKTIMEOUT
DMLERR_BUSY
DMLERR_DATAACKTIMEOUT
DMLERR_DLL_NOT_INITIALIZED
DMLERR_EXECACKTIMEOUT
DMLERR_INVALIDPARAMETER
DMLERR_MEMORY_ERROR
DMLERR_NO_CONV_ESTABLISHED
DMLERR_NO_ERROR
DMLERR_NOTPROCESSED
DMLERR_POKEACKTIMEOUT
DMLERR_POSTMSG_FAILED
DMLERR_REENTRANCY
DMLERR_SERVER_DIED
DMLERR_UNADVACKTIMEOUT

Comments
When the application is finished using the data handle returned by the DdeClientTransaction function, the
application should free the handle by calling the DdeFreeDataHandle function.

Transactions can be synchronous or asynchronous. During a synchronous transaction, the
DdeClientTransaction function does not return until the transaction completes successfully or fails.
Synchronous transactions cause the client to enter a modal loop while waiting for various asynchronous
events. Because of this, the client application can still respond to user input while waiting on a
synchronous transaction but cannot begin a second synchronous transaction because of the activity
associated with the first. The DdeClientTransaction function fails if any instance of the same task has a
synchronous transaction already in progress.

During an asynchronous transaction, the DdeClientTransaction function returns after the transaction is
begun, passing a transaction identifier for reference. When the server's DDE callback function finishes
processing an asynchronous transaction, the system sends an XTYP_XACT_COMPLETE transaction to

the client. This transaction provides the client with the results of the asynchronous transaction that it
initiated by calling the DdeClientTransaction function. A client application can choose to abandon an
asynchronous transaction by calling the DdeAbandonTransaction function.

Example
The following example requests an advise loop with a DDE server application:

HCONV hconv;
HSZ hszNow;
HDDEDATA hData;
DWORD dwResult;
hData = DdeClientTransaction(

(LPBYTE) NULL, /* pass no data to server */
0, /* no data */
hconv, /* conversation handle */
hszNow, /* item name */
CF_TEXT, /* clipboard format */
XTYP_ADVSTART, /* start an advise loop */
1000,/* time-out in one second */
&dwResult); /* points to result flags */

See Also
DdeAbandonTransaction, DdeAccessData, DdeConnect, DdeConnectList, DdeCreateStringHandle

DdeCmpStringHandles (3.1)
#include <ddeml.h>

int DdeCmpStringHandles(hsz1, hsz2)
HSZ hsz1; /* handle of first string */
HSZ hsz2; /* handle of second string */

The DdeCmpStringHandles function compares the values of two string handles. The value of a string
handle is not related to the case of the associated string.

Parameter Description
hsz1 Specifies the first string handle.
hsz2 Specifies the second string handle.

Returns
The return value can be one of the following:

Value Meaning
-1 The value of hsz1 is either 0 or less than the value of hsz2.
0 The values of hsz1 and hsz2 are equal (both can be 0).
1 The value of hsz2 is either 0 or less than the value of hsz1.

Comments
An application that needs to do a case-sensitive comparison of two string handles should compare the
string handles directly. An application should use DdeCompStringHandles for all other comparisons to
preserve the case-sensitive nature of dynamic data exchange (DDE).

The DdeCompStringHandles function cannot be used to sort string handles alphabetically.

Example
This example compares two service-name string handles and, if the handles are the same, requests a
conversation with the server, then issues an XTYP_ADVSTART transaction:

HSZ hszClock; /* service name */
HSZ hszTime; /* topic name */
HSZ hsz1; /* unknown server*/
HCONV hConv; /* conversation handle*/
DWORD dwResult; /* result flags */
DWORD idInst; /* instance identifier*/
/*
* Compare unknown service name handle with the string handle
* for the clock application.
*/
if (!DdeCmpStringHandles(hsz1, hszClock)) {

/*
* If this is the clock application, start a conversation
* with it and request an advise loop.
*/

hConv = DdeConnect(idInst, hszClock, hszTime, NULL);
if (hConv != (HCONV) NULL)
DdeClientTransaction(NULL, 0, hConv, hszNow,
CF_TEXT, XTYP_ADVSTART, 1000, &dwResult);

}
See Also
DdeAccessData, DdeCreateStringHandle, DdeFreeStringHandle

DdeConnect (3.1)
#include <ddeml.h>

HCONV DdeConnect(idInst, hszService, hszTopic, pCC)
DWORD idInst; /* instance identifier */
HSZ hszService; /
* handle of service-name string *
/
HSZ hszTopic; /
* handle of topic-name string *
/
CONVCONTEXT FAR* pCC; /
* address of structure with context data *
/

The DdeConnect function establishes a conversation with a server application that supports the specified
service name and topic name pair. If more than one such server exists, the system selects only one.

Parameter Description
idInst Specifies the application-instance identifier obtained by a previous call to the

DdeInitialize function.
hszService Identifies the string that specifies the service name of the server application with which

a conversation is to be established. This handle must have been created by a previous
call to the DdeCreateStringHandle function. If this parameter is NULL, a conversation
will be established with any available server.

hszTopic Identifies the string that specifies the name of the topic on which a conversation is to be
established. This handle must have been created by a previous call to the
DdeCreateStringHandle function. If this parameter is NULL, a conversation on any
topic supported by the selected server will be established.

pCC Points to the CONVCONTEXT structure that contains conversation-context
information. If this parameter is NULL, the server receives the default
CONVCONTEXT structure during the XTYP_CONNECT or XTYP_WILDCONNECT
transaction.

Returns
The return value is the handle of the established conversation if the function is successful. Otherwise, it is
NULL.

Errors
Use the DdeGetLastError function to retrieve the error value, which may be one of the following:

DMLERR_DLL_NOT_INITIALIZED
DMLERR_INVALIDPARAMETER
DMLERR_NO_CONV_ESTABLISHED
DMLERR_NO_ERROR

Comments
The client application should not make assumptions regarding which server will be selected. If an
instance-specific name is specified in the hszService parameter, a conversation will be established only
with the specified instance. Instance-specific service names are passed to an application's dynamic data
exchange callback function during the XTYP_REGISTER and XTYP_UNREGISTER transactions.

All members of the default CONVCONTEXT structure are set to zero except cb, which specifies the size
of the structure, and iCodePage, which specifies CP_WINANSI (the default code page).

Example
The following example creates a service-name string handle and a topic-name string handle, then attempts
to establish a conversation with a server that supports the service name and topic name. If the attempt fails,
the example retrieves an error value identifying the reason for the failure.

DWORD idInst = 0L;
HSZ hszClock;
HSZ hszTime;
HCONV hconv;
UINT uError;

hszClock = DdeCreateStringHandle(idInst, "Clock", CP_WINANSI);
hszTime = DdeCreateStringHandle(idInst, "Time", CP_WINANSI);
if ((hconv = DdeConnect(

idInst, /* instance identifier */
hszClock, /* server's service name */
hszTime, /* topic name*/
NULL)) == NULL) { /* use default CONVCONTEXT */
uError = DdeGetLastError(idInst);

}
See Also
DdeConnectList, DdeCreateStringHandle, DdeDisconnect, DdeDisconnectList, DdeInitialize,
CONVCONTEXT, XTYP_CONNECT, XTYP_REGISTER, XTYP_UNREGISTER

DdeConnectList (3.1)
#include <ddeml.h>

HCONVLIST DdeConnectList(idInst, hszService, hszTopic, hConvList, pCC)
DWORD idInst; /* instance identifier */
HSZ hszService; /
* handle of service-name string *
/
HSZ hszTopic; /
* handle of topic-name string *
/
HCONVLIST hConvList; /
* handle of conversation list *
/
CONVCONTEXT FAR* pCC; /
* address of structure with context data *
/

The DdeConnectList function establishes a conversation with all server applications that support the
specified service/topic name pair. An application can also use this function to enumerate a list of
conversation handles by passing the function an existing conversation handle. During enumeration, the
Dynamic Data Exchange Management Library (DDEML) removes the handles of any terminated
conversations from the conversation list. The resulting conversation list contains the handles of all
conversations currently established that support the specified service name and topic name.

Parameter Description
idInst Specifies the application-instance identifier obtained by a previous call to the

DdeInitialize function.
hszService Identifies the string that specifies the service name of the server application with which

a conversation is to be established. If this parameter is NULL, the system will attempt to
establish conversations with all available servers that support the specified topic name.

hszTopic Identifies the string that specifies the name of the topic on which a conversation is to be
established. This handle must have been created by a previous call to the
DdeCreateStringHandle function. If this parameter is NULL, the system will attempt to
establish conversations on all topics supported by the selected server (or servers).

hConvList Identifies the conversation list to be enumerated. This parameter should be set to NULL
if a new conversation list is to be established.

pCC Points to the CONVCONTEXT structure that contains conversation-context
information. If this parameter is NULL, the server receives the default
CONVCONTEXT structure during the XTYP_CONNECT or XTYP_WILDCONNECT
transaction.

Returns
The return value is the handle of a new conversation list if the function is successful. Otherwise, it is
NULL. The handle of the old conversation list is no longer valid.

Errors
Use the DdeGetLastError function to retrieve the error value, which may be one of the following:

DMLERR_DLL_NOT_INITIALIZED
DMLERR_INVALID_PARAMETER
DMLERR_NO_CONV_ESTABLISHED
DMLERR_NO_ERROR
DMLERR_SYS_ERROR

Comments
An application must free the conversation-list handle returned by this function, regardless of whether any
conversation handles within the list are active. To free the handle, an application can call the
DdeDisconnectList function.

All members of the default CONVCONTEXT structure are set to zero except cb, which specifies the size
of the structure, and iCodePage, which specifies CP_WINANSI (the default code page).

Example

The following example uses the DdeConnectList function to establish a conversation with all servers that
support the System topic, counts the servers, allocates a buffer for storing the server's service-name string
handles, and then copies the handles to the buffer:

HCONVLIST hconvList; /* conversation list */
DWORD idInst; /* instance identifier*/
HSZ hszSystem; /* System topic */
HCONV hconv = NULL; /* conversation handle*/
CONVINFO ci; /* holds conversation data */
UINT cConv = 0; /* count of conv. handles */
HSZ *pHsz, *aHsz; /* point to string handles */
/* Connect to all servers that support the System topic. */
hconvList = DdeConnectList(idInst, NULL, hszSystem, NULL, NULL);
/* Count the number of handles in the conversation list. */
while ((hconv = DdeQueryNextServer(hconvList, hconv)) != NULL) cConv++
;
/* Allocate a buffer for the string handles. */
hconv = NULL;
aHsz = (HSZ *) LocalAlloc(LMEM_FIXED, cConv * sizeof(HSZ));
/* Copy the string handles to the buffer. */
pHsz = aHsz;
while ((hconv = DdeQueryNextServer(hconvList, hconv)) != NULL) {

DdeQueryConvInfo(hconv, QID_SYNC, (PCONVINFO) &ci);
DdeKeepStringHandle(idInst, ci.hszSvcPartner);
*pHsz++ = ci.hszSvcPartner;

}
.
. /* Use the handles; converse with servers. */
.
/* Free the memory, and terminate conversations. */
LocalFree((HANDLE) aHsz);
DdeDisconnectList(hconvList);
See Also
DdeConnect, DdeCreateStringHandle, DdeDisconnect, DdeDisconnectList, DdeInitialize,
DdeQueryNextServer, CONVCONTEXT, XTYP_CONNECT

DdeCreateDataHandle (3.1)
#include <ddeml.h>

HDDEDATA DdeCreateDataHandle(idInst, lpvSrcBuf, cbInitData, offSrcBuf, hszItem, uFmt, afCmd)
DWORD idInst; /* instance identifier */
void FAR* lpvSrcBuf; /
* address of source buffer *
/
DWORD cbInitData; /
* length of global memory object *
/
DWORD offSrcBuf; /
* offset from beginning of source buffer *
/
HSZ hszItem; /
* handle of item-name string *
/
UINT uFmt; /
* clipboard data format *
/
UINT afCmd; /
* creation flags *
/

The DdeCreateDataHandle function creates a global memory object and fills the object with the data
pointed to by the lpvSrcBuf parameter. A dynamic data exchange (DDE) application uses this function
during transactions that involve passing data to the partner application.

Parameter Description
idInst Specifies the application-instance identifier obtained by a previous call to the

DdeInitialize function.
lpvSrcBuf Points to a buffer that contains data to be copied to the global memory object. If this

parameter is NULL, no data is copied to the object.
cbInitData Specifies the amount, in bytes, of memory to allocate for the global memory object. If

this parameter is zero, the lpvSrcBuf parameter is ignored.
offSrcBuf Specifies an offset, in bytes, from the beginning of the buffer pointed to by the

lpvSrcBuf parameter. The data beginning at this offset is copied from the buffer to the
global memory object.

hszItem Identifies the string that specifies the data item corresponding to the global memory
object. This handle must have been created by a previous call to the
DdeCreateStringHandle function. If the data handle is to be used in an
XTYP_EXECUTE transaction, this parameter must be set to NULL.

uFmt Specifies the standard clipboard format of the data.
afCmd Specifies the creation flags. This parameter can be HDATA_APPOWNED, which

specifies that the server application that calls the DdeCreateDataHandle function will
own the data handle that this function creates. This makes it possible for the server to
share the data handle with multiple clients instead of creating a separate handle for each
request. If this flag is set, the server must eventually free the shared memory object
associated with this handle by using the DdeFreeDataHandle function. If this flag is not
set, after the data handle is returned by the server's DDE callback function or used as a
parameter in another DDE Management Library function, the handle becomes invalid in
the application that creates the handle.

Returns
The return value is a data handle if the function is successful. Otherwise, it is NULL.

Errors
Use the DdeGetLastError function to retrieve the error value, which may be one of the following:

DMLERR_DLL_NOT_INITIALIZED
DMLERR_INVALIDPARAMETER
DMLERR_MEMORY_ERROR
DMLERR_NO_ERROR

Comments
Any locations in the global memory object that are not filled are undefined.

After a data handle has been used as a parameter in another DDEML function or has been returned by a
DDE callback function, the handle may be used only for read access to the global memory object
identified by the handle.

If the application will be adding data to the global memory object (using the DdeAddData function) so that
the object exceeds 64K in length, then the application should specify a total length (cbInitData +
offSrcData) that is equal to the anticipated maximum length of the object. This avoids unnecessary data
copying and memory reallocation by the system.

Example
The following example processes the XTYP_WILDCONNECT transaction by returning a data handle to
an array of HSZPAIR structures--one for each topic name supported:

#define CTOPICS 2
UINT type;
UINT fmt;
HSZPAIR ahp[(CTOPICS + 1)];
HSZ ahszTopicList[CTOPICS];
HSZ hszServ, hszTopic;
WORD i, j;
if (type == XTYP_WILDCONNECT) {
/*
* Scan the topic list, and create array of HSZPAIR
* structures.
*/

j = 0;
for (i = 0; i < CTOPICS; i++) {
if (hszTopic == (HSZ) NULL ||

hszTopic == ahszTopicList[i]) {
ahp[j].hszSvc = hszServ;
ahp[j++].hszTopic = ahszTopicList[i];
}
}
/*

* End the list with an HSZPAIR structure that contains NULL
* string handles as its members.
*/

ahp[j].hszSvc = NULL;
ahp[j++].hszTopic = NULL;
/*

* Return a handle to a global memory object containing the
* HSZPAIR structures.
*/

return DdeCreateDataHandle(
idInst,/* instance identifier*/
&ahp, /* points to HSZPAIR array */
sizeof(HSZ) * j, /* length of the array*/
0,/* start at the beginning */
NULL, /* no item-name string*/
fmt, /* return the same format */
0); /* let the system own it */

}
See Also
DdeAccessData, DdeFreeDataHandle, DdeGetData, DdeInitialize, XTYP_EXECUTE

DdeCreateStringHandle (3.1)
#include <ddeml.h>

HSZ DdeCreateStringHandle(idInst, lpszString, codepage)
DWORD idInst; /* instance identifier */
LPCSTR lpszString; /*
address of null-terminated string *
/
int codepage; /
* code page *
/

The DdeCreateStringHandle function creates a handle that identifies the string pointed to by the lpszString
parameter. A dynamic data exchange (DDE) client or server application can pass the string handle as a
parameter to other DDE Management Library functions.

Parameter Description
idInst Specifies the application-instance identifier obtained by a previous call to the

DdeInitialize function.
lpszString Points to a buffer that contains the null-terminated string for which a handle is to be

created. This string may be any length.
codepage Specifies the code page used to render the string. This value should be either

CP_WINANSI or the value returned by the GetKBCodePage function. A value of zero
implies CP_WINANSI.

Returns
The return value is a string handle if the function is successful. Otherwise, it is NULL.

Errors
Use the DdeGetLastError function to retrieve the error value, which may be one of the following:

DMLERR_INVALIDPARAMETER
DMLERR_NO_ERROR
DMLERR_SYS_ERROR

Comments
Two identical strings always correspond to the same string handle. String handles are unique across all
tasks that use the DDEML. That is, when an application creates a handle for a string and another
application creates a handle for an identical string, the string handles returned to both applications are
identical--regardless of case.

The value of a string handle is not related to the case of the string it identifies.

When an application has either created a string handle or received one in the callback function and has
used the DdeKeepStringHandle function to keep it, the application must free that string handle when it is
no longer needed.

An instance-specific string handle is not mappable from string handle to string to string handle again. This
is shown in the following example, in which the DdeQueryString function creates a string from a string
handle and then DdeCreateStringHandle creates a string handle from that string, but the two handles are
not the same:

DWORD idInst;
DWORD cb;
HSZ hszInst, hszNew;
PSZ pszInst;
DdeQueryString(idInst, hszInst, pszInst, cb, CP_WINANSI);
hszNew = DdeCreateStringHandle(idInst, pszInst, CP_WINANSI);
/* hszNew != hszInst ! */
Example
The following example creates a service-name string handle and a topic-name string handle and then
attempts to establish a conversation with a server that supports the service name and topic name. If the
attempt fails, the example obtains an error value identifying the reason for the failure.

DWORD idInst = 0L;
HSZ hszClock;
HSZ hszTime;
HCONV hconv;
UINT uError;
hszClock = DdeCreateStringHandle(idInst, "Clock", CP_WINANSI);
hszTime = DdeCreateStringHandle(idInst, "Time", CP_WINANSI);
if ((hconv = DdeConnect(

idInst, /* instance identifier */
hszClock, /* server's service name */
hszTime, /* topic name*/
NULL)) == NULL) { /* use default CONVCONTEXT */
uError = DdeGetLastError(idInst);

}
See Also
DdeAccessData, DdeCmpStringHandles, DdeFreeStringHandle, DdeInitialize, DdeKeepStringHandle,
DdeQueryString

DdeDisconnect (3.1)
#include <ddeml.h>

BOOL DdeDisconnect(hConv)
HCONV hConv; /* handle of conversation */

The DdeDisconnect function terminates a conversation started by either the DdeConnect or
DdeConnectList function and invalidates the given conversation handle.

Parameter Description
hConv Identifies the active conversation to be terminated.

Returns
The return value is nonzero if the function is successful. Otherwise, it is zero.

Errors
Use the DdeGetLastError function to retrieve the error value, which may be one of the following:

DMLERR_DLL_NOT_INITIALIZED
DMLERR_NO_CONV_ESTABLISHED
DMLERR_NO_ERROR

Comments
Any incomplete transactions started before calling DdeDisconnect are immediately abandoned. The
XTYP_DISCONNECT transaction type is sent to the dynamic data exchange (DDE) callback function of
the partner in the conversation. Generally, only client applications need to terminate conversations.

See Also
DdeConnect, DdeConnectList, DdeDisconnectList, XTYP_DISCONNECT

DdeDisconnectList (3.1)
#include <ddeml.h>

BOOL DdeDisconnectList(hConvList)
HCONVLIST hConvList; /* handle of conversation list */

The DdeDisconnectList function destroys the given conversation list and terminates all conversations
associated with the list.

Parameter Description
hConvList Identifies the conversation list. This handle must have been created by a previous call to

the DdeConnectList function.

Returns
The return value is nonzero if the function is successful. Otherwise, it is zero.

Errors
Use the DdeGetLastError function to retrieve the error value, which may be one of the following:

DMLERR_DLL_NOT_INITIALIZED
DMLERR_INVALIDPARAMETER
DMLERR_NO_ERROR

Comments
An application can use the DdeDisconnect function to terminate individual conversations in the list.

See Also
DdeConnect, DdeConnectList, DdeDisconnect, XTYP_DISCONNECT

DdeEnableCallback (3.1)
#include <ddeml.h>

BOOL DdeEnableCallback(idInst, hConv, uCmd)
DWORD idInst; /* instance identifier */
HCONV hConv; /* handle of
conversation *
/
UINT uCmd; /
* the enable/disable function code *
/

The DdeEnableCallback function enables or disables transactions for a specific conversation or for all
conversations that the calling application currently has established.

After disabling transactions for a conversation, the system places the transactions for that conversation in a
transaction queue associated with the application. The application should reenable the conversation as
soon as possible to avoid losing queued transactions.

Parameter Description
idInst Specifies the application-instance identifier obtained by a previous call to the

DdeInitialize function.
hConv Identifies the conversation to enable or disable. If this parameter is NULL, the function

affects all conversations.
uCmd Specifies the function code. This parameter can be one of the following values:

Value Meaning
EC_ENABLEALL Enables all transactions for the specified conversation.
EC_ENABLEONE Enables one transaction for the specified conversation.
EC_DISABLE Disables all blockable transactions for the specified

conversation.
A server application can disable the following transactions:

XTYP_ADVSTART
XTYP_ADVSTOP
XTYP_EXECUTE
XTYP_POKE
XTYP_REQUEST
A client application can disable the following transactions:

XTYP_ADVDATA
XTYP_XACT_COMPLETE

Returns
The return value is nonzero if the function is successful. Otherwise, it is zero.

Errors
Use the DdeGetLastError function to retrieve the error value, which may be one of the following:

DMLERR_DLL_NOT_INITIALIZED
DMLERR_NO_ERROR
DMLERR_INVALIDPARAMETER

Comments
An application can disable transactions for a specific conversation by returning CBR_BLOCK from its
dynamic data exchange (DDE) callback function. When the conversation is reenabled by using the
DdeEnableCallback function, the system generates the same transaction as was in process when the
conversation was disabled.

See Also
DdeConnect, DdeConnectList, DdeDisconnect, DdeInitialize

DdeFreeDataHandle (3.1)
#include <ddeml.h>

BOOL DdeFreeDataHandle(hData)
HDDEDATA hData; /* handle of global memory object */

The DdeFreeDataHandle function frees a global memory object and deletes the data handle associated
with the object.

Parameter Description
hData Identifies the global memory object to be freed. This handle must have been created by a

previous call to the DdeCreateDataHandle function or returned by the
DdeClientTransaction function.

Returns
The return value is nonzero if the function is successful. Otherwise, it is zero.

Errors
Use the DdeGetLastError function to retrieve the error value, which may be one of the following:

DMLERR_INVALIDPARAMETER
DMLERR_NO_ERROR

Comments
An application must call DdeFreeDataHandle under the following circumstances:

To free a global memory object that the application allocated by calling the DdeCreateDataHandle
function if the object's data handle was never passed by the application to another Dynamic Data Exchange
Management Library (DDEML) function

To free a global memory object that the application allocated by specifying the
HDATA_APPOWNED flag in a call to the DdeCreateDataHandle function

To free a global memory object whose handle the application received from the
DdeClientTransaction function

The system automatically frees an unowned object when its handle is returned by a dynamic data
exchange (DDE) callback function or used as a parameter in a DDEML function.

Example
The following example creates a global memory object containing help information, then frees the object
after passing the object's handle to the client application:

DWORD idInst;
HSZ hszItem;
HDDEDATA hDataHelp;
char szDdeHelp[] = "DDEML test server help:\r\n"\

"\tThe 'Server' (service) and 'Test' (topic) names may change.\r\
n"\

"Items supported under the 'Test' topic are:\r\n"\
"\tCount:\tThis value increments on each data change.\r\n"\
"\tRand:\tThis value is changed after each data change. \r\n"\
"\t\tIn Runaway mode, the above items change after a request.\r\

n"\
"\tHuge:\tThis is randomly generated text data >64k that the\r\n"\
"\t\ttest client can verify. It is recalculated on each\r\n"\
"\t\trequest. This also verifies huge data poked or executed\r\n"\
"\t\tfrom the test client.\r\n"\
"\tHelp:\tThis help information. This data is APPOWNED.\r\n";
/* Create global memory object containing help information. */
if (!hDataHelp) {
hDataHelp = DdeCreateDataHandle(idInst, szDdeHelp,
strlen(szDdeHelp) + 1, 0, hszItem, CF_TEXT, HDATA_APPOWNED);
}

.

. /* Pass help information to client application. */

.
/* Free the global memory object. */
if (hDataHelp)
DdeFreeDataHandle(hDataHelp);

See Also
DdeAccessData, DdeCreateDataHandle

DdeFreeStringHandle (3.1)
#include <ddeml.h>

BOOL DdeFreeStringHandle(idInst, hsz)
DWORD idInst; /* instance identifier */
HSZ hsz; /* handle of string */

The DdeFreeStringHandle function frees a string handle in the calling application.

Parameter Description
idInst Specifies the application-instance identifier obtained by a previous call to the

DdeInitialize function.
hsz Identifies the string handle to be freed. This handle must have been created by a

previous call to the DdeCreateStringHandle function.

Returns
The return value is nonzero if the function is successful. Otherwise, it is zero.

Comments
An application can free string handles that it creates with the DdeCreateStringHandle function but should
not free those that the system passed to the application's dynamic data exchange (DDE) callback function
or those returned in the CONVINFO structure by the DdeQueryConvInfo function.

Example
The following example frees string handles during the XTYP_DISCONNECT transaction:

DWORD idInst = 0L;
HSZ hszClock;
HSZ hszTime;
HSZ hszNow;
UINT type;
if (type == XTYP_DISCONNECT) {

DdeFreeStringHandle(idInst, hszClock);
DdeFreeStringHandle(idInst, hszTime);
DdeFreeStringHandle(idInst, hszNow);
return (HDDEDATA) NULL;

}
See Also
DdeCmpStringHandles, DdeCreateStringHandle, DdeInitialize, DdeKeepStringHandle, DdeQueryString

DdeGetData (3.1)
#include <ddeml.h>

DWORD DdeGetData(hData, pDest, cbMax, offSrc)
HDDEDATA hData; /* handle of global memory object */
void FAR* pDest; /* address of
destination buffer *
/
DWORD cbMax; /
* amount of data to copy *
/
DWORD offSrc; /
* offset to beginning of data *
/

The DdeGetData function copies data from the given global memory object to the specified local buffer.

Parameter Description
hData Identifies the global memory object that contains the data to copy.
pDest Points to the buffer that receives the data. If this parameter is NULL, the DdeGetData

function returns the amount, in bytes, of data that would be copied to the buffer.
cbMax Specifies the maximum amount, in bytes, of data to copy to the buffer pointed to by the

pDest parameter. Typically, this parameter specifies the length of the buffer pointed to
by pDest.

offSrc Specifies an offset within the global memory object. Data is copied from the object
beginning at this offset.

Returns
If the pDest parameter points to a buffer, the return value is the size, in bytes, of the memory object
associated with the data handle or the size specified in the cbMax parameter, whichever is lower.

If the pDest parameter is NULL, the return value is the size, in bytes, of the memory object associated
with the data handle.

Errors
Use the DdeGetLastError function to retrieve the error value, which may be one of the following:

DMLERR_DLL_NOT_INITIALIZED
DMLERR_INVALID_HDDEDATA
DMLERR_INVALIDPARAMETER
DMLERR_NO_ERROR

Example
The following example copies data from a global memory object to a local buffer and then fills the TIME
structure with data from the buffer:

HDDEDATA hData;
char szBuf[32];
typedef struct {

int hour;
int minute;
int second;

} TIME;
DdeGetData(hData, (LPBYTE) szBuf, 32L, 0L);
sscanf(szBuf, "%d:%d:%d", &nTime.hour, &nTime.minute,

&nTime.second);
See Also
DdeAccessData, DdeCreateDataHandle, DdeFreeDataHandle

DdeGetLastError (3.1)
#include <ddeml.h>

UINT DdeGetLastError(idInst)
DWORD idInst; /* instance identifier */

The DdeGetLastError function returns the most recent error value set by the failure of a Dynamic Data
Exchange Management Library (DDEML) function and resets the error value to DMLERR_NO_ERROR.

Parameter Description
idInst Specifies the application-instance identifier obtained by a previous call to the

DdeInitialize function.

Returns
The return value is the last error value. Following are the possible DDEML error values:

Value Meaning
DMLERR_ADVACKTIMEOUT A request for a synchronous advise transaction has

timed out.
DMLERR_BUSY The response to the transaction caused the

DDE_FBUSY bit to be set.
DMLERR_DATAACKTIMEOUT A request for a synchronous data transaction has timed

out.
DMLERR_DLL_NOT_INITIALIZED A DDEML function was called without first calling the

DdeInitialize function, or an invalid instance identifier
was passed to a DDEML function.

DMLERR_DLL_USAGE An application initialized as APPCLASS_MONITOR
has attempted to perform a DDE transaction, or an
application initialized as APPCMD_CLIENTONLY has
attempted to perform server transactions.

DMLERR_EXECACKTIMEOUT A request for a synchronous execute transaction has
timed out.

DMLERR_INVALIDPARAMETER A parameter failed to be validated by the DDEML.
Some of the possible causes are as follows:

The application used a data handle initialized with
a different item-name handle than that required by
the transaction.
The application used a data handle that was
initialized with a different clipboard data format
than that required by the transaction.
The application used a client-side conversation
handle with a server-side function or vise versa.
The application used a freed data handle or string
handle.
More than one instance of the application used the
same object.

DMLERR_LOW_MEMORY A DDEML application has created a prolonged race
condition (where the server application outruns the
client), causing large amounts of memory to be
consumed.

DMLERR_MEMORY_ERROR A memory allocation failed.
DMLERR_NO_CONV_ESTABLISHED A client's attempt to establish a conversation has failed.
DMLERR_NOTPROCESSED A transaction failed.
DMLERR_POKEACKTIMEOUT A request for a synchronous poke transaction has timed

out.
DMLERR_POSTMSG_FAILED An internal call to the PostMessage function has failed.
DMLERR_REENTRANCY An application instance with a synchronous transaction

already in progress attempted to initiate another
synchronous transaction, or the DdeEnableCallback

function was called from within a DDEML callback
function.

DMLERR_SERVER_DIED A server-side transaction was attempted on a
conversation that was terminated by the client, or the
server terminated before completing a transaction.

DMLERR_SYS_ERROR An internal error has occurred in the DDEML.
DMLERR_UNADVACKTIMEOUT A request to end an advise transaction has timed out.
DMLERR_UNFOUND_QUEUE_ID An invalid transaction identifier was passed to a

DDEML function. Once the application has returned
from an XTYP_XACT_COMPLETE callback, the
transaction identifier for that callback is no longer valid.

Example
The following example calls the DdeGetLastError function if the DdeCreateDataHandle function fails:

DWORD idInst;
HDDEDATA hddeMyData;
HSZPAIR ahszp[2];
HSZ hszClock, hszTime;
/* Create string handles. */
hszClock = DdeCreateStringHandle(idInst, (LPSTR) "Clock",

CP_WINANSI);
hszTime = DdeCreateStringHandle(idInst, (LPSTR) "Time",

CP_WINANSI);
/* Copy handles to an HSZPAIR structure. */
ahszp[0].hszSvc = hszClock;
ahszp[0].hszTopic = hszTime;
ahszp[1].hszSvc = (HSZ) NULL;
ahszp[1].hszTopic = (HSZ) NULL;
/* Create a global memory object. */
hddeMyData = DdeCreateDataHandle(idInst, ahszp,

sizeof(ahszp), 0, NULL, CF_TEXT, 0);
if (hddeMyData == NULL)
/*
* Pass error value to application-defined error handling
* function.
*/
HandleError(DdeGetLastError(idInst));

See Also
DdeInitialize

DdeInitialize (3.1)
#include <ddeml.h>

UINT DdeInitialize(lpidInst, pfnCallback, afCmd, uRes)
DWORD FAR* lpidInst; /* address of instance identifier */
PFNCALLBACK pfnCallback; /
* address of callback function *
/
DWORD afCmd; /
* array of command and filter flags *
/
DWORD uRes; /
* reserved *
/

The DdeInitialize function registers an application with the Dynamic Data Exchange Management Library
(DDEML). An application must call this function before calling any other DDEML function.

Parameter Description
lpidInst Points to the application-instance identifier. At initialization, this parameter should point

to 0L. If the function is successful, this parameter points to the instance identifier for the
application. This value should be passed as the idInst parameter in all other DDEML
functions that require it. If an application uses multiple instances of the DDEML
dynamic link library, the application should provide a different callback function for
each instance.
If lpidInst points to a nonzero value, this implies a reinitialization of the DDEML. In
this case, lpidInst must point to a valid application-instance identifier.

pfnCallback Points to the application-defined DDE callback function. This function processes DDE
transactions sent by the system. For more information, see the description of the
DdeCallback callback function.

afCmd Specifies an array of APPCMD_ and CBF_ flags. The APPCMD_ flags provide special
instructions to the DdeInitialize function. The CBF_ flags set filters that prevent specific
types of transactions from reaching the callback function. Using these flags enhances the
performance of a DDE application by eliminating unnecessary calls to the callback
function.
This parameter can be a combination of the following flags:

Flag Meaning
APPCLASS_MONITOR Makes it possible for the application to

monitor DDE activity in the system.
This flag is for use by DDE
monitoring applications. The
application specifies the types of DDE
activity to monitor by combining one
or more monitor flags with the
APPCLASS_MONITOR flag. For
details, see the following Comments
section.

APPCLASS_STANDARD Registers the application as a standard
(nonmonitoring) DDEML application.

APPCMD_CLIENTONLY Prevents the application from
becoming a server in a DDE
conversation. The application can be
only a client. This flag reduces
resource consumption by the DDEML.
It includes the functionality of the
CBF_FAIL_ALLSVRXACTIONS
flag.

APPCMD_FILTERINITS Prevents the DDEML from sending
XTYP_CONNECT and
XTYP_WILDCONNECT transactions
to the application until the application

has created its string handles and
registered its service names or has
turned off filtering by a subsequent
call to the DdeNameService or
DdeInitialize function. This flag is
always in effect when an application
calls DdeInitialize for the first time,
regardless of whether the application
specifies this flag. On subsequent calls
to DdeInitialize, not specifying this
flag turns off the application's service-
name filters; specifying this flag turns
on the application's service-name
filters.

CBF_FAIL_ALLSVRXACTIONS Prevents the callback function from
receiving server transactions. The
system will return
DDE_FNOTPROCESSED to each
client that sends a transaction to this
application. This flag is equivalent to
combining all CBF_FAIL_ flags.

CBF_FAIL_ADVISES Prevents the callback function from
receiving XTYP_ADVSTART and
XTYP_ADVSTOP transactions. The
system will return
DDE_FNOTPROCESSED to each
client that sends an
XTYP_ADVSTART or
XTYP_ADVSTOP transaction to the
server.

CBF_FAIL_CONNECTIONS Prevents the callback function from
receiving XTYP_CONNECT and
XTYP_WILDCONNECT transactions.

CBF_FAIL_EXECUTES Prevents the callback function from
receiving XTYP_EXECUTE
transactions. The system will return
DDE_FNOTPROCESSED to a client
that sends an XTYP_EXECUTE
transaction to the server.

CBF_FAIL_POKES Prevents the callback function from
receiving XTYP_POKE transactions.
The system will return
DDE_FNOTPROCESSED to a client
that sends an XTYP_POKE
transaction to the server.

CBF_FAIL_REQUESTS Prevents the callback function from
receiving XTYP_REQUEST
transactions. The system will return
DDE_FNOTPROCESSED to a client
that sends an XTYP_REQUEST
transaction to the server.

CBF_FAIL_SELFCONNECTIONS Prevents the callback function from
receiving XTYP_CONNECT
transactions from the application's
own instance. This prevents an
application from establishing a DDE
conversation with its own instance. An
application should use this flag if it
needs to communicate with other
instances of itself but not with itself.

CBF_SKIP_ALLNOTIFICATIONS Prevents the callback function from
receiving any notifications. This flag is

equivalent combining all CBF_SKIP_
flags.

CBF_SKIP_CONNECT_CONFIRMS Prevents the callback function from
receiving
XTYP_CONNECT_CONFIRM
notifications.

CBF_SKIP_DISCONNECTS Prevents the callback function from
receiving XTYP_DISCONNECT
notifications.

CBF_SKIP_REGISTRATIONS Prevents the callback function from
receiving XTYP_REGISTER
notifications.

CBF_SKIP_UNREGISTRATIONS Prevents the callback function from
receiving XTYP_UNREGISTER
notifications.

uRes Reserved; must be set to 0L.

Returns
The return value is one of the following:

DMLERR_DLL_USAGE
DMLERR_INVALIDPARAMETER
DMLERR_NO_ERROR
DMLERR_SYS_ERROR

Comments
An application that uses multiple instances of the DDEML must not pass DDEML objects between
instances.

A DDE monitoring application should not attempt to perform DDE (establish conversations, issue
transactions, and so on) within the context of the same application instance.

A synchronous transaction will fail with a DMLERR_REENTRANCY error if any instance of the same
task has a synchronous transaction already in progress.

A DDE monitoring application can combine one or more of the following monitor flags with the
APPCLASS_MONITOR flag to specify the types of DDE activity to monitor:

Flag Meaning
MF_CALLBACKS Notifies the callback function whenever a transaction is sent to any DDE callback

function in the system.
MF_CONV Notifies the callback function whenever a conversation is established or

terminated.
MF_ERRORS Notifies the callback function whenever a DDE error occurs.
MF_HSZ_INFO Notifies the callback function whenever a DDE application creates, frees, or

increments the use count of a string handle or whenever a string handle is freed
as a result of a call to the DdeUninitialize function.

MF_LINKS Notifies the callback function whenever an advise loop is started or ended.
MF_POSTMSGS Notifies the callback function whenever the system or an application posts a

DDE message.
MF_SENDMSGS Notifies the callback function whenever the system or an application sends a

DDE message.

Example
The following example obtains a procedure-instance address for a DDE callback function, then initializes
the application with the DDEML.

DWORD idInst = 0L;
FARPROC lpDdeProc;
lpDdeProc = MakeProcInstance((FARPROC) DDECallback, hInst);
if (DdeInitialize((LPDWORD) &idInst, (PFNCALLBACK) lpDdeProc,

APPCMD_CLIENTONLY, 0L))
return FALSE;

See Also
DdeClientTransaction, DdeConnect, DdeCreateDataHandle, DdeEnableCallback, DdeNameService,
DdePostAdvise, DdeUninitialize

DdeKeepStringHandle (3.1)
#include <ddeml.h>

BOOL DdeKeepStringHandle(idInst, hsz)
DWORD idInst; /* instance identifier */
HSZ hsz; /* handle of string */

The DdeKeepStringHandle function increments the usage count (increases it by one) associated with the
given handle. This function makes it possible for an application to save a string handle that was passed to
the application's dynamic data exchange (DDE) callback function. Otherwise, a string handle passed to the
callback function is deleted when the callback function returns.

Parameter Description
idInst Specifies the application-instance identifier obtained by a previous call to the

DdeInitialize function.
hsz Identifies the string handle to be saved.

Returns
The return value is nonzero if the function is successful. Otherwise, it is zero.

Example
The following example is a portion of a DDE callback function that increases the usage count and saves a
local copy of two string handles:

HSZ hsz1;
HSZ hsz2;
static HSZ hszServerBase;
static HSZ hszServerInst;
DWORD idInst;
case XTYP_REGISTER:

/* Keep the handles for later use. */
DdeKeepStringHandle(idInst, hsz1);
DdeKeepStringHandle(idInst, hsz2);
hszServerBase = hsz1;
hszServerInst = hsz2;
.
. /* Finish processing the transaction. */
.

See Also
DdeCreateStringHandle, DdeFreeStringHandle, DdeInitialize, DdeQueryString

DdeNameService (3.1)
#include <ddeml.h>

HDDEDATA DdeNameService(idInst, hsz1, hszRes, afCmd)
DWORD idInst; /* instance identifier */
HSZ hsz1; /* handle of service-
name string *
/
HSZ hszRes; /
* reserved *
/
UINT afCmd; /
* service-name flags *
/

The DdeNameService function registers or unregisters the service names that a dynamic data exchange
(DDE) server supports. This function causes the system to send XTYP_REGISTER or
XTYP_UNREGISTER transactions to other running DDE Management Library (DDEML) client
applications.

A server application should call this function to register each service name that it supports and to
unregister names that it previously registered but no longer supports. A server should also call this
function to unregister its service names just before terminating.

Parameter Description
idInst Specifies the application-instance identifier obtained by a previous call to the

DdeInitialize function.
hsz1 Identifies the string that specifies the service name that the server is registering or

unregistering. An application that is unregistering all of its service names should set this
parameter to NULL.

hszRes Reserved; should be set to NULL.
afCmd Specifies the service-name flags. This parameter can be one of the following values:

Value Meaning
DNS_REGISTER Registers the given service name.
DNS_UNREGISTER Unregisters the given service name. If the hsz1 parameter

is NULL, all service names registered by the server will be
unregistered.

DNS_FILTERON Turns on service-name initiation filtering. This filter
prevents a server from receiving XTYP_CONNECT
transactions for service names that it has not registered.
This is the default setting for this filter.
If a server application does not register any service names,
the application cannot receive XTYP_WILDCONNECT
transactions.

DNS_FILTEROFF Turns off service-name initiation filtering. If this flag is
set, the server will receive an XTYP_CONNECT
transaction whenever another DDE application calls the
DdeConnect function, regardless of the service name.

Returns
The return value is nonzero if the function is successful. Otherwise, it is zero.

Errors
Use the DdeGetLastError function to retrieve the error value, which may be one of the following:

DMLERR_DLL_NOT_INITIALIZED
DMLERR_DLL_USAGE
DMLERR_INVALIDPARAMETER
DMLERR_NO_ERROR

Comments
The service name identified by the hsz1 parameter should be a base name (that is, the name should contain
no instance-specific information). The system generates an instance-specific name and sends it along with

the base name during the XTYP_REGISTER and XTYP_UNREGISTER transactions. The receiving
applications can then connect to the specific application instance.

Example
The following example initializes an application with the DDEML, creates frequently used string handles,
and registers the application's service name:

HSZ hszClock;
HSZ hszTime;
HSZ hszNow;
HINSTANCE hinst;
DWORD idInst = 0L;
FARPROC lpDdeProc;
/* Initialize the application for the DDEML. */
lpDdeProc = MakeProcInstance((FARPROC) DdeCallback, hinst);
if (!DdeInitialize((LPDWORD) &idInst, (PFNCALLBACK) lpDdeProc,

APPCMD_FILTERINITS | CBF_FAIL_EXECUTES, 0L)) {
/* Create frequently used string handles. */
hszTime = DdeCreateStringHandle(idInst, "Time", CP_WINANSI);
hszNow = DdeCreateStringHandle(idInst, "Now", CP_WINANSI);
hszClock = DdeCreateStringHandle(idInst, "Clock", CP_WINANSI);
/* Register the service name. */
DdeNameService(idInst, hszClock, (HSZ) NULL, DNS_REGISTER);

}
See Also
DdeConnect, DdeConnectList, DdeInitialize, XTYP_REGISTER, XTYP_UNREGISTER

DdePostAdvise (3.1)
#include <ddeml.h>

BOOL DdePostAdvise(idInst, hszTopic, hszItem)
DWORD idInst; /* instance identifier */
HSZ hszTopic; /* handle of topic-name
string *
/
HSZ hszItem; /
* handle of item-name string *
/

The DdePostAdvise function causes the system to send an XTYP_ADVREQ transaction to the calling
(server) application's dynamic data exchange (DDE) callback function for each client that has an advise
loop active on the specified topic or item name pair. A server application should call this function
whenever the data associated with the topic or item name pair changes.

Parameter Description
idInst Specifies the application-instance identifier obtained by a previous call to the

DdeInitialize function.
hszTopic Identifies a string that specifies the topic name. To send notifications for all topics with

active advise loops, an application can set this parameter to NULL.
hszItem Identifies a string that specifies the item name. To send notifications for all items with

active advise loops, an application can set this parameter to NULL.

Returns
The return value is nonzero if the function is successful. Otherwise, it is zero.

Errors
Use the DdeGetLastError function to retrieve the error value, which may be one of the following:

DMLERR_DLL_NOT_INITIALIZED
DMLERR_DLL_USAGE
DMLERR_NO_ERROR

Comments
A server that has nonenumerable topics or items should set the hszTopic and hszItem parameters to NULL
so that the system will generate transactions for all active advise loops. The server's DDE callback
function returns NULL for any advise loops that do not need to be updated.

If a server calls DdePostAdvise with a topic/item/format name set that includes the set currently being
handled in a XTYP_ADVREQ callback, a stack overflow may result.

Example
The following example calls the DdePostAdvise function whenever the time changes:

typedef struct { /* tm */
int hour;
int minute;
int second;

} TIME;
TIME tmTime;
DWORD idInst;
HSZ hszTime;
HSZ hszNow;
TIME tmCurTime;

.

. /* Fill tmCurTime with the current time. */

.
/* Check for any change in second, minute, or hour. */

if ((tmCurTime.second != tmTime.second) ||
(tmCurTime.minute != tmTime.minute) ||
(tmCurTime.hour != tmTime.hour)) {
/* Send the current time to the clients. */
DdePostAdvise(idInst, hszTime, hszNow);

See Also
DdeInitialize, XTYP_ADVREQ

DdeQueryConvInfo (3.1)
#include <ddeml.h>

UINT DdeQueryConvInfo(hConv, idTransaction, lpConvInfo)
HCONV hConv; /* handle of conversation */
DWORD idTransaction; /
* transaction identifier *
/
CONVINFO FAR* lpConvInfo; /
* address of structure with conversation data *
/

The DdeQueryConvInfo function retrieves information about a dynamic data exchange (DDE) transaction
and about the conversation in which the transaction takes place.

Parameter Description
hConv Identifies the conversation.
idTransaction Specifies the transaction. For asynchronous transactions, this parameter should be a

transaction identifier returned by the DdeClientTransaction function. For synchronous
transactions, this parameter should be QID_SYNC.

lpConvInfo Points to the CONVINFO structure that will receive information about the transaction
and conversation. The cb member of the CONVINFO structure must specify the length
of the buffer allocated for the structure.

Returns
The return value is the number of bytes copied into the CONVINFO structure, if the function is successful.
Otherwise, it is zero.

Errors
Use the DdeGetLastError function to retrieve the error value, which may be one of the following:

DMLERR_DLL_NOT_INITIALIZED
DMLERR_NO_CONV_ESTABLISHED
DMLERR_NO_ERROR
DMLERR_UNFOUND_QUEUE_ID

Example
The following example fills a CONVINFO structure with information about a synchronous conversation
and then obtains the names of the partner application and topic:

DWORD idInst;
HCONV hConv;
CONVINFO ci;
WORD wError;
char szSvcPartner[32];
char szTopic[32];
DWORD cchServ, cchTopic;
if (!DdeQueryConvInfo(hConv, QID_SYNC, &ci))

wError = DdeGetLastError(idInst);
else {

cchServ = DdeQueryString(idInst, ci.hszSvcPartner,
(LPSTR) &szSvcPartner, sizeof(szSvcPartner),
CP_WINANSI);
cchTopic =DdeQueryString(idInst, ci.hszTopic,
(LPSTR) &szTopic, sizeof(szTopic),
CP_WINANSI);

}

See Also
DdeConnect, DdeConnectList, DdeQueryNextServer, CONVINFO

DdeQueryNextServer (3.1)
#include <ddeml.h>

HCONV DdeQueryNextServer(hConvList, hConvPrev)
HCONVLIST hConvList; /* handle of conversation list */
HCONV hConvPrev; /*
previous conversation handle *
/

The DdeQueryNextServer function obtains the next conversation handle in the given conversation list.

Parameter Description
hConvList Identifies the conversation list. This handle must have been created by a previous call to

the DdeConnectList function.
hConvPrev Identifies the conversation handle previously returned by this function. If this parameter

is NULL, this function returns the first conversation handle in the list.

Returns
The return value is the next conversation handle in the list if the list contains any more conversation
handles. Otherwise, it is NULL.

Example
The following example uses the DdeQueryNextServer function to count the number of conversation
handles in a conversation list and to copy the service-name string handles of the servers to a local buffer:

HCONVLIST hconvList; /* conversation list */
DWORD idInst; /* instance identifier*/
HSZ hszSystem; /* System topic */
HCONV hconv = NULL; /* conversation handle*/
CONVINFO ci; /* holds conversation data */
UINT cConv = 0; /* count of conv. handles */
HSZ *pHsz, *aHsz; /* point to string handles */
/* Connect to all servers that support the System topic. */
hconvList = DdeConnectList(idInst, NULL, hszSystem, NULL, NULL);
/* Count the number of handles in the conversation list. */
while ((hconv = DdeQueryNextServer(hconvList, hconv)) != NULL) cConv++
;
/* Allocate a buffer for the string handles. */
hconv = NULL;
aHsz = (HSZ *) LocalAlloc(LMEM_FIXED, cConv * sizeof(HSZ));
/* Copy the string handles to the buffer. */
pHsz = aHsz;
while ((hconv = DdeQueryNextServer(hconvList, hconv)) != NULL) {

DdeQueryConvInfo(hconv, QID_SYNC, (PCONVINFO) &ci);
DdeKeepStringHandle(idInst, ci.hszSvcPartner);
*pHsz++ = ci.hszSvcPartner;

}
.
. /* Use the handles; converse with servers. */
.
/* Free the memory, and terminate conversations. */
LocalFree((HANDLE) aHsz);
DdeDisconnectList(hconvList);

See Also
DdeConnectList, DdeDisconnectList

DdeQueryString (3.1)
#include <ddeml.h>

DWORD DdeQueryString(idInst, hsz, lpsz, cchMax, codepage)
DWORD idInst; /* instance identifier */
HSZ hsz; /* handle of string */
LPSTR lpsz; /
* address of destination buffer *
/
DWORD cchMax; /
* length of buffer *
/
int codepage; /
* code page *
/

The DdeQueryString function copies text associated with a string handle into a buffer.

The string returned in the buffer is always null-terminated. If the string is longer than (cchMax - 1), only
the first (cchMax - 1) characters of the string are copied.

If the lpsz parameter is NULL, this function obtains the length, in bytes, of the string associated with the
string handle. The length does not include the terminating null character.

Parameter Description
idInst Specifies the application-instance identifier obtained by a previous call to the

DdeInitialize function.
hsz Identifies the string to copy. This handle must have been created by a previous call to

the DdeCreateStringHandle function.
lpsz Points to a buffer that receives the string. To obtain the length of the string, this

parameter should be set to NULL.
cchMax Specifies the length, in bytes, of the buffer pointed to by the lpsz parameter. If the string

is longer than (cchMax - 1), it will be truncated. If the lpsz parameter is set to NULL,
this parameter is ignored.

codepage Specifies the code page used to render the string. This value should be either
CP_WINANSI or the value returned by the GetKBCodePage function.

Returns
The return value is the length, in bytes, of the returned text (not including the terminating null character) if
the lpsz parameter specified a valid pointer. The return value is the length of the text associated with the
hsz parameter (not including the terminating null character) if the lpsz parameter specified a NULL
pointer. The return value is NULL if an error occurs.

Example
The following example uses the DdeQueryString function to obtain a service name and topic name that a
server has registered:

UINT type;
HSZ hsz1;
HSZ hsz2;
char szBaseName[16];
char szInstName[16];
if (type == XTYP_REGISTER) {

/* Copy the base service name to a buffer. */
DdeQueryString(idInst, hsz1, (LPSTR) &szBaseName,
sizeof(szBaseName), CP_WINANSI);
/* Copy the instance-specific service name to a buffer. */
DdeQueryString(idInst, hsz2, (LPSTR) &szInstName,

sizeof(szInstName), CP_WINANSI);
return (HDDEDATA) TRUE;

}
See Also
DdeCmpStringHandles, DdeCreateStringHandle, DdeFreeStringHandle, DdeInitialize

DdeReconnect (3.1)
#include <ddeml.h>

HCONV DdeReconnect(hConv)
HCONV hConv; /* handle of conversation to reestablish */

The DdeReconnect function allows a client Dynamic Data Exchange Management Library (DDEML)
application to attempt to reestablish a conversation with a service that has terminated a conversation with
the client. When the conversation is reestablished, the DDEML attempts to reestablish any preexisting
advise loops.

Parameter Description
hConv Identifies the conversation to be reestablished. A client must have obtained the

conversation handle by a previous call to the DdeConnect function.

Returns
The return value is the handle of the reestablished conversation if the function is successful. The return
value is NULL if the function fails.

Errors
Use the DdeGetLastError function to retrieve the error value, which may be one of the following:

DMLERR_DLL_NOT_INITIALIZED
DMLERR_INVALIDPARAMETER
DMLERR_NO_CONV_ESTABLISHED
DMLERR_NO_ERROR

Example
The following example shows the context within which an application should call the DdeReconnect
function:

HDDEDATA EXPENTRY DdeCallback(wType, wFmt, hConv, hsz1,
hsz2, hData, dwData1, dwData2)

WORD wType; /* transaction type */
WORD wFmt; /* clipboard format */
HCONV hConv; /* handle of the conversation */
HSZ hsz1; /* handle of a string*/
HSZ hsz2; /* handle of a string*/
HDDEDATA hData; /* handle of a global memory object */
DWORD dwData1; /* transaction-specific data */
DWORD dwData2; /* transaction-specific data */
{

BOOL fAutoReconnect;
switch (wType) {
case XTYP_DISCONNECT:
if (fAutoReconnect) {
DdeReconnect(hConv); /* attempt to reconnect */
}
return 0;
.
. /* Process other transactions. */
.
}

}
See Also
DdeConnect, DdeDisconnect

DdeSetUserHandle (3.1)
#include <ddeml.h>

BOOL DdeSetUserHandle(hConv,id, hUser)
HCONV hConv; /* handle of conversation */
DWORD id; /* transaction identifier */
DWORD hUser; /
* application-defined value *
/

The DdeSetUserHandle function associates an application-defined 32-bit value with a conversation handle
and transaction identifier. This is useful for simplifying the processing of asynchronous transactions. An
application can use the DdeQueryConvInfo function to retrieve this value.

Parameter Description
hConv Identifies the conversation.
id Specifies the transaction identifier of an asynchronous transaction. An application

should set this parameter to QID_SYNC if no asynchronous transaction is to be
associated with the hUser parameter.

hUser Identifies the value to associate with the conversation handle.

Returns
The return value is nonzero if the function is successful. Otherwise, it is zero.

Errors
Use the DdeGetLastError function to retrieve the error value, which may be one of the following:

DMLERR_DLL_NOT_INITIALIZED
DMLERR_INVALIDPARAMETER
DMLERR_NO_ERROR
DMLERR_UNFOUND_QUEUE_ID

See Also
DdeQueryConvInfo

DdeUnaccessData (3.1)
#include <ddeml.h>

BOOL DdeUnaccessData(hData)
HDDEDATA hData; /* handle of global memory object */

The DdeUnaccessData function frees a global memory object. An application must call this function when
it is finished accessing the object.

Parameter Description
hData Identifies the global memory object.

Returns
The return value is nonzero if the function is successful. Otherwise, it is zero.

Errors
Use the DdeGetLastError function to retrieve the error value, which may be one of the following:

DMLERR_DLL_NOT_INITIALIZED
DMLERR_INVALIDPARAMETER
DMLERR_NO_ERROR

Example
The following example obtains a pointer to a global memory object, uses the pointer to copy data from the
object to a local buffer, and then uses the DdeUnaccessData function to free the object:

HDDEDATA hData;
LPBYTE lpszAdviseData;
DWORD cbDataLen;
DWORD i;
char szData[128];
lpszAdviseData = DdeAccessData(hData, &cbDataLen);
for (i = 0; i < cbDataLen; i++)

szData[i] = *lpszAdviseData++;
DdeUnaccessData(hData);
See Also
DdeAccessData, DdeAddData, DdeCreateDataHandle, DdeFreeDataHandle

DdeUninitialize (3.1)
#include <ddeml.h>

BOOL DdeUninitialize(idInst)
DWORD idInst; /* instance identifier */

The DdeUninitialize function frees all Dynamic Data Exchange Management Library (DDEML) resources
associated with the calling application.

Parameter Description
idInst Specifies the application-instance identifier obtained by a previous call to the

DdeInitialize function.

Returns
The return value is nonzero if the function is successful. Otherwise, it is zero.

Comments
The DdeUninitialize function terminates any conversations currently open for the application. If the
partner in a conversation fails to terminate its end of the conversation, the system may enter a modal loop
while it waits for the conversation to terminate. A timeout period is associated with this loop. If the
timeout period expires before the conversation has terminated, a message box appears that gives the user
the choice of waiting for another timeout period (Retry), waiting indefinitely (Ignore), or exiting the modal
loop (Abort).

An application should wait until its windows are no longer visible and its message loop has terminated
before calling this function.

See Also
DdeDisconnect, DdeDisconnectList, DdeInitialize

DDE functions (3.1)
DdeAbandonTransaction Abandons an asynchronous transaction
DdeAccessData Accesses a DDE global memory object
DdeAddData Adds data to a DDE global memory object
DdeClientTransaction Begins a DDE data transaction
DdeCmpStringHandles Compares two DDE string handles
DdeConnect Establishes a conversation with a server application
DdeConnectList Establishes multiple DDE conversations
DdeCreateDataHandle Creates a DDE data handle
DdeCreateStringHandle Creates a DDE string handle
DdeDisconnect Terminates a DDE conversation
DdeDisconnectList Destroys a DDE conversation list
DdeEnableCallback Enables or disables one or more DDE conversations
DdeFreeDataHandle Frees a global memory object
DdeFreeStringHandle Frees a DDE string handle
DdeGetData Copies data from a global memory object to a buffer
DdeGetLastError Returns an error value set by a DDEML function
DdeInitialize Registers an application with the DDEML
DdeKeepStringHandle Increments the usage count for a string handle
DdeNameService Registers or unregisters a service name
DdePostAdvise Prompts a server to send advise data to a client
DdeQueryConvInfo Retrieves information about a DDE conversation
DdeQueryNextServer Obtains the next handle in a DDE conversation list
DdeQueryString Copies string-handle text into a buffer
DdeReconnect Reestablishes a DDE conversation
DdeSetUserHandle Associates a user-defined handle with a transaction
DdeUnaccessData Frees a DDE global memory object
DdeUninitialize Frees DDEML resources associated with an application

XTYP_ADVDATA (3.1)

#include <ddeml.h>
XTYP_ADVDATA
hszTopic = hsz1;/* handle of topic-name string */
hszItem = hsz2; /* handle of item-name string */
hDataAdvise = hData; /* handle of the advise data */
A client's DDE callback function can receive this transaction after the client has established an advise loop
with a server. This transaction informs the client that the value of the data item has changed.

Parameter Description
hszTopic Value of hsz1. Identifies the topic name.
hszItem Value of hsz2. Identifies the item name.
hDataAdvise Value of hData. Identifies the data associated with the topic/item name pair. If the

client specified the XTYPF_NODATA flag when it requested the advise loop, this
parameter is NULL.

Returns
A DDE callback function should return DDE_FACK if it processes this transaction, DDE_FBUSY if it is
too busy to process this transaction, or DDE_FNOTPROCESSED if it denies this transaction.

Comments
An application need not free the data handle obtained during this transaction. If the application needs to
process the data after the callback function returns, however, it must copy the data associated with the data
handle. An application can use the DdeGetData function to copy the data.

See Also
DdeClientTransaction, DdePostAdvise, XTYP_ADVREQ, XTYP_ADVSTART, XTYP_ADVSTOP

XTYP_ADVREQ (3.1)

#include <ddeml.h>
XTYP_ADVREQ
hszTopic = hsz1; /* handle of topic-name string*/
hszItem = hsz2; /* handle of item-name string */
cAdvReq = LOWORD(dwData1); /* count of remaining transactions */
The system sends this transaction to a server after the server calls the DdePostAdvise function. This
transaction informs the server that an advise transaction is outstanding on the specified topic/item name
pair and that data corresponding to the topic/item name pair has changed.

Parameter Description
hszTopic Value of hsz1. Identifies the topic name.
hszItem Value of hsz2. Identifies the item name that has changed.
cAdvReq Value of the low-order word of dwData1. Specifies the count of XTYP_ADVREQ

transactions that remain to be processed on the same topic/item/format name set, within
the context of the current call to the DdePostAdvise function. If the current
XTYP_ADVREQ transaction is the last one, the count is zero. A server can use this
count to determine whether to create an HDATA_APPOWNED data handle for the
advise data.
If the DDEML issued the XTYP_ADVREQ transaction because of a late-arriving
DDE_FACK transaction flag from a client, the low-order word is set to
CADV_LATEACK. The DDE_FACK transaction flag arrives late when a server is
sending information faster than a client can process it.

Returns
The server should call the DdeCreateDataHandle function to create a data handle that identifies the
changed data and then should return the handle. If the server is unable to complete the transaction, it
should return NULL.

Comments
A server cannot block this transaction type; the CBR_BLOCK return value is ignored.

See Also
DdeCreateDataHandle, DdeInitialize, DdePostAdvise, XTYP_ADVSTART, XTYP_ADVSTOP,
XTYP_ADVDATA

XTYP_ADVSTART (3.1)

#include <ddeml.h>
XTYP_ADVSTART
hszTopic = hsz1;/* handle of topic-name string */
hszItem = hsz2; /* handle of item-name string */
A server's DDE callback function receives this transaction when a client specifies XTYP_ADVSTART
for the wType parameter of the DdeClientTransaction function. A client uses this transaction to establish
an advise loop with a server.

Parameter Description
hszTopic Value of hsz1. Identifies the topic name.
hszItem Value of hsz2. Identifies the item name.

Returns
To allow an advise loop on the specified topic/item name pair, a server's DDE callback function should
return a nonzero value. To deny the advise loop, it should return zero. If the callback function returns a
nonzero value, any subsequent call by the server to the DdePostAdvise function on the same topic/item
name pair will cause the system to send a XTYP_ADVREQ transaction to the server.

Comments
If a client requests an advise loop on a topic/item/format name set for which an advise loop is already
established, the DDEML does not create a duplicate advise loop. Instead, the DDEML alters the advise
loop flags (XTYPF_ACKREQ and XTYPF_NODATA) to match the latest request.

If the server application specified the CBF_FAIL_ADVISES flag in the DdeInitialize function, this
transaction is filtered.

See Also
DdeClientTransaction, DdeInitialize, DdePostAdvise, XTYP_ADVREQ, XTYP_ADVSTOP

XTYP_ADVSTOP (3.1)

#include <ddeml.h>
XTYP_ADVSTOP
hszTopic = hsz1;/* handle of topic-name string */
hszItem = hsz2; /* handle of item-name string */
A server's DDE callback function receives this transaction when a client specifies XTYP_ADVSTOP for
the wType parameter of the DdeClientTransaction function. A client uses this transaction to end an advise
loop with a server.

Parameter Description
hszTopic Value of hsz1. Identifies the topic name.
hszItem Value of hsz2. Identifies the item name.

Returns
This transaction does not return a value.

Comments
If the server application specified the CBF_FAIL_ADVISES flag in the DdeInitialize function, this
transaction is filtered.

See Also
DdeClientTransaction, DdeInitialize, DdePostAdvise, XTYP_ADVREQ, XTYP_ADVSTART

XTYP_CONNECT (3.1)

#include <ddeml.h>
XTYP_CONNECT
hszTopic = hsz1; /* handle of topic-name string */
hszService = hsz2; /* handle of service-name string */
pcc = (CONVCONTEXT FAR *)dwData1; /* address of CONVCONTEXT structure *
/
fSameInst = (BOOL) dwData2; /* same instance flag*/
A server's DDE callback function receives this transaction when a client specifies a service name that the
server supports and a topic name that is not set to NULL in a call to the DdeConnect function.

Parameter Description
hszTopic Value of hsz1. Identifies the topic name.
hszService Value of hsz2. Identifies the service name.
pcc Value of dwData1. Points to a CONVCONTEXT data structure that contains context

information for the conversation. If the client is not a DDEML application, this
parameter should be set to zero.

fSameInst Value of dwData2. Specifies whether the client is the same application instance as the
server. If this parameter is TRUE, the client is the same instance; if this parameter is
FALSE, the client is a different instance.

Returns
To allow the client to establish a conversation on the specified service/topic name pair, a server's DDE
callback function should return a nonzero value. To deny the conversation, it should return zero. If the
callback function returns a nonzero value and a conversation is successfully established, the system passes
the conversation handle to the server by issuing an XTYP_CONNECT_CONFIRM transaction to the
server's DDE callback function (unless the server specified the CBF_FAIL_CONNECT_CONFIRMS flag
in the DdeInitialize function).

Comments
If the server application specified the CBF_FAIL_CONNECTIONS flag in the DdeInitialize function, this
transaction is filtered.

A server cannot block this transaction type; the CBR_BLOCK return value is ignored.

See Also
DdeConnect, DdeInitialize, CONVCONTEXT, XTYP_CONNECT_CONFIRM

XTYP_CONNECT_CONFIRM (3.1)

#include <ddeml.h>
XTYP_CONNECT_CONFIRM
hszTopic = hsz1; /* handle of topic-name string */
hszService = hsz2;/* handle of service-name string */
fSameInst = (BOOL) dwData2; /* same instance flag */
A server's DDE callback function receives this transaction to confirm that a conversation has been
established with a client and to provide the server with the conversation handle. The system sends this
transaction as a result of a previous XTYP_CONNECT or XTYP_WILDCONNECT transaction.

Parameter Description
hszTopic Value of hsz1. Identifies the topic name on which the conversation has been established.
hszService Value of hsz2. Identifies the service name on which the conversation has been

established.
fSameInst Value of dwData2. Specifies whether the client is the same application instance as the

server. If this parameter is a nonzero value, the client is the same instance. If this
parameter is zero, the client is a different instance.

Returns
This transaction does not return a value.

Comments
If the server application specified the CBF_FAIL_CONFIRMS flag in the DdeInitialize function, this
transaction is filtered.

A server cannot block this transaction type; the CBR_BLOCK return value is ignored.

See Also
DdeConnect, DdeConnectList, DdeInitialize, XTYP_CONNECT, XTYP_WILDCONNECT

XTYP_DISCONNECT (3.1)

#include <ddeml.h>
XTYP_DISCONNECT
fSameInst = (BOOL) dwData2; /* same instance flag */
An application's DDE callback function receives this transaction when the application's partner in a
conversation uses the DdeDisconnect function to terminate the conversation.

Parameter Description
fSameInst Value of dwData2. Specifies whether the partners in the conversation are the same

application instance. If this parameter is TRUE, the partners are the same instance. If
this parameter is FALSE, the partners are different instances.

Returns
This transaction does not return a value.

Comments
If the application specified the CBF_SKIP_DISCONNECTS flag in the DdeInitialize function, this
transaction is filtered.

The application can obtain the status of the terminated conversation by calling the DdeQueryConvInfo
function while processing this transaction. The conversation handle becomes invalid after the callback
function returns.

An application cannot block this transaction type; the CBR_BLOCK return value is ignored.

See Also
DdeDisconnect, DdeQueryConvInfo

XTYP_ERROR (3.1)

#include <ddeml.h>
XTYP_ERROR
wErr = LOWORD(dwData1); /* error value */
A DDE callback function receives this transaction when a critical error occurs.

Parameter Description
wErr Value of dwData1. Specifies the error value. Currently, only the

DMLERR_LOW_MEMORY error value is supported. It means that memory is low--
advise, poke, or execute data may be lost, or the system may fail.

Returns
This transaction does not return a value.

Comments
An application cannot block this transaction type; the CBR_BLOCK return value is ignored. The DDEML
attempts to free memory by removing noncritical resources. An application that has blocked conversations
should unblock them.

XTYP_EXECUTE (3.1)

#include <ddeml.h>
XTYP_EXECUTE
hszTopic = hsz1; /* handle of the topic-name string */
hDataCmd = hData; /* handle of the command string */
A server's DDE callback function receives this transaction when a client specifies XTYP_EXECUTE for
the wType parameter of the DdeClientTransaction function. A client uses this transaction to send a
command string to the server.

Parameter Description
hszTopic Value of hsz1. Identifies the topic name.
hDataCmd Value of hData. Identifies the command string.

Returns
A server's DDE callback function should return DDE_FACK if it processes this transaction,
DDE_FBUSY if it is too busy to process this transaction, or DDE_FNOTPROCESSED if it denies this
transaction.

Comments
If the server application specified the CBF_FAIL_EXECUTES flag in the DdeInitialize function, this
transaction is filtered.

An application need not free the data handle obtained during this transaction. If the application needs to
process the string after the callback function returns, however, the application must copy the command
string associated with the data handle. An application can use the DdeGetData function to copy the data.

See Also
DdeClientTransaction, DdeInitialize

XTYP_MONITOR (3.1)

#include <ddeml.h>
XTYP_MONITOR
hDataEvent = hData;/* handle of event data */
fwEvent = dwData2; /* event flag */
The DDE callback function of a DDE debugging application receives this transaction whenever a DDE
event occurs in the system. An application can receive this transaction only if it specified the
APPCLASS_MONITOR flag when it called the DdeInitialize function.

Parameter Description
hDataEvent Value of hData. Identifies a global memory object that contains information about the

DDE event. The application should use the DdeAccessData function to obtain a pointer
to the object.

fwEvent Value of dwData2. Specifies the DDE event. This parameter may be one of the
following values:

Value Meaning
MF_CALLBACKS The system sent a transaction to a DDE callback function. The

global memory object contains a MONCBSTRUCT structure
that provides information about the transaction.

MF_CONV A DDE conversation was established or terminated. The global
memory object contains a MONCONVSTRUCT structure that
provides information about the conversation.

MF_ERRORS A DDE error occurred. The global memory object contains a
MONERRSTRUCT structure that provides information about
the error.

MF_HSZ_INFO A DDE application created or freed a string handle or
incremented the use count of a string handle, or a string handle
was freed as a result of a call to the DdeUninitialize function.
The global memory object contains a MONHSZSTRUCT
structure that provides information about the string handle.

MF_LINKS A DDE application started or ended an advise loop. The global
memory object contains a MONLINKSTRUCT structure that
provides information about the advise loop.

MF_POSTMSGS The system or an application posted a DDE message. The
global memory object contains a MONMSGSTRUCT structure
that provides information about the message.

MF_SENDMSGS The system or an application sent a DDE message. The global
memory object contains a MONMSGSTRUCT structure that
provides information about the message.

Returns
The callback function should return zero if it processes this transaction.

See Also
DdeAccessData, DdeInitialize, MONCBSTRUCT, MONCONVSTRUCT, MONERRSTRUCT,
MONHSZSTRUCT, MONLINKSTRUCT, MONMSGSTRUCT

XTYP_POKE (3.1)

#include <ddeml.h>
XTYP_POKE
hszTopic = hsz1;/* handle of topic-name string */
hszItem = hsz2; /* handle of item-name string */
hDataPoke = hData; /* handle of data for server */
A server's DDE callback function receives this transaction when a client specifies XTYP_POKE as the
wType parameter of the DdeClientTransaction function. A client uses this transaction to send unsolicited
data to the server.

Parameter Description
hszTopic Value of hsz1. Identifies the topic name.
hszItem Value of hsz2. Identifies the item name.
hDataPoke Value of hData. Identifies the data that the client is sending to the server.

Returns
A server's DDE callback function should return DDE_FACK if it processes this transaction,
DDE_FBUSY if it is too busy to process this transaction, or DDE_FNOTPROCESSED if it denies this
transaction.

Comments
If the server application specified the CBF_FAIL_POKES flag in the DdeInitialize function, this
transaction is filtered.

See Also
DdeClientTransaction, DdeInitialize

XTYP_REGISTER (3.1)

#include <ddeml.h>
XTYP_REGISTER
hszBaseServName = hsz1; /* handle of base service-name string*/
hszInstServName = hsz2; /* handle of instance service-name string */
A DDE callback function receives this transaction type whenever a DDEML server application uses the
DdeNameService function to register a service name or whenever a non-DDEML application that supports
the System topic is started.

Parameter Description
hszBaseServName Value of hsz1. Identifies the base service name being registered.
hszInstServName Value of hsz2. Identifies the instance-specific service name being registered.

Returns
This transaction does not return a value.

Comments
If the application specified the CBF_SKIP_REGISTRATIONS flag in the DdeInitialize function, this
transaction is filtered.

An application cannot block this transaction type; the CBR_BLOCK return value is ignored.

An application should use the hszBaseServName parameter to add the service name to the list of servers
available to the user. An application should use the hszInstServName parameter to identify which
application instance has started.

See Also
DdeInitialize, DdeNameService, XTYP_UNREGISTER

XTYP_REQUEST (3.1)

#include <ddeml.h>
XTYP_REQUEST
hszTopic = hsz1;/* handle of topic-name string */
hszItem = hsz2; /* handle of item-name string */
A DDE server callback function receives this transaction when a client specifies XTYP_REQUEST for the
wType parameter of the DdeClientTransaction function. A client uses this transaction to request data from
a server.

Parameter Description
hszTopic Value of hsz1. Identifies the topic name.
hszItem Value of hsz2. Identifies the item name that has changed.

Returns
The server should call the DdeCreateDataHandle function to create a data handle that identifies the
changed data and then should return the handle. The server should return NULL if it is unable to complete
the transaction. If the server returns NULL, the client receives a DDE_FNOTPROCESSED
acknowledgment flag.

Comments
If the server application specified the CBF_FAIL_REQUESTS flag in the DdeInitialize function, this
transaction is filtered.

If responding to this transaction requires lengthy processing, the server can return CBR_BLOCK to
suspend future transactions on the current conversation and then process the transaction asynchronously.
When the server has finished and the data is ready to pass to the client, the server can call the
DdeEnableCallback function to resume the conversation.

See Also
DdeClientTransaction, DdeCreateDataHandle, DdeEnableCallback, DdeInitialize

XTYP_UNREGISTER (3.1)

#include <ddeml.h>
XTYP_UNREGISTER
hszBaseServName = hsz1; /* handle of base service-name string*/
hszInstServName = hsz2; /* handle of instance service-name string */
A DDE callback function receives this transaction type whenever a DDEML server application uses the
DdeNameService function to unregister a service name or whenever a non-DDEML application that
supports the System topic is terminated.

Parameter Description
hszBaseServName Value of hsz1. Identifies the base service name being unregistered.
hszInstServName Value of hsz2. Identifies the instance-specific service name being unregistered.

Returns
This transaction does not return a value.

Comments
If the application specified the CBF_SKIP_REGISTRATIONS flag in the DdeInitialize function, this
transaction is filtered.

An application cannot block this transaction type; the CBR_BLOCK return value is ignored.

An application should use the hszBaseServName parameter to remove the service name from the list of
servers available to the user. An application should use the hszInstServName parameter to identify which
application instance has terminated.

See Also
DdeInitialize, DdeNameService, XTYP_REGISTER

XTYP_WILDCONNECT (3.1)

#include <ddeml.h>
XTYP_WILDCONNECT
hszTopic = hsz1; /* handle of topic-name string */
hszService = hsz2; /* handle of service-name string */
pcc = (CONVCONTEXT FAR *)dwData1; /* address of CONVCONTEXT structure *
/
fSameInst = (BOOL) dwData2; /* same-instance flag*/
A server's DDE callback function receives this transaction when a client specifies a service name that is
set to NULL, a topic name that is set to NULL, or both in a call to the DdeConnect function. This
transaction allows a client to establish a conversation on each of the server's service/topic name pairs that
matches the specified service name and topic name.

Parameter Description
hszTopic Value of hsz1. Identifies the topic name. If this parameter is NULL, the client is

requesting a conversation on all topic names that the server supports.
hszService Value of hsz2. Identifies the service name. If this parameter is NULL, the client is

requesting a conversation on all service names that the server supports.
pcc Value of dwData1. Points to a CONVCONTEXT data structure that contains context

information for the conversation. If the client is not a DDEML application, this
parameter is set to zero.

fSameInst Value of dwData2. Specifies whether the client is the same application instance as the
server. If this parameter is TRUE, the client is same instance. If this parameter is
FALSE, the client is a different instance.

Returns
The server should return a data handle that identifies an array of HSZPAIR structures. The array should
contain one structure for each service/topic name pair that matches the service/topic name pair requested
by the client. The array must be terminated by a NULL string handle. The system sends the
XTYP_CONNECT_CONFIRM transaction to the server to confirm each conversation and to pass the
conversation handles to the server. If the server specified the CBF_SKIP_CONNECT_CONFIRMS flag in
the DdeInitialize function, it cannot receive these confirmations.

To refuse the XTYP_WILDCONNECT transaction, the server should return NULL.

Comments
If the server application specified the CBF_FAIL_CONNECTIONS flag in the DdeInitialize function, this
transaction is filtered.

A server cannot block this transaction type; the CBR_BLOCK return code is ignored.

See Also
DdeConnect, DdeInitialize, CONVCONTEXT, XTYP_CONNECT_CONFIRM

XTYP_XACT_COMPLETE (3.1)

#include <ddeml.h>
XTYP_XACT_COMPLETE
hszTopic = hsz1; /* handle of topic-name string */
hszItem = hsz2; /* handle of item-name string */
hDataXact = hData;/* handle of transaction data */
dwXactID = dwData1; /* transaction identifier */
fwStatus = dwData2; /* status flag */
A DDE client callback function receives this transaction when an asynchronous transaction, initiated by a
call to the DdeClientTransaction function, has concluded.

Parameter Description
hszTopic Value of hsz1. Identifies the topic name involved in the completed transaction.
hszItem Value of hsz2. Identifies the item name involved in the completed transaction.
hDataXact Value of hData. Identifies the data involved in the completed transaction, if applicable.

If the transaction was successful but involved no data, this parameter is TRUE. If the
transaction was unsuccessful, this parameter is NULL.

dwXactID Value of dwData1. Contains the transaction identifier of the completed transaction.
fwStatus Value of dwData2. Contains any applicable DDE_ status flags in the low-order word.

This provides support for applications dependent on DDE_APPSTATUS bits. It is
recommended that applications no longer use these bits--future versions of the DDEML
may not support them.

Returns
This transaction does not return a value.

Comments
An application need not free the data handle obtained during this transaction. If the application needs to
process the data after the callback function returns, however, the application must copy the data associated
with the data handle. An application can use the DdeGetData function to copy the data.

See Also
DdeClientTransaction

DDE transactions
XTYP_ADVDATA Passes advise data to a client
XTYP_ADVREQ Prompts a server to send advise data to a client
XTYP_ADVSTART Establishes an advise loop with a server
XTYP_ADVSTOP Ends an advise loop with a server
XTYP_CONNECT Requests a DDE conversation with a client
XTYP_CONNECT_CONFIRM Confirms a DDE conversation with a client
XTYP_DISCONNECT Terminates a DDE conversation
XTYP_ERROR Notifies a DDEML application of a critical error
XTYP_EXECUTE Executes a server command
XTYP_MONITOR Informs a DDE debugging application of a DDE event
XTYP_POKE Sends unsolicited data to a server
XTYP_REGISTER Registers a service name
XTYP_REQUEST Requests data from a server
XTYP_UNREGISTER Unregisters a service name
XTYP_WILDCONNECT Requests multiple DDE conversations
XTYP_XACT_COMPLETE Confirms completion of an asynchronous transaction

DragAcceptFiles (3.1)
#include shellapi.h

void DragAcceptFiles(hwnd, fAccept)
HWND hwnd; /* handle of the registering window */
BOOL fAccept; /* flag
for whether dropped files are accepted *
/

The DragAcceptFiles function registers whether a given window accepts dropped files.

Parameter Description
hwnd Identifies the window registering whether it accepts dropped files.
fAccept Specifies whether the window specified by the hwnd parameter accepts dropped files.

An application should set this value to TRUE to accept dropped files or FALSE to
discontinue accepting dropped files.

Returns
This function does not return a value.

Comments
When an application calls DragAcceptFiles with fAccept set to TRUE, Windows File Manager
(WINFILE.EXE) sends the specified window a WM_DROPFILES message each time the user drops a file
in that window.

See Also
WM_DROPFILES

DragFinish (3.1)
#include shellapi.h

void DragFinish(hDrop)
HDROP hDrop; /* handle of memory to free */

The DragFinish function releases memory that Windows allocated for use in transferring filenames to the
application.

Parameter Description
hDrop Identifies the internal data structure that describes dropped files. This handle is passed to

the application in the wParam parameter of the WM_DROPFILES message.

Returns
This function does not return a value.

See Also
WM_DROPFILES

DragQueryFile (3.1)
#include shellapi.h

UINT DragQueryFile(hDrop, iFile, lpszFile, cb)
HDROP hDrop; /* handle of structure for dropped files */
UINT iFile; /* index of file
to query *
/
LPSTR lpszFile; /
* address of buffer for returned filename *
/
UINT cb; /
* size of buffer for filename *
/

The DragQueryFile function retrieves the number of dropped files and their filenames.

Parameter Description
hDrop Identifies the internal data structure containing filenames for the dropped files. This

handle is passed to the application in the wParam parameter of the WM_DROPFILES
message.

iFile Specifies the index of the file to query. The index of the first file is 0. If the value of the
iFile parameter is -1, DragQueryFile returns the number of files dropped. If the value of
the iFile parameter is between zero and the total number of files dropped,
DragQueryFile copies the filename corresponding to that value to the buffer pointed to
by the lpszFile parameter.

lpszFile Points to a null-terminated string that contains the filename of a dropped file when the
function returns. If this parameter is NULL and the iFile parameter specifies the index
for the name of a dropped file, DragQueryFile returns the required size, in bytes, of the
buffer for that filename.

cb Specifies the size, in bytes, of the lpszFile buffer.

Returns
When the function copies a filename to the lpszFile buffer, the return value is the number of bytes copied.
If the iFile parameter is 0xFFFF, the return value is the number of dropped files. If iFile is between zero
and the total number of dropped files and if lpszFile is NULL, the return value is the required size of the
lpszFile buffer.

See Also
DragQueryPoint, WM_DROPFILES

DragQueryPoint (3.1)
#include shellapi.h

BOOL DragQueryPoint(hDrop, lppt)
HDROP hDrop; /* handle of structure for dropped file */
POINT FAR* lppt; /
* address of structure for cursor coordinates *
/

The DragQueryPoint function retrieves the window coordinates of the cursor when a file is dropped.

Parameter Description
hDrop Identifies the internal data structure that describes the dropped file. This structure is

returned in the wParam parameter of the WM_DROPFILES message.
lppt Points to a POINT structure that the function fills with the coordinates of the position at

which the cursor was located when the file was dropped.

Returns
The return value is nonzero if the file is dropped in the client area of the window. Otherwise, it is zero.

Comments
The DragQueryPoint function fills the POINT structure with the coordinates of the position at which the
cursor was located when the user released the left mouse button. The window for which coordinates are
returned is the window that received the WM_DROPFILES message.

See Also
DragQueryFile, POINT, WM_DROPFILES

Drag-drop functions (3.1)
DragAcceptFiles Registers whether a window accepts dropped files
DragFinish Releases memory allocated for dropping files
DragQueryFile Retrieves the filename of a dropped file
DragQueryPoint Retrieves the mouse position when a file is dropped

FMExtensionProc (3.1)
#include <wfext.h>

HMENU FAR PASCAL FMExtensionProc(hwnd, wMsg, lParam)
HWND hwnd; /* handle of the extension window */
WORD wMsg; /* menu-item identifier or
message *
/
LONG lParam; /
* additional message information *
/

The FMExtensionProc function, an application-defined callback function, processes menu commands and
messages sent to a File Manager extension dynamic-link library (DLL).

Parameter Description
hwnd Identifies the File Manager window. An extension DLL should use this handle to

specify the parent for any dialog boxes or message boxes that the DLL may display and
to send request messages to File Manager.

wMsg Specifies the message. This parameter may be one of the following values:

Value Meaning
1-99 Identifier for the menu item that the user

selected.
FMEVENT_INITMENU User selected the extension's menu.
FMEVENT_LOAD File Manager is loading the extension DLL.
FMEVENT_SELCHANGE Selection in File Manager's directory window,

or Search Results window, changed.
FMEVENT_UNLOAD File Manager is unloading the extension DLL.
FMEVENT_USER_REFRESH User chose the Refresh command from the

Window menu.
lParam Specifies 32 bits of additional message-dependent information.

Returns
The callback function should return the result of the message processing. The actual return value depends
on the message that is processed.

Comments
Whenever File Manager calls the FMExtensionProc function, it waits to refresh its directory windows (for
changes in the file system) until after the function returns. This allows the extension to perform large
numbers of file operations without excessive repainting by the File Manager. The extension does not need
to send the FM_REFRESH_WINDOWS message to notify File Manager to repaint its windows.

See Also
FM_REFRESH_WINDOWS, FMS_LOAD

UndeleteFile
#include <wfext.h>

int CALLBACK UndeleteFile(hwndParent, lpszDir)
HWND hwndParent; /* handle of File Manager window */
LPSTR lpszDir; /* address of
name of initial directory *
/

The UndeleteFile function is an application-defined callback function that File Manager calls when the
user chooses the Undelete command from the File Manager File menu.

Parameter Description
hwndParent Identifies the File Manager window. An "undelete" dynamic-link library (DLL) should

use this handle to specify the parent window for any dialog box or message box the DLL
may display.

lpszDir Points to a null-terminated string that contains the name of the initial directory.

Returns
The return value is one of the following, if the function is successful:

Value Meaning
-l An error occurred.
IDOK A file was undeleted. File Manager will repaint its windows.
IDCANCEL No file was undeleted.

File Manager Extension Functions (3.1)
FMExtensionProc Processes messages for a File Manager extension
UndeleteFile Processes the File Manager Undelete command

FMEVENT_INITMENU
The FMEVENT_INITMENU message is sent to an extension dynamic-link library (DLL) when the user
selects the menu for the extension from File Manager's menu bar. The extension can use this notification
to initialize menu items in the menu.

Parameter Description
lParam Specifies the menu handle in the high-order word. The low-order word specifies the

delta value for the menu item.

Returns
This message does not return a value.

Comments
An extension receives this message only when the user selects the top-level menu. If the extension
contains submenus, it must initialize them at the same time as the top-level menu.

See Also
FMExtensionProc

FMEVENT_LOAD
The FMEVENT_LOAD message is sent to an extension dynamic-link library (DLL) when File Manager is
loading the DLL.

Parameter Description
lParam Points to an FMS_LOAD structure that specifies the menu-item delta value. An

extension DLL should save the menu-item delta value and fill the other structure
members with information about the extension.

Returns
This message does not return a value.

Comments
An application should fill the dwSize, szMenuName, and hMenu members. It should also save the value of
the wMenuDelta member and use it to identify menu items when modifying the menu. For more
information, see the description of the FMS_LOAD structure.

See Also
FMExtensionProc, FMS_LOAD

FMEVENT_SELCHANGE
The FMEVENT_SELCHANGE message is sent to an extension dynamic-link library (DLL) when the user
selects a filename in File Manager's directory window or Search Results window.

Parameter Description
lParam Not used.

Returns
This message does not return a value.

Comments
Changes in the tree half of the directory window do not produce this message.

Because the user can change the selection many times, the extension DLL must return promptly after
processing this message to avoid slowing the selection process for the user.

See Also
FMExtensionProc, FMEVENT_UNLOAD

FMEVENT_UNLOAD
The FMEVENT_UNLOAD message is sent to an extension dynamic-link library (DLL) when File
Manager is unloading the DLL.

Parameter Description
lParam Not used.

Returns
This message does not return a value.

Comments
The hwnd and hMenu values passed with the FMEVENT_LOAD and FMEVENT_INITMENU messages
may not be valid at the time of this message.

See Also
FMExtensionProc, FMEVENT_INITMENU, FMEVENT_LOAD

FMEVENT_USER_REFRESH
The FMEVENT_USER_REFRESH message is sent to an extension dynamic-link library (DLL) when the
user invokes File Manager's Refresh command in the Window menu. The extension can use this
notification to update its menu.

Parameter Description
lParam Not used.

Returns
This message does not return a value.

See Also
FMExtensionProc

FM_GETDRIVEINFO
A File Manager extension sends an FM_GETDRIVEINFO message to retrieve drive information from the
active File Manager window.

Parameter Description
wParam Not used.
lParam Points to an FMS_GETDRIVEINFO structure that receives drive information.

Returns
The return value is always nonzero.

Comments
If a -1 is returned in the dwTotalSpace or dwFreeSpace members of the FMS_GETDRIVEINFO structure,
the extension library must compute the value or values.

See Also
FMExtensionProc, FMS_GETDRIVEINFO

FM_GETFILESEL
A File Manager extension sends an FM_GETFILESEL message to retrieve information about a selected
file from the active File Manager window (either the directory window or the Search Results window).

Parameter Description
wParam Specifies the zero-based index of the selected file to retrieve.
lParam Points to an FMS_GETFILESEL structure that receives information about the selection.

Returns
The return value is the zero-based index of the selected file that was retrieved.

Comments
An extension can use the FM_GETSELCOUNT message to obtain the count of selected files.

The szName member of the FMS_GETFILESEL structure consists of an OEM character string. Before
displaying this string, an extension should use the OemToAnsi function to convert the string to a Windows
ANSI character string. If a string is to be passed to the file system (MS-DOS), an extension should not
convert it.

See Also
FMExtensionProc, FM_GETFILESELLFN, FM_GETSELCOUNT, FM_GETSELCOUNTLFN,
OemToAnsi, FMS_GETFILESEL

FM_GETFILESELLFN
A File Manager extension sends an FM_GETFILESELLFN message to retrieve information about a
selected file from the active File Manager window (either the directory window or the Search Results
window). The selected file can have a long filename.

Parameter Description
wParam Specifies the zero-based index of the selected file to retrieve.
lParam Points to an FMS_GETFILESEL structure that receives information about the selection.

Returns
The return value is the zero-based index of the selected file that was retrieved.

Comments
Only extensions that support long filenames (for example, network-aware extensions) should use this
message.

An extension can use the FM_GETSELCOUNT message to obtain the count of selected files.

The szName member of the FMS_GETFILESEL structure consists of an OEM character string. Before
displaying this string, an extension should use the OemToAnsi function to convert the string to a Windows
ANSI character string. If a string is to be passed to the file system (MS-DOS), an extension should not
convert it.

See Also
FMExtensionProc, FM_GETFILESEL, FM_GETSELCOUNT, FM_GETSELCOUNTLFN, OemToAnsi,
FMS_GETFILESEL

FM_GETFOCUS
A File Manager extension sends a FM_GETFOCUS message to retrieve the type of the File Manager
window that has the input focus.

Parameter Description
wParam Not used.
lParam Not used.

Returns
The return value indicates the type of File Manager window that has input focus. It can have one of the
following values:

Value Meaning
FMFOCUS_DIR Directory portion of a directory window
FMFOCUS_TREE Tree portion of a directory window
FMFOCUS_DRIVES Drive bar of a directory window
FMFOCUS_SEARCH Search Results window

FM_GETSELCOUNT
A File Manager extension sends a FM_GETSELCOUNT message to retrieve a count of the selected files
in the directory or the Search Results window, depending on which is the active window.

Parameter Description
wParam Not used.
lParam Not used.

Returns
The return value is the number of selected files.

See Also
FM_GETFILESEL, FM_GETFILESELLFN, FM_GETSELCOUNTLFN

FM_GETSELCOUNTLFN
A File Manager extension sends an FM_GETSELCOUNTLFN message to retrieve the number of selected
files in the directory or the Search Results window, depending on which is the active window. The count
includes files that have long filenames.

Parameter Description
wParam Not used.
lParam Not used.

Returns
The return value is the number of selected files.

Comments
Only extensions that support long filenames (for example, network-aware extensions) should use this
message.

See Also
FM_GETFILESEL, FM_GETFILESELLFN, FM_GETSELCOUNT

FM_REFRESH_WINDOWS
A File Manager extension sends an FM_REFRESH_WINDOWS message to cause File Manager to
repaint either its active window or all of its windows.

Parameter Description
wParam Specifies whether File Manager repaints its active window or all of its windows. If this

parameter is nonzero, File Manager repaints all of its windows. If this parameter is zero,
File Manager repaints only its active window.

lParam Not used.

Returns
This message does not return a meaningful value.

Comments
File system changes caused by an extension are automatically detected by File Manager. An extension
should use this message only in situations where drive connections are made or canceled.

See Also
FMExtensionProc

FM_RELOAD_EXTENSIONS
A File Manager extension (or another application) sends an FM_RELOAD_EXTENSIONS message to
cause File Manager to reload all extension dynamic-link libraries (DLLs) listed in the [AddOns] section of
the WINFILE.INI file.

Parameter Description
wParam Not used.
lParam Not used.

Returns
This message does not return a meaningful value.

Comments
Other applications can use the PostMessage function to send this message to File Manager. To obtain the
appropriate File Manager window handle, an application can specify "WFS_Frame" as the lpszClassName
parameter in a call to the FindWindow function.

See Also
FindWindow, FMExtensionProc, PostMessage

File Manager Extension Messages (3.1)
FMEVENT_INITMENU
FMEVENT_LOAD
FMEVENT_SELCHANGE
FMEVENT_UNLOAD
FMEVENT_USER_REFRESH
FM_GETDRIVEINFO Retrieves drive data from active window
FM_GETFILESEL Retrieves data about a selected file
FM_GETFILESELLFN Retrieves data about a selected file
FM_GETFOCUS Retrieves the type of the File Manager focus window
FM_GETSELCOUNT Retrieves the count of selected files
FM_GETSELCOUNTLFN Retrieves the count of selected files
FM_REFRESH_WINDOWS Repaints File Manager's windows
FM_RELOAD_EXTENSIONS Reloads File Manager extension DLLs

AbortDoc (3.1)
int AbortDoc(hdc)
HDC hdc; /* handle of device context */

The AbortDoc function terminates the current print job and erases everything drawn since the last call to
the StartDoc function. This function replaces the ABORTDOC printer escape for Windows version 3.1.

Parameter Description
hdc Identifies the device context for the print job.

Returns
The return value is greater than or equal to zero if the function is successful. Otherwise, it is less than zero.

Comments
Applications should call the AbortDoc function to terminate a print job because of an error or if the user
chooses to cancel the job. To end a successful print job, an application should use the EndDoc function.

If Print Manager was used to start the print job, calling the AbortDoc function erases the entire spool job--
the printer receives nothing. If Print Manager was not used to start the print job, the data may have been
sent to the printer before AbortDoc was called. In this case, the printer driver would have reset the printer
(when possible) and closed the print job.

See Also
EndDoc, SetAbortProc, StartDoc

AddFontResource (2.x)
int AddFontResource(lpszFilename)
LPCSTR lpszFilename; /* address of filename */

The AddFontResource function adds a font resource to the Windows font table. Any application can then
use the font.

Parameter Description
lpszFilename Points to a character string that names the font resource file or that contains a handle of

a loaded module. If this parameter points to a font resource filename, it must be a valid
MS-DOS filename, including an extension, and the string must be null-terminated. The
system passes this string to the LoadLibrary function if the font resource must be
loaded.

Returns
The return value specifies the number of fonts added if the function is successful. Otherwise, it is zero.

Comments
Any application that adds or removes fonts from the Windows font table should send a
WM_FONTCHANGE message to all top-level windows in the system by using the SendMessage function
with the hwnd parameter set to 0xFFFF.

When font resources added by using AddFontResource are no longer needed, you should remove them by
using the RemoveFontResource function.

Example
The following example uses the AddFontResource function to add a font resource from a file, notifies
other applications by using the SendMessage function, then removes the font resource by using the
RemoveFontResource function:

AddFontResource("fontres.fon");
SendMessage(HWND_BROADCAST, WM_FONTCHANGE, 0, 0);

.

. /* Work with the font. */

.
if (RemoveFontResource("fontres.fon")) {

SendMessage(HWND_BROADCAST, WM_FONTCHANGE, 0, 0);
return TRUE;

}
else

return FALSE;
See Also
LoadLibrary, RemoveFontResource, SendMessage

AnimatePalette (3.0)
void AnimatePalette(hpal, iStart, cEntries, lppe)
HPALETTE hpal; /* handle of palette */
UINT iStart; /
* first palette entry to animate *
/
UINT cEntries; /
* number of entries in palette *
/
const PALETTEENTRY FAR* lppe; /
* address of color structure *
/

The AnimatePalette function replaces entries in the specified logical palette. An application does not have
to update the client area when it calls AnimatePalette, because Windows maps the new entries into the
system palette immediately.

Parameter Description
hpal Identifies the logical palette.
iStart Specifies the first entry in the palette to be animated.
cEntries Specifies the number of entries in the palette to be animated.
lppe Points to the first member of an array of PALETTEENTRY structures. These palette

entries will replace the palette entries identified by the iStart and cEntries parameters.

Returns
This function does not return a value.

Comments
The AnimatePalette function can change an entry in a logical palette only when the PC_RESERVED flag
is set in the corresponding palPaletteEntry member of the LOGPALETTE structure that defines the current
logical palette.

Example
The following example initializes a LOGPALETTE structure and an array of PALETTEENTRY
structures, uses the CreatePalette function to retrieve a handle of a logical palette, and then uses the
AnimatePalette function to map the entries into the system palette:

#define NUMENTRIES 128
HPALETTE hpal;
PALETTEENTRY ape[NUMENTRIES];
plgpl = (LOGPALETTE*) LocalAlloc(LPTR,

sizeof(LOGPALETTE) + cColors * sizeof(PALETTEENTRY));
plgpl->palNumEntries = cColors;
plgpl->palVersion = 0x300;
for (i = 0, red = 0, green = 127, blue = 127; i < NUMENTRIES;

i++, red += 1, green += 1, blue += 1) {
ape[i].peRed =
plgpl->palPalEntry[i].peRed = LOBYTE(red);
ape[i].peGreen =
plgpl->palPalEntry[i].peGreen = LOBYTE(green);
ape[i].peBlue =
plgpl->palPalEntry[i].peBlue = LOBYTE(blue);
ape[i].peFlags =
plgpl->palPalEntry[i].peFlags = PC_RESERVED;

}
hpal = CreatePalette(plgpl);
LocalFree((HLOCAL) plgpl);
AnimatePalette(hpal, 0, NUMENTRIES, (PALETTEENTRY FAR*) &ape);
See Also

CreatePalette, LOGPALETTE, PALETTEENTRY

Arc (2.x)
BOOL Arc(hdc, nLeftRect, nTopRect, nRightRect, nBottomRect, nXStartArc, nYStartArc, nXEndArc,

nYEndArc)
HDC hdc; /* handle of device context */
int nLeftRect; /
* x-coordinate upper-left corner bounding rectangle *
/
int nTopRect; /
* y-coordinate upper-left corner bounding rectangle *
/
int nRightRect; /
* x-coordinate lower-right corner bounding rectangle *
/
int nBottomRect; /
* y-coordinate lower-right corner bounding rectangle *
/
int nXStartArc; /
* x-coordinate arc starting point *
/
int nYStartArc; /
* y-coordinate arc starting point *
/
int nXEndArc; /
* x-coordinate arc ending point *
/
int nYEndArc; /
* y-coordinate arc ending point *
/

The Arc function draws an elliptical arc.

Parameter Description
hdc Identifies the device context.
nLeftRect Specifies the logical x-coordinate of the upper-left corner of the bounding rectangle.
nTopRect Specifies the logical y-coordinate of the upper-left corner of the bounding rectangle.
nRightRect Specifies the logical x-coordinate of the lower-right corner of the bounding rectangle.
nBottomRect Specifies the logical y-coordinate of the lower-right corner of the bounding rectangle.
nXStartArc Specifies the logical x-coordinate of the point that defines the arc's starting point. This

point need not lie exactly on the arc.
nYStartArc Specifies the logical y-coordinate of the point that defines the arc's starting point. This

point need not lie exactly on the arc.
nXEndArc Specifies the logical x-coordinate of the point that defines the arc's endpoint. This point

need not lie exactly on the arc.
nYEndArc Specifies the logical y-coordinate of the point that defines the arc's endpoint. This point

need not lie exactly on the arc.

Returns
The return value is nonzero if the function is successful. Otherwise, it is zero.

Comments
The arc drawn by using the Arc function is a segment of the ellipse defined by the specified bounding
rectangle. The starting point of the arc is the point at which a ray drawn from the center of the bounding
rectangle through the specified starting point intersects the ellipse. The end point of the arc is the point at
which a ray drawn from the center of the bounding rectangle through the specified end point intersects the
ellipse. The arc is drawn in a counterclockwise direction. Since an arc is not a closed figure, it is not filled.

Both the width and the height of a rectangle must be greater than 2 units and less than 32,767 units.

Example
The following example uses a RECT structure to store the points defining the bounding rectangle and uses
POINT structures to store the coordinates that specify the beginning and end of the arc:

HDC hdc;
RECT rc = { 10, 10, 180, 140 };
POINT ptStart = { 12, 12 };
POINT ptEnd = { 128, 135 };
Arc(hdc, rc.left, rc.top, rc.right, rc.bottom,

ptStart.x, ptStart.y, ptEnd.x, ptEnd.y);
See Also
Chord, POINT, RECT

BitBlt (2.x)
BOOL BitBlt(hdcDest, nXDest, nYDest, nWidth, nHeight, hdcSrc, nXSrc, nYSrc, dwRop)
HDC hdcDest; /* handle of destination device context */
int nXDest; /* upper-left
corner destination rectangle *
/
int nYDest; /
* upper-left corner destination rectangle *
/
int nWidth; /
* bitmap width *
/
int nHeight; /
* bitmap height *
/
HDC hdcSrc; /
* handle of source device context *
/
int nXSrc; /
* upper-left corner source bitmap *
/
int nYSrc; /
* upper-left corner source bitmap *
/
DWORD dwRop; /
* raster operation for copy *
/

The BitBlt function copies a bitmap from a specified device context to a destination device context.

Parameter Description
hdcDest Identifies the destination device context.
nXDest Specifies the logical x-coordinate of the upper-left corner of the destination rectangle.
nYDest Specifies the logical y-coordinate of the upper-left corner of the destination rectangle.
nWidth Specifies the width, in logical units, of the destination rectangle and source bitmap.
nHeight Specifies the height, in logical units, of the destination rectangle and source bitmap.
hdcSrc Identifies the device context from which the bitmap will be copied. This parameter must

be NULL if the dwRop parameter specifies a raster operation that does not include a
source. This parameter can specify a memory device context.

nXSrc Specifies the logical x-coordinate of the upper-left corner of the source bitmap.
nYSrc Specifies the logical y-coordinate of the upper-left corner of the source bitmap.
dwRop Specifies the raster operation to be performed. Raster operation codes define how the

graphics device interface (GDI) combines colors in output operations that involve a
current brush, a possible source bitmap, and a destination bitmap. This parameter can be
one of the following:

Code Description
BLACKNESS Turns all output black.
DSTINVERT Inverts the destination bitmap.
MERGECOPY Combines the pattern and the source bitmap by using the

Boolean AND operator.
MERGEPAINT Combines the inverted source bitmap with the destination

bitmap by using the Boolean OR operator.
NOTSRCCOPY Copies the inverted source bitmap to the destination.
NOTSRCERASE Inverts the result of combining the destination and source

bitmaps by using the Boolean OR operator.
PATCOPY Copies the pattern to the destination bitmap.
PATINVERT Combines the destination bitmap with the pattern by using the

Boolean XOR operator.

PATPAINT Combines the inverted source bitmap with the pattern by using
the Boolean OR operator. Combines the result of this
operation with the destination bitmap by using the Boolean
OR operator.

SRCAND Combines pixels of the destination and source bitmaps by
using the Boolean AND operator.

SRCCOPY Copies the source bitmap to the destination bitmap.
SRCERASE Inverts the destination bitmap and combines the result with the

source bitmap by using the Boolean AND operator.
SRCINVERT Combines pixels of the destination and source bitmaps by

using the Boolean XOR operator.
SRCPAINT Combines pixels of the destination and source bitmaps by

using the Boolean OR operator.
WHITENESS Turns all output white.

Returns
The return value is nonzero if the function is successful. Otherwise, it is zero.

Comments
An application that uses the BitBlt function to copy pixels from one window to another window or from a
source rectangle in a window into a target rectangle in the same window should set the
CS_BYTEALIGNWINDOW or CS_BYTEALIGNCLIENT flag when registering the window classes. By
aligning the windows or client areas on byte boundaries, the application can ensure that the BitBlt
operations occur on byte-aligned rectangles. BitBlt operations on byte-aligned rectangles are considerably
faster than BitBlt operations on rectangles that are not byte-aligned.

GDI transforms the nWidth and nHeight parameters, once by using the destination device context, and
once by using the source device context. If the resulting extents do not match, GDI uses the StretchBlt
function to compress or stretch the source bitmap as necessary. If destination, source, and pattern bitmaps
do not have the same color format, the BitBlt function converts the source and pattern bitmaps to match
the destination. The foreground and background colors of the destination bitmap are used in the
conversion.

When the BitBlt function converts a monochrome bitmap to color, it sets white bits (1) to the background
color and black bits (0) to the foreground color. The foreground and background colors of the destination
device context are used. To convert color to monochrome, BitBlt sets pixels that match the background
color to white and sets all other pixels to black. BitBlt uses the foreground and background colors of the
source (color) device context to convert from color to monochrome.

The foreground color is the current text color for the specified device context, and the background color is
the current background color for the specified device context.

Not all devices support the BitBlt function. An application can determine whether a device supports BitBlt
by calling the GetDeviceCaps function and specifying the RASTERCAPS index.

Example
The following example loads a bitmap, retrieves its dimensions, and displays it in a window:

HDC hdc, hdcMemory;
HBITMAP hbmpMyBitmap, hbmpOld;
BITMAP bm;
hbmpMyBitmap = LoadBitmap(hinst, "MyBitmap");
GetObject(hbmpMyBitmap, sizeof(BITMAP), &bm);
hdc = GetDC(hwnd);
hdcMemory = CreateCompatibleDC(hdc);
hbmpOld = SelectObject(hdcMemory, hbmpMyBitmap);
BitBlt(hdc, 0, 0, bm.bmWidth, bm.bmHeight, hdcMemory, 0, 0, SRCCOPY);
SelectObject(hdcMemory, hbmpOld);
DeleteDC(hdcMemory);
ReleaseDC(hwnd, hdc);
See Also

GetDeviceCaps, PatBlt, SetTextColor, StretchBlt, StretchDIBits

BLACKNESS 0x00000042L

Turns all output black.

BLACKNESS 0x00000042L

DSTINVERT 0x00550009L

Inverts the destination bitmap.

DSTINVERT 0x00550009L

MERGECOPY 0x00C000CAL

Combines the pattern and the source bitmap by using the Boolean AND operator.

MERGECOPY 0x00C000CAL

MERGEPAINT 0x00BB0226L

Combines the inverted source bitmap with the destination bitmap by using the Boolean OR operator.

MERGEPAINT 0x00BB0226L

NOTSRCCOPY 0x00330008L

Copies the inverted source bitmap to the destination.

NOTSRCCOPY 0x00330008L

NOTSRCERASE 0x001100A6L

Inverts the result of combining the destination and source bitmaps by using the Boolean OR operator.

NOTSRCERASE 0x001100A6L

PATCOPY 0x00F00021L

Copies the pattern to the destination bitmap.

PATCOPY 0x00F00021L

PATINVERT 0x005A0049L

Combines the destination bitmap with the pattern by using the Boolean XOR operator.

PATINVERT 0x005A0049L

PATPAINT 0x00FB0A09L

Combines the inverted source bitmap with the pattern by using the Boolean OR operator. Combines the
result of this operation with the destination bitmap by using the Boolean OR operator.

PATPAINT 0x00FB0A09L

SRCAND 0x008800C6L

Combines pixels of the destination and source bitmaps by using the Boolean AND operator.

SRCAND 0x008800C6L

SRCCOPY 0x00CC0020L

Copies the source bitmap to the destination bitmap.

SRCCOPY 0x00CC0020L

SRCERASE 0x00440328L

Inverts the destination bitmap and combines the result with the source bitmap by using the Boolean AND
operator.

SRCERASE 0x00440328L

SRCINVERT 0x00660046L

Combines pixels of the destination and source bitmaps by using the Boolean XOR operator.

SRCINVERT 0x00660046L

SRCPAINT 0x00EE0086L

Combines pixels of the destination and source bitmaps by using the Boolean OR operator.

SRCPAINT 0x00EE0086L

WHITENESS 0x00FF0062L

Turns all output white.

WHITENESS 0x00FF0062L

Chord (2.x)
BOOL Chord(hdc, nLeftRect, nTopRect, nRightRect, nBottomRect, nXStartLine, nYStartLine,

nXEndLine, nYEndLine)
HDC hdc; /* handle of device context */
int nLeftRect; /
* x-coordinate upper-left corner bounding rectangle *
/
int nTopRect; /
* y-coordinate upper-left corner bounding rectangle *
/
int nRightRect; /
* x-coordinate lower-right corner bounding rectangle *
/
int nBottomRect; /
* y-coordinate lower-right corner bounding rectangle *
/
int nXStartLine; /
* x-coordinate line-segment starting point *
/
int nYStartLine; /
* y-coordinate line-segment starting point *
/
int nXEndLine; /
* x-coordinate line-segment ending point *
/
int nYEndLine; /
* y-coordinate line-segment ending point *
/

The Chord function draws a chord (a closed figure bounded by the intersection of an ellipse and a line
segment).

Parameter Description
hdc Identifies the device context.
nLeftRect Specifies the logical x-coordinate of the upper-left corner of the bounding rectangle.
nTopRect Specifies the logical y-coordinate of the upper-left corner of the bounding rectangle.
nRightRect Specifies the logical x-coordinate of the lower-right corner of the bounding rectangle.
nBottomRect Specifies the logical y-coordinate of the lower-right corner of the bounding rectangle.
nXStartLine Specifies the logical x-coordinate of the starting point of the line segment.
nYStartLine Specifies the logical y-coordinate of the starting point of the line segment.
nXEndLine Specifies the logical x-coordinate of the ending point of the line segment.
nYEndLine Specifies the logical y-coordinate of the ending point of the line segment.

Returns
The return value is nonzero if the function is successful. Otherwise, it is zero.

Comments
The (nLeftRect, nTopRect) and (nRightRect, nBottomRect) parameter combinations specify the upper-left
and lower-right corners, respectively, of a rectangle bounding the ellipse that is part of the chord. The
(nXStartLine, nYStartLine) and (nXEndLine, nYEndLine) parameter combinations specify the endpoints
of a line that intersects the ellipse. The chord is drawn by using the selected pen and is filled by using the
selected brush.

The figure the Chord function draws extends up to but does not include the right and bottom coordinates.
This means that the height of the figure is determined as follows:

nBottomRect - nTopRect

The width of the figure is determined similarly:

nRightRect - nLeftRect

Example

The following example uses a RECT structure to store the points defining the bounding rectangle and uses
POINT structures to store the coordinates that specify the beginning and end of the chord:

HDC hdc;
RECT rc = { 10, 10, 180, 140 };
POINT ptStart = { 12, 12 };
POINT ptEnd = { 128, 135 };
Chord(hdc, rc.left, rc.top, rc.right, rc.bottom,

ptStart.x, ptStart.y, ptEnd.x, ptEnd.y);
See Also
Arc, POINT, RECT

CloseMetaFile (2.x)
HMETAFILE CloseMetaFile(hdc)
HDC hdc; /* handle of device context */

The CloseMetaFile function closes a metafile device context and creates a handle of a metafile. An
application can use this handle to play the metafile.

Parameter Description
hdc Identifies the metafile device context to be closed.

Returns
The return value is the handle of the metafile if the function is successful. Otherwise, it is NULL.

Comments
If a metafile handle created by using the CloseMetaFile function is no longer needed, you should remove it
(using the DeleteMetaFile function).

Example
The following example creates a device-context handle of a memory metafile, draws a line in the device
context, retrieves a handle of the metafile, plays the metafile, and finally deletes the metafile.

HDC hdcMeta;
HMETAFILE hmf;
hdcMeta = CreateMetaFile(NULL);
MoveTo(hdcMeta, 10, 10);
LineTo(hdcMeta, 100, 100);
hmf = CloseMetaFile(hdcMeta);
PlayMetaFile(hdc, hmf);
DeleteMetaFile(hmf);
See Also
CreateMetaFile, DeleteMetaFile, PlayMetaFile

CombineRgn (2.x)
int CombineRgn(hrgnDest, hrgnSrc1, hrgnSrc2, fCombineMode)
HRGN hrgnDest; /* handle of region to receive combined regions */
HRGN hrgnSrc1; /
* handle of first source region *
/
HRGN hrgnSrc2; /
* handle of second source region *
/
int fCombineMode; /
* mode for combining regions *
/

The CombineRgn function creates a new region by combining two existing regions.

Parameter Description
hrgnDest Identifies an existing region that will be replaced by the new region.
hrgnSrc1 Identifies an existing region.
hrgnSrc2 Identifies an existing region.
fCombineMode Specifies the operation to use when combining the two source regions. This

parameter can be any one of the following values:

Value Meaning
RGN_AND Uses overlapping areas of both regions (intersection).
RGN_COPY Creates a copy of region 1 (identified by the hrgnSrc1 parameter).
RGN_DIFF Creates a region consisting of the areas of region 1 (identified by

hrgnSrc1) that are not part of region 2 (identified by the hrgnSrc2
parameter).

RGN_OR Combines all of both regions (union).
RGN_XOR Combines both regions but removes overlapping areas.

Returns
The return value specifies that the resulting region has overlapping borders (COMPLEXREGION), is
empty (NULLREGION), or has no overlapping borders (SIMPLEREGION), if the function is successful.
Otherwise, the return value is ERROR.

Comments
The size of a region is limited to 32,000 by 32,000 logical units or 64K of memory, whichever is smaller.

The CombineRgn function replaces the region identified by the hrgnDest parameter with the combined
region. To use CombineRgn most efficiently, hrgnDest should be a trivial region, as shown in the
following example.

Example
The following example creates two source regions and an empty destination region, uses the CombineRgn
function to create a complex region, selects the region into a device context, and then uses the PaintRgn
function to display the region:

HDC hdc;
HRGN hrgnDest, hrgnSrc1, hrgnSrc2;
hrgnDest = CreateRectRgn(0, 0, 0, 0);
hrgnSrc1 = CreateRectRgn(10, 10, 110, 110);
hrgnSrc2 = CreateRectRgn(90, 90, 200, 150);
CombineRgn(hrgnDest, hrgnSrc1, hrgnSrc2, RGN_OR);
SelectObject(hdc, hrgnDest);
PaintRgn(hdc, hrgnDest);
See Also
CreateRectRgn, PaintRgn

RGN_AND 1

Uses overlapping areas of both regions (intersection).

RGN_AND 1

RGN_COPY 5

Creates a copy of region 1 (identified by the hrgnSrc1 parameter).

RGN_COPY 5

RGN_DIFF 4

Creates a region consisting of the areas of region 1 (identified by hrgnSrc1) that are not part of region 2
(identified by the hrgnSrc2 parameter).

RGN_DIFF 4

RGN_OR 2

Combines all of both regions (union).

RGN_OR 2

RGN_XOR 3

Combines both regions but removes overlapping areas.

RGN_XOR 3

CopyMetaFile (2.x)
HMETAFILE CopyMetaFile(hmfSrc, lpszFile)
HMETAFILE hmfSrc; /* handle of metafile to copy */
LPCSTR lpszFile; /*
address of name of copied metafile *
/

The CopyMetaFile function copies a source metafile to a specified file and returns a handle of the new
metafile.

Parameter Description
hmfSrc Identifies the source metafile to be copied.
lpszFile Points to a null-terminated string that specifies the filename of the copied metafile. If

this value is NULL, the source metafile is copied to a memory metafile.

Returns
The return value is the handle of the new metafile if the function is successful. Otherwise, it is NULL.

Example
The following example copies a metafile to a specified file, plays the copied metafile, retrieves a handle of
the copied metafile, changes the position at which the metafile is played 200 logical units to the right, and
then plays the metafile at the new location:

HANDLE hmf, hmfSource, hmfOld;
LPSTR lpszFile1 = "MFTest";
hmf = CopyMetaFile(hmfSource, lpszFile1);
PlayMetaFile(hdc, hmf);
DeleteMetaFile(hmf);
hmfOld = GetMetaFile(lpszFile1);
SetWindowOrg(hdc, -200, 0);
PlayMetaFile(hdc, hmfOld);
DeleteMetaFile(hmfSource);
DeleteMetaFile(hmfOld);
See Also
GetMetaFile, PlayMetaFile, SetWindowOrg

CreateBitmap (2.x)
HBITMAP CreateBitmap(nWidth, nHeight, cbPlanes, cbBits, lpvBits)
int nWidth; /* bitmap width */
int nHeight; /* bitmap
height *
/
UINT cbPlanes; /
* number of color planes *
/
UINT cbBits; /
* number of bits per pixel *
/
const void FAR* lpvBits; /
* address of array with bitmap bits *
/

The CreateBitmap function creates a device-dependent memory bitmap that has the specified width,
height, and bit pattern.

Parameter Description
nWidth Specifies the width, in pixels, of the bitmap.
nHeight Specifies the height, in pixels, of the bitmap.
cbPlanes Specifies the number of color planes in the bitmap. The number of bits per plane is the

product of the plane's width, height, and bits per pixel (nWidth ” nHeight ” cbBits).
cbBits Specifies the number of color bits per display pixel.
lpvBits Points to an array of short integers that contains the initial bitmap bit values. If this

parameter is NULL, the new bitmap is left uninitialized.

Returns
The return value is the handle of the bitmap if the function is successful. Otherwise, it is NULL.

Comments
The bitmap created by the CreateBitmap function can be selected as the current bitmap for a memory
device context by using the SelectObject function.

For a color bitmap, either the cbPlanes or cbBits parameter should be set to 1. If both of these parameters
are set to 1, CreateBitmap creates a monochrome bitmap.

Although a bitmap cannot be copied directly to a display device, the BitBlt function can copy it from a
memory device context (in which it is the current bitmap) to any compatible device context, including a
screen device context.

When it has finished using a bitmap created by CreateBitmap, an application should select the bitmap out
of the device context and then remove the bitmap by using the DeleteObject function.

Example
The following example uses the CreateBitmap function to create a bitmap with a zigzag pattern and then
uses the PatBlt function to fill the client area with that pattern:

HDC hdc;
HBITMAP hbmp;
HBRUSH hbr, hbrPrevious;
RECT rc;
int aZigzag[] = { 0xFF, 0xF7, 0xEB, 0xDD, 0xBE, 0x7F, 0xFF, 0xFF };
hbmp = CreateBitmap(8, 8, 1, 1, aZigzag);
hbr = CreatePatternBrush(hbmp);
hdc = GetDC(hwnd);
UnrealizeObject(hbr);
hbrPrevious = SelectObject(hdc, hbr);
GetClientRect(hwnd, &rc);

PatBlt(hdc, rc.left, rc.top,
rc.right - rc.left, rc.bottom - rc.top, PATCOPY);

SelectObject(hdc, hbrPrevious);
ReleaseDC(hwnd, hdc);
DeleteObject(hbr);
DeleteObject(hbmp);
See Also
BitBlt, CreateBitmapIndirect, CreateCompatibleBitmap, CreateDIBitmap, CreateDiscardableBitmap,
DeleteObject, SelectObject

CreateBitmapIndirect (2.x)
HBITMAP CreateBitmapIndirect(lpbm)
BITMAP FAR* lpbm; /* address of structure with bitmap information */

The CreateBitmapIndirect function creates a bitmap that has the width, height, and bit pattern specified in
a BITMAP structure.

Parameter Description
lpbm Points to a BITMAP structure that contains information about the bitmap.

Returns
The return value is the handle of the bitmap if the function is successful. Otherwise, it is NULL.

Comments
Large bitmaps cannot be displayed on a display device by copying them directly to the device context for
that device. Instead, applications should create a memory device context that is compatible with the
display device, select the bitmap as the current bitmap for the memory device context, and then use a
function such as BitBlt or StretchBlt to copy it from the memory device context to the display device
context. (The PatBlt function can copy the bitmap for the current brush directly to the display device
context.)

When an application has finished using the bitmap created by the CreateBitmapIndirect function, it should
select the bitmap out of the device context and then delete the bitmap by using the DeleteObject function.

If the BITMAP structure pointed to by the lpbm parameter has been filled in by using the GetObject
function, the bits of the bitmap are not specified, and the bitmap is uninitialized. To initialize the bitmap,
an application can use a function such as BitBlt or SetDIBits to copy the bits from the bitmap identified by
the first parameter of GetObject to the bitmap created by CreateBitmapIndirect.

Example
The following example assigns values to the members of a BITMAP structure and then calls the
CreateBitmapIndirect function to create a bitmap handle:

BITMAP bm;
HBITMAP hbm;
int aZigzag[] = { 0xFF, 0xF7, 0xEB, 0xDD, 0xBE, 0x7F, 0xFF, 0xFF };
bm.bmType = 0;
bm.bmWidth = 8;
bm.bmHeight = 8;
bm.bmWidthBytes = 2;
bm.bmPlanes = 1;
bm.bmBitsPixel = 1;
bm.bmBits = aZigzag;
hbm = CreateBitmapIndirect(&bm);
See Also
BitBlt, CreateBitmap, CreateCompatibleBitmap, CreateDIBitmap, CreateDiscardableBitmap,
DeleteObject, GetObject, BITMAP

CreateBrushIndirect (2.x)
HBRUSH CreateBrushIndirect(lplb)
LOGBRUSH FAR* lplb; /* address of structure with brush attributes */

The CreateBrushIndirect function creates a brush that has the style, color, and pattern specified in a
LOGBRUSH structure. The brush can subsequently be selected as the current brush for any device.

Parameter Description
lplb Points to a LOGBRUSH structure that contains information about the brush.

Returns
The return value is the handle of the brush if the function is successful. Otherwise, it is NULL.

Comments
A brush created by using a monochrome (one plane, one bit per pixel) bitmap is drawn by using the
current text and background colors. Pixels represented by a bit set to 0 are drawn with the current text
color, and pixels represented by a bit set to 1 are drawn with the current background color.

When it has finished using a brush created by CreateBrushIndirect, an application should select the brush
out of the device context in which it was used and then remove the brush by using the DeleteObject
function.

Example
The following example creates a hatched brush with red diagonal hatch marks and uses that brush to fill a
rectangle:

LOGBRUSH lb;
HBRUSH hbr, hbrOld;
lb.lbStyle = BS_HATCHED;
lb.lbColor = RGB(255, 0, 0);
lb.lbHatch = HS_BDIAGONAL;
hbr = CreateBrushIndirect(&lb);
hbrOld = SelectObject(hdc, hbr);
Rectangle(hdc, 0, 0, 100, 100);
See Also
CreateDIBPatternBrush, CreatePatternBrush, CreateSolidBrush, DeleteObject, GetStockObject,
SelectObject, LOGBRUSH, RGB

CreateCompatibleBitmap (2.x)
HBITMAP CreateCompatibleBitmap(hdc, nWidth, nHeight)
HDC hdc; /* handle of device context */
int nWidth; /* bitmap width */
int nHeight; /*
bitmap height *
/

The CreateCompatibleBitmap function creates a bitmap that is compatible with the given device.

Parameter Description
hdc Identifies the device context.
nWidth Specifies the width, in bits, of the bitmap.
nHeight Specifies the height, in bits, of the bitmap.

Returns
The return value is the handle of the bitmap if the function is successful. Otherwise, it is NULL.

Comments
The bitmap created by the CreateCompatibleBitmap function has the same number of color planes or the
same bits-per-pixel format as the given device. It can be selected as the current bitmap for any memory
device that is compatible with the one identified by hdc.

If hdc identifies a memory device context, the bitmap returned has the same format as the currently
selected bitmap in that device context. A memory device context is a memory object that represents a
screen surface. It can be used to prepare images in memory before copying them to the screen surface of
the compatible device.

When a memory device context is created, the graphics device interface (GDI) automatically selects a
monochrome stock bitmap for it.

Since a color memory device context can have either color or monochrome bitmaps selected, the format of
the bitmap returned by the CreateCompatibleBitmap function is not always the same; however, the format
of a compatible bitmap for a non–memory device context is always in the format of the device.

When it has finished using a bitmap created by CreateCompatibleBitmap, an application should select the
bitmap out of the device context and then remove the bitmap by using the DeleteObject function.

Example
The following example shows a function named DuplicateBitmap that accepts the handle of a bitmap,
duplicates the bitmap, and returns a handle of the duplicate. This function uses the CreateCompatibleDC
function to create source and destination device contexts and then uses the GetObject function to retrieve
the dimensions of the source bitmap. The CreateCompatibleBitmap function uses these dimensions to
create a new bitmap. When each bitmap has been selected into a device context, the BitBlt function copies
the bits from the source bitmap to the new bitmap. (Although an application could use the GetDIBits and
SetDIBits functions to duplicate a bitmap, the method illustrated in this example is much faster.)

HBITMAP PASCAL DuplicateBitmap(HBITMAP hbmpSrc)
{

HBITMAP hbmpOldSrc, hbmpOldDest, hbmpNew;
HDChdcSrc, hdcDest;
BITMAP bmp;
hdcSrc = CreateCompatibleDC(NULL);
hdcDest = CreateCompatibleDC(hdcSrc);
GetObject(hbmpSrc, sizeof(BITMAP), &bmp);
hbmpOldSrc = SelectObject(hdcSrc, hbmpSrc);
hbmpNew = CreateCompatibleBitmap(hdcSrc, bmp.bmWidth,
bmp.bmHeight);
hbmpOldDest = SelectObject(hdcDest, hbmpNew);

BitBlt(hdcDest, 0, 0, bmp.bmWidth, bmp.bmHeight, hdcSrc, 0, 0,
SRCCOPY);
SelectObject(hdcDest, hbmpOldDest);
SelectObject(hdcSrc, hbmpOldSrc);
DeleteDC(hdcDest);
DeleteDC(hdcSrc);
return hbmpNew;

}
See Also
CreateBitmap, CreateBitmapIndirect, CreateDIBitmap, DeleteObject

CreateCompatibleDC (2.x)
HDC CreateCompatibleDC(hdc)
HDC hdc; /* handle of device context */

The CreateCompatibleDC function creates a memory device context that is compatible with the given
device.

An application must select a bitmap into a memory device context to represent a screen surface. The
device context can then be used to prepare images in memory before copying them to the screen surface of
the compatible device.

Parameter Description
hdc Identifies the device context. If this parameter is NULL, the function creates a memory

device context that is compatible with the system screen.

Returns
The return value is the handle of the new memory device context if the function is successful. Otherwise, it
is NULL.

Comments
The CreateCompatibleDC function can be used only to create compatible device contexts for devices that
support raster operations. To determine whether a device supports raster operations, an application can call
the GetDeviceCaps function with the RC_BITBLT index.

GDI output functions can be used with a memory device context only if a bitmap has been created and
selected into that context.

When it has finished using a device context created by CreateCompatibleDC, an application should free
the device context by calling the DeleteDC function. All objects selected into the device context after it
was created should be selected out and replaced with the original objects before the device context is
removed.

Example
The following example loads a bitmap named Dog, uses the CreateCompatibleDC function to create a
memory device context that is compatible with the screen, selects the bitmap into the memory device
context, and then uses the BitBlt function to move the bitmap from the memory device context to the
screen device context:

HDC hdc, hdcMemory;
HBITMAP hbmpMyBitmap, hbmpOld;
BITMAP bm;
hbmpMyBitmap = LoadBitmap(hinst, "MyBitmap");
GetObject(hbmpMyBitmap, sizeof(BITMAP), &bm);
hdc = GetDC(hwnd);
hdcMemory = CreateCompatibleDC(hdc);
hbmpOld = SelectObject(hdcMemory, hbmpMyBitmap);
BitBlt(hdc, 0, 0, bm.bmWidth, bm.bmHeight, hdcMemory, 0, 0, SRCCOPY);
SelectObject(hdcMemory, hbmpOld);
DeleteDC(hdcMemory);
ReleaseDC(hwnd, hdc);
See Also
DeleteDC, GetDeviceCaps

CreateDC (2.x)
#include <print.h>

HDC CreateDC(lpszDriver, lpszDevice, lpszOutput, lpvInitData)
LPCSTR lpszDriver; /* address of driver name */
LPCSTR lpszDevice; /
* address of device name *
/
LPCSTR lpszOutput; /
* address of filename or port name *
/
const void FAR* lpvInitData; /
* address of initialization data *
/

The CreateDC function creates a device context for the given device.

Parameter Description
lpszDriver Points to a null-terminated string that specifies the MS-DOS filename (without

extension) of the device driver (for example, Epson).
lpszDevice Points to a null-terminated string that specifies the name of the specific device to be

supported (for example, Epson FX-80). This parameter is used if the module supports
more than one device.

lpszOutput Points to a null-terminated string that specifies the MS-DOS filename or device name
for the physical output medium (file or output port).

lpvInitData Points to a DEVMODE structure that contains device-specific initialization information
for the device driver. The ExtDeviceMode function retrieves this structure already filled
in for a given device. The lpvInitData parameter must be NULL if the device driver is to
use the default initialization (if any) specified by the user through Windows Control
Panel.

Returns
The return value is the handle of the device context for the specified device if the function is successful.
Otherwise, it is NULL.

Comments
The PRINT.H header file is required if the DEVMODE structure is used.

Device contexts created by using the CreateDC function must be deleted by using the DeleteDC function.
All objects selected into the device context after it was created should be selected out and replaced with
the original objects before the device context is deleted.

MS-DOS device names follow MS-DOS conventions; an ending colon (:) is recommended, but optional.
Windows strips the terminating colon so that a device name ending with a colon is mapped to the same
port as the same name without a colon. The driver and port names must not contain leading or trailing
spaces.

Example
The following example uses the CreateDC function to create a device context for a printer, using
information returned by the PrintDlg function in a PRINTDLG structure:

PRINTDLG pd;
HDC hdc;
LPDEVNAMES lpDevNames;
LPSTR lpszDriverName;
LPSTR lpszDeviceName;
LPSTR lpszPortName;
/*
* PrintDlg displays the common dialog box for printing. The
* PRINTDLG structure should be initialized with appropriate values.
*/
PrintDlg(&pd);
lpDevNames = (LPDEVNAMES) GlobalLock(pd.hDevNames);

lpszDriverName = (LPSTR) lpDevNames + lpDevNames->wDriverOffset;
lpszDeviceName = (LPSTR) lpDevNames + lpDevNames->wDeviceOffset;
lpszPortName = (LPSTR) lpDevNames + lpDevNames->wOutputOffset;
GlobalUnlock(pd.hDevNames);
hdc = CreateDC(lpszDriverName, lpszDeviceName, lpszPortName, NULL);
See Also
CreateIC, DeleteDC, ExtDeviceMode, PrintDlg, DEVMODE, PRINTDLG

CreateDIBitmap (3.0)
HBITMAP CreateDIBitmap(hdc, lpbmih, dwInit, lpvBits, lpbmi, fnColorUse)
HDC hdc; /* handle of device context */
BITMAPINFOHEADER FAR* lpbmih; /
* address of structure with header *
/
DWORD dwInit; /
* CBM_INIT to initialize bitmap *
/
const void FAR* lpvBits; /
* address of array with bitmap values *
/
BITMAPINFO FAR* lpbmi; /
* address of structure with bitmap data *
/
UINT fnColorUse; /
* RGB or palette indices *
/

The CreateDIBitmap function creates a device-specific memory bitmap from a device-independent bitmap
(DIB) specification and optionally sets bits in the bitmap.

Parameter Description
hdc Identifies the device context.
lpbmih Points to a BITMAPINFOHEADER structure that describes the size and format of the

device-independent bitmap.
dwInit Specifies whether the memory bitmap is initialized. If this value is CBM_INIT, the

function initializes the bitmap with the bits specified by the lpvBits and lpbmi
parameters.

lpvBits Points to a byte array that contains the initial bitmap values. The format of the bitmap
values depends on the biBitCount member of the BITMAPINFOHEADER structure
identified by the lpbmi parameter.

lpbmi Points to a BITMAPINFO structure that describes the dimensions and color format of
the lpvBits parameter. The BITMAPINFO structure contains a BITMAPINFOHEADER
structure and an array of RGBQUAD structures specifying the colors in the bitmap.

fnColorUse Specifies whether the bmiColors member of the BITMAPINFO structure contains
explicit red, green, blue (RGB) values or indices into the currently realized logical
palette. The fnColorUse parameter must be one of the following values:

Value Meaning
DIB_PAL_COLORS The color table consists of an array of 16-bit indices into

the currently realized logical palette.
DIB_RGB_COLORS The color table contains literal RGB values.

Returns
The return value is the handle of the bitmap if the function is successful. Otherwise, it is NULL.

When it has finished using a bitmap created by CreateDIBitmap, an application should select the bitmap
out of the device context and then remove the bitmap by using the DeleteObject function.

Example
The following example initializes an array of bits and an array of RGBQUAD structures, allocates
memory for the bitmap header and color table, fills in the required members of a BITMAPINFOHEADER
structure, and calls the CreateDIBitmap function to create a handle of the bitmap:

HANDLE hloc;
PBITMAPINFO pbmi;
HBITMAP hbm;
BYTE aBits[] = { 0x00, 0x00, 0x00, 0x00, /* bottom row */
0x01, 0x12, 0x22, 0x11,
0x01, 0x12, 0x22, 0x11,
0x02, 0x20, 0x00, 0x22,

0x02, 0x20, 0x20, 0x22,
0x02, 0x20, 0x00, 0x22,
0x01, 0x12, 0x22, 0x11,
0x01, 0x12, 0x22, 0x11 }; /* top row */

RGBQUAD argbq[] = {{ 255, 0, 0, 0 }, /* blue */
{ 0, 255, 0, 0 }, /* green */
{ 0, 0, 255, 0 }}; /* red */

hloc = LocalAlloc(LMEM_ZEROINIT | LMEM_MOVEABLE,
sizeof(BITMAPINFOHEADER) + (sizeof(RGBQUAD) * 16));

pbmi = (PBITMAPINFO) LocalLock(hloc);
pbmi->bmiHeader.biSize = sizeof(BITMAPINFOHEADER);
pbmi->bmiHeader.biWidth = 8;
pbmi->bmiHeader.biHeight = 8;
pbmi->bmiHeader.biPlanes = 1;
pbmi->bmiHeader.biBitCount = 4;
pbmi->bmiHeader.biCompression = BI_RGB;
memcpy(pbmi->bmiColors, argbq, sizeof(RGBQUAD) * 3);
hbm = CreateDIBitmap(hdcLocal, (BITMAPINFOHEADER FAR*) pbmi, CBM_INIT,

aBits, pbmi, DIB_RGB_COLORS);
LocalFree(hloc);

.

. /* Use the bitmap handle. */

.
DeleteObject(hbm);
See Also
CreateBitmap, CreateBitmapIndirect, CreateCompatibleBitmap, CreateDiscardableBitmap, DeleteObject,
BITMAPCOREHEADER, BITMAPCOREINFO, BITMAPINFO, BITMAPINFOHEADER, RGBQUAD

DIB_PAL_COLORS 1

The color table consists of an array of 16-bit indices into the currently realized logical palette.

DIB_PAL_COLORS 1

DIB_RGB_COLORS 0

The color table contains literal RGB values.

DIB_RGB_COLORS 0

CreateDIBPatternBrush (3.0)
HBRUSH CreateDIBPatternBrush(hglbDIBPacked, fnColorSpec)
HGLOBAL hglbDIBPacked; /* handle of device-independent bitmap */
UINT fnColorSpec; /
* type of color table *
/

The CreateDIBPatternBrush function creates a brush that has the pattern specified by a device-
independent bitmap (DIB). The brush can subsequently be selected for any device that supports raster
operations.

Parameter Description
hglbDIBPacked Identifies a global memory object containing a packed device-independent bitmap.

A packed DIB consists of a BITMAPINFO structure immediately followed by the
array of bytes that define the pixels of the bitmap.

fnColorSpec Specifies whether the bmiColors member(s) of the BITMAPINFO structure
contain explicit red, green, blue (RGB) values or indices into the currently realized
logical palette. This parameter must be one of the following values:

Value Meaning
DIB_PAL_COLORS The color table consists of an array of 16-bit indices

into the currently realized logical palette.
DIB_RGB_COLORS The color table contains literal RGB values.

Returns
The return value is the handle of the brush if the function is successful. Otherwise, it is NULL.

Comments
To retrieve the handle identified by the hglbDIBPacked parameter, an application calls the GlobalAlloc
function to allocate a global memory object and then fills the memory with the packed DIB.

Bitmaps used as fill patterns should be 8 pixels by 8 pixels. If such a bitmap is larger, Windows creates a
fill pattern using only the bits corresponding to the first 8 rows and 8 columns of pixels in the upper-left
corner of the bitmap.

When an application selects a two-color DIB pattern brush into a monochrome device context, Windows
ignores the colors specified in the DIB and instead displays the pattern brush, using the current text and
background colors of the device context. Pixels mapped to the first color (at offset 0 in the DIB color
table) of the DIB are displayed using the text color, and pixels mapped to the second color (at offset 1 in
the color table) are displayed using the background color.

When it has finished using a brush created by CreateDIBPatternBrush, an application should remove the
brush by using the DeleteObject function.

Example
The following example retrieves a bitmap named DIBit from the application's resource file, uses the
bitmap to create a pattern brush in a call to the CreateDIBPatternBrush function, selects the brush into a
device context, and fills a rectangle by using the new brush:

HRSRC hrsrc;
HGLOBAL hglbl;
HBRUSH hbr, hbrOld;
hrsrc = FindResource(hinst, "DIBit", RT_BITMAP);
hglbl = LoadResource(hinst, hrsrc);
LockResource(hglbl);
hbr = CreateDIBPatternBrush(hglbl, DIB_RGB_COLORS);
hbrOld = SelectObject(hdc, hbr);
Rectangle(hdc, 10, 10, 100, 100);
UnlockResource(hglbl);
See Also
CreatePatternBrush, DeleteObject, FindResource, GetDeviceCaps, GlobalAlloc, LoadResource,
LockResource, SelectObject, SetBkColor, SetTextColor, UnlockResource, BITMAPINFO

CreateDiscardableBitmap (2.x)
HBITMAP CreateDiscardableBitmap(hdc, nWidth, nHeight)
HDC hdc; /* handle of device context */
int nWidth; /* bitmap width */
int nHeight; /*
bitmap height *
/

The CreateDiscardableBitmap function creates a discardable bitmap that is compatible with the given
device. The bitmap has the same number of color planes or the same bits-per-pixel format as the device.
An application can select this bitmap as the current bitmap for a memory device that is compatible with
the one identified by the hdc parameter.

Parameter Description
hdc Identifies the device context.
nWidth Specifies the width, in bits, of the bitmap.
nHeight Specifies the height, in bits, of the bitmap.

Returns
The return value is the handle of the bitmap if the function is successful. Otherwise, it is NULL.

Comments
Windows can discard a bitmap created by this function only if an application has not selected it into a
device context. If Windows discards the bitmap when it is not selected and the application later attempts to
select it, the SelectObject function will return zero.

Applications should use the DeleteObject function to delete the handle returned by the
CreateDiscardableBitmap function, even if Windows has discarded the bitmap.

See Also
CreateBitmap, CreateBitmapIndirect, CreateDIBitmap, DeleteObject

CreateEllipticRgn (2.x)
HRGN CreateEllipticRgn(nLeftRect, nTopRect, nRightRect, nBottomRect)
int nLeftRect; /* x-coordinate upper-left corner bounding rectangle */
int nTopRect; /
* y-coordinate upper-left corner bounding rectangle *
/
int nRightRect; /
* x-coordinate lower-right corner bounding rectangle *
/
int nBottomRect; /
* y-coordinate lower-right corner bounding rectangle *
/

The CreateEllipticRgn function creates an elliptical region.

Parameter Description
nLeftRect Specifies the logical x-coordinate of the upper-left corner of the bounding rectangle of

the ellipse.
nTopRect Specifies the logical y-coordinate of the upper-left corner of the bounding rectangle of

the ellipse.
nRightRect Specifies the logical x-coordinate of the lower-right corner of the bounding rectangle of

the ellipse.
nBottomRect Specifies the logical y-coordinate of the lower-right corner of the bounding rectangle of

the ellipse.

Returns
The return value is the handle of the region if the function is successful. Otherwise, it is NULL.

Comments
The size of a region is limited to 32,767 by 32,767 logical units or 64K of memory, whichever is smaller.

When it has finished using a region created by using the CreateEllipticRgn function, an application should
remove it by using the DeleteObject function.

See Also
CreateEllipticRgnIndirect, DeleteObject, PaintRgn

CreateEllipticRgnIndirect (2.x)
HRGN CreateEllipticRgnIndirect(lprc)
const RECT FAR* lprc; /* address of structure with bounding rectangle */

The CreateEllipticRgnIndirect function creates an elliptical region.

Parameter Description
lprc Points to a RECT structure that contains the logical coordinates of the upper-left and

lower-right corners of the bounding rectangle of the ellipse.

Returns
The return value is the handle of the region if the function is successful. Otherwise, it is NULL.

Comments
The size of a region is limited to 32,767 by 32,767 logical units or 64K of memory, whichever is smaller.

When it has finished using a region created by CreateEllipticRgnIndirect, an application should remove
the region by using the DeleteObject function.

Example
The following example assigns values to the members of a RECT structure, uses the
CreateEllipticRgnIndirect function to create an elliptical region, selects the region into a device context,
and then uses the PaintRgn function to display the region:

HDC hdc;
RECT rc;
HRGN hrgn;
SetRect(&rc, 10, 10, 200, 50);
hrgn = CreateEllipticRgnIndirect(&rc);
SelectObject(hdc, hrgn);
PaintRgn(hdc, hrgn);
See Also
CreateEllipticRgn, DeleteObject, PaintRgn, RECT

CreateFont (2.x)
HFONT CreateFont(nHeight, nWidth, nEscapement, nOrientation, fnWeight, fbItalic, fbUnderline,

fbStrikeOut, fbCharSet, fbOutputPrecision, fbClipPrecision, fbQuality,
fbPitchAndFamily, lpszFace)

int nHeight; /* font height */
int nWidth; /* character
width *
/
int nEscapement; /
* escapement of line of text *
/
int nOrientation; /
* angle of base line and x-axis *
/
int fnWeight; /
* font weight *
/
BYTE fbItalic; /
* flag for italic attribute *
/
BYTE fbUnderline; /
* flag for underline attribute *
/
BYTE fbStrikeOut; /
* flag for strikeout attribute *
/
BYTE fbCharSet; /
* character set *
/
BYTE fbOutputPrecision; /
* output precision *
/
BYTE fbClipPrecision; /
* clipping precision *
/
BYTE fbQuality; /
* output quality *
/
BYTE fbPitchAndFamily; /
* pitch and family *
/
LPCSTR lpszFace; /
* address of typeface name *
/

The CreateFont function creates a logical font that has the specified characteristics. The logical font can
subsequently be selected as the font for any device.

Parameter Description
nHeight Specifies the requested height, in logical units, for the font. If this parameter is

greater than zero, it specifies the cell height of the font. If it is less than zero, it
specifies the character height of the font. (Character height is the cell height
minus the internal leading. Applications that specify font height in points
typically use a negative number for this member.) If this parameter is zero, the
font mapper uses a default height. The font mapper chooses the largest physical
font that does not exceed the requested size (or the smallest font, if all the fonts
exceed the requested size). The absolute value of the nHeight parameter must not
exceed 16,384 after it is converted to device units.

nWidth Specifies the average width, in logical units, of characters in the font. If this
parameter is zero, the font mapper chooses a "closest match" default width for
the specified font height. (The default width is chosen by matching the aspect

ratio of the device against the digitization aspect ratio of the available fonts. The
closest match is determined by the absolute value of the difference.)

nEscapement Specifies the angle, in tenths of degrees, between the escapement vector and the
x-axis of the screen surface. The escapement vector is the line through the origins
of the first and last characters on a line. The angle is measured counterclockwise
from the x-axis.

nOrientation Specifies the angle, in tenths of degrees, between the base line of a character and
the x-axis. The angle is measured in a counterclockwise direction from the x-
axis for left-handed coordinate systems (that is, MM_TEXT, in which the y-
direction is down) and in a clockwise direction from the x-axis for right-handed
coordinate systems (in which the y-direction is up).

fnWeight Specifies the font weight. This parameter can be one of the following values:

Constant Value
FW_DONTCARE 0
FW_THIN 100
FW_EXTRALIGHT 200
FW_ULTRALIGHT 200
FW_LIGHT 300
FW_NORMAL 400
FW_REGULAR 400
FW_MEDIUM 500
FW_SEMIBOLD 600
FW_DEMIBOLD 600
FW_BOLD 700
FW_EXTRABOLD 800
FW_ULTRABOLD 800
FW_BLACK 900
FW_HEAVY 900
The appearance of the font depends on the typeface. Some fonts have only
FW_NORMAL, FW_REGULAR, and FW_BOLD weights. If
FW_DONTCARE is specified, a default weight is used.

fbItalic Specifies an italic font if set to nonzero.
fbUnderline Specifies an underlined font if set to nonzero.
fbStrikeOut Specifies a strikeout font if set to nonzero.
fbCharSet Specifies the character set of the font. The following values are predefined:

Constant Value
ANSI_CHARSET 0
DEFAULT_CHARSET 1
SYMBOL_CHARSET 2
SHIFTJIS_CHARSET 128
OEM_CHARSET 255
The DEFAULT_CHARSET value is not used by the font mapper. An application
can use this value to allow the name and size of a font to fully describe the
logical font. If the specified font name does not exist, a font from any character
set can be substituted for the specified font; to avoid unexpected results,
applications should use the DEFAULT_CHARSET value sparingly.
The OEM character set is system-dependent.
Fonts with other character sets may exist in the system. If an application uses a
font with an unknown character set, it should not attempt to translate or interpret
strings that are to be rendered with that font.

fbOutputPrecision Specifies the requested output precision. The output precision defines how
closely the output must match the requested font's height, width, character
orientation, escapement, and pitch. This parameter can be one of the following
values:

OUT_CHARACTER_PRECIS

OUT_DEFAULT_PRECIS
OUT_DEVICE_PRECIS
OUT_RASTER_PRECIS
OUT_STRING_PRECIS
OUT_STROKE_PRECIS
OUT_TT_PRECIS

Applications can use the OUT_DEVICE_PRECIS, OUT_RASTER_PRECIS,
and OUT_TT_PRECIS values to control how the font mapper chooses a font
when the system contains more than one font with a given name. For example, if
a system contained a font named Symbol in raster and TrueType form,
specifying OUT_TT_PRECIS would force the font mapper to choose the
TrueType version. (Specifying OUT_TT_PRECIS forces the font mapper to
choose a TrueType font whenever the specified font name matches a device or
raster font, even when there is no TrueType font of the same name.)

fbClipPrecision Specifies the requested clipping precision. The clipping precision defines how to
clip characters that are partially outside the clipping region. This parameter can
be one of the following values:

CLIP_CHARACTER_PRECIS
CLIP_DEFAULT_PRECIS
CLIP_ENCAPSULATE
CLIP_LH_ANGLES
CLIP_MASK
CLIP_STROKE_PRECIS
CLIP_TT_ALWAYS

To use an embedded read-only font, applications must specify
CLIP_ENCAPSULATE.
To achieve consistent rotation of device, TrueType, and vector fonts, an
application can use the OR operator to combine the CLIP_LH_ANGLES value
with any of the other fbClipPrecision values. If the CLIP_LH_ANGLES bit is
set, the rotation for all fonts is dependent on whether the orientation of the
coordinate system is left-handed or right-handed. If CLIP_LH_ANGLES is not
set, device fonts always rotate counterclockwise, but the rotation of other fonts is
dependent on the orientation of the coordinate system. (For more information
about the orientation of coordinate systems, see the description of the
nOrientation parameter.)

fbQuality Specifies the output quality of the font, which defines how carefully the graphics
device interface (GDI) must attempt to match the attributes of a logical font to
those of a physical font. This parameter can be one of the following values:

Value Meaning
DEFAULT_QUALITY Appearance of the font does not matter.
DRAFT_QUALITY Appearance of the font is less important than

when the PROOF_QUALITY value is used. For
GDI raster fonts, scaling is enabled. Bold, italic,
underline, and strikeout fonts are synthesized if
necessary.

PROOF_QUALITY Character quality of the font is more important
than exact matching of the logical-font attributes.
For GDI raster fonts, scaling is disabled and the
font closest in size is chosen. Bold, italic,
underline, and strikeout fonts are synthesized if
necessary.

fbPitchAndFamily Specifies the pitch and family of the font. The two low-order bits specify the
pitch of the font and can be one of the following values:

DEFAULT_PITCH
FIXED_PITCH
VARIABLE_PITCH

Applications can set bit 2 (0x04) of the lfPitchAndFamily member to choose a
TrueType font.

The four high-order bits specify the font family and can be one of the following
values:

Value Meaning
FF_DECORATIVE Novelty fonts. Old English is an example.
FF_DONTCARE Don't care or don't know.
FF_MODERN Fonts with constant stroke width, with or without

serifs. Pica, Elite, and Courier New are examples.
FF_ROMAN Fonts with variable stroke width and with serifs.

Times New Roman and New Century Schoolbook
are examples.

FF_SCRIPT Fonts designed to look like handwriting. Script and
Cursive are examples.

FF_SWISS Fonts with variable stroke width and without serifs.
MS Sans Serif is an example.

An application can specify a value for the fbPitchAndFamily parameter by using
the Boolean OR operator to join a pitch constant with a family constant.
Font families describe the look of a font in a general way. They are intended for
specifying fonts when the exact typeface requested is not available.

lpszFace Points to a null-terminated string that specifies the typeface name of the font. The
length of this string must not exceed LF_FACESIZE - 1. The EnumFontFamilies
function can be used to enumerate the typeface names of all currently available
fonts. If this parameter is NULL, GDI uses a device-dependent typeface.

Returns
The return value is the handle of the logical font if the function is successful. Otherwise, it is NULL.

Comments
The CreateFont function creates the handle of a logical font. The font mapper uses this logical font to find
the closest match from the fonts available in GDI's pool of physical fonts.

Applications can use the default settings for most of these parameters when creating a logical font. The
parameters that should always be given specific values are nHeight and lpszFace. If nHeight and lpszFace
are not set by the application, the logical font that is created is device-dependent.

Fonts created by using the CreateFont function must be selected out of any device context in which they
were used and then removed by using the DeleteObject function.

Example
The following example sets the mapping mode to MM_TWIPS and then uses the CreateFont function to
create an 18-point logical font:

HFONT hfont, hfontOld;
int MapModePrevious, iPtSize = 18;
PSTR pszFace = "MS Serif";
MapModePrevious = SetMapMode(hdc, MM_TWIPS);
hfont = CreateFont(-iPtSize * 20, 0, 0, 0, 0, /* specify pt size */

0, 0, 0, 0, 0, 0, 0, 0, pszFace); /* and face name only */
hfontOld = SelectObject(hdc, hfont);
TextOut(hdc, 100, -500, pszFace, strlen(pszFace));
SetMapMode(hdc, MapModePrevious);
SelectObject(hdc, hfontOld);
DeleteObject(hfont);
See Also
CreateFontIndirect, DeleteObject, EnumFontFamilies

CreateFontIndirect (2.x)
HFONT CreateFontIndirect(lplf)
const LOGFONT FAR* lplf; /* address of struct. with font attributes */

The CreateFontIndirect function creates a logical font that has the characteristics given in the specified
structure. The font can subsequently be selected as the current font for any device.

Parameter Description
lplf Points to a LOGFONT structure that defines the characteristics of the logical font.

Returns
The return value is the handle of the logical font if the function is successful. Otherwise, it is NULL.

Comments
The CreateFontIndirect function creates a logical font that has the characteristics specified in the
LOGFONT structure. When the font is selected by using the SelectObject function, the graphics device
interface (GDI) font mapper attempts to match the logical font with an existing physical font. If it cannot
find an exact match for the logical font, the font mapper provides an alternative whose characteristics
match as many of the requested characteristics as possible.

Fonts created by using the CreateFontIndirect function must be selected out of any device context in which
they were used and then removed by using the DeleteObject function.

Example
The following example uses the CreateFontIndirect function to retrieve the handle of a logical font. The
nPtSize and pszFace parameters are passed to the function containing this code. The MulDiv and
GetDeviceCaps functions are used to convert the specified point size into the correct point size for the
MM_TEXT mapping mode on the current device.

HFONT hfont, hfontOld;
PLOGFONT plf = (PLOGFONT) LocalAlloc(LPTR, sizeof(LOGFONT));
plf->lfHeight = -MulDiv(nPtSize, GetDeviceCaps(hdc, LOGPIXELSY), 72);
strcpy(plf->lfFaceName, pszFace);
hfont = CreateFontIndirect(plf);
hfontOld = SelectObject(hdc, hfont);
TextOut(hdc, 10, 50, pszFace, strlen(pszFace));
LocalFree((HLOCAL) plf);
SelectObject(hdc, hfontOld);
DeleteObject(hfont);
See Also
CreateFont, DeleteObject

CreateHatchBrush (2.x)
HBRUSH CreateHatchBrush(fnStyle, clrref)
int fnStyle; /* hatch style of brush */
COLORREF clrref; /* color of brush */

The CreateHatchBrush function creates a brush that has the specified hatched pattern and color. The brush
can subsequently be selected as the current brush for any device.

Parameter Description
fnStyle Specifies the hatch style of the brush. This parameter can be one of the following values:

Value Meaning
HS_BDIAGONAL 45-degree upward hatch (left to right)
HS_CROSS Horizontal and vertical crosshatch
HS_DIAGCROSS 45-degree crosshatch
HS_FDIAGONAL 45-degree downward hatch (left to right)
HS_HORIZONTAL Horizontal hatch
HS_VERTICAL Vertical hatch

clrref Specifies the foreground color of the brush (the color of the hatches).

Returns
The return value is the handle of the brush if the function is successful. Otherwise, it is NULL.

Comments
When an application has finished using the brush created by the CreateHatchBrush function, it should
select the brush out of the device context and then delete it by using the DeleteObject function.

The following illustration shows how the various hatch brushes appear when used to fill a rectangle:

Example
The following example creates a hatched brush with green diagonal hatch marks and uses that brush to fill
a rectangle:

HBRUSH hbr, hbrOld;
hbr = CreateHatchBrush(HS_FDIAGONAL, RGB(0, 255, 0));
hbrOld = SelectObject(hdc, hbr);
Rectangle(hdc, 0, 0, 100, 100);
See Also
CreateBrushIndirect, CreateDIBPatternBrush, CreatePatternBrush, CreateSolidBrush, DeleteObject,
SelectObject, RGB

HS_BDIAGONAL 3

45-degree upward hatch (left to right)

HS_BDIAGONAL 3

HS_CROSS 4

Horizontal and vertical crosshatch

HS_CROSS 4

HS_DIAGCROSS 5

45-degree crosshatch

HS_DIAGCROSS 5

HS_FDIAGONAL 2

45-degree downward hatch (left to right)

HS_FDIAGONAL 2

HS_HORIZONTAL 0

Horizontal hatch

HS_HORIZONTAL 0

HS_VERTICAL 1

Vertical hatch

HS_VERTICAL 1

CreateIC (2.x)
HDC CreateIC(lpszDriver, lpszDevice, lpszOutput, lpvInitData)
LPCSTR lpszDriver; /* address of driver name */
LPCSTR lpszDevice; /
* address of device name *
/
LPCSTR lpszOutput; /
* address of filename or port name *
/
const void FAR* lpvInitData; /
* address of initialization data *
/

The CreateIC function creates an information context for the specified device. The information context
provides a fast way to get information about the device without creating a device context.

Parameter Description
lpszDriver Points to a null-terminated string that specifies the MS-DOS filename (without

extension) of the device driver (for example, EPSON).
lpszDevice Points to a null-terminated string that specifies the name of the specific device to be

supported (for example, EPSON FX-80). This parameter is used if the module supports
more than one device.

lpszOutput Points to a null-terminated string that specifies the MS-DOS filename or device name
for the physical output medium (file or port).

lpvInitData Points to a DEVMODE structure that contains, initially, device-specific information
necessary to initialize the device driver. The ExtDeviceMode function retrieves this
structure filled in for a given device. The lpvInitData parameter must be NULL if the
device driver is to use the default initialization information (if any) specified by the user
through Windows Control Panel.

Returns
The return value is the handle of an information context for the given device if the function is successful.
Otherwise, it is NULL.

Comments
The PRINT.H header file is required if the DEVMODE structure is used.

MS-DOS device names follow MS-DOS conventions; an ending colon (:) is recommended, but optional.
Windows strips the terminating colon so that a device name ending with a colon is mapped to the same
port as would be the same name without a colon.

The driver and port names must not contain leading or trailing spaces.

GDI output functions cannot be used with information contexts.

When it has finished using an information context created by CreateIC, an application should remove the
information context by using the DeleteDC function.

Example
The following example uses the CreateIC function to create an information context for the display and
then uses the GetDCOrg function to retrieve the origin for the information context:

HDC hdcIC;
DWORD dwOrigin;
hdcIC = CreateIC("DISPLAY", NULL, NULL, NULL);
dwOrigin = GetDCOrg(hdcIC);
DeleteDC(hdcIC);
See Also
CreateDC, DeleteDC, ExtDeviceMode, DEVMODE

CreateMetaFile (2.x)
HDC CreateMetaFile(lpszFile)
LPCSTR lpszFile; /* address of metafile name */

The CreateMetaFile function creates a metafile device context.

Parameter Description
lpszFile Points to a null-terminated string that specifies the MS-DOS filename of the metafile to

create. If this parameter is NULL, a device context for a memory metafile is returned.

Returns
The return value is the handle of the metafile device context if the function is successful. Otherwise, it is
NULL.

Comments
When it has finished using a metafile device context created by CreateMetaFile, an application should
close it by using the CloseMetaFile function.

Example
The following example uses the CreateMetaFile function to create the handle of a device context for a
memory metafile, draws a line in that device context, retrieves a handle of the metafile by calling the
CloseMetaFile function, plays the metafile by using the PlayMetaFile function, and finally deletes the
metafile by using the DeleteMetaFile function:

HDC hdcMeta;
HMETAFILE hmf;
hdcMeta = CreateMetaFile(NULL);
MoveTo(hdcMeta, 10, 10);
LineTo(hdcMeta, 100, 100);
hmf = CloseMetaFile(hdcMeta);
PlayMetaFile(hdc, hmf);
DeleteMetaFile(hmf);
See Also
DeleteMetaFile

CreatePalette (3.0)
HPALETTE CreatePalette(lplgpl)
const LOGPALETTE FAR* lplgpl; /* address of LOGPALETTE structure */

The CreatePalette function creates a logical color palette.

Parameter Description
lplgpl Points to a LOGPALETTE structure that contains information about the colors in the

logical palette.

Returns
The return value is the handle of the logical palette if the function is successful. Otherwise, it is NULL.

Comments
When it has finished using a palette created by CreatePalette, an application should remove the palette by
using the DeleteObject function.

Example
The following example initializes a LOGPALETTE structure and an array of PALETTEENTRY
structures, and then uses the CreatePalette function to retrieve a handle of a logical palette:

#define NUMENTRIES 128
HPALETTE hpal;
PALETTEENTRY ape[NUMENTRIES];
plgpl = (LOGPALETTE*) LocalAlloc(LPTR,

sizeof(LOGPALETTE) + cColors * sizeof(PALETTEENTRY));
plgpl->palNumEntries = cColors;
plgpl->palVersion = 0x300;
for (i = 0, red = 0, green = 127, blue = 127; i < NUMENTRIES;

i++, red += 1, green += 1, blue += 1) {
ape[i].peRed =
plgpl->palPalEntry[i].peRed = LOBYTE(red);
ape[i].peGreen =
plgpl->palPalEntry[i].peGreen = LOBYTE(green);
ape[i].peBlue =
plgpl->palPalEntry[i].peBlue = LOBYTE(blue);
ape[i].peFlags =
plgpl->palPalEntry[i].peFlags = PC_RESERVED;

}
hpal = CreatePalette(plgpl);
LocalFree((HLOCAL) plgpl);
.
. /* Use the palette handle. */
.
DeleteObject(hpal);
See Also
DeleteObject

CreatePatternBrush (2.x)
HBRUSH CreatePatternBrush(hbmp)
HBITMAP hbmp; /* handle of bitmap */

The CreatePatternBrush function creates a brush whose pattern is specified by a bitmap. The brush can
subsequently be selected for any device that supports raster operations.

Parameter Description
hbmp Identifies the bitmap.

Returns
The return value is the handle of the brush if the function is successful. Otherwise, it is NULL.

Comments
The bitmap identified by the hbmp parameter is typically created by using the CreateBitmap,
CreateBitmapIndirect, CreateCompatibleBitmap, or LoadBitmap function.

Bitmaps used as fill patterns should be 8 pixels by 8 pixels. If the bitmap is larger, Windows will use the
bits corresponding to only the first 8 rows and 8 columns of pixels in the upper-left corner of the bitmap.

An application can use the DeleteObject function to remove a pattern brush. This does not affect the
associated bitmap, which means the bitmap can be used to create any number of pattern brushes. In any
case, when the brush is no longer needed, the application should remove it by using DeleteObject.

A brush created by using a monochrome bitmap (one color plane, one bit per pixel) is drawn using the
current text and background colors. Pixels represented by a bit set to 0 are drawn with the current text
color, and pixels represented by a bit set to 1 are drawn with the current background color.

Example
The following example loads a bitmap named Pattern, uses the bitmap to create a pattern brush in a call to
the CreatePatternBrush function, selects the brush into a device context, and fills a rectangle by using the
new brush:

HBITMAP hbmp;
HBRUSH hbr, hbrOld;
hbmp = LoadBitmap(hinst, "Pattern");
hbr = CreatePatternBrush(hbmp);
hbrOld = SelectObject(hdc, hbr);
Rectangle(hdc, 10, 10, 100, 100);
See Also
CreateBitmap, CreateBitmapIndirect, CreateCompatibleBitmap, CreateDIBPatternBrush, DeleteObject,
GetDeviceCaps, LoadBitmap, SelectObject, SetBkColor, SetTextColor

CreatePen (2.x)
HPEN CreatePen(fnPenStyle, nWidth, clrref)
int fnPenStyle; /* style of pen */
int nWidth; /* width of pen */
COLORREF clrref; /
* color of pen *
/

The CreatePen function creates a pen having the specified style, width, and color. The pen can
subsequently be selected as the current pen for any device.

Parameter Description
fnPenStyle Specifies the pen style. This parameter can be one of the following values:

Value Meaning
PS_SOLID Creates a solid pen.
PS_DASH Creates a dashed pen. (Valid only when the pen width is

1.)
PS_DOT Creates a dotted pen. (Valid only when the pen width is 1.

)
PS_DASHDOT Creates a pen with alternating dashes and dots. (Valid

only when the pen width is 1.)
PS_DASHDOTDOT Creates a pen with alternating dashes and double dots.

(Valid only when the pen width is 1.)
PS_NULL Creates a null pen.
PS_INSIDEFRAME Creates a pen that draws a line inside the frame of closed

shapes produced by graphics device interface (GDI)
output functions that specify a bounding rectangle (for
example, the Ellipse, Rectangle, RoundRect, Pie, and
Chord functions). When this style is used with GDI output
functions that do not specify a bounding rectangle (for
example, the LineTo function), the drawing area of the
pen is not limited by a frame.

nWidth Specifies the width, in logical units, of the pen. If this value is zero, the width in device
units is always one pixel, regardless of the mapping mode.

clrref Specifies the color of the pen.

Returns
The return value is the handle of the pen if the function is successful. Otherwise, it is NULL.

Comments
Pens whose width is greater than one pixel always have the PS_NULL, PS_SOLID, or
PS_INSIDEFRAME style.

If a pen has the PS_INSIDEFRAME style and a color that does not match a color in the logical color table,
the pen is drawn with a dithered color. The PS_SOLID pen style cannot be used to create a pen with a
dithered color. The style PS_INSIDEFRAME is identical to PS_SOLID if the pen width is less than or
equal to 1.

When it has finished using a pen created by CreatePen, an application should remove the pen by using the
DeleteObject function.

The following illustration shows how the various system pens appear when used to draw a rectangle.

Example
The following example uses the CreatePen function to create a solid blue pen 6 units wide, selects the pen
into a device context, and then uses the pen to draw a rectangle:

HPEN hpen, hpenOld;
hpen = CreatePen(PS_SOLID, 6, RGB(0, 0, 255));
hpenOld = SelectObject(hdc, hpen);
Rectangle(hdc, 10, 10, 100, 100);
SelectObject(hdc, hpenOld);
DeleteObject(hpen);
See Also
CreatePenIndirect, DeleteObject, Ellipse, Rectangle, RoundRect, RGB

PS_SOLID 0

Creates a solid pen.

PS_SOLID 0

PS_DASH 1

Creates a dashed pen. (Valid only when the pen width is 1.)

PS_DASH 1

PS_DOT 2

Creates a dotted pen. (Valid only when the pen width is 1.)

PS_DOT 2

PS_DASHDOT 3

Creates a pen with alternating dashes and dots. (Valid only when the pen width is 1.)

PS_DASHDOT 3

PS_DASHDOTDOT 4

Creates a pen with alternating dashes and double dots. (Valid only when the pen width is 1.)

PS_DASHDOTDOT 4

PS_NULL 5

Creates a null pen.

PS_NULL 5

PS_INSIDEFRAME 6

Creates a pen that draws a line inside the frame of closed shapes produced by graphics device interface
(GDI) output functions that specify a bounding rectangle (for example, the Ellipse, Rectangle, RoundRect,
Pie, and Chord functions). When this style is used with GDI output functions that do not specify a
bounding rectangle (for example, the LineTo function), the drawing area of the pen is not limited by a
frame.

PS_INSIDEFRAME 6

CreatePenIndirect (2.x)
HPEN CreatePenIndirect(lplgpn)
LOGPEN FAR* lplgpn; /* address of structure with pen data */

The CreatePenIndirect function creates a pen that has the style, width, and color given in the specified
structure.

Parameter Description
lplgpn Points to the LOGPEN structure that contains information about the pen.

Returns
The return value is the handle of the pen if the function is successful. Otherwise, it is NULL.

Comments
Pens whose width is greater than 1 pixel always have the PS_NULL, PS_SOLID, or PS_INSIDEFRAME
style.

If a pen has the PS_INSIDEFRAME style and a color that does not match a color in the logical color table,
the pen is drawn with a dithered color. The PS_INSIDEFRAME style is identical to PS_SOLID if the pen
width is less than or equal to 1.

When it has finished using a pen created by CreatePenIndirect, an application should remove the pen by
using the DeleteObject function.

Example
The following example fills a LOGPEN structure with values defining a solid red pen 10 logical units
wide, uses the CreatePenIndirect function to create this pen, selects the pen into a device context, and then
uses the pen to draw a rectangle:

LOGPEN lp;
HPEN hpen, hpenOld;
lp.lopnStyle = PS_SOLID;
lp.lopnWidth.x = 10;
lp.lopnWidth.y = 0; /* y-dimension not used */
lp.lopnColor = RGB(255, 0, 0);
hpen = CreatePenIndirect(&lp);
hpenOld = SelectObject(hdc, hpen);
Rectangle(hdc, 10, 10, 100, 100);
See Also
CreatePen, DeleteObject, LOGPEN, RGB

CreatePolygonRgn (2.x)
HRGN CreatePolygonRgn(lppt, cPoints, fnPolyFillMode)
const POINT FAR* lppt; /* address of array of points */
int cPoints; /* number of
points in array *
/
int fnPolyFillMode; /
* polygon-filling mode *
/

The CreatePolygonRgn function creates a polygonal region. The system closes the polygon automatically,
if necessary, by drawing a line from the last vertex to the first.

Parameter Description
lppt Points to an array of POINT structures. Each structure specifies the x-coordinate and

y-coordinate of one vertex of the polygon.
cPoints Specifies the number of POINT structures in the array pointed to by the lppt

parameter.
fnPolyFillMode Specifies the polygon-filling mode. This value may be either ALTERNATE or

WINDING.

Returns
The return value is the handle of the region if the function is successful. Otherwise, it is NULL.

Comments
The size of a region is limited to 32,767 by 32,767 logical units or 64K of memory, whichever is smaller.

When the polygon-filling mode is ALTERNATE, the system fills the area between odd-numbered and
even-numbered polygon sides on each scan line. That is, the system fills the area between the first and
second side, between the third and fourth side, and so on.

When the polygon-filling mode is WINDING, the system uses the direction in which a figure was drawn
to determine whether to fill an area. Each line segment in a polygon is drawn in either a clockwise or a
counterclockwise direction. Whenever an imaginary line drawn from an enclosed area to the outside of a
figure passes through a clockwise line segment, the system increments a count (increases it by one); when
the line passes through a counterclockwise line segment, the system decrements the count. The area is
filled if the count is nonzero when the line reaches the outside of the figure.

When it has finished using a region created by CreatePolygonRgn, an application should remove the
region by using the DeleteObject function.

Example
The following example fills an array of POINT structures with the coordinates of a five-pointed star, uses
this array in a call to the CreatePolygonRgn function, selects the region into a device context, and then
uses the PaintRgn function to display the region:

HDC hdc;
HRGN hrgn;
POINT apts[5] = {{ 200, 10 },
{ 300, 200 },
{ 100, 100 },
{ 300, 100 },
{ 100, 200 }};

hrgn = CreatePolygonRgn(apts, /* array of points */
sizeof(apts) / sizeof(POINT),/* number of points */
ALTERNATE); /* alternate mode */

SelectObject(hdc, hrgn);
PaintRgn(hdc, hrgn);
See Also
CreatePolyPolygonRgn, DeleteObject, Polygon, SetPolyFillMode, POINT

CreatePolyPolygonRgn (3.0)
HRGN CreatePolyPolygonRgn(lppt, lpnPolyCount, cIntegers, fnPolyFillMode)
const POINT FAR* lppt; /* address of structure of points */
const int FAR* lpnPolyCount; /
* address of array of vertex data *
/
int cIntegers; /
* number of integers in array *
/
int fnPolyFillMode; /
* polygon-filling mode *
/

The CreatePolyPolygonRgn function creates a region consisting of a series of closed polygons. The
polygons may be disjoint, or they may overlap.

Parameter Description
lppt Points to an array of POINT structures that define the vertices of the polygons. Each

polygon must be explicitly closed, because the system does not close them
automatically. The polygons are specified consecutively.

lpnPolyCount Points to an array of integers. The first integer specifies the number of vertices in the
first polygon in the array pointed to by the lppt parameter, the second integer
specifies the number of vertices in the second polygon, and so on.

cIntegers Specifies the total number of integers in the array pointed to by the lpnPolyCount
parameter.

fnPolyFillMode Specifies the polygon-filling mode. This value may be either ALTERNATE or
WINDING.

Returns
The return value is the handle of the region if the function is successful. Otherwise, it is NULL.

Comments
The size of a region is limited to 32,767 by 32,767 logical units or 64K of memory, whichever is smaller.

When the polygon-filling mode is ALTERNATE, the system fills the area between odd-numbered and
even-numbered polygon sides on each scan line. That is, the system fills the area between the first and
second side, between the third and fourth side, and so on.

When the polygon-filling mode is WINDING, the system uses the direction in which a figure was drawn
to determine whether to fill an area. Each line segment in a polygon is drawn in either a clockwise or a
counterclockwise direction. Whenever an imaginary line drawn from an enclosed area to the outside of a
figure passes through a clockwise line segment, the system increments a count (increases it by one); when
the line passes through a counterclockwise line segment, the system decrements the count. The area is
filled if the count is nonzero when the line reaches the outside of the figure.

When it has finished using a region created by CreatePolyPolygonRgn, an application should remove the
region by using the DeleteObject function.

Example
The following example fills an array of POINT structures with the coordinates of a five-pointed star and a
rectangle, uses this array in a call to the CreatePolyPolygonRgn function, selects the region into a device
context, and then uses the PaintRgn function to display the region:

HDC hdc;
HRGN hrgn;
int aVertices[2] = { 6, 5 };
POINT apts[11] = {{ 200, 10 },

{ 300, 200 },
{ 100, 100 }, /* Star figure, manually closed */
{ 300, 100 },
{ 100, 200 },
{ 200, 10 },
{ 10, 150 },

{ 350, 150 },
{ 350, 170 }, /* Rectangle, manually closed */
{ 10, 170 },
{ 10, 150 }};

hrgn = CreatePolyPolygonRgn(apts, /* array of points*/
aVertices, /* array of vertices */
sizeof(aVertices) / sizeof(int), /* integers in vertex array */
ALTERNATE); /* alternate mode */

SelectObject(hdc, hrgn);
PaintRgn(hdc, hrgn);
See Also
CreatePolygonRgn, DeleteObject, PolyPolygon, SetPolyFillMode, POINT

CreateRectRgn (2.x)
HRGN CreateRectRgn(nLeftRect, nTopRect, nRightRect, nBottomRect)
int nLeftRect; /* x-coordinate upper-left corner of region */
int nTopRect; /* y-coordinate
upper-left corner of region *
/
int nRightRect; /
* x-coordinate lower-right corner of region *
/
int nBottomRect; /
* y-coordinate lower-right corner of region *
/

The CreateRectRgn function creates a rectangular region.

Parameter Description
nLeftRect Specifies the logical x-coordinate of the upper-left corner of the region.
nTopRect Specifies the logical y-coordinate of the upper-left corner of the region.
nRightRect Specifies the logical x-coordinate of the lower-right corner of the region.
nBottomRect Specifies the logical y-coordinate of the lower-right corner of the region.

Returns
The return value is the handle of a rectangular region if the function is successful. Otherwise, it is NULL.

Comments
The size of a region is limited to 32,767 by 32,767 logical units or 64K of memory, whichever is smaller.

When it has finished using a region created by CreateRectRgn, an application should remove the region by
using the DeleteObject function.

Example
The following example uses the CreateRectRgn function to create a rectangular region, selects the region
into a device context, and then uses the PaintRgn function to display the region:

HDC hdc;
HRGN hrgn;
hrgn = CreateRectRgn(10, 10, 110, 110);
SelectObject(hdc, hrgn);
PaintRgn(hdc, hrgn);
See Also
CreateRectRgnIndirect, CreateRoundRectRgn, DeleteObject, PaintRgn

CreateRectRgnIndirect (2.x)
HRGN CreateRectRgnIndirect(lprc)
const RECT FAR* lprc; /* address of structure with region */

The CreateRectRgnIndirect function creates a rectangular region by using a RECT structure.

Parameter Description
lprc Points to a RECT structure that contains the logical coordinates of the upper-left and

lower-right corners of the region.

Returns
The return value is the handle of the rectangular region if the function is successful. Otherwise, it is
NULL.

Comments
The size of a region is limited to 32,767 by 32,767 logical units or 64K of memory, whichever is smaller.

When it has finished using a region created by CreateRectRgnIndirect, an application should remove the
region by using the DeleteObject function.

Example
The following example assigns values to the members of a RECT structure, uses the
CreateRectRgnIndirect function to create a rectangular region, selects the region into a device context, and
then uses the PaintRgn function to display the region:

RECT rc;
HRGN hrgn;
SetRect(&rc, 10, 10, 200, 50);
hrgn = CreateRectRgnIndirect(&rc);
SelectObject(hdc, hrgn);
PaintRgn(hdc, hrgn);
See Also
CreateRectRgn, CreateRoundRectRgn, DeleteObject, PaintRgn, RECT

CreateRoundRectRgn (3.0)
HRGN CreateRoundRectRgn(nLeftRect, nTopRect, nRightRect, nBottomRect, nWidthEllipse,

nHeightEllipse)
int nLeftRect; /* x-coordinate upper-left corner of region */
int nTopRect; /* y-coordinate
upper-left corner of region *
/
int nRightRect; /
* x-coordinate lower-right corner of region *
/
int nBottomRect; /
* y-coordinate lower-right corner of region *
/
int nWidthEllipse; /
* height of ellipse for rounded corners *
/
int nHeightEllipse; /
* width of ellipse for rounded corners *
/

The CreateRoundRectRgn function creates a rectangular region with rounded corners.

Parameter Description
nLeftRect Specifies the logical x-coordinate of the upper-left corner of the region.
nTopRect Specifies the logical y-coordinate of the upper-left corner of the region.
nRightRect Specifies the logical x-coordinate of the lower-right corner of the region.
nBottomRect Specifies the logical y-coordinate of the lower-right corner of the region.
nWidthEllipse Specifies the width of the ellipse used to create the rounded corners.
nHeightEllipse Specifies the height of the ellipse used to create the rounded corners.

Returns
The return value is the handle of the region if the function is successful. Otherwise, it is NULL.

Comments
The size of a region is limited to 32,767 by 32,767 logical units or 64K of memory, whichever is smaller.

When it has finished using a region created by CreateRoundRectRgn, an application should remove the
region by using the DeleteObject function.

Example
The following example uses the CreateRoundRectRgn function to create a region, selects the region into a
device context, and then uses the PaintRgn function to display the region:

HRGN hrgn;
int nEllipWidth = 10;
int nEllipHeight = 30;
hrgn = CreateRoundRectRgn(10, 10, 110, 110,

nEllipWidth, nEllipHeight);
SelectObject(hdc, hrgn);
PaintRgn(hdc, hrgn);
See Also
CreateRectRgn, CreateRectRgnIndirect, DeleteObject, PaintRgn

CreateScalableFontResource (3.1)
BOOL CreateScalableFontResource(fHidden, lpszResourceFile, lpszFontFile, lpszCurrentPath)
UINT fHidden; /* flag for read-only embedded font */
LPCSTR lpszResourceFile; /
* address of filename of font resource *
/
LPCSTR lpszFontFile; /
* address of filename of scalable font *
/
LPCSTR lpszCurrentPath; /
* address of path to font file *
/

The CreateScalableFontResource function creates a font resource file for the specified scalable font file.

Parameter Description
fHidden Specifies whether the font is a read-only embedded font. This parameter can be

one of the following values:

Value Meaning
0 The font has read-write permission.
1 The font has read-only permission and should be hidden from other

applications in the system. When this flag is set, the font is not
enumerated by the EnumFonts or EnumFontFamilies function.

lpszResourceFile Points to a null-terminated string specifying the name of the font resource file that
this function creates.

lpszFontFile Points to a null-terminated string specifying the scalable font file this function
uses to create the font resource file. This parameter must specify either the
filename and extension or a full path and filename, including drive and filename
extension.

lpszCurrentPath Points to a null-terminated string specifying either the path to the scalable font file
specified in the lpszFontFile parameter or NULL, if lpszFontFile specifies a full
path.

Returns
The return value is nonzero if the function is successful. Otherwise, it is zero.

Comments
An application must use the CreateScalableFontResource function to create a font resource file before
installing an embedded font. Font resource files for fonts with read-write permission should use the .FOT
filename extension. Font resource files for read-only fonts should use a different extension (for example, .
FOR) and should be hidden from other applications in the system by specifying 1 for the fHidden
parameter. The font resource files can be installed by using the AddFontResource function.

When the lpszFontFile parameter specifies only a filename and extension, the lpszCurrentPath parameter
must specify a path. When the lpszFontFile parameter specifies a full path, the lpszCurrentPath parameter
must be NULL or a pointer to NULL.

When only a filename and extension is specified in the lpszFontFile parameter and a path is specified in
the lpszCurrentPath parameter, the string in lpszFontFile is copied into the .FOT file as the .TTF file that
belongs to this resource. When the AddFontResource function is called, the system assumes that the .TTF
file has been copied into the SYSTEM directory (or into the main Windows directory in the case of a
network installation). The .TTF file need not be in this directory when the CreateScalableFontResource
function is called, because the lpszCurrentPath parameter contains the directory information. A resource
created in this manner does not contain absolute path information and can be used in any Windows
installation.

When a path is specified in the lpszFontFile parameter and NULL is specified in the lpszCurrentPath
parameter, the string in lpszFontFile is copied into the .FOT file. In this case, when the AddFontResource
function is called, the .TTF file must be at the location specified in the lpszFontFile parameter when the
CreateScalableFontResource function was called; the lpszCurrentPath parameter is not needed. A resource
created in this manner contains absolute references to paths and drives and will not work if the .TTF file is
moved to a different location.

The CreateScalableFontResource function supports only TrueType scalable fonts.

Example
The following example shows how to create a TrueType font file in the SYSTEM directory of the
Windows startup directory:

CreateScalableFontResource(0, "c:\\windows\\system\\font.fot",
"font.ttr", "c:\\windows\\system");

AddFontResource("c:\\windows\\system\\font.fot");
The following example shows how to create a TrueType font file in a specified directory:

CreateScalableFontResource(0, "c:\\windows\\system\\font.fot",
"c:\\fontdir\\font.ttr", NULL);

AddFontResource("c:\\windows\\system\\font.fot");
The following example shows how to work with a standard embedded font:

HFONT hfont;
/* Extract .TTF file into C:\MYDIR\FONT.TTR. */
CreateScalableFontResource(0, "font.fot", "c:\\mydir\\font.ttr", NULL)
;
AddFontResource("font.fot");
hfont = CreateFont(..., CLIP_DEFAULT_PRECIS, ..., "FONT");

.

. /* Use the font. */

.
DeleteObject(hfont);
RemoveFontResource("font.fot");

.

. /* Delete C:\MYDIR\FONT.FOT and C:\MYDIR\FONT.TTR. */

.
The following example shows how to work with a read-only embedded font:

HFONT hfont;
/* Extract.TTF file into C:\MYDIR\FONT.TTR. */
CreateScalableFontResource(1, "font.for", "c:\\mydir\\font.ttr", NULL)
;
AddFontResource("font.for");
hfont = CreateFont(..., CLIP_EMBEDDED, ..., "FONT");

.

. /* Use the font. */

.
DeleteObject(hfont);
RemoveFontResource("font.for");

.

. /* Delete C:\MYDIR\FONT.FOR and C:\MYDIR\FONT.TTR. */

.
See Also
AddFontResource

CreateSolidBrush (2.x)
HBRUSH CreateSolidBrush(clrref)
COLORREF clrref; /* brush color */

The CreateSolidBrush function creates a brush that has a specified solid color. The brush can subsequently
be selected as the current brush for any device.

Parameter Description
clrref Specifies the color of the brush.

Returns
The return value is the handle of the brush if the function is successful. Otherwise, it is NULL.

Comments
When an application has finished using the brush created by CreateSolidBrush, it should select the brush
out of the device context and then remove it by using the DeleteObject function.

Example
The following example uses the CreateSolidBrush function to create a green brush, selects the brush into a
device context, and then uses the brush to fill a rectangle:

HBRUSH hbrOld;
HBRUSH hbr;
hbr = CreateSolidBrush(RGB(0, 255, 0));
hbrOld = SelectObject(hdc, hbr);
Rectangle(hdc, 10, 10, 100, 100);
See Also
CreateBrushIndirect, CreateDIBPatternBrush, CreateHatchBrush, CreatePatternBrush, DeleteObject, RGB

DeleteDC (2.x)
BOOL DeleteDC(hdc)
HDC hdc; /* handle of device context */

The DeleteDC function deletes the given device context.

Parameter Description
hdc Identifies the device context.

Returns
The return value is nonzero if the function is successful. Otherwise, it is zero.

Comments
If the hdc parameter identifies the last device context for a given device, the device is notified and all
storage and system resources used by the device are released.

An application must not delete a device context whose handle was retrieved by calling the GetDC
function. Instead, the application must call the ReleaseDC function to free the device context.

An application should not call DeleteDC if the application has selected objects into the device context.
Objects must be selected out of the device context before it is deleted.

Example
The following example uses the CreateDC function to create a device context for a printer and then calls
the DeleteDC function when the device context is no longer needed:

/* Retrieves a device context for a printer. */
hdcPrinter = CreateDC(lpDriverName, lpDeviceName, lpOutput,

lpInitData);
.
. /* Use the device context. */
.

/* Delete the device context. */
DeleteDC(hdcPrinter);
See Also
CreateDC, GetDC, ReleaseDC

DeleteMetaFile (2.x)
BOOL DeleteMetaFile(hmf)
HMETAFILE hmf; /* handle of metafile */

The DeleteMetaFile function invalidates the given metafile handle.

Parameter Description
hmf Identifies the metafile to be deleted.

Returns
The return value is nonzero if the function is successful. Otherwise, it is zero.

Comments
The DeleteMetaFile function does not destroy a metafile that is saved on disk. After calling
DeleteMetaFile, an application can retrieve a new handle of a disk-based metafile by calling the
GetMetaFile function.

Example
The following example uses the CreateMetaFile function to create the handle of a memory metafile device
context, draws a line in that device context, retrieves a handle of the metafile by calling the CloseMetaFile
function, plays the metafile by using the PlayMetaFile function, and finally deletes the metafile by using
DeleteMetaFile:

HDC hdcMeta;
HMETAFILE hmf;
hdcMeta = CreateMetaFile(NULL);
MoveTo(hdcMeta, 10, 10);
LineTo(hdcMeta, 100, 100);
hmf = CloseMetaFile(hdcMeta);
PlayMetaFile(hdc, hmf);
DeleteMetaFile(hmf);
See Also
CreateMetaFile, GetMetaFile

DeleteObject (2.x)
BOOL DeleteObject(hgdiobj)
HGDIOBJ hgdiobj; /* handle of object to delete */

The DeleteObject function deletes an object from memory by freeing all system storage associated with
the object. (Objects include pens, brushes, fonts, bitmaps, regions, and palettes.)

Parameter Description
hgdiobj Identifies a pen, brush, font, bitmap, region, or palette.

Returns
The return value is nonzero if the function is successful. Otherwise, it is zero.

Comments
After the object is deleted, the handle given in the hgdiobj parameter is no longer valid.

An application should not delete an object that is currently selected into a device context.

When a pattern brush is deleted, the bitmap associated with the brush is not deleted. The bitmap must be
deleted independently.

Example
The following example creates a pen, selects it into a device context, and uses the pen to draw a rectangle.
To delete the pen, the original pen is selected back into the device context and the DeleteObject function is
called.

HPEN hpen, hpenOld;
hpen = CreatePen(PS_SOLID, 6, RGB(0, 0, 255));
hpenOld = SelectObject(hdc, hpen);
Rectangle(hdc, 10, 10, 100, 100);
SelectObject(hdc, hpenOld);
DeleteObject(hpen);
See Also
SelectObject, RGB

DeviceCapabilities (3.0)
#include <print.h>

DWORD DeviceCapabilities(lpszDevice, lpszPort, fwCapability, lpszOutput, lpdm)
LPSTR lpszDevice; /* address of device-name string */
LPSTR lpszPort; /*
address of port-name string *
/
WORD fwCapability; /
* device capability to query *
/
LPSTR lpszOutput; /
* address of the output *
/
LPDEVMODE lpdm; /
* address of structure with device data *
/

The DeviceCapabilities function retrieves the capabilities of the printer device driver.

Parameter Description
lpszDevice Points to a null-terminated string that contains the name of the printer device, such as

PCL/HP LaserJet.
lpszPort Points to a null-terminated string that contains the name of the port to which the device

is connected, such as LPT1.
fwCapability Specifies the capabilities to query. This parameter can be one of the following values:

Value Meaning
DC_BINNAMES Copies an array containing a list of the names of

the paper bins. This array is in the form char
PaperNames[cBinMax][cchBinName] where
cchBinName is 24. If the lpszOutput parameter is
NULL, the return value is the number of bin
entries required. Otherwise, the return value is the
number of bins copied.

DC_BINS Retrieves a list of available bins. The function
copies the list to the lpszOutput parameter as a
WORD array. If lpszOutput is NULL, the
function returns the number of supported bins to
allow the application the opportunity to allocate a
buffer with the correct size. For more information
about these bins, see the description of the
dmDefaultSource member of the DEVMODE
structure.

DC_COPIES Returns the number of copies the device can
print.

DC_DRIVER Returns the version number of the printer driver.
DC_DUPLEX Returns the level of duplex support. The function

returns 1 if the printer is capable of duplex
printing. Otherwise, the return value is zero.

DC_ENUMRESOLUTIONS Returns a list of available resolutions. If
lpszOutput is NULL, the function returns the
number of available resolution configurations.
Resolutions are represented by pairs of LONG
integers representing the horizontal and vertical
resolutions (specified in dots per inch).

DC_EXTRA Returns the number of bytes required for the
device-specific portion of the DEVMODE
structure for the printer driver.

DC_FIELDS Returns the dmFields member of the printer
driver's DEVMODE structure. The dmFields
member indicates which fields in the device-
independent portion of the structure are supported
by the printer driver.

DC_FILEDEPENDENCIES Returns a list of files that also need to be loaded
when a driver is installed. If the lpszOutput
parameter is NULL, the function returns the
number of files. Otherwise, lpszOutput points to
an array of filenames in the form char
[chFileName, 64]. Each filename is a null-
terminated string.

DC_MAXEXTENT Returns a POINT structure containing the
maximum paper size that the dmPaperLength and
dmPaperWidth members of the printer driver's
DEVMODE structure can specify.

DC_MINEXTENT Returns a POINT structure containing the
minimum paper size that the dmPaperLength and
dmPaperWidth members of the printer driver's
DEVMODE structure can specify.

DC_ORIENTATION Returns the relationship between portrait and
landscape orientations for a device, in terms of
the number of degrees that portrait orientation is
rotated counterclockwise to produce landscape
orientation. The return value can be one of the
following:
Value Meaning
0 No landscape orientation.
90 Portrait is rotated 90 degrees to

produce landscape. (For example,
Hewlett-Packard PCL printers.)

270 Portrait is rotated 270 degrees to
produce landscape. (For example,
dot-matrix printers.)

DC_PAPERNAMES Retrieves a list of supported paper names--for
example, Letter or Legal. If the lpszOutput
parameter is NULL, the function returns the
number of paper sizes available. Otherwise,
lpszOutput points to an array for the paper names
in the form char[cPaperNames, 64]. Each paper
name is a null-terminated string.

DC_PAPERS Retrieves a list of supported paper sizes. The
function copies the list to lpszOutput as a WORD
array and returns the number of entries in the
array. If lpszOutput is NULL, the function returns
the number of supported paper sizes to allow the
application the opportunity to allocate a buffer
with the correct size. For more information on
paper sizes, see the description of the
dmPaperSize member of the DEVMODE
structure.

DC_PAPERSIZE Copies the dimensions of all supported paper
sizes, in tenths of a millimeter, to an array of
POINT structures pointed to by the lpszOutput
parameter. The width (x-dimension) and length
(y-dimension) of a paper size are returned as if
the paper were in the DMORIENT_PORTRAIT
orientation.

DC_SIZE Returns the dmSize member of the printer
driver's DEVMODE structure.

DC_TRUETYPE Retrieves the abilities of the driver to use

TrueType fonts. The return value can be one or
more of the following:
Value Meaning
DCTT_BITMAP Device is capable of

printing TrueType
fonts as graphics. (For
example, dot-matrix
and PCL printers.)

DCTT_DOWNLOAD Device is capable of
downloading
TrueType fonts. (For
example, PCL and
PostScript printers.)

DCTT_SUBDEV Device is capable of
substituting device
fonts for TrueType
fonts. (For example,
PostScript printers.)

For DC_TRUETYPE, the lpszOutput parameter
should be NULL.

DC_VERSION Returns the specification version to which the
printer driver conforms.

lpszOutput Points to an array of bytes. The format of the array depends on the setting of the
fwCapability parameter. If lpszOutput is zero, DeviceCapabilities returns the number of
bytes required for the output data.

lpdm Points to a DEVMODE structure. If this parameter is NULL, DeviceCapabilities
retrieves the current default initialization values for the specified printer driver.
Otherwise, the function retrieves the values contained in the structure to which lpdm
points.

Returns
The return value, if the function is successful, depends on the setting of the fwCapability parameter. The
return value is -1 if the function fails.

Comments
This function is supplied by the printer driver. To use the DeviceCapabilities function, an application must
retrieve the address of the function by calling the LoadLibrary and GetProcAddress functions, and it must
include the PRINT.H file.

DeviceCapabilities is not supported by all printer drivers. If the GetProcAddress function returns NULL,
DeviceCapabilities is not supported.

See Also
GetProcAddress, LoadLibrary

Changes

The following index values have been added for Windows version 3.1:

DC_COPIES
DC_ENUMRESOLUTIONS
DC_FILEDEPENDENCIES
DC_ORIENTATION
DC_PAPERNAMES
DC_TRUETYPE
DCTT_BITMAP
DCTT_DOWNLOAD
DCTT_SUBDEV

Corrections

Changed the type of the last argument lpdm from LPFNDEVMODE to LPDEVMODE.

DC_BINNAMES 12

Copies an array containing a list of the names of the paper bins. This array is in the form char
PaperNames[cBinMax][cchBinName] where cchBinName is 24. If the lpszOutput parameter is NULL, the
return value is the number of bin entries required. Otherwise, the return value is the number of bins copied.

DC_BINNAMES 12

DC_BINS 6

Retrieves a list of available bins. The function copies the list to the lpszOutput parameter as a WORD
array. If lpszOutput is NULL, the function returns the number of supported bins to allow the application
the opportunity to allocate a buffer with the correct size. For more information about these bins, see the
description of the dmDefaultSource member of the DEVMODE structure.

DC_BINS 6

DC_COPIES 18

Returns the number of copies the device can print.

DC_COPIES 18

DC_DRIVER 11

Returns the version number of the printer driver.

DC_DRIVER 11

DC_DUPLEX 7

Returns the level of duplex support. The function returns 1 if the printer is capable of duplex printing.
Otherwise, the return value is zero.

DC_DUPLEX 7

DC_ENUMRESOLUTIONS 13

Returns a list of available resolutions. If lpszOutput is NULL, the function returns the number of available
resolution configurations. Resolutions are represented by pairs of LONG integers representing the
horizontal and vertical resolutions (specified in dots per inch).

DC_ENUMRESOLUTIONS 13

DC_EXTRA 9

Returns the number of bytes required for the device-specific portion of the DEVMODE structure for the
printer driver.

DC_EXTRA 9

DC_FIELDS 1

Returns the dmFields member of the printer driver's DEVMODE structure. The dmFields member
indicates which fields in the device-independent portion of the structure are supported by the printer
driver.

DC_FIELDS 1

DC_FILEDEPENDENCIES 14

Returns a list of files that also need to be loaded when a driver is installed. If the lpszOutput parameter is
NULL, the function returns the number of files. Otherwise, lpszOutput points to an array of filenames in
the form char[chFileName, 64]. Each filename is a null-terminated string.

DC_FILEDEPENDENCIES 14

DC_MAXEXTENT 5

Returns a POINT structure containing the maximum paper size that the dmPaperLength and
dmPaperWidth members of the printer driver's DEVMODE structure can specify.

DC_MAXEXTENT 5

DC_MINEXTENT 4

Returns a POINT structure containing the minimum paper size that the dmPaperLength and
dmPaperWidth members of the printer driver's DEVMODE structure can specify.

DC_MINEXTENT 4

DC_ORIENTATION 17

Returns the relationship between portrait and landscape orientations for a device, in terms of the number of
degrees that portrait orientation is rotated counterclockwise to produce landscape orientation. The return
value can be one of the following:

DC_ORIENTATION 17

DC_PAPERNAMES 16

Retrieves a list of supported paper names--for example, Letter or Legal. If the lpszOutput parameter is
NULL, the function returns the number of paper sizes available. Otherwise, lpszOutput points to an array
for the paper names in the form char[cPaperNames, 64]. Each paper name is a null-terminated string.

DC_PAPERNAMES 16

DC_PAPERS 2

Retrieves a list of supported paper sizes. The function copies the list to lpszOutput as a WORD array and
returns the number of entries in the array. If lpszOutput is NULL, the function returns the number of
supported paper sizes to allow the application the opportunity to allocate a buffer with the correct size. For
more information on paper sizes, see the description of the dmPaperSize member of the DEVMODE
structure.

DC_PAPERS 2

DC_PAPERSIZE 3

Copies the dimensions of all supported paper sizes, in tenths of a millimeter, to an array of POINT
structures pointed to by the lpszOutput parameter. The width (x-dimension) and length (y-dimension) of a
paper size are returned as if the paper were in the DMORIENT_PORTRAIT orientation.

DC_PAPERSIZE 3

DC_SIZE 8

Returns the dmSize member of the printer driver's DEVMODE structure.

DC_SIZE 8

DC_TRUETYPE 15

Retrieves the abilities of the driver to use TrueType fonts. The return value can be one or more of the
following:

DC_TRUETYPE 15

For

DC_TRUETYPE, the lpszOutput parameter should be NULL.

DC_VERSION 10

Returns the specification version to which the printer driver conforms.

DC_VERSION 10

DeviceMode (2.x)
void DeviceMode(hwnd, hModule, lpszDevice, lpszOutput)
HWND hwnd; /* handle of window owning dialog box */
HANDLE hModule; /*
handle of printer-driver module *
/
LPSTR lpszDevice; /
* address of string for device name *
/
LPSTR lpszOutput; /
* address of string for output name *
/

The DeviceMode function sets the current printing modes for a specified device by using a dialog box to
prompt for those modes. An application calls DeviceMode to allow the user to change the printing modes
of the corresponding device. DeviceMode copies the mode information to the environment block that is
associated with the device and maintained by the graphics device interface (GDI).

The ExtDeviceMode function provides a superset of the functionality of the DeviceMode function; new
applications should use ExtDeviceMode instead of DeviceMode whenever possible. (Applications can use
the DM_IN_PROMPT constant with ExtDeviceMode to duplicate the functionality of DeviceMode.)

Parameter Description
hwnd Identifies the window that will own the dialog box.
hModule Identifies the printer-driver module. The application should retrieve this handle by

calling either the GetModuleHandle or LoadLibrary function.
lpszDevice Points to a null-terminated string that specifies the name of the specific device to be

supported (for example, Epson FX-80). The device name is the same as the name passed
to the CreateDC function.

lpszOutput Points to a null-terminated string that specifies the MS-DOS filename or device name
for the physical output medium (file or output port). The output name is the same as the
name passed to the CreateDC function.

Returns
This function does not return a value.

Comments
The DeviceMode function is part of the printer's device driver, not part of GDI. To call this function, an
application must load the printer driver by calling the LoadLibrary function and retrieve the address of the
function by using the GetProcAddress function. The application can then use the address to set up the
printer.

DeviceMode is not supported by all printer drivers. If the GetProcAddress function returns NULL,
DeviceMode is not supported.

See Also
CreateDC, ExtDeviceMode, GetModuleHandle, LoadLibrary

DPtoLP (2.x)
BOOL DPtoLP(hdc, lppt, cPoints)
HDC hdc; /* handle of device context */
POINT FAR* lppt; /* address of
array with points *
/
int cPoints; /
* number of points in array *
/

The DPtoLP function converts device coordinates (points) into logical coordinates.

Parameter Description
hdc Identifies the device context.
lppt Points to an array of POINT structures. Each coordinate in each structure is mapped into

the logical coordinate system for the current device context.
cPoints Specifies the number of points in the array.

Returns
The return value is nonzero if the function is successful. Otherwise, it is zero.

Comments
The conversion depends on the current mapping mode and the settings of the origins and extents for the
device's window and viewport.

Example
The following example sets the mapping mode to MM_LOENGLISH, and then calls the DPtoLP function
to convert the coordinates of a rectangle into logical coordinates:

RECT rc;
SetMapMode(hdc, MM_LOENGLISH);
SetRect(&rc, 100, 100, 200, 200);
DPtoLP(hdc, (LPPOINT) &rc, 2);
See Also
LPtoDP, POINT

Ellipse (2.x)
BOOL Ellipse(hdc, nLeftRect, nTopRect, nRightRect, nBottomRect)
HDC hdc; /* handle of device context */
int nLeftRect; /
* x-coordinate upper-left corner bounding rectangle *
/
int nTopRect; /
* y-coordinate upper-left corner bounding rectangle *
/
int nRightRect; /
* x-coordinate lower-right corner bounding rectangle *
/
int nBottomRect; /
* y-coordinate lower-right corner bounding rectangle *
/

The Ellipse function draws an ellipse. The center of the ellipse is the center of the specified bounding
rectangle. The ellipse is drawn by using the current pen, and its interior is filled by using the current brush.

If either the width or the height of the bounding rectangle is zero, the function does not draw the ellipse.

Parameter Description
hdc Identifies the device context.
nLeftRect Specifies the logical x-coordinate of the upper-left corner of the bounding rectangle.
nTopRect Specifies the logical y-coordinate of the upper-left corner of the bounding rectangle.
nRightRect Specifies the logical x-coordinate of the lower-right corner of the bounding rectangle.
nBottomRect Specifies the logical y-coordinate of the lower-right corner of the bounding rectangle.

Returns
The return value is nonzero if the function is successful. Otherwise, it is zero.

Comments
The figure drawn by this function extends up to but does not include the right and bottom coordinates.
This means that the height of the figure is determined as follows:

nBottomRect - nTopRect

Similarly, the width of the figure is determined as follows:

nRightRect - nLeftRect

Both the width and the height of a rectangle must be greater than 2 units and less than 32,767 units.

See Also
Arc, Chord, RECT

EndDoc (3.1)
int EndDoc(hdc)
HDC hdc; /* handle of device context */

The EndDoc function ends a print job. This function replaces the ENDDOC printer escape for Windows
version 3.1.

Parameter Description
hdc Identifies the device context for the print job.

Returns
The return value is greater than or equal to zero if the function is successful. Otherwise, it is less than zero.

Comments
An application should call the EndDoc function immediately after finishing a successful print job. To
terminate a print job because of an error or if the user chooses to cancel the job, an application should call
the AbortDoc function.

Do not use the EndDoc function inside metafiles.

See Also
AbortDoc, Escape, StartDoc

EndPage (3.1)
int EndPage(hdc)
HDC hdc; /* handle of device context */

The EndPage function signals the device that the application has finished writing to a page. This function
is typically used to direct the driver to advance to a new page.

This function replaces the NEWFRAME printer escape for Windows 3.1. Unlike NEWFRAME, this
function is always called after printing a page.

Parameter Description
hdc Identifies the device context for the print job.

Returns
The return value is greater than or equal to zero if the function is successful. Otherwise, it is an error value.

Errors
If the function fails, it returns one of the following error values:

Value Meaning
SP_ERROR General error.
SP_APPABORT Job was terminated because the application's print-canceling function returned

zero.
SP_USERABORT User terminated the job by using Windows Print Manager (PRINTMAN.

EXE).
SP_OUTOFDISK Not enough disk space is currently available for spooling, and no more space

will become available.
SP_OUTOFMEMORY Not enough memory is available for spooling.

Comments
The ResetDC function can be used to change the device mode, if necessary, after calling the EndPage
function.

See Also
Escape, ResetDC, StartPage

SP_ERROR (-1)

General error.

SP_ERROR (-1)

SP_APPABORT (-2)

Job was terminated because the application's print-canceling function returned zero.

SP_APPABORT (-2)

SP_USERABORT (-3)

User terminated the job by using Windows Print Manager (PRINTMAN.EXE).

SP_USERABORT (-3)

SP_OUTOFDISK (-4)

Not enough disk space is currently available for spooling, and no more space will become available.

SP_OUTOFDISK (-4)

SP_OUTOFMEMORY (-5)

Not enough memory is available for spooling.

SP_OUTOFMEMORY (-5)

EnumFontFamilies (3.1)
int EnumFontFamilies(hdc, lpszFamily, fntenmprc, lParam)
HDC hdc; /* handle of device context */
LPCSTR lpszFamily; /
* address of font-family name *
/
FONTENUMPROC fntenmprc; /
* address of callback function *
/
LPARAM lParam; /
* application-defined data *
/

The EnumFontFamilies function enumerates the fonts in a specified font family that are available on a
given device. EnumFontFamilies continues until there are no more fonts or the callback function returns
zero.

Parameter Description
hdc Identifies the device context.
lpszFamily Points to a null-terminated string that specifies the family name of the desired fonts. If

this parameter is NULL, the EnumFontFamilies function selects and enumerates one
font from each available font family.

fntenmprc Specifies the procedure-instance address of the application-defined callback function.
The address must be created by the MakeProcInstance function. For more information
about the callback function, see the description of the EnumFontFamProc callback
function.

lParam Specifies a 32-bit application-defined value that is passed to the callback function along
with the font information.

Returns
The return value specifies the last value returned by the callback function, if the function is successful.
This value depends on which font families are available for the given device.

Comments
The EnumFontFamilies function differs from the EnumFonts function in that it retrieves the style names
associated with a TrueType font. Using EnumFontFamilies, an application can retrieve information about
unusual font styles (for example, Outline) that cannot be enumerated by using the EnumFonts function.
Applications should use EnumFontFamilies instead of EnumFonts.

For each font having the font name specified by the lpszFamily parameter, the EnumFontFamilies function
retrieves information about that font and passes it to the function pointed to by the fntenmprc parameter.
The application-supplied callback function can process the font information, as necessary.

Example
The following example uses the MakeProcInstance function to create a pointer to the callback function for
the EnumFontFamilies function. The FreeProcInstance function is called when enumeration is complete.
Because the second parameter is NULL, EnumFontFamilies enumerates one font from each family that is
available in the given device context. The aFontCount variable points to an array that is used inside the
callback function.

FONTENUMPROC lpEnumFamCallBack;
int aFontCount[] = { 0, 0, 0 };
lpEnumFamCallBack = (FONTENUMPROC) MakeProcInstance(

(FARPROC) EnumFamCallBack, hAppInstance);
EnumFontFamilies(hdc, NULL, lpEnumFamCallBack, (LPARAM) aFontCount);
FreeProcInstance((FARPROC) lpEnumFamCallBack);
See Also
EnumFonts, EnumFontFamProc, LOGFONT, TEXTMETRIC

EnumFonts (2.x)
int EnumFonts(hdc, lpszFace, fntenmprc, lParam)
HDC hdc; /* handle of device context */
LPCSTR lpszFace; /*
address of font name *
/
FONTENUMPROC fntenmprc; /
* address of callback function *
/
LPARAM lParam; /
* application-defined data *
/

The EnumFonts function enumerates the fonts available for a given device. This function is provided for
backwards compatibility with earlier versions of Windows; current applications should use the
EnumFontFamilies function.

EnumFonts continues until there are no more fonts or the callback function returns zero.

Parameter Description
hdc Identifies the device context.
lpszFace Points to a null-terminated string that specifies the names of the requested fonts. If this

parameter is NULL, the EnumFonts function randomly selects and enumerates one font
from each available typeface.

fntenmprc Specifies the procedure-instance address of the application-defined callback function.
The address must be created by the MakeProcInstance function. For more information
about the callback function, see the description of the EnumFontsProc callback function.

lParam Specifies a 32-bit application-defined value that is passed to the callback function along
with the font information.

Returns
The return value specifies the last value returned by the callback function and is defined by the user.

Comments
The EnumFonts function retrieves information about the specified font and passes it to the function
pointed to by the fntenmprc parameter. The application-supplied callback function can process the font
information, as necessary.

If the device is capable of text transformations (scaling, italicizing, and so on), only the base font will be
enumerated. The user must know the device's text-transformation abilities to determine which additional
fonts are available directly from the device. The graphics device interface (GDI) can simulate the bold,
italic, underlined, and strikeout attributes for any GDI-based font.

The EnumFonts function enumerates fonts from the GDI internal table only. This does not include fonts
that are generated by a device, such as fonts that are transformations of fonts from the internal table. The
GetDeviceCaps function can be used to determine which transformations a device can perform. This
information is available by using the TEXTCAPS index.

GDI can scale GDI-based raster fonts by one to five units horizontally and one to eight units vertically,
unless PROOF_QUALITY is being used.

Example
The following example uses the MakeProcInstance function to create a pointer to the callback function for
the EnumFonts function. The FreeProcInstance function is called when enumeration is complete. Because
the second parameter is "Arial", EnumFonts enumerates the Arial fonts available in the given device
context. The cArial variable is passed to the callback function.

FONTENUMPROC lpEnumFontsCallBack;
int cArial = 0;
lpEnumFontsCallBack = (FONTENUMPROC) MakeProcInstance(

(FARPROC) EnumFontsCallBack, hAppInstance);
EnumFonts(hdc, "Arial", lpEnumFontsCallBack, (LPARAM) &cArial);
FreeProcInstance((FARPROC) lpEnumFontsCallBack);
See Also

EnumFontFamilies, EnumFontsProc

EnumMetaFile (2.x)
BOOL EnumMetaFile(hdc, hmf, mfenmprc, lParam)
HDC hdc; /* handle of device context */
HLOCAL hmf; /* handle of
metafile *
/
MFENUMPROC mfenmprc; /
* address of callback function *
/
LPARAM lParam; /
* application-defined data *
/

The EnumMetaFile function enumerates the metafile records in a given metafile. EnumMetaFile continues
until there are no more graphics device interface (GDI) calls or the callback function returns zero.

Parameter Description
hdc Identifies the device context associated with the metafile.
hmf Identifies the metafile.

Note: The HLOCAL type for this parameter is incorrect in the WINDOWS.H file. The
type of this parameter is actually HMETAFILE. Developers should cast this
parameter to an HLOCAL type to avoid compiler warnings.

mfenmprc Specifies the procedure-instance address of the application-supplied callback function.
The address must be created by using the MakeProcInstance function. For more
information about the callback function, see the description of the EnumMetaFileProc
callback function.

lParam Specifies a 32-bit application-defined value that is passed to the callback function along
with the metafile information.

Returns
The return value is nonzero if the callback function enumerates all the GDI calls in a metafile. Otherwise,
it is zero.

Comments
The EnumMetaFile function retrieves metafile records and passes them to a callback function. An
application can modify the metafile record inside the callback function. The application can also use the
PlayMetaFileRecord function inside the callback function; this is useful for very large metafiles, when
using the PlayMetaFile function might be time-consuming.

Example
The following example creates a dashed green pen and passes it to the callback function for the
EnumMetaFile function. If the first element in the array of object handles is a handle, that handle is
replaced by the handle of the green pen before the PlayMetaFileRecord function is called. (For this
example, it is assumed that the table of object handles contains only one handle and that it is the handle of
a pen.)

MFENUMPROC lpEnumMetaProc;
HPEN hpenGreen;
lpEnumMetaProc = (MFENUMPROC) MakeProcInstance(

(FARPROC) EnumMetaFileProc, hAppInstance);
hpenGreen = CreatePen(PS_DASH, 1, RGB(0, 255, 0));
EnumMetaFile(hdc, hmf, lpEnumMetaProc, (LPARAM) &hpenGreen);
FreeProcInstance((FARPROC) lpEnumMetaProc);
DeleteObject(hpenGreen);

.

.

.
int FAR PASCAL EnumMetaFileProc(HDC hdc, HANDLETABLE FAR* lpHTable,

METARECORD FAR* lpMFR, int cObj, BYTE FAR* lpClientData)
{

if (lpHTable->objectHandle[0] != 0)
lpHTable->objectHandle[0] = *(HPEN FAR *) lpClientData;
PlayMetaFileRecord(hdc, lpHTable, lpMFR, cObj);
return 1;

}
See Also
EnumMetaFileProc, MakeProcInstance, PlayMetaFile, PlayMetaFileRecord

EnumObjects (2.x)
int EnumObjects(hdc, fnObjectType, goenmprc, lParam)
HDC hdc; /* handle of device context */
int fnObjectType; /* type
of object *
/
GOBJENUMPROC goenmprc; /
* address of callback function *
/
LPARAM lParam; /
* application-defined data *
/

The EnumObjects function enumerates the pens and brushes available in the given device context. For
each object of a given type, the callback function is called with the information for that object.
EnumObjects continues until there are no more objects or the callback function returns zero.

Parameter Description
hdc Identifies the device context.
fnObjectType Specifies the object type. This parameter can be one of the following values:

Value Meaning
OBJ_BRUSH Specifies a brush.
OBJ_PEN Specifies a pen.

goenmprc Specifies the procedure-instance address of the application-supplied callback function.
The address must be created by the MakeProcInstance function. For more information
about the callback function, see the description of the EnumObjectsProc callback
function.

lParam Specifies a 32-bit application-defined value that is passed to the callback function.

Returns
The return value specifies the last value returned by the callback function and is defined by the user.

Example
The following example retrieves the number of horizontally hatched brushes and fills LOGBRUSH
structures with information about each of them:

#define MAXBRUSHES 50
GOBJENUMPROC lpProcCallback;
HGLOBAL hglbl;
LPBYTE lpbCountBrush;
lpProcCallback = (GOBJENUMPROC) MakeProcInstance(

(FARPROC) Callback, hinst);
hglbl = GlobalAlloc(GMEM_FIXED, sizeof(LOGBRUSH)

* MAXBRUSHES);
lpbCountBrush = (LPBYTE) GlobalLock(hglbl);
*lpbCountBrush = 0;
EnumObjects(hdc, OBJ_BRUSH, lpProcCallback,

(LPARAM) lpbCountBrush);
FreeProcInstance((FARPROC) lpProcCallback);
int FAR PASCAL Callback(LPLOGBRUSH lpLogBrush, LPBYTE pbData)
{

/*
* The pbData parameter contains the number of horizontally
* hatched brushes; the lpDest parameter is set to follow the
* byte reserved for pbData and the LOGBRUSH structures that
* have been filled with brush information.
*/

LPLOGBRUSH lpDest =
(LPLOGBRUSH) (pbData + 1 + (*pbData * sizeof(LOGBRUSH)));
if (lpLogBrush->lbStyle ==

BS_HATCHED && /* if horiz hatch */
lpLogBrush->lbHatch == HS_HORIZONTAL) {
*lpDest++ = *lpLogBrush; /* fills structure with brush info */
(*pbData) ++; /* increments brush count*/
if (*pbData >= MAXBRUSHES)
return 0;
}
return 1;

}
See Also
EnumObjectsProc, FreeProcInstance, GlobalAlloc, GlobalLock, MakeProcInstance, LOGBRUSH,
LOGPEN

OBJ_BRUSH 2

Specifies a brush.

OBJ_BRUSH 2

OBJ_PEN 1

Specifies a pen.

OBJ_PEN 1

EqualRgn (2.x)
BOOL EqualRgn(hrgnSrc1, hrgnSrc2)
HRGN hrgnSrc1; /* handle of first region to test for equality */
HRGN hrgnSrc2; /*
handle of second region to test for equality *
/

The EqualRgn function determines whether two given regions are identical.

Parameter Description
hrgnSrc1 Identifies the first region.
hrgnSrc2 Identifies the second region.

Returns
The return value is nonzero if the two regions are equal. Otherwise, it is zero.

Example
The following example uses the EqualRgn function to test the equality of a region against two other
regions. In this case, hrgn2 is identical to hrgn1, but hrgn3 is not identical to hrgn1.

BOOL fEqual;
HRGN hrgn1, hrgn2, hrgn3;
LPSTR lpszEqual = "Regions are equal.";
LPSTR lpszNotEqual = "Regions are not equal.";
hrgn1 = CreateRectRgn(10, 10, 110, 110); /* 1 and 2 identical */
hrgn2 = CreateRectRgn(10, 10, 110, 110);
hrgn3 = CreateRectRgn(100, 100, 210, 210); /* same dimensions */
fEqual = EqualRgn(hrgn1, hrgn2);
if (fEqual)

TextOut(hdc, 10, 10, lpszEqual, lstrlen(lpszEqual));
else

TextOut(hdc, 10, 10, lpszNotEqual, lstrlen(lpszNotEqual));
fEqual = EqualRgn(hrgn1, hrgn3);
if (fEqual)

TextOut(hdc, 10, 30, lpszEqual, lstrlen(lpszEqual));
else

TextOut(hdc, 10, 30, lpszNotEqual, lstrlen(lpszNotEqual));
DeleteObject(hrgn1);
DeleteObject(hrgn2);
DeleteObject(hrgn3);

Escape (2.x)
int Escape(hdc, nEscape, cbInput, lpszInData, lpvOutData)
HDC hdc; /* handle of device context */
int nEscape; /* specifies
escape function *
/
int cbInput; /
* size of structure for input *
/
LPCSTR lpszInData; /
* address of structure for input *
/
void FAR* lpvOutData; /
* address of structure for output *
/

The Escape function allows applications to access capabilities of a particular device that are not directly
available through the graphics device interface (GDI). Escape calls made by an application are translated
and sent to the driver.

Parameter Description
hdc Identifies the device context.
nEscape Specifies the escape function to be performed.
cbInput Specifies the number of bytes of data pointed to by the lpszInData parameter.
lpszInData Points to the input structure required for the specified escape.
lpvOutData Points to the structure that receives output from this escape. This parameter should be

NULL if no data is returned.

Returns
The return value specifies the outcome of the function. It is greater than zero if the function is successful,
except for the QUERYESCSUPPORT printer escape, which checks for implementation only. The return
value is zero if the escape is not implemented. A return value less than zero indicates an error.

Errors
If the function fails, the return value is one of the following:

Value Meaning
SP_ERROR General error.
SP_OUTOFDISK Not enough disk space is currently available for spooling, and no more space

will become available.
SP_OUTOFMEMORY Not enough memory is available for spooling.
SP_USERABORT User terminated the job through Print Manager.

Changes

Windows version 3.1 introduces six new functions that supersede some printer escapes:

Function Description
AbortDoc Terminates a print job. Supersedes the ABORTDOC escape.
EndDoc Ends a print job. Supersedes the ENDDOC escape.
EndPage Ends a page. Supersedes the NEWFRAME escape. Unlike NEWFRAME, this

function is always called after printing a page.
SetAbortProc Sets the abort function for a print job. Supersedes the SETABORTPROC escape.
StartDoc Starts a print job. Supersedes the STARTDOC escape.
StartPage Prepares printer driver to receive data.

The ResetDC function is also new for Windows version 3.1. ResetDC updates a device context, allowing
such new functionality as changing the paper orientation or paper bin within a single print job. This ability
was not supported by an escape in previous versions of Windows.

For a complete list of the printer escapes under Windows version 3.0, and how support has changed for
Windows 3.1, see the Printer escapes topic.

Printer escapes
Escape Description
ABORTDOC Superseded by the AbortDoc function in Windows

version 3.1.
BANDINFO Obsolete in Windows version 3.1. Because all printer

drivers for Windows version 3.1 and later set the text flag
in every band, this escape is useful only for older printer
drivers.

BEGIN_PATH No changes for Windows version 3.1. This escape is
specific to PostScript printers.

CLIP_TO_PATH No changes for Windows version 3.1. This escape is
specific to PostScript printers.

DEVICEDATA Superseded in Windows version 3.1. Applications should
use the PASSTHROUGH escape to achieve the same
functionality.

DRAFTMODE Superseded in Windows version 3.1. Applications can
achieve the same functionality by setting the
dmPrintQuality member of the DEVMODE structure to
DMRES_DRAFT and passing this structure to the
CreateDC function.

DRAWPATTERNRECT No changes for Windows version 3.1.
ENABLEDUPLEX Superseded in Windows version 3.1. Applications can

achieve the same functionality by setting the dmDuplex
member of the DEVMODE structure and passing this
structure to the CreateDC function.

ENABLEPAIRKERNING No changes for Windows version 3.1.
ENABLERELATIVEWIDTHS No changes for Windows version 3.1.
ENDDOC Superseded by the EndDoc function in Windows version

3.1.
END_PATH No changes for Windows version 3.1. This escape is

specific to PostScript printers.
ENUMPAPERBINS Superseded in Windows version 3.1. Applications can use

the DeviceCapabilities function to achieve the same
functionality.

ENUMPAPERMETRICS Superseded in Windows version 3.1. Applications can use
the DeviceCapabilities function to achieve the same
functionality.

EPSPRINTING No changes for Windows version 3.1. This escape is
specific to PostScript printers.

EXT_DEVICE_CAPS Superseded in Windows version 3.1. Applications can use
the GetDeviceCaps function to achieve the same
functionality. This escape is specific to PostScript
printers.

EXTTEXTOUT Superseded in Windows version 3.1. Applications can use
the ExtTextOut function to achieve the same
functionality. This escape is not supported by the version
3.1 PCL driver.

FLUSHOUTPUT Removed for Windows version 3.1.
GETCOLORTABLE Removed for Windows version 3.1.
GETEXTENDEDTEXTMETRICS No changes for Windows version 3.1. Support for this

escape may change in future versions of Windows.
GETEXTENTTABLE Superseded in Windows version 3.1. Applications can use

the GetCharWidth function to achieve the same
functionality. This escape is not supported by the version
3.1 PCL or PSCRIPT drivers.

GETFACENAME No changes for Windows version 3.1. This escape is
specific to PostScript printers.

GETPAIRKERNTABLE No changes for Windows version 3.1.

GETPHYSPAGESIZE No changes for Windows version 3.1. Support for this
escape may change in future versions of Windows.

GETPRINTINGOFFSET No changes for Windows version 3.1. Support for this
escape may change in future versions of Windows.

GETSCALINGFACTOR No changes for Windows version 3.1. Support for this
escape may change in future versions of Windows.

GETSETPAPERBINS Superseded in Windows version 3.1. Applications can
achieve the same functionality by calling the
DeviceCapabilities function to find the number of paper
bins, calling the ExtDeviceMode function to find the
current bin, and then setting the dmDefaultSource
member of the DEVMODE structure and passing this
structure to the CreateDC function.
GETSETPAPERBINS changes the paper bin only for the
current device context. A new device context will use the
system-default paper bin until the bin is explicitly
changed for that device context.

GETSETPAPERMETRICS Obsolete in Windows version 3.1. Applications can use
the DeviceCapabilities and ExtDeviceMode functions to
achieve the same functionality.

GETSETPAPERORIENT Obsolete in Windows version 3.1. Applications can
achieve the same functionality by setting the
dmOrientation member of the DEVMODE structure and
passing this structure to the CreateDC function. This
escape is not supported by the Windows 3.1 PCL driver.

GETSETSCREENPARAMS No changes for Windows version 3.1.
GETTECHNOLOGY No changes for Windows version 3.1. Support for this

escape may change in future versions of Windows. This
escape is not supported by the Windows 3.1 PCL driver.

GETTRACKKERNTABLE No changes for Windows version 3.1.
GETVECTORBRUSHSIZE No changes for Windows version 3.1. Support for this

escape may change in future versions of Windows.
GETVECTORPENSIZE No changes for Windows version 3.1. Support for this

escape may change in future versions of Windows.
MFCOMMENT No changes for Windows version 3.1.
NEWFRAME No changes for Windows version 3.1. Applications

should use the StartPage and EndPage functions instead
of this escape. Support for this escape may change in
future versions of Windows.

NEXTBAND No changes for Windows version 3.1. Support for this
escape may change in future versions of Windows.

PASSTHROUGH No changes for Windows version 3.1.
QUERYESCAPESUPPORT No changes for Windows version 3.1.
RESTORE_CTM No changes for Windows version 3.1. This escape is

specific to PostScript printers.
SAVE_CTM No changes for Windows version 3.1. This escape is

specific to PostScript printers.
SELECTPAPERSOURCE Obsolete in Windows version 3.1. Applications can

achieve the same functionality by using the
DeviceCapabilities function.

SETABORTPROC Superseded in Windows version 3.1 by the SetAbortProc
function.

SETALLJUSTVALUES No changes for Windows version 3.1. Support for this
escape may change in future versions of Windows. This
escape is not supported by the Windows 3.1 PCL driver.

SET_ARC_DIRECTION No changes for Windows version 3.1. This escape is
specific to PostScript printers.

SET_BACKGROUND_COLOR No changes for Windows version 3.1. Applications
should use the SetBkColor function instead of this escape.

Support for this escape may change in future versions of
Windows.

SET_BOUNDS No changes for Windows version 3.1. This escape is
specific to PostScript printers.

SETCOLORTABLE No changes for Windows version 3.1. Support for this
escape may change in future versions of Windows.

SETCOPYCOUNT Superseded in Windows version 3.1. An application
should call the DeviceCapabilities function, specifying
DC_COPIES for the nIndex parameter, to find the
maximum number of copies the device can make. Then
the application can set the number of copies by passing to
the CreateDC function a pointer to the DEVMODE
structure.

SETKERNTRACK No changes for Windows version 3.1.
SETLINECAP No changes for Windows version 3.1. This escape is

specific to PostScript printers.
SETLINEJOIN No changes for Windows version 3.1. This escape is

specific to PostScript printers.
SETMITERLIMIT No changes for Windows version 3.1. This escape is

specific to PostScript printers.
SET_POLY_MODE No changes for Windows version 3.1. This escape is

specific to PostScript printers.
SET_SCREEN_ANGLE No changes for Windows version 3.1.
SET_SPREAD No changes for Windows version 3.1.
STARTDOC Superseded in Windows version 3.1. An application

should call the StartDoc function instead of this escape.
TRANSFORM_CTM No changes for Windows version 3.1. This escape is

specific to PostScript printers.

ExcludeClipRect (2.x)
int ExcludeClipRect(hdc, nLeftRect, nTopRect, nRightRect, nBottomRect)
HDC hdc; /* handle of device context */
int nLeftRect; /* x-
coordinate top-left corner of rectangle *
/
int nTopRect; /
* y-coordinate top-left corner of rectangle *
/
int nRightRect; /
* x-coordinate bottom-right corner of rectangle *
/
int nBottomRect; /
* y-coordinate bottom-right corner of rectangle *
/

The ExcludeClipRect function creates a new clipping region that consists of the existing clipping region
minus the specified rectangle.

Parameter Description
hdc Identifies the device context.
nLeftRect Specifies the logical x-coordinate of the upper-left corner of the rectangle.
nTopRect Specifies the logical y-coordinate of the upper-left corner of the rectangle.
nRightRect Specifies the logical x-coordinate of the lower-right corner of the rectangle.
nBottomRect Specifies the logical y-coordinate of the lower-right corner of the rectangle.

Returns
The return value is SIMPLEREGION (region has no overlapping borders), COMPLEXREGION (region
has overlapping borders), or NULLREGION (region is empty), if the function is successful. Otherwise,
the return value is ERROR (no region is created).

Comments
The width of the rectangle, specified by the absolute value of nRightRect - nLeftRect, must not exceed 32,
767 units. This limit applies to the height of the rectangle as well.

Example
The following example uses the ExcludeClipRect function to create a clipping region in the shape of a
frame that is 20 units wide. The frame is painted red when the FillRect function is used to paint the client
area.

RECT rc;
HRGN hrgn;
HBRUSH hbrRed;
GetClientRect(hwnd, &rc);
hrgn = CreateRectRgn(10, 10, 110, 110);
SelectClipRgn(hdc, hrgn);
ExcludeClipRect(hdc, 30, 30, 90, 90);
hbrRed = CreateSolidBrush(RGB(255, 0, 0));
FillRect(hdc, &rc, hbrRed);
DeleteObject(hbrRed);
DeleteObject(hrgn);
See Also
CombineRgn

ExtDeviceMode (3.0)
#include <print.h>

int ExtDeviceMode(hwnd, hDriver, lpdmOutput, lpszDevice, lpszPort, lpdmInput, lpszProfile, fwMode)
HWND hwnd; /* handle of window */
HANDLE hDriver; /
* handle of driver *
/
LPDEVMODE lpdmOutput; /
* address of structure for driver output *
/
LPSTR lpszDevice; /
* string for name of device *
/
LPSTR lpszPort; /
* string for name of port *
/
LPDEVMODE lpdmInput; /
* address of structure for driver input *
/
LPSTR lpszProfile; /
* string for profile filename *
/
WORD fwMode; /
* operations mask *
/

The ExtDeviceMode function retrieves or modifies device initialization information for a given printer
driver or displays a driver-supplied dialog box for configuring the printer driver. Printer drivers that
support device initialization by applications export ExtDeviceMode so that applications can call it.

Parameter Description
hwnd Identifies a window. If the application calls the ExtDeviceMode function to display a

dialog box, the specified window is the parent window of the dialog box.
hDriver Identifies the device-driver module. The GetModuleHandle function or LoadLibrary

function returns a module handle.
lpdmOutput Points to a DEVMODE structure. The driver writes the initialization information

supplied in the lpdmInput parameter to this structure.
lpszDevice Points to a null-terminated string that contains the name of the printer device--for

example, PCL/HP LaserJet.
lpszPort Points to a null-terminated string that contains the name of the port to which the device

is connected--for example, LPT1.
lpdmInput Points to a DEVMODE structure that supplies initialization information to the printer

driver.
lpszProfile Points to a null-terminated string that contains the name of the initialization file, where

initialization information is recorded and read from. If this parameter is NULL, WIN.
INI is the default initialization file.

fwMode Specifies a mask of values that determines the operations the function performs. If this
parameter is zero, the ExtDeviceMode function returns the number of bytes required by
the printer driver's DEVMODE structure. Otherwise, the fwMode parameter can be one
or more of the following values (to change the print settings, the application must
specify at least one input value and one output value):

Value Meaning
DM_IN_BUFFER Input value. Before prompting, copying, or updating, this

value merges the printer driver's current print settings with
the settings in the DEVMODE structure identified by the
lpdmInput parameter. The structure is updated only for
those members indicated by the application in the dmFields
member. This value is also defined as DM_MODIFY.

DM_IN_PROMPT Input value. This value presents the printer driver's Print
Setup dialog box and then changes the settings in the

printer's DEVMODE structure to values specified by the
user. This value is also defined as DM_PROMPT.

DM_OUT_BUFFER Output value. This value writes the printer driver's current
print settings (including private data) to the DEVMODE
structure identified by the lpdmOutput parameter. The
calling application must allocate a buffer sufficiently large
to contain the information. If this bit is clear, lpdmOutput
can be NULL. This value is also defined as DM_COPY.

DM_OUT_DEFAULT Output value. This value updates graphics device interface
(GDI)'s current printer environment and the WIN.INI file,
using the contents of the printer driver's DEVMODE
structure. Avoid using this value, because it permanently
changes the print settings for all applications. This value is
also defined as DM_UPDATE.

Returns
If the fwMode parameter is zero, the return value is the size of the buffer required to contain the printer
driver initialization data. (Note that this buffer can be larger than a DEVMODE structure, if the printer
driver appends private data to the structure.) If the function displays the initialization dialog box, the return
value is either IDOK or IDCANCEL, depending on which button the user selects. If the function does not
display the dialog box and is successful, the return value is IDOK. The return value is less than zero if the
function fails.

Comments
The ExtDeviceMode function is part of the printer's device driver and not part of GDI. To use this
function, an application must retrieve the address of the function by calling the LoadLibrary and
GetProcAddress functions, and it must include the header file PRINT.H. The application can then use the
address to set up the printer.

ExtDeviceMode is not supported by all printer drivers. If the GetProcAddress function returns NULL,
ExtDeviceMode is not supported.

To make changes to print settings that are local to the application, an application should call the
ExtDeviceMode function, specifying the DM_OUT_BUFFER value; modify the returned DEVMODE
structure; and then pass the modified DEVMODE structure back to ExtDeviceMode, specifying
DM_IN_BUFFER and DM_OUT_BUFFER (combined by using the OR operator). The DEVMODE
structure returned by this second call to ExtDeviceMode can be used as an argument in a call to the
CreateDC function.

Any call to ExtDeviceMode must set either DM_OUT_BUFFER or DM_OUT_DEFAULT.

An application can set the fwMode parameter to DM_OUT_BUFFER to obtain a DEVMODE structure
filled with the printer driver's initialization data. The application can then pass this structure to the
CreateDC function to set a private environment for the printer device context.

See Also
CreateDC, DeviceMode, GetModuleHandle, GetProcAddress, LoadLibrary, DEVMODE

DM_IN_BUFFER DM_MODIFY

Input value. Before prompting, copying, or updating, this value merges the printer driver's current print
settings with the settings in the DEVMODE structure identified by the lpdmInput parameter. The structure
is updated only for those members indicated by the application in the dmFields member. This value is also
defined as DM_MODIFY.

DM_IN_BUFFER DM_MODIFY

DM_IN_PROMPT DM_PROMPT

Input value. This value presents the printer driver's Print Setup dialog box and then changes the settings in
the printer's DEVMODE structure to values specified by the user. This value is also defined as
DM_PROMPT.

DM_IN_PROMPT DM_PROMPT

DM_OUT_BUFFER DM_COPY

Output value. This value writes the printer driver's current print settings (including private data) to the
DEVMODE structure identified by the lpdmOutput parameter. The calling application must allocate a
buffer sufficiently large to contain the information. If this bit is clear, lpdmOutput can be NULL. This
value is also defined as DM_COPY.

DM_OUT_BUFFER DM_COPY

DM_OUT_DEFAULT DM_UPDATE

Output value. This value updates graphics device interface (GDI)'s current printer environment and the
WIN.INI file, using the contents of the printer driver's DEVMODE structure. Avoid using this value,
because it permanently changes the print settings for all applications. This value is also defined as
DM_UPDATE.

DM_OUT_DEFAULT DM_UPDATE

ExtFloodFill (3.0)
BOOL ExtFloodFill(hdc, nXStart, nYStart, clrref, fuFillType)
HDC hdc; /* handle of device context */
int nXStart; /* x-coordinate
where filling begins *
/
int nYStart; /
* y-coordinate where filling begins *
/
COLORREF clrref; /
* color of fill *
/
UINT fuFillType; /
* fill type *
/

The ExtFloodFill function fills an area of the screen surface by using the current brush. The type of flood
fill specified determines which part of the screen is filled.

Parameter Description
hdc Identifies the device context.
nXStart Specifies the logical x-coordinate at which to begin filling.
nYStart Specifies the logical y-coordinate at which to begin filling.
clrref Specifies the color of the boundary or area to be filled. The interpretation of this

parameter depends on the value of the fuFillType parameter.
fuFillType Specifies the type of flood fill to be performed. It must be one of the following values:

Value Meaning
FLOODFILLBORDER Fill area is bounded by the color specified by the clrref

parameter. This style is identical to the filling
performed by the FloodFill function.

FLOODFILLSURFACE Fill area is defined by the color specified by the clrref
parameter. Filling continues outward in all directions
as long as the color is encountered. This style is useful
for filling areas that have multicolored boundaries.

Returns
The return value is nonzero if the function is successful. It is zero if the filling cannot be completed, if the
given point has the boundary color specified by the clrref parameter (if FLOODFILLBORDER was
requested), if the given point does not have the color specified by clrref (if FLOODFILLSURFACE was
requested), or if the point is outside the clipping region.

Comments
Only memory device contexts and devices that support raster-display technology support the ExtFloodFill
function.

If the fuFillType parameter is the FLOODFILLBORDER value, the area is assumed to be completely
bounded by the color specified by the clrref parameter. The ExtFloodFill function begins at the
coordinates specified by the nXStart and nYStart parameters and fills in all directions to the color
boundary.

If fuFillType is FLOODFILLSURFACE, ExtFloodFill begins at the coordinates specified by nXStart and
nYStart and continues in all directions, filling all adjacent areas containing the color specified by clrref.

See Also
FloodFill, GetDeviceCaps

FLOODFILLBORDER 0

Fill area is bounded by the color specified by the clrref parameter. This style is identical to the filling
performed by the FloodFill function.

FLOODFILLBORDER 0

FLOODFILLSURFACE 1

Fill area is defined by the color specified by the clrref parameter. Filling continues outward in all
directions as long as the color is encountered. This style is useful for filling areas that have multicolored
boundaries.

FLOODFILLSURFACE 1

ExtTextOut (2.x)
BOOL ExtTextOut(hdc, nXStart, nYStart, fuOptions, lprc, lpszString, cbString, lpDx)
HDC hdc; /* handle of device context */
int nXStart; /* x-coordinate
of starting position *
/
int nYStart; /
* y-coordinate of starting position *
/
UINT fuOptions; /
* rectangle type *
/
const RECT FAR* lprc; /
* address of structure with rectangle *
/
LPCSTR lpszString; /
* address of string *
/
UINT cbString; /
* number of bytes in string *
/
int FAR* lpDx; /
* spacing between character cells *
/

The ExtTextOut function writes a character string within a rectangular region, using the currently selected
font. The rectangular region can be opaque (filled by using the current background color as set by the
SetBkColor function), and it can be a clipping region.

Parameter Description
hdc Identifies the device context.
nXStart Specifies the logical x-coordinate at which the string begins.
nYStart Specifies the logical y-coordinate at which the string begins.
fuOptions Specifies the rectangle type. This parameter can be one, both, or neither of the following

values:

Value Meaning
ETO_CLIPPED Text is clipped to the rectangle.
ETO_OPAQUE Current background color fills the rectangle. (An application can

set and query the current background color by using the
SetBkColor and GetBkColor functions.)

lprc Points to a RECT structure that determines the dimensions of the rectangle.
lpszString Points to the specified character string.
cbString Specifies the number of bytes in the string.
lpDx Points to an array of values that indicate the distance, in logical units, between origins of

adjacent character cells. The nth element in the array specifies the number of logical
units that separate the origin of the nth item in the string from the origin of item n + 1. If
this parameter is NULL, ExtTextOut uses the default spacing between characters.
Otherwise, the array contains the number of elements specified in the cbString
parameter.

Returns
The return value is nonzero if the function is successful. Otherwise, it is zero.

Comments
If the fuOptions parameter is zero and the lprc parameter is NULL, the ExtTextOut function writes text to
the device context without using a rectangular region.

By default, the current position is not used or updated by ExtTextOut. If an application needs to update the
current position when it calls ExtTextOut, the application can call the SetTextAlign function with the
wFlags parameter set to TA_UPDATECP. When this flag is set, Windows ignores the nXStart and nYStart
parameters on subsequent calls to ExtTextOut, using the current position instead. When an application

uses TA_UPDATECP to update the current position, ExtTextOut sets the current position either to the end
of the previous line of text or to the position specified by the last element of the array pointed to by the
lpDX parameter, whichever is greater.

Example
The following example uses the ExtTextOut function to clip text to a rectangular region defined by a
RECT structure:

RECT rc;
SetRect(&rc, 90, 190, 250, 220);
ExtTextOut(hdc, 100, 200, /* x and y coordinates */

ETO_CLIPPED, /* clips text to rectangle */
&rc, /* address of RECT structure */
"Test of ExtTextOut function.", /* string to write */
28, /* characters in string */
(LPINT) NULL); /* default character spacing */

See Also
GetBkColor, SetBkColor, SetTextAlign, SetTextColor, TabbedTextOut, TextOut, RECT

ETO_CLIPPED 0x0004

Text is clipped to the rectangle.

ETO_CLIPPED 0x0004

ETO_OPAQUE 0x0002

Current background color fills the rectangle. (An application can set and query the current background
color by using the SetBkColor and GetBkColor functions.)

ETO_OPAQUE 0x0002

FillRgn (2.x)
BOOL FillRgn(hdc, hrgn, hbr)
HDC hdc; /* handle of device context */
HRGN hrgn; /* handle of region */
HBRUSH hbr; /
* handle of brush *
/

The FillRgn function fills the given region by using the specified brush.

Parameter Description
hdc Identifies the device context.
hrgn Identifies the region to be filled. The coordinates for the given region are specified in

device units.
hbr Identifies the brush to be used to fill the region.

Returns
The return value is nonzero if the function is successful. Otherwise, it is zero.

Example
The following example uses a blue brush to fill a rectangular region. Note that it is not necessary to select
the brush into the device context before using it to fill the region.

HRGN hrgn;
HBRUSH hBrush;
hrgn = CreateRectRgn(10, 10, 110, 110);
SelectObject(hdc, hrgn);
hBrush = CreateSolidBrush(RGB(0, 0, 255));
FillRgn(hdc, hrgn, hBrush);
DeleteObject(hrgn);
See Also
CreateBrushIndirect, CreateDIBPatternBrush, CreateHatchBrush, CreatePatternBrush, CreateSolidBrush,
PaintRgn

FloodFill (2.x)
BOOL FloodFill(hdc, nXStart, nYStart, clrref)
HDC hdc; /* handle of device context */
int nXStart; /* x-coordinate of starting
position *
/
int nYStart; /
* y-coordinate of starting position *
/
COLORREF clrref; /
* color of fill boundary *
/

The FloodFill function fills an area of the screen surface by using the current brush. The area is assumed to
be bounded as specified by the clrref parameter. The FloodFill function begins at the point specified by the
nXStart and nYStart parameters and continues in all directions to the color boundary.

Parameter Description
hdc Identifies the device context.
nXStart Specifies the logical x-coordinate at which to begin filling.
nYStart Specifies the logical y-coordinate at which to begin filling.
clrref Specifies the color of the boundary.

Returns
The return value is nonzero if the function is successful. Otherwise, it is zero, indicating that the filling
cannot be completed, that the given point has the boundary color specified by clrref, or that the point is
outside the clipping region.

Comments
Only memory device contexts and devices that support raster-display technology support the FloodFill
function.

See Also
ExtFloodFill, GetDeviceCaps

FrameRgn (2.x)
BOOL FrameRgn(hdc, hrgn, hbr, nWidth, nHeight)
HDC hdc; /* handle of device context */
HRGN hrgn; /* handle of region */
HBRUSH hbr; /
* handle of brush *
/
int nWidth; /
* width of region frame *
/
int nHeight; /
* height of region frame *
/

The FrameRgn function draws a border around the given region, using the specified brush.

Parameter Description
hdc Identifies the device context.
hrgn Identifies the region to be enclosed in a border.
hbr Identifies the brush to be used to draw the border.
nWidth Specifies the width, in device units, of vertical brush strokes.
nHeight Specifies the height, in device units, of horizontal brush strokes.

Returns
The return value is nonzero if the function is successful. Otherwise, it is zero.

Example
The following example uses a blue brush to frame a rectangular region. Note that it is not necessary to
select the brush or the region into the device context.

HRGN hrgn;
HBRUSH hBrush;
int Width = 5, Height = 2;
hrgn = CreateRectRgn(10, 10, 110, 110);
hBrush = CreateSolidBrush(RGB(0, 0, 255));
FrameRgn(hdc, hrgn, hBrush, Width, Height);
DeleteObject(hrgn);
DeleteObject(hBrush);
See Also
FillRgn, PaintRgn

GetAspectRatioFilter (2.x)
DWORD GetAspectRatioFilter(hdc)
HDC hdc; /* handle of device context */

The GetAspectRatioFilter function retrieves the setting for the current aspect-ratio filter. The aspect ratio
is the ratio formed by a device's pixel width and height. Information about a device's aspect ratio is used
in the creation, selection, and display of fonts. Windows provides a special filter, the aspect-ratio filter, to
select fonts designed for a particular aspect ratio from all of the available fonts. The filter uses the aspect
ratio specified by the SetMapperFlags function.

Parameter Description
hdc Identifies the device context that contains the specified aspect ratio.

Returns
The low-order word of the return value contains the x-coordinate of the aspect ratio if the function is
successful; the high-order word contains the y-coordinate.

See Also
SetMapperFlags

GetAspectRatioFilterEx (3.1)
BOOL GetAspectRatioFilterEx(hdc, lpAspectRatio)
HDC hdc;
SIZE FAR* lpAspectRatio;

The GetAspectRatioFilterEx function retrieves the setting for the current aspect-ratio filter. The aspect
ratio is the ratio formed by a device's pixel width and height. Information about a device's aspect ratio is
used in the creation, selection, and displaying of fonts. Windows provides a special filter, the aspect-ratio
filter, to select fonts designed for a particular aspect ratio from all of the available fonts. The filter uses the
aspect ratio specified by the SetMapperFlags function.

Parameter Description
hdc Identifies the device context that contains the specified aspect ratio.
lpAspectRatio Pointer to a SIZE structure where the current aspect ratio filter will be returned.

Returns
The return value is nonzero if the function is successful. Otherwise, it is zero.

See Also
SetMapperFlags

GetBitmapBits (2.x)
LONG GetBitmapBits(hbm, cbBuffer, lpvBits)
HBITMAP hbm; /* handle of bitmap */
LONG cbBuffer; /* number of
bytes to copy to buffer *
/
void FAR* lpvBits; /
* address of buffer for bitmap bits *
/

The GetBitmapBits function copies the bits of the specified bitmap into a buffer.

Parameter Description
hbm Identifies the bitmap.
cbBuffer Specifies the number of bytes to be copied.
lpvBits Points to the buffer that is to receive the bitmap. The bitmap is an array of bytes. This

array conforms to a structure in which horizontal scan lines are multiples of 16 bits.

Returns
The return value specifies the number of bytes in the bitmap if the function is successful. It is zero if there
is an error.

Comments
An application can use the GetObject function to determine the number of bytes to copy into the buffer
pointed to by the lpvBits parameter.

See Also
GetObject, SetBitmapBits

GetBitmapDimension (2.x)
DWORD GetBitmapDimension(hbm)
HBITMAP hbm; /* handle of bitmap */

The GetBitmapDimension function returns the width and height of the specified bitmap. The height and
width is assumed to have been set by the SetBitmapDimension function.

Parameter Description
hbm Identifies the bitmap.

Returns
The low-order word of the return value contains the bitmap width, in tenths of a millimeter, if the function
is successful; the high-order word contains the height. If the bitmap width and height have not been set by
using the SetBitmapDimension function, the return value is zero.

See Also
SetBitmapDimension

GetBitmapDimensionEx (2.x)
BOOL GetBitmapDimensionEx(hBitmap, lpDimension)
HBITMAP hBitmap; /* handle of bitmap */
SIZE FAR* lpDimension; /
* address of dimension structure *
/

The GetBitmapDimensionEx function returns the dimensions of the bitmap previously set by the
SetBitmapDimensionEx function. If no dimensions have been set, a default of 0,0 will be returned.

Parameter Description
hBitmap Identifies the bitmap.
lpDimension Points to a SIZE structure to which the dimensions are returned.

Returns
The return value is nonzero if the function is successful. Otherwise, it is zero.

See Also
SetBitmapDimensionEx, SIZE

GetBkColor (2.x)
COLORREF GetBkColor(hdc)
HDC hdc; /* handle of device context */

The GetBkColor function returns the current background color.

Parameter Description
hdc Identifies the device context.

Returns
The return value is an RGB (red, green, blue) color value if the function is successful.

Comments
If the background mode is OPAQUE, the system uses the background color to fill the gaps in styled lines,
the gaps between hatched lines in brushes, and the background in character cells. The system also uses the
background color when converting bitmaps between color and monochrome device contexts.

Example
The following example uses the GetBkColor function to determine whether the current background color
is white. If it is, the SetBkColor function sets it to red.

DWORD dwBackColor;
dwBackColor = GetBkColor(hdc);
if (dwBackColor == RGB(255, 255, 255)) { /* if color is white */

SetBkColor(hdc, RGB(255, 0, 0));/* sets color to red */
TextOut(hdc, 100, 200, "SetBkColor test.", 16);

}
See Also
GetBkMode, SetBkColor, SetBkMode, RGB

GetBkMode (2.x)
int GetBkMode(hdc)
HDC hdc; /* handle of device context */

The GetBkMode function returns the background mode. The background mode defines whether the system
removes existing background colors on the drawing surface before drawing text, hatched brushes, or any
pen style that is not a solid line.

Parameter Description
hdc Identifies the device context.

Returns
The return value specifies the current background mode if the function is successful. It can be OPAQUE,
TRANSPARENT, or TRANSPARENT1.

Example
The following example determines the current background mode by calling the GetBkMode function. If
the mode is OPAQUE, the SetBkMode function sets it to TRANSPARENT.

int nBackMode;
nBackMode = GetBkMode(hdc);
if (nBackMode == OPAQUE) {

TextOut(hdc, 90, 100, "This background mode is OPAQUE.", 31);
SetBkMode(hdc, TRANSPARENT);

}
See Also
GetBkColor, SetBkColor, SetBkMode

GetBoundsRect (3.1)
UINT GetBoundsRect(hdc, lprcBounds, flags)
HDC hdc; /* handle of device context */
RECT FAR* lprcBounds; /
* address of structure for bounding rectangle *
/
UINT flags; /
* specifies whether to clear rectangle *
/

The GetBoundsRect function returns the current accumulated bounding rectangle for the specified device
context.

Parameter Description
hdc Identifies the device context to return the bounding rectangle for.
lprcBounds Points to a buffer that will receive the current bounding rectangle. The rectangle is

returned in logical coordinates.
flags Specifies whether the bounding rectangle to be cleared after it is returned. This

parameter can be DCB_RESET, to clear the rectangle. Otherwise, it should be zero.

Returns
The return value is DBC_SET if the bounding rectangle is not empty. Otherwise it is DCB_RESET.

See Also
SetBoundsRect

GetBrushOrg (2.x)
DWORD GetBrushOrg(hdc)
HDC hdc; /* handle of device context */

The GetBrushOrg function retrieves the origin, in device coordinates, of the brush currently selected for
the given device context.

Parameter Description
hdc Identifies the device context.

Returns
The low-order word of the return value contains the current x-coordinate of the brush, in device
coordinates, if the function is successful; the high-order word contains the y-coordinate.

Comments
The initial brush origin is at the coordinates (0,0) in the client area. The return value specifies these
coordinates in device units relative to the origin of the desktop window.

Example
The following example uses the LOWORD and HIWORD macros to extract the x- and y-coordinate of the
current brush from the return value of the GetBrushOrg function:

DWORD dwBrOrg;
WORD wXBrOrg, wYBrOrg;
dwBrOrg = GetBrushOrg(hdc);
wXBrOrg = LOWORD(dwBrOrg);
wYBrOrg = HIWORD(dwBrOrg);
See Also
GetBrushOrgEx, SelectObject, SetBrushOrg, HIWORD, LOWORD

GetBrushOrgEx (3.1)
BOOL GetBrushOrgEx(hDC, lpPoint)
HDC hDC; /* handle of device context */
POINT FAR* lpPoint; /
* address of structure for brush origin *
/

The GetBrushOrgEx function retrieves the current brush origin for the given device context.

Parameter Description
hDC Identifies the device context.
lpPoint Points to a POINT structure to which the device coordinates of the brush origin are to be

returned.

Returns
The return value is nonzero if the function is successful. Otherwise, it is zero.

Comments
The initial brush origin is at the coordinate (0,0).

See Also
GetBrushOrg, SetBrushOrg

GetCharABCWidths (3.1)
BOOL GetCharABCWidths(hdc, uFirstChar, uLastChar, lpabc)
HDC hdc; /* handle of device context */
UINT uFirstChar; /* first character
in range to query *
/
UINT uLastChar; /
* last character in range to query *
/
LPABC lpabc; /
* address of ABC width structures *
/

The GetCharABCWidths function retrieves the widths of consecutive characters in a specified range from
the current TrueType font. The widths are returned in logical units. This function succeeds only with
TrueType fonts.

Parameter Description
hdc Identifies the device context.
uFirstChar Specifies the first character in the range of characters from the current font for which

character widths are returned.
uLastChar Specifies the last character in the range of characters from the current font for which

character widths are returned.
lpabc Points to an array of ABC structures that receive the character widths when the function

returns. This array must contain at least as many ABC structures as there are characters
in the range specified by the uFirstChar and uLastChar parameters.

Returns
The return value is nonzero if the function is successful. Otherwise, it is zero.

Comments
The TrueType rasterizer provides ABC character spacing after a specific point size has been selected. "A"
spacing is the distance that is added to the current position before placing the glyph. "B" spacing is the
width of the black part of the glyph. "C" spacing is added to the current position to account for the white
space to the right of the glyph. The total advanced width is given by A + B + C.

When the GetCharABCWidths function retrieves negative "A" or "C" widths for a character, that character
includes underhangs or overhangs.

To convert the ABC widths to font design units, an application should create a font whose height (as
specified in the lfHeight member of the LOGFONT structure) is equal to the value stored in the
ntmSizeEM member of the NEWTEXTMETRIC structure. (The value of the ntmSizeEM member can be
retrieved by calling the EnumFontFamilies function.)

The ABC widths of the default character are used for characters that are outside the range of the currently
selected font.

To retrieve the widths of characters in non-TrueType fonts, applications should use the GetCharWidth
function.

See Also
EnumFontFamilies, GetCharWidth, ABC, OUTLINETEXTMETRIC

GetCharWidth (2.x)
BOOL GetCharWidth(hdc, uFirstChar, uLastChar, lpnWidths)
HDC hdc; /* handle of device context */
UINT uFirstChar; /* first character
in range to query *
/
UINT uLastChar; /
* last character in range to query *
/
int FAR* lpnWidths; /
* address of buffer for widths *
/

The GetCharWidth function retrieves the widths of individual characters in a range of consecutive
characters in the current font.

Parameter Description
hdc Identifies the device context.
uFirstChar Specifies the first character in a group of consecutive characters in the current font.
uLastChar Specifies the last character in a group of consecutive characters in the current font.
lpnWidths Points to a buffer that receives the width values for a group of consecutive characters in

the current font.

Returns
The return value is nonzero if the function is successful. Otherwise, it is zero.

Comments
If a character in the group of consecutive characters does not exist in a particular font, it will be assigned
the width value of the default character.

Example
The following example uses the GetCharWidth function to retrieve the widths of the characters from "I"
through "S" and displays the total number of widths retrieved in a message box:

HDC hdc;
WORD wTotalValues;
WORD wFirstChar, wLastChar;
int InfoBuffer[256];
char szMessage[30];
wFirstChar = (WORD) 'I';
wLastChar = (WORD) 'S';
hdc = GetDC(hwnd);
if (GetCharWidth(hdc, wFirstChar, wLastChar, (int FAR*) InfoBuffer)) {

wTotalValues = wLastChar - wFirstChar + 1;
wsprintf(szMessage, "Total values received: %d", wTotalValues);
MessageBox(hwnd, szMessage, "GetCharWidth", MB_OK);

}
else

MessageBox(hwnd, "GetCharWidth was unsuccessful", "ERROR!",
MB_OK);

ReleaseDC(hwnd, hdc);
See Also
GetCharABCWidths

GetClipBox (2.x)
int GetClipBox(hdc, lprc)
HDC hdc; /* handle of device context */
RECT FAR* lprc; /* address of
structure with rectangle *
/

The GetClipBox function retrieves the dimensions of the smallest rectangle that completely contains the
current clipping region.

Parameter Description
hdc Identifies the device context.
lprc Points to the RECT structure that receives the logical coordinates of the rectangle.

Returns
The return value is SIMPLEREGION (region has no overlapping borders), COMPLEXREGION (region
has overlapping borders), or NULLREGION (region is empty), if the function is successful. Otherwise,
the return value is ERROR.

See Also
GetBoundsRect, GetRgnBox, GetTextExtent, SelectClipRgn, RECT

GetCurrentPosition (2.x)
DWORD GetCurrentPosition(hdc)
HDC hdc; /* handle of device context */

The GetCurrentPosition function retrieves the logical coordinates of the current position. The current
position is set by using the MoveTo function.

Parameter Description
hdc Identifies the device context.

Returns
The low-order word of the return value contains the logical x-coordinate of the current position if the
function is successful; the high-order word contains the logical y-coordinate.

See Also
GetCurrentPositionEx, LineTo, MoveTo

GetCurrentPositionEx (3.1)
BOOL GetCurrentPositionEx(hdc, lpPoint)
HDC hdc;
POINT FAR* lpPoint;

The GetCurrentPositionEx function retrieves the current position in logical coordinates.

Parameter Description
hdc Identifies the device context to get the current position from.
lpPoint Points to a POINT structure that gets filled with the current position.

Returns
The return value is nonzero if the function is successful, zero if there is an error.

See Also
GetCurrentPosition

GetDCOrg (2.x)
DWORD GetDCOrg(hdc)
HDC hdc; /* handle of device context */

The GetDCOrg function retrieves the coordinates of the final translation origin for the device context. This
origin specifies the offset used by Windows to translate device coordinates into client coordinates for
points in an application's window. The final translation origin is relative to the physical origin of the
screen.

Parameter Description
hdc Identifies the device context whose origin is to be retrieved.

Returns
The low-order word of the return value contains the x-coordinate of the final translation origin, in device
coordinates, if the function is successful; the high-order word contains the y-coordinate.

Example
The following example uses the CreateIC function to create an information context for the screen and then
retrieves the context's origin by using the GetDCOrg function:

HDC hdcIC;
DWORD dwOrigin;
hdcIC = CreateIC("DISPLAY", NULL, NULL, NULL);
dwOrigin = GetDCOrg(hdcIC);
DeleteDC(hdcIC);
See Also
CreateIC

GetDeviceCaps (2.x)
int GetDeviceCaps(hdc, iCapability)
HDC hdc; /* handle of device context */
int iCapability; /* index of capability to
query *
/

The GetDeviceCaps function retrieves device-specific information about a given display device.

Parameter Description
hdc Identifies the device context.
iCapability Specifies the type of information to be returned. It can be one of the following indices:

Index Description
DRIVERVERSION Version number of the device driver.
TECHNOLOGY Device technology. It can be one of the following values:

Value Meaning
DT_PLOTTER Vector plotter
DT_RASDISPLAY Raster display
DT_RASPRINTER Raster printer
DT_RASCAMERA Raster camera
DT_CHARSTREAM Character stream
DT_METAFILE Metafile
DT_DISPFILE Display file

HORZSIZE Width of the physical display, in millimeters.
VERTSIZE Height of the physical display, in millimeters.
HORZRES Width of the display, in pixels.
VERTRES Height of the display, in raster lines.
LOGPIXELSX Number of pixels per logical inch along the display width.
LOGPIXELSY Number of pixels per logical inch along the display height.
BITSPIXEL Number of adjacent color bits for each pixel.
PLANES Number of color planes.
NUMBRUSHES Number of device-specific brushes.
NUMPENS Number of device-specific pens.
NUMMARKERS Number of device-specific markers.
NUMFONTS Number of device-specific fonts.
NUMCOLORS Number of entries in the device's color table.
ASPECTX Relative width of a device pixel used for line drawing.
ASPECTY Relative height of a device pixel used for line drawing.
ASPECTXY Diagonal width of a device pixel used for line drawing.
PDEVICESIZE Size of the PDEVICE internal structure, in bytes.
CLIPCAPS Clipping capabilities the device supports. It can be one of

the following values:
Value Meaning
CP_NONE Output is not clipped.
CP_RECTANGLE Output is clipped to rectangles.
CP_REGION Output is clipped to regions.

SIZEPALETTE Number of entries in the system palette. This index is valid
only if the device driver sets the RC_PALETTE bit in the
RASTERCAPS index; it is available only if the driver is
written for Windows 3.0 or later.

NUMRESERVED Number of reserved entries in the system palette. This
index is valid only if the device driver sets the
RC_PALETTE bit in the RASTERCAPS index; it is

available only if the driver is written for Windows 3.0 or
later.

COLORRES Color resolution of the device, in bits per pixel. This index
is valid only if the device driver sets the RC_PALETTE bit
in the RASTERCAPS index; it is available only if the
driver is written for Windows 3.0 or later.

RASTERCAPS Raster capabilities the device supports. It can be a
combination of the following values:
Value Meaning
RC_BANDING Supports banding.
RC_BIGFONT Supports fonts larger than

64K.
RC_BITBLT Transfers bitmaps.
RC_BITMAP64 Supports bitmaps larger than

64K.
RC_DEVBITS Supports device bitmaps.
RC_DI_BITMAP Supports the SetDIBits and

GetDIBits functions.
RC_DIBTODEV Supports the

SetDIBitsToDevice function.
RC_FLOODFILL Performs flood fills.
RC_GDI20_OUTPUT Supports Windows version

2.0 features.
RC_GDI20_STATE Includes a state block in the

device context.
RC_NONE Supports no raster

operations.
RC_OP_DX_OUTPUT Supports dev opaque and

DX array.
RC_PALETTE Specifies a palette-based

device.
RC_SAVEBITMAP Saves bitmaps locally.
RC_SCALING Supports scaling.
RC_STRETCHBLT Supports the StretchBlt

function.
RC_STRETCHDIB Supports the StretchDIBits

function.
CURVECAPS Curve capabilities the device supports. It can be a

combination of the following values:
Value Meaning
CC_NONE Supports curves.
CC_CIRCLES Supports circles.
CC_PIE Supports pie wedges.
CC_CHORD Supports chords.
CC_ELLIPSES Supports ellipses.
CC_WIDE Supports wide borders.
CC_STYLED Supports styled borders.
CC_WIDESTYLED Supports wide, styled borders.
CC_INTERIORS Supports interiors.
CC_ROUNDRECT Supports rectangles with

rounded corners.
LINECAPS Line capabilities the device supports. It can be a

combination of the following values:
Value Meaning
LC_NONE Supports no lines.
LC_POLYLINE Supports polylines.

LC_MARKER Supports markers.
LC_POLYMARKER Supports polymarkers.
LC_WIDE Supports wide lines.
LC_STYLED Supports styled lines.
LC_WIDESTYLED Supports wide, styled lines.
LC_INTERIORS Supports interiors.

POLYGONALCAPS Polygonal capabilities the device supports. It can be a
combination of the following values:
Value Meaning
PC_NONE Supports no polygons.
PC_POLYGON Supports alternate fill

polygons.
PC_RECTANGLE Supports rectangles.
PC_WINDPOLYGON Supports winding number fill

polygons.
PC_SCANLINE Supports scan lines.
PC_WIDE Supports wide borders.
PC_STYLED Supports styled borders.
PC_WIDESTYLED Supports wide, styled borders.
PC_INTERIORS Supports interiors.

TEXTCAPS Text capabilities the device supports. It can be a
combination of the following values:
Value Meaning
TC_OP_CHARACTER Supports character output

precision, which indicates
the device can place device
fonts at any pixel location.
This is required for any
device with device fonts.

TC_OP_STROKE Supports stroke output
precision, which indicates
the device can omit any
stroke of a device font.

TC_CP_STROKE Supports stroke clip
precision, which indicates
the device can clip device
fonts to a pixel boundary.

TC_CR_90 Supports 90-degree
character rotation, which
indicates the device can
rotate characters only 90
degrees at a time.

TC_CR_ANY Supports character rotation
at any degree, which
indicates the device can
rotate device fonts through
any angle.

TC_SF_X_YINDEP Supports scaling
independent of x and y
directions, which indicates
the device can scale device
fonts separately in x and y
directions.

TC_SA_DOUBLE Supports doubled
characters for scaling,
which indicates the device
can double the size of
device fonts.

TC_SA_INTEGER Supports integer multiples
for scaling, which indicates
the device can scale the
size of device fonts in any
integer multiple.

TC_SA_CONTIN Supports any multiples for
exact scaling, which
indicates the device can
scale device fonts by any
amount but still preserve
the x and y ratios.

TC_EA_DOUBLE Supports double-weight
characters, which indicates
the device can make device
fonts bold. If this bit is not
set for printer drivers,
graphics device interface
(GDI) attempts to create
bold device fonts by
printing them twice.

TC_IA_ABLE Supports italics, which
indicates the device can
make device fonts italic. If
this bit is not set, GDI
assumes italics are not
available.

TC_UA_ABLE Supports underlining,
which indicates the device
can underline device fonts.
If this bit is not set, GDI
creates underlines for
device fonts.

TC_SO_ABLE Supports strikeouts, which
indicates the device can
strikeout device fonts. If
this bit is not set, GDI
creates strikeouts for
device fonts.

TC_RA_ABLE Supports raster fonts,
which indicates that GDI
should enumerate any
raster or TrueType fonts
available for this device in
response to a call to the
EnumFonts or
EnumFontFamilies
function. If this bit is not
set, GDI-supplied raster or
TrueType fonts are not
enumerated when these
functions are called.

TC_VA_ABLE Supports vector fonts,
which indicates that GDI
should enumerate any
vector fonts available for
this device in response to a
call to the EnumFonts or
EnumFontFamilies
function. This is significant
for vector devices only
(that is, for plotters).
Display drivers (which
must be able to use raster

fonts) and raster printer
drivers always enumerate
vector fonts, because GDI
rasterizes vector fonts
before sending them to the
driver.

TC_RESERVED Reserved; must be zero.

Returns
The return value is the value of the requested capability if the function is successful.

Example
The following example uses the GetDeviceCaps function to determine whether a device supports raster
capabilities and is palette-based. If so, the example calls the GetSystemPaletteUse function.

WORD nUse;
hdc = GetDC(hwnd);
if ((GetDeviceCaps(hdc, RASTERCAPS) & RC_PALETTE) == 0) {

ReleaseDC(hwnd, hdc);
break;

}
nUse = GetSystemPaletteUse(hdc);
ReleaseDC(hwnd, hdc);
See Also
LOGFONT

GetDIBits (3.0)
int GetDIBits(hdc, hbmp, nStartScan, cScanLines, lpvBits, lpbmi, fuColorUse)
HDC hdc; /* handle of device context */
HBITMAP hbmp; /
* handle of bitmap *
/
UINT nStartScan; /
* first scan line to set in destination bitmap *
/
UINT cScanLines; /
* number of scan lines to copy *
/
void FAR* lpvBits; /
* address of array for bitmap bits *
/
BITMAPINFO FAR* lpbmi; /
* address of structure with bitmap data *
/
UINT fuColorUse; /
* type of color table *
/

The GetDIBits function retrieves the bits of the specified bitmap and copies them, in device-independent
format, into the buffer pointed to by the lpvBits parameter. The lpbmi parameter retrieves the color format
for the device-independent bits.

Parameter Description
hdc Identifies the device context.
hbmp Identifies the bitmap.
nStartScan Specifies the first scan line to be set in the bitmap received in the lpvBits parameter.
cScanLines Specifies the number of lines to be copied.
lpvBits Points to a buffer that will receive the bitmap bits in device-independent format.
lpbmi Points to a BITMAPINFO structure that specifies the color format and dimension for the

device-independent bitmap.
fuColorUse Specifies whether the bmiColors members of the BITMAPINFO structure are to contain

explicit RGB values or indices into the currently realized logical palette. The
fuColorUse parameter must be one of the following values:

Value Meaning
DIB_PAL_COLORS Color table is to consist of an array of 16-bit indices into

the currently realized logical palette.
DIB_RGB_COLORS Color table is to contain literal RGB values.

Returns
The return value specifies the number of scan lines copied from the bitmap if the function is successful.
Otherwise, it is zero.

Comments
If the lpvBits parameter is NULL, the GetDIBits function fills in the BITMAPINFO structure to which the
lpbmi parameter points but does not retrieve bits from the bitmap.

The bitmap identified by the hbmp parameter must not be selected into a device context when the
application calls this function.

The origin for device-independent bitmaps (DIBs) is the lower-left corner of the bitmap, not the upper-left
corner, which is the origin when the mapping mode is MM_TEXT.

See Also
SetDIBits, BITMAPINFO

GetFontData (3.1)
DWORD GetFontData(hdc, dwTable, dwOffset, lpvBuffer, cbData)
HDC hdc; /* handle of device context */
DWORD dwTable; /* metric table to
query *
/
DWORD dwOffset; /
* offset into table being queried *
/
void FAR* lpvBuffer; /
* address of buffer for font data *
/
DWORD cbData; /
* length of data to query *
/

The GetFontData function retrieves font-metric information from a scalable font file. The information to
retrieve is identified by specifying an offset into the font file and the length of the information to return.

Parameter Description
hdc Identifies the device context.
dwTable Specifies the name of the metric table to be returned. This parameter can be one of the

metric tables documented in the TrueType Font Files specification, published by
Microsoft Corporation. If this parameter is zero, the information is retrieved starting at
the beginning of the font file.

dwOffset Specifies the offset from the beginning of the table at which to begin retrieving
information. If this parameter is zero, the information is retrieved starting at the
beginning of the table specified by the dwTable parameter. If this value is greater than
or equal to the size of the table, GetFontData returns zero.

lpvBuffer Points to a buffer that will receive the font information. If this value is NULL, the
function returns the size of the buffer required for the font data specified in the dwTable
parameter.

cbData Specifies the length, in bytes, of the information to be retrieved. If this parameter is zero,
GetFontData returns the size of the data specified in the dwTable parameter.

Returns
The return value specifies the number of bytes returned in the buffer pointed to by the lpvBuffer
parameter, if the function is successful. Otherwise, it is -1.

Comments
An application can sometimes use the GetFontData function to save a TrueType font with a document. To
do this, the application determines whether the font can be embedded and then retrieves the entire font file,
specifying zero for the dwTable, dwOffset, and cbData parameters.

Applications can determine whether a font can be embedded by checking the otmfsType member of the
OUTLINETEXTMETRIC structure. If bit 1 of otmfsType is set, embedding is not permitted for the font.
If bit 1 is clear, the font can be embedded. If bit 2 is set, the embedding is read-only.

If an application attempts to use this function to retrieve information for a non-TrueType font, the
GetFontData function returns -1.

Example
The following example retrieves an entire TrueType font file:

HGLOBAL hglb;
DWORD dwSize;
void FAR* lpvBuffer;
dwSize = GetFontData(hdc, NULL, 0L, NULL, 0L); /* get file size */
hglb = GlobalAlloc(GPTR, dwSize); /* allocate memory */
lpvBuffer = GlobalLock(hglb);
GetFontData(hdc, NULL, 0L, lpvBuffer, dwSize); /* retrieve data */

The following retrieves an entire TrueType font file 4K at a time:

#define BUFFER_SIZE 4096
BYTE Buffer[BUFFER_SIZE];
DWORD dwOffset;
DWORD dwSize;
dwOffset = 0L;
while(dwSize = GetFontData(hdc, NULL, dwOffset,

Buffer, BUFFER_SIZE)) {
.
. /* process data in buffer */
.
dwOffset += dwSize;

}
The following example retrieves a TrueType font table:

HGLOBAL hglb;
DWORD dwSize;
void FAR* lpvBuffer;
LPSTR lpszTable;
DWORD dwTable;
lpszTable = "cmap";
dwTable = *(LPDWORD) lpszTable;/* construct DWORD type */
dwSize = GetFontData(hdc, dwTable, 0L, NULL, 0L); /* get table size */
hglb = GlobalAlloc(GPTR, dwSize); /* allocate memory */
lpvBuffer = GlobalLock(hglb);
GetFontData(hdc, dwTable, 0L, lpvBuffer, dwSize); /* retrieve data */
See Also
GetOutlineTextMetrics, OUTLINETEXTMETRIC

GetGlyphOutline (3.1)
DWORD GetGlyphOutline(hdc, uChar, fuFormat, lpgm, cbBuffer, lpBuffer, lpmat2)
HDC hdc; /* handle of device context */
UINT uChar; /
* character to query *
/
UINT fuFormat; /
* format of data to return *
/
LPGLYPHMETRICS lpgm; /
* address of structure with glyph metrics *
/
DWORD cbBuffer; /
* size of buffer for data *
/
void FAR* lpBuffer; /
* address of buffer for outline data *
/
LPMAT2 lpmat2; /
* address of structure with transform matrix *
/

The GetGlyphOutline function retrieves the outline curve or bitmap for an outline character in the current
font.

Parameter Description
hdc Identifies the device context.
uChar Specifies the character for which information is to be returned.
fuFormat Specifies the format in which the function is to return information. It can be one of the

following values:

Value Meaning
GGO_BITMAP Returns the glyph bitmap. When the function returns, the buffer

pointed to by the lpBuffer parameter contains a 1-bit-per-pixel
bitmap whose rows start on doubleword boundaries.

GGO_NATIVE Returns the curve data points in the rasterizer's native format,
using device units. When this value is specified, any
transformation specified in the lpmat2 parameter is ignored.

When the value of this parameter is zero, the function fills in a GLYPHMETRICS
structure but does not return glyph-outline data.

lpgm Points to a GLYPHMETRICS structure that describes the placement of the glyph in the
character cell.

cbBuffer Specifies the size of the buffer into which the function copies information about the
outline character. If this value is zero and the fuFormat parameter is either the
GGO_BITMAP or GGO_NATIVE values, the function returns the required size of the
buffer.

lpBuffer Points to a buffer into which the function copies information about the outline character.
If the fuFormat parameter specifies the GGO_NATIVE value, the information is copied
in the form of TTPOLYGONHEADER and TTPOLYCURVE structures. If this value is
NULL and the fuFormat parameter is either the GGO_BITMAP or GGO_NATIVE
value, the function returns the required size of the buffer.

lpmat2 Points to a MAT2 structure that contains a transformation matrix for the character. This
parameter cannot be NULL, even when the GGO_NATIVE value is specified for the
fuFormat parameter.

Returns
The return value is the size, in bytes, of the buffer required for the retrieved information if the cbBuffer
parameter is zero or the lpBuffer parameter is NULL. Otherwise, it is a positive value if the function is
successful, or -1 if there is an error.

Comments

An application can rotate characters retrieved in bitmap format by specifying a 2-by-2 transformation
matrix in the structure pointed to by the lpmat2 parameter.

A glyph outline is returned as a series of contours. Each contour is defined by a TTPOLYGONHEADER
structure followed by as many TTPOLYCURVE structures as are required to describe it. All points are
returned as POINTFX structures and represent absolute positions, not relative moves. The starting point
given by the pfxStart member of the TTPOLYGONHEADER structure is the point at which the outline for
a contour begins. The TTPOLYCURVE structures that follow can be either polyline records or spline
records. Polyline records are a series of points; lines drawn between the points describe the outline of the
character. Spline records represent the quadratic curves used by TrueType (that is, quadratic b-splines).

For example, the GetGlyphOutline function retrieves the following information about the lowercase "i" in
the Arial TrueType font:

dwrc = 88 /* total size of native buffer*/
TTPOLYGONHEADER #1 /* contour for dot on i */
cb= 44 /* size for contour */
dwType = 24 /* TT_POLYGON_TYPE */
pfxStart = 1.000, 11.000
TTPOLYCURVE #1
wType = TT_PRIM_LINE
cpfx = 3
pfx[0] = 1.000, 12.000
pfx[1] = 2.000, 12.000
pfx[2] = 2.000, 11.000 /* automatically close to pfxStart */

TTPOLYGONHEADER #2 /* contour for body of i */
cb= 44
dwType = 24 /* TT_POLYGON_TYPE */
pfxStart = 1.000, 0.000
TTPOLYCURVE #1
wType = TT_PRIM_LINE
cpfx = 3
pfx[0] = 1.000, 9.000
pfx[1] = 2.000, 9.000
pfx[2] = 2.000, 0.000/* automatically close to pfxStart */

See Also
GetOutlineTextMetrics, GLYPHMETRICS, MAT2, OUTLINETEXTMETRIC, POINTFX,
TTPOLYCURVE, TTPOLYGONHEADER

GGO_BITMAP 1

Returns the glyph bitmap. When the function returns, the buffer pointed to by the lpBuffer parameter
contains a 1-bit-per-pixel bitmap whose rows start on doubleword boundaries.

GGO_BITMAP 1

GGO_NATIVE 2

Returns the curve data points in the rasterizer's native format, using device units. When this value is
specified, any transformation specified in the lpmat2 parameter is ignored.

GGO_NATIVE 2

GetKerningPairs (3.1)
int GetKerningPairs(hdc, cPairs, lpkrnpair)
HDC hdc; /* handle of device context */
int cPairs; /
* number of kerning pairs *
/
KERNINGPAIR FAR* lpkrnpair; /
* pointer to structures for kerning pairs *
/

The GetKerningPairs function retrieves the character kerning pairs for the font that is currently selected in
the specified device context.

Parameter Description
hdc Identifies a device context. The GetKerningPairs function retrieves kerning pairs for the

current font for this device context.
cPairs Specifies the number of KERNINGPAIR structures pointed to by the lpkrnpair

parameter. The function will not copy more kerning pairs than specified by cPairs.
lpkrnpair Points to an array of KERNINGPAIR structures that receive the kerning pairs when the

function returns. This array must contain at least as many structures as specified by the
cPairs parameter. If this parameter is NULL, the function returns the total number of
kerning pairs for the font.

Returns
The return value specifies the number of kerning pairs retrieved or the total number of kerning pairs in the
font, if the function is successful. It is zero if the function fails or there are no kerning pairs for the font.

See Also
KERNINGPAIR

GetMapMode (2.x)
int GetMapMode(hdc)
HDC hdc; /* handle of device context */

The GetMapMode function retrieves the current mapping mode.

Parameter Description
hdc Identifies the device context.

Returns
The return value specifies the mapping mode if the function is successful.

It can be one of the following values:

Value Meaning
MM_ANISOTROPIC Logical units are converted to arbitrary units with arbitrarily scaled axes.

Setting the mapping mode to MM_ANISOTROPIC does not change the
current window or viewport settings. To change the units, orientation, and
scaling, an application should use the SetWindowExt and SetViewportExt
functions.

MM_HIENGLISH Each logical unit is converted to 0.001 inch. Positive x is to the right;
positive y is up.

MM_HIMETRIC Each logical unit is converted to 0.01 millimeter. Positive x is to the right;
positive y is up.

MM_ISOTROPIC Logical units are converted to arbitrary units with equally scaled axes; that
is, one unit along the x-axis is equal to one unit along the y-axis. The
SetWindowExt and SetViewportExt functions must be used to specify the
desired units and the orientation of the axes. GDI makes adjustments as
necessary to ensure that the x and y units remain the same size.

MM_LOENGLISH Each logical unit is converted to 0.01 inch. Positive x is to the right; positive
y is up.

MM_LOMETRIC Each logical unit is converted to 0.1 millimeter. Positive x is to the right;
positive y is up.

MM_TEXT Each logical unit is converted to one device pixel. Positive x is to the right;
positive y is down.

MM_TWIPS Each logical unit is converted to 1/20 of a point. (Because a point is 1/72
inch, a twip is 1/1440 inch). Positive x is to the right; positive y is up.

Example
The following example uses the GetMapMode function to determine whether the current mapping mode is
MM_TEXT:

if (GetMapMode(hdc) != MM_TEXT) {
TextOut(hdc, 100, -200, "Mapping mode must be MM_TEXT", 28);
return FALSE;

}
See Also
SetMapMode

GetMetaFile (2.x)
HMETAFILE GetMetaFile(lpszFile)
LPCSTR lpszFile; /* address of metafile name */

The GetMetaFile function creates a handle of a specified metafile.

Parameter Description
lpszFile Points to the null-terminated string that specifies the MS-DOS filename of the metafile.

The metafile is assumed to exist.

Returns
The return value is the handle of a metafile if the function is successful. Otherwise, it is NULL.

Example
The following example uses the CopyMetaFile function to copy a metafile to a specified file, plays the
copied metafile, uses the GetMetaFile function to retrieve a handle to the copied metafile, uses the
SetWindowOrg function to change the position at which the metafile is played 200 logical units to the
right, and then plays the metafile at the new location:

HANDLE hmf, hmfSource, hmfOld;
LPSTR lpszFile1 = "MFTest";
hmf = CopyMetaFile(hmfSource, lpszFile1);
PlayMetaFile(hdc, hmf);
DeleteMetaFile(hmf);
hmfOld = GetMetaFile(lpszFile1);
SetWindowOrg(hdc, -200, 0);
PlayMetaFile(hdc, hmfOld);
DeleteMetaFile(hmfSource);
DeleteMetaFile(hmfOld);
See Also
CopyMetaFile, PlayMetaFile, SetWindowOrg

GetMetaFileBits (2.x)
HGLOBAL GetMetaFileBits(hmf)
HMETAFILE hmf; /* handle of metafile */

The GetMetaFileBits function returns a handle of the global memory object that contains the specified
metafile as a collection of bits. The memory object can be used to determine the size of the metafile or to
save the metafile as a file. The memory object should not be modified.

Parameter Description
hmf Identifies the memory metafile.

Returns
The return value is the handle of the global memory object that contains the metafile, if the function is
successful. Otherwise, it is NULL.

Comments
The handle contained in the hmf parameter becomes invalid when the GetMetaFileBits function returns, so
the returned global memory handle must be used to refer to the metafile.

When it no longer requires a global memory object that is associated with a metafile, an application should
remove the object by using the GlobalFree function.

See Also
GlobalFree

GetNearestColor (2.x)
COLORREF GetNearestColor(hdc, clrref)
HDC hdc; /* handle of device context */
COLORREF clrref; /* color to match */

The GetNearestColor function retrieves the solid color that best matches a specified logical color; the
given device must be able to represent this solid color.

Parameter Description
hdc Identifies the device context.
clrref Specifies the color to be matched.

Returns
The return value specifies an RGB (red, green, blue) color value that defines the solid color closest to the
clrref value that the device can represent.

See Also
GetNearestPaletteIndex

GetNearestPaletteIndex (3.0)
UINT GetNearestPaletteIndex(hpal, clrref)
HPALETTE hpal; /* handle of palette */
COLORREF clrref; /* color to match */

The GetNearestPaletteIndex function retrieves the index of the logical-palette entry that best matches the
specified color value.

Parameter Description
hpal Identifies the logical palette.
clrref Specifies the color to be matched.

Returns
The return value is the index of the logical-palette entry whose corresponding color best matches the
specified color.

Example
The following example uses the GetNearestPaletteIndex function to retrieve a color index from a palette. It
then creates a brush with that retrieved color by using the PALETTEINDEX macro in a call to the
CreateSolidBrush function.

WORD nColor;
HPALETTE hpal;
DWORD dwBrushColors[8][8];
HBRUSH hbr;
int x, y;

.

. /* Initialize the array of brush colors. */

.
nColor = GetNearestPaletteIndex(hpal, dwBrushColors[x][y]);
hbr = CreateSolidBrush(PALETTEINDEX(nColor));

.

. /* Use the brush handle. */

.
DeleteObject(hbr);
See Also
CreateSolidBrush, GetNearestColor, GetPaletteEntries, GetSystemPaletteEntries, PALETTEINDEX

GetObject (2.x)
int GetObject(hgdiobj, cbBuffer, lpvObject)
HGDIOBJ hgdiobj; /* handle of object */
int cbBuffer; /* size
of buffer for object information *
/
void FAR* lpvObject; /
* address of buffer for object information *
/

The GetObject function fills a buffer with information that defines a given object. The function retrieves a
LOGPEN, LOGBRUSH, LOGFONT, or BITMAP structure, or an integer, depending on the specified
object.

Parameter Description
hgdiobj Identifies a logical pen, brush, font, bitmap, or palette.
cbBuffer Specifies the number of bytes to be copied to the buffer.
lpvObject Points to the buffer that is to receive the information.

Returns
The return value specifies the number of bytes retrieved if the function is successful. Otherwise, it is zero.

Comments
The buffer pointed to by the lpvObject parameter must be sufficiently large to receive the information.

If the hgdiobj parameter identifies a bitmap, the GetObject function returns only the width, height, and
color format information of the bitmap. The bits can be retrieved by using the GetBitmapBits function.

If hgdiobj identifies a logical palette, GetObject retrieves an integer that specifies the number of entries in
the palette; the function does not retrieve the LOGPALETTE structure that defines the palette. To retrieve
information about palette entries, an application can call the GetPaletteEntries function.

Example
The following example uses the GetObject function to fill a LOGBRUSH structure with the attributes of
the current brush and then tests whether the brush style is BS_SOLID:

LOGBRUSH lb;
HBRUSH hbr;
GetObject(hbr, sizeof(LOGBRUSH), (LPSTR) &lb);
if (lb.lbStyle == BS_SOLID) {

.

.

.
}
See Also
GetBitmapBits, GetPaletteEntries, GetStockObject, BITMAP, LOGBRUSH, LOGFONT, LOGPALETTE,
LOGPEN

GetOutlineTextMetrics (3.1)
WORD GetOutlineTextMetrics(hdc, cbData, lpotm)
HDC hdc; /* handle of device context */
UINT cbData; /
* size of buffer for information *
/
OUTLINETEXTMETRIC FAR* lpotm; /
* address of structure for metrics *
/

The GetOutlineTextMetrics function retrieves metric information for TrueType fonts.

Parameter Description
hdc Identifies the device context.
cbData Specifies the size, in bytes, of the buffer to which information is returned.
lpotm Points to an OUTLINETEXTMETRIC structure. If this parameter is NULL, the

function returns the size of the buffer required for the retrieved metric information.

Returns
The return value is nonzero if the function is successful. Otherwise, it is zero.

Comments
The OUTLINETEXTMETRIC structure contains most of the font metric information provided with the
TrueType format, including a TEXTMETRIC structure. The last four members of the
OUTLINETEXTMETRIC structure are pointers to strings. Applications should allocate space for these
strings in addition to the space required for the other members. Because there is no system-imposed limit
to the size of the strings, the simplest method for allocating memory is to retrieve the required size by
specifying NULL for the lpotm parameter in the first call to the GetOutlineTextMetrics function.

See Also
GetTextMetrics, OUTLINETEXTMETRIC, TEXTMETRIC

GetPaletteEntries (3.0)
UINT GetPaletteEntries(hpal, iStart, cEntries, lppe)
HPALETTE hpal; /* handle of palette */
UINT iStart; /
* first palette entry to retrieve *
/
UINT cEntries; /
* number of entries to retrieve *
/
PALETTEENTRY FAR* lppe; /
* address of structure for palette entries *
/

The GetPaletteEntries function retrieves a range of palette entries in a logical palette.

Parameter Description
hpal Identifies the logical palette.
iStart Specifies the first logical-palette entry to be retrieved.
cEntries Specifies the number of logical-palette entries to be retrieved.
lppe Points to an array of PALETTEENTRY structures that will receive the palette entries.

The array must contain at least as many structures as specified by the cEntries
parameter.

Returns
The return value is the number of entries retrieved from the logical palette, if the function is successful.
Otherwise, it is zero.

See Also
GetSystemPaletteEntries, PALETTEENTRY

GetPixel (2.x)
COLORREF GetPixel(hdc, nXPos, nYPos)
HDC hdc; /* handle of device context */
int nXPos; /* x-coordinate of pixel to
retrieve *
/
int nYPos; /
* y-coordinate of pixel to retrieve *
/

The GetPixel function retrieves the RGB (red, green, blue) color value of the pixel at the specified
coordinates. The point must be in the clipping region; if it is not, the function is ignored.

Parameter Description
hdc Identifies the device context.
nXPos Specifies the logical x-coordinate of the point to be examined.
nYPos Specifies the logical y-coordinate of the point to be examined.

Returns
The return value specifies an RGB color value for the color of the given point, if the function is successful.
It is -1 if the coordinates do not specify a point in the clipping region.

Comments
Not all devices support the GetPixel function.

See Also
GetDeviceCaps, SetPixel

GetPolyFillMode (2.x)
int GetPolyFillMode(hdc)
HDC hdc; /* handle of device context */

The GetPolyFillMode function retrieves the current polygon-filling mode.

Parameter Description
hdc Identifies the device context.

Returns
The return value specifies the polygon-filling mode, ALTERNATE or WINDING, if the function is
successful.

Comments
When the polygon-filling mode is ALTERNATE, the system fills the area between odd-numbered and
even-numbered polygon sides on each scan line. That is, the system fills the area between the first and
second side, between the third and fourth side, and so on.

When the polygon-filling mode is WINDING, the system uses the direction in which a figure was drawn
to determine whether to fill an area. Each line segment in a polygon is drawn in either a clockwise or a
counterclockwise direction. Whenever an imaginary line drawn from an enclosed area to the outside of a
figure passes through a clockwise line segment, a count is incremented. When the line passes through a
counterclockwise line segment, the count is decremented. The area is filled if the count is nonzero when
the line reaches the outside of the figure.

Example
The following example uses the GetPolyFillMode function to determine whether the current polygon-
filling mode is ALTERNATE:

int nPolyFillMode;
nPolyFillMode = GetPolyFillMode(hdc);
if (nPolyFillMode == ALTERNATE) {

.

.

.
}
See Also
SetPolyFillMode

GetRasterizerCaps (3.1)
BOOL GetRasterizerCaps(lpraststat, cb)
RASTERIZER_STATUS FAR* lpraststat; /* address of structure for status */
int cb; /
* number of bytes in structure *
/

The GetRasterizerCaps function returns flags indicating whether TrueType fonts are installed in the
system.

Parameter Description
lpraststat Points to a RASTERIZER_STATUS structure that receives information about the

rasterizer.
cb Specifies the number of bytes that will be copied into the structure pointed to by the

lpraststat parameter.

Returns
The return value is nonzero if the function is successful. Otherwise, it is zero.

Comments
The GetRasterizerCaps function enables applications and printer drivers to determine whether TrueType is
installed.

If the TT_AVAILABLE flag is set in the wFlags member of the RASTERIZER_STATUS structure, at
least one TrueType font is installed. If the TT_ENABLED flag is set, TrueType is enabled for the system.

See Also
GetOutlineTextMetrics, RASTERIZER_STATUS

GetRgnBox (3.0)
int GetRgnBox(hrgn, lprc)
HRGN hrgn; /* handle of region */
RECT FAR* lprc; /* address of
structure with rectangle *
/

The GetRgnBox function retrieves the coordinates of the bounding rectangle of the given region.

Parameter Description
hrgn Identifies the region.
lprc Points to a RECT structure that receives the coordinates of the bounding rectangle.

Returns
The return value is SIMPLEREGION (region has no overlapping borders), COMPLEXREGION (region
has overlapping borders), or NULLREGION (region is empty), if the function is successful. Otherwise,
the return value is ERROR.

Example
The following example uses the GetRgnBox function to determine the type of a region:

RECT rc;
HRGN hrgn;
int RgnType;
RgnType = GetRgnBox(hrgn, &rc);
if (RgnType == COMPLEXREGION)

TextOut(hdc, 10, 10, "COMPLEXREGION", 13);
else if (RgnType == SIMPLEREGION)

TextOut(hdc, 10, 10, "SIMPLEREGION", 12);
else

TextOut(hdc, 10, 10, "NULLREGION", 10);
See Also
RECT

GetROP2 (2.x)
int GetROP2(hdc)
HDC hdc; /* handle of device context */

The GetROP2 function retrieves the current drawing mode. The drawing mode specifies how the colors of
the pen and the interior of filled objects are combined with the color already on the screen surface.

Parameter Description
hdc Identifies the device context.

Returns
The return value specifies the drawing mode if the function is successful.

Comments
The drawing mode is for raster devices only and does not apply to vector devices. It can be any of the
following values:

Value Meaning
R2_BLACK Pixel is always black.
R2_WHITE Pixel is always white.
R2_NOP Pixel remains unchanged.
R2_NOT Pixel is the inverse of the screen color.
R2_COPYPEN Pixel is the pen color.
R2_NOTCOPYPEN Pixel is the inverse of the pen color.
R2_MERGEPENNOT Pixel is a combination of the pen color and the inverse of the screen color

(final pixel = (~screen pixel) | pen).
R2_MASKPENNOT Pixel is a combination of the colors common to both the pen and the inverse

of the screen (final pixel = (~screen pixel) & pen).
R2_MERGENOTPEN Pixel is a combination of the screen color and the inverse of the pen color

(final pixel = (~pen) | screen pixel).
R2_MASKNOTPEN Pixel is a combination of the colors common to both the screen and the

inverse of the pen (final pixel = (~pen) & screen pixel).
R2_MERGEPEN Pixel is a combination of the pen color and the screen color (final pixel = pen

| screen pixel).
R2_NOTMERGEPEN Pixel is the inverse of the R2_MERGEPEN color (final pixel = ~(pen | screen

pixel)).
R2_MASKPEN Pixel is a combination of the colors common to both the pen and the screen

(final pixel = pen & screen pixel).
R2_NOTMASKPEN Pixel is the inverse of the R2_MASKPEN color (final pixel = ~(pen & screen

pixel)).
R2_XORPEN Pixel is a combination of the colors that are in the pen and in the screen, but

not in both (final pixel = pen ^ screen pixel).
R2_NOTXORPEN Pixel is the inverse of the R2_XORPEN color (final pixel = ~(pen ^ screen

pixel)).

Example
The following example uses the GetROP2 function to test whether the current drawing mode is
R2_COPYPEN:

int nROP;
nROP = GetROP2(hdc);
if (nROP == R2_COPYPEN)

TextOut(hdc, 100, 100, "ROP is R2_COPYPEN.", 18);
See Also
GetDeviceCaps, SetROP2

GetStockObject (2.x)
HGDIOBJ GetStockObject(fnObject)
int fnObject; /* type of stock object */

The GetStockObject function retrieves a handle of one of the predefined stock pens, brushes, or fonts.

Parameter Description
fnObject Specifies the type of stock object for which to retrieve a handle. This parameter can be

one of the following values:

Value Meaning
BLACK_BRUSH Black brush.
DKGRAY_BRUSH Dark-gray brush.
GRAY_BRUSH Gray brush.
HOLLOW_BRUSH Hollow brush.
LTGRAY_BRUSH Light-gray brush.
NULL_BRUSH Null brush.
WHITE_BRUSH White brush.
BLACK_PEN Black pen.
NULL_PEN Null pen.
WHITE_PEN White pen.
ANSI_FIXED_FONT Windows fixed-pitch system font.
ANSI_VAR_FONT Windows variable-pitch system font.
DEVICE_DEFAULT_FONT Device-dependent font.
OEM_FIXED_FONT OEM-dependent fixed font.
SYSTEM_FONT System font. By default, Windows uses the

system font to draw menus, dialog box controls,
and other text. In Windows versions 3.0 and later,
the system font is a variable-pitch font width;
earlier versions of Windows use a fixed-pitch
system font.

SYSTEM_FIXED_FONT Fixed-pitch system font used in Windows
versions earlier than 3.0. This object is available
for compatibility with earlier versions of
Windows.

DEFAULT_PALETTE Default color palette. This palette consists of the
static colors in the system palette.

Returns
The return value is the handle of the specified object if the function is successful. Otherwise, it is NULL.

Comments
The DKGRAY_BRUSH, GRAY_BRUSH, and LTGRAY_BRUSH objects should be used only in
windows with the CS_HREDRAW and CS_VREDRAW class styles. Using a gray stock brush in any
other style of window can lead to misalignment of brush patterns after a window is moved or sized. The
origins of stock brushes cannot be adjusted.

Example
The following example retrieves the handle of a black brush by calling the GetStockObject function,
selects the brush into the device context, and fills a rectangle by using the black brush:

HBRUSH hbr, hbrOld;
hbr = GetStockObject(BLACK_BRUSH);
hbrOld = SelectObject(hdc, hbr);
Rectangle(hdc, 10, 10, 100, 100);
See Also
GetObject, SetBrushOrg

BLACK_BRUSH 4

Black brush.

BLACK_BRUSH 4

DKGRAY_BRUSH 3

Dark-gray brush.

DKGRAY_BRUSH 3

GRAY_BRUSH 2

Gray brush.

GRAY_BRUSH 2

HOLLOW_BRUSH NULL_BRUSH

Hollow brush.

HOLLOW_BRUSH NULL_BRUSH

LTGRAY_BRUSH 1

Light-gray brush.

LTGRAY_BRUSH 1

NULL_BRUSH 5

Null brush.

NULL_BRUSH 5

WHITE_BRUSH 0

White brush.

WHITE_BRUSH 0

BLACK_PEN 7

Black pen.

BLACK_PEN 7

NULL_PEN 8

Null pen.

NULL_PEN 8

WHITE_PEN 6

White pen.

WHITE_PEN 6

ANSI_FIXED_FONT 11

Windows fixed-pitch system font.

ANSI_FIXED_FONT 11

ANSI_VAR_FONT 12

Windows variable-pitch system font.

ANSI_VAR_FONT 12

DEVICE_DEFAULT_FONT 14

Device-dependent font.

DEVICE_DEFAULT_FONT 14

OEM_FIXED_FONT 10

OEM-dependent fixed font.

OEM_FIXED_FONT 10

SYSTEM_FONT 13

System font. By default, Windows uses the system font to draw menus, dialog box controls, and other text.
In Windows versions 3.0 and later, the system font is a variable-pitch font width; earlier versions of
Windows use a fixed-pitch system font.

SYSTEM_FONT 13

SYSTEM_FIXED_FONT 16

Fixed-pitch system font used in Windows versions earlier than 3.0. This object is available for
compatibility with earlier versions of Windows.

SYSTEM_FIXED_FONT 16

DEFAULT_PALETTE 15

Default color palette. This palette consists of the static colors in the system palette.

DEFAULT_PALETTE 15

GetStretchBltMode (2.x)
int GetStretchBltMode(hdc)
HDC hdc; /* handle of device context */

The GetStretchBltMode function retrieves the current bitmap-stretching mode. The bitmap-stretching
mode defines how information is removed from bitmaps that were compressed by using the StretchBlt
function.

Parameter Description
hdc Identifies the device context.

Returns
The return value specifies the current bitmap-stretching mode--STRETCH_ANDSCANS,
STRETCH_DELETESCANS, or STRETCH_ORSCANS--if the function is successful.

Comments
The STRETCH_ANDSCANS and STRETCH_ORSCANS modes are typically used to preserve
foreground pixels in monochrome bitmaps. The STRETCH_DELETESCANS mode is typically used to
preserve color in color bitmaps.

Example
The following example uses the GetStretchBltMode function to determine whether the current bitmap-
stretching mode is STRETCH_DELETESCANS; if so, it uses the StretchBlt function to display a
compressed bitmap.

HDC hdcMem;
int nStretchMode;
nStretchMode = GetStretchBltMode(hdc);
if (nStretchMode == STRETCH_DELETESCANS) {

StretchBlt(hdc, 50, 175, 32, 32, hdcMem, 0, 0, 64, 64,
SRCCOPY);
.
.
.

}
See Also
SetStretchBltMode, StretchBlt

GetSystemPaletteEntries (3.0)
UINT GetSystemPaletteEntries(hdc, iStart, cEntries, lppe)
HDC hdc; /* handle of device context */
UINT iStart; /
* first palette entry to retrieve *
/
UINT cEntries; /
* number of entries to retrieve *
/
PALETTEENTRY FAR* lppe; /
* address of structure for palette entries *
/

The GetSystemPaletteEntries function retrieves a range of palette entries from the system palette.

Parameter Description
hdc Identifies the device context.
iStart Specifies the first system-palette entry to be retrieved.
cEntries Specifies the number of system-palette entries to be retrieved.
lppe Points to an array of PALETTEENTRY structures that receives the palette entries. The

array must contain at least as many structures as specified by the cEntries parameter.

Returns
The return value is the number of entries retrieved from the system palette, if the function is successful.
Otherwise, it is zero.

Example
The following example uses the GetDeviceCaps function to determine whether the specified device is
palette-based. If the device supports palettes, the GetSystemPaletteEntries function is called, using
GetDeviceCaps again, this time to determine the number of entries in the system palette.

PALETTEENTRY pe[MAXNUMBER];
hdc = GetDC(hwnd);
if (!(GetDeviceCaps(hdc, RASTERCAPS) & RC_PALETTE)) {

ReleaseDC(hwnd, hdc);
break;

}
GetSystemPaletteEntries(hdc, 0, GetDeviceCaps(hdc, SIZEPALETTE),

pe);
ReleaseDC(hwnd, hdc);
See Also
GetDeviceCaps, GetPaletteEntries, PALETTEENTRY

GetSystemPaletteUse (3.0)
UINT GetSystemPaletteUse(hdc)
HDC hdc; /* handle of device context */

The GetSystemPaletteUse function determines whether an application has access to the entire system
palette.

Parameter Description
hdc Identifies the device context. This device context must support color palettes.

Returns
The return value specifies the current use of the system palette, if the function is successful. This
parameter can be one of the following values:

Value Meaning
SYSPAL_NOSTATIC System palette contains no static colors except black and white.
SYSPAL_STATIC System palette contains static colors that do not change when an

application realizes its logical palette.

Comments
The system palette contains 20 default static colors that are not changed when an application realizes its
logical palette. An application can gain access to most of these colors by calling the SetSystemPaletteUse
function.

Example
The following example uses the GetDeviceCaps function to determine whether the specified device is
palette-based. If the device supports palettes, the GetSystemPaletteUse function is called.

WORD nUse;
hdc = GetDC(hwnd);
if ((GetDeviceCaps(hdc, RASTERCAPS) & RC_PALETTE) == 0) {

ReleaseDC(hwnd, hdc);
break;

}
nUse = GetSystemPaletteUse(hdc);
ReleaseDC(hwnd, hdc);
See Also
GetDeviceCaps, SetSystemPaletteUse

SYSPAL_NOSTATIC 2

System palette contains no static colors except black and white.

SYSPAL_NOSTATIC 2

SYSPAL_STATIC 1

System palette contains static colors that do not change when an application realizes its logical palette.

SYSPAL_STATIC 1

GetTextCharacterExtra (2.x)
int GetTextCharacterExtra(hdc)
HDC hdc; /* handle of device context */

The GetTextCharacterExtra function retrieves the current setting for the amount of intercharacter spacing.
Graphics device interface (GDI) adds this spacing to each character, including break characters, when it
writes a line of text to the device context.

Parameter Description
hdc Identifies the device context.

Returns
The return value specifies the amount of intercharacter spacing if the function is successful.

Comments
The default value for the amount of intercharacter spacing is zero.

See Also
SetTextCharacterExtra

GetTextAlign (2.x)
UINT GetTextAlign(hdc)
HDC hdc; /* handle of device context */

The GetTextAlign function retrieves the status of the text-alignment flags for the given device context.

Parameter Description
hdc Identifies the device context.

Returns
The return value specifies the status of the text-alignment flags. This parameter can be one or more of the
following values:

Value Meaning
TA_BASELINE Specifies alignment of the x-axis and the base line of the chosen font within

the bounding rectangle.
TA_BOTTOM Specifies alignment of the x-axis and the bottom of the bounding rectangle.
TA_CENTER Specifies alignment of the y-axis and the center of the bounding rectangle.
TA_LEFT Specifies alignment of the y-axis and the left side of the bounding rectangle.
TA_NOUPDATECP Specifies that the current position is not updated.
TA_RIGHT Specifies alignment of the y-axis and the right side of the bounding rectangle.
TA_TOP Specifies alignment of the x-axis and the top of the bounding rectangle.
TA_UPDATECP Specifies that the current position is updated.

Comments
The text-alignment flags retrieved by the GetTextAlign function are used by the TextOut and ExtTextOut
functions. These flags determine how TextOut and ExtTextOut align a string of text in relation to the
string's starting point.

The text-alignment flags are not necessarily single-bit flags and may be equal to zero. To test whether a
flag is set, an application should follow three steps:
1 Apply the bitwise OR operator to the flag and its related flags.

Following are the groups of related flags:
TA_LEFT, TA_CENTER, and TA_RIGHT
TA_BASELINE, TA_BOTTOM, and TA_TOP
TA_NOUPDATECP and TA_UPDATECP

2 Apply the bitwise AND operator to the result and the return value of the GetTextAlign function.

3 Test for the equality of this result and the flag.

Example
The following example uses the method described in the preceding Comments section to determine
whether text is aligned at the right, left, or center of the bounding rectangle. If the TA_RIGHT flag is set,
the SetTextAlign function is used to set the text alignment to the left side of the rectangle.

switch ((TA_LEFT | TA_CENTER | TA_RIGHT) & GetTextAlign(hdc)) {
case TA_RIGHT:
TextOut(hdc, 200, 100, "This is TA_RIGHT.", 17);
SetTextAlign(hdc, TA_LEFT);
TextOut(hdc, 200, 120, "This is TA_LEFT.", 16);
break;
case TA_LEFT:
.
.
.
case TA_CENTER:
.
.
.

}
See Also
ExtTextOut, SetTextAlign, TextOut

TA_BASELINE 0x0018

Specifies alignment of the x-axis and the base line of the chosen font within the bounding rectangle.

TA_BASELINE 0x0018

TA_BOTTOM 0x0008

Specifies alignment of the x-axis and the bottom of the bounding rectangle.

TA_BOTTOM 0x0008

TA_CENTER 0x0006

Specifies alignment of the y-axis and the center of the bounding rectangle.

TA_CENTER 0x0006

TA_LEFT 0x0000

Specifies alignment of the y-axis and the left side of the bounding rectangle.

TA_LEFT 0x0000

TA_NOUPDATECP 0x0000

Specifies that the current position is not updated.

TA_NOUPDATECP 0x0000

TA_RIGHT 0x0002

Specifies alignment of the y-axis and the right side of the bounding rectangle.

TA_RIGHT 0x0002

TA_TOP 0x0000

Specifies alignment of the x-axis and the top of the bounding rectangle.

TA_TOP 0x0000

TA_UPDATECP 0x0001

Specifies that the current position is updated.

TA_UPDATECP 0x0001

GetTextColor (2.x)
COLORREF GetTextColor(hdc)
HDC hdc; /* handle of device context */

The GetTextColor function retrieves the current text color. The text color is the foreground color of
characters drawn by using the graphics device interface (GDI) text-output functions.

Parameter Description
hdc Identifies the device context.

Returns
The return value specifies the current text color as a red, green, blue (RGB) color value, if the function is
successful.

Example
The following example sets the text color to red if the GetTextColor function determines that the current
text color is black:

DWORD dwColor;
dwColor = GetTextColor(hdc);
if (dwColor == RGB(0, 0, 0)) /* if current color is black */

SetTextColor(hdc, RGB(255, 0, 0)); /* sets color to red */
See Also
GetBkColor, GetBkMode, SetBkMode, SetTextColor, RGB

GetTextExtent (2.x)
DWORD GetTextExtent(hdc, lpszString, cbString)
HDC hdc; /* handle of device context */
LPCSTR lpszString; /* address of
string *
/
int cbString; /
* number of bytes in string *
/

The GetTextExtent function computes the width and height of a line of text, using the current font to
compute the dimensions.

Parameter Description
hdc Identifies the device context.
lpszString Points to a character string.
cbString Specifies the number of bytes in the string.

Returns
The low-order word of the return value contains the string width, in logical units, if the function is
successful; the high-order word contains the string height.

Comments
The current clipping region does not affect the width and height returned by the GetTextExtent function.

Since some devices do not place characters in regular cell arrays (that is, they kern characters), the sum of
the extents of the characters in a string may not be equal to the extent of the string.

Example
The following example retrieves the number of characters in a string by using the lstrlen function, calls the
GetTextExtent function to retrieve the dimensions of the string, and then uses the LOWORD macro to
determine the string width, in logical units:

DWORD dwExtent;
WORD wTextWidth;
LPSTR lpszJustified = "Text to be justified in this test.";
dwExtent = GetTextExtent(hdc, lpszJustified, lstrlen(lpszJustified));
wTextWidth = LOWORD(dwExtent);
See Also
GetTabbedTextExtent, SetTextJustification

GetTextExtentPoint (3.1)
BOOL GetTextExtentPoint(hdc, lpszString, cbString, lpSize)
HDC hdc; /* handle of device context */
LPCSTR lpszString; /*
address of text string *
/
int cbString; /
* number of bytes in string *
/
SIZE FAR* lpSize; /
* address if structure for string size *
/

The GetTextExtentPoint function computes the width and height of the specified text string. The
GetTextExtentPoint function uses the currently selected font to compute the dimensions of the string. The
width and height, in logical units, are computed without considering any clipping.

The GetTextExtentPoint function may be used as either a wide-character function (where text arguments
must use Unicode) or an ANSI function (where text arguments must use characters from the Windows 3.x
character set

Parameter Description
hdc Identifies the device context.
lpszString Points to a text string.
cbString Specifies the number of bytes in the text string.
lpSize Points to a SIZE structure that will receive the dimensions of the string

Returns
The return value is nonzero if the function is successful. Otherwise, it is zero.

Comments
Because some devices do not place characters in regular cell arrays--that is, because they carry out
kerning--the sum of the extents of the characters in a string may not be equal to the extent of the string.

The calculated width takes into account the intercharacter spacing set by the SetTextCharacterExtra
function.

See Also
SetTextCharacterExtra

GetTextFace (2.x)
int GetTextFace(hdc, cbBuffer, lpszFace)
HDC hdc; /* handle of device context */
int cbBuffer; /* size of buffer for face
name *
/
LPSTR lpszFace; /
* pointer to buffer for face name *
/

The GetTextFace function copies the typeface name of the current font into a buffer. The typeface name is
copied as a null-terminated string.

Parameter Description
hdc Identifies the device context.
cbBuffer Specifies the buffer size, in bytes. If the typeface name is longer than the number of

bytes specified by this parameter, the name is truncated.
lpszFace Points to the buffer for the typeface name.

Returns
The return value specifies the number of bytes copied to the buffer, not including the terminating null
character, if the function is successful. Otherwise, it is zero.

Example
The following example uses the GetTextFace function to retrieve the name of the current typeface, calls
the SetTextAlign function so that the current position is updated when the TextOut function is called, and
then writes some introductory text and the name of the typeface by calling TextOut:

int nFaceNameLen;
char aFaceName[80];
nFaceNameLen = GetTextFace(hdc, /* returns length of string */

sizeof(aFaceName), /* size of face-name buffer */
(LPSTR) aFaceName); /* address of face-name buffer */

SetTextAlign(hdc,
TA_UPDATECP); /* updates current position */

MoveTo(hdc, 100, 100); /* sets current position*/
TextOut(hdc, 0, 0, /* uses current position for text */

"This is the current face name: ", 31);
TextOut(hdc, 0, 0, aFaceName, nFaceNameLen);
See Also
GetTextMetrics, SetTextAlign, TextOut

GetTextMetrics (2.x)
BOOL GetTextMetrics(hdc, lptm)
HDC hdc; /* handle of device context */
TEXTMETRIC FAR* lptm; /
* pointer to structure for font metrics *
/

The GetTextMetrics function retrieves the metrics for the current font.

Parameter Description
hdc Identifies the device context.
lptm Points to the TEXTMETRIC structure that receives the metrics.

Returns
The return value is nonzero if the function is successful. Otherwise, it is zero.

Example
The following example calls the GetTextMetrics function and then uses information in a TEXTMETRIC
structure to determine how many break characters are in a string of text:

TEXTMETRIC tm;
int j, cBreakChars, cchString;
LPSTR lpszJustified = "Text to be justified in this test.";
GetTextMetrics(hdc, &tm);
cchString = lstrlen(lpszJustified);
for (cBreakChars = 0, j = 0; j < cchString; j++)

if(*(lpszJustified + j) == (char) tm.tmBreakChar)
cBreakChars++;

See Also
GetTextAlign, GetTextExtent, GetTextFace, SetTextJustification, TEXTMETRIC

GetViewportExt (2.x)
DWORD GetViewportExt(hdc)
HDC hdc; /* handle of device context */

The GetViewportExt function retrieves the x- and y-extents of the device context's viewport.

Parameter Description
hdc Identifies the device context.

Returns
The low-order word of the return value contains the x-extent, in device units, if the function is successful;
the high-order word contains the y-extent.

Example
The following example uses the GetViewportExt function and the LOWORD and HIWORD macros to
retrieve the x- and y-extents for a device context:

HDC hdc;
DWORD dw;
int xViewExt, yViewExt;
hdc = GetDC(hwnd);
dw = GetViewportExt(hdc);
ReleaseDC(hwnd, hdc);
xViewExt = LOWORD(dw);
yViewExt = HIWORD(dw);
See Also
GetViewportExtEx, SetViewportExt

GetViewportExtEx (3.1)
BOOL GetViewportExtEx(hdc, lpSize)
HDC hdc;
SIZE FAR* lpSize;

The GetViewportExtEx function retrieves the x- and y-extents of the device context's viewport.

Parameter Description
hdc Identifies the device context.
lpSize Points to a SIZE structure. The x- and y-extents (in device units) are placed in this

structure.

Returns
The return value is nonzero if the function is successful. Otherwise, it is zero.

See Also
GetViewportExt, SetViewportExt, SetViewportExtEx

GetViewportOrg (2.x)
DWORD GetViewportOrg(hdc)
HDC hdc; /* handle of device context */

The GetViewportOrg function retrieves the x- and y-coordinates of the origin of the viewport associated
with the given device context.

Parameter Description
hdc Identifies the device context.

Returns
The low-order word of the return value contains the viewport origin's x-coordinate, in device coordinates,
if the function is successful; the high-order word contains the y-coordinate of the viewport origin.

Example
The following example uses the GetViewportOrg function and the LOWORD and HIWORD macros to
retrieve the x- and y-coordinates of the viewport origin:

HDC hdc;
DWORD dw;
int xViewOrg, yViewOrg;
hdc = GetDC(hwnd);
dw = GetViewportOrg(hdc);
ReleaseDC(hwnd, hdc);
xViewOrg = LOWORD(dw);
yViewOrg = HIWORD(dw);
See Also
GetViewportOrgEx, GetWindowOrg, SetViewportOrg

GetViewportOrgEx (3.1)
BOOL GetViewportOrgEx(hdc, lpPoint)
HDC hdc;
POINT FAR* lpPoint;

The GetViewportOrgEx function retrieves the x- and y-coordinates of the origin of the viewport associated
with the specified device context.

Parameter Description
hdc Identifies the device context.
lpPoint Points to a POINT structure. The origin of the viewport (in device coordinates) is placed

in this structure.

Returns
The return value is nonzero if the function is successful. Otherwise, it is zero.

See Also
GetViewportOrg, SetViewportOrg, SetViewportOrgEx

GetWindowExt (2.x)
DWORD GetWindowExt(hdc)
HDC hdc; /* handle of device context */

The GetWindowExt function retrieves the x- and y-extents of the window associated with the given device
context.

Parameter Description
hdc Identifies the device context.

Returns
The return value specifies the x- and y-extents, in logical units, if the function is successful. The x-extent
is in the low-order word; the y-extent is in the high-order word.

Example
The following example uses the GetWindowExt function and the LOWORD and HIWORD macros to
retrieve the x- and y-extents of a window:

HDC hdc;
DWORD dw;
int xWindExt, yWindExt;
hdc = GetDC(hwnd);
dw = GetWindowExt(hdc);
ReleaseDC(hwnd, hdc);
xWindExt = LOWORD(dw);
yWindExt = HIWORD(dw);
See Also
GetWindowExtEx, SetWindowExt

GetWindowExtEx (3.1)
BOOL GetWindowExtEx(hdc, lpSize)
HDC hdc;
SIZE FAR* lpSize;

This function retrieves the x- and y-extents of the window associated with the specified device context.

Parameter Description
hdc Identifies the device context.
lpSize Points to a SIZE structure. The x- and y-extents (in logical units) are placed in this

structure.

Returns
The return value is nonzero if the function is successful. Otherwise, it is zero.

See Also
GetWindowExt, SetWindowExt, SetWindowExtEx

GetWindowOrg (2.x)
DWORD GetWindowOrg(hdc)
HDC hdc; /* handle of device context */

The GetWindowOrg function retrieves the x- and y-coordinates of the origin of the window associated
with the given device context.

Parameter Description
hdc Identifies the device context.

Returns
The low-order word of the return value contains the logical x-coordinate of the window's origin, if the
function is successful; the high-order word contains the y-coordinate.

Example
The following example uses the GetWindowOrg function and the LOWORD and HIWORD macros to
retrieve the x- and y-coordinates for the window origin:

HDC hdc;
DWORD dw;
int xWindOrg, yWindOrg;
hdc = GetDC(hwnd);
dw = GetWindowOrg(hdc);
ReleaseDC(hwnd, hdc);
xWindOrg = LOWORD(dw);
yWindOrg = HIWORD(dw);
See Also
GetViewportOrg, GetWindowOrgEx, SetWindowOrg

GetWindowOrgEx (3.1)
BOOL GetWindowOrgEx(hdc, lpPoint)
HDC hdc;
POINT FAR* lpPoint;

The GetWindowOrgEx function retrieves the x- and y-coordinates of the origin of the window associated
with the specified device context.

Parameter Description
hdc Identifies the device context.
lpPoint Points to a POINT structure. The origin of the window (in logical coordinates) is placed

in this structure.

Returns
The return value is nonzero if the function is successful. Otherwise, it is zero.

See Also
GetWindowOrg, SetWindowOrg, SetWindowOrgEx

IntersectClipRect (2.x)
int IntersectClipRect(hdc, nLeftRect, nTopRect, nRightRect, nBottomRect)
HDC hdc; /* handle of device context */
int nLeftRect; /* x-
coordinate top-left corner of rectangle *
/
int nTopRect; /
* y-coordinate top-left corner of rectangle *
/
int nRightRect; /
* x-coordinate bottom-right corner of rectangle *
/
int nBottomRect; /
* y-coordinate bottom-right corner of rectangle *
/

The IntersectClipRect function creates a new clipping region from the intersection of the current region
and a specified rectangle.

Parameter Description
hdc Identifies the device context.
nLeftRect Specifies the logical x-coordinate of the upper-left corner of the rectangle.
nTopRect Specifies the logical y-coordinate of the upper-left corner of the rectangle.
nRightRect Specifies the logical x-coordinate of the lower-right corner of the rectangle.
nBottomRect Specifies the logical y-coordinate of the lower-right corner of the rectangle.

Returns
The return value specifies that the resulting region has overlapping borders (COMPLEXREGION), is
empty (NULLREGION), or has no overlapping borders (SIMPLEREGION). Otherwise, the return value is
ERROR.

Comments
An application uses the IntersectClipRect function to create a clipping region from the intersection of the
current region and a specified rectangle. An application can also create a clipping region that is the
intersection of two regions, by specifying RGN_AND in a call to the CombineRgn function and then
making this combined region the clipping region by calling the SelectClipRgn function.

The width of the rectangle, specified by the absolute value of nRightRect - nLeftRect, must not exceed 32,
767 units. This limit applies to the height of the rectangle as well.

Example
The following example creates a square clipping region and colors it red by using a red brush to fill the
client area. The IntersectClipRect function is called with coordinates that overlap the region, and the client
area is filled with a yellow brush. The only region colored yellow is the overlap between the region and the
coordinates specified in the call to IntersectClipRect.

RECT rc;
HRGN hrgn;
HBRUSH hbrRed, hbrYellow;
GetClientRect(hwnd, &rc);
hrgn = CreateRectRgn(10, 10, 110, 110);
SelectClipRgn(hdc, hrgn);
hbrRed = CreateSolidBrush(RGB(255, 0, 0));
FillRect(hdc, &rc, hbrRed);
IntersectClipRect(hdc, 100, 100, 200, 200);
hbrYellow = CreateSolidBrush(RGB(255, 255, 0));
FillRect(hdc, &rc, hbrYellow);
DeleteObject(hbrRed);
DeleteObject(hbrYellow);

DeleteObject(hrgn);
See Also
CombineRgn, SelectClipRgn

InvertRgn (2.x)
BOOL InvertRgn(hdc, hrgn)
HDC hdc; /* handle of device context */
HRGN hrgn; /* handle of region */

The InvertRgn function inverts the colors in a given region.

Parameter Description
hdc Identifies the device context.
hrgn Identifies the region for which colors are to be inverted.

Returns
The return value is nonzero if the function is successful. Otherwise, it is zero.

Comments
On monochrome screens, the InvertRgn function makes white pixels black and black pixels white. On
color screens, the inversion depends on how the colors are generated for the screen.

Example
The following example sets the device coordinates of and creates a rectangular region, selects the region
into a device context, and then calls the InvertRgn function to display the region in inverted colors:

HRGN hrgn;
hrgn = CreateRectRgn(10, 10, 110, 110);
SelectObject(hdc, hrgn);
InvertRgn(hdc, hrgn);
DeleteObject(hrgn);
See Also
FillRgn, PaintRgn

IsGDIObject (3.1)
BOOL IsGDIObject(hobj)
HGDIOBJ hobj; /* handle of a menu */

The IsGDIObject function determines whether the specified handle is not the handle of a graphics device
interface (GDI) object.

Parameter Description
hobj Specifies a handle to test.

Returns
The return value is nonzero if the handle may be the handle of a GDI object. It is zero if the handle is not
the handle of a GDI object.

Comments
An application cannot use IsGDIObject to guarantee that a given handle is to a GDI object. However, this
function can be used to guarantee that a given handle is not to a GDI object.

See Also
GetObject

LineDDA (2.x)
void LineDDA(nXStart, nYStart, nXEnd, nYEnd, lnddaprc, lParam)
int nXStart; /* x-coordinate of line beginning */
int nYStart; /* y-
coordinate of line beginning *
/
int nXEnd; /
* x-coordinate of line end *
/
int nYEnd; /
* y-coordinate of line end *
/
LINEDDAPROC lnddaprc; /
* address of callback function *
/
LPARAM lParam; /
* address of application-defined data *
/

The LineDDA function computes all successive points in a line specified by starting and ending
coordinates. For each point on the line, the system calls an application-defined callback function,
specifying the coordinates of that point.

Parameter Description
nXStart Specifies the logical x-coordinate of the first point.
nYStart Specifies the logical y-coordinate of the first point.
nXEnd Specifies the logical x-coordinate of the endpoint. This endpoint is not part of the line.
nYEnd Specifies the logical y-coordinate of the endpoint. This endpoint is not part of the line.
lnddaprc Specifies the procedure-instance address of the application-defined callback function.

The address must have been created by using the MakeProcInstance function. For more
information about the callback function, see the description of the LineDDAProc
callback function.

lParam Points to 32 bits of application-defined data that is passed to the callback function.

Returns
This function does not return a value.

Example
The following example uses the LineDDA function to draw a dot every two spaces between the beginning
and ending points of a line:

/* Callback function */
void CALLBACK DrawDots(int xPos, int yPos, LPSTR lphdc)
{

static short cSpaces = 1;
if (cSpaces == 3) {
/* Draw a black dot. */
SetPixel(*(HDC FAR*) lphdc, xPos, yPos, 0);
/* Initialize the space count. */
cSpaces = 1;
}
else
cSpaces++;

}
See Also

LineDDAProc, MakeProcInstance

LineTo (2.x)
BOOL LineTo(hdc, xEnd, yEnd)
HDC hdc; /* handle of device context */
int xEnd; /* x-coordinate of line endpoint */
int yEnd; /
* y-coordinate of line endpoint *
/

The LineTo function draws a line from the current position up to, but not including, the specified endpoint.
The function uses the selected pen to draw the line and sets the current position to the coordinates (xEnd,
yEnd).

Parameter Description
hdc Identifies the device context.
xEnd Specifies the logical x-coordinate of the line's endpoint.
yEnd Specifies the logical y-coordinate of the line's endpoint.

Returns
The return value is nonzero if the function is successful. Otherwise, it is zero.

Example
The following example sets the current position by using the MoveTo function before calling the LineTo
function. The example uses POINT structures to store the coordinates.

HDC hdc;
POINT ptStart = { 12, 12 };
POINT ptEnd = { 128, 135 };
MoveTo(hdc, ptStart.x, ptStart.y);
LineTo(hdc, ptEnd.x, ptEnd.y);
See Also
MoveTo, POINT

LPtoDP (2.x)
BOOL LPtoDP(hdc, lppt, cPoints)
HDC hdc; /* handle of device context */
POINT FAR* lppt; /* address of
array with points *
/
int cPoints; /
* number of points in array *
/

The LPtoDP function converts logical coordinates (points) into device coordinates.

Parameter Description
hdc Identifies the device context.
lppt Points to an array of POINT structures. The coordinates in each structure are mapped to

the device coordinates of the current device context.
cPoints Specifies the number of points in the array.

Returns
The return value is nonzero if the function is successful. Otherwise, it is zero.

Comments
The conversion depends on the current mapping mode and the settings of the origins and extents of the
device's window and viewport.

The x- and y-coordinates of points are 2-byte signed integers in the range -32,768 through 32,767. In cases
where the mapping mode would result in values larger than these limits, the system sets the values to -32,
768 and 32,767, respectively.

Example
The following example sets the mapping mode to MM_LOENGLISH and then calls the LPtoDP function
to convert the coordinates of a rectangle into device coordinates:

RECT rc;
SetMapMode(hdc, MM_LOENGLISH);
SetRect(&rc, 100, -100, 200, -200);
LPtoDP(hdc, (LPPOINT) &rc, 2);
See Also
DPtoLP, POINT

MoveTo (2.x)
DWORD MoveTo(hdc, x, y)
HDC hdc; /* handle of device context */
int x; /* x-coordinate of new position */
int y; /
* y-coordinate of new position *
/

The MoveTo function moves the current position to the specified coordinates.

Parameter Description
hdc Identifies the device context.
x Specifies the logical x-coordinate of the new position.
y Specifies the logical y-coordinate of the new position.

Returns
The low-order word of the return value contains the logical x-coordinate of the previous position, if the
function is successful; the high-order word contains the logical y-coordinate.

Example
The following example uses the MoveTo function to set the current position and then calls the LineTo
function. The example uses POINT structures to store the coordinates.

HDC hdc;
POINT ptStart = { 12, 12 };
POINT ptEnd = { 128, 135 };
MoveTo(hdc, ptStart.x, ptStart.y);
LineTo(hdc, ptEnd.x, ptEnd.y);
See Also
GetCurrentPosition, LineTo, POINT

MoveToEx (3.1)
BOOL MoveToEx(hdc, x, y, lpPoint)
HDC hdc; /* handle of device context */
int x; /* x-coordinate
of new position *
/
int y; /
* y-coordinate of new position *
/
POINT FAR* lpPoint; /
* pointer to structure for previous position *
/

The MoveToEx function moves the current position to the point specified by the x and y parameters,
optionally returning the previous position.

Parameter Description
hdc Identifies the device context.
x Specifies the logical x-coordinate of the new position.
y Specifies the logical y-coordinate of the new position.
lpPoint Points to a POINT structure in which the previous current position will be stored. If this

parameter is NULL, no previous position is returned.

Returns
The return value is nonzero if the call is successful. Otherwise, it is zero.

See Also
MoveTo, POINT

OffsetClipRgn (2.x)
int OffsetClipRgn(hdc, nXOffset, nYOffset)
HDC hdc; /* device-context handle */
int nXOffset; /* offset along x-axis */
int nYOffset; /
* offset along y-axis *
/

The OffsetClipRgn function moves the clipping region of the given device by the specified offsets.

Parameter Description
hdc Identifies the device context.
nXOffset Specifies the number of logical units to move left or right.
nYOffset Specifies the number of logical units to move up or down.

Returns
The return value is SIMPLEREGION (region has no overlapping borders), COMPLEXREGION (region
has overlapping borders), or NULLREGION (region is empty), if the function is successful. Otherwise,
the return value is ERROR.

Example
The following example creates an elliptical region and selects it as the clipping region for a device context.
The OffsetClipRgn function is called repeatedly to move the clipping region from left to right across the
screen. Because only the new clipping region is redrawn each time the Rectangle function is called, the left
side of each ellipse remains on the screen when the clipping region moves. When the loop has finished, a
wide blue line with rounded ends stretches from one side of the client area to the other.

RECT rc;
HRGN hrgn;
HBRUSH hbr, hbrPrevious;
int i;
GetClientRect(hwnd, &rc);
hrgn = CreateEllipticRgn(0, 100, 100, 200);
SelectClipRgn(hdc, hrgn);
hbr = CreateSolidBrush(RGB(0, 0, 255));
hbrPrevious = SelectObject(hdc, hbr);
for (i = 0; i < rc.right - 100; i++) {

OffsetClipRgn(hdc, 1, 0);
Rectangle(hdc, rc.left, rc.top, rc.right, rc.bottom);

}
SelectObject(hdc, hbrPrevious);
DeleteObject(hbr);
DeleteObject(hrgn);
See Also
CreateEllipticRgn, SelectClipRgn

OffsetRgn (2.x)
int OffsetRgn(hrgn, nXOffset, nYOffset)
HRGN hrgn; /* handle of region */
int nXOffset; /* offset along x-axis */
int nYOffset; /
* offset along y-axis *
/

The OffsetRgn function moves the given region by the specified offsets.

Parameter Description
hrgn Identifies the region to be moved.
nXOffset Specifies the number of logical units to move left or right.
nYOffset Specifies the number of logical units to move up or down.

Returns
The return value is SIMPLEREGION (region has no overlapping borders), COMPLEXREGION (region
has overlapping borders), or NULLREGION (region is empty), if the function is successful. Otherwise,
the return value is ERROR.

Comments
The coordinate values of a region must not be greater than 32,767 or less than -32,768. The nXOffset and
nYOffset parameters must be carefully chosen to prevent invalid regions.

Example
The following example creates a rectangular region, uses the OffsetRgn function to move the region 50
positive units in the x- and y-directions, selects the offset region into the device context, and then fills it by
using a blue brush:

HDC hdcLocal;
HRGN hrgn;
HBRUSH hbrBlue;
int RgnType;
hdcLocal = GetDC(hwnd);
hrgn = CreateRectRgn(100, 10, 210, 110);
SelectObject(hdc, hrgn);
PaintRgn(hdc, hrgn);
RgnType = OffsetRgn(hrgn, 50, 50);
SelectObject(hdc, hrgn);
if (RgnType == ERROR)

TextOut(hdcLocal, 10, 135, "ERROR", 5);
else if (RgnType == SIMPLEREGION)

TextOut(hdcLocal, 10, 135, "SIMPLEREGION", 12);
else if (RgnType == NULLREGION)

TextOut(hdcLocal, 10, 135, "NULLREGION", 10);
else

TextOut(hdcLocal, 10, 135, "Unrecognized value.", 19);
hbrBlue = CreateSolidBrush(RGB(0, 0, 255));
FillRgn(hdc, hrgn, hbrBlue);
DeleteObject(hrgn);
DeleteObject(hbrBlue);
ReleaseDC(hwnd, hdcLocal);

OffsetViewportOrg (2.x)
DWORD OffsetViewportOrg(hdc, nXOffset, nYOffset)
HDC hdc; /* handle of device context */
int nXOffset; /* offset along x-axis */
int nYOffset; /
* offset along y-axis *
/

The OffsetViewportOrg function modifies the coordinates of the viewport origin relative to the
coordinates of the current viewport origin.

Parameter Description
hdc Identifies the device context.
nXOffset Specifies the value, in device units, to add to the x-coordinate of the current origin.
nYOffset Specifies the value, in device units, to add to the y-coordinate of the current origin.

Returns
The low-order word of the return value contains the x-coordinate, in device units, of the previous viewport
origin, if the function is successful; the high-order word contains the y-coordinate.

Comments
The viewport origin is the origin of the device coordinate system for a window. By changing the viewport
origin, an application can change the way the graphics device interface (GDI) maps points from the logical
coordinate system. GDI maps all points in the logical coordinate system to the viewport in the same way
as it maps the origin.

To map points to the right, specify a negative value for the nXOffset parameter. Similarly, to map points
down (in the MM_TEXT mapping mode), specify a negative value for the nYOffset parameter.

Example
The following example uses the OffsetWindowOrg and OffsetViewportOrg functions to reposition the
output of the PlayMetaFile function on the screen:

HDC hdcMeta;
HANDLE hmf;
hdcMeta = CreateMetaFile((LPSTR) NULL);

.

. /* Record the metafile. */

.
PlayMetaFile(hdc, hmf);
OffsetWindowOrg(hdc, -200, -200);
PlayMetaFile(hdc, hmf); /* MM_TEXT screen output +200 x, +200 y */
OffsetViewportOrg(hdc, 0, -200);
PlayMetaFile(hdc, hmf); /* outputs -200 y from last PlayMetaFile */
DeleteMetaFile(hmf);
See Also
GetViewportOrg, OffsetWindowOrg, SetViewportOrg

OffsetViewportOrgEx (3.1)
BOOL OffsetViewportOrgEx(hdc, nX, nY, lpPoint)
HDC hdc; /* handle of device context */
int nX; /* device units to
add to x-coordinate *
/
int nY; /
* device units to add to y-coordinate *
/
POINT FAR* lpPoint; /
* address of POINT structure *
/

The OffsetViewportOrgEx function modifies the viewport origin relative to the current values. The
formulas are written as follows:

xNewVO = xOldVO + X
yNewVO = yOldVO + Y
The new origin is the sum of the current origin and the nX and nY values.

Parameter Description
hdc Identifies the device context.
nX Specifies the number of device units to add to the current origin's x-coordinate.
nY Specifies the number of device units to add to the current origin's y-coordinate.
lpPoint Points to a POINT structure. The previous viewport origin (in device coordinates) is

placed in this structure. If lpPoint is NULL, the previous viewport origin in not returned.

Returns
The return value is nonzero if the function is successful. Otherwise, it is zero.

OffsetWindowOrg (2.x)
DWORD OffsetWindowOrg(hdc, nXOffset, nYOffset)
HDC hdc; /* handle of device context */
int nXOffset; /* offset along x-axis */
int nYOffset; /
* offset along y-axis *
/

The OffsetWindowOrg function modifies the window origin relative to the coordinates of the current
window origin.

Parameter Description
hdc Identifies the device context.
nXOffset Specifies the value, in logical units, to add to the x-coordinate of the current origin.
nYOffset Specifies the value, in logical units, to add to y-coordinate of the current origin.

Returns
The low-order word of the return value contains the logical x-coordinate of the previous window origin, if
the function is successful; the high-order word contains the logical y-coordinate.

Comments
The window origin is the origin of the logical coordinate system for a window. By changing the window
origin, an application can change the way the graphics device interface (GDI) maps logical points to the
physical coordinate system (the viewport). GDI maps all points in the logical coordinate system to the
viewport in the same way as it maps the origin.

To map points to the right, specify a negative value for the nXOffset parameter. Similarly, to map points
down (in the MM_TEXT mapping mode), specify a negative value for the nYOffset parameter.

Example
The following example uses the OffsetWindowOrg and OffsetViewportOrg functions to reposition the
output of the PlayMetaFile function on the screen:

HDC hdcMeta;
HANDLE hmf;
hdcMeta = CreateMetaFile((LPSTR) NULL);

.

. /* Record the metafile. */

.
PlayMetaFile(hdc, hmf);
OffsetWindowOrg(hdc, -200, -200);
PlayMetaFile(hdc, hmf); /* MM_TEXT screen output +200 x, +200 y */
OffsetViewportOrg(hdc, 0, -200);
PlayMetaFile(hdc, hmf); /* outputs -200 y from last PlayMetaFile */
DeleteMetaFile(hmf);
See Also
GetWindowOrg, OffsetViewportOrg, SetWindowOrg

OffsetWindowOrgEx (3.1)
BOOL OffsetWindowOrgEx(hdc, nX, nY, lpPoint)
HDC hdc; /* handle of device context */
int nX; /* logical units
to add to x-coordinate *
/
int nY; /
* logical units to add to y-coordinate *
/
POINT FAR* lpPoint; /
* address of POINT structure *
/

The OffsetWindowOrgEx function modifies the viewport origin relative to the current values. The
formulas are written as follows:

xNewWO = xOldWO + X
yNewWO = yOldWO + Y
The new origin is the sum of the current origin and the nX and nY values.

Parameter Description
hdc Identifies the device context.
nX Specifies the number of logical units to add to the current origin's x-coordinate.
nY Specifies the number of logical units to add to the current origin's y-coordinate.
lpPoint Points to a POINT structure. The previous window origin (in logical coordinates) is

placed in this structure. If lpPoint is NULL, the previous origin is not returned.

Returns
The return value is nonzero if the function is successful. Otherwise, it is zero.

PaintRgn (2.x)
BOOL PaintRgn(hdc, hrgn)
HDC hdc; /* handle of device context */
HRGN hrgn; /* handle of region */

The PaintRgn function fills a region by using the current brush for the given device context.

Parameter Description
hdc Identifies the device context that contains the region to be filled.
hrgn Identifies the region to be filled. The coordinates for the given region are specified in

device units.

Returns
The return value is nonzero if the function is successful. Otherwise, it is zero.

Example
The following example uses the current brush for a device context to fill an elliptical region:

HDC hdc;
HRGN hrgn;
hrgn = CreateEllipticRgn(10, 10, 110, 110);
SelectObject(hdc, hrgn);
PaintRgn(hdc, hrgn);
DeleteObject(hrgn);
See Also
CreateBrushIndirect, CreateDIBPatternBrush, CreateHatchBrush, CreatePatternBrush, CreateSolidBrush,
FillRgn

PatBlt (2.x)
BOOL PatBlt(hdc, nLeftRect, nTopRect, nwidth, nheight, fdwRop)
HDC hdc; /* handle of device context */
int nLeftRect; /* x-
coordinate top-left corner destination rectangle *
/
int nTopRect; /
* y-coordinate top-left corner destination rectangle *
/
int nwidth; /
* width of destination rectangle *
/
int nheight; /
* height of destination rectangle *
/
DWORD fdwRop; /
* raster operation *
/

The PatBlt function creates a bit pattern on the specified device. The pattern is a combination of the
selected brush and the pattern already on the device. The specified raster-operation code defines how the
patterns are combined.

Parameter Description
hdc Identifies the device context.
nLeftRect Specifies the logical x-coordinate of the upper-left corner of the rectangle that receives

the pattern.
nTopRect Specifies the logical y-coordinate of the upper-left corner of the rectangle that receives

the pattern.
nwidth Specifies the width, in logical units, of the rectangle that will receive the pattern.
nheight Specifies the height, in logical units, of the rectangle that will receive the pattern.
fdwRop Specifies the raster-operation code that determines how the graphics device interface

(GDI) combines the colors in the output operation. This parameter can be one of the
following values:

Value Meaning
PATCOPY Copies the pattern to the destination bitmap.
PATINVERT Combines the destination bitmap with the pattern by using the

Boolean XOR operator.
PATPAINT Paints the destination bitmap.
DSTINVERT Inverts the destination bitmap.
BLACKNESS Turns all output black.
WHITENESS Turns all output white.

Returns
The return value is nonzero if the function is successful. Otherwise, it is zero.

Comments
The raster operations listed for this function are a limited subset of the full 256 ternary raster-operation
codes; in particular, a raster-operation code that refers to a source cannot be used.

Not all devices support the PatBlt function. To determine whether a device supports PatBlt, an application
can call the GetDeviceCaps function with the RASTERCAPS index.

Example
The following example uses the CreateBitmap function to create a bitmap with a zig-zag pattern, and then
uses the PatBlt function to fill the client area with that pattern:

HDC hdc;
HBITMAP hbmp;

HBRUSH hbr, hbrPrevious;
RECT rc;
int aZigzag[] = { 0xFF, 0xF7, 0xEB, 0xDD, 0xBE, 0x7F, 0xFF, 0xFF };
hbmp = CreateBitmap(8, 8, 1, 1, aZigzag);
hbr = CreatePatternBrush(hbmp);
hdc = GetDC(hwnd);
UnrealizeObject(hbr);
hbrPrevious = SelectObject(hdc, hbr);
GetClientRect(hwnd, &rc);
PatBlt(hdc, rc.left, rc.top,

rc.right - rc.left, rc.bottom - rc.top, PATCOPY);
SelectObject(hdc, hbrPrevious);
ReleaseDC(hwnd, hdc);
DeleteObject(hbr);
DeleteObject(hbmp);
See Also
GetDeviceCaps

Windows 3.1 corrections

The following raster operation has been added:

Value Meaning
PATPAINT Paints the destination bitmap.

Pie (2.x)
BOOL Pie(hdc, nLeftRect, nTopRect, nRightRect, nBottomRect, nxStartArc, nyStartArc, nxEndArc,

nyEndArc)
HDC hdc; /* handle of device context */
int nLeftRect; /
* x-coordinate upper-left corner bounding rectangle *
/
int nTopRect; /
* y-coordinate upper-left corner bounding rectangle *
/
int nRightRect; /
* x-coordinate lower-right corner bounding rectangle *
/
int nBottomRect; /
* y-coordinate lower-right corner bounding rectangle *
/
int nxStartArc; /
* x-coordinate arc starting point *
/
int nyStartArc; /
* y-coordinate arc starting point *
/
int nxEndArc; /
* x-coordinate arc ending point *
/
int nyEndArc; /
* y-coordinate arc ending point *
/

The Pie function draws a pie-shaped wedge by drawing an elliptical arc whose center and two endpoints
are joined by lines.

Parameter Description
hdc Identifies the device context.
nLeftRect Specifies the logical x-coordinate of the upper-left corner of the bounding rectangle.
nTopRect Specifies the logical y-coordinate of the upper-left corner of the bounding rectangle.
nRightRect Specifies the logical x-coordinate of the lower-right corner of the bounding rectangle.
nBottomRect Specifies the logical y-coordinate of the lower-right corner of the bounding rectangle.
nxStartArc Specifies the logical x-coordinate of the arc's starting point. This point does not have to

lie exactly on the arc.
nyStartArc Specifies the logical y-coordinate of the arc's starting point. This point does not have to

lie exactly on the arc.
nxEndArc Specifies the logical x-coordinate of the arc's endpoint. This point does not have to lie

exactly on the arc.
nyEndArc Specifies the logical y-coordinate of the arc's endpoint. This point does not have to lie

exactly on the arc.

Returns
The return value is nonzero if the function is successful. Otherwise, it is zero.

Comments
The center of the arc drawn by the Pie function is the center of the bounding rectangle specified by the
nLeftRect, nTopRect, nRightRect, and nBottomRect parameters. The starting and ending points of the arc
are specified by the nxStartArc, nyStartArc, nxEndArc, and nyEndArc parameters. The function draws the
arc by using the selected pen, moving in a counterclockwise direction. It then draws two additional lines
from each endpoint to the arc's center. Finally, it fills the pie-shaped area by using the current brush.

If nxStartArc equals nxEndArc and nyStartArc equals nyEndArc, the result is an ellipse with a single line
from the center of the ellipse to the point (nxStartArc,nyStartArc) or (nxEndArc,nyEndArc).

The figure drawn by this function extends up to but does not include the right and bottom coordinates.

This means that the height of the figure is nBottomRect - nTopRect and the width of the figure is
nRightRect - nLeftRect.

Both the width and the height of a rectangle must be greater than 2 units and less than 32,767 units.

Example
The following example uses a RECT structure to store the points that define the bounding rectangle and
uses POINT structures to store the coordinates that specify the beginning and end of the wedge:

HDC hdc;
RECT rc = { 10, 10, 180, 140 };
POINT ptStart = { 12, 12 };
POINT ptEnd = { 128, 135 };
Pie(hdc, rc.left, rc.top, rc.right, rc.bottom,

ptStart.x, ptStart.y, ptEnd.x, ptEnd.y);
See Also
Chord, POINT, RECT

PlayMetaFile (2.x)
BOOL PlayMetaFile(hdc, hmf)
HDC hdc; /* handle of device context */
HMETAFILE hmf; /* handle of metafile *
/

The PlayMetaFile function plays the contents of the specified metafile on the given device. The metafile
can be played any number of times.

Parameter Description
hdc Identifies the device context of the output device.
hmf Identifies the metafile to be played.

Returns
The return value is nonzero if the function is successful. Otherwise, it is zero.

Example
The following example uses the CreateMetaFile function to create a device-context handle of a memory
metafile, draws a line in the device context, retrieves a metafile handle by calling the CloseMetaFile
function, plays the metafile by using the PlayMetaFile function, and finally deletes the metafile by using
the DeleteMetaFile function:

HDC hdcMeta;
HMETAFILE hmf;
hdcMeta = CreateMetaFile(NULL);
MoveTo(hdcMeta, 10, 10);
LineTo(hdcMeta, 100, 100);
hmf = CloseMetaFile(hdcMeta);
PlayMetaFile(hdc, hmf);
DeleteMetaFile(hmf);
See Also
PlayMetaFileRecord

PlayMetaFileRecord (2.x)
void PlayMetaFileRecord(hdc, lpht, lpmr, cHandles)
HDC hdc; /* handle of device context */
HANDLETABLE FAR* lpht; /
* address of table of object handles *
/
METARECORD FAR* lpmr; /
* address of metafile record *
/
UINT cHandles; /
* number of handles in table *
/

The PlayMetaFileRecord function plays a metafile record by executing the graphics device interface (GDI)
function contained in the record.

Parameter Description
hdc Identifies the device context of the output device.
lpht Points to a table of handles associated with the objects (pens, brushes, and so on) in the

metafile.
lpmr Points to the metafile record to be played.
cHandles Specifies the number of handles in the handle table.

Returns
This function does not return a value.

Comments
An application typically uses this function in conjunction with the EnumMetafile function to modify and
then play a metafile.

Example
The following example creates a dashed green pen and passes it to the callback function for the
EnumMetaFile function. If the first element in the array of object handles contains a handle, that handle is
replaced by the handle of the green pen before the PlayMetaFileRecord function is called. (For this
example, it is assumed that the table of object handles contains only one handle and that it is a pen handle.
)

MFENUMPROC lpEnumMetaProc;
HPEN hpenGreen;
lpEnumMetaProc = (MFENUMPROC) MakeProcInstance(

(FARPROC) EnumMetaFileProc, hAppInstance);
hpenGreen = CreatePen(PS_DASH, 1, RGB(0, 255, 0));
EnumMetaFile(hdc, hmf, lpEnumMetaProc, (LPARAM) &hpenGreen);
FreeProcInstance((FARPROC) lpEnumMetaProc);
DeleteObject(hpenGreen);

.

.

.
int FAR PASCAL EnumMetaFileProc(HDC hdc, HANDLETABLE FAR* lpHTable,

METARECORD FAR* lpMFR, int cObj, BYTE FAR* lpClientData)
{

if (lpHTable->objectHandle[0] != 0)
lpHTable->objectHandle[0] = *(HPEN FAR *) lpClientData;
PlayMetaFileRecord(hdc, lpHTable, lpMFR, cObj);
return 1;

}
See Also
EnumMetafile, PlayMetaFile

Polygon (2.x)
BOOL Polygon(hdc, lppt, cPoints)
HDC hdc; /* handle of device context */
const POINT FAR* lppt; /
* address of array with points for vertices *
/
int cPoints; /
* number of points in array *
/

The Polygon function draws a polygon consisting of two or more points (vertices) connected by lines. The
system closes the polygon automatically, if necessary, by drawing a line from the last vertex to the first.
Polygons are surrounded by a frame drawn by using the current pen and filled by using the current brush.

Parameter Description
hdc Identifies the device context.
lppt Points to an array of POINT structures that specify the vertices of the polygon. Each

structure in the array specifies a vertex.
cPoints Specifies the number of vertices in the array.

Returns
The return value is nonzero if the function is successful. Otherwise, it is zero.

Comments
The current polygon-filling mode can be retrieved or set by using the GetPolyFillMode and
SetPolyFillMode functions.

Example
The following example assigns values to an array of points and then calls the Polygon function:

HDC hdc;
POINT aPoints[3];
aPoints[0].x = 50;
aPoints[0].y = 10;
aPoints[1].x = 250;
aPoints[1].y = 50;
aPoints[2].x = 125;
aPoints[2].y = 130;
Polygon(hdc, aPoints, sizeof(aPoints) / sizeof(POINT));
See Also
GetPolyFillMode, Polyline, PolyPolygon, SetPolyFillMode, POINT

Polyline (2.x)
BOOL Polyline(hdc, lppt, cPoints)
HDC hdc; /* handle of device context */
const POINT FAR* lppt; /
* address of array with points to connect *
/
int cPoints; /
* number of points in array *
/

The Polyline function draws a set of line segments, connecting the specified points. The lines are drawn
from the first point through subsequent points, using the current pen. Unlike the LineTo function, the
Polyline function neither uses nor updates the current position.

Parameter Description
hdc Identifies the device context.
lppt Points to an array of POINT structures. Each structure in the array specifies a point.
cPoints Specifies the number of points in the array. This value must be at least 2.

Returns
The return value is nonzero if the function is successful. Otherwise, it is zero.

Example
The following example assigns values to an array of points and then calls the Polyline function:

HDC hdc;
POINT aPoints[3];
aPoints[0].x = 50;
aPoints[0].y = 10;
aPoints[1].x = 250;
aPoints[1].y = 50;
aPoints[2].x = 125;
aPoints[2].y = 130;
Polyline(hdc, aPoints, sizeof(aPoints) / sizeof(POINT));
See Also
LineTo, Polygon, POINT

PolyPolygon (3.0)
BOOL PolyPolygon(hdc, lppt, lpnPolyCounts, cPolygons)
HDC hdc; /* handle of device context */
const POINT FAR* lppt; /
* address of array with vertices *
/
int FAR* lpnPolyCounts; /
* address of array with point counts *
/
int cPolygons; /
* number of polygons to draw *
/

The PolyPolygon function creates two or more polygons that are filled by using the current polygon-
filling mode. The polygons may be disjoint or overlapping.

Parameter Description
hdc Identifies the device context.
lppt Points to an array of POINT structures. Each structure in the array specifies a vertext

of a polygon.
lpnPolyCounts Points to an array of integers, each of which specifies the number of points in one of

the polygons in the array pointed to by the lppt parameter.
cPolygons Specifies the number of polygons to be drawn. This value must be at least 2.

Returns
The return value is nonzero if the function is successful. Otherwise, it is zero.

Comments
Each polygon specified in a call to the PolyPolygon function must be closed. Unlike polygons created by
the Polygon function, the polygons created by PolyPolygon are not closed automatically.

The PolyPolygon function creates two or more polygons. To create a single polygon, an application should
use the Polygon function.

The current polygon-filling mode can be retrieved or set by using the GetPolyFillMode and
SetPolyFillMode functions.

Example
The following example draws two overlapping polygons by assigning values to an array of points and then
calling the PolyPolygon function:

HDC hdc;
POINT aPolyPoints[8];
int aVertices[] = { 4, 4 };
aPolyPoints[0].x = 50;
aPolyPoints[0].y = 10;
aPolyPoints[1].x = 250;
aPolyPoints[1].y = 50;
aPolyPoints[2].x = 125;
aPolyPoints[2].y = 130;
aPolyPoints[3].x = 50;
aPolyPoints[3].y = 10;
aPolyPoints[4].x = 100;
aPolyPoints[4].y = 25;
aPolyPoints[5].x = 300;
aPolyPoints[5].y = 125;
aPolyPoints[6].x = 70;
aPolyPoints[6].y = 150;
aPolyPoints[7].x = 100;
aPolyPoints[7].y = 25;

PolyPolygon(hdc, aPolyPoints, aVertices,
sizeof(aVertices) / sizeof(int));

See Also
GetPolyFillMode, Polygon, Polyline, SetPolyFillMode, POINT

PtInRegion (2.x)
BOOL PtInRegion(hrgn, nXPos, nYPos)
HRGN hrgn; /* handle of region */
int nXPos; /* x-coordinate of point */
int nYPos; /
* y-coordinate of point *
/

The PtInRegion function determines whether a specified point is in the given region.

Parameter Description
hrgn Identifies the region to be examined.
nXPos Specifies the logical x-coordinate of the point.
nYPos Specifies the logical y-coordinate of the point.

Returns
The return value is nonzero if the point is in the region. Otherwise, it is zero.

Example
The following example uses the PtInRegion function to determine whether the point (50, 50) is in the
specified region and prints the result:

HRGN hrgn;
BOOL fPtIn;
LPSTR lpszInRegion = "Specified point is in region.";
LPSTR lpszNotInRegion = "Specified point is not in region.";
fPtIn = PtInRegion(hrgn, 50, 50);
if (!fPtIn)

TextOut(hdc, 10, 10, lpszNotInRegion,
lstrlen(lpszNotInRegion));

else
TextOut(hdc, 10, 10, lpszInRegion, lstrlen(lpszInRegion));

See Also
RectInRegion

PtVisible (2.x)
BOOL PtVisible(hdc, nXPos, nYPos)
HDC hdc; /* handle of device context */
int nXPos; /* x-coordinate of point to query *
/
int nYPos; /
* y-coordinate of point to query *
/

The PtVisible function determines whether the specified point is within the clipping region of the given
device context.

Parameter Description
hdc Identifies the device context.
nXPos Specifies the logical x-coordinate of the point.
nYPos Specifies the logical y-coordinate of the point.

Returns
The return is nonzero if the point is within the clipping region. Otherwise, it is zero.

Example
The following example creates a rectangular region, displays a message inside it, and selects the region as
the clipping region. The PtVisible function is used to determine whether coordinates generated by a
double-click are inside the region. If so, the message changes to "Thank you." If not, the CombineRgn
function is used to create a clipping region that combines the first region with a new region that surrounds
the specified coordinates, and the word "Missed!" is displayed at the coordinates.

HDC hdcLocal;
HRGN hrgnClick, hrgnMiss, hrgnCombine;
HBRUSH hbr;
hdcLocal = GetDC(hwnd);
hbr = GetStockObject(BLACK_BRUSH);
hrgnClick = CreateRectRgn(90, 95, 225, 120);
FrameRgn(hdcLocal, hrgnClick, hbr, 1, 1);
TextOut(hdcLocal, 100, 100, "Double-click here.", 18);
SelectClipRgn(hdcLocal, hrgnClick);
if (PtVisible(hdcLocal, XClick, YClick)) {

PaintRgn(hdcLocal, hrgnClick);
FrameRgn(hdcLocal, hrgnClick, hbr, 1, 1);
TextOut(hdcLocal, 100, 100, "Thank you.", 10);

}
else if (XClick > 0) {

hrgnMiss = CreateRectRgn(XClick - 5, YClick - 5, XClick + 60,
YClick + 20);
hrgnCombine = CreateRectRgn(0, 0, 0, 0);
CombineRgn(hrgnCombine, hrgnClick, hrgnMiss, RGN_OR);
SelectClipRgn(hdcLocal, hrgnCombine);
FrameRgn(hdcLocal, hrgnCombine, hbr, 1, 1);
TextOut(hdcLocal, XClick, YClick, "Missed!", 7);

}
InvalidateRect(hwnd, NULL, FALSE);
DeleteObject(hrgnClick);
DeleteObject(hrgnMiss);
DeleteObject(hrgnCombine);
ReleaseDC(hwnd, hdcLocal);
See Also
CombineRgn, RectVisible

QueryAbort (3.1)
BOOL QueryAbort(hdc, reserved)
HDC hdc; /* device-context handle */
int reserved; /* reserved; must be zero */

The QueryAbort function calls the AbortProc callback function for a printing application and queries
whether the printing should be terminated.

Parameter Description
hdc Identifies the device context.
reserved Reserved; must be zero.

Returns
The return value is TRUE if printing should continue or if there is no abort procedure. It is FALSE if the
print job should be terminated. The return value is supplied by the AbortProc callback function.

See Also
AbortDoc, AbortProc, SetAbortProc

Rectangle (2.x)
BOOL Rectangle(hdc, nLeftRect, nTopRect, nRightRect, nBottomRect)
HDC hdc; /* handle of device context */
int nLeftRect; /* x-coordinate upper-
left corner *
/
int nTopRect; /
* y-coordinate upper-left corner *
/
int nRightRect; /
* x-coordinate lower-right corner *
/
int nBottomRect; /
* y-coordinate lower-right corner *
/

The Rectangle function draws a rectangle, using the current pen. The interior of the rectangle is filled by
using the current brush.

Parameter Description
hdc Identifies the device context.
nLeftRect Specifies the logical x-coordinate of the upper-left corner of the rectangle.
nTopRect Specifies the logical y-coordinate of the upper-left corner of the rectangle.
nRightRect Specifies the logical x-coordinate of the lower-right corner of the rectangle.
nBottomRect Specifies the logical y-coordinate of the lower-right corner of the rectangle.

Returns
The return value is nonzero if the function is successful. Otherwise, it is zero.

Comments
The figure this function draws extends up to, but does not include, the right and bottom coordinates. This
means that the height of the figure is nBottomRect - nTopRect and the width of the figure is nRightRect -
nLeftRect.

Both the width and the height of a rectangle must be greater than 2 units and less than 32,767 units.

Example
The following example uses a RECT structure to store the coordinates used by the Rectangle function:

HDC hdc;
RECT rc = { 10, 10, 180, 140 };
Rectangle(hdc, rc.left, rc.top,

rc.right, rc.bottom);
See Also
PolyLine, RoundRect, RECT

RectInRegion (3.0)
BOOL RectInRegion(hrgn, lprc)
HRGN hrgn; /* handle of region */
const RECT FAR* lprc; /
* address of structure with rectangle *
/

The RectInRegion function determines whether any part of the specified rectangle is within the boundaries
of the given region.

Parameter Description
hrgn Identifies the region.
lprc Points to a RECT structure containing the coordinates of the rectangle.

Returns
The return value is nonzero if any part of the specified rectangle lies within the boundaries of the region.
Otherwise, it is zero.

Example
The following example uses the RectInRegion function to determine whether a specified rectangle is in a
region and prints the result:

HRGN hrgn;
RECT rc = { 100, 10, 130, 50 };
BOOL fRectIn;
LPSTR lpszOverlap = "Some overlap between rc and region.";
LPSTR lpszNoOverlap = "No common points in rc and region.";
fRectIn = RectInRegion(hrgn, &rc);
if (!fRectIn)

TextOut(hdc, 10, 10, lpszNoOverlap, lstrlen(lpszNoOverlap));
else

TextOut(hdc, 10, 10, lpszOverlap, lstrlen(lpszOverlap));
See Also
PtInRegion, RECT

RectVisible (2.x)
BOOL RectVisible(hdc, lprc)
HDC hdc; /* handle of device context */
const RECT FAR* lprc; /
* address of structure with rectangle *
/

The RectVisible function determines whether any part of the specified rectangle lies within the clipping
region of the given device context.

Parameter Description
hdc Identifies the device context.
lprc Points to a RECT structure that contains the logical coordinates of the specified

rectangle.

Returns
The return value is nonzero if some portion of the rectangle is within the clipping region. Otherwise, it is
zero.

Example
The following example paints a clipping region yellow by painting the client area. The RectVisible
function is called to determine whether a specified rectangle overlaps the clipping region. If there is some
overlap, the rectangle is filled by using a red brush. If there is no overlap, text is displayed inside the
clipping region. In this case, the rectangle and the region do not overlap, even though they both specify
110 as a boundary on the y-axis, because regions are defined as including the pixels up to but not
including the specified right and bottom coordinates.

RECT rc, rcVis;
HRGN hrgn;
HBRUSH hbrRed, hbrYellow;
GetClientRect(hwnd, &rc);
hrgn = CreateRectRgn(10, 10, 310, 110);
SelectClipRgn(hdc, hrgn);
hbrYellow = CreateSolidBrush(RGB(255, 255, 0));
FillRect(hdc, &rc, hbrYellow);
SetRect(&rcVis, 10, 110, 310, 300);
if (RectVisible(hdc, &rcVis)) {

hbrRed = CreateSolidBrush(RGB(255, 0, 0));
FillRect(hdc, &rcVis, hbrRed);
DeleteObject(hbrRed);

}
else {

SetBkColor(hdc, RGB(255, 255, 0));
TextOut(hdc, 20, 50, "Rectangle outside clipping region.", 34);

}
DeleteObject(hbrYellow);
DeleteObject(hrgn);
See Also
CreateRectRgn, PtVisible, SelectClipRgn, RECT

RemoveFontResource (2.x)
BOOL RemoveFontResource(lpszFile)
LPCSTR lpszFile; /* address of string for filename */

The RemoveFontResource function removes an added font resource from the specified file or from the
Windows font table.

Parameter Description
lpszFile Points to a string that names the font resource file or contains a handle of a loaded

module. If this parameter points to the font resource file, the string must be null-
terminated and have the MS-DOS filename format. If the parameter contains a handle,
the handle must be in the low-order word and the high-order word must be zero.

Returns
The return value is nonzero if the function is successful. Otherwise, it is zero.

Comments
Any application that adds or removes fonts from the Windows font table should send a
WM_FONTCHANGE message to all top-level windows in the system by using the SendMessage function
with the hwnd parameter set to 0xFFFF.

In some cases, the RemoveFontResource function may not remove the font resource immediately. If there
are outstanding references to the resource, it remains loaded until the last logical font using it has been
removed (deleted) by using the DeleteObject function.

Example
The following example uses the AddFontResource function to add a font resource from a file, notifies
other applications by using the SendMessage function, then removes the font resource by calling the
RemoveFontResource function:

AddFontResource("fontres.fon");
SendMessage(HWND_BROADCAST, WM_FONTCHANGE, 0, 0);

.

. /* Work with the font. */

.
if (RemoveFontResource("fontres.fon")) {

SendMessage(HWND_BROADCAST, WM_FONTCHANGE, 0, 0);
return TRUE;

}
else

return FALSE;
See Also
AddFontResource, DeleteObject, SendMessage

ResetDC (3.1)
#include <print.h>

HDC ResetDC(hdc, lpdm)
HDC hdc; /* handle of device context */
const DEVMODE FAR* lpdm; /
* address of DEVMODE structure *
/

The ResetDC function updates the given device context, based on the information in the specified
DEVMODE structure.

Parameter Description
hdc Identifies the device context to be updated.
lpdm Points to a DEVMODE structure containing information about the new device context.

Returns
The return value is the handle of the original device context if the function is successful. Otherwise, it is
NULL.

Comments
An application will typically use the ResetDC function when a window receives a
WM_DEVMODECHANGE message. ResetDC can also be used to change the paper orientation or paper
bins while printing a document.

The ResetDC function cannot be used to change the driver name, device name or the output port. When
the user changes the port connection or device name, the application must delete the original device
context and create a new device context with the new information.

Before calling ResetDC, the application must ensure that all objects (other than stock objects) that had
been selected into the device context have been selected out.

See Also
DeviceCapabilities, Escape, ExtDeviceMode, DEVMODE, WM_DEVMODECHANGE

ResizePalette (3.0)
BOOL ResizePalette(hpal, cEntries)
HPALETTE hpal; /* handle of palette */
UINT cEntries; /*
number of palette entries after resizing *
/

The ResizePalette function changes the size of the given logical palette.

Parameter Description
hpal Identifies the palette to be changed.
cEntries Specifies the number of entries in the palette after it has been resized.

Returns
The return value is nonzero if the function is successful. Otherwise, it is zero.

Comments
If an application calls the ResizePalette function to reduce the size of the palette, the entries remaining in
the resized palette are unchanged. If the application calls ResizePalette to enlarge the palette, the
additional palette entries are set to black (the red, green, and blue values are all zero) and the flags for all
additional entries are set to zero.

RestoreDC (2.x)
BOOL RestoreDC(hdc, nSavedDC)
HDC hdc; /* handle of device context */
int nSavedDC; /* integer
identifying device context to restore *
/

The RestoreDC function restores the given device context to a previous state. The device context is
restored by popping state information off a stack created by earlier calls to the SaveDC function.

Parameter Description
hdc Identifies the device context.
nSavedDC Specifies the device context to be restored. This parameter can be a value returned by a

previous SaveDC function. If the parameter is -1, the most recently saved device context
is restored.

Returns
The return value is nonzero if the function is successful. Otherwise, it is zero.

Comments
The stack can contain the state information for several instances of the device context. If the context
specified by the nSavedDC parameter is not at the top of the stack, RestoreDC deletes all state information
between the instance specified by nSavedDC and the top of the stack.

Example
The following example uses the GetMapMode function to retrieve the mapping mode for the current
device context, uses the SaveDC function to save the state of the device context, changes the mapping
mode, restores the previous state of the device context by using the RestoreDC function, and retrieves the
mapping mode again. The final mapping mode is the same as the mapping mode prior to the call to the
SaveDC function.

HDC hdcLocal;
int MapMode;
char *aModes[] = {"ZERO", "MM_TEXT", "MM_LOMETRIC", "MM_HIMETRIC",

"MM_LOENGLISH", "MM_HIENGLISH", "MM_TWIPS",
"MM_ISOTROPIC", "MM_ANISOTROPIC" };

hdcLocal = GetDC(hwnd);
MapMode = GetMapMode(hdcLocal);
TextOut(hdc, 100, 100, (LPSTR) aModes[MapMode],

lstrlen(aModes[MapMode]));
SaveDC(hdcLocal);
SetMapMode(hdcLocal, MM_LOENGLISH);
MapMode = GetMapMode(hdcLocal);
TextOut(hdc, 100, 120, (LPSTR) aModes[MapMode],

lstrlen(aModes[MapMode]));
RestoreDC(hdcLocal, -1);
MapMode = GetMapMode(hdcLocal);
TextOut(hdc, 100, 140, (LPSTR) aModes[MapMode],

lstrlen(aModes[MapMode]));
ReleaseDC(hwnd, hdcLocal);
See Also
SaveDC

RoundRect (2.x)
BOOL RoundRect(hdc, nLeftRect, nTopRect, nRightRect, nBottomRect, nEllipseWidth, nEllipseHeight)
HDC hdc; /* handle of device context */
int nLeftRect; /* x-coordinate
upper-left corner *
/
int nTopRect; /
* y-coordinate upper-left corner *
/
int nRightRect; /
* x-coordinate lower-right corner *
/
int nBottomRect; /
* y-coordinate lower-right corner *
/
int nEllipseWidth; /
* width of ellipse for rounded corners *
/
int nEllipseHeight; /
* height of ellipse for rounded corners *
/

The RoundRect function draws a rectangle with rounded corners, using the current pen. The interior of the
rectangle is filled by using the current brush.

Parameter Description
hdc Identifies the device context.
nLeftRect Specifies the logical x-coordinate of the upper-left corner of the rectangle.
nTopRect Specifies the logical y-coordinate of the upper-left corner of the rectangle.
nRightRect Specifies the logical x-coordinate of the lower-right corner of the rectangle.
nBottomRect Specifies the logical y-coordinate of the lower-right corner of the rectangle.
nEllipseWidth Specifies the width, in logical units, of the ellipse used to draw the rounded corners.
nEllipseHeight Specifies the height, in logical units, of the ellipse used to draw the rounded corners.

Returns
The return value is nonzero if the function is successful. Otherwise, it is zero.

Comments
The figure this function draws extends up to but does not include the right and bottom coordinates. This
means that the height of the figure is nBottomRect - nTopRect and the width of the figure is nRightRect -
nLeftRect.

Both the width and the height of a rectangle must be greater than 2 units and less than 32,767 units.

Example
The following example uses a RECT structure to store the coordinates used by the RoundRect function:

HDC hdc;
RECT rc = { 10, 10, 180, 140 };
int iEllipseWidth, iEllipseHeight;
iEllipseWidth = 20;
iEllipseHeight = 40;
RoundRect(hdc, rc.left, rc.top, rc.right, rc.bottom,

iEllipseWidth, iEllipseHeight);
See Also
Rectangle, RECT

SaveDC (2.x)
int SaveDC(hdc)
HDC hdc; /* handle of device context */

The SaveDC function saves the current state of the given device context by copying state information
(such as clipping region, selected objects, and mapping mode) to a context stack. The saved device context
can later be restored by using the RestoreDC function.

Parameter Description
hdc Identifies the device context to be saved.

Returns
The return value is an integer identifying the saved device context if the function is successful. This
integer can be used to restore the device context by calling the RestoreDC function. The return value is
zero if an error occurs.

Comments
The SaveDC function can be used any number of times to save any number of device-context states.

Example
The following example uses the GetMapMode function to retrieve the mapping mode for the current
device context, uses the SaveDC function to save the state of the device context, changes the mapping
mode, restores the previous state of the device context by using the RestoreDC function, and retrieves the
mapping mode again. The final mapping mode is the same as the mapping mode prior to the call to the
SaveDC function.

HDC hdcLocal;
int MapMode;
char *aModes[] = {"ZERO", "MM_TEXT", "MM_LOMETRIC", "MM_HIMETRIC",

"MM_LOENGLISH", "MM_HIENGLISH", "MM_TWIPS",
"MM_ISOTROPIC", "MM_ANISOTROPIC" };

hdcLocal = GetDC(hwnd);
MapMode = GetMapMode(hdcLocal);
TextOut(hdc, 100, 100, (LPSTR) aModes[MapMode],

lstrlen(aModes[MapMode]));
SaveDC(hdcLocal);
SetMapMode(hdcLocal, MM_LOENGLISH);
MapMode = GetMapMode(hdcLocal);
TextOut(hdc, 100, 120, (LPSTR) aModes[MapMode],

lstrlen(aModes[MapMode]));
RestoreDC(hdcLocal, -1);
MapMode = GetMapMode(hdcLocal);
TextOut(hdc, 100, 140, (LPSTR) aModes[MapMode],

lstrlen(aModes[MapMode]));
ReleaseDC(hwnd, hdcLocal);
See Also
RestoreDC

ScaleViewportExt (2.x)
DWORD ScaleViewportExt(hdc, nXNum, nXDenom, nYNum, nYDenom)
HDC hdc; /* handle of device context */
int nXNum; /* amount by
which current x-extent is multiplied *
/
int nXDenom; /
* amount by which current x-extent is divided *
/
int nYNum; /
* amount by which current y-extent is multiplied *
/
int nYDenom; /
* amount by which current y-extent is divided *
/

The ScaleViewportExt function modifies the viewport extents relative to the current values.

Parameter Description
hdc Identifies the device context.
nXNum Specifies the amount by which to multiply the current x-extent.
nXDenom Specifies the amount by which to divide the result of multiplying the current x-extent by

the value of the nXNum parameter.
nYNum Specifies the amount by which to multiply the current y-extent.
nYDenom Specifies the amount by which to divide the result of multiplying the current y-extent by

the value of the nYNum parameter.

Returns
The low-order word of the return value contains the x-extent, in device units, of the previous viewport if
the function is successful; the high-order word contains the y-extent.

Comments
The new viewport extents are calculated by multiplying the current extents by the given numerator and
then dividing by the given denominator, as shown in the following formulas:

nXNewVE = (nXOldVE * nXNum) / nXDenom
nYNewVE = (nYOldVE * nYNum) / nYDenom
Example
The following example draws a rectangle that is 4 logical units high and 4 logical units wide. It then calls
the ScaleViewportExt function and draws a rectangle that is 8 units by 8 units. Because of the viewport
scaling, the second rectangle is the same size as the first.

HDC hdc;
RECT rc;
GetClientRect(hwnd, &rc);
hdc = GetDC(hwnd);
SetMapMode(hdc, MM_ANISOTROPIC);
SetWindowExt(hdc, 10, 10);
SetViewportExt(hdc, rc.right, rc.bottom);
Rectangle(hdc, 3, 3, 7, 7);
ScaleViewportExt(hdc, 1, 2, 1, 2);
Rectangle(hdc, 6, 6, 14, 14);
ReleaseDC(hwnd, hdc);
See Also
GetViewportExt

ScaleViewportExtEx (3.1)
BOOL ScaleViewportExtEx(hdc, nXnum, nXdenom, nYnum, nYdenom, lpSize)
HDC hdc; /* handle of device context */
int nXnum; /*
amount by which current x-extent is multiplied *
/
int nXdenom; /
* amount by which current x-extent is divided *
/
int nYnum; /
* amount by which current y-extent is multiplied *
/
int nYdenom; /
* amount by which current y-extent is divided *
/
SIZE FAR* lpSize; /
* address of SIZE structure *
/

The ScaleViewportExtEx function modifies the viewport extents relative to the current values. The
formulas are written as follows:

xNewVE = (xOldVE * Xnum) / Xdenom
yNewVE = (yOldVE * Ynum) / Ydenom
The new extent is calculated by multiplying the current extents by the given numerator and then dividing
by the given denominator.

Parameter Description
hdc Identifies the device context.
nXnum Specifies the amount by which to multiply the current x-extent.
nXdenom Specifies the amount by which to divide the current x-extent.
nYnum Specifies the amount by which to multiply the current y-extent.
nYdenom Specifies the amount by which to divide the current y-extent.
lpSize Points to a SIZE structure. The previous viewport extents, in device units, are placed in

this structure. If lpSize is NULL, nothing is returned.

Returns
The return value is nonzero if the function is successful. Otherwise, it is zero.

ScaleWindowExt (2.x)
DWORD ScaleWindowExt(hdc, nXNum, nXDenom, nYNum, nYDenom)
HDC hdc; /* handle of device context */
int nXNum; /* amount by
which current x-extent is multiplied *
/
int nXDenom; /
* amount by which current x-extent is divided *
/
int nYNum; /
* amount by which current y-extent is multiplied *
/
int nYDenom; /
* amount by which current y-extent is divided *
/

The ScaleWindowExt function modifies the window extents relative to the current values.

Parameter Description
hdc Identifies the device context.
nXNum Specifies the amount by which to multiply the current x-extent.
nXDenom Specifies the amount by which to divide the result of multiplying the current x-extent by

the value of the nXNum parameter.
nYNum Specifies the amount by which to multiply the current y-extent.
nYDenom Specifies the amount by which to divide the result of multiplying the current y-extent by

the value of the nYNum parameter.

Returns
The low-order word of the return value contains the x-extent, in logical units, of the previous window, if
the function is successful; the high-order word contains the y-extent.

Comments
The new window extents are calculated by multiplying the current extents by the given numerator and then
dividing by the given denominator, as shown in the following formulas:

nXNewWE = (nXOldWE * nXNum) / nXDenom
nYNewWE = (nYOldWE * nYNum) / nYDenom
Example
The following example draws a rectangle that is 4 logical units high and 4 logical units wide. It then calls
the ScaleWindowExt function and draws a rectangle that is 8 units by 8 units. Because of the window
scaling, the second rectangle is the same size as the first.

HDC hdc;
RECT rc;
GetClientRect(hwnd, &rc);
hdc = GetDC(hwnd);
SetMapMode(hdc, MM_ANISOTROPIC);
SetWindowExt(hdc, 10, 10);
SetViewportExt(hdc, rc.right, rc.bottom);
Rectangle(hdc, 3, 3, 7, 7);
ScaleWindowExt(hdc, 2, 1, 2, 1);
Rectangle(hdc, 6, 6, 14, 14);
ReleaseDC(hwnd, hdc);
See Also
GetWindowExt

ScaleWindowExtEx (3.1)
BOOL ScaleWindowExtEx(hdc, nXnum, nXdenom, nYnum, nYdenom, lpSize)
HDC hdc; /* handle of device context */
int nXnum; /*
amount by which current x-extent is multiplied *
/
int nXdenom; /
* amount by which current x-extent is divided *
/
int nYnum; /
* amount by which current y-extent is multiplied *
/
int nYdenom; /
* amount by which current y-extent is divided *
/
SIZE FAR* lpSize; /
* address of SIZE structure *
/

The ScaleWindowExtEx function modifies the window extents relative to the current values. The formulas
are written as follows:

xNewWE = (xOldWE * Xnum) / Xdenom
yNewWE = (yOldWE * Ynum) / Ydenom
The new extent is calculated by multiplying the current extents by the given numerator and then dividing
by the given denominator.

Parameter Description
hdc Identifies the device context.
nXnum Specifies the amount by which to multiply the current x-extent.
nXdenom Specifies the amount by which to divide the current x-extent.
nYnum Specifies the amount by which to multiply the current y-extent.
nYdenom Specifies the amount by which to divide the current y-extent.
lpSize Points to a SIZE structure. The previous window extents, in logical units, are placed in

this structure. If lpSize is NULL, nothing is returned.

Returns
The return value is nonzero if the function is successful. Otherwise, it is zero.

SelectClipRgn (2.x)
int SelectClipRgn(hdc, hrgn)
HDC hdc; /* handle of device context */
HRGN hrgn; /* handle of region */

The SelectClipRgn function selects the given region as the current clipping region for the given device
context.

Parameter Description
hdc Identifies the device context.
hrgn Identifies the region to be selected. If this value is NULL, the entire client area is

selected and output is still clipped to the window.

Returns
The return value is SIMPLEREGION (region has no overlapping borders), COMPLEXREGION (region
has overlapping borders), or NULLREGION (region is empty), if the function is successful. Otherwise,
the return value is ERROR.

Comments
The SelectClipRgn function selects only a copy of the specified region. Because SelectClipRgn uses only
a copy, the region can be selected for any number of other device contexts or it can be deleted.

The coordinates for the specified region should be specified in device units.

Some printer devices support text output at a higher resolution than graphics output in order to retain the
precision needed to express text metrics. These devices report device units at the higher resolution--that is,
text units. These devices then scale coordinates for graphics so that several reported device units map to
only one graphics unit. Applications should always call the SelectClipRgn function using the text unit.
Applications that must take the scaling of graphics objects in the graphics device interface (GDI) can use
the GETSCALINGFACTOR printer escape to determine the scaling factor. This scaling factor affects
clipping. If a region is used to clip graphics, GDI divides the coordinates by the scaling factor. (If the
region is used to clip text, however, GDI makes no scaling adjustment.) A scaling factor of 1 causes the
coordinates to be divided by 2; a scaling factor of 2 causes the coordinates to be divided by 4; and so on.

Example
The following example uses the GetClipBox function to determine the size of the current clipping region
and the GetTextExtent function to determine the width of a line of text. If the text will not fit in the
clipping region, the SelectClipRgn is used to make the region wide enough for the text. The output is
clipped to the window regardless of the size of the region specified in the second parameter of
SelectClipRegion.

HRGN hrgnClip;
RECT rcClip;
LPSTR lpszTest = "Test of clipping region.";
DWORD dwStringLen;
WORD wExtent;
GetClipBox(hdc, &rcClip);
dwStringLen = GetTextExtent(hdc, lpszTest, lstrlen(lpszTest));
wExtent = LOWORD(dwStringLen);
if (rcClip.right < 50 + wExtent) {

hrgnClip = CreateRectRgn(50, 50, 50 + wExtent, 80);
SelectClipRgn(hdc, hrgnClip);

}
TextOut(hdc, 50, 60, lpszTest, lstrlen(lpszTest));
DeleteObject(hrgnClip);
See Also
GetClipBox, GetTextExtent, GETSCALINGFACTOR

SelectObject (2.x)
HGDIOBJ SelectObject(hdc, hgdiobj)
HDC hdc; /* handle of device context */
HGDIOBJ hgdiobj; /* handle of object *
/

The SelectObject function selects an object into the given device context. The new object replaces the
previous object of the same type.

Parameter Description
hdc Identifies the device context.
hgdiobj Identifies the object to be selected. The object can be one of the following and must

have been created by using one of the listed functions:

Object Functions
Bitmap CreateBitmap, CreateBitmapIndirect, CreateCompatibleBitmap,

CreateDIBitmap
Brush CreateBrushIndirect, CreateDIBPatternBrush, CreateHatchBrush,

CreatePatternBrush, CreateSolidBrush
Font CreateFont, CreateFontIndirect
Pen CreatePen, CreatePenIndirect
Region CreateEllipticRgn, CreateEllipticRgnIndirect, CreatePolygonRgn,

CreateRoundRectRgn, CreateRectRgn, CreateRectRgnIndirect

Returns
The return value is the handle of the object being replaced, if the function is successful. Otherwise, it is
NULL.

If the hgdiobj parameter identifies a region, this function performs the same task as the SelectClipRgn
function and the return value is SIMPLEREGION (region has no overlapping borders),
COMPLEXREGION (region has overlapping borders), or NULLREGION (region is empty). If an error
occurs, the return value is ERROR and the previously selected object of the specified type remains
selected in the device context.

Comments
When an application uses the SelectObject function to select a font, pen, or brush, the system allocates
space for that object in its data segment. Because data-segment space is limited, an application should use
the DeleteObject function to remove each drawing object that it no longer requires. Before removing the
object, the application should select it out of the device context. To do this, the application can select a
different object of the same type back into the device context; typically, this different object is the original
object for the device context.

When the hdc parameter identifies a metafile device context, the SelectObject function does not return the
handle of the previously selected object. When the device context is a metafile, calling SelectObject with
the hgdiobj parameter set to a value returned by a previous call to SelectObject can cause unpredictable
results. Because metafiles perform their own object cleanup, an application need not reselect default
objects when recording a metafile.

Memory device contexts are the only device contexts into which an application can select a bitmap. A
bitmap can be selected into only one memory device context at a time. The format of the bitmap must
either be monochrome or be compatible with the given device; if it is not, SelectObject returns an error.

Example
The following example creates a pen, uses the SelectObject function to select it into a device context, uses
the pen to draw a rectangle, selects the previous pen back into the device context, and uses the
DeleteObject function to remove the pen that was just created:

HPEN hpen, hpenOld;
hpen = CreatePen(PS_SOLID, 6, RGB(0, 0, 255));
hpenOld = SelectObject(hdc, hpen);

Rectangle(hdc, 10, 10, 100, 100);
SelectObject(hdc, hpenOld);
DeleteObject(hpen);
See Also
DeleteObject, SelectClipRgn, SelectPalette

Changes

For Windows 3.1, the SelectObject function returns the same value whether or not it is used in a metafile.
Under previous versions of Windows, the SelectObject function returned a nonzero value for success and
zero for failure when it was used in a metafile.

SetAbortProc (3.1)
int SetAbortProc(hdc, abrtprc)
HDC hdc; /* handle of device context */
ABORTPROC abrtprc; /
* instance address of abort function *
/

The SetAbortProc function sets the application-defined procedure that allows a print job to be canceled
during spooling. This function replaces the SETABORTPROC printer escape for Windows version 3.1.

Parameter Description
hdc Identifies the device context for the print job.
abrtprc Specifies the procedure-instance address of the callback function. The address must

have been created by using the MakeProcInstance function. For more information about
the callback function, see the description of the AbortProc callback function.

Returns
The return value is greater than zero if the function is successful. Otherwise, it is less than zero.

See Also
AbortDoc, AbortProc, Escape

SetBitmapBits (2.x)
LONG SetBitmapBits(hbmp, cBits, lpvBits)
HBITMAP hbmp; /* handle of bitmap */
DWORD cBits; /*
number of bytes in bitmap array *
/
const void FAR* lpvBits; /
* address of array with bitmap bits *
/

The SetBitmapBits function sets the bits of the given bitmap, to the specified bit values.

Parameter Description
hbmp Identifies the bitmap to be set.
cBits Specifies the number of bytes pointed to by the lpvBits parameter.
lpvBits Points to an array of bytes for the bitmap bits.

Returns
The return value is the number of bytes used in setting the bitmap bits, if the function is successful.
Otherwise, the return value is zero.

See Also
GetBitmapBits

SetBitmapDimension (2.x)
DWORD SetBitmapDimension(hbmp, nWidth, nHeight)
HBITMAP hbmp; /* handle of bitmap */
int nWidth; /* bitmap width */
int nHeight; /*
bitmap height *
/

The SetBitmapDimension function assigns a width and height to a bitmap, in 0.1-millimeter units. The
graphics device interface (GDI) does not use these values except to return them when an application calls
the GetBitmapDimension function.

Parameter Description
hbmp Identifies the bitmap.
nWidth Specifies the bitmap width, in 0.1-millimeter units.
nHeight Specifies the bitmap height, in 0.1-millimeter units.

Returns
The return value is the dimensions of the previous bitmap, in 0.1-millimeter units, if the function is
successful. The low-order word contains the previous width; the high-order word contains the previous
height.

See Also
GetBitmapDimension

SetBitmapDimensionEx (3.1)
BOOL SetBitmapDimensionEx(hbm, nX, nY, lpSize)
HBITMAP hbm; /* handle of bitmap */
int nX; /* bitmap width *
/
int nY; /
* bitmap height *
/
SIZE FAR* lpSize; /
* address of structure for prev. dimensions *
/

The SetBitmapDimensionEx function assigns the preferred size to a bitmap, in 0.1-millimeter units. The
graphics device interface (GDI) does not use these values, except to return them when an application calls
the GetBitmapDimensionEx function.

Parameter Description
hbm Identifies the bitmap.
nX Specifies the width of the bitmap, in 0.1-millimeter units.
nY Specifies the height of the bitmap, in 0.1-millimeter units.
lpSize Points to a SIZE structure. The previous bitmap dimensions are placed in this structure.

If lpSize is NULL, nothing is returned.

Returns
The return value is nonzero if the function is successful. Otherwise, it is zero.

See Also
GetBitmapDimensionEx, SIZE

SetBkColor (2.x)
COLORREF SetBkColor(hdc, clrref)
HDC hdc; /* handle of device context */
COLORREF clrref; /* color specification *
/

The SetBkColor function sets the current background color to the specified color.

Parameter Description
hdc Identifies the device context.
clrref Specifies the new background color.

Returns
The return value is the RGB value of the previous background color, if the function is successful. The
return value is 0x80000000 if an error occurs.

Comments
If the background mode is OPAQUE, the system uses the background color to fill the gaps in styled lines,
the gaps between hatched lines in brushes, and the background in character cells. The system also uses the
background color when converting bitmaps between color and monochrome device contexts.

If the device cannot display the specified color, the system sets the background color to the nearest
physical color.

Example
The following example uses the GetBkColor function to determine whether the current background color
is white. If it is, the SetBkColor function sets it to red.

DWORD dwBackColor;
dwBackColor = GetBkColor(hdc);
if (dwBackColor == RGB(255, 255, 255)) { /* if color is white */

SetBkColor(hdc, RGB(255, 0, 0));/* sets color to red */
TextOut(hdc, 100, 200, "SetBkColor test.", 16);

}
See Also
BitBlt, GetBkColor, GetBkMode, SetBkMode, StretchBlt, RGB

SetBkMode (2.x)
int SetBkMode(hdc, fnBkMode)
HDC hdc; /* handle of device context */
int fnBkMode; /* background mode */

The SetBkMode function sets the specified background mode. The background mode defines whether the
system removes existing background colors on the drawing surface before drawing text, hatched brushes,
or any pen style that is not a solid line.

Parameter Description
hdc Identifies the device context.
fnBkMode Specifies the background mode to be set. This parameter can be one of the following

values:

Value Meaning
OPAQUE Background is filled with the current background color before

the text, hatched brush, or pen is drawn. This is the default
background mode.

TRANSPARENT Background is not changed before drawing.

Returns
The return value is the previous background mode, if the function is successful.

Example
The following example determines the current background mode by calling the GetBkMode function. If
the mode is OPAQUE, the SetBkMode function sets it to TRANSPARENT.

int nBackMode;
nBackMode = GetBkMode(hdc);
if (nBackMode == OPAQUE) {

TextOut(hdc, 90, 100, "This background mode is OPAQUE.", 31);
SetBkMode(hdc, TRANSPARENT);

}
See Also
GetBkColor, GetBkMode, SetBkColor

OPAQUE 2

Background is filled with the current background color before the text, hatched brush, or pen is drawn.
This is the default background mode.

OPAQUE 2

TRANSPARENT 1

Background is not changed before drawing.

TRANSPARENT 1

SetBoundsRect (3.1)
UINT SetBoundsRect(hdc, lprcBounds, flags)
HDC hdc; /* handle of device context */
const RECT FAR* lprcBounds; /
* address of structure for rectangle *
/
UINT flags; /
* specifies information to return *
/

The SetBoundsRect function controls the accumulation of bounding-rectangle information for the
specified device context.

Parameter Description
hdc Identifies the device context to accumulate bounding rectangles for.
lprcBounds Points to a RECT structure that is used to set the bounding rectangle. Rectangle

dimensions are given in logical coordinates. This parameter can be NULL.
flags Specifies how the new rectangle will be combined with the accumulated rectangle. This

parameter may be a combination of the following values:

Value Meaning
DCB_ACCUMULATE Add the rectangle specified by the lprcBounds parameter to

the bounding rectangle (using a rectangle union operation)
.

DCB_DISABLE Turn off bounds accumulation.
DCB_ENABLE Turn on bounds accumulation. (The default setting for

bounds accumulation is disabled.)

Returns
The return value is the current state of the bounding rectangle, if the function is successful. Like the flags
parameter, the return value can be a combination of DCB_ values, as shown in the following list:

Value Meaning
DCB_ACCUMULATE The bounding rectangle is not empty. (This value will always be set.)
DCB_DISABLE Bounds accumulation is off.
DCB_ENABLE Bounds accumulation is on.

Comments
Windows can maintain a bounding rectangle for all drawing operations. This rectangle can be queried and
reset by the application. The drawing bounds are useful for invalidating bitmap caches.

See Also
GetBoundsRect

SetBrushOrg (2.x)
DWORD SetBrushOrg(hdc, nXOrg, nYOrg)
HDC hdc; /* handle of device context */
int nXOrg; /* x-coordinate of new origin */
int nYOrg; /
* y-coordinate of new origin *
/

The SetBrushOrg function specifies the origin that GDI will assign to the next brush an application selects
into the specified device context.

Parameter Description
hdc Identifies the device context.
nXOrg Specifies the x-coordinate, in device units, of the new origin. This value must be in the

range 0 through 7.
nYOrg Specifies the y-coordinate, in device units, of the new origin. This value must be in the

range 0 through 7.

Returns
The return value is the coordinates, in device units, of the previous origin, if the function is successful. The
low-order word contains the x-coordinate; the high-order word contains the y-coordinate.

Comments
The default coordinates for the brush origin are (0, 0).

To alter the origin of a brush, an application should call the UnrealizeObject function, specifying the
handle of the brush for which the origin will be set; call SetBrushOrg; and then call the SelectObject
function to select the brush into the device context.

The SetBrushOrg function should not be used with stock objects.

Example
The following example uses the SetBrushOrg function to shift the brush origin vertically by 5 pixels:

HBRUSH hbr, hbrOld;
SetBkMode(hdc, TRANSPARENT);
hbr = CreateHatchBrush(HS_CROSS, RGB(0, 0, 0));
UnrealizeObject(hbr);
SetBrushOrg(hdc, 0, 0);
hbrOld = SelectObject(hdc, hbr);
Rectangle(hdc, 0, 0, 200, 200);
hbr = SelectObject(hdc, hbrOld); /* deselects hbr */
UnrealizeObject(hbr); /* resets origin next time hbr selected */
SetBrushOrg(hdc, 3, 5);
hbrOld = SelectObject(hdc, hbr);/* selects hbr again */
Rectangle(hdc, 0, 0, 200, 200);
SelectObject(hdc, hbrOld);
DeleteObject(hbr);
See Also
GetBrushOrg, SelectObject, UnrealizeObject, HIWORD, LOWORD

Corrections

The function purpose statement was incorrect. SetBrushOrg does not alter the origin of the current brush in
a device context; instead, it sets the origin for the next brush to be selected into the device context. The
original purpose statement read as follows: "The SetBrushOrg function sets the origin of the current brush
for the specified device context."

SetDIBits (3.0)
int SetDIBits(hdc, hbmp, uStartScan, cScanLines, lpvBits, lpbmi, fuColorUse)
HDC hdc; /* handle of device context */
HBITMAP hbmp; /
* handle of bitmap *
/
UINT uStartScan; /
* starting scan line *
/
UINT cScanLines; /
* number of scan lines *
/
const void FAR* lpvBits; /
* address of array with bitmap bits *
/
BITMAPINFO FAR* lpbmi; /
* address of structure with bitmap data *
/
UINT fuColorUse; /
* type of color indices to use *
/

The SetDIBits function sets the bits of a bitmap to the values given in a device-independent bitmap (DIB)
specification.

Parameter Description
hdc Identifies the device context.
hbmp Identifies the bitmap to set the data in.
uStartScan Specifies the zero-based scan number of the first scan line in the buffer pointed to by the

lpvBits parameter.
cScanLines Specifies the number of scan lines in the lpvBits buffer to copy into the bitmap

identified by the hbmp parameter.
lpvBits Points to the device-independent bitmap bits that are stored as an array of bytes. The

format of the bitmap values depends on the biBitCount member of the
BITMAPINFOHEADER structure, which is the first member of the BITMAPINFO
structure pointed to by the lpbmi parameter.

lpbmi Points to a BITMAPINFO structure that contains information about the device-
independent bitmap.

fuColorUse Specifies whether the bmiColors member of the BITMAPINFO structure contains
explicit RGB values or indices into the currently realized logical palette. This parameter
must be one of the following values:

Value Meaning
DIB_PAL_COLORS The color table consists of an array of 16-bit indices into

the palette of the device context identified by the hdc
parameter.

DIB_RGB_COLORS The color table contains literal RGB values.

Returns
The return value is the number of scan lines copied, if the function is successful. Otherwise, it is zero.

Comments
The bitmap identified by the hbmp parameter must not be selected into a device context when the
application calls this function.

To reduce the amount of memory required to set bits from a large device-independent bitmap on a device
surface, an application can band the output by repeatedly calling the SetDIBitsToDevice function, placing
a different portion of the entire bitmap into the lpvBits buffer each time. The values of the uStartScan and
cScanLines parameters identify the portion of the entire bitmap that is contained in the lpvBits buffer.

The origin of a device-independent bitmap is the bottom-left corner of the bitmap, not the top-left corner,
which is the origin when the mapping mode is MM_TEXT. GDI performs the necessary transformation to
display the image correctly.

See Also
SetDIBitsToDevice, BITMAPCOREINFO, BITMAPINFO, BITMAPINFOHEADER

SetDIBitsToDevice (3.0)
int SetDIBitsToDevice(hdc, XDest, YDest, cx, cy, XSrc, YSrc, uStartScan, cScanLines, lpvBits, lpbmi,

fuColorUse)
HDC hdc; /* handle of device context */
int XDest; /* x-
coordinate origin of destination rect *
/
int YDest; /
* y-coordinate origin of destination rect *
/
int cx; /
* rectangle width *
/
int cy; /
* rectangle height *
/
int XSrc; /
* x-coordinate origin of source rect *
/
int YSrc; /
* y-coordinate origin of source rect *
/
UINT uStartScan; /
* number of first scan line in array *
/
UINT cScanLines; /
* number of scan lines *
/
void FAR* lpvBits; /
* address of array with DIB bits *
/
BITMAPINFO FAR* lpbmi; /
* address of structure with bitmap info *
/
UINT fuColorUse; /
* RGB or palette indices *
/

The SetDIBitsToDevice function sets bits from a device-independent bitmap (DIB) directly on a device
surface. The device coordinates specified define a rectangle within the total bitmap. SetDIBitsToDevice
sets the bits in this rectangle directly on the display surface of the output device associated with the given
device context, at the specified logical coordinates.

Parameter Description
hdc Identifies the device context.
XDest Specifies the logical x-coordinate of the origin of the destination rectangle.
YDest Specifies the logical y-coordinate of the origin of the destination rectangle.
cx Specifies the x-extent, in device units, of the rectangle in the bitmap.
cy Specifies the y-extent, in device units, of the rectangle in the bitmap.
XSrc Specifies the x-coordinate, in device units, of the source rectangle in the bitmap.
YSrc Specifies the y-coordinate, in device units, of the source rectangle in the bitmap.
uStartScan Specifies the scan-line number of the device-independent bitmap that is contained in the

first scan line of the buffer pointed to by the lpvBits parameter.
cScanLines Specifies the number of scan lines in the lpvBits buffer to copy to the device.
lpvBits Points to the DIB bits that are stored as an array of bytes.
lpbmi Points to a BITMAPINFO structure that contains information about the bitmap.
fuColorUse Specifies whether the bmiColors member of the lpbmi parameter contains explicit RGB

values or indices into the currently realized logical palette. This parameter must be one
of the following values:

Value Meaning
DIB_PAL_COLORS The color table consists of an array of 16-bit indices into

the currently realized logical palette.
DIB_RGB_COLORS The color table contains literal RGB values.

Returns
The return value is the number of scan lines set, if the function is successful.

Comments
The origin of a device-independent bitmap is the bottom-left corner of the bitmap, not the top-left corner,
which is the origin when the mapping mode is MM_TEXT. GDI performs the necessary transformation to
display the image correctly.

To reduce the amount of memory required to set bits from a large device-independent bitmap on a device
surface, an application can band the output by repeatedly calling SetDIBitsToDevice, placing a different
portion of the entire bitmap into the lpvBits buffer each time. The values of the uStartScan and cScanLines
parameters identify the portion of the entire bitmap that is contained in the lpvBits buffer.

See Also
SetDIBits, BITMAPCOREINFO, BITMAPINFO

SetMapMode (2.x)
int SetMapMode(hdc, fnMapMode)
HDC hdc; /* handle of device context */
int fnMapMode; /* mapping mode to set */

The SetMapMode function sets the mapping mode of the given device context. The mapping mode defines
the unit of measure used to convert logical units to device units; it also defines the orientation of the
device's x- and y-axes. GDI uses the mapping mode to convert logical coordinates into the appropriate
device coordinates.

Parameter Description
hdc Identifies the device context.
fnMapMode Specifies the new mapping mode. This parameter can be any one of the following

values:

Value Meaning
MM_ANISOTROPIC Logical units are converted to arbitrary units with

arbitrarily scaled axes. Setting the mapping mode to
MM_ANISOTROPIC does not change the current window
or viewport settings. To change the units, orientation, and
scaling, an application should use the SetWindowExt and
SetViewportExt functions.

MM_HIENGLISH Each logical unit is converted to 0.001 inch. Positive x is
to the right; positive y is up.

MM_HIMETRIC Each logical unit is converted to 0.01 millimeter. Positive
x is to the right; positive y is up.

MM_ISOTROPIC Logical units are converted to arbitrary units with equally
scaled axes; that is, one unit along the x-axis is equal to
one unit along the y-axis. The SetWindowExt and
SetViewportExt functions must be used to specify the
desired units and the orientation of the axes. GDI makes
adjustments as necessary to ensure that the x and y units
remain the same size.

MM_LOENGLISH Each logical unit is converted to 0.01 inch. Positive x is to
the right; positive y is up.

MM_LOMETRIC Each logical unit is converted to 0.1 millimeter. Positive x
is to the right; positive y is up.

MM_TEXT Each logical unit is converted to one device pixel. Positive
x is to the right; positive y is down.

MM_TWIPS Each logical unit is converted to 1/20 of a point. (Because
a point is 1/72 inch, a twip is 1/1440 inch). Positive x is to
the right; positive y is up.

Returns
The return value is the previous mapping mode, if the function is successful.

Comments
The MM_TEXT mode allows applications to work in device pixels, where one unit is equal to one pixel.
The physical size of a pixel varies from device to device.

The MM_HIENGLISH, MM_HIMETRIC, MM_LOENGLISH, MM_LOMETRIC, and MM_TWIPS
modes are useful for applications that must draw in physically meaningful units (such as inches or
millimeters).

The MM_ISOTROPIC mode ensures a 1:1 aspect ratio, which is useful when it is important to preserve
the exact shape of an image.

The MM_ANISOTROPIC mode allows the x- and y-coordinates to be adjusted independently.

Example
The following example uses the SetMapMode function to set the mapping mode to MM_TWIPS and then
uses the CreateFont function to create an 18-point logical font:

HFONT hfont, hfontOld;

int MapModePrevious, iPtSize = 18;
PSTR pszFace = "MS Serif";
MapModePrevious = SetMapMode(hdc, MM_TWIPS);
hfont = CreateFont(-iPtSize * 20, 0, 0, 0, 0, /* specify pt size */

0, 0, 0, 0, 0, 0, 0, 0, pszFace); /* and face name only */
hfontOld = SelectObject(hdc, hfont);
TextOut(hdc, 100, -500, pszFace, strlen(pszFace));
SetMapMode(hdc, MapModePrevious);
SelectObject(hdc, hfontOld);
DeleteObject(hfont);
See Also
GetMapMode, SetViewportExt, SetWindowExt

SetMapperFlags (2.x)
DWORD SetMapperFlags(hdc, fdwMatch)
HDC hdc; /* handle of device context */
DWORD fdwMatch; /* mapper flag */

The SetMapperFlags function changes the method used by the font mapper when it converts a logical font
to a physical font. An application can use SetMapperFlags to cause the font mapper to attempt to choose
only a physical font that exactly matches the aspect ratio of the specified device.

Parameter Description
hdc Identifies a device context.
fdwMatch Specifies whether the font mapper attempts to match a font's aspect height and width to

the device. When this value is ASPECT_FILTERING, the mapper selects only fonts
whose x-aspect and y-aspect exactly match those of the specified device, and the
remaining bits are ignored.

Returns
The return value is the previous value of the font-mapper flag, if the function is successful.

Comments
An application that uses only raster fonts can use the SetMapperFlags function to ensure that the font
selected by the font mapper is attractive and readable on the specified device. Applications that use
scalable (TrueType) fonts typically do not use SetMapperFlags.

If no physical font has an aspect ratio that matches the specifications in the logical font, GDI chooses a
new aspect ratio and selects a font that matches this new aspect ratio.

SetMetaFileBits (2.x)
HGLOBAL SetMetaFileBits(hmf)
HMETAFILE hmf; /* handle of metafile */

The SetMetaFileBits function creates a memory metafile from the data in the given global memory object.

Parameter Description
hmf Identifies the global memory object that contains the metafile data. The object must

have been created by a previous call to the GetMetaFileBits function. Note that this
global handle must be cast to an HMETAFILE type to avoid compiler warnings.

Returns
The return value is the handle of a memory metafile, if the function is successful. Otherwise, it is NULL.

Comments
After the SetMetaFileBits function returns, the metafile handle it returns must be used instead of the hmf
handle to refer to the metafile. If SetMetaFileBits is successful, the application should not use or free the
memory handle specified by the hmf parameter, because that handle is reused by Windows.

When the application no longer needs the metafile handle, it should free the handle by calling the
DeleteMetaFile function.

See Also
GetMetaFileBits, GlobalFree, SetMetaFileBitsBetter

SetMetaFileBitsBetter (3.1)
HGLOBAL SetMetaFileBitsBetter(hmf)
HMETAFILE hmf; /* handle of the metafile */

The SetMetaFileBitsBetter function creates a memory metafile from the data in the specified global-
memory object.

Parameter Description
hmf Identifies the global-memory object that contains the metafile data. The object must

have been created by a previous call to the GetMetaFileBits function. Note that this
global handle must be cast to an HMETAFILE type to avoid compiler warnings.

Returns
The return value is the handle of a memory metafile, if the function is successful. Otherwise, the return
value is NULL.

Comments
The global-memory handle returned by SetMetaFileBitsBetter is owned by GDI, not by the application.
This enables applications that use metafiles to support object linking and embedding (OLE) to use
metafiles that persist beyond the termination of the application. An OLE application should always use
SetMetaFileBitsBetter instead of the SetMetaFileBits function.

After the SetMetaFileBitsBetter function returns, the metafile handle returned by the function should be
used to refer to the metafile, instead of the handle identified by the hmf parameter.

See Also
GetMetaFileBits, SetMetaFileBits

SetPaletteEntries (3.0)
UINT SetPaletteEntries(hpal, iStart, cEntries, lppe)
HPALETTE hpal; /* handle of palette */
UINT iStart; /
* index of first entry to set *
/
UINT cEntries; /
* number of entries to set *
/
const PALETTEENTRY FAR* lppe; /
* address of array of structures *
/

The SetPaletteEntries function sets RGB color values and flags in a range of entries in the given logical
palette.

Parameter Description
hpal Identifies the logical palette.
iStart Specifies the first logical-palette entry to be set.
cEntries Specifies the number of logical-palette entries to be set.
lppe Points to the first member of an array of PALETTEENTRY structures containing the

RGB values and flags.

Returns
The return value is the number of entries set in the logical palette, if the function is successful. Otherwise,
it is zero.

Comments
If the logical palette is selected into a device context when the application calls the SetPaletteEntries
function, the changes will not take effect until the application calls the RealizePalette function.

See Also
RealizePalette, PALETTEENTRY

SetPixel (2.x)
COLORREF SetPixel(hdc, nXPos, nYPos, clrref)
HDC hdc; /* handle of device context */
int nXPos; /* x-coordinate of pixel to
set *
/
int nYPos; /
* y-coordinate of pixel to set *
/
COLORREF clrref; /
* color of set pixel *
/

The SetPixel function sets the pixel at the specified coordinates to the closest approximation of the given
color. The point must be in the clipping region; if it is not, the function does nothing.

Parameter Description
hdc Identifies the device context.
nXPos Specifies the logical x-coordinate of the point to be set.
nYPos Specifies the logical y-coordinate of the point to be set.
clrref Specifies the color to be used to paint the point.

Returns
The return value is the RGB value for the color the point is painted, if the function is successful. This
value can be different from the specified value if an approximation of that color is used. The return value
is -1 if the function fails (if the point is outside the clipping region).

Comments
Not all devices support the SetPixel function. To discover whether a device supports raster operations, an
application can call the GetDeviceCaps function using the RC_BITBLT index.

See Also
GetDeviceCaps, GetPixel

SetPolyFillMode (2.x)
int SetPolyFillMode(hdc, fnMode)
HDC hdc; /* handle of device context */
int fnMode; /* polygon-filling mode */

The SetPolyFillMode function sets the specified polygon-filling mode.

Parameter Description
hdc Identifies the device context.
fnMode Specifies the new filling mode. This value may be either ALTERNATE or WINDING.

The default mode is ALTERNATE.

Returns
The return value specifies the previous filling mode, if the function is successful. Otherwise, it is zero.

Comments
When the polygon-filling mode is ALTERNATE, the system fills the area between odd-numbered and
even-numbered polygon sides on each scan line. That is, the system fills the area between the first and
second side, between the third and fourth side, and so on.

When the polygon-filling mode is WINDING, the system uses the direction in which a figure was drawn
to determine whether to fill an area. Each line segment in a polygon is drawn in either a clockwise or a
counterclockwise direction. Whenever an imaginary line drawn from an enclosed area to the outside of a
figure passes through a clockwise line segment, a count is incremented (increased by one); when the line
passes through a counterclockwise line segment, the count is decremented (decreased by one). The area is
filled if the count is nonzero when the line reaches the outside of the figure.

Example
The following example uses winding mode to draw the same figure twice. The figure is a rectangle that
completely encloses a triangle. The first time the figure is drawn, both the rectangle and the triangle are
drawn clockwise, and both the rectangle and the triangle are filled. The second time, the rectangle is drawn
clockwise, but the triangle is drawn counterclockwise; the rectangle is filled, but the triangle is not. (If the
figures had been drawn using alternate mode, the rectangle would have been filled and the triangle would
not have been filled, in both cases.)

HBRUSH hbrGray, hbrPrevious;
/*
* Define the points for a clockwise triangle in a clockwise
* rectangle.
*/
POINT aPolyPoints[9] = {{ 50, 60 }, { 250, 60 }, { 250, 260 },

{ 50, 260 }, { 50, 60 }, { 150, 80 },
{ 230, 240 }, { 70, 240 }, { 150, 80 }};

int aPolyCount[] = { 5, 4 };
int cValues, i;
hbrGray = GetStockObject(GRAY_BRUSH);
hbrPrevious = SelectObject(hdc, hbrGray);
cValues = sizeof(aPolyCount) / sizeof(int);
SetPolyFillMode(hdc, WINDING);/* sets winding mode */
PolyPolygon(hdc, aPolyPoints, aPolyCount, cValues);
/* Define the triangle counter-clockwise */
aPolyPoints[6].x = 70; aPolyPoints[6].y = 240;
aPolyPoints[7].x = 230; aPolyPoints[7].y = 240;
for (i = 0; i < sizeof(aPolyPoints) / sizeof(POINT); i++)

aPolyPoints[i].x += 300; /* moves figure 300 units right */

PolyPolygon(hdc, aPolyPoints, aPolyCount, cValues);
SelectObject(hdc, hbrPrevious);
See Also
GetPolyFillMode, PolyPolygon

SetRectRgn (2.x)
void SetRectRgn(hrgn, nLeftRect, nTopRect, nRightRect, nBottomRect)
HRGN hrgn; /* handle of region */
int nLeftRect; /* x-
coordinate top-left corner of rectangle *
/
int nTopRect; /
* y-coordinate top-left corner of rectangle *
/
int nRightRect; /
* x-coordinate bottom-right corner of rectangle *
/
int nBottomRect; /
* y-coordinate bottom-right corner of rectangle *
/

The SetRectRgn function changes the given region into a rectangular region with the specified
coordinates.

Parameter Description
hrgn Identifies the region.
nLeftRect Specifies the x-coordinate of the upper-left corner of the rectangular region.
nTopRect Specifies the y-coordinate of the upper-left corner of the rectangular region.
nRightRect Specifies the x-coordinate of the lower-right corner of the rectangular region.
nBottomRect Specifies the y-coordinate of the lower-right corner of the rectangular region.

Returns
This function does not return a value.

Comments
Applications can use this function instead of the CreateRectRgn function to avoid allocating more memory
from the GDI heap. Because the memory allocated for the hrgn parameter is reused, no new allocation is
performed.

Example
The following example uses the CreateRectRgn function to create a rectangular region and then calls the
SetRectRgn function to change the region coordinates:

HRGN hrgn;
hrgn = CreateRectRgn(10, 10, 30, 30);
PaintRgn(hdc, hrgn);
SetRectRgn(hrgn, 50, 50, 150, 200);
PaintRgn(hdc, hrgn);
DeleteObject(hrgn);
See Also
CreateRectRgn

SetROP2 (2.x)
int SetROP2(hdc, fnDrawMode)
HDC hdc; /* handle of device context */
int fnDrawMode; /* new drawing mode *
/

The SetROP2 function sets the current drawing mode. The drawing mode specifies how the colors of the
pen and the interior of filled objects are combined with the color already on the screen surface.

Parameter Description
hdc Identifies the device context.
fnDrawMode Specifies the new drawing mode. This parameter can be one of the following values:

Value Meaning
R2_BLACK Pixel is always black.
R2_WHITE Pixel is always white.
R2_NOP Pixel remains unchanged.
R2_NOT Pixel is the inverse of the screen color.
R2_COPYPEN Pixel is the pen color.
R2_NOTCOPYPEN Pixel is the inverse of the pen color.
R2_MERGEPENNOT Pixel is a combination of the pen color and the inverse of

the screen color (final pixel = (~screen pixel) | pen).
R2_MASKPENNOT Pixel is a combination of the colors common to both the

pen and the inverse of the screen (final pixel = (~screen
pixel) & pen).

R2_MERGENOTPEN Pixel is a combination of the screen color and the inverse of
the pen color (final pixel = (~pen) | screen pixel).

R2_MASKNOTPEN Pixel is a combination of the colors common to both the
screen and the inverse of the pen (final pixel = (~pen) &
screen pixel).

R2_MERGEPEN Pixel is a combination of the pen color and the screen color
(final pixel = pen | screen pixel).

R2_NOTMERGEPEN Pixel is the inverse of the R2_MERGEPEN color (final
pixel = ~(pen | screen pixel)).

R2_MASKPEN Pixel is a combination of the colors common to both the
pen and the screen (final pixel = pen & screen pixel).

R2_NOTMASKPEN Pixel is the inverse of the R2_MASKPEN color (final pixel
= ~(pen & screen pixel)).

R2_XORPEN Pixel is a combination of the colors that are in the pen and
in the screen, but not in both (final pixel = pen ^ screen
pixel).

R2_NOTXORPEN Pixel is the inverse of the R2_XORPEN color (final pixel =
~(pen ^ screen pixel)).

Returns
The return value specifies the previous drawing mode, if the function is successful.

Comments
The drawing mode is for raster devices only; it does not apply to vector devices.

Drawing modes are binary raster-operation codes representing all possible Boolean combinations of two
variables. These values are created by using the binary operations AND, OR, and XOR (exclusive OR)
and the unary operation NOT.

See Also
GetDeviceCaps, GetROP2

SetStretchBltMode (2.x)
int SetStretchBltMode(hdc, fnStretchMode)
HDC hdc; /* handle of device context */
int fnStretchMode; /* bitmap-stretching
mode *
/

The SetStretchBltMode function sets the bitmap-stretching mode. The bitmap-stretching mode defines
how information is removed from bitmaps that are compressed by using the StretchBlt function.

Parameter Description
hdc Identifies the device context.
fnStretchMode Specifies the new bitmap-stretching mode. This parameter can be one of the following

values:

Value Meaning
STRETCH_ANDSCANS Uses the AND operator to combine eliminated

lines with the remaining lines. This mode
preserves black pixels at the expense of colored
or white pixels. It is the default mode.

STRETCH_DELETESCANS Deletes the eliminated lines. Information in the
eliminated lines is not preserved.

STRETCH_ORSCANS Uses the OR operator to combine eliminated
lines with the remaining lines. This mode
preserves colored or white pixels at the expense
of black pixels.

Returns
The return value is the previous stretching mode, if the function is successful. It can be
STRETCH_ANDSCANS, STRETCH_DELETESCANS, or STRETCH_ORSCANS.

Comments
The STRETCH_ANDSCANS and STRETCH_ORSCANS modes are typically used to preserve
foreground pixels in monochrome bitmaps. The STRETCH_DELETESCANS mode is typically used to
preserve color in color bitmaps.

See Also
GetStretchBltMode, StretchBlt, StretchDIBits

STRETCH_ANDSCANS 1

Uses the AND operator to combine eliminated lines with the remaining lines. This mode preserves black
pixels at the expense of colored or white pixels. It is the default mode.

STRETCH_ANDSCANS 1

STRETCH_DELETESCANS 3

Deletes the eliminated lines. Information in the eliminated lines is not preserved.

STRETCH_DELETESCANS 3

STRETCH_ORSCANS 2

Uses the OR operator to combine eliminated lines with the remaining lines. This mode preserves colored
or white pixels at the expense of black pixels.

STRETCH_ORSCANS 2

SetSystemPaletteUse (3.0)
UINT SetSystemPaletteUse(hdc, fuStatic)
HDC hdc; /* handle of device context */
UINT fuStatic; /* system-palette contents */

The SetSystemPaletteUse function sets the use of static colors in the system palette. The default system
palette contains 20 static colors, which are not changed when an application realizes its logical palette. An
application can use SetSystemPaletteUse to change this to two static colors (black and white).

Parameter Description
hdc Identifies the device context. This device context must support color palettes.
fuStatic Specifies the new use of the system palette. This parameter can be either of the

following values:

Value Meaning
SYSPAL_NOSTATIC System palette contains no static colors except black

and white.
SYSPAL_STATIC System palette contains static colors that will not

change when an application realizes its logical palette.

Returns
The return value is the previous setting for the static colors in the system palette, if the function is
successful. This setting is either SYSPAL_NOSTATIC or SYSPAL_STATIC.

Comments
An application must call this function only when its window is maximized and has the input focus.

If an application calls SetSystemPaletteUse with fuStatic set to SYSPAL_NOSTATIC, Windows
continues to set aside two entries in the system palette for pure white and pure black, respectively.

After calling this function with fuStatic set to SYSPAL_NOSTATIC, an application must follow these
steps:
1 Call the UnrealizeObject function to force the graphics device interface (GDI) to remap the logical

palette completely when it is realized.

2 Realize the logical palette.
3 Call the GetSysColor function to save the current system-color settings.

4 Call the SetSysColors function to set the system colors to reasonable values using black and white.
For example, adjacent or overlapping items (such as window frames and borders) should be set to
black and white, respectively.

5 Send the WM_SYSCOLORCHANGE message to other top-level windows to allow them to be
redrawn with the new system colors.

When the application's window loses focus or closes, the application must perform the following steps:
1 Call SetSystemPaletteUse with the fuStatic parameter set to SYSPAL_STATIC.

2 Call UnrealizeObject to force GDI to remap the logical palette completely when it is realized.
3 Realize the logical palette.

4 Restore the system colors to their previous values.
5 Send the WM_SYSCOLORCHANGE message.

See Also
GetSysColor, SetSysColors, SetSystemPaletteUse, UnrealizeObject

SetTextAlign (2.x)
UINT SetTextAlign(hdc, fuAlign)
HDC hdc; /* handle of device context */
UINT fuAlign; /* text-alignment flags */

The SetTextAlign function sets the text-alignment flags for the given device context.

Parameter Description
hdc Identifies the device context.
fuAlign Specifies text-alignment flags. The flags specify the relationship between a point and a

rectangle that bounds the text. The point can be either the current position or coordinates
specified by a text-output function (such as the ExtTextOut function). The rectangle that
bounds the text is defined by the adjacent character cells in the text string.
The fuAlign parameter can be one or more flags from the following three categories.
Choose only one flag from each category.
The first category affects text alignment in the x-direction:

Value Meaning
TA_CENTER Aligns the point with the horizontal center of the bounding

rectangle.
TA_LEFT Aligns the point with the left side of the bounding rectangle. This

is the default setting.
TA_RIGHT Aligns the point with the right side of the bounding rectangle.
The second category affects text alignment in the y-direction:

Value Meaning
TA_BASELINE Aligns the point with the base line of the chosen font.
TA_BOTTOM Aligns the point with the bottom of the bounding rectangle.
TA_TOP Aligns the point with the top of the bounding rectangle. This is

the default setting.
The third category determines whether the current position is updated when text is
written:

Value Meaning
TA_NOUPDATECP Does not update the current position after each call to a

text-output function. This is the default setting.
TA_UPDATECP Updates the current x-position after each call to a text-

output function. The new position is at the right side of the
bounding rectangle for the text. When this flag is set, the
coordinates specified in calls to the TextOut function are
ignored.

Returns
The return value is the previous text-alignment settings, if the function is successful. The low-order byte
contains the horizontal setting; the high-order byte contains the vertical setting. Otherwise, the return value
is zero.

Comments
The text-alignment flags set by SetTextAlign are used by the TextOut and ExtTextOut functions.

Example
The following example uses the GetTextFace function to retrieve the name of the current typeface, calls
SetTextAlign so that the current position is updated when the TextOut function is called, and then writes
some introductory text and the name of the typeface by calling TextOut:

int nFaceNameLen;
char aFaceName[80];
nFaceNameLen = GetTextFace(hdc, /* returns length of string */

sizeof(aFaceName), /* size of face-name buffer */
(LPSTR) aFaceName); /* address of face-name buffer */

SetTextAlign(hdc,
TA_UPDATECP); /* updates current position */

MoveTo(hdc, 100, 100); /* sets current position*/
TextOut(hdc, 0, 0, /* uses current position for text */

"This is the current face name: ", 31);
TextOut(hdc, 0, 0, aFaceName, nFaceNameLen);
See Also
ExtTextOut, GetTextAlign, TextOut

SetTextCharacterExtra (2.x)
int SetTextCharacterExtra(hdc, nExtraSpace)
HDC hdc; /* handle of device context */
int nExtraSpace; /* extra character
spacing *
/

The SetTextCharacterExtra function sets the amount of intercharacter spacing. The graphics device
interface (GDI) adds this spacing to each character, including break characters, when it writes a line of text
to the device context.

Parameter Description
hdc Identifies the device context.
nExtraSpace Specifies the amount of extra space, in logical units, to be added to each character. If

the current mapping mode is not MM_TEXT, this parameter is transformed and
rounded to the nearest pixel.

Returns
The return value is the previous intercharacter spacing, if the function is successful.

Comments
The default value for the amount of intercharacter spacing is zero.

See Also
GetTextCharacterExtra

SetTextColor (2.x)
COLORREF SetTextColor(hdc, clrref)
HDC hdc; /* handle of device context */
COLORREF clrref; /* new color for text *
/

The SetTextColor function sets the text color to the specified color. The system uses the text color when
writing text to a device context and also when converting bitmaps between color and monochrome device
contexts.

Parameter Description
hdc Identifies the device context.
clrref Specifies the color of the text.

Returns
The return value is the RGB (red-green-blue) value for the previous text color, if the function is successful.

Comments
If the device cannot represent the specified color, the system sets the text color to the nearest physical
color.

The background color for a character is specified by the SetBkColor and SetBkMode functions.

Example
The following example sets the text color to red if the GetTextColor function determines that the current
text color is black. The text color is specified by using the RGB macro.

DWORD dwColor;
dwColor = GetTextColor(hdc);
if (dwColor == RGB(0, 0, 0)) /* if current color is black */

SetTextColor(hdc, RGB(255, 0, 0)); /* sets color to red */
See Also
GetTextColor, BitBlt, SetBkColor, SetBkMode, RGB

SetTextJustification (2.x)
int SetTextJustification(hdc, nExtraSpace, cBreakChars)
HDC hdc; /* handle of device context */
int nExtraSpace; /* space
to add to string *
/
int cBreakChars; /
* number of break characters in the string *
/

The SetTextJustification function adds space to the break characters in a string. An application can use the
GetTextMetrics function to retrieve a font's break character.

Parameter Description
hdc Identifies the device context.
nExtraSpace Specifies the total extra space, in logical units, to be added to the line of text. If the

current mapping mode is not MM_TEXT, the value given by this parameter is
converted to the current mapping mode and rounded to the nearest device unit.

cBreakChars Specifies the number of break characters in the line.

Returns
The return value is 1 if the function is successful. Otherwise, it is zero.

Comments
After the SetTextJustification function is called, a call to a text-output function (for example, TextOut)
distributes the specified extra space evenly among the specified number of break characters. The break
character is usually the space character (ASCII 32), but it may be defined by a font as some other
character.

The GetTextExtent function is typically used with SetTextJustification. The GetTextExtent function
computes the width of a given line before alignment. An application can determine how much space to
specify in the nExtraSpace parameter by subtracting the value returned by GetTextExtent from the width
of the string after alignment.

The SetTextJustification function can be used to align a line that contains multiple runs in different fonts.
In this case, the line must be created piecemeal by aligning and writing each run separately.

Because rounding errors can occur during alignment, the system keeps a running error term that defines
the current error. When aligning a line that contains multiple runs, GetTextExtent automatically uses this
error term when it computes the extent of the next run, allowing the text-output function to blend the error
into the new run. After each line has been aligned, this error term must be cleared to prevent it from being
incorporated into the next line. The term can be cleared by calling SetTextJustification with the
nExtraSpace parameter set to zero.

Example
The following example writes two lines of text inside a box; one of the lines is aligned, and the other is
not. The GetTextExtent function determines the width of the unaligned string. The GetTextMetrics
function determines the break character that is used by the current font; this information is then used to
determine how many break characters the string contains. The SetTextJustification function specifies the
total amount of extra space and the number of break characters to distribute it among. After writing a line
of aligned text, SetTextJustification is called again, to set the error term to zero.

POINT aPoints[5];
int iLMargin = 10, iRMargin = 10, iBoxWidth;
int cchString;
LPSTR lpszJustified = "Text to be justified in this test.";
DWORD dwExtent;
WORD wTextWidth;
TEXTMETRIC tm;
int j, cBreakChars;
aPoints[0].x = 100; aPoints[0].y = 50;
aPoints[1].x = 600; aPoints[1].y = 50;
aPoints[2].x = 600; aPoints[2].y = 200;
aPoints[3].x = 100; aPoints[3].y = 200;

aPoints[4].x = 100; aPoints[4].y = 50;
Polyline(hdc, aPoints, sizeof(aPoints) / sizeof(POINT));
TextOut(hdc, 100 + iLMargin, 100, "Unjustified text.", 17);
cchString = lstrlen(lpszJustified);
dwExtent = GetTextExtent(hdc, lpszJustified, cchString);
wTextWidth = LOWORD(dwExtent);
iBoxWidth = aPoints[1].x - aPoints[0].x;
GetTextMetrics(hdc, &tm);
for (cBreakChars = 0, j = 0; j < cchString; j++)

if (*(lpszJustified + j) == (char) tm.tmBreakChar)
cBreakChars++;

SetTextJustification(hdc,
iBoxWidth - wTextWidth - (iLMargin + iRMargin),
cBreakChars);

TextOut(hdc, 100 + iLMargin, 150, lpszJustified, cchString);
SetTextJustification(hdc, 0, 0);/* clears error term */
See Also
GetMapMode, GetTextExtent, GetTextMetrics, SetMapMode, TextOut

SetViewportExt (2.x)
DWORD SetViewportExt(hdc, nXExtent, nYExtent)
HDC hdc; /* handle of device context */
int nXExtent; /* x-extent of viewport */
int nYExtent; /
* y-extent of viewport *
/

The SetViewportExt function sets the x- and y-extents of the viewport of the given device context. The
viewport, along with the window, defines how points are converted from logical coordinates to device
coordinates.

Parameter Description
hdc Identifies the device context.
nXExtent Specifies the x-extent, in device units, of the viewport.
nYExtent Specifies the y-extent, in device units, of the viewport.

Returns
The return value is the previous viewport extents, in device units, if the function is successful. The low-
order word contains the previous x-extent; the high-order word contains the previous y-extent. Otherwise,
the return value is zero.

Comments
When the following mapping modes are set, calls to the SetWindowExt and SetViewportExt functions are
ignored:

MM_HIENGLISH
MM_HIMETRIC
MM_LOENGLISH
MM_LOMETRIC
MM_TEXT
MM_TWIPS

When the mapping mode is MM_ISOTROPIC, an application must call the SetWindowExt function
before calling SetViewportExt.

The x- and y-extents of the viewport define how much the graphics device interface (GDI) must stretch or
compress units in the logical coordinate system to fit units in the device coordinate system. For example, if
the x-extent of the window is 2 and the x-extent of the viewport is 4, GDI converts two logical units
(measured from the x-axis) into four device units. Similarly, if the y-extent of the window is 2 and the y-
extent of the viewport is -1, GDI converts two logical units (measured from the y-axis) into one device
unit.

The extents also define the relative orientation of the x- and y-axes in both coordinate systems. If the signs
of matching window and viewport extents are the same, the axes have the same orientation. If the signs are
different, the orientation is reversed. For example, if the y-extent of the window is 2 and the y-extent of
the viewport is -1, GDI converts the positive y-axis in the logical coordinate system to the negative y-axis
in the device coordinate system. If the x-extents are 2 and 4, GDI converts the positive x-axis in the logical
coordinate system to the positive x-axis in the device coordinate system.

Example
The following example uses the SetMapMode, SetWindowExt, and SetViewportExt functions to create a
client area that is 10 logical units wide and 10 logical units high, and then draws a rectangle that is 4
logical units wide and 4 logical units high:

HDC hdc;
RECT rc;
GetClientRect(hwnd, &rc);
hdc = GetDC(hwnd);
SetMapMode(hdc, MM_ANISOTROPIC);
SetWindowExt(hdc, 10, 10);
SetViewportExt(hdc, rc.right, rc.bottom);
Rectangle(hdc, 3, 3, 7, 7);
ReleaseDC(hwnd, hdc);

See Also
GetViewportExt, SetViewportExtEx, SetWindowExt

SetViewportExtEx (3.1)
BOOL SetViewportExtEx(hdc, nX, nY, lpSize)
HDC hdc; /* handle of device context */
int nX; /* x-extent of
viewport *
/
int nY; /
* y-extent of viewport *
/
SIZE FAR* lpSize; /
* address of struct. with prev. extents *
/

The SetViewportExtEx function sets the x- and y-extents of the viewport of the specified device context.
The viewport, along with the window, defines how points are mapped from logical coordinates to device
coordinates.

Parameter Description
hdc Identifies the device context.
nX Specifies the x-extent of the viewport, in device units.
nY Specifies the y-extent of the viewport, in device units.
lpSize Points to a SIZE structure. The previous extents of the viewport, in device units, are

placed in this structure. If lpSize is NULL, nothing is returned.

Returns
The return value is nonzero if the function is successful. Otherwise, it is zero.

Comments
When the following mapping modes are set, calls to the SetWindowExtEx and SetViewportExtEx
functions are ignored:

MM_HIENGLISH
MM_HIMETRIC
MM_LOENGLISH
MM_LOMETRIC
MM_TEXT
MM_TWIPS

When MM_ISOTROPIC mode is set, an application must call the SetWindowExtEx function before it
calls SetViewportExtEx.

See Also
SetViewportExt, SetWindowExtEx

SetViewportOrg (2.x)
DWORD SetViewportOrg(hdc, nXOrigin, nYOrigin)
HDC hdc; /* handle of device context */
int nXOrigin; /* x-coordinate of new origin *
/
int nYOrigin; /
* y-coordinate of new origin *
/

The SetViewportOrg function sets the viewport origin of the specified device context. The viewport, along
with the window, defines how points are converted from logical coordinates to device coordinates.

Parameter Description
hdc Identifies the device context.
nXOrigin Specifies the x-coordinate, in device coordinates, of the origin of the viewport. This

value must be within the range of the device coordinate system.
nYOrigin Specifies the y-coordinate, in device coordinates, of the origin of the viewport. This

value must be within the range of the device coordinate system.

Returns
The return value is the coordinates of the previous viewport origin, in device units, if the function is
successful. The low-order word contains the previous x-coordinate; the high-order word contains the
previous y-coordinate. Otherwise, the return value is zero.

Comments
The viewport origin is the origin of the device coordinate system. The graphics device interface (GDI)
converts points from the logical coordinate system to device coordinates. (An application can specify the
origin of the logical coordinate system by using the SetWindowOrg function.) GDI converts all points in
the logical coordinate system to device coordinates in the same way as it converts the origin.

Example
The following example uses the SetViewportOrg function to set the viewport origin to the center of the
client area and then draws a rectangle centered over the origin:

HDC hdc;
RECT rc;
GetClientRect(hwnd, &rc);
hdc = GetDC(hwnd);
SetViewportOrg(hdc, rc.right/2, rc.bottom/2);
Rectangle(hdc, -100, -100, 100, 100);
ReleaseDC(hwnd, hdc);
See Also
SetViewportOrgEx, SetWindowOrg

SetViewportOrgEx (3.1)
BOOL SetViewportOrgEx(hdc, nX, nY, lpPoint)
HDC hdc; /* handle of device context */
int nX; /* x-coordinate
of new origin *
/
int nY; /
* y-coordinate of new origin *
/
POINT FAR* lpPoint; /
* address of struct. with prev. origin *
/

The SetViewportOrgEx function sets the viewport origin of the specified device context. The viewport,
along with the window, defines how points are mapped from logical coordinates to device coordinates.

Parameter Description
hdc Identifies the device context.
nX Specifies the x-coordinate, in device units, of the origin of the viewport.
nY Specifies the y-coordinate, in device units, of the origin of the viewport.
lpPoint Points to a POINT structure. The previous origin of the viewport, in device coordinates,

is placed in this structure. If lpPoint is NULL, nothing is returned.

Returns
The return value is nonzero if the function is successful. Otherwise, it is zero.

See Also
SetViewportOrg, SetWindowOrgEx

SetWindowExt (2.x)
DWORD SetWindowExt(hdc, nXExtent, nYExtent)
HDC hdc; /* handle of device context */
int nXExtent; /* x-extent of window */
int nYExtent; /
* y-extent of window *
/

The SetWindowExt function sets the x- and y-extents of the window associated with the given device
context. The window, along with the viewport, defines how logical coordinates are converted to device
coordinates.

Parameter Description
hdc Identifies the device context.
nXExtent Specifies the x-extent, in logical units, of the window.
nYExtent Specifies the y-extent, in logical units, of the window.

Returns
The return value is the window's previous extents, in logical units, if the function is successful. The low-
order word contains the previous x-extent; the high-order word contains the previous y-extent. Otherwise,
the return value is zero.

Comments
When the following mapping modes are set, calls to the SetWindowExt and SetViewportExt functions are
ignored:

MM_HIENGLISH
MM_HIMETRIC
MM_LOENGLISH
MM_LOMETRIC
MM_TEXT
MM_TWIPS

When MM_ISOTROPIC mode is set, an application must call the SetWindowExt function before calling
SetViewportExt.

The x- and y-extents of the window define how much the graphics device interface (GDI) must stretch or
compress units in the logical coordinate system to fit units in the device coordinate system. For example, if
the x-extent of the window is 2 and the x-extent of the viewport is 4, GDI converts two logical units
(measured from the x-axis) into four device units. Similarly, if the y-extent of the window is 2 and the y-
extent of the viewport is -1, GDI converts two logical units (measured from the y-axis) into one device
unit.

The extents also define the relative orientation of the x- and y-axes in both coordinate systems. If the signs
of matching window and viewport extents are the same, the axes have the same orientation. If the signs are
different, the orientation is reversed. For example, if the y-extent of the window is 2 and the y-extent of
the viewport is -1, GDI converts the positive y-axis in the logical coordinate system to the negative y-axis
in the device coordinate system. If the x-extents are 2 and 4, GDI converts the positive x-axis in the logical
coordinate system to the positive x-axis in the device coordinate system.

Example
The following example uses the SetMapMode, SetWindowExt, and SetViewportExt functions to create a
client area that is 10 logical units wide and 10 logical units high and then draws a rectangle that is 4 units
wide and 4 units high:

HDC hdc;
RECT rc;
GetClientRect(hwnd, &rc);
hdc = GetDC(hwnd);
SetMapMode(hdc, MM_ANISOTROPIC);
SetWindowExt(hdc, 10, 10);
SetViewportExt(hdc, rc.right, rc.bottom);
Rectangle(hdc, 3, 3, 7, 7);
ReleaseDC(hwnd, hdc);

See Also
GetWindowExt, SetViewportExt, SetWindowExtEx

SetWindowExtEx (3.1)
BOOL SetWindowExtEx(hdc, nX, nY, lpSize)
HDC hdc; /* handle of device context */
int nX; /* x-extent of window *
/
int nY; /
* y-extent of window *
/
SIZE FAR* lpSize; /
* address of struct. for prev. extents *
/

The SetWindowExtEx function sets the x- and y-extents of the window associated with the specified
device context. The window, along with the viewport, defines how points are mapped from logical
coordinates to device coordinates.

Parameter Description
hdc Identifies the device context.
nX Specifies the x-extent, in logical units, of the window.
nY Specifies the y-extent, in logical units, of the window.
lpSize Points to a SIZE structure. The previous extents of the window (in logical units) are

placed in this structure. If lpSize is NULL nothing is returned.

Returns
The return value is nonzero if the function is successful. Otherwise, it is zero.

Comments
When the following mapping modes are set, calls to the SetWindowExtEx and SetViewportExt functions
are ignored:

MM_HIENGLISH
MM_HIMETRIC
MM_LOENGLISH
MM_LOMETRIC
MM_TEXT
MM_TWIPS

When MM_ISOTROPIC mode is set, an application must call the SetWindowExtEx function before
calling SetViewportExt.

See Also
SetViewportExtEx, SetWindowExt

SetWindowOrg (2.x)
DWORD SetWindowOrg(hdc, nXOrigin, nYOrigin)
HDC hdc; /* handle of device context */
int nXOrigin; /* x-
coordinate to map to upper-left window corner *
/
int nYOrigin; /
* y-coordinate to map to upper-left window corner *
/

The SetWindowOrg function sets the window origin for the given device context.

Parameter Description
hdc Identifies the device context.
nXOrigin Specifies the logical x-coordinate to map to the upper-left corner of the window.
nYOrigin Specifies the logical y-coordinate to map to the upper-left corner of the window.

Returns
The return value is the coordinates of the previous window origin, in logical units, if the function is
successful. The low-order word contains the x-coordinate of the previous window origin; the high-order
word contains the y-coordinate. Otherwise, the return value is zero.

Comments
The window origin is the origin of the logical coordinate system for a window. By changing the window
origin, an application can change the way the graphics device interface (GDI) converts logical coordinates
to device coordinates (the viewport). GDI converts logical coordinates to the device coordinates of the
viewport in the same way as it converts the origin.

To convert points to the right, an application can specify a negative value for the nXOrigin parameter.
Similarly, to convert points down (in the MM_TEXT mapping mode), the nYOrigin parameter can be
negative.

Example
The following example uses the CopyMetaFile function to copy a metafile to a specified file, plays the
copied metafile, uses the GetMetaFile function to retrieve a handle of the copied metafile, uses the
SetWindowOrg function to change the position at which the metafile is played 200 logical units to the
right, and then plays the metafile at the new location:

HANDLE hmf, hmfSource, hmfOld;
LPSTR lpszFile1 = "MFTest";
hmf = CopyMetaFile(hmfSource, lpszFile1);
PlayMetaFile(hdc, hmf);
DeleteMetaFile(hmf);
hmfOld = GetMetaFile(lpszFile1);
SetWindowOrg(hdc, -200, 0);
PlayMetaFile(hdc, hmfOld);
DeleteMetaFile(hmfSource);
DeleteMetaFile(hmfOld);
See Also
CopyMetaFile, GetMetaFile, GetWindowOrg, PlayMetaFile, SetViewportOrg, SetWindowOrgEx

SetWindowOrgEx (3.1)
BOOL SetWindowOrgEx(hdc, nX, nY, lpPoint)
HDC hdc; /* handle of device context */
int nX; /* x-coordinate
of window *
/
int nY; /
* y-coordinate of window *
/
POINT FAR* lpPoint; /
* address of struct. for prev. origin *
/

The SetWindowOrgEx function sets the window origin of the specified device context. The window, along
with the viewport, defines how points are mapped from logical coordinates to device coordinates.

Parameter Description
hdc Identifies the device context.
nX Specifies the logical x-coordinate of the new origin of the window.
nY Specifies the logical y-coordinate of the new origin of the window.
lpPoint Points to a POINT structure. The previous origin of the window is placed in this

structure. If lpPoint is NULL nothing is returned.

Returns
The return value is nonzero if the function is successful. Otherwise, it is zero.

See Also
GetWindowOrg, GetWindowOrgEx, SetViewportOrgEx, SetWindowOrg

SpoolFile (3.1)
HANDLE SpoolFile(lpszPrinter, lpszPort, lpszJob, lpszFile)
LPSTR lpszPrinter; /* printer name */
LPSTR lpszPort; /* port name */
LPSTR lpszJob; /
* job name *
/
LPSTR lpszFile; /
* file name *
/

The SpoolFile function puts a file into the spooler queue. This function is typically used by device drivers.

Parameter Description
lpszPrinter Points to a null-terminated string specifying the printer name--for example, "HP

LasterJet IIP".
lpszPort Points to a null-terminated string specifying the local name--for example, "LPT1:". This

must be a local port.
lpszJob Points to a null-terminated string specifying the name of the print job for the spooler.

This string cannot be longer than 32 characters, including the null-terminating character.
lpszFile Points to a null-terminated string specifying the path and filename of the file to put in

the spooler queue. This file contains raw printer data.

Returns
The return value is the global handle that is passed to the spooler, if the function is successful. Otherwise,
it is an error value, which can be one of the following:

SP_APPABORT
SP_ERROR
SP_NOTREPORTED
SP_OUTOFDISK
SP_OUTOFMEMORY
SP_USERABORT

Comments
Applications should ensure that the spooler is enabled before calling the SpoolFile function.

StartDoc (3.1)
int StartDoc(hdc, lpdi)
HDC hdc; /* handle of device context */
DOCINFO FAR* lpdi; /*
pointer to DOCINFO structure *
/

The StartDoc function starts a print job. For Windows version 3.1, this function replaces the STARTDOC
printer escape.

Parameter Description
hdc Identifies the device context for the print job.
lpdi Points to a DOCINFO structure containing the name of the document file and the name

of the output file.

Returns
The return value is positive if the function is successful. Otherwise, it is SP_ERROR.

Comments
Applications should call the StartDoc function immediately before beginning a print job. Using this
function ensures that documents containing more than one page are not interspersed with other print jobs.

The StartDoc function should not be used inside metafiles.

See Also
EndDoc, Escape, DOCINFO

StartPage (3.1)
int StartPage(hdc)
HDC hdc; /* handle of device context */

The StartPage function prepares the printer driver to accept data.

Parameter Description
hdc Identifies the device context for the print job.

Returns
The return value is greater than zero if the function is successful. It is less than or equal to zero if an error
occurs.

Comments
The system disables the ResetDC function between calls to the StartPage and EndPage functions. This
means that applications cannot change the device mode except at page boundaries.

See Also
EndPage, Escape, ResetDC

StretchBlt (2.x)
BOOL StretchBlt(hdcDest, nXOriginDest, nYOriginDest, nWidthDest, nHeightDest, hdcSrc,

nXOriginSrc, nYOriginSrc, nWidthSrc, nHeightSrc, fdwRop)
HDC hdcDest; /* destination device-context handle */
int nXOriginDest; /* x-
coordinate of origin of destination rectangle *
/
int nYOriginDest; /
* y-coordinate of origin of destination rectangle *
/
int nWidthDest; /
* width of destination rectangle *
/
int nHeightDest; /
* height of destination rectangle *
/
HDC hdcSrc; /
* source device-context handle *
/
int nXOriginSrc; /
* x-coordinate of origin of source rectangle *
/
int nYOriginSrc; /
* y-coordinate of origin of source rectangle *
/
int nWidthSrc; /
* width of source rectangle *
/
int nHeightSrc; /
* height of source rectangle *
/
DWORD fdwRop; /
* raster operation *
/

The StretchBlt function copies a bitmap from a source rectangle into a destination rectangle, stretching or
compressing the bitmap if necessary to fit the dimensions of the destination rectangle. The StretchBlt
function uses the stretching mode of the destination device context (set by the SetStretchBltMode
function) to determine how to stretch or compress the bitmap.

Parameter Description
hdcDest Identifies the device context to receive the bitmap.
nXOriginDest Specifies the logical x-coordinate of the upper-left corner of the destination rectangle.
nYOriginDest Specifies the logical y-coordinate of the upper-left corner of the destination rectangle.
nWidthDest Specifies the width, in logical units, of the destination rectangle.
nHeightDest Specifies the height, in logical units, of the destination rectangle.
hdcSrc Identifies the device context that contains the source bitmap.
nXOriginSrc Specifies the logical x-coordinate of the upper-left corner of the source rectangle.
nYOriginSrc Specifies the logical y-coordinate of the upper-left corner of the source rectangle.
nWidthSrc Specifies the width, in logical units, of the source rectangle.
nHeightSrc Specifies the height, in logical units, of the source rectangle.
fdwRop Specifies the raster operation to be performed. Raster-operation codes define how the

graphics device interface (GDI) combines colors in output operations that involve a
current brush, a possible source bitmap, and a destination bitmap. This parameter can
be one of the following values:

Code Description
BLACKNESS Turns all output black.
DSTINVERT Inverts the destination bitmap.

MERGECOPY Combines the pattern and the source bitmap by using the
Boolean AND operator.

MERGEPAINT Combines the inverted source bitmap with the destination
bitmap by using the Boolean OR operator.

NOTSRCCOPY Copies the inverted source bitmap to the destination.
NOTSRCERASE Inverts the result of combining the destination and source

bitmaps by using the Boolean OR operator.
PATCOPY Copies the pattern to the destination bitmap.
PATINVERT Combines the destination bitmap with the pattern by using

the Boolean XOR operator.
PATPAINT Combines the inverted source bitmap with the pattern by

using the Boolean OR operator. Combines the result of this
operation with the destination bitmap by using the Boolean
OR operator.

SRCAND Combines pixels of the destination and source bitmaps by
using the Boolean AND operator.

SRCCOPY Copies the source bitmap to the destination bitmap.
SRCERASE Inverts the destination bitmap and combines the result with

the source bitmap by using the Boolean AND operator.
SRCINVERT Combines pixels of the destination and source bitmaps by

using the Boolean XOR operator.
SRCPAINT Combines pixels of the destination and source bitmaps by

using the Boolean OR operator.
WHITENESS Turns all output white.

Returns
The return value is nonzero if the function is successful. Otherwise, it is zero.

Comments
The StretchBlt function stretches or compresses the source bitmap in memory and then copies the result to
the destination. If a pattern is to be merged with the result, it is not merged until the stretched source
bitmap is copied to the destination.

If a brush is used, it is the selected brush in the destination device context.

The destination coordinates are transformed according to the destination device context; the source
coordinates are transformed according to the source device context.

If the destination, source, and pattern bitmaps do not have the same color format, StretchBlt converts the
source and pattern bitmaps to match the destination bitmaps. The foreground and background colors of the
destination device context are used in the conversion.

If StretchBlt must convert a monochrome bitmap to color, it sets white bits (1) to the background color and
black bits (0) to the foreground color. To convert color to monochrome, it sets pixels that match the
background color to white (1) and sets all other pixels to black (0). The foreground and background colors
of the device context with color are used.

StretchBlt creates a mirror image of a bitmap if the signs of the nWidthSrc and nWidthDest or nHeightSrc
and nHeightDest parameters differ. If nWidthSrc and nWidthDest have different signs, the function creates
a mirror image of the bitmap along the x-axis. If nHeightSrc and nHeightDest have different signs, the
function creates a mirror image of the bitmap along the y-axis.

Not all devices support the StretchBlt function. Applications can discover whether a device supports
StretchBlt by calling the GetDeviceCaps function and specifying the RASTERCAPS index.

Example
The following example retrieves the handle of the desktop window and uses it to create a device context.
After retrieving the dimensions of the desktop window, the example calls the StretchBlt function to copy
the desktop bitmap into a smaller rectangle in the destination device context.

HWND hwndDesktop;
HDC hdcLocal;
RECT rc;
hwndDesktop = GetDesktopWindow();
hdcLocal = GetDC(hwndDesktop);

GetWindowRect(GetDesktopWindow(), &rc);
StretchBlt(hdc, 10, 10, 138, 106,

hdcLocal, 0, 0, rc.right, rc.bottom, SRCCOPY);
ReleaseDC(hwndDesktop, hdcLocal);
See Also
BitBlt, GetDeviceCaps, SetStretchBltMode, StretchDIBits

StretchDIBits (3.0)
int StretchDIBits(hdc, XDest, YDest, cxDest, cyDest, XSrc, YSrc, cxSrc, cySrc, lpvBits, lpbmi,

fuColorUse, fdwRop)
HDC hdc; /* handle of device context */
int XDest; /* x-
coordinate of destination rectangle *
/
int YDest; /
* y-coordinate of destination rectangle *
/
int cxDest; /
* width of destination rectangle *
/
int cyDest; /
* height of destination rectangle *
/
int XSrc; /
* x-coordinate of source rectangle *
/
int YSrc; /
* y-coordinate of source rectangle *
/
int cxSrc; /
* width of source rectangle *
/
int cySrc; /
* height of source rectangle *
/
const void FAR* lpvBits; /
* address of buffer with DIB bits *
/
LPBITMAPINFO lpbmi; /
* address of structure with bitmap data *
/
UINT fuColorUse; /
* RGB or palette indices *
/
DWORD fdwRop; /
* raster operation *
/

The StretchDIBits function moves a device-independent bitmap (DIB) from a source rectangle into a
destination rectangle, stretching or compressing the bitmap if necessary to fit the dimensions of the
destination rectangle.

Parameter Description
hdc Identifies the destination device context for a screen surface or memory bitmap.
XDest Specifies the logical x-coordinate of the destination rectangle.
YDest Specifies the logical y-coordinate of the destination rectangle.
cxDest Specifies the logical x-extent of the destination rectangle.
cyDest Specifies the logical y-extent of the destination rectangle.
XSrc Specifies the x-coordinate, in pixels, of the source rectangle in the DIB.
YSrc Specifies the y-coordinate, in pixels, of the source rectangle in the DIB.
cxSrc Specifies the width, in pixels, of the source rectangle in the DIB.
cySrc Specifies the height, in pixels, of the source rectangle in the DIB.
lpvBits Points to the DIB bits that are stored as an array of bytes.
lpbmi Points to a BITMAPINFO structure that contains information about the DIB.
fuColorUse Specifies whether the bmiColors member of the lpbmi parameter contains explicit RGB

(red-green-blue) values or indices into the currently realized logical palette. The
fuColorUse parameter can be one of the following values:

Value Meaning
DIB_PAL_COLORS The color table consists of an array of 16-bit indices into

the currently realized logical palette.
DIB_RGB_COLORS The color table contains literal RGB values.

fdwRop Specifies the raster operation to be performed. Raster-operation codes define how the
graphics device interface (GDI) combines colors in output operations that involve a
current brush, a possible source bitmap, and a destination bitmap. For a list of raster-
operation codes, see the description of the BitBlt function.

Returns
The return value is the number of scan lines copied, if the function is successful.

Comments
The StretchDIBits function uses the stretching mode of the destination device context (set by the
SetStretchBltMode function) to determine how to stretch or compress the bitmap.

The origin of the coordinate system for a device-independent bitmap is the lower-left corner. The origin of
the coordinates of the destination rectangle depends on the current mapping mode of the device context.

StretchDIBits creates a mirror image of a bitmap if the signs of the cxSrc and cxDest parameters or the
cySrc and cyDest parameters differ. If cxSrc and cxDest have different signs, the function creates a mirror
image of the bitmap along the x-axis. If cySrc and cyDest have different signs, the function creates a
mirror image of the bitmap along the y-axis.

See Also
SetMapMode, SetStretchBltMode, BITMAPINFO

TextOut (2.x)
BOOL TextOut(hdc, nXStart, nYStart, lpszString, cbString)
HDC hdc; /* handle of device context */
int nXStart; /* x-coordinate
of starting position *
/
int nYStart; /
* y-coordinate of starting position *
/
LPCSTR lpszString; /
* address of string *
/
int cbString; /
* number of bytes in string *
/

The TextOut function writes a character string at the specified location, using the currently selected font.

Parameter Description
hdc Identifies the device context.
nXStart Specifies the logical x-coordinate of the starting point of the string.
nYStart Specifies the logical y-coordinate of the starting point of the string.
lpszString Points to the character string to be drawn.
cbString Specifies the number of bytes in the string.

Returns
The return value is nonzero if the function is successful. Otherwise, it is zero.

Comments
Character origins are at the upper-left corner of the character cell.

By default, the TextOut function does not use or update the current position. If an application must update
the current position when calling TextOut, it can call the SetTextAlign function with the wFlags parameter
set to TA_UPDATECP. When this flag is set, Windows ignores the nXStart and nYStart parameters on
subsequent calls to the TextOut function, using the current position instead.

Example
The following example uses the GetTextFace function to retrieve the face name of the current font, calls
SetTextAlign so that the current position is updated when the TextOut function is called, and then writes
some introductory text and the face name by calling TextOut:

int nFaceNameLen;
char aFaceName[80];
nFaceNameLen = GetTextFace(hdc, /* returns length of string */

sizeof(aFaceName), /* size of face-name buffer */
(LPSTR) aFaceName); /* address of face-name buffer */

SetTextAlign(hdc,
TA_UPDATECP); /* updates current position */

MoveTo(hdc, 100, 100); /* sets current position*/
TextOut(hdc, 0, 0, /* uses current position for text */

"This is the current face name: ", 31);
TextOut(hdc, 0, 0, aFaceName, nFaceNameLen);
See Also
ExtTextOut, GetTextExtent, SetTextAlign, SetTextColor, TabbedTextOut

UnrealizeObject (2.x)
BOOL UnrealizeObject(hgdiobj)
HGDIOBJ hgdiobj; /* handle of brush or palette */

The UnrealizeObject function resets the origin of a brush or resets a logical palette. If the hgdiobj
parameter identifies a brush, UnrealizeObject directs the system to reset the origin of the brush the next
time it is selected. If the hgdiobj parameter identifies a logical palette, UnrealizeObject directs the system
to realize the palette as though it had not previously been realized. The next time the application calls the
RealizePalette function for the specified palette, the system completely remaps the logical palette to the
system palette.

Parameter Description
hgdiobj Identifies the object to be reset.

Returns
The return value is nonzero if the function is successful. Otherwise, it is zero.

Comments
The UnrealizeObject function should not be used with stock objects.

The UnrealizeObject function must be called whenever a new brush origin is set (by using the
SetBrushOrg function).

A brush identified by the hgdiobj parameter must not be the currently selected brush of any device context.

A palette identified by hgdiobj can be the currently selected palette of a device context.

Example
The following example uses the SetBrushOrg function to set the origin coordinates of the current brush to
(3,5), uses the SelectObject function to remove that brush from the device context, uses the
UnrealizeObject function to force the system to reset the origin of the specified brush, and then calls
SelectObject again to select the brush into the device context with the new brush origin:

HBRUSH hbr, hbrOld;
SetBkMode(hdc, TRANSPARENT);
hbr = CreateHatchBrush(HS_CROSS, RGB(0, 0, 0));
UnrealizeObject(hbr);
SetBrushOrg(hdc, 0, 0);
hbrOld = SelectObject(hdc, hbr);
Rectangle(hdc, 0, 0, 200, 200);
hbr = SelectObject(hdc, hbrOld); /* deselects hbr */
UnrealizeObject(hbr); /* resets origin next time hbr selected */
SetBrushOrg(hdc, 3, 5);
hbrOld = SelectObject(hdc, hbr);/* selects hbr again */
Rectangle(hdc, 0, 0, 200, 200);
SelectObject(hdc, hbrOld);
DeleteObject(hbr);
See Also
RealizePalette, SelectObject, SetBrushOrg

UpdateColors (3.0)
int UpdateColors(hdc)
HDC hdc; /* handle of device context */

The UpdateColors function updates the client area of the given device context by matching the current
colors in the client area, pixel by pixel, to the system palette. An inactive window with a realized logical
palette may call UpdateColors as an alternative to redrawing its client area when the system palette
changes.

Parameter Description
hdc Identifies the device context.

Returns
The return value is not used.

Comments
Using UpdateColors to update a client area is typically faster than redrawing the area. However, because
UpdateColors performs the color translation based on the color of each pixel before the system palette
changed, each call to this function results in the loss of some color accuracy.

GDI functions (3.1)
AbortDoc Terminates a print job
AddFontResource Adds a font to the font table
AnimatePalette Replaces entries in a logical palette
Arc Draws an arc
BitBlt Copies a bitmap between device contexts
Chord Draws a chord
CloseMetaFile Closes a metafile DC and gets the handle
CombineRgn Creates a region by combining two regions
CopyMetaFile Copies a metafile
CreateBitmap Creates a device-dependent memory bitmap
CreateBitmapIndirect Creates a bitmap using BITMAP structure
CreateBrushIndirect Creates a brush with the specified attributes
CreateCompatibleBitmap Creates a bitmap compatible with the DC
CreateCompatibleDC Creates a DC compatible with the specified DC
CreateDC Creates a device context
CreateDIBitmap Creates bitmap handle from DIB specification
CreateDIBPatternBrush Creates a pattern brush from a DIB
CreateDiscardableBitmap Creates discardable bitmap
CreateEllipticRgn Creates an elliptical region
CreateEllipticRgnIndirect Creates an elliptical region
CreateFont Creates a logical font
CreateFontIndirect Creates a font using a LOGFONT structure
CreateHatchBrush Creates a hatched brush
CreateIC Creates an information context
CreateMetaFile Creates a metafile device context
CreatePalette Creates a logical color palette
CreatePatternBrush Creates a pattern brush from a bitmap
CreatePen Creates a pen
CreatePenIndirect Creates a pen using a LOGPEN structure
CreatePolygonRgn Creates a polygonal region
CreatePolyPolygonRgn Creates a region consisting of polygons
CreateRectRgn Creates a rectangular region
CreateRectRgnIndirect Creates a region using a RECT structure
CreateRoundRectRgn Creates a rectangular region with round corners
CreateScalableFontResource Creates a resource file with font info
CreateSolidBrush Creates a solid brush with a specified color
DeleteDC Deletes a device context
DeleteMetaFile Invalidates a metafile handle
DeleteObject Deletes an object from memory
DeviceCapabilities Retrieves the capabilities of a device
DeviceMode Displays a dialog box for printing modes
DPtoLP Converts device points to logical points
Ellipse Draws an ellipse
EndDoc Ends a print job
EndPage Ends a page
EnumFontFamilies Retrieves fonts in a specified family
EnumFonts Enumerates fonts on the specified device
EnumMetaFile Enumerates metafile records
EnumObjects Enumerates pens and brushes in a device context
EqualRgn Compares two regions for equality
Escape Allows access to capabilities device
Printer escapes
ExcludeClipRect Changes clipping region, excluding rectangle
ExtDeviceMode Displays a dialog box for printing modes
ExtFloodFill Fills an area with the current brush
ExtTextOut Writes character string in rectangular region
FillRgn Fills a region with the specified brush
FloodFill Fills an area with the current brush
FrameRgn Draws a border around a region
GetAspectRatioFilter Retrieves setting of aspect-ratio filter
GetAspectRatioFilterEx Retrieves setting of aspect-ratio filter
GetBitmapBits Copies bitmap bits to a buffer
GetBitmapDimension Retrieves the width and height of a bitmap

GetBitmapDimensionEx Retrieves the width and height of a bitmap
GetBkColor Retrieves the current background color
GetBkMode Retrieves the background mode
GetBoundsRect Returns current accumulated bounding rectangle
GetBrushOrg Retrieves the origin of the current brush
GetBrushOrgEx Retrieves the origin of the current brush
GetCharABCWidths Retrieves the widths of TrueType characters
GetCharWidth Retrieves the character widths
GetClipBox Retrieves a rectangle for the clipping region
GetCurrentPosition Retrieves the current position, in logical units
GetCurrentPositionEx Retrieves the current position, in logical units
GetDCOrg Retrieves translation origin for device context
GetDeviceCaps Retrieves the device capabilities
GetDIBits Copies the DIB bits into a buffer
GetFontData Retrieves font metric data
GetGlyphOutline Retrieves data for individual outline character
GetKerningPairs Retrieves kerning pairs for the current font
GetMapMode Retrieves the mapping mode
GetMetaFile Creates a handle to a specified metafile
GetMetaFileBits Creates a global memory object from a metafile
GetNearestColor Retrieves the closest available color
GetNearestPaletteIndex Retrieves the nearest match for a color
GetObject Retrieves information about an object
GetOutlineTextMetrics Retrieves metrics for TrueType fonts
GetPaletteEntries Retrieves a range of palette entries
GetPixel Retrieves RGB color value of specified pixel
GetPolyFillMode Retrieves the current polygon-filling mode
GetRasterizerCaps Retrieves status of TrueType fonts on system
GetRgnBox Retrieves the bounding rectangle for a region
GetROP2 Retrieves the current drawing mode
GetStockObject Retrieves handle of stock pen, brush, or font
GetStretchBltMode Retrieves the current bitmap-stretching mode
GetSystemPaletteEntries Retrieves entries from the system palette
GetSystemPaletteUse Determines the use of an entire system palette
GetTextCharacterExtra Retrieves the intercharacter spacing
GetTextAlign Retrieves the text-alignment flags
GetTextColor Retrieves the current text color
GetTextExtent Determines dimensions of specified text string
GetTextExtentPoint Retrieves dimensions of specified text string
GetTextFace Retrieves the typeface name of the current font
GetTextMetrics Retrieves the metrics for the current font
GetViewportExt Retrieves the viewport extent
GetViewportExtEx Retrieves the viewport extent
GetViewportOrg Retrieves the viewport origin
GetViewportOrgEx Retrieves the viewport origin
GetWindowExt Retrieves the window extents
GetWindowExtEx Retrieves the window extents
GetWindowOrg Retrieves the window origin
GetWindowOrgEx Retrieves the window origin
IntersectClipRect Creates a clipping region from an intersection
InvertRgn Inverts the colors in a region
IsGDIObject Determines if a handle is not a GDI object
LineDDA Computes successive points in a line
LineTo Draws a line from the current position
LPtoDP Converts logical points to device points
MoveTo Moves the current position
MoveToEx Moves the current position
OffsetClipRgn Moves a clipping region
OffsetRgn Moves a region by a specified offset
OffsetViewportOrg Moves the viewport origin
OffsetViewportOrgEx Moves the viewport origin
OffsetWindowOrg Moves the window origin
OffsetWindowOrgEx Moves the window origin
PaintRgn Fills region with brush in given device context

PatBlt Creates a bitmap pattern
Pie Draws a pie-shaped wedge
PlayMetaFile Plays a metafile
PlayMetaFileRecord Plays a metafile record
Polygon Draws a polygon
Polyline Draws line segments to connect specified points
PolyPolygon Draws a series of polygons
PtInRegion Determines whether a point is in a region
PtVisible Determines whether point is in clipping region
QueryAbort Determines whether to terminate a print job
Rectangle Draws a rectangle
RectInRegion Determines whether rectangle overlaps region
RectVisible Determines whether rectangle is in clip region
RemoveFontResource Removes an added font resource
ResetDC Updates a device context
ResizePalette Changes the size of a logical palette
RestoreDC Restores the device context
RoundRect Draws a rectangle with rounded corners
SaveDC Saves the current state of a device context
ScaleViewportExt Scales the viewport extents
ScaleViewportExtEx Scales the viewport extents
ScaleWindowExt Scales the window extents
ScaleWindowExtEx Scales the window extents
SelectClipRgn Selects clipping region for device context
SelectObject Selects an object into a device context
SetAbortProc Sets the abort function for a print job
SetBitmapBits Sets the bitmap bits from an array of bytes
SetBitmapDimension Sets the width and height of a bitmap
SetBitmapDimensionEx Sets the width and height of a bitmap
SetBkColor Sets the current background color
SetBkMode Sets the background mode
SetBoundsRect Controls the bounding-rectangle accumulation
SetBrushOrg Sets the origin of the current brush
SetDIBits Sets the bits of a bitmap
SetDIBitsToDevice Sets DIB bits to a device
SetMapMode Sets the mapping mode
SetMapperFlags Sets the font-mapper flag
SetMetaFileBits Creates a memory object from the metafile
SetMetaFileBitsBetter Creates a memory object from the metafile
SetPaletteEntries Sets the colors and flags for a color palette
SetPixel Sets a pixel to the specified color
SetPolyFillMode Sets the polygon-filling mode
SetRectRgn Changes a region into a specified rectangle
SetROP2 Sets the current drawing mode
SetStretchBltMode Sets the bitmap-stretching mode
SetSystemPaletteUse Sets the use of system-palette static colors
SetTextAlign Sets the text-alignment flags
SetTextCharacterExtra Sets the intercharacter spacing
SetTextColor Sets the foreground color for text
SetTextJustification Sets the alignment for text output
SetViewportExt Sets the viewport extents
SetViewportExtEx Sets the viewport extents
SetViewportOrg Sets the viewport origin
SetViewportOrgEx Sets the viewport origin
SetWindowExt Sets the window extents
SetWindowExtEx Sets the window extents
SetWindowOrg Sets the window origin
SetWindowOrgEx Sets the window origin
SpoolFile Puts a file in the spooler queue
StartDoc Starts a print job
StartPage Prepares a printer driver to receive data
StretchBlt Copies a bitmap, transforming it if required
StretchDIBits Moves DIB from source to destination rectangle
TextOut Writes character string at specified location

UnrealizeObject Resets brush origins and realizes palettes
UpdateColors Updates colors in the client area

DRV_CLOSE (3.1)
DRV_CLOSE

The DRV_CLOSE message is the first message sent by Windows to an installable driver after an
application calls the CloseDriver function.

Parameter Description
dwDriverIdentifier Specifies the unique 32-bit identifier returned by the OpenDriver function.
hDriver Identifies the instance of the installable driver that should be closed.
lParam1 Specifies driver-specific data.
lParam2 Specifies driver-specific data.

Returns
An installable driver returns nonzero if its DriverProc function successfully closes the driver. Otherwise, it
returns zero.

Comments
The lParam1 and lParam2 parameters specify the same values as the lParam1 and lParam2 parameters for
the CloseDriver function.

Each time a driver processes this message, it must decrement a private use-count variable. When the value
of this variable is zero, Windows closes the driver.

See Also
DRV_OPEN

DRV_CONFIGURE (3.1)
DRV_CONFIGURE

The DRV_CONFIGURE message is sent to inform an installable driver that it should display its private
configuration dialog box.

Parameter Description
dwDriverIdentifier Specifies a unique 32-bit value that identifies the installable driver.
hDriver Identifies an instance of the installable driver.
lParam1 Specifies the handle of the parent window for the configuration dialog box. This

handle is in the parameter's low-order word.
lParam2 Points to an optional DRVCONFIGINFO structure. An installable driver should

verify that this pointer is valid before using it.

Returns
An installable driver returns nonzero if it processes this message. Otherwise, it returns zero.

Comments
An installable driver that supports the DRV_CONFIGURE message must provide its own dialog box
template and dialog box procedure. It must also record the user's configuration requests in an appropriate
file. (This may be the SYSTEM.INI file or some other file used by the driver for this purpose.)

See Also
DRV_QUERYCONFIGURE

DRV_DISABLE (3.1)
DRV_DISABLE

The DRV_DISABLE message is the second message sent by Windows to an installable driver after an
application calls the CloseDriver function.

Parameter Description
dwDriverIdentifier Not used.
hDriver Identifies an instance of the installable driver.
lParam1 Not used.
lParam2 Not used.

Returns
An installable driver returns zero if it processes this message.

See Also
DRV_CLOSE

DRV_ENABLE (3.1)
DRV_ENABLE

The DRV_ENABLE message is sent to an installable driver when it is loaded or reloaded or whenever
Windows is reinstalled after switching to an MS-DOS application.

Parameter Description
dwDriverIdentifier Not used.
hDriver Identifies an instance of the installable driver.
lParam1 Not used.
lParam2 Not used.

Returns
An installable driver returns zero if it processes this message.

Comments
When the DriverProc function receives this message, it should initialize all of the driver-specific structures
with default values.

See Also
DRV_OPEN

DRV_EXITAPPLICATION (3.1)
DRV_EXITAPPLICATION

The DRV_EXITAPPLICATION message is sent to all installable drivers when an application exits.

Parameter Description
dwDriverIdentifier Specifies a unique 32-bit value that identifies the installable driver.
lParam1 Specifies the type of application exit. This parameter can be one of the following

values:

Value Meaning
DRVEA_NORMALEXIT Set if the application terminated normally.
DRVEA_ABNORMALEXIT Set if the application terminated

abnormally (because of an application or
system error).

lParam2 Not used.

Returns
The value returned by the application is ignored for this message.

See Also
DRV_EXITSESSION

DRV_EXITSESSION (3.1)
DRV_EXITSESSION

The DRV_EXITSESSION message is sent to all installable drivers when Windows prepares to exit.

Parameter Description
dwDriverIdentifier Specifies a unique 32-bit value that identifies the installable driver.
lParam1 Reserved.
lParam2 Reserved.

Returns
The value returned by the application is ignored for this message.

Comments
The user interface and all other drivers are still enabled when this message is sent.

See Also
DRV_EXITAPPLICATION

DRV_FREE (3.1)
DRV_FREE

The DRV_FREE message is the third message sent by Windows to an installable driver after an
application calls the CloseDriver function.

Parameter Description
dwDriverIdentifier Not used.
hDriver Identifies an instance of the installable driver.
lParam1 Not used.
lParam2 Not used.

Returns
An installable driver returns zero if it processes this message.

Comments
When an installable driver's DriverProc function receives this message, it should free the memory that was
allocated for all driver-specific structures.

DRV_INSTALL (3.1)
DRV_INSTALL

The DRV_INSTALL message is sent to an installable driver during the driver initialization process.

Parameter Description
dwDriverIdentifier Specifies a unique 32-bit value that identifies the installable driver.
hDriver Identifies an instance of the installable driver.
lParam1 Not used.
lParam2 Points to an optional DRVCONFIGINFO structure. An installable driver should

verify that this pointer is valid before using it.

Returns
An installable driver returns nonzero if it processes this message. Otherwise, it returns zero.

Comments
When the driver receives this message, it creates an entry for the driver in the SYSTEM.INI file and
performs other necessary configuration operations.

DRV_LOAD (3.1)
DRV_LOAD

The DRV_LOAD message is sent to an installable driver to notify the driver that it has been loaded.

Parameter Description
dwDriverIdentifier Not used.
hDriver Identifies an instance of the installable driver.
lParam1 Not used.
lParam2 Not used.

Returns
An installable driver returns nonzero if its DriverProc function successfully loads the driver. Otherwise, it
returns zero.

DRV_OPEN (3.1)
DRV_OPEN

The DRV_OPEN message is sent to an installable driver each time it is opened.

Parameter Description
dwDriverIdentifier Specifies a unique 32-bit value that identifies the installable driver.
hDriver Identifies an instance of the installable driver.
lParam1 Points to a null-terminated string containing any ASCII characters that followed

the driver name in the SYSTEM.INI file.
lParam2 Contains the data specified by the lParam parameter, the third argument in the

OpenDriver function.

Returns
An installable driver returns nonzero if it processes this message. Otherwise, it returns zero.

Comments
If no characters follow the driver name in SYSTEM.INI, the lParam1 parameter is a NULL pointer.

See Also
DRV_CLOSE

DRV_QUERYCONFIGURE (3.1)
DRV_QUERYCONFIGURE

The DRV_QUERYCONFIGURE message is sent to an installable driver to determine whether it can be
configured by the user.

Parameter Description
dwDriverIdentifier Specifies a unique 32-bit value that identifies the installable driver.
hDriver Identifies an instance of the installable driver.
lParam1 Not used.
lParam2 Not used.

Returns
An installable driver returns nonzero if it supports custom configuration and is capable of displaying a
configuration dialog box. Otherwise, it returns zero.

See Also
DRV_CONFIGURE

DRV_POWER (3.1)
DRV_POWER

The DRV_POWER message is sent to an installable driver each time the power supply to the associated
device is about to be turned on or off.

Parameter Description
dwDriverIdentifier Specifies a unique 32-bit value that identifies the installable driver.
hDriver Identifies an instance of the installable driver.
lParam1 Not used.
lParam2 Not used.

Returns
An installable driver returns nonzero if it processes this message. Otherwise, it returns zero.

DRV_REMOVE (3.1)
DRV_REMOVE

The DRV_REMOVE message is sent by an application to an installable driver to notify the driver that it is
about to be removed from the system.

Parameter Description
dwDriverIdentifier Specifies a unique 32-bit value that identifies the installable driver.
lParam1 Not used.
lParam2 Not used.

Returns
An installable driver returns nonzero if it processes this message. Otherwise, it returns zero.

Comments
When an installable driver receives this message, it should remove necessary entries from the SYSTEM.
INI file.

DRV_USER (3.1)
DRV_USER

The DRV_USER message is a user-defined or driver-dependent message.

Parameter Description
dwDriverIdentifier This parameter is not predefined; the value is driver dependent.
hDriver This parameter is not predefined; the value is driver dependent.
lParam1 This parameter is not predefined; the value is driver dependent.
lParam2 This parameter is not predefined; the value is driver dependent.

Returns
The return value is driver dependent.

Installable-driver messages (3.1)
DRV_CLOSE Indicates that driver should free resources
DRV_CONFIGURE Indicates that driver should display dialog
DRV_DISABLE Indicates that driver should unhook interrupts
DRV_ENABLE Indicates that driver has been loaded or reloaded
DRV_EXITAPPLICATION Indicates an application is exiting
DRV_EXITSESSION Informs drivers that Windows is exiting
DRV_FREE Indicates that driver must free all resources
DRV_INSTALL Indicates that driver has been installed
DRV_LOAD Indicates that driver has been loaded.
DRV_OPEN Indicates that driver will be opened
DRV_QUERYCONFIGURE Queries driver configuration capabilities
DRV_POWER Indicates that device power-source was en/disabled
DRV_REMOVE Indicates that driver will be removed
DRV_USER Indicates that a user-defined action occurred

_hread (3.1)
long _hread(hf, hpvBuffer, cbBuffer)
HFILE hf; /* file handle */
void _huge* hpvBuffer; /*
address of buffer for read data *
/
long cbBuffer; /
* length of data buffer *
/

The _hread function reads data from the specified file. This function supports huge memory objects (that
is, objects larger than 64K, allocated using the GlobalAlloc function).

Parameter Description
hf Identifies the file to be read.
hpvBuffer Points to a buffer that is to receive the data read from the file.
cbBuffer Specifies the number of bytes to be read from the file.

Returns
The return value indicates the number of bytes that the function read from the file, if the function is
successful. If the number of bytes read is less than the number specified in cbBuffer, the function reached
the end of the file (EOF) before reading the specified number of bytes. The return value is -1L if the
function fails.

Comments
MS-DOS error return values are not available when an application calls this function.

See Also
_lread, hmemcpy, _hwrite

_hwrite (3.1)
long _hwrite(hf, hpvBuffer, cbBuffer)
HFILE hf; /* file handle */
const void _huge* hpvBuffer; /
* address of buffer for write data *
/
long cbBuffer; /
* size of data *
/

The _hwrite function writes data to the specified file. This function supports huge memory objects (that is,
objects larger than 64K, allocated using the GlobalAlloc function).

Parameter Description
hf Identifies the file to be written to.
hpvBuffer Points to a buffer that contains the data to be written to the file.
cbBuffer Specifies the number of bytes to be written to the file.

Returns
The return value indicates the number of bytes written to the file, if the function is successful. Otherwise,
the return value is -1L.

Comments
MS-DOS error return values are not available when an application calls this function.

See Also
hmemcpy, _hread, _lwrite

_lclose (2.x)
HFILE _lclose(hf)
HFILE hf; /* handle of file to close */

The _lclose function closes the given file. As a result, the file is no longer available for reading or writing.

Parameter Description
hf Identifies the file to be closed. This handle is returned by the function that created or last

opened the file.

Returns
The return value is zero if the function is successful. Otherwise, it is HFILE_ERROR.

Example
The following example copies a file to a temporary file, then closes both files:

int cbRead;
PBYTE pbBuf;
/* Allocate a buffer for file I/O. */
pbBuf = (PBYTE) LocalAlloc(LMEM_FIXED, 2048);
/* Copy the input file to the temporary file. */
do {

cbRead = _lread(hfReadFile, pbBuf, 2048);
_lwrite(hfTempFile, pbBuf, cbRead);

} while (cbRead != 0);
/* Free the buffer and close the files. */
LocalFree((HLOCAL) pbBuf);
_lclose(hfReadFile);
_lclose(hfTempFile);
See Also
_lopen, OpenFile

_lcreat (2.x)
HFILE _lcreat(lpszFilename, fnAttribute)
LPCSTR lpszFilename; /* address of file to open */
int fnAttribute; /* file attributes */

The _lcreat function creates or opens a specified file. If the file does not exist, the function creates a new
file and opens it for writing. If the file does exist, the function truncates the file size to zero and opens it
for reading and writing. When the function opens the file, the pointer is set to the beginning of the file.

Parameter Description
lpszFilename Points to a null-terminated string that names the file to be opened. The string must

consist of characters from the Windows character set.
fnAttribute Specifies the file attributes. This parameter must be one of the following values:

Value Meaning
0 Normal; can be read or written without restriction.
1 Read-only; cannot be opened for writing.
2 Hidden; not found by directory search.
3 System; not found by directory search.

Returns
The return value is a file handle if the function is successful. Otherwise, it is HFILE_ERROR.

Comments
Use this function carefully. It is possible to open any file, even one that has already been opened by
another function.

Example
The following example uses the _lcreat function to open a temporary file:

HFILE hfTempFile;
char szBuf[144];
/* Create a temporary file. */
GetTempFileName(0, "tst", 0, szBuf);
hfTempFile = _lcreat(szBuf, 0);
if (hfTempFile == HFILE_ERROR) {

ErrorHandler();
}

_llseek (2.x)
LONG _llseek(hf, lOffset, nOrigin)
HFILE hf; /* file handle */
LONG lOffset; /* number of bytes to move *
/
int nOrigin; /
* position to move from *
/

The _llseek function repositions the pointer in a previously opened file.

Parameter Description
hf Identifies the file.
lOffset Specifies the number of bytes the pointer is to be moved.
nOrigin Specifies the starting position and direction of the pointer. This parameter must be one

of the following values:

Value Meaning
0 Move the file pointer lOffset bytes from the beginning of the file.
1 Move the file pointer lOffset bytes from its current position.
2 Move the file pointer lOffset bytes from the end of the file.

Returns
The return value specifies the new offset, in bytes, of the pointer from the beginning of the file, if the
function is successful. Otherwise, the return value is HFILE_ERROR.

Comments
When a file is initially opened, the file pointer is positioned at the beginning of the file. The _llseek
function permits random access to a file's contents by moving the pointer an arbitrary amount without
reading data.

Example
The following example uses the _llseek function to move the file pointer to the end of an existing file:

HFILE hfAppendFile;
/* Open the write file. */
hfAppendFile = _lopen("append.txt", WRITE);
/* Move to the end of the file. */
if (_llseek(hfAppendFile, 0L, 2) == -1) {

ErrorHandler();
}
See Also
_lopen

_lopen (2.x)
HFILE _lopen(lpszFilename, fnOpenMode)
LPCSTR lpszFilename; /* address of file to open */
int fnOpenMode; /* file access *
/

The _lopen function opens an existing file and sets the file pointer to the beginning of the file.

Parameter Description
lpszFilename Points to a null-terminated string that names the file to be opened. The string must

consist of characters from the Windows character set.
fnOpenMode Specifies the modes in which to open the file. This parameter consists of one access

mode and an optional share mode.

Value Access mode
READ Opens the file for reading only.
READ_WRITE Opens the file for reading and writing.
WRITE Opens the file for writing only.

Value Share mode (optional)
OF_SHARE_COMPAT Opens the file in compatibility mode, allowing

any process on a given machine to open the file
any number of times. If the file has been opened
by using any of the other sharing modes, _lopen
fails.

OF_SHARE_DENY_NONE Opens the file without denying other programs
read or write access to the file. If the file has
been opened in compatibility mode by any other
program, _lopen fails.

OF_SHARE_DENY_READ Opens the file and denies other programs read
access to the file. If the file has been opened in
compatibility mode or for read access by any
other program, _lopen fails.

OF_SHARE_DENY_WRITE Opens the file and denies other programs write
access to the file. If the file has been opened in
compatibility mode or for write access by any
other program, _lopen fails.

OF_SHARE_EXCLUSIVE Opens the file in exclusive mode, denying other
programs both read and write access to the file.
If the file has been opened in any other mode for
read or write access, even by the current
program, _lopen fails.

Returns
The return value is a file handle if the function is successful. Otherwise, it is HFILE_ERROR.

Example
The following example uses the _lopen function to open an input file:

HFILE hfReadFile;
/* Open the input file (read only). */
hfReadFile = _lopen("testfile", READ);
if (hfReadFile == HFILE_ERROR) {

ErrorHandler();
}
See Also
OpenFile

_lread (2.x)
UINT _lread(hf, hpvBuffer, cbBuffer)
HFILE hf; /* file handle */
void _huge* hpvBuffer; /*
address of buffer for read data *
/
UINT cbBuffer; /
* length of data buffer *
/

The _lread function reads data from the specified file.

Parameter Description
hf Identifies the file to be read.
hpvBuffer Points to a buffer that is to receive the data read from the file.
cbBuffer Specifies the number of bytes to be read from the file. This value cannot be greater than

0xFFFE (65,534).

Returns
The return value indicates the number of bytes that the function read from the file, if the function is
successful. If the number of bytes read is less than the number specified in cbBuffer, the function reached
the end of the file (EOF) before reading the specified number of bytes. The return value is
HFILE_ERROR if the function fails.

Comments
MS-DOS error return values are not available when an application calls this function.

Example
The following example uses the _lread and _lwrite functions to copy data from one file to another:

HFILE hfReadFile;
int cbRead;
PBYTE pbBuf;
/* Allocate a buffer for file I/O. */
pbBuf = (PBYTE) LocalAlloc(LMEM_FIXED, 2048);
/* Copy the input file to the temporary file. */
do {

cbRead = _lread(hfReadFile, pbBuf, 2048);
_lwrite(hfTempFile, pbBuf, cbRead);

} while (cbRead != 0);
/* Free the buffer and close the files. */
LocalFree((HLOCAL) pbBuf);
_lclose(hfReadFile);
_lclose(hfTempFile);
See Also
_hread, _lwrite

_lwrite (2.x)
UINT _lwrite(hf, hpvBuffer, cbBuffer)
HFILE hf; /* file handle */
const void _huge* hpvBuffer; /
* address of buffer for write data *
/
UINT cbBuffer; /
* size of data *
/

The _lwrite function writes data to the specified file.

Parameter Description
hf Identifies the file to be written to.
hpvBuffer Points to a buffer that contains the data to be written to the file.
cbBuffer Specifies the number of bytes to be written to the file. If this parameter is zero, the file is

expanded or truncated to the current file-pointer position. This value cannot be greater
than 0xFFFE (65,534).

Returns
The return value indicates the number of bytes written to the file, if the function is successful. Otherwise,
the return value is HFILE_ERROR.

Comments
The buffer specified by hpvBuffer cannot extend past the end of a segment.

MS-DOS error return values are not available when an application calls this function.

Example
The following example uses the _lread and _lwrite functions to copy data from one file to another:

int cbRead;
PBYTE pbBuf;
/* Allocate a buffer for file I/O. */
pbBuf = (PBYTE) LocalAlloc(LMEM_FIXED, 2048);
/* Copy the input file to the temporary file. */
do {

cbRead = _lread(hfReadFile, pbBuf, 2048);
_lwrite(hfTempFile, pbBuf, cbRead);

} while (cbRead != 0);
/* Free the buffer and close the files. */
LocalFree((HLOCAL) pbBuf);
_lclose(hfReadFile);
_lclose(hfTempFile);
See Also
_hwrite, _lread

AccessResource (2.x)
int AccessResource(hinst, hrsrc)
HINSTANCE hinst; /* handle of module with resource */
HRSRC hrsrc; /* handle of
resource *
/

The AccessResource function opens the given executable file and moves the file pointer to the beginning
of the given resource.

Parameter Description
hinst Identifies the instance of the module whose executable file contains the resource.
hrsrc Identifies the desired resource. This handle should be created by using the FindResource

function.

Returns
The return value is the handle of the resource file if the function is successful. Otherwise, it is -1.

Comments
The AccessResource function supplies an MS-DOS file handle that can be used in subsequent file-read
calls to load the resource. The file is opened for reading only.

Applications that use this function must close the resource file by calling the _lclose function after reading
the resource. AccessResource can exhaust available MS-DOS file handles and cause errors if the opened
file is not closed after the resource is accessed.

In general, the LoadResource and LockResource functions are preferred. These functions will access the
resource more quickly if several resources are being read, because Windows maintains a file-handle cache
for accessing executable files. However, each call to AccessResource requires that a new handle be opened
to the executable file.

You should not use AccessResource to access executable files that are installed in ROM on a ROM-based
system, since there are no disk files associated with the executable file; in such a case, a file handle cannot
be returned.

See Also
FindResource, _lclose, LoadResource, LockResource

AddAtom (2.x)
ATOM AddAtom(lpszName)
LPCSTR lpszName; /* address of string to add */

The AddAtom function adds a character string to the local atom table and returns a unique value
identifying the string.

Parameter Description
lpszName Points to the null-terminated character string to be added to the table.

Returns
The return value specifies the newly created atom if the function is successful. Otherwise, it is zero.

Comments
The AddAtom function stores no more than one copy of a given string in the atom table. If the string is
already in the table, the function returns the existing atom value and increments (increases by one) the
string's reference count.

The MAKEINTATOM macro can be used to convert a word value into a string that can be added to the
atom table by using the AddAtom function.

The atom values returned by AddAtom are in the range 0xC000 through 0xFFFF.

Atoms are case-insensitive.

Example
The following example uses the AddAtom function to add the string "This is an atom" to the local atom
table:

ATOM at;
char szMsg[80];
at = AddAtom("This is an atom");
if (at == 0)

MessageBox(hwnd, "AddAtom failed", "", MB_ICONSTOP);
else {

wsprintf(szMsg, "AddAtom returned %u", at);
MessageBox(hwnd, szMsg, "", MB_OK);

}
See Also
DeleteAtom, FindAtom, GetAtomName, MAKEINTATOM

AllocDStoCSAlias (3.0)
UINT AllocDStoCSAlias(uSelector)
UINT uSelector; /* data-segment selector */

The AllocDStoCSAlias function accepts a data-segment selector and returns a code-segment selector that
can be used to execute code in the data segment.

Parameter Description
uSelector Specifies the data-segment selector.

Returns
The return value is the code-segment selector corresponding to the data-segment selector if the function is
successful. Otherwise, it is zero.

Comments
The application must free the new selector by calling the FreeSelector function.

In protected mode, attempting to execute code directly in a data segment will cause a general-protection
violation. AllocDStoCSAlias allows an application to execute code that the application had created in its
own stack segment.

Windows does not track segment movements. Consequently, the data segment must be fixed and
nondiscardable; otherwise, the data segment might move, invalidating the code-segment selector.

The PrestoChangoSelector function provides another method of obtaining a code selector corresponding to
a data selector.

An application should not use this function unless it is absolutely necessary, since its use violates preferred
Windows programming practices.

See Also
FreeSelector, PrestoChangoSelector

Correction

The previous description of this function indicated that the application should free the selector with the
FreeSelector function. Applications should not free the selector.

AllocResource (2.x)
HGLOBAL AllocResource(hinst, hrsrc, cbResource)
HINSTANCE hinst; /* handle of module containing resource */
HRSRC hrsrc; /*
handle of resource *
/
DWORD cbResource; /
* size to allocate, or zero *
/

The AllocResource function allocates uninitialized memory for the given resource.

Parameter Description
hinst Identifies the instance of the module whose executable file contains the resource.
hrsrc Identifies the desired resource. This handle should have been created by using the

FindResource function.
cbResource Specifies the size, in bytes, of the memory object to allocate for the resource. If this

parameter is zero, Windows allocates enough memory for the specified resource.

Returns
The return value is the handle of the global memory object if the function is successful.

See Also
FindResource, LoadResource

AllocSelector (3.0)
UINT AllocSelector(uSelector)
UINT uSelector; /* selector to copy or zero */

The AllocSelector function allocates a new selector.

Do not use this function in an application unless it is absolutely necessary, since its use violates preferred
Windows programming practices.

Parameter Description
uSelector Specifies the selector to return. If this parameter specifies a valid selector, the function

returns a new selector that is an exact copy of the one specified here. If this parameter is
zero, the function returns a new, uninitialized sector.

Returns
The return value is a selector that is either a copy of an existing selector, or a new, uninitialized selector.
Otherwise, the return value is zero.

Comments
The application must free the new selector by calling the FreeSelector function.

An application can call AllocSelector to allocate a selector that it can pass to the PrestoChangoSelector
function.

See Also
PrestoChangoSelector

AnsiToOem (2.x)
void AnsiToOem(hpszWindows, hpszOem)
const char _huge* hpszWindows; /* address of string to translate */
char _huge* hpszOem; /
* address of buffer for string *
/

The AnsiToOem function translates a string from the Windows character set into the specified OEM
character set.

Parameter Description
hpszWindows Points to a null-terminated string of characters from the Windows character set.
hpszOem Points to the location where the translated string is to be copied. To translate the string

in place, this parameter can be the same as hpszWindows.

Returns
This function does not return a value.

Comments
The string to be translated can be greater than 64K in length.

Windows-to-OEM mappings are defined by the keyboard driver, where this function is implemented.
Some keyboard drivers may have different mappings than others, depending on the machine environment,
and some keyboard driver support loading different OEM character sets; for example, the standard U.S.
keyboard driver for an IBM keyboard supports loadable code pages, with the default being code page 437
and the most common alternative being code page 850. (The Windows character set is sometimes referred
to as code page 1007.)

The OEM character set must always be used when accessing string data created by MS-DOS or MS-DOS
applications. For example, a word processor should convert OEM characters to Windows characters when
importing documents from an MS-DOS word processor. When an application makes an MS-DOS call,
including a C run-time function call, filenames must be in the OEM character set, whereas they must be
presented to the user in Windows characters (because the Windows fonts use Windows characters).

Example
The following example is part of a dialog box in which a user would create a directory by typing a name in
an edit control:

case IDOK:
GetWindowText(GetDlgItem(hwndDlg, ID_EDITDIRNAME), szDirName,
sizeof(szDirName));
AnsiToOem(szDirName, szDirName);
mkdir(szDirName);
EndDialog(hwndDlg, 1);
return TRUE;

See Also
AnsiToOemBuff, OemToAnsi

AnsiToOemBuff (3.0)
void AnsiToOemBuff(lpszWindowsStr, lpszOemStr, cbWindowsStr)
LPCSTR lpszWindowsStr; /* address of string to translate */
LPSTR lpszOemStr; /
* address of buffer for translated string *
/
UINT cbWindowsStr; /
* length of string to translate *
/

The AnsiToOemBuff function translates a string from the Windows character set into the specified OEM
character set.

Parameter Description
lpszWindowsStr Points to a buffer containing one or more characters from the Windows character set.
lpszOemStr Points to the location where the translated string is to be copied. To translate the

string in place, this parameter can be the same as lpszWindowsStr.
cbWindowsStr Specifies the number of bytes in the buffer identified by the lpszWindowsStr

parameter. If cbWindowsStr is zero, the length is 64K (65,536).

Returns
This function does not return a value.

See Also
AnsiToOem, OemToAnsi

Catch (2.x)
int Catch(lpCatchBuf)
int FAR* lpCatchBuf; /* address of buffer for array */

The Catch function captures the current execution environment and copies it to a buffer. The Throw
function can use this buffer later to restore the execution environment. The execution environment
includes the state of all system registers and the instruction counter.

Parameter Description
lpCatchBuf Points to a memory buffer large enough to contain a CATCHBUF array.

Returns
The Catch function returns immediately with a return value of zero. When the Throw function is called, it
returns again, this time with the return value specified in the nErrorReturn parameter of the Throw
function.

Comments
The Catch function is similar to the C run-time function setjmp.

Example
The following example calls the Catch function to save the current execution environment before calling a
recursive sort function. The first return value from Catch is zero. If the doSort function calls the Throw
function, execution will again return to the Catch function. This time, Catch will return the
STACKOVERFLOW error passed by the doSort function. The doSort function is recursive--that is, it calls
itself. It maintains a variable, wStackCheck, that is used to check to see how much stack space has been
used. If more then 3K of the stack has been used, doSort calls Throw to drop out of all the nested function
calls back into the function that called Catch.

#define STACKOVERFLOW 1
UINT uStackCheck;
CATCHBUF catchbuf;
{

int iReturn;
char szBuf[80];
if ((iReturn = Catch((int FAR*) catchbuf)) != 0) {
.
. /* Error processing goes here. */
.
}
else {
uStackCheck = 0; /* initializes stack-usage count */
doSort(1, 100); /* calls sorting function */
}
break;

}
void doSort(int sLeft, int sRight)
{

int sLast;
/*

* Determine whether more than 3K of the stack has been
* used, and if so, call Throw to drop back into the
* original calling application.
*
* The stack is incremented by the size of the two parameters,
* the two local variables, and the return value (2 for a near
* function call).
*/

uStackCheck += (sizeof(int) * 4) + 2;

if (uStackCheck > (3 * 1024))
Throw((int FAR*) catchbuf, STACKOVERFLOW);
.
. /* A sorting algorithm goes here. */
.
doSort(sLeft, sLast - 1); /* note recursive call*/
uStackCheck -= 10;/* updates stack-check variable */

}
See Also
Throw

CloseSound (2.x)
void CloseSound(void)

This function is obsolete. Use the multimedia audio functions instead. For information about these
functions, see the Microsoft Windows Multimedia Programmer's Reference.

CountVoiceNotes (2.x)
int CountVoiceNotes(nvoice)
int nvoice; /* sound queue to be counted */

This function is obsolete. Use the multimedia audio functions instead. For information about these
functions, see the Microsoft Windows Multimedia Programmer's Reference.

DebugBreak (3.0)
void DebugBreak(void)

The DebugBreak function causes a breakpoint exception to occur in the caller. This allows the calling
process to signal the debugger, forcing it to take some action. If the process is not being debugged, the
system invokes the default breakpoint exception handler. This may cause the calling process to terminate.

Returns
This function does not return a value.

Comments
This function is the only way to break into a WEP (Windows exit procedure) in a dynamic-link library.

For more information about using the debugging functions with Microsoft debugging tools, see Tools

Example
The following example uses the DebugBreak function to signal the debugger immediately before the
application handles the WM_DESTROY message:

case WM_DESTROY:
DebugBreak();
PostQuitMessage(0);
break;

See Also
WEP

DebugOutput (3.1)
void FAR _cdecl DebugOutput(flags, lpszFmt, ...)
UINT flags; /* type of message */
LPCSTR lpszFmt; /* address of
formatting string *
/

The DebugOutput function sends a message to the debugging terminal. Applications can apply the
formatting codes to the message string and use filters and options to control the message category.

Parameter Description
flags Specifies the type of message to be sent to the debugging terminal. This parameter can

be one of the following values:

Value Meaning
DBF_TRACE The message reports that no error has occurred and supplies

information that may be useful during debugging. Example: "t
Kernel: LoadResource(14AE of GDI)"

DBF_WARNING The message reports a situation that may or may not be an
error, depending on the circumstances. Example: "wn Kernel:
GlobalWire(17BE of GDI) (try GlobalLock)"

DBF_ERROR The message reports an error resulting from a failed call to a
Windows function. The application continues to run. Example:
"err Kernel: LocalShrink(15EA of GDI) (invalid local heap)"

DBF_FATAL The message reports an error that will terminate the application.
Example: "fatl User: SetDeskWallpaper(16CA of USER)"

lpszFmt Points to a formatting string identical to the formatting strings used by the Windows
function wsprintf. This string must be less than 160 characters long. Any additional
formatting can be done by supplying additional parameters following lpszFmt.

. . . Specifies zero or more optional arguments. The number and type of arguments depends
on the corresponding format-control character sequences specified in the lpszFmt
parameter.

Returns
This function does not return a value.

Comments
The messages sent by the DebugOutput function are affected by the system debugging options and trace-
filter flags that are set and retrieved by using the GetWinDebugInfo and SetWinDebugInfo functions.
These options and flags are stored in a WINDEBUGINFO structure.

Unlike most other Windows functions, DebugOutput uses the C calling convention (_cdecl), rather than
the Pascal calling convention. As a result, the caller must pop arguments off the stack. Also, arguments
must be pushed on the stack from right to left. In C-language modules, the C compiler performs this task.

See Also
GetWinDebugInfo, OutputDebugString, SetWinDebugInfo, wsprintf, WINDEBUGINFO

DBF_TRACE 0x0000

The message reports that no error has occurred and supplies information that may be useful during
debugging. Example: "t Kernel: LoadResource(14AE of GDI)"

DBF_TRACE 0x0000

DBF_WARNING 0x4000

The message reports a situation that may or may not be an error, depending on the circumstances.
Example: "wn Kernel: GlobalWire(17BE of GDI) (try GlobalLock)"

DBF_WARNING 0x4000

DBF_ERROR 0x8000

The message reports an error resulting from a failed call to a Windows function. The application continues
to run. Example: "err Kernel: LocalShrink(15EA of GDI) (invalid local heap)"

DBF_ERROR 0x8000

DBF_FATAL 0xc000

The message reports an error that will terminate the application. Example: "fatl User: SetDeskWallpaper
(16CA of USER)"

DBF_FATAL 0xc000

DeleteAtom (2.x)
ATOM DeleteAtom(atm)
ATOM atm; /* atom to delete */

The DeleteAtom function decrements (decreases by one) the reference count of a local atom by one. If the
atom's reference count is reduced to zero, the string associated with the atom is removed from the local
atom table.

An atom's reference count specifies the number of times the atom has been added to the atom table. The
AddAtom function increments (increases by one) the count on each call. DeleteAtom decrements the count
on each call and removes the string only if the atom's reference count is reduced to zero.

Parameter Description
atm Identifies the atom and character string to be deleted.

Returns
The return value is zero if the function is successful. Otherwise, it is equal to the atm parameter.

Comments
The only way to ensure that an atom has been deleted from the atom table is to call this function
repeatedly until it fails. When the count is decremented to zero, the next call to the FindAtom or
DeleteAtom function will fail.

DeleteAtom has no effect on integer atoms (atoms created by using the MAKEINTATOM macro). The
function always returns zero for integer atoms.

Example
The following example uses the DeleteAtom function to decrement the reference count for the specified
atom:

ATOM at;
at = DeleteAtom(atTest);
if (at == NULL)

MessageBox(hwnd, "atom count decremented",
"DeleteAtom", MB_OK);

else
MessageBox(hwnd, "atom count could not be decremented",
"DeleteAtom", MB_ICONEXCLAMATION);

See Also
AddAtom, FindAtom, GlobalDeleteAtom

DirectedYield (3.1)
void DirectedYield(htask)
HTASK htask;

The DirectedYield function puts the current task to sleep and awakens the given task.

Parameter Description
htask Specifies the task to be executed.

Returns
This function does not return a value.

Comments
When relinquishing control to other applications (that is, when exiting hard mode), a Windows-based
debugger should call DirectedYield, identifying the handle of the task being debugged. This ensures that
the debugged application runs next and that messages received during debugging are processed by the
appropriate windows.

The Windows scheduler executes a task only when there is an event waiting for it, such as a paint
message, or a message posted in the message queue.

If an application uses DirectedYield for a task with no events scheduled, the task will not be executed.
Instead, Windows searches the task queue. In some cases, however, you may want the application to force
a specific task to be scheduled. The application can do this by calling the PostAppMessage function,
specifying a WM_NULL message identifier. Then, when the application calls DirectedYield, the scheduler
will run the task regardless of the task's event status.

DirectedYield starts the task identified by htask at the location where it left off. Typically, debuggers
should use TaskSwitch instead of DirectedYield, because TaskSwitch can start a task at any address.

DirectedYield returns when the current task is reawakened. This occurs when the task identified by htask
waits for messages or uses the Yield or DirectedYield function. Execution will continue as before the task
switch.

DirectedYield is located in KRNL286.EXE and KRNL386.EXE and is available in Windows versions 3.0
and 3.1.

See Also
PostAppMessage, TaskSwitch, TaskGetCSIP, TaskSetCSIP, Yield

DOS3Call (3.0)
DOS3Call

The DOS3Call function allows an application to call an MS-DOS Interrupt 21h function. DOS3Call can be
called only from assembly-language routines. It is exported from KRNL286.EXE and KRNL386.EXE and
is not defined in any Windows header or include files.
Parameters

Registers must be set up as required by the desired Interrupt 21h function before the application calls the
DOS3Call function.

Returns
The register contents are preserved as they are returned by the Interrupt 21h function.

Comments
Applications should use this function instead of a directly coded MS-DOS Interrupt 21h function. The
DOS3Call function runs somewhat faster than the equivalent MS-DOS Interrupt 21h function running in
Windows.

Example
The following example shows how to prototype the DOS3Call function in C:

extern void FAR PASCAL DOS3Call(void);
To declare the DOS3Call function in an assembly-language routine, an application could use the following
line:

extrn DOS3CALL: far
If the application includes CMACROS.INC, the function is declared as follows:

extrnFP DOS3Call
The following example is a typical use of the DOS3Call function:

extrn DOS3CALL: far
.
.
.
; set registers
movah, DOSFUNC ;DOSFUNC = Int 21h function number
cCall DOS3Call

FatalAppExit (3.0)
void FatalAppExit(fuAction, lpszMessageText)
UINT fuAction; /* must be zero */
LPCSTR lpszMessageText; /
* string to display in message box *
/

The FatalAppExit function displays a message box and terminates the application when the message box is
closed. If the user is running the debugging version of the Windows operating system, the message box
gives the user the opportunity to terminate the application or to cancel the message box and return to the
caller.

Parameter Description
fuAction Reserved; must be zero.
lpszMessageText Points to a null-terminated string that is displayed in the message box. The

message is displayed on a single line. To accommodate low-resolution screens, the
string should contain no more than 35 characters.

Returns
This function does not return a value.

Comments
An application should call the FatalAppExit function only when it is incapable of terminating any other
way. FatalAppExit may not always free an application's memory or close its files, and it may cause a
general failure of Windows. An application that encounters an unexpected error should terminate by
freeing all its memory and returning from its main message loop.

See Also
FatalExit, TerminateApp

FatalExit (2.x)
void FatalExit(nErrCode)
int nErrCode; /* error value to display */

The FatalExit function sends the current state of Windows to the debugger and prompts for instructions on
how to proceed.

An application should call this function for debugging purposes only; it should not call the function in a
retail version of the application. Calling this function in the retail version will terminate the application.

Parameter Description
nErrCode Specifies the error value to be displayed.

Returns
This function does not return a value.

Comments
The displayed information includes an error value followed by a symbolic stack trace, showing the flow of
execution up to the point of the call.

The FatalExit function prompts the user to respond to an Abort, Break, or Ignore message. Windows
processes the response as follows:

Response Description
A (Abort) Terminate immediately.
B (Break) Enter the debugger.
I (Ignore) Return to the caller.

You can specify any combination of error values for the nErrCode parameter, since the meaning of the
values is unique to your application. However, the error value -1 must always be reserved for the stack-
overflow message. When this value is specified, Windows automatically displays a stack-overflow
message.

See Also
FatalAppExit

FindAtom (2.x)
ATOM FindAtom(lpszString)
LPCSTR lpszString; /* address of string to find */

The FindAtom function searches the local atom table for the specified character string and retrieves the
atom associated with that string.

Parameter Description
lpszString Points to the null-terminated character string to search for.

Returns
The return value identifies the atom associated with the given string if the function is successful.
Otherwise (if the string is not in the table), the return value is zero.

Example
The following example uses the FindAtom function to retrieve the atom for the string "This is an atom":

ATOM at;
char szMsg[80];
if ((at = FindAtom("This is an atom")) == 0)

MessageBox(hwnd, "could not find atom",
"FindAtom", MB_ICONEXCLAMATION);

else {
wsprintf(szMsg, "atom = %u", at);
MessageBox(hwnd, szMsg, "FindAtom", MB_OK);

}
See Also
AddAtom, DeleteAtom

FindResource (2.x)
HRSRC FindResource(hinst, lpszName, lpszType)
HINSTANCE hinst; /* handle of module containing resource */
LPCSTR lpszName; /
* address of resource name *
/
LPCSTR lpszType; /
* address of resource type *
/

The FindResource function determines the location of a resource in the specified resource file.

Parameter Description
hinst Identifies the instance of the module whose executable file contains the resource.
lpszName Specifies the name of the resource. For details, see the following Comments section.
lpszType Specifies the resource type. For details, see the following Comments section. For

predefined resource types, this parameter should be one of the following values:

Value Meaning
RT_ACCELERATOR Accelerator table
RT_BITMAP Bitmap resource
RT_CURSOR Cursor resource
RT_DIALOG Dialog box
RT_FONT Font resource
RT_FONTDIR Font directory resource
RT_ICON Icon resource
RT_MENU Menu resource
RT_RCDATA User-defined resource (raw data)
RT_STRING String resource

Returns
The return value is the handle of the named resource if the function is successful. Otherwise, it is NULL.

Comments
If the high-order word of the lpszName or lpszType parameter is zero, the low-order word specifies the
integer identifier of the name or type of the given resource. Otherwise, the parameters are long pointers to
null-terminated strings. If the first character of the string is a pound sign (#), the remaining characters
represent a decimal number that specifies the integer identifier of the resource's name or type. For
example, the string #258 represents the integer ID 258.

To reduce the amount of memory required for the resources used by an application, the application should
refer to the resources by integer identifier instead of by name.

An application must not call the FindResource and LoadResource functions to load cursor, icon, and string
resources. Instead, it must load these resources by calling the LoadCursor, LoadIcon, and LoadString
functions, respectively.

Although the application can call the FindResource and LoadResource functions to load other predefined
resource types, it should load the corresponding resources by calling the LoadAccelerators, LoadBitmap,
and LoadMenu functions.

See Also
LoadAccelerators, LoadBitmap, LoadCursor, LoadIcon, LoadMenu, LoadResource, LoadString

RT_ACCELERATOR MAKEINTRESOURCE(9)

Accelerator table

RT_ACCELERATOR MAKEINTRESOURCE(9)

RT_BITMAP MAKEINTRESOURCE(2)

Bitmap resource

RT_BITMAP MAKEINTRESOURCE(2)

RT_CURSOR MAKEINTRESOURCE(1)

Cursor resource

RT_CURSOR MAKEINTRESOURCE(1)

RT_DIALOG MAKEINTRESOURCE(5)

Dialog box

RT_DIALOG MAKEINTRESOURCE(5)

RT_FONT MAKEINTRESOURCE(8)

Font resource

RT_FONT MAKEINTRESOURCE(8)

RT_FONTDIR MAKEINTRESOURCE(7)

Font directory resource

RT_FONTDIR MAKEINTRESOURCE(7)

RT_ICON MAKEINTRESOURCE(3)

Icon resource

RT_ICON MAKEINTRESOURCE(3)

RT_MENU MAKEINTRESOURCE(4)

Menu resource

RT_MENU MAKEINTRESOURCE(4)

RT_RCDATA MAKEINTRESOURCE(10)

User-defined resource (raw data)

RT_RCDATA MAKEINTRESOURCE(10)

RT_STRING MAKEINTRESOURCE(6)

String resource

RT_STRING MAKEINTRESOURCE(6)

FreeLibrary (2.x)
void FreeLibrary(hinst)
HINSTANCE hinst; /* handle of loaded library module */

The FreeLibrary function decrements (decreases by one) the reference count of the loaded library module.
When the reference count reaches zero, the memory occupied by the module is freed.

Parameter Description
hinst Identifies the loaded library module.

Returns
This function does not return a value.

Comments
A dynamic-link library (DLL) must not call the FreeLibrary function within its WEP function (Windows
exit procedure).

The reference count for a library module is incremented (increased by one) each time an application calls
the LoadLibrary function for the library module.

Example
The following example uses the LoadLibrary function to load TOOLHELP.DLL and the FreeLibrary
function to free it:

HINSTANCE hinstToolHelp = LoadLibrary("TOOLHELP.DLL");
if ((UINT) hinstToolHelp > 32) {

.

. /* use GetProcAddress to use TOOLHELP functions */

.
}
else {

ErrorHandler();
}
if ((UINT) hinstToolHelp > 32)

FreeLibrary(hinstToolHelp); /* free TOOLHELP.DLL */
See Also
GetProcAddress, LoadLibrary, WEP

FreeModule (3.0)
BOOL FreeModule(hinst)
HINSTANCE hinst; /* handle of loaded module */

The FreeModule function decrements (decreases by one) the reference count of the loaded module. When
the reference count reaches zero, the memory occupied by the module is freed.

Parameter Description
hinst Identifies the loaded module.

Returns
The return value is zero if the reference count is decremented to zero and the module's memory is freed.
Otherwise, the return value is nonzero.

Comments
The reference count for a module is incremented (increased by one) each time an application calls the
LoadModule function for the module.

See Also
LoadModule

FreeProcInstance (2.x)
void FreeProcInstance(lpProc)
FARPROC lpProc; /* instance address of function to free */

The FreeProcInstance function frees the specified function from the data segment bound to it by the
MakeProcInstance function.

Parameter Description
lpProc Points to the procedure-instance address of the function to be freed. It must be created

by using the MakeProcInstance function.

Returns
This function does not return a value.

Comments
After a procedure instance has been freed, attempts to call the function using the freed procedure-instance
address will result in an unrecoverable error.

See Also
MakeProcInstance

FreeResource (2.x)
BOOL FreeResource(hglbResource)
HGLOBAL hglbResource; /* handle of loaded resource */

The FreeResource function decrements (decreases by one) the reference count of a loaded resource. When
the reference count reaches zero, the memory occupied by the resource is freed.

Parameter Description
hglbResource Identifies the data associated with the resource. The handle is assumed to have been

created by using the LoadResource function.

Returns
The return value is zero if the function is successful. Otherwise, it is nonzero, indicating that the function
has failed and the resource has not been freed.

Comments
The reference count for a resource is incremented (increased by one) each time an application calls the
LoadResource function for the resource.

See Also
LoadResource

FreeSelector (3.0)
UINT FreeSelector(uSelector)
UINT uSelector; /* selector to be freed */

The FreeSelector function frees a selector originally allocated by the AllocSelector or AllocDStoCSAlias
function. After the application calls this function, the selector is invalid and must not be used.

An application should not use this function unless it is absolutely necessary, since its use violates preferred
Windows programming practices.

Parameter Description
uSelector Specifies the selector to be freed.

Returns
The return value is zero if the function is successful. Otherwise, it is the selector specified by the uSelector
parameter.

Comments
The limit for the selector specified by the uSelector parameter must not be larger than 64K. If the limit of
the selector exceeds 64K, the FreeSelector function may free selectors that are still required by the
program.

See Also
AllocDStoCSAlias, AllocSelector

GetAtomHandle (2.x)
HLOCAL GetAtomHandle(atm)
ATOM atm; /* atom to retrieve handle of */

The GetAtomHandle function retrieves a handle of the specified atom.

This function is only provided for compatibility with Windows, versions 1.x and 2.x. It should not be used
with Windows 3.0 and later.

Parameter Description
atm Specifies an atom whose handle is to be retrieved.

Returns
The return value is a handle of the specified atom if the function is successful.

See Also
GetAtomName, GlobalGetAtomName

GetAtomName (2.x)
UINT GetAtomName(atm, lpszBuffer, cbBuffer)
ATOM atm; /* atom identifying character string */
LPSTR lpszBuffer; /* address of
buffer for atom string *
/
int cbBuffer; /
* size of buffer *
/

The GetAtomName function retrieves a copy of the character string associated with the specified local
atom.

Parameter Description
atm Specifies the local atom that identifies the character string to be retrieved.
lpszBuffer Points to the buffer for the character string.
cbBuffer Specifies the maximum size, in bytes, of the buffer.

Returns
The return value specifies the number of bytes copied to the buffer, if the function is successful.

Comments
The string returned for an integer atom (an atom created by the MAKEINTATOM macro) will be a null-
terminated string, where the first character is a pound sign (#) and the remaining characters make up the
UINT used in MAKEINTATOM.

Example
The following example uses the GetAtomName function to retrieve the character string associated with a
local atom:

char szBuf[80];
GetAtomName(atTest, szBuf, sizeof(szBuf));
MessageBox(hwnd, szBuf, "GetAtomName", MB_OK);
See Also
AddAtom, DeleteAtom, FindAtom, MAKEINTATOM

GetCodeHandle (2.x)
HGLOBAL GetCodeHandle(lpProc)
FARPROC lpProc; /* instance address of function */

The GetCodeHandle function determines which code segment contains the specified function.

Parameter Description
lpProc Points to the procedure-instance address of the function for which to return the code

segment. Typically, this address is returned by the MakeProcInstance function.

Returns
The return value identifies the code segment that contains the function if the GetCodeHandle function is
successful. Otherwise, it is NULL.

Comments
If the code segment that contains the function is already loaded, the GetCodeHandle function marks the
segment as recently used. If the code segment is not loaded, GetCodeHandle attempts to load it. Thus, an
application can use this function to attempt to preload one or more segments necessary to perform a
particular task.

See Also
MakeProcInstance

GetCodeInfo (3.0)
void GetCodeInfo(lpProc, lpSegInfo)
FARPROC lpProc; /* function address or module handle */
SEGINFO FAR* lpSegInfo; /
* address of structure for segment information *
/

The GetCodeInfo function retrieves a pointer to a structure containing information about a code segment.

Parameter Description
lpProc Specifies the procedure-instance address of the function (typically, returned by the

MakeProcInstance function) in the segment for which information is to be retrieved, or
it specifies a module handle (typically, returned by the GetModuleHandle function) and
segment number.

lpSegInfo Points to a SEGINFO structure that will be filled with information about the code
segment.

Returns
This function does not return a value.

See Also
GetModuleHandle, MakeProcInstance

GetCurrentPDB (3.0)
UINT GetCurrentPDB(void)

The GetCurrentPDB function returns the selector address of the current MS-DOS program database (PDB)
, also known as the program segment prefix (PSP).

Returns
The return value is the selector address of the current PDB if the function is successful.

Example
The following example uses the GetCurrentPDB function to list the current command tail:

typedef struct {
WORD pspInt20; /* Int 20h instruction */
WORD pspNextParagraph; /* segment addr. of next paragraph */
BYTE res1; /* reserved */
BYTE pspDispatcher[5]; /* long call to MS-DOS */
DWORD pspTerminateVector; /* termination address (Int 22h) */
DWORD pspControlCVector; /* addr of CTRL+C (Int 23h) */
DWORD pspCritErrorVector; /* addr of Crit-Error (Int 24h) */
WORD res2[11]; /* reserved */
WORD pspEnvironment; /* segment address of environment */
WORD res3[23]; /* reserved */
BYTE pspFCB_1[16]; /* default FCB #1 */
BYTE pspFCB_2[16]; /* default FCB #2 */
DWORD res4;/* reserved */
BYTE pspCommandTail[128]; /* command tail (also default DTA) */

} PSP, FAR* LPSP;
LPSP lpsp = (LPSP) MAKELP(GetCurrentPDB(), 0);
MessageBox(NULL, lpsp->pspCommandTail, "PDB Command Tail", MB_OK);

GetCurrentTask (2.x)
HTASK GetCurrentTask(void)

The GetCurrentTask function retrieves the handle of the current (running) task.

Returns
The return value is a handle of the current task if the function is successful. Otherwise, it is NULL.

GetDOSEnvironment (3.0)
LPSTR GetDOSEnvironment(void)

The GetDOSEnvironment function returns a far pointer to the environment string of the current (running)
task.

Returns
The return value is a far pointer to the current environment string.

Comments
Unlike an application, a dynamic-link library (DLL) does not have a copy of the environment string. As a
result, the library must call this function to retrieve the environment string.

Example
The following example uses the GetDOSEnvironment function to return a pointer to the environment, and
then lists the environment settings:

LPSTR lpszEnv;
lpszEnv = GetDOSEnvironment();
while (*lpszEnv != '\0') {

.

. /* process the environment string */

.
/* Move to the next environment string */
lpszEnv += lstrlen(lpszEnv) + 1;

}

GetDriveType (3.0)
UINT GetDriveType(DriveNumber)
int DriveNumber; /* 0 = A, 1 = B, and so on */

The GetDriveType function determines whether a disk drive is removable, fixed, or remote.

Parameter Description
DriveNumber Specifies the drive for which the type is to be determined (0 = drive A, 1 = drive B, 2 =

drive C, and so on).

Returns
The return value is DRIVE_REMOVABLE (disk can be removed from the drive), DRIVE_FIXED (disk
cannot be removed from the drive), or DRIVE_REMOTE (drive is a remote, or network, drive), if the
function is successful. Otherwise, the return value is zero.

Example
The following example uses the GetDriveType function to determine the drive type for all possible disk
drives (letters A through Z):

int iDrive;
WORD wReturn;
char szMsg[80];
for (iDrive = 0, wReturn = 0;

(iDrive < 26) && (wReturn != 1); iDrive++) {
wReturn = GetDriveType(iDrive);
sprintf(szMsg, "drive %c: ", iDrive + 'A');
switch (wReturn) {
case 0:
strcat(szMsg, "undetermined");
break;
case DRIVE_REMOVABLE:
strcat(szMsg, "removable");
break;
case DRIVE_FIXED:
strcat(szMsg, "fixed");
break;
case DRIVE_REMOTE:
strcat(szMsg, "remote (network)");
break;
}
TextOut(hdc, 10, 15 * iDrive, szMsg, strlen(szMsg));

}

GetFreeSpace (3.0)
DWORD GetFreeSpace(fuFlags)
UINT fuFlags; /* ignored in Windows 3.1 */

The GetFreeSpace function scans the global heap and returns the number of bytes of memory currently
available.

Parameter Description
fuFlags This parameter is ignored in Windows 3.1.

Returns
The return value is the amount of available memory, in bytes.

Comments
The amount of memory specified by the return value is not necessarily contiguous; the GlobalCompact
function returns the number of bytes in the largest block of free global memory.

In standard mode, the value returned represents the number of bytes in the global heap that are not used
and that are not reserved for code.

In 386-enhanced mode, the return value is an estimate of the amount of memory available to an
application. It does not account for memory held in reserve for non-Windows applications.

See Also
GlobalCompact

GetInstanceData (2.x)
int GetInstanceData(hinst, npbData, cbData)
HINSTANCE hinst; /* handle of previous instance */
BYTE* npbData; /*
address of current instance data buffer *
/
int cbData; /
* number of bytes to transfer *
/

The GetInstanceData function copies data from a previous instance of an application into the data area of
the current instance.

Parameter Description
hinst Identifies a previous instance of the application.
npbData Points to a buffer in the current instance.
cbData Specifies the number of bytes to be copied.

Returns
The return value specifies the number of bytes copied if the function is successful. Otherwise, it is zero.

GetKBCodePage (3.0)
int GetKBCodePage(void)

The GetKBCodePage function returns the current Windows code page.

Returns
The return value specifies the code page currently loaded by Windows, if the function is successful. It can
be one of the following values:

Value Meaning
437 Default (United States, used by most countries: indicates that there is no OEMANSI.BIN in

the Windows directory)
850 International (OEMANSI.BIN = XLAT850.BIN)
860 Portugal (OEMANSI.BIN = XLAT860.BIN)
861 Iceland (OEMANSI.BIN = XLAT861.BIN)
863 French Canadian (OEMANSI.BIN = XLAT863.BIN)
865 Norway/Denmark (OEMANSI.BIN = XLAT865.BIN)

Comments
The keyboard driver provides the GetKBCodePage function. An application using this function must
include the following information in its module-definition (.DEF) file:

IMPORTS
KEYBOARD.GETKBCODEPAGE

If the OEMANSI.BIN file is in the Windows directory, Windows reads it and overwrites the OEM/ANSI
translation tables in the keyboard driver.

When the user selects a language from the Setup program and the language does not use the default code
page (437), Setup copies the appropriate file (such as XLAT850.BIN) to OEMANSI.BIN in the Windows
system directory. If the language uses the default code page, Setup deletes OEMANSI.BIN, if it exists,
from the Windows system directory.

Example
The following example uses the GetKBCodePage function to display the current code page:

char szBuf[80];
int i, cp, subtype, f_keys, len;
char *apszKeyboards[] = {

"IBM PX/XT",
"Olivetti ICO",
"IBM AT",
"IBM Enhanced",
"Nokia 1050",
"Nokia 9140",
"Standard Japanese",
};

cp = GetKBCodePage();
if ((i = GetKeyboardType(0)) == 0 || i > 7) {

MessageBox(NULL, "invalid keyboard type",
"GetKeyboardType", MB_ICONSTOP);
break;

}
subtype = GetKeyboardType(1);
f_keys = GetKeyboardType(2);
len = wsprintf(szBuf, "%s keyboard, subtype %d\n",

apszKeyboards[i - 1], subtype);
len = wsprintf(szBuf + len, " %d function keys, code page %d",

f_keys, cp);

MessageBox(NULL, szBuf, "Keyboard Information", MB_OK);
See Also
GetKeyboardType

GetKeyboardType (3.0)
int GetKeyboardType(fnKeybInfo)
int fnKeybInfo; /* specifies type of information to retrieve */

The GetKeyboardType function retrieves information about the current keyboard.

Parameter Description
fnKeybInfo Determines the type of keyboard information to be retrieved. This parameter can be one

of the following values:

Value Meaning
0 Retrieves the keyboard type.
1 Retrieves the keyboard subtype.
2 Retrieves the number of function keys on the keyboard.

Returns
The return value specifies the requested information if the function is successful. Otherwise, it is zero.

Comments
The subtype is an OEM-dependent value. The subtype may be one of the following values:

Value Meaning
1 IBM PC/XT, or compatible (83-key) keyboard
2 Olivetti "ICO" (102-key) keyboard
3 IBM AT (84-key) or similar keyboard
4 IBM Enhanced (101- or 102-key) keyboard
5 Nokia 1050 and similar keyboards
6 Nokia 9140 and similar keyboards
7 Japanese keyboard

The keyboard driver provides the GetKeyboardType function. An application using this function must
include the following information in its module-definition (.DEF) file:

IMPORTS
KEYBOARD.GETKEYBOARDTYPE

The application can also determine the number of function keys on a keyboard from the keyboard type.
The number of function keys for each keyboard type follows:

Type Number of function keys
1 10
2 12 (sometimes 18)
3 10
4 12
5 10
6 24
7 This value is hardware-dependent and must be specified by the OEM.

Example
The following example uses the GetKeyboardType function to display information about the current
keyboard:

char szBuf[80];
int i, cp, subtype, f_keys, len;
char *apszKeyboards[] = {

"IBM PX/XT",
"Olivetti ICO",
"IBM AT",
"IBM Enhanced",
"Nokia 1050",
"Nokia 9140",

"Standard Japanese",
};

cp = GetKBCodePage();
if ((i = GetKeyboardType(0)) == 0 || i > 7) {

MessageBox(NULL, "invalid keyboard type",
"GetKeyboardType", MB_ICONSTOP);
break;

}
subtype = GetKeyboardType(1);
f_keys = GetKeyboardType(2);
len = wsprintf(szBuf, "%s keyboard, subtype %d\n",

apszKeyboards[i - 1], subtype);
len = wsprintf(szBuf + len, " %d function keys, code page %d",

f_keys, cp);
MessageBox(NULL, szBuf, "Keyboard Information", MB_OK);

GetKeyNameText (3.0)
int GetKeyNameText(lParam, lpszBuffer, cbMaxKey)
LONG lParam; /* 32-bit parameter of keyboard message */
LPSTR lpszBuffer; /*
address of a buffer for key name *
/
int cbMaxKey; /
* specifies maximum key string length *
/

The GetKeyNameText function retrieves a string that represents the name of a key.

Parameter Description
lParam Specifies the 32-bit parameter of the keyboard message (such as WM_KEYDOWN) to

be processed. The GetKeyNameText function interprets the following portions of
lParam:

Bits Meaning
16-23 Character scan code.
24 Extended bit. Distinguishes some keys on an enhanced keyboard.
25 "Don't care" bit. The application calling this function sets this bit to indicate

that the function should not distinguish between left and right CTRL and SHIFT
keys, for example.

lpszBuffer Points to a buffer that will receive the key name.
cbMaxKey Specifies the maximum length, in bytes, of the key name, not including the terminating

null character (this parameter should one less than the size of the buffer pointed to by
the lpszBuffer parameter).

Returns
The return value is the length, in bytes, of the string copied to the specified buffer, if the function is
successful. Otherwise, it is zero.

Comments
The format of the key-name string depends on the current keyboard driver. This driver maintains a list of
names in the form of character strings for keys with names longer than a single character. The key name is
translated, according to the layout of the currently installed keyboard, into the principal language
supported by the keyboard driver.

Correction

The previous documentation incorrectly listed bit 21 of lparam as the extended bit and bit 22 as the "don't
care" bit.

GetModuleFileName (2.x)
int GetModuleFileName(hinst, lpszFilename, cbFileName)
HINSTANCE hinst; /* handle of module */
LPSTR lpszFilename; /*
address of buffer for filename *
/
int cbFileName; /
* maximum number of bytes to copy *
/

The GetModuleFileName function retrieves the full path and filename of the executable file from which
the specified module was loaded.

Parameter Description
hinst Identifies the module or the instance of the module.
lpszFilename Points to the buffer that is to receive the null-terminated filename.
cbFileName Specifies the maximum number of bytes to copy, including the terminating null

character. The filename is truncated if it is longer than cbFileName. This parameter
should be set to the length of the filename buffer.

Returns
The return value specifies the length, in bytes, of the string copied to the specified buffer, if the function is
successful. Otherwise, it is zero.

Example
The following example retrieves an application's filename by using the instance handle passed to the
application in the WinMain function:

int PASCAL WinMain(HINSTANCE hinst, HINSTANCE hPrevInst,
LPSTR lpCmdLine, int nCmdShow)

{
char szModuleName[260];
GetModuleFileName(hinst, szModuleName, sizeof(szModuleName));

See Also
GetModuleHandle

GetModuleHandle (2.x)
HMODULE GetModuleHandle(lpszModuleName)
LPCSTR lpszModuleName; /* address of name of module */

The GetModuleHandle function retrieves the handle of the specified module.

Parameter Description
lpszModuleName Points to a null-terminated string that specifies the name of the module.

Returns
The return value is the handle of the module if the function is successful. Otherwise, it is NULL.

See Also
GetModuleFileName

GetModuleUsage (2.x)
int GetModuleUsage(hinst)
HINSTANCE hinst; /* handle of module */

The GetModuleUsage function retrieves the reference count of a specified module.

Parameter Description
hinst Identifies the module or an instance of the module.

Returns
The return value specifies the reference count of the module if the function is successful.

Comments
Windows increments (increases by one) a module's reference count each time an application calls the
LoadModule function. The count is decremented (decreased by one) when an application calls the
FreeModule function.

See Also
FreeModule, LoadModule

GetNumTasks (2.x)
UINT GetNumTasks(void)

The GetNumTasks function retrieves the number of currently running tasks.

Returns
The return value specifies the number of current tasks.

GetPrivateProfileInt (3.0)
UINT GetPrivateProfileInt(lpszSection, lpszEntry, default, lpszFilename)
LPCSTR lpszSection; /* address of section */
LPCSTR lpszEntry; /*
address of entry *
/
int default; /
* return value if entry not found *
/
LPCSTR lpszFilename; /
* address of initialization filename *
/

The GetPrivateProfileInt function retrieves the value of an integer from an entry within a specified section
of a specified initialization file.

Parameter Description
lpszSection Points to a null-terminated string containing the section heading in the initialization

file.
lpszEntry Points to the null-terminated string containing the entry whose value is to be retrieved.
default Specifies the default value to return if the entry cannot be found in the initialization

file. This value must be a positive integer in the range 0 through 32,767 (0x0000
through 0x7FFF).

lpszFilename Points to a null-terminated string that names the initialization file. If this parameter
does not contain a full path, Windows searches for the file in the Windows directory.

Returns
The return value is the integer value of the specified entry if the function is successful. It is the value of the
default parameter if the function does not find the entry. The return value is zero if the value that
corresponds to the specified entry is not an integer.

Comments
The function searches the file for an entry that matches the name specified by the lpszEntry parameter
under the section heading specified by the lpszSection parameter. An integer entry in the initialization file
must have the following form:

[section]
entry=value
.
.
.

If the value that corresponds to the entry consists of digits followed by nonnumeric characters, the function
returns the value of the digits. For example, the function would return 102 for the line "Entry=102abc".

The GetPrivateProfileInt function is not case-dependent, so the strings in the lpszSection and lpszEntry
parameters may contain a combination of uppercase and lowercase letters.

GetPrivateProfileInt supports hexadecimal notation. When GetPrivateProfileInt is used to retrieve a
negative integer, the value should be cast to an int.

An application can use the GetProfileInt function to retrieve an integer value from the WIN.INI file.

Example
The following example uses the GetPrivateProfileInt function to retrieve the last line number by reading
the LastLine entry from the [MyApp] section of TESTCODE.INI:

WORD wInt;
char szMsg[144];
wInt = GetPrivateProfileInt("MyApp", "LastLine",

0, "testcode.ini");

sprintf(szMsg, "last line was %d", wInt);
MessageBox(hwnd, szMsg, "GetPrivateProfileInt", MB_OK);
See Also
GetPrivateProfileString, GetProfileInt

Windows 3.1 changes

The GetPrivateProfileInt function supports hexadecimal notation. When the GetPrivateProfileInt function
is used to retrieve a negative integer, the value should be cast to an int.

GetPrivateProfileString (3.0)
int GetPrivateProfileString(lpszSection, lpszEntry, lpszDefault, lpszReturnBuffer, cbReturnBuffer,

lpszFilename)
LPCSTR lpszSection; /* address of section */
LPCSTR lpszEntry; /*
address of entry *
/
LPCSTR lpszDefault; /
* address of default string *
/
LPSTR lpszReturnBuffer; /
* address of destination buffer *
/
int cbReturnBuffer; /
* size of destination buffer *
/
LPCSTR lpszFilename; /
* address of initialization filename *
/

The GetPrivateProfileString function retrieves a character string from the specified section in the specified
initialization file.

Parameter Description
lpszSection Points to a null-terminated string that specifies the section containing the entry.
lpszEntry Points to the null-terminated string containing the entry whose associated string is

to be retrieved. If this value is NULL, all entries in the section specified by the
lpszSection parameter are copied to the buffer specified by the lpszReturnBuffer
parameter. For more information, see the following Comments section.

lpszDefault Points to a null-terminated string that specifies the default value for the given entry
if the entry cannot be found in the initialization file. This parameter must never be
NULL.

lpszReturnBuffer Points to the buffer that receives the character string.
cbReturnBuffer Specifies the size, in bytes, of the buffer pointed to by the lpszReturnBuffer

parameter.
lpszFilename Points to a null-terminated string that names the initialization file. If this parameter

does not contain a full path, Windows searches for the file in the Windows
directory.

Returns
The return value specifies the number of bytes copied to the specified buffer, not including the terminating
null character.

Comments
The function searches the file for an entry that matches the name specified by the lpszEntry parameter
under the section heading specified by the lpszSection parameter. If the entry is found, its corresponding
string is copied to the buffer. If the entry does not exist, the default character string specified by the
lpszDefault parameter is copied. A string entry in the initialization file must have the following form:

[section]
entry=string
.
.
.

If lpszEntry is NULL, the GetPrivateProfileString function copies all entries in the specified section to the
supplied buffer. Each string will be null-terminated, with the final string ending with two zero-termination
characters. If the supplied destination buffer is too small to hold all the strings, the last string will be
truncated and followed with two zero-termination characters.

If the string associated with lpszEntry is enclosed in single or double quotation marks, the marks are
discarded when GetPrivateProfileString returns the string.

GetPrivateProfileString is not case-dependent, so the strings in lpszSection and lpszEntry may contain a
combination of uppercase and lowercase letters.

An application can use the GetProfileString function to retrieve a string from the WIN.INI file.

The lpszDefault parameter must point to a valid string, even if the string is empty (its first character is
zero).

Example
The following example uses the GetPrivateProfileString function to determine the last file saved by the
[MyApp] application by reading the LastFile entry in TESTCODE.INI:

char szMsg[144], szBuf[80];
GetPrivateProfileString("MyApp", "LastFile",

"", szBuf, sizeof(szBuf), "testcode.ini");
sprintf(szMsg, "last file was %s", szBuf);
MessageBox(hwnd, szMsg, "GetPrivateProfileString", MB_OK);
See Also
GetProfileString, WritePrivateProfileString

GetProcAddress (2.x)
FARPROC GetProcAddress(hinst, lpszProcName)
HINSTANCE hinst; /* handle of module */
LPCSTR lpszProcName; /* address of
function *
/

The GetProcAddress function retrieves the address of the given module function.

Parameter Description
hinst Identifies the module that contains the function.
lpszProcName Points to a null-terminated string containing the function name, or specifies the

ordinal value of the function. If it is an ordinal value, the value must be in the low-
order word and the high-order word must be zero.

Returns
The return value is the address of the module function's entry point if the GetProcAddress function is
successful. Otherwise, it is NULL.

If the lpszProcName parameter is an ordinal value and a function with the specified ordinal does not exist
in the module, GetProcAddress can still return a non-NULL value. In cases where the function may not
exist, specify the function by name rather than ordinal value.

Comments
Use the GetProcAddress function to retrieve addresses of exported functions in dynamic-link libraries
(DLLs). The MakeProcInstance function can be used to access functions within different instances of the
current module.

The spelling of the function name (pointed to by the lpszProcName parameter) must be identical to the
spelling as it appears in the EXPORTS section of the source DLL's module-definition (.DEF) file.

Example
The following example uses the GetProcAddress function to retrieve the address of the TimerCount
function in TOOLHELP.DLL:

char szBuf[80];
TIMERINFO timerinfo;
HINSTANCE hinstToolHelp;
BOOL (FAR *lpfnTimerCount) (TIMERINFO FAR*);
/* Turn off the "File not found" error box. */
SetErrorMode(SEM_NOOPENFILEERRORBOX);
/* Load the TOOLHELP.DLL library module. */
hinstToolHelp = LoadLibrary("TOOLHELP.DLL");
if (hinstToolHelp > HINSTANCE_ERROR) { /* loaded successfully */

/* Retrieve the address of the TimerCount function. */
(FARPROC) lpfnTimerCount =
GetProcAddress(hinstToolHelp, "TimerCount");
if (lpfnTimerCount != NULL) {
/* Call the TimerCount function. */
timerinfo.dwSize = sizeof(TIMERINFO);
if ((*lpfnTimerCount) ((TIMERINFO FAR *) &timerinfo)) {
sprintf(szBuf, "task: %lu seconds\nVM: %lu seconds",
timerinfo.dwmsSinceStart / 1000,

timerinfo.dwmsThisVM / 1000);
}
else {
strcpy(szBuf, "TimerCount failed");
}
}
else {
strcpy(szBuf, "GetProcAddress failed");
}
/* Free the TOOLHELP.DLL library module. */
FreeLibrary(hinstToolHelp);

}
else {

strcpy(szBuf, "LoadLibrary failed");
}
MessageBox(NULL, szBuf, "Library Functions", MB_ICONHAND);
See Also
MakeProcInstance

GetProfileInt (2.x)
UINT GetProfileInt(lpszSection, lpszEntry, default)
LPCSTR lpszSection; /* address of section */
LPCSTR lpszEntry; /*
address of entry *
/
int default; /
* return value if entry is not found *
/

The GetProfileInt function retrieves the value of an integer from an entry within a specified section of the
WIN.INI initialization file.

Parameter Description
lpszSection Points to a null-terminated string that specifies the section containing the entry.
lpszEntry Points to the null-terminated string containing the entry whose value is to be retrieved.
default Specifies the default value to return if the entry cannot be found. This value can be an

unsigned value in the range 0 through 65,536 or a signed value in the range -32,768
through 32,768. Hexadecimal notation is accepted for both positive and negative values.

Returns
The return value is the integer value of the string following the specified entry, if the function is
successful. The return value is the value of the default parameter if the function does not find the entry.
The return value is zero if the value that corresponds to the specified entry is not an integer.

Comments
The GetProfileInt function is not case-dependent, so the strings in the lpszSection and lpszEntry
parameters may contain a combination of uppercase and lowercase letters.

GetProfileInt supports hexadecimal notation. When the function is used to retrieve a negative integer, the
value should be cast to an int.

An integer entry in the WIN.INI file must have the following form:

[section]
entry=value

.

.

.

If the value that corresponds to the entry consists of digits followed by nonnumeric characters, the function
returns the value of the digits. For example, the function would return 102 for the line "Entry=102abc".

An application can use the GetPrivateProfileInt function to retrieve an integer from a specified file.

Example
The following example uses the GetProfileInt function to retrieve the screen-save timeout time from the
WIN.INI file:

WORD wTimeOut;
char szMsg[80];
wTimeOut = GetProfileInt("windows",

"ScreenSaveTimeOut", 0);
sprintf(szMsg, "timeout time is %d", wTimeOut);
MessageBox(hwnd, szMsg, "GetProfileInt", MB_OK);
See Also
GetPrivateProfileInt, GetProfileString

Windows 3.1 changes

The GetProfileInt function supports hexadecimal notation. When the GetProfileInt function is used to
retrieve a negative integer, the value should be cast to an int.

GetProfileString (2.x)
int GetProfileString(lpszSection, lpszEntry, lpszDefault, lpszReturnBuffer, cbReturnBuffer)
LPCSTR lpszSection; /* address of section */
LPCSTR lpszEntry; /*
address of entry *
/
LPCSTR lpszDefault; /
* address of default string *
/
LPSTR lpszReturnBuffer; /
* address of destination buffer *
/
int cbReturnBuffer; /
* size of destination buffer *
/

The GetProfileString function retrieves the string associated with an entry within the specified section in
the WIN.INI initialization file.

Parameter Description
lpszSection Points to a null-terminated string that specifies the section containing the entry.
lpszEntry Points to the null-terminated string containing the entry whose associated string is

to be retrieved. If this value is NULL, all entries in the section specified by the
lpszSection parameter are copied to the buffer specified by the lpszReturnBuffer
parameter. For more information, see the following Comments section.

lpszDefault Points to the default value for the given entry if the entry cannot be found in the
initialization file. This parameter must never be NULL.

lpszReturnBuffer Points to the buffer that will receive the character string.
cbReturnBuffer Specifies the size, in bytes, of the buffer pointed to by the lpszReturnBuffer

parameter.

Returns
The return value is the number of bytes copied to the buffer, not including the terminating zero, if the
function is successful.

Comments
If the lpszEntry parameter is NULL, the GetProfileString function copies all entries in the specified
section to the supplied buffer. Each string will be null-terminated, with the final string terminating with
two null characters. If the supplied destination buffer is too small to hold all the strings, the last string will
be truncated and followed by two terminating null characters.

If the string associated with lpszEntry is enclosed in single or double quotation marks, the marks are
discarded when GetProfileString returns the string.

GetProfileString is not case-dependent, so the strings in the lpszSection and lpszEntry parameters may
contain a combination of uppercase and lowercase letters.

A string entry in the WIN.INI file must have the following form:

[section]
entry=string

.

.

.

An application can use the GetPrivateProfileString function to retrieve a string from a specified file.

The lpszDefault parameter must point to a valid string, even if the string is empty (its first character is
zero).

Example
The following example uses the GetProfileString function to list all the entries and strings in the
[windows] section of the WIN.INI file:

int c, cc;

PSTR pszBuf, pszKey;
char szMsg[80], szVal[80];
/* Allocate a buffer for the entries. */
pszBuf = (PSTR) LocalAlloc(LMEM_FIXED, 1024);
/* Retrieve all the entries in the [windows] section. */
GetProfileString("windows", NULL, "", pszBuf, 1024);
/*
* Retrieve the string for each entry, until
* reaching the double null character.
*/

for (pszKey = pszBuf, c = 0;
*pszKey != '\0'; pszKey += strlen(pszKey) + 1) {
/* Retrieve the value for each entry in the buffer. */
GetProfileString("windows", pszKey, "not found",
szVal, sizeof(szVal));
cc = sprintf(szMsg, "%s = %s", pszKey, szVal);
TextOut(hdc, 10, 15 * c++, szMsg, cc);

}
LocalFree((HANDLE) pszBuf);
See Also
GetPrivateProfileString, WriteProfileString

GetSelectorBase (3.1)
DWORD GetSelectorBase(uSelector)
UINT uSelector;

The GetSelectorBase function retrieves the base address of a selector.

Parameter Description
uSelector Specifies the selector whose base address is retrieved.

Returns
This function returns the base address of the specified selector.

See Also
GetSelectorLimit, SetSelectorBase, SetSelectorLimit

GetSelectorLimit (3.1)
DWORD GetSelectorLimit(uSelector)
UINT uSelector;

The GetSelectorLimit function retrieves the limit of a selector.

Parameter Description
uSelector Specifies the selector whose limit is being retrieved.

Returns
This function returns the limit of the specified selector.

See Also
GetSelectorBase, SetSelectorBase, SetSelectorLimit

GetSystemDirectory (3.0)
UINT GetSystemDirectory(lpszSysPath, cbSysPath)
LPSTR lpszSysPath; /* address of buffer for system directory */
UINT cbSysPath; /* size
of directory buffer *
/

The GetSystemDirectory function retrieves the path of the Windows system directory. The system
directory contains such files as Windows libraries, drivers, and font files.

Parameter Description
lpszSysPath Points to the buffer that is to receive the null-terminated string containing the path of

the system directory.
cbSysPath Specifies the maximum size, in bytes, of the buffer. This value should be set to at least

144 to allow sufficient room in the buffer for the path.

Returns
The return value is the length, in bytes, of the string copied to the lpszSysPath parameter, not including the
terminating null character. If the return value is greater than the size specified in the cbSysPath parameter,
the return value is the size of the buffer required to hold the path. The return value is zero if the function
fails.

Comments
Applications should not create files in the system directory. If the user is running a shared version of
Windows, the application will not have write access to the system directory. Applications should create
files only in the directory returned by the GetWindowsDirectory function.

The path that this function retrieves does not end with a backslash unless the system directory is the root
directory. For example, if the system directory is named WINDOWS\SYSTEM on drive C, the path of the
system directory retrieved by this function is C:\WINDOWS\SYSTEM.

A similar function, GetSystemDir, is intended for use by MS-DOS applications that set up Windows
applications. Windows applications should use GetSystemDirectory, not GetSystemDir.

Example
The following example uses the GetSystemDirectory function to determine the path of the Windows
system directory:

WORD wReturn;
char szBuf[144];
wReturn = GetSystemDirectory((LPSTR) szBuf, sizeof(szBuf));
if (wReturn == 0)

MessageBox(hwnd, "function failed",
"GetSystemDirectory", MB_ICONEXCLAMATION);

else if (wReturn > sizeof(szBuf))
MessageBox(hwnd, "buffer is too small",
"GetSystemDirectory", MB_ICONEXCLAMATION);

else
MessageBox(hwnd, szBuf, "GetSystemDirectory", MB_OK);

See Also
GetWindowsDirectory

GetTempDrive (2.x)
BYTE GetTempDrive(chDriveLetter)
char chDriveLetter; /* ignored */

The GetTempDrive function returns a letter that specifies a disk drive the application can use for
temporary files.

Parameter Description
chDriveLetter This parameter is ignored.

Returns
The return value specifies a disk drive for temporary files if the function is successful. If at least one hard
disk drive is available, the function returns the letter of the first hard disk drive (usually C). If no hard disk
drives are available, the function returns the letter of the current drive.

Example
The following example uses the GetTempDrive function to determine a suitable disk drive for temporary
files:

char szMsg[80];
BYTE bTempDrive;
bTempDrive = GetTempDrive(0);
sprintf(szMsg, "temporary drive: %c", bTempDrive);
MessageBox(hwnd, szMsg, "GetTempDrive", MB_OK);
See Also
GetTempFileName

GetTempFileName (2.x)
int GetTempFileName(bDriveLetter, lpszPrefixString, uUnique, lpszTempFileName)
BYTE bDriveLetter; /* suggested drive */
LPCSTR lpszPrefixString; /
* address of filename prefix *
/
UINT uUnique; /
* number to use as prefix *
/
LPSTR lpszTempFileName; /
* address of buffer for created filename *
/

The GetTempFileName function creates a temporary filename of the following form:

drive:\path\prefixuuuu.TMP

The following list describes the filename syntax:

Element Description
drive Drive letter specified by the bDriveLetter parameter
path Path of the temporary file (either the Windows directory or the directory specified in the

TEMP environment variable)
prefix All the letters (up to the first three) of the string pointed to by the lpszPrefixString

parameter
uuuu Hexadecimal value of the number specified by the uUnique parameter

Parameter Description
bDriveLetter Specifies the suggested drive for the temporary filename. If this parameter is

zero, Windows uses the current default drive.
lpszPrefixString Points to a null-terminated string to be used as the temporary filename prefix.

This string must consist of characters in the OEM-defined character set.
uUnique Specifies an unsigned short integer. If this parameter is nonzero, it will be

appended to the temporary filename. If the parameter is zero, Windows uses
the current system time to create a number to append to the filename.

lpszTempFileName Points to the buffer that will receive the temporary filename. This string
consists of characters in the OEM-defined character set. This buffer should be
at least 144 bytes in length to allow sufficient room for the path.

Returns
The return value specifies a unique numeric value used in the temporary filename. If the uUnique
parameter is nonzero, the return value specifies this same number.

Comments
Temporary files created with this function are not automatically deleted when Windows shuts down.

To avoid problems resulting from converting an OEM character string to a Windows string, an application
should call the _lopen function to create the temporary file.

The GetTempFileName function uses the suggested drive letter for creating the temporary filename,
except in the following cases:

If a hard disk is present, GetTempFileName always uses the drive letter of the first hard disk.
If, however, a TEMP environment variable is defined and its value begins with a drive letter, that

drive letter is used.

If the TF_FORCEDRIVE bit of the bDriveLetter parameter is set, the preceding exceptions do not apply.
The temporary filename will always be created in the current directory of the drive specified by
bDriveLetter, regardless of the presence of a hard disk or the TEMP environment variable.

If the uUnique parameter is zero, GetTempFileName attempts to form a unique number based on the
current system time. If a file with the resulting filename exists, the number is increased by one and the test
for existence is repeated. This continues until a unique filename is found; GetTempFileName then creates
a file by that name and closes it. No attempt is made to create and open the file when uUnique is nonzero.

Example

The following example uses the GetTempFileName function to create a unique temporary filename on the
first available hard disk:

HFILE hfTempFile;
char szBuf[144];
/* Create a temporary file. */
GetTempFileName(0, "tst", 0, szBuf);
hfTempFile = _lcreat(szBuf, 0);
if (hfTempFile == HFILE_ERROR) {

ErrorHandler();
}
See Also
GetTempDrive, _lopen

GetThresholdEvent (2.x)
int FAR* GetThresholdEvent(void)

This function is obsolete. Use the Windows multimedia audio functions instead. For information about
these functions, see the Microsoft Windows Multimedia Programmer's Reference.

GetThresholdStatus (2.x)
int GetThresholdStatus(void)

This function is obsolete. Use the Windows multimedia audio functions instead. For information about
these functions, see the Microsoft Windows Multimedia Programmer's Reference.

GetVersion (2.x)
DWORD GetVersion(void)

The GetVersion function retrieves the current version numbers of the Windows and MS-DOS operation
systems.

Returns
The return value specifies the major and minor version numbers of Windows and of MS-DOS.

Comments
The low-order word of the return value contains the version of Windows, if the function is successful. The
high-order byte contains the minor version (revision) number as a two-digit decimal number. For example,
in Windows 3.1, the minor version number is 10. The low-order byte contains the major version number.

The high-order word contains the version of MS-DOS, if the function is successful. The high-order byte
contains the major version; the low-order byte contains the minor version (revision) number.

Example
The following example uses the GetVersion function to display the Windows and MS-DOS version
numbers:

int len;
char szBuf[80];
DWORD dwVersion;
dwVersion = GetVersion();
len = sprintf(szBuf, "Windows version %d.%d\n",

LOBYTE(LOWORD(dwVersion)),
HIBYTE(LOWORD(dwVersion)));

sprintf(szBuf + len, "MS-DOS version %d.%d",
HIBYTE(HIWORD(dwVersion)),
LOBYTE(HIWORD(dwVersion)));

MessageBox(NULL, szBuf, "GetVersion", MB_ICONINFORMATION);
Note that the major and minor version information is reversed between the Windows version and MS-
DOS version.

Win 3.1 correction

The return value is a DWORD, not a WORD. The high-order word contains the DOS version.

GetWinDebugInfo (3.1)
BOOL GetWinDebugInfo(lpwdi, flags)
WINDEBUGINFO FAR* lpwdi; /* address of WINDEBUGINFO structure */
UINT flags; /
* flags for returned information *
/

The GetWinDebugInfo function retrieves current system-debugging information for the debugging version
of the Windows 3.1 operating system.

Parameter Description
lpwdi Points to a WINDEBUGINFO structure that is filled with debugging information.
flags Specifies which members of the WINDEBUGINFO structure should be filled in. This

parameter can be one or more of the following values:

Value Meaning
WDI_OPTIONS Fill in the dwOptions member of WINDEBUGINFO.
WDI_FILTER Fill in the dwFilter member of WINDEBUGINFO.
WDI_ALLOCBREAK Fill in the achAllocModule, dwAllocBreak, and

dwAllocCount members of WINDEBUGINFO.

Returns
The return value is nonzero if the function is successful. It is zero if the pointer specified in the lpwdi
parameter is invalid or if the function is not called in the debugging version of Windows 3.1.

Comments
The flags member of the returned WINDEBUGINFO structure is set to the values supplied in the flags
parameter of this function.

See Also
SetWinDebugInfo, WINDEBUGINFO

WDI_OPTIONS 0x0001

Fill in the dwOptions member of WINDEBUGINFO.

WDI_OPTIONS 0x0001

WDI_FILTER 0x0002

Fill in the dwFilter member of WINDEBUGINFO.

WDI_FILTER 0x0002

WDI_ALLOCBREAK 0x0004

Fill in the achAllocModule, dwAllocBreak, and dwAllocCount members of WINDEBUGINFO.

WDI_ALLOCBREAK 0x0004

GetWindowsDirectory (3.0)
UINT GetWindowsDirectory(lpszSysPath, cbSysPath)
LPSTR lpszSysPath; /* address of buffer for Windows directory */
UINT cbSysPath; /* size
of directory buffer *
/

The GetWindowsDirectory function retrieves the path of the Windows directory. The Windows directory
contains such files as Windows applications, initialization files, and help files.

Parameter Description
lpszSysPath Points to the buffer that will receive the null-terminated string containing the path.
cbSysPath Specifies the maximum size, in bytes, of the buffer. This value should be set to at least

144 to allow sufficient room in the buffer for the path.

Returns
The return value is the length, in bytes, of the string copied to the lpszSysPath parameter, not including the
terminating null character. If the return value is greater than the number specified in the cbSysPath
parameter, it is the size of the buffer required to hold the path. The return value is zero if the function fails.

Comments
The Windows directory is the only directory where an application should create files. If the user is running
a shared version of Windows, the Windows directory is the only directory guaranteed private to the user.

The path this function retrieves does not end with a backslash unless the Windows directory is the root
directory. For example, if the Windows directory is named WINDOWS on drive C, the path retrieved by
this function is C:\WINDOWS. If Windows is installed in the root directory of drive C, the path retrieved
is C:\.

A similar function, GetWindowsDir, is intended for use by MS-DOS applications that set up Windows
applications. Windows applications should use GetWindowsDirectory, not GetWindowsDir.

Example
The following example uses the GetWindowsDirectory function to determine the path of the Windows
directory:

WORD wReturn;
char szBuf[144];
wReturn = GetWindowsDirectory((LPSTR)szBuf, sizeof(szBuf));
if (wReturn == 0)

MessageBox(hwnd, "function failed",
"GetWindowsDirectory", MB_ICONEXCLAMATION);

else if (wReturn > sizeof(szBuf))
MessageBox(hwnd, "buffer is too small",
"GetWindowsDirectory", MB_ICONEXCLAMATION);

else
MessageBox(hwnd, szBuf, "GetWindowsDirectory", MB_OK);

See Also
GetSystemDirectory

GetWinFlags (3.0)
DWORD GetWinFlags(void)

The GetWinFlags function retrieves the current Windows system and memory configuration.

Returns
The return value specifies the current system and memory configuration.

Comments
The configuration returned by GetWinFlags can be a combination of the following values:

Value Meaning
WF_80x87 System contains an Intel math coprocessor.
WF_CPU286 System CPU is an 80286.
WF_CPU386 System CPU is an 80386.
WF_CPU486 System CPU is an i486.
WF_ENHANCED Windows is running in 386-enhanced mode. The WF_PMODE flag is always set

when WF_ENHANCED is set.
WF_PAGING Windows is running on a system with paged memory.
WF_PMODE Windows is running in protected mode. In Windows 3.1, this flag is always set.
WF_STANDARD Windows is running in standard mode. The WF_PMODE flag is always set when

WF_STANDARD is set.
WF_WIN286 Same as WF_STANDARD.
WF_WIN386 Same as WF_ENHANCED.

Example
The following example uses the GetWinFlags function to display information about the current Windows
system configuration:

int len;
char szBuf[80];
DWORD dwFlags;
dwFlags = GetWinFlags();
len = sprintf(szBuf, "system %s a coprocessor",

(dwFlags & WF_80x87) ? "contains" : "does not contain");
TextOut(hdc, 10, 15, szBuf, len);
len = sprintf(szBuf, "processor is an %s",

(dwFlags & WF_CPU286) ? "80286" :
(dwFlags & WF_CPU386) ? "80386" :
(dwFlags & WF_CPU486) ? "i486" : "unknown");

TextOut(hdc, 10, 30, szBuf, len);
len = sprintf(szBuf, "running in %s mode",

(dwFlags & WF_ENHANCED) ? "enhanced" : "standard");
TextOut(hdc, 10, 45, szBuf, len);
len = sprintf(szBuf, "%s WLO",

(dwFlags & WF_WLO) ? "using" : "not using");
TextOut(hdc, 10, 60, szBuf, len);

WF_80x87 0x0400

System contains an Intel math coprocessor.

WF_80x87 0x0400

WF_CPU286 0x0002

System CPU is an 80286.

WF_CPU286 0x0002

WF_CPU386 0x0004

System CPU is an 80386.

WF_CPU386 0x0004

WF_CPU486 0x0008

System CPU is an i486.

WF_CPU486 0x0008

WF_ENHANCED 0x0020

Windows is running in 386-enhanced mode. The WF_PMODE flag is always set when WF_ENHANCED
is set.

WF_ENHANCED 0x0020

WF_PAGING 0x0800

Windows is running on a system with paged memory.

WF_PAGING 0x0800

WF_PMODE 0x0001

Windows is running in protected mode. In Windows 3.1, this flag is always set.

WF_PMODE 0x0001

WF_STANDARD 0x0010

Windows is running in standard mode. The WF_PMODE flag is always set when WF_STANDARD is set.

WF_STANDARD 0x0010

WF_WIN286 0x0010

Same as WF_STANDARD.

WF_WIN286 0x0010

WF_WIN386 0x0020

Same as WF_ENHANCED.

WF_WIN386 0x0020

GlobalAlloc (2.x)
HGLOBAL GlobalAlloc(fuAlloc, cbAlloc)
UINT fuAlloc; /* how to allocate object */
DWORD cbAlloc; /* size of object */

The GlobalAlloc function allocates the specified number of bytes from the global heap.

Parameter Description
fuAlloc Specifies how to allocate memory. This parameter can be a combination of the

following values:

Value Meaning
GHND Combines the GMEM_MOVEABLE and

GMEM_ZEROINIT flags.
GMEM_DDESHARE Allocates sharable memory. This flag is used for

dynamic data exchange (DDE) only. This flag is
equivalent to GMEM_SHARE.

GMEM_DISCARDABLE Allocates discardable memory. This flag can only be
used with the GMEM_MOVEABLE flag.

GMEM_FIXED Allocates fixed memory. The GMEM_FIXED and
GMEM_MOVEABLE flags cannot be combined.

GMEM_LOWER Same as GMEM_NOT_BANKED. This flag is ignored
in Windows 3.1.

GMEM_MOVEABLE Allocates movable memory. The GMEM_FIXED and
GMEM_MOVEABLE flags cannot be combined.

GMEM_NOCOMPACT Does not compact or discard memory to satisfy the
allocation request.

GMEM_NODISCARD Does not discard memory to satisfy the allocation
request.

GMEM_NOT_BANKED Allocates non-banked memory (memory is not within
the memory provided by expanded memory). This flag
cannot be used with the GMEM_NOTIFY flag. This
flag is ignored in Windows 3.1.

GMEM_NOTIFY Calls the notification routine if the memory object is
discarded.

GMEM_SHARE Allocates memory that can be shared with other
applications. This flag is equivalent to
GMEM_DDESHARE.

GMEM_ZEROINIT Initializes memory contents to zero.
GPTR Combines the GMEM_FIXED and

GMEM_ZEROINIT flags.
cbAlloc Specifies the number of bytes to be allocated.

Returns
The return value is the handle of the newly allocated global memory object, if the function is successful.
Otherwise, it is NULL.

Comments
To convert the handle returned by the GlobalAlloc function into a pointer, an application should use the
GlobalLock function.

If this function is successful, it allocates at least the amount requested. If the amount allocated is greater
than the amount requested, the application can use the entire amount. To determine the size of a global
memory object, an application can use the GlobalSize function.

To free a global memory object, an application should use the GlobalFree function. To change the size or
attributes of an allocated memory object, an application can use the GlobalReAlloc function.

The largest memory object that an application can allocate on an 80286 processor is 1 megabyte less 80
bytes. The largest block on an 80386 processor is 16 megabytes less 64K.

If the cbAlloc parameter is zero, the GlobalAlloc function returns a handle of a memory object that is
marked as discarded.

Example
The following example uses the GlobalAlloc and GlobalLock functions to allocate memory, and then calls
the GlobalUnlock and GlobalFree functions to free it.

HGLOBAL hglb;
void FAR* lpvBuffer;
hglb = GlobalAlloc(GPTR, 1024);
lpvBuffer = GlobalLock(hglb);

.

.

.
GlobalUnlock(hglb);
GlobalFree(hglb);
See Also
GlobalFree, GlobalLock, GlobalNotify, GlobalReAlloc, GlobalSize, GlobalUnlock, LocalAlloc

GHND (GMEM_MOVEABLE | GMEM_ZEROINIT)

Combines the GMEM_MOVEABLE and GMEM_ZEROINIT flags.

GHND (GMEM_MOVEABLE | GMEM_ZEROINIT)

GMEM_DDESHARE 0x2000

Allocates sharable memory. This flag is used for dynamic data exchange (DDE) only. This flag is
equivalent to GMEM_SHARE.

GMEM_DDESHARE 0x2000

GMEM_DISCARDABLE 0x0100

Allocates discardable memory. This flag can only be used with the GMEM_MOVEABLE flag.

GMEM_DISCARDABLE 0x0100

GMEM_FIXED 0x0000

Allocates fixed memory. The GMEM_FIXED and GMEM_MOVEABLE flags cannot be combined.

GMEM_FIXED 0x0000

GMEM_LOWER GMEM_NOT_BANKED

Same as GMEM_NOT_BANKED. This flag is ignored in Windows 3.1.

GMEM_LOWER GMEM_NOT_BANKED

GMEM_MOVEABLE 0x0002

Allocates movable memory. The GMEM_FIXED and GMEM_MOVEABLE flags cannot be combined.

GMEM_MOVEABLE 0x0002

GMEM_NOCOMPACT 0x0010

Does not compact or discard memory to satisfy the allocation request.

GMEM_NOCOMPACT 0x0010

GMEM_NODISCARD 0x0020

Does not discard memory to satisfy the allocation request.

GMEM_NODISCARD 0x0020

GMEM_NOT_BANKED 0x1000

Allocates non-banked memory (memory is not within the memory provided by expanded memory). This
flag cannot be used with the GMEM_NOTIFY flag. This flag is ignored in Windows 3.1.

GMEM_NOT_BANKED 0x1000

GMEM_NOTIFY 0x4000

Calls the notification routine if the memory object is discarded.

GMEM_NOTIFY 0x4000

GMEM_SHARE 0x2000

Allocates memory that can be shared with other applications. This flag is equivalent to
GMEM_DDESHARE.

GMEM_SHARE 0x2000

GMEM_ZEROINIT 0x0040

Initializes memory contents to zero.

GMEM_ZEROINIT 0x0040

GPTR (GMEM_FIXED | GMEM_ZEROINIT)

Combines the GMEM_FIXED and GMEM_ZEROINIT flags.

GPTR (GMEM_FIXED | GMEM_ZEROINIT)

GlobalCompact (2.x)
DWORD GlobalCompact(dwMinFree)
DWORD dwMinFree; /* amount of memory requested */

The GlobalCompact function rearranges memory currently allocated to the global heap so that the
specified amount of memory is free. If the function cannot free the requested amount of memory, it frees
as much as possible.

Parameter Description
dwMinFree Specifies the number of contiguous free bytes desired. If this parameter is zero, the

function does not discard memory, but the return value is valid.

Returns
The return value specifies the number of bytes in the largest free global memory object in the global heap.
If the dwMinFree parameter is zero, the return value specifies the number of bytes in the largest free object
that Windows can generate if it removes all discardable objects.

Comments
If an application passes the return value to the GlobalAlloc function, the GMEM_NOCOMPACT or
GMEM_NODISCARD flag should not be used.

This function always rearranges movable memory objects before checking for free memory. Then it
checks the memory currently allocated to the global heap for the number of contiguous free bytes specified
by the dwMinFree parameter. If the specified amount of memory is not available, the function discards
unlocked discardable objects, until the requested space is generated (if possible).

This function is not very useful in most enhanced-mode configurations, which rely on virtual memory. In
such an environment, an application can discover how much memory is available by requesting the
memory and checking the error value.

See Also
GlobalAlloc

GlobalDosAlloc (3.0)
DWORD GlobalDosAlloc(cbAlloc)
DWORD cbAlloc; /* number of bytes to allocate */

The GlobalDosAlloc function allocates global memory that can be accessed by MS-DOS running in real
mode. The memory is guaranteed to exist in the first megabyte of linear address space.

An application should not use this function unless it is absolutely necessary, because the memory pool
from which the object is allocated is a scarce system resource.

Parameter Description
cbAlloc Specifies the number of bytes to be allocated.

Returns
The return value contains a paragraph-segment value in its high-order word and a selector in its low-order
word. An application can use the paragraph-segment value to access memory in real mode and the selector
to access memory in protected mode. If Windows cannot allocate a block of memory of the requested size,
the return value is zero.

Comments
Memory allocated by using the GlobalDosAlloc function does not need to be locked by using the
GlobalLock function.

See Also
GlobalDosFree

GlobalDosFree (3.0)
UINT GlobalDosFree(uSelector)
UINT uSelector; /* memory to free */

The GlobalDosFree function frees a global memory object previously allocated by the GlobalDosAlloc
function.

Parameter Description
uSelector Identifies the memory object to be freed.

Returns
The return value is zero if the function is successful. Otherwise, it is equal to the uSelector parameter.

See Also
GlobalDosAlloc

GlobalFix (3.0)
void GlobalFix(hglb)
HGLOBAL hglb; /* handle of object to fix */

The GlobalFix function prevents the given global memory object from moving in linear memory.

This function interferes with effective Windows memory management and can result in linear-address
fragmentation. Few applications need to fix memory in linear address space.

Parameter Description
hglb Identifies the global memory object to be fixed in linear memory.

Returns
This function does not return a value.

Comments
The object is locked into linear memory at its current address, and its lock count is incremented (increased
by one). Locked memory is not subject to moving or discarding except when the memory object is being
reallocated by the GlobalReAlloc function. The object remains locked in memory until its lock count is
decreased to zero.

Each time an application calls the GlobalFix function for a memory object, it must eventually call the
GlobalUnfix function, which decrements (decreases by one) the lock count for the object. Other functions
also can affect the lock count of a memory object. For a list of these functions, see the description of the
GlobalFlags function.

See Also
GlobalFlags, GlobalReAlloc, GlobalUnfix

GlobalFlags (2.x)
UINT GlobalFlags(hglb)
HGLOBAL hglb; /* handle of global memory object */

The GlobalFlags function returns information about the given global memory object.

Parameter Description
hglb Identifies the global memory object.

Returns
The return value specifies the memory-allocation flag and the lock count for the memory object, if the
function is successful.

Comments
When an application masks out the lock count in the low-order byte of the return value, the return value
contains one of the following allocation flags:

Value Meaning
GMEM_DISCARDABLE Object can be discarded.
GMEM_DISCARDED Object has been discarded.

The low-order byte of the return value contains the lock count of the object. Use the
GMEM_LOCKCOUNT mask to retrieve the lock count from the return value.

The following functions can affect the lock count of a global memory object:

Increments lock count Decrements lock count
GlobalFix GlobalUnfix
GlobalLock GlobalUnlock

See Also
GlobalFix, GlobalLock, GlobalUnfix, GlobalUnlock

GlobalFree (2.x)
HGLOBAL GlobalFree(hglb)
HGLOBAL hglb; /* handle of object to free */

The GlobalFree function frees the given global memory object (if the object is not locked) and invalidates
its handle.

Parameter Description
hglb Identifies the global memory object to be freed.

Returns
The return value is NULL if the function is successful. Otherwise, it is equal to the hglb parameter.

Comments
The GlobalFree function cannot be used to free a locked memory object--that is, a memory object with a
lock count greater than zero. For a list of the functions that affect the lock count, see the description of the
GlobalFlags function.

Once freed, the handle of the memory object must not be used again. Attempting to free the same memory
object more than once can cause Windows to terminate abnormally.

Example
The following code fragment uses the GlobalAlloc and GlobalLock functions to allocate memory, and
then calls the GlobalUnlock and GlobalFree functions to free it.

HGLOBAL hglb;
void FAR* lpvBuffer;
hglb = GlobalAlloc(GPTR, 1024);
lpvBuffer = GlobalLock(hglb);

.

.

.
GlobalUnlock(hglb);
GlobalFree(hglb);
See Also
GlobalDiscard, GlobalFlags, GlobalLock, GlobalUnlock

GlobalHandle (2.x)
DWORD GlobalHandle(uGlobalSel)
UINT uGlobalSel; /* selector of global memory object */

The GlobalHandle function retrieves the handle of the specified global memory object.

Parameter Description
uGlobalSel Specifies the selector of a global memory object.

Returns
The low-order word of the return value contains the handle of the global memory object, and the high-
order word contains the selector of the memory object, if the function is successful. The return value is
NULL if no handle exists for the memory object.

GlobalLock (2.x)
void FAR* GlobalLock(hglb)
HGLOBAL hglb; /* handle of memory object to lock */

The GlobalLock function returns a pointer to the given global memory object. GlobalLock increments
(increases by one) the lock count of movable objects and locks the memory. Locked memory will not be
moved or discarded unless the memory object is reallocated by the GlobalReAlloc function. The object
remains locked in memory until its lock count is decreased to zero.

Parameter Description
hglb Identifies the global memory object to be locked.

Returns
The return value points to the first byte of memory in the global object, if the function is successful. It is
NULL if the object has been discarded or an error occurs.

Comments
Each time an application calls the GlobalLock function for an object, it must eventually call the
GlobalUnlock function for the object.

This function will return NULL if an application attempts to lock a memory object with a zero-byte size.

If GlobalLock incremented the lock count for the object, GlobalUnlock decrements the lock count for the
object. Other functions can also affect the lock count of a memory object. For a list of these functions, see
the description of the GetGlobalFlags function.

Discarded objects always have a lock count of zero.

Example
The following example uses the GlobalAlloc and GlobalLock functions to allocate memory, and then calls
the GlobalUnlock and GlobalFree functions to free it.

HGLOBAL hglb;
void FAR* lpvBuffer;
hglb = GlobalAlloc(GPTR, 1024);
lpvBuffer = GlobalLock(hglb);

.

.

.
GlobalUnlock(hglb);
GlobalFree(hglb);
See Also
GlobalAlloc, GlobalFlags, GlobalFree, GlobalLock, GlobalReAlloc, GlobalUnlock

GlobalLRUNewest (2.x)
HGLOBAL GlobalLRUNewest(hglb)
HGLOBAL hglb; /* handle of memory object to move */

The GlobalLRUNewest function moves a global memory object to the newest least-recently-used (LRU)
position in memory. This greatly reduces the likelihood that the object will be discarded soon, but does not
prevent the object from eventually being discarded.

Parameter Description
hglb Identifies the global memory object to be moved.

Returns
The return value is NULL if the hglb parameter is not a valid handle.

Comments
The GlobalLRUNewest function is useful only if the given object is discardable.

See Also
GlobalLRUOldest

GlobalLRUOldest (2.x)
HGLOBAL GlobalLRUOldest(hglb)
HGLOBAL hglb; /* handle of memory object to move */

The GlobalLRUOldest function moves a global memory object to the oldest least-recently-used (LRU)
position in memory. This makes the memory object the next candidate for discarding.

Parameter Description
hglb Identifies the global memory object to be moved.

Returns
The return value is NULL if the hglb parameter does not identify a valid handle.

Comments
The GlobalLRUOldest function is useful only if the hglb parameter is discardable.

See Also
GlobalLRUNewest

GlobalNotify (2.x)
void GlobalNotify(lpNotifyProc)
GNOTIFYPROC lpNotifyProc; /* instance address of callback function */

The GlobalNotify function installs a notification procedure for the current task. A notification procedure is
a library-defined callback function that the system calls whenever a global memory object allocated with
the GMEM_NOTIFY flag is about to be discarded.

Parameter Description
lpNotifyProc Specifies the address of the current task's notification procedure. For more information,

see the description of the NotifyProc callback function.

Returns
This function does not return a value.

Comments
An application must not call the GlobalNotify function more than once per instance.

The system does not call the notification procedure when discarding memory that belongs to a dynamic-
link library (DLL).

If the object is discarded, the application must use the GMEM_NOTIFY flag when it calls the
GlobalRealloc function to recreate the object. Otherwise, the application will not be notified when the
object is discarded again.

If the notification procedure returns a nonzero value, Windows discards the global memory object. If the
procedure returns zero, the block is not discarded.

The address of the NotifyProc callback function (specified in the lpNotifyProc parameter) must be in a
fixed code segment of a dynamic-link library.

See Also
GlobalReAlloc, NotifyProc

GlobalPageLock (3.0)
UINT GlobalPageLock(hglb)
HGLOBAL hglb; /* selector of global memory to lock */

The GlobalPageLock function increments (increases by one) the page-lock count for the memory
associated with the given global selector. As long as its page-lock count is nonzero, the data that the
selector references is guaranteed to remain in memory at the same physical address.

Parameter Description
hglb Specifies the selector of the memory to be page-locked.

Returns
The return value specifies the page-lock count after the function has incremented it. If the function fails,
the return value is zero.

Comments
Because using this function violates preferred Windows programming practices, an application should not
use it unless absolutely necessary. The function is intended to be used for dynamically allocated data that
must be accessed at interrupt time. For this reason, it must be called only from a dynamic-link library
(DLL).

The GlobalPageLock function increments the page-lock count for the block of memory, and the
GlobalPageUnlock function decrements (decreases by one) the page-lock count. Page-locking operations
can be nested, but each page-locking must be balanced by a corresponding unlocking.

See Also
GlobalPageUnlock

GlobalPageUnlock (3.0)
UINT GlobalPageUnlock(hglb)
HGLOBAL hglb; /* selector of global memory to unlock */

The GlobalPageLock function decrements (decreases by one) the page-lock count for the memory
associated with the specified global selector. When the page-lock count reaches zero, the data that the
selector references is no longer guaranteed to remain in memory at the same physical address.

Parameter Description
hglb Specifies the selector of the memory to be page-unlocked.

Returns
The return value specifies the page-lock count after the function has decremented it. If the function fails,
the return value is zero.

Comments
Because using this function violates preferred Windows programming practices, an application should not
use it unless absolutely necessary. The function is intended to be used for dynamically allocated data that
must be accessed at interrupt time. For this reason, it must only be called from a dynamic-link library
(DLL).

The GlobalPageLock function increments the page-lock count for the block of memory, and the
GlobalPageUnlock function decrements the page-lock count. Page-locking operations can be nested, but
each page-locking must be balanced by a corresponding unlocking.

See Also
GlobalPageLock

GlobalReAlloc (2.x)
HGLOBAL GlobalReAlloc(hglb, cbNewSize, fuAlloc)
HGLOBAL hglb; /* handle of memory object to reallocate */
DWORD cbNewSize; /
* new size of object *
/
UINT fuAlloc; /
* how object is reallocated *
/

The GlobalReAlloc function changes the size or attributes of the given global memory object.

Parameter Description
hglb Identifies the global memory object to be reallocated.
cbNewSize Specifies the new size of the memory object.
fuAlloc Specifies how to reallocate the global object. If this parameter includes

GMEM_MODIFY, the GlobalReAlloc function ignores the cbNewSize parameter.

Value Meaning
GMEM_DISCARDABLE Causes a previously movable object to become

discardable. This flag can be used only with
GMEM_MODIFY.

GMEM_MODIFY Modifies the object's memory flags. This flag can be
used with GMEM_DISCARDABLE and
GMEM_MOVEABLE.

GMEM_MOVEABLE Causes a previously movable and discardable object to
be discarded, if the cbNewSize parameter is zero and
the object's lock count is zero. If cbNewSize is zero
and the object is not movable and discardable, this flag
causes the GlobalReAlloc function to fail.
If the cbNewSize parameter is nonzero and the object
identified by the hglb parameter is fixed, this flag
allows the reallocated object to be moved to a new
fixed location.
If a movable object is locked, this flag allows the object
to be moved to a new locked location without
invalidating the handle. This may occur even if the
object is currently locked by a previous call to the
GlobalLock function.
If this flag is used with GMEM_MODIFY, the
GlobalReAlloc function changes a fixed memory object
to a movable memory object.

GMEM_NODISCARD Prevents memory from being discarded to satisfy the
allocation request. This flag cannot be used with
GMEM_MODIFY.

GMEM_ZEROINIT Causes the additional memory to be initialized to zero
if the object is growing. This flag cannot be used with
GMEM_MODIFY.

Returns
The return value is the handle of the reallocated global memory if the function is successful. It is NULL if
the object cannot be reallocated as specified.

Comments
If GlobalReAlloc reallocates a movable object, the return value is a handle to the memory. To access the
memory, an application must use the GlobalLock function to convert the handle to a pointer.

To free a global memory object, an application should use the GlobalFree function.

The GMEM_ZEROINIT flag will cause applications to fail if it is used as shown in the following
sequence:

hMem = GlobalAlloc(GMEM_ZEROINIT | (other flags), dwSize1);
.
.
.

hMem = GlobalReAlloc(hMem, dwSize2, GMEM_ZEROINIT | (other flags));
/* where dwSize2 > dwSize1. */
.
.
.

hMem = GlobalReAlloc(hMem, dwSize3, GMEM_ZEROINIT | (other flags));
/* where dwSize3 < dwSize2. */
.
.
.

hMem = GlobalReAlloc(hMem, dwSize4, GMEM_ZEROINIT | (other flags));
/* GMEM_ZEROINIT fails when dwSize4 > dwSize3. */
In the last step of the preceding example, the memory between dwSize3 and the internal allocation
boundary is not set to zero. After the last step, the contents of the buffer equal its contents prior to the call
to GlobalReAlloc that specified dwSize3.

See Also
GlobalAlloc, GlobalDiscard, GlobalFree, GlobalLock

GlobalSize (2.x)
DWORD GlobalSize(hglb)
HGLOBAL hglb; /* handle of memory object to return size of */

The GlobalSize function retrieves the current size, in bytes, of the given global memory object.

Parameter Description
hglb Identifies the global memory object.

Returns
The return value specifies the size, in bytes, of the memory object. It is zero if the specified handle is not
valid or if the object has been discarded.

Comments
The size of a memory object is sometimes larger than the size requested at the time the memory was
allocated.

An application should call the GlobalFlags function prior to calling the GlobalSize function, to verify that
the specified memory object was not discarded. If the memory object has been discarded, the return value
for GlobalSize is meaningless.

See Also
GlobalAlloc, GlobalFlags

GlobalUnfix (3.0)
void GlobalUnfix(hglb)
HGLOBAL hglb; /* handle of global memory to unlock */

The GlobalUnfix function cancels the effects of the GlobalFix function and allows a global memory object
to be moved in linear memory.

Parameter Description
hglb Identifies the global memory object to be unlocked.

Returns
This function does not return a value.

Comments
This function interferes with effective Windows memory management and can result in linear-address
fragmentation. Few applications need to fix memory in linear address space.

Each time an application calls the GlobalFix function for an object, it must eventually call the GlobalUnfix
function for the object.

GlobalUnfix decrements (decreases by one) the object's lock count and returns the new lock count in the
CX register. The object is completely unlocked and subject to moving or discarding if the lock count is
decremented to zero. Other functions also can affect the lock count of a memory object. For a list of these
functions, see the description of the GlobalFlags function.

See Also
GlobalFix, GlobalFlags

GlobalUnlock (2.x)
BOOL GlobalUnlock(hglb)
HGLOBAL hglb; /* handle of global memory to unlock */

The GlobalUnlock function unlocks the given global memory object. This function has no effect on fixed
memory.

Parameter Description
hglb Identifies the global memory object to be unlocked.

Returns
The return value is zero if the object's lock count was decremented (decreased by one) to zero. Otherwise,
the return value is nonzero.

Comments
With movable or discardable memory, this function decrements the object's lock count. The object is
completely unlocked and subject to moving or discarding if the lock count is decreased to zero.

This function returns nonzero if the given memory object is not movable. An application should not rely
on the return value to determine the number of times it must subsequently call the GlobalUnlock function
for the memory object.

Other functions can also affect the lock count of a memory object. For a list of the functions that affect the
lock count, see the description of the GlobalFlags function.

Each time an application calls GlobalLock for an object, it must eventually call the GlobalUnlock function
for the object.

Example
The following example uses the GlobalAlloc and GlobalLock functions to allocate memory, and then calls
the GlobalUnlock and GlobalFree functions to free it.

HGLOBAL hglb;
void FAR* lpvBuffer;
hglb = GlobalAlloc(GPTR, 1024);
lpvBuffer = GlobalLock(hglb);

.

.

.
GlobalUnlock(hglb);
GlobalFree(hglb);
See Also
GlobalAlloc, GlobalFlags, GlobalFree, GlobalLock, GlobalUnlock, UnlockResource

GlobalUnWire (2.x)
BOOL GlobalUnWire(hglb)
HGLOBAL hglb;

This function should not be used in Windows 3.1.

See Also
GlobalUnlock

GlobalWire (2.x)
void FAR* GlobalWire(hglb)
HGLOBAL hglb;

This function should not be used in Windows 3.1.

See Also
GlobalLock

hmemcpy (3.1)
void hmemcpy(hpvDest, hpvSource, cbCopy)
void _huge* hpvDest; /* address of destination buffer */
const void _huge* hpvSource; /
* address of source buffer *
/
long cbCopy; /
* number of bytes to copy *
/

The hmemcpy function copies bytes from a source buffer to a destination buffer. This function supports
huge memory objects (that is, objects larger than 64K, allocated using the GlobalAlloc function).

Parameter Description
hpvDest Points to a buffer that receives the copied bytes.
hpvSource Points to a buffer that contains the bytes to be copied.
cbCopy Specifies the number of bytes to be copied.

Returns
This function does not return a value.

Comments
The result of the hmemcpy function is undefined if the buffers identified by hpvDest and hpvSource
overlap.

See Also
_hread, _hwrite, lstrcpy

InitAtomTable (2.x)
BOOL InitAtomTable(cTableEntries)
int cTableEntries; /* size of atom table */

The InitAtomTable function initializes the local atom hash table and sets it to the specified size.

An application need not use this function to use a local atom table. The default size of the local and global
atom hash tables is 37 table entries. If an application uses InitAtomTable, however, it should call the
function before any other atom-management function.

Parameter Description
cTableEntries Specifies the size, in table entries, of the atom hash table. This value should be a

prime number.

Returns
The return value is nonzero if the function is successful. Otherwise, it is zero.

Comments
If an application uses a large number of local atoms, it can increase the size of the local atom table,
reducing the time required to add an atom to the local atom table or to find an atom in the table. However,
this increases the amount of memory required to maintain the table.

The size of the global atom table cannot be changed from its default size of 37 entries.

Example
The following example uses the InitAtomTable function to change the size of the local atom table to 73:

BOOL fSuccess;
fSuccess = InitAtomTable(73);
if (fSuccess)

MessageBox(hwnd, "table initialization succeeded",
"InitAtomTable", MB_OK);

else
MessageBox(hwnd, "table initialization failed",
"InitAtomTable", MB_ICONEXCLAMATION);

IsBadCodePtr (3.1)
BOOL IsBadCodePtr(lpfn)
FARPROC lpfn; /* pointer to test */

The IsBadCodePtr function determines whether a pointer to executable code is valid.

Parameter Description
lpfn Points to a function.

Returns
The return value is nonzero if the pointer is bad (that is, if it does not point to executable code). The return
value is zero if the pointer is good.

See Also
IsBadHugeReadPtr, IsBadHugeWritePtr, IsBadReadPtr, IsBadStringPtr, IsBadWritePtr

IsBadHugeReadPtr (3.1)
BOOL IsBadHugeReadPtr(lp, cb)
const void _huge* lp; /* pointer to test */
DWORD cb; /* number of allocated
bytes *
/

The IsBadHugeReadPtr function determines whether a huge pointer to readable memory is valid.

Parameter Description
lp Points to the beginning of a block of allocated memory. The data object may reside

anywhere in memory and may exceed 64K in size.
cb Specifies the number of bytes of memory that were allocated.

Returns
The return value is nonzero if the pointer is bad (that is, if it does not point to readable memory of the
specified size). The return value is zero if the pointer is good.

See Also
IsBadCodePtr, IsBadHugeWritePtr, IsBadReadPtr, IsBadStringPtr, IsBadWritePtr

IsBadHugeWritePtr (3.1)
BOOL IsBadHugeWritePtr(lp, cb)
void _huge* lp; /* pointer to test */
DWORD cb; /* number of allocated bytes *
/

The IsBadHugeWritePtr function determines whether a huge pointer to writable memory is valid.

Parameter Description
lp Points to the beginning of a block of allocated memory. The data object may reside

anywhere in memory and may exceed 64K in size.
cb Specifies the number of bytes of memory that were allocated.

Returns
The return value is nonzero if the pointer is bad (that is, if it does not point to writable memory of the
specified size). The return value is zero if the pointer is good.

See Also
IsBadCodePtr, IsBadHugeReadPtr, IsBadReadPtr, IsBadStringPtr, IsBadWritePtr

IsBadReadPtr (3.1)
BOOL IsBadReadPtr(lp, cb)
const void FAR* lp; /* pointer to test */
UINT cb; /* number of allocated
bytes *
/

The IsBadReadPtr function determines whether a pointer to readable memory is valid.

Parameter Description
lp Points to the beginning of a block of allocated memory.
cb Specifies the number of bytes of memory that were allocated.

Returns
The return value is nonzero if the pointer is bad (that is, if it does not point to readable memory of the
specified size). The return value is zero if the pointer is good.

See Also
IsBadCodePtr, IsBadHugeReadPtr, IsBadHugeWritePtr, IsBadStringPtr, IsBadWritePtr

IsBadStringPtr (3.1)
BOOL IsBadStringPtr(lpsz, cchMax)
const void FAR* lpsz; /* pointer to test */
UINT cchMax; /* maximum size of
string *
/

The IsBadStringPtr function determines whether a pointer to a string is valid.

Parameter Description
lpsz Points to a null-terminated string.
cchMax Specifies the maximum size of the string, in bytes.

Returns
The return value is nonzero if the pointer is bad (that is, if it does not point to a string of the specified size)
. The return value is zero if the pointer is good.

See Also
IsBadCodePtr, IsBadHugeReadPtr, IsBadHugeWritePtr, IsBadReadPtr, IsBadWritePtr

IsBadWritePtr (3.1)
BOOL IsBadWritePtr(lp, cb)
void FAR* lp; /* pointer to test */
UINT cb; /* number of allocated bytes *
/

The IsBadWritePtr function determines whether a pointer to writable memory is valid.

Parameter Description
lp Points to the beginning of a block of allocated memory.
cb Specifies the number of bytes of memory that were allocated.

Returns
The return value is nonzero if the pointer is bad (that is, if it does not point to writable memory of the
specified size). The return value is zero if the pointer is good.

See Also
IsBadCodePtr, IsBadHugeReadPtr, IsBadHugeWritePtr, IsBadReadPtr, IsBadStringPtr

IsDBCSLeadByte (3.1)
BOOL IsDBCSLeadByte(bTestChar)
BYTE bTestChar; /* character to test */

The IsDBCSLeadByte function determines whether a character is a lead byte, the first byte of a character
in a double-byte character set (DBCS).

Parameter Description
bTestChar Specifies the character to be tested.

Returns
The return value is nonzero if the character is a DBCS lead byte. Otherwise, it is zero.

Comments
The language driver for the current language (the language the user selected at setup or by using Control
Panel) determines whether the character is in the set. If no language driver is selected, Windows uses an
internal function.

Each double-byte character set has a unique set of lead-byte values. By itself, a lead byte has no character
value; together, the lead byte and the following byte represent a single character. The second, or following,
byte is called a trailing byte.

See Also
GetKeyboardType

IsTask (3.1)
BOOL IsTask(htask)
HTASK htask; /* handle of task */

The IsTask function determines whether the given task handle is valid.

Parameter Description
htask Identifies a task.

Returns
The return value is nonzero if the task handle is valid. Otherwise, it is zero.

LimitEmsPages (2.x)
void LimitEmsPages(cAppKB)
DWORD cAppKB; /* amount of expanded memory available to application */

In Windows version 3.1, this function is obsolete and does nothing.

LoadLibrary (2.x)
HINSTANCE LoadLibrary(lpszLibFileName)
LPCSTR lpszLibFileName; /* address of name of library file */

The LoadLibrary function loads the specified library module.

Parameter Description
lpszLibFileName Points to a null-terminated string that names the library file to be loaded. If the

string does not contain a path, Windows searches for the library in this order:

1 The current directory.
2 The Windows directory (the directory containing WIN.COM); the GetWindowsDirectory function

retrieves the path of this directory.

3 The Windows system directory (the directory containing such system files as GDI.EXE); the
GetSystemDirectory function retrieves the path of this directory.

4 The directory containing the executable file for the current task; the GetModuleFileName function
retrieves the path of this directory.

5 The directories listed in the PATH environment variable.
6 The list of directories mapped in a network.

Returns
The return value is the instance handle of the loaded library module if the function is successful.
Otherwise, it is an error value less than HINSTANCE_ERROR.
Errors

If the function fails, it returns one of the following error values:

Value Meaning
0 System was out of memory, executable file was corrupt, or relocations were invalid.
2 File was not found.
3 Path was not found.
5 Attempt was made to dynamically link to a task, or there was a sharing or network-protection

error.
6 Library required separate data segments for each task.
8 There was insufficient memory to start the application.
10 Windows version was incorrect.
11 Executable file was invalid. Either it was not a Windows application or there was an error in

the .EXE image.
12 Application was designed for a different operating system.
13 Application was designed for MS-DOS 4.0.
14 Type of executable file was unknown.
15 Attempt was made to load a real-mode application (developed for an earlier version of

Windows).
16 Attempt was made to load a second instance of an executable file containing multiple data

segments that were not marked read-only.
19 Attempt was made to load a compressed executable file. The file must be decompressed

before it can be loaded.
20 Dynamic-link library (DLL) file was invalid. One of the DLLs required to run this application

was corrupt.
21 Application requires Microsoft Windows 32-bit extensions.

Comments
If the module has been loaded, LoadLibrary increments (increases by one) the module's reference count. If
the module has not been loaded, the function loads it from the specified file.

LoadLibrary increments the reference count for a library module each time an application calls the
function. When it has finished using the module, the application should use the FreeLibrary function to
decrement (decrease by one) the reference count.

An application can use the GetProcAddress function to access functions in a library that was loaded using
LoadLibrary.

Example
The following example uses the LoadLibrary function to load the Tool Helper Library TOOLHELP.DLL
and the FreeLibrary function to free it:

HINSTANCE hinstToolHelp = LoadLibrary("TOOLHELP.DLL");
if ((UINT) hinstToolHelp > 32) {

.

. /* use GetProcAddress to use TOOLHELP functions */

.
}
else {

ErrorHandler();
}
if ((UINT) hinstToolHelp > 32)

FreeLibrary(hinstToolHelp); /* free TOOLHELP.DLL */
See Also
FreeLibrary, GetProcAddress

LoadModule (3.0)
HINSTANCE LoadModule(lpszModuleName, lpvParameterBlock)
LPCSTR lpszModuleName; /* address of filename to load */
LPVOID lpvParameterBlock; /
* address of parameter block for new module *
/

The LoadModule function loads and executes a Windows application or creates a new instance of an
existing Windows application.

Parameter Description
lpszModuleName Points to a null-terminated string that contains the complete filename (including

the file extension) of the application to be run. If the string does not contain a
path, Windows searches for the executable file in this order:

1 The current directory.
2 The Windows directory (the directory containing WIN.COM), whose path the GetWindowsDirectory

function retrieves.

3 The Windows system directory (the directory containing such system files as GDI.EXE), whose path
the GetSystemDirectory function retrieves.

4 The directory containing the executable file for the current task; the GetModuleFileName function
obtains the path of this directory.

5 The directories listed in the PATH environment variable.
6 The list of directories mapped in a network.
lpvParameterBlock Points to an application-defined LOADPARMS structure that defines the new

application's parameter block. The LOADPARMS structure has the following
form:

struct _LOADPARMS {
WORD segEnv; /* child environment */
LPSTRlpszCmdLine; /* child command tail */
UINT FAR* lpShow; /* how to show child */
UINT FAR* lpReserved;/* must be NULL */

} LOADPARMS;

Member Description
segEnv Specifies whether the child application receives a copy

of the parent application's environment or a new
environment created by the parent application. If this
member is zero, the child application receives an exact
duplicate of the parent application's environment
block. If the member is nonzero, the value entered
must be the segment address of a memory object
containing a copy of the new environment for the child
application.

lpszCommandLine Points to a null-terminated string that specifies the
command line (excluding the child application name).
This string must not exceed 120 characters. If there is
no command line, this member must point to a zero-
length string (it cannot be set to NULL).

lpShow Points to an array containing two 16-bit values. The
first value must always be set to two. The second value
specifies how the application window is to be shown.
For a list of the acceptable values, see the description
of the nCmdShow parameter of the ShowWindow
function.

lpReserved Reserved; must be NULL.

Returns

The return value is the instance handle of the loaded module if the function is successful. If the function
fails, it returns an error value less than HINSTANCE_ERROR.
Errors

If the function fails, it returns one of the following error values:

Value Meaning
0 System was out of memory, executable file was corrupt, or relocations were invalid.
2 File was not found.
3 Path was not found.
5 Attempt was made to dynamically link to a task, or there was a sharing or network-protection

error.
6 Library required separate data segments for each task.
8 There was insufficient memory to start the application.
10 Windows version was incorrect.
11 Executable file was invalid. Either it was not a Windows application or there was an error in

the .EXE image.
12 Application was designed for a different operating system.
13 Application was designed for MS-DOS 4.0.
14 Type of executable file was unknown.
15 Attempt was made to load a real-mode application (developed for an earlier version of

Windows).
16 Attempt was made to load a second instance of an executable file containing multiple data

segments that were not marked read-only.
19 Attempt was made to load a compressed executable file. The file must be decompressed

before it can be loaded.
20 Dynamic-link library (DLL) file was invalid. One of the DLLs required to run this application

was corrupt.
21 Application requires Microsoft Windows 32-bit extensions.

Comments
The WinExec function provides an alternative method for executing an application.

Example
The following example uses the LoadModule function to run an executable file named DRAW.EXE:

struct LOADPARMS {
WORD segEnv; /* child environment */
LPSTR lpszCmdLine; /* child command tail */
LPWORD lpwShow; /* how to show child */
LPWORD lpwReserved; /* must be NULL */

};
char szMsg[80];
HINSTANCE hinstMod;
struct LOADPARMS parms;
WORD awShow[2] = { 2, SW_SHOWMINIMIZED };
parms.segEnv = 0;/* child inherits environment */
parms.lpszCmdLine = (LPSTR) "";/* no command line */
parms.lpwShow = (LPWORD) awShow; /* shows child as an icon */
parms.lpwReserved = (LPWORD) NULL; /* must be NULL */
hinstMod = LoadModule("draw.exe", &parms);
if ((UINT) hinstMod < 32) {

sprintf(szMsg, "LoadModule failed; error code = %d",
hinstMod);
MessageBox(hwnd, szMsg, "Error", MB_ICONSTOP);

}
else {

sprintf(szMsg, "LoadModule returned %d", hinstMod);

MessageBox(hwnd, szMsg, "", MB_OK);
}
See Also
FreeModule, GetModuleFileName, GetSystemDirectory, GetWindowsDirectory, ShowWindow, WinExec

LoadResource (2.x)
HGLOBAL LoadResource(hinst, hrsrc)
HINSTANCE hinst; /* handle of file containing resource */
HRSRC hrsrc; /* handle of
resource *
/

The LoadResource function loads the specified resource in global memory.

Parameter Description
hinst Identifies an instance of the module whose executable file contains the resource to be

loaded.
hrsrc Identifies the resource to be loaded. This handle must have been created by using the

FindResource function.

Returns
The return value is the instance handle of the global memory object containing the data associated with the
resource. It is NULL if no such resource exists.

Comments
When finished with a resource, an application should free the global memory associated with it by using
the FreeResource function.

If the specified resource has been loaded, this function simply increments the reference count for the
resource.

The resource is not loaded until the LockResource function is called to translate the handle returned by
LoadResource into a far pointer to the resource data.

See Also
FindResource, FreeResource, LockResource

LocalAlloc (2.x)
HLOCAL LocalAlloc(fuAllocFlags, fuAlloc)
UINT fuAllocFlags; /* allocation attributes */
UINT fuAlloc; /* number of bytes to
allocate *
/

The LocalAlloc function allocates the specified number of bytes from the local heap.

Parameter Description
fuAllocFlags Specifies how to allocate memory. This parameter can be a combination of the

following values:

Value Meaning
LHND Combines the LMEM_MOVEABLE and

LMEM_ZEROINIT flags.
LMEM_DISCARDABLE Allocates discardable memory.
LMEM_FIXED Allocates fixed memory. The LMEM_FIXED and

LMEM_MOVEABLE flags cannot be combined.
LMEM_MOVEABLE Allocates movable memory. The LMEM_FIXED and

LMEM_MOVEABLE flags cannot be combined.
LMEM_NOCOMPACT Does not compact or discard memory to satisfy the

allocation request.
LMEM_NODISCARD Does not discard memory to satisfy the allocation

request.
LMEM_ZEROINIT Initializes memory contents to zero.
LPTR Combines the LMEM_FIXED and

LMEM_ZEROINIT flags.
NONZEROLHND Same as the LMEM_MOVEABLE flag.
NONZEROLPTR Same as the LMEM_FIXED flag.

fuAlloc Specifies the number of bytes to be allocated.

Returns
The return value is the instance handle of the newly allocated local memory object, if the function is
successful. Otherwise, it is NULL.

Comments
If LocalAlloc allocates movable memory, the return value is a local handle of the memory. To access the
memory, an application must use the LocalLock function to convert the handle to a pointer.

If LocalAlloc allocates fixed memory, the return value is a pointer to the memory. To access the memory,
an application can simply cast the return value to a pointer.

Fixed memory will be slightly faster than movable memory. If memory will be allocated and freed without
an intervening local allocation or reallocation, then the memory should be allocated as fixed.

If this function is successful, it allocates at least the amount requested. If the amount allocated is greater
than the amount requested, the application can use the entire amount. To determine the size of a local
memory object, an application can use the LocalSize function.

To free a local memory object, an application should use the LocalFree function. To change the size or
attributes of an allocated memory object, an application can use the LocalReAlloc function.

See Also
LocalFree, LocalLock, LocalReAlloc, LocalSize, LocalUnlock

LHND (LMEM_MOVEABLE | LMEM_ZEROINIT)

Combines the LMEM_MOVEABLE and LMEM_ZEROINIT flags.

LHND (LMEM_MOVEABLE | LMEM_ZEROINIT)

LMEM_DISCARDABLE 0x0F00

Allocates discardable memory.

LMEM_DISCARDABLE 0x0F00

LMEM_FIXED 0x0000

Allocates fixed memory. The LMEM_FIXED and LMEM_MOVEABLE flags cannot be combined.

LMEM_FIXED 0x0000

LMEM_MOVEABLE 0x0002

Allocates movable memory. The LMEM_FIXED and LMEM_MOVEABLE flags cannot be combined.

LMEM_MOVEABLE 0x0002

LMEM_NOCOMPACT 0x0010

Does not compact or discard memory to satisfy the allocation request.

LMEM_NOCOMPACT 0x0010

LMEM_NODISCARD 0x0020

Does not discard memory to satisfy the allocation request.

LMEM_NODISCARD 0x0020

LMEM_ZEROINIT 0x0040

Initializes memory contents to zero.

LMEM_ZEROINIT 0x0040

LPTR (LMEM_FIXED | LMEM_ZEROINIT)

Combines the LMEM_FIXED and LMEM_ZEROINIT flags.

LPTR (LMEM_FIXED | LMEM_ZEROINIT)

NONZEROLHND (LMEM_MOVEABLE)

Same as the LMEM_MOVEABLE flag.

NONZEROLHND (LMEM_MOVEABLE)

NONZEROLPTR (LMEM_FIXED)

Same as the LMEM_FIXED flag.

NONZEROLPTR (LMEM_FIXED)

LocalCompact (2.x)
UINT LocalCompact(uMinFree)
UINT uMinFree; /* amount of memory requested */

The LocalCompact function rearranges the local heap so that the specified amount of memory is free.

Parameter Description
uMinFree Specifies the number of contiguous free bytes requested. If this parameter is zero, the

function does not compact memory, but the return value is valid.

Returns
The return value specifies the number of bytes in the largest free local memory object. If the uMinFree
parameter is zero, the return value specifies the number of bytes in the largest free object that Windows
can generate if it removes all discardable objects.

Comments
The function first checks the local heap for the specified number of contiguous free bytes. If the bytes do
not exist, the function compacts local memory by moving all unlocked, movable objects into high
memory. If this does not generate the requested amount of space, the function discards movable and
discardable objects that are not locked, until the requested amount of space is generated (if possible).

See Also
LocalAlloc, LocalLock

LocalFlags (2.x)
UINT LocalFlags(hloc)
HLOCAL hloc; /* handle of local memory object */

The LocalFlags function retrieves information about the given local memory object.

Parameter Description
hloc Identifies the local memory object.

Returns
The low-order byte of the return value contains the lock count of the object; the high-order byte contains
either LMEM_DISCARDABLE (object has been marked as discardable) or LMEM_DISCARDED (object
has been discarded).

Comments
To retrieve the lock count from the return value, use the LMEM_LOCKCOUNT mask.

See Also
LocalAlloc, LocalLock, LocalReAlloc, LocalUnlock

LocalFree (2.x)
HLOCAL LocalFree(hloc)
HLOCAL hloc; /* handle of local memory object */

The LocalFree function frees the given local memory object (if the object is not locked) and invalidates its
handle.

Parameter Description
hloc Identifies the local memory object to be freed.

Returns
The return value is NULL if the function is successful. Otherwise, it is equal to the hloc parameter.

Comments
An application cannot use the LocalFree function to free a locked memory object--that is, a memory object
with a lock count greater than zero.

After freeing the handle of the memory object, an application cannot use the handle again. An attempt to
free the same memory object more than once can cause Windows to terminate abnormally.

See Also
LocalFlags, LocalLock

LocalHandle (2.x)
HLOCAL LocalHandle(pvMem)
void NEAR* pvMem; /* address of local memory object */

The LocalHandle function retrieves the handle of the specified local memory object.

Parameter Description
pvMem Specifies the address of the local memory object.

Returns
The return value is the handle of the specified local memory object if the function is successful. It is
NULL if the specified address has no handle.

See Also
LocalAlloc

LocalInit (2.x)
BOOL LocalInit(uSegment, uStartAddr, uEndAddr)
UINT uSegment; /* segment to contain local heap */
UINT uStartAddr; /* starting
address for heap *
/
UINT uEndAddr; /
* ending address for heap *
/

The LocalInit function initializes a local heap in the specified segment.

Parameter Description
uSegment Identifies the segment that is to contain the local heap.
uStartAddr Specifies the starting address of the local heap within the segment.
uEndAddr Specifies the ending address of the local heap within the segment.

Returns
The return value is nonzero if the function is successful. Otherwise, it is zero.

Comments
The first 16 bytes of the segment containing a local heap must be reserved for use by the system.

See Also
GlobalLock, LocalAlloc, LocalReAlloc

Windows 3.1 changes

Removed the discussion of movable data segments (LockData etc.), since this is irrelevant in 3.1. Data
segments may or may not move, but Windows maintains their selectors.

LocalLock (2.x)
void NEAR* LocalLock(hloc)
HLOCAL hloc; /* handle of local memory object */

The LocalLock function retrieves a pointer to the given local memory object. LocalLock increments
(increases by one) the lock count of movable objects and locks the memory.

Parameter Description
hloc Identifies the local memory object to be locked.

Returns
The return value points to the first byte of memory in the local object, if the function is successful. It is
NULL if the object has been discarded or an error occurs.

Comments
Each time an application calls LocalLock for an object, it must eventually call LocalUnlock for the object.

This function will return NULL if an application attempts to lock a memory object with a size of 0 bytes.

The LocalUnlock function decrements (decreases by one) the lock count for the object if LocalLock
incremented the count. Other functions can also affect the lock count of a memory object.

Locked memory will not be moved or discarded unless the memory object is reallocated by the
LocalReAlloc function. The object remains locked in memory until its lock count is decreased to zero.

Discarded objects always have a lock count of zero.

See Also
LocalFlags, LocalReAlloc, LocalUnlock

LocalReAlloc (2.x)
HLOCAL LocalReAlloc(hloc, fuNewSize, fuFlags)
HLOCAL hloc; /* handle of local memory object */
UINT fuNewSize; /* new size of
object *
/
UINT fuFlags; /
* new allocation attributes *
/

The LocalReAlloc function changes the size or attributes of the given local memory object.

Parameter Description
hloc Identifies the local memory object to be reallocated.
fuNewSize Specifies the new size of the local memory object.
fuFlags Specifies how to reallocate the local memory object. If this parameter includes the

LMEM_MODIFY and LMEM_DISCARDABLE flags, LocalReAlloc ignores the
fuNewSize parameter. The fuFlags parameter can be a combination of the following
values.

Value Meaning
LMEM_DISCARDABLE Causes a previously movable object to become

discardable. This flag can be used only with
LMEM_MODIFY.

LMEM_MODIFY Modifies the object's memory flags. This flag can be
used only with LMEM_DISCARDABLE.

LMEM_MOVEABLE If fuNewSize is zero, this flag causes a previously fixed
object to be freed or a previously movable object to be
discarded (if the object's lock count is zero). This flag
cannot be used with LMEM_MODIFY.
If fuNewSize is nonzero and the object identified by the
hloc parameter is fixed, this flag allows the reallocated
object to be moved to a new fixed location.

LMEM_NOCOMPACT Prevents memory from being compacted or discarded
to satisfy the allocation request. This flag cannot be
used with LMEM_MODIFY.

LMEM_ZEROINIT If the object is growing, this flag causes the additional
memory contents to be initialized to zero. This flag
cannot be used with LMEM_MODIFY.

Returns
The return value is the handle of the reallocated local memory object, if the function is successful.
Otherwise, it is NULL.

Comments
If LocalReAlloc reallocates a movable object, the return value is a local handle of the memory. To access
the memory, an application must use the LocalLock function to convert the handle to a pointer.

If LocalReAlloc reallocates a fixed object, the return value is a pointer to the memory. To access the
memory, an application can simply cast the return value to a pointer.

To free a local memory object, an application should use the LocalFree function.

See Also
LocalAlloc, LocalDiscard, LocalFree, LocalLock

LocalShrink (2.x)
UINT LocalShrink(hloc, cbNewSize)
HLOCAL hloc; /* segment containing local heap */
UINT cbNewSize; /* new size of
local heap *
/

The LocalShrink function shrinks the local heap in the given segment.

Parameter Description
hloc Identifies the segment that contains the local heap. If this parameter is zero, the function

shrinks the heap in the current data segment.
cbNewSize Specifies the new size, in bytes, of the local heap.

Returns
The return value specifies the new size of the local heap if the function is successful.

Comments
Windows will not shrink the portion of the data segment that contains the stack and the static variables.

Use the GlobalSize function to determine the new size of the data segment.

See Also
GlobalSize

LocalSize (2.x)
UINT LocalSize(hloc)
HLOCAL hloc; /* handle of local memory object */

The LocalSize function returns the current size, in bytes, of the given local memory object.

Parameter Description
hloc Identifies the local memory object.

Returns
The return value specifies the size, in bytes, of the memory object, if the function is successful. It is zero if
the specified handle is invalid or if the object has been discarded.

Comments
The size of a memory object sometimes is larger than the size requested when the memory was allocated.

To verify that the memory object has not been discarded, an application should call the LocalFlags
function prior to calling the LocalSize function. If the memory object has been discarded, the return value
for LocalSize is meaningless.

See Also
LocalAlloc, LocalFlags

LocalUnlock (2.x)
BOOL LocalUnlock(hloc)
HLOCAL hloc; /* handle of local memory object */

The LocalUnlock function unlocks the given local memory object. This function has no effect on fixed
memory.

Parameter Description
hloc Identifies the local memory object to be unlocked.

Returns
The return value is zero if the function is successful. Otherwise, it is nonzero.

Comments
With discardable memory, this function decrements (decreases by one) the object's lock count. The object
is completely unlocked, and subject to discarding, if the lock count is decreased to zero.

See Also
LocalLock

LockResource (2.x)
void FAR* LockResource(hglb)
HGLOBAL hglb; /* handle of resource */

The LockResource function locks the given resource. The resource is locked in memory and its reference
count is incremented (increased by one). The locked resource is not subject to discarding.

Parameter Description
hglb Identifies the resource to be locked. This handle must have been created by using the

LoadResource function.

Returns
The return value points to the first byte of the loaded resource if the function is successful. Otherwise, it is
NULL.

Comments
The resource remains locked in memory until its reference count is decreased to zero by calls to the
FreeResource function.

If the resource identified by the hglb parameter has been discarded, the resource-handler function (if any)
associated with the resource is called before the LockResource function returns. The resource-handler
function can recalculate and reload the resource if necessary. After the resource-handler function returns,
LockResource makes another attempt to lock the resource and returns with the result.

Using the handle returned by the FindResource function for the hglb parameter causes an error.

Use the UnlockResource macro to unlock a resource that was locked by LockResource.

See Also
FindResource, FreeResource, SetResourceHandler

LockSegment (2.x)
HGLOBAL LockSegment(uSegment)
UINT uSegment; /* segment to lock */

The LockSegment function locks the specified discardable segment. The segment is locked into memory at
the given address and its lock count is incremented (increased by one).

Parameter Description
uSegment Specifies the segment address of the segment to be locked. If this parameter is -1, the

LockSegment function locks the current data segment.

Returns
The return value specifies the data segment if the function is successful. It is NULL if the segment has
been discarded or an error occurs.

Comments
Locked memory is not subject to discarding except when a portion of the segment is being reallocated by
the GlobalReAlloc function. The segment remains locked in memory until its lock count is decreased to
zero by the UnlockSegment function.

Each time an application calls LockSegment for a segment, it must eventually call UnlockSegment for the
segment. The UnlockSegment function decrements the lock count for the segment. Other functions also
can affect the lock count of a memory object. For a list of these functions, see the description of the
GlobalFlags function.

See Also
GlobalFlags, GlobalReAlloc, LockData, UnlockSegment

LogError (3.1)
void LogError(uErr, lpvInfo)
UINT uErr; /* error type */
void FAR* lpvInfo; /* address of
error information *
/

The LogError function identifies the most recent system error. An application's interrupt callback function
typically calls LogError to return error information to the user.

Parameter Description
uErr Specifies the type of error that occurred. The lpvInfo parameter may point to more

information about the error, depending on the value of uErr. This parameter may be one
or more of the following values:

Value Meaning
ERR_ALLOCRES AllocResource failed.
ERR_BADINDEX Bad index to GetClassLong, GetClassWord,

GetWindowLong, GetWindowWord,
SetClassLong, SetClassWord,
SetWindowLong, or SetWindowWord.

ERR_BYTE Invalid 8-bit parameter.
ERR_CREATEDC CreateCompatibleDC, CreateDC, or CreateIC

failed.
ERR_CREATEDLG Could not create dialog box because

LoadMenu failed.
ERR_CREATEDLG2 Could not create dialog box because

CreateWindow failed.
ERR_CREATEMENU Could not create menu.
ERR_CREATEMETA CreateMetaFile failed.
ERR_CREATEWND Could not create window because the class

was not found.
ERR_DCBUSY Device context (DC) cache is full.
ERR_DELOBJSELECTED Program is trying to delete a bitmap that is

selected into the DC.
ERR_DWORD Invalid 32-bit parameter.
ERR_GALLOC GlobalAlloc failed.
ERR_GLOCK GlobalLock failed.
ERR_GREALLOC GlobalReAlloc failed.
ERR_LALLOC LocalAlloc failed.
ERR_LLOCK LocalLock failed.
ERR_LOADMENU LoadMenu failed.
ERR_LOADMODULE LoadModule failed.
ERR_LOADSTR LoadString failed.
ERR_LOCKRES LockResource failed.
ERR_LREALLOC LocalReAlloc failed.
ERR_NESTEDBEGINPAINT Program contains nested BeginPaint calls.
ERR_REGISTERCLASS RegisterClass failed because the class is

already registered.
ERR_SELBITMAP Program is trying to select a bitmap that is

already selected.
ERR_SIZE_MASK Identifies which 2 bits of uErr specify the size

of the invalid parameter.
ERR_STRUCEXTRA Program is using unallocated space.
ERR_WARNING A non-fatal error occurred.
ERR_WORD Invalid 16-bit parameter.

lpvInfo Points to more information about the error. The value of lpvInfo depends on the value of
uErr. If the value of (uErr & ERR_SIZE_MASK) is 0, lpvInfo is undefined. Currently,
no uErr code has defined meanings for lpvInfo.

Returns
This function does not return a value.

Comments
The errors identified by LogError may be trapped by the callback function that NotifyRegister installs.

Error values whose low 12 bits are less than 0x07FF are reserved for use by Windows.

See Also
LogParamError, NotifyRegister

LogParamError (3.1)
void LogParamError(uErr, lpfn, lpvParam)
UINT uErr; /* error type */
FARPROC lpfn; /*
address where error occurred *
/
void FAR* lpvParam; /
* address of more error information *
/

The LogParamError function identifies the most recent parameter validation error. An application's
interrupt callback function typically calls LogParamError to return information about an invalid parameter
to the user.

Parameter Description
uErr Specifies the type of parameter validation error that occurred. The lpvParam parameter

may point to more information about the error, depending on the value of uErr. This
parameter may be one or more of the following values:

Value Meaning
ERR_BAD_ATOM Invalid atom.
ERR_BAD_CID Invalid communications identifier (CID).
ERR_BAD_COORDS Invalid x,y coordinates.
ERR_BAD_DFLAGS Invalid 32-bit flags.
ERR_BAD_DINDEX Invalid 32-bit index or index out-of-range.
ERR_BAD_DVALUE Invalid 32-bit signed or unsigned value.
ERR_BAD_FLAGS Invalid bit flags.
ERR_BAD_FUNC_PTR Invalid function pointer.
ERR_BAD_GDI_OBJECT Invalid graphics device interface (GDI)

object.
ERR_BAD_GLOBAL_HANDLE Invalid global handle.
ERR_BAD_HANDLE Invalid generic handle.
ERR_BAD_HBITMAP Invalid bitmap handle.
ERR_BAD_HBRUSH Invalid brush handle.
ERR_BAD_HCURSOR Invalid cursor handle.
ERR_BAD_HDC Invalid device context (DC) handle.
ERR_BAD_HDRVR Invalid driver handle.
ERR_BAD_HDWP Invalid handle of a window-position structure.
ERR_BAD_HFILE Invalid file handle.
ERR_BAD_HFONT Invalid font handle.
ERR_BAD_HICON Invalid icon handle.
ERR_BAD_HINSTANCE Invalid instance handle.
ERR_BAD_HMENU Invalid menu handle.
ERR_BAD_HMETAFILE Invalid metafile handle.
ERR_BAD_HMODULE Invalid module handle.
ERR_BAD_HPALETTE Invalid palette handle.
ERR_BAD_HPEN Invalid pen handle.
ERR_BAD_HRGN Invalid region handle.
ERR_BAD_HWND Invalid window handle.
ERR_BAD_INDEX Invalid index or index out-of-range.
ERR_BAD_LOCAL_HANDLE Invalid local handle.
ERR_BAD_PTR Invalid pointer.
ERR_BAD_SELECTOR Invalid selector.
ERR_BAD_STRING_PTR Invalid zero-terminated string pointer.
ERR_BAD_VALUE Invalid 16-bit signed or unsigned value.

ERR_BYTE Invalid 8-bit parameter.
ERR_DWORD Invalid 32-bit parameter.
ERR_PARAM A parameter validation error occurred. This

flag is always set.
ERR_SIZE_MASK Identifies which 2 bits of uErr specify the size

of the invalid parameter.
ERR_WARNING An invalid parameter was detected, but the

error is not serious enough to cause the
function to fail. The invalid parameter is
reported, but the call runs as usual.

ERR_WORD Invalid 16-bit parameter.
lpfn Specifies the address at which the parameter error occurred. This value is NULL if the

address is unknown.
lpvParam Points to more information about the error. The value of lpvParam depends on the value

of uErr. If the value of (uErr & ERR_SIZE_MASK) is 0, lpvParam is undefined.
Currently, no uErr code has defined meanings for lpvParam.

Returns
This function does not return a value.

Comments
The errors identified by LogParamError may be trapped by the callback function that NotifyRegister
installs.

Error values whose low 12 bits are less than 0x07FF are reserved for use by Windows.

The size of the value passed in lpvParam is determined by the values of the bits selected by
ERR_SIZE_MASK, as follows:

switch (err & ERR_SIZE_MASK)
{
case ERR_BYTE:/* 8-bit invalid parameter */

b = LOBYTE(param);
break;

case ERR_WORD:/* 16-bit invalid parameter */
w = LOWORD(param);
break;

case ERR_DWORD: /* 32-bit invalid parameter */
l = (DWORD)param;
break:

default: /* invalid parameter value is unknown */
break;

}
See Also
LogError, NotifyRegister

ERR_BAD_ATOM 0x6024

Invalid atom.

ERR_BAD_ATOM 0x6024

ERR_BAD_CID 0x6045

Invalid communications identifier (CID).

ERR_BAD_CID 0x6045

ERR_BAD_COORDS 0x7060

Invalid x,y coordinates.

ERR_BAD_COORDS 0x7060

ERR_BAD_DFLAGS 0x7005

Invalid 32-bit flags.

ERR_BAD_DFLAGS 0x7005

ERR_BAD_DINDEX 0x7006

Invalid 32-bit index or index out-of-range.

ERR_BAD_DINDEX 0x7006

ERR_BAD_DVALUE 0x7004

Invalid 32-bit signed or unsigned value.

ERR_BAD_DVALUE 0x7004

ERR_BAD_FLAGS 0x6002

Invalid bit flags.

ERR_BAD_FLAGS 0x6002

ERR_BAD_FUNC_PTR 0x7008

Invalid function pointer.

ERR_BAD_FUNC_PTR 0x7008

ERR_BAD_GDI_OBJECT 0x6061

Invalid graphics device interface (GDI) object.

ERR_BAD_GDI_OBJECT 0x6061

ERR_BAD_GLOBAL_HANDLE 0x6022

Invalid global handle.

ERR_BAD_GLOBAL_HANDLE 0x6022

ERR_BAD_HANDLE 0x600b

Invalid generic handle.

ERR_BAD_HANDLE 0x600b

ERR_BAD_HBITMAP 0x6066

Invalid bitmap handle.

ERR_BAD_HBITMAP 0x6066

ERR_BAD_HBRUSH 0x6065

Invalid brush handle.

ERR_BAD_HBRUSH 0x6065

ERR_BAD_HCURSOR 0x6042

Invalid cursor handle.

ERR_BAD_HCURSOR 0x6042

ERR_BAD_HDC 0x6062

Invalid device context (DC) handle.

ERR_BAD_HDC 0x6062

ERR_BAD_HDRVR 0x6046

Invalid driver handle.

ERR_BAD_HDRVR 0x6046

ERR_BAD_HDWP 0x6044

Invalid handle of a window-position structure.

ERR_BAD_HDWP 0x6044

ERR_BAD_HFILE 0x6025

Invalid file handle.

ERR_BAD_HFILE 0x6025

ERR_BAD_HFONT 0x6064

Invalid font handle.

ERR_BAD_HFONT 0x6064

ERR_BAD_HICON 0x6043

Invalid icon handle.

ERR_BAD_HICON 0x6043

ERR_BAD_HINSTANCE 0x6020

Invalid instance handle.

ERR_BAD_HINSTANCE 0x6020

ERR_BAD_HMENU 0x6041

Invalid menu handle.

ERR_BAD_HMENU 0x6041

ERR_BAD_HMETAFILE 0x6069

Invalid metafile handle.

ERR_BAD_HMETAFILE 0x6069

ERR_BAD_HMODULE 0x6021

Invalid module handle.

ERR_BAD_HMODULE 0x6021

ERR_BAD_HPALETTE 0x6068

Invalid palette handle.

ERR_BAD_HPALETTE 0x6068

ERR_BAD_HPEN 0x6063

Invalid pen handle.

ERR_BAD_HPEN 0x6063

ERR_BAD_HRGN 0x6067

Invalid region handle.

ERR_BAD_HRGN 0x6067

ERR_BAD_HWND 0x6040

Invalid window handle.

ERR_BAD_HWND 0x6040

ERR_BAD_INDEX 0x6003

Invalid index or index out-of-range.

ERR_BAD_INDEX 0x6003

ERR_BAD_LOCAL_HANDLE 0x6023

Invalid local handle.

ERR_BAD_LOCAL_HANDLE 0x6023

ERR_BAD_PTR 0x7007

Invalid pointer.

ERR_BAD_PTR 0x7007

ERR_BAD_SELECTOR 0x6009

Invalid selector.

ERR_BAD_SELECTOR 0x6009

ERR_BAD_STRING_PTR 0x700a

Invalid zero-terminated string pointer.

ERR_BAD_STRING_PTR 0x700a

ERR_BAD_VALUE 0x6001

Invalid 16-bit signed or unsigned value.

ERR_BAD_VALUE 0x6001

ERR_BYTE 0x1000

Invalid 8-bit parameter.

ERR_BYTE 0x1000

ERR_DWORD 0x3000

Invalid 32-bit parameter.

ERR_DWORD 0x3000

ERR_PARAM 0x4000

A parameter validation error occurred. This flag is always set.

ERR_PARAM 0x4000

ERR_SIZE_MASK 0x3000

Identifies which 2 bits of uErr specify the size of the invalid parameter.

ERR_SIZE_MASK 0x3000

ERR_WARNING 0x8000

An invalid parameter was detected, but the error is not serious enough to cause the function to fail. The
invalid parameter is reported, but the call runs as usual.

ERR_WARNING 0x8000

ERR_WORD 0x2000

Invalid 16-bit parameter.

ERR_WORD 0x2000

lstrcat (2.x)
LPSTR lstrcat(lpszString1, lpszString2)
LPSTR lpszString1; /* address of buffer for concatenated strings */
LPCSTR lpszString2; /
* address of string to add to string1 *
/

The lstrcat function appends one string to another.

Parameter Description
lpszString1 Points to a byte array containing a null-terminated string. The byte array containing the

string must be large enough to contain both strings.
lpszString2 Points to the null-terminated string to be appended to the string specified in the

lpszString1 parameter.

Returns
The return value points to lpszString1 if the function is successful.

Comments
Both strings must be less than 64K in size.

Example
The following example uses the lstrcat function to append a test string to a buffer:

char szBuf[80] = { "the test string is " };
lstrcat(szBuf, lpsz);
MessageBox(hwnd, szBuf, "lstrcat", MB_OK);
See Also
lstrcpy

lstrcpy (2.x)
LPSTR lstrcpy(lpszString1, lpszString2)
LPSTR lpszString1; /* address of buffer */
LPCSTR lpszString2; /* address of
string to copy *
/

The lstrcpy function copies a string to a buffer.

Parameter Description
lpszString1 Points to a buffer that will receive the contents of the string pointed to by the lpszString2

parameter. The buffer must be large enough to contain the string, including the
terminating null character.

lpszString2 Points to the null-terminated string to be copied.

Returns
The return value is a pointer to lpszString1 if the function is successful. Otherwise, it is NULL.

Comments
This function can be used to copy a double-byte character set (DBCS) string.

Both strings must be less than 64K in size.

See Also
lstrcat, lstrcpyn, lstrlen

lstrcpyn (3.1)
LPSTR lstrcpyn(lpszString1, lpszString2, cChars)
LPSTR lpszString1; /* address of buffer */
LPCSTR lpszString2; /*
address of string to copy from *
/
int cChars; /
* number of characters to copy *
/

The lstrcpyn function copies a specified number of characters in a string to a buffer.

Parameter Description
lpszString1 Points to a buffer that will receive characters from the string pointed to by the

lpszString2 parameter.
lpszString2 Points to the null-terminated string to copy from.
cChars Specifies the number of characters to copy from the string pointed to by the lpszString2

parameter.

Returns
The return value is a pointer to lpszString1 if the function is successful. Otherwise, it is NULL.

See Also
lstrcpy

lstrlen (2.x)
int lstrlen(lpszString)
LPCSTR lpszString; /* address of string to count */

The lstrlen function returns the length, in bytes, of the specified string (not including the terminating null
character).

Parameter Description
lpszString Points to a null-terminated string. This string must be less than 64K in size.

Returns
The return value specifies the length, in bytes, of the string pointed to by the lpszString parameter. There is
no error return.

See Also
lstrcpy

MakeProcInstance (2.x)
FARPROC MakeProcInstance(lpProc, hinst)
FARPROC lpProc; /* address of function */
HINSTANCE hinst; /* instance to
bind to function *
/

The MakeProcInstance function returns the address of the prolog code for an exported function. The
prolog code binds an instance data segment to an exported function. When the function is called, it has
access to variables and data in that instance data segment.

Parameter Description
lpProc Specifies the address of an exported function.
hinst Identifies the instance associated with the desired data segment.

Returns
The return value points to the prolog code for the specified exported function, if MakeProcInstance is
successful. Otherwise, it is NULL.

Comments
The MakeProcInstance function is used to retrieve a calling address for a function that must be called by
Windows, such as an About procedure. This function must be used only to access functions from instances
of the current module. If the address specified in the lpProc parameter identifies a procedure in a dynamic-
link library, MakeProcInstance returns the same address specified in lpProc.

After MakeProcInstance has been called for a particular function, all calls to that function should be made
through the retrieved address.

The FreeProcInstance function frees the function from the data segment bound to it by the
MakeProcInstance function.

MakeProcInstance will create more than one procedure instance. To avoid wasting memory, an application
should not call MakeProcInstance more than once using the same function and instance handle.

If you are using a recent version of a Windows compiler, you may not have to use the MakeProcInstance
function. Consult your compiler manual for specific information on function prolog and epilog code.

See Also
FreeProcInstance, GetProcAddress

MapVirtualKey (3.0)
UINT MapVirtualKey(uKeyCode, fuMapType)
UINT uKeyCode; /* virtual-key code or scan code */
UINT fuMapType; /* translation to
perform *
/

The MapVirtualKey function translates (maps) a virtual-key code into a scan code or ASCII value, or it
translates a scan code into a virtual-key code.

Parameter Description
uKeyCode Specifies the virtual-key code or scan code for a key. How this parameter is interpreted

depends on the value of the fuMapType parameter.
fuMapType Specifies the translation to perform. If this parameter is 0, the uKeyCode parameter is a

virtual-key code and is translated into its corresponding scan code. If fuMapType is 1,
uKeyCode is a scan code and is translated to a virtual-key code. If fuMapType is 2,
uKeyCode is a virtual-key code and is translated to an unshifted ASCII value. Other
values are reserved.

Returns
The return value depends on the value of the uKeyCode and fuMapType parameters. For more
information, see the description of the fuMapType parameter.

See Also
OemKeyScan, VkKeyScan

MulDiv (3.0)
int MulDiv(nMultiplicand, nMultiplier, nDivisor)
int nMultiplicand; /* 16-bit signed multiplicand */
int nMultiplier; /* 16-bit signed
multiplier *
/
int nDivisor; /
* 16-bit signed divisor *
/

The MulDiv function multiplies two 16-bit values and then divides the 32-bit result by a third 16-bit value.
The return value is the 16-bit result of the division, rounded up or down to the nearest integer.

Parameter Description
nMultiplicand Specifies the multiplicand.
nMultiplier Specifies the multiplier.
nDivisor Specifies the number by which the result of the multiplication (nMultiplicand *

nMultiplier) is to be divided.

Returns
The return value is the result of the multiplication and division if the function is successful. The return
value is -32,768 if either an overflow occurs or the nDivisor parameter is 0.

See Also
CreateFontIndirect, GetDeviceCaps

NetBIOSCall (3.0)
The NetBIOSCall function allows an application to issue the NETBIOS Interrupt 5Ch. This function can
be called only from assembly-language routines. It is exported from KRNL286.EXE and KRNL386.EXE
and is not defined in any Windows header files.
Parameters

Registers must be set up as required by Interrupt 5Ch before the application calls the NetBIOSCall
function.

Returns
The register contents are preserved as they are returned by Interrupt 5Ch.

Comments
Applications should use this function instead of directly issuing a NETBIOS Interrupt 5Ch.

Example
To use this function, an application should declare it in an assembly-language routine, as follows:

extrn NETBIOSCALL: far
If the application includes CMACROS.INC, the function is declared as follows:

externFP NetBIOSCall
Following is an example of how to use the NetBIOSCall function:

extrn NETBIOSCALL: far
.
.
.
;set registers
cCall NetBIOSCall

OemKeyScan (3.0)
DWORD OemKeyScan(uOemChar)
UINT uOemChar; /* OEM ASCII character */

The OemKeyScan function translates (maps) OEM ASCII codes 0 through 0xFF to their corresponding
OEM scan codes and shift states.

Parameter Description
uOemChar Specifies the ASCII value of the OEM character.

Returns
The low-order word of the return value contains the scan code of the specified OEM character; the high-
order word contains flags that indicate the shift state: If bit 1 is set, a SHIFT key is pressed; if bit 2 is set, a
CTRL key is pressed. Both the low-order and high-order words of the return value contain -1 if the
character is not defined in the OEM character tables.

Comments
The OemKeyScan function does not translate characters that require CTRL+ALT or dead keys. Characters
not translated by this function must be copied by simulating input, using the ALT+ keypad mechanism. For
this to work, the NUM LOCK key must be off.

This function calls the VkKeyScan function in recent versions of the keyboard device drivers.

OemKeyScan allows an application to send OEM text to another application by simulating keyboard input.
It is used specifically for this purpose by Windows in 386 enhanced mode.

See Also
VkKeyScan

OemToAnsi (2.x)
void OemToAnsi(hpszOemStr, hpszWindowsStr)
const char _huge* hpszOemStr; /* address of string to translate */
char _huge* hpszWindowsStr; /
* address of translated string buffer *
/

The OemToAnsi function translates a string from the OEM-defined character set into the Windows
character set.

Parameter Description
hpszOemStr Points to a null-terminated string of characters from the OEM-defined character set.
hpszWindowsStr Points to the location where the translated string is to be copied. To translate the

string in place, the hpszWindowsStr parameter can be the same as the hpszOemStr
parameter.

Returns
This function does not return a value.

See Also
AnsiToOem, OemToAnsiBuff

OemToAnsiBuff (2.x)
void OemToAnsiBuff(lpszOemStr, lpszWindowsStr, cbOemStr)
LPCSTR lpszOemStr; /* address of OEM character string */
LPSTR lpszWindowsStr; /
* address of buffer for Windows string *
/
UINT cbOemStr; /
* length of OEM string *
/

The OemToAnsiBuff function translates a string from the OEM-defined character set into the Windows
character set.

Parameter Description
lpszOemStr Points to a buffer containing one or more characters from the OEM-defined

character set.
lpszWindowsStr Points to the location where the translated string is to be copied. To translate the

string in place, the lpszWindowsStr parameter can be the same as the lpszOemStr
parameter.

cbOemStr Specifies the length, in bytes, of the buffer pointed to by lpszOemStr. If cbOemStr is
0, the length is 64K.

Returns
This function does not return a value.

See Also
AnsiToOem, OemToAnsi

OpenFile (2.x)
HFILE OpenFile(lpszFileName, lpOpenBuff, fuMode)
LPCSTR lpszFileName; /* address of filename */
OFSTRUCT FAR* lpOpenBuff; /
* address of buffer for file information *
/
UINT fuMode; /
* action and attributes *
/

The OpenFile function creates, opens, reopens, or deletes a file.

Parameter Description
lpszFileName Points to a null-terminated string that names the file to be opened. The string must

consist of characters from the Windows character set and cannot contain wildcards.
lpOpenBuff Points to the OFSTRUCT structure that will receive information about the file when

the file is first opened. The structure can be used in subsequent calls to the OpenFile
function to refer to the open file.

fuMode Specifies the action to take and the attributes for the file. This parameter can be a
combination of the following values:

Value Meaning
OF_CANCEL Adds a Cancel button to the OF_PROMPT

dialog box. Pressing the Cancel button directs
OpenFile to return a file-not-found error
message.

OF_CREATE Creates a new file. If the file already exists, it is
truncated to zero length. When this flag is
specified, the sharing flags are ignored. If a file
must be shared it should be closed after it is
created and then reopened with the appropriate
sharing flags.

OF_DELETE Deletes the file.
OF_EXIST Opens the file, and then closes it. This value is

used to test for file existence. Using this value
does not change the file date.

OF_PARSE Fills the OFSTRUCT structure but carries out
no other action.

OF_PROMPT Displays a dialog box if the requested file does
not exist. The dialog box informs the user that
Windows cannot find the file and prompts the
user to insert the file in drive A.

OF_READ Opens the file for reading only.
OF_READWRITE Opens the file for reading and writing.
OF_REOPEN Opens the file using information in the reopen

buffer.
OF_SEARCH Windows searches in directories even when the

file name includes a full path.
OF_SHARE_COMPAT Opens the file with compatibility mode,

allowing any program on a given machine to
open the file any number of times. OpenFile
fails if the file has been opened with any of the
other sharing modes.

OF_SHARE_DENY_NONE Opens the file without denying other programs
read or write access to the file. OpenFile fails if
the file has been opened in compatibility mode
by any other program.

OF_SHARE_DENY_READ Opens the file and denies other programs read
access to the file. OpenFile fails if the file has

been opened in compatibility mode or for read
access by any other program.

OF_SHARE_DENY_WRITE Opens the file and denies other programs write
access to the file. OpenFile fails if the file has
been opened in compatibility or for write access
by any other program.

OF_SHARE_EXCLUSIVE Opens the file with exclusive mode, denying
other programs both read and write access to
the file. OpenFile fails if the file has been
opened in any other mode for read or write
access, even by the current program.

OF_VERIFY Compares the time and date in the
OF_STRUCT with the time and date of the
specified file. The function returns
HFILE_ERROR if the dates and times do not
agree.

OF_WRITE Opens the file for writing only.

Returns
The return value is an MS-DOS file handle if the function is successful. (This handle is not necessarily
valid; for example, if the fuMode parameter is OF_EXIST, the handle does not identify an open file, and if
the fuMode parameter is OF_DELETE, the handle is invalid.) The return value is HFILE_ERROR if an
error occurs.

Comments
If the lpszFileName parameter specifies a filename and extension only (or if the OF_SEARCH flag is
specified), the OpenFile function searches for a matching file in the following directories (in this order):
1 The current directory.

2 The Windows directory (the directory containing WIN.COM), whose path the GetWindowsDirectory
function retrieves.

3 The Windows system directory (the directory containing such system files as GDI.EXE), whose path
the GetSystemDirectory function retrieves.

4 The directory containing the executable file for the current task; the GetModuleFileName function
obtains the path of this directory.

5 The directories listed in the PATH environment variable.

6 The list of directories mapped in a network.

To close the file after use, the application should call the _lclose function.

See Also
GetSystemDirectory, GetWindowsDirectory, OFSTRUCT

OF_CANCEL 0x0800

Adds a Cancel button to the OF_PROMPT dialog box. Pressing the Cancel button directs OpenFile to
return a file-not-found error message.

OF_CANCEL 0x0800

OF_CREATE 0x1000

Creates a new file. If the file already exists, it is truncated to zero length. When this flag is specified, the
sharing flags are ignored. If a file must be shared it should be closed after it is created and then reopened
with the appropriate sharing flags.

OF_CREATE 0x1000

OF_DELETE 0x0200

Deletes the file.

OF_DELETE 0x0200

OF_EXIST 0x4000

Opens the file, and then closes it. This value is used to test for file existence. Using this value does not
change the file date.

OF_EXIST 0x4000

OF_PARSE 0x0100

Fills the OFSTRUCT structure but carries out no other action.

OF_PARSE 0x0100

OF_PROMPT 0x2000

Displays a dialog box if the requested file does not exist. The dialog box informs the user that Windows
cannot find the file and prompts the user to insert the file in drive A.

OF_PROMPT 0x2000

OF_READ 0x0000

Opens the file for reading only.

OF_READ 0x0000

OF_READWRITE 0x0002

Opens the file for reading and writing.

OF_READWRITE 0x0002

OF_REOPEN 0x8000

Opens the file using information in the reopen buffer.

OF_REOPEN 0x8000

OF_SEARCH 0x0400

Windows searches in directories even when the file name includes a full path.

OF_SEARCH 0x0400

OF_SHARE_COMPAT 0x0000

Opens the file with compatibility mode, allowing any program on a given machine to open the file any
number of times. OpenFile fails if the file has been opened with any of the other sharing modes.

OF_SHARE_COMPAT 0x0000

OF_SHARE_DENY_NONE 0x0040

Opens the file without denying other programs read or write access to the file. OpenFile fails if the file has
been opened in compatibility mode by any other program.

OF_SHARE_DENY_NONE 0x0040

OF_SHARE_DENY_READ 0x0030

Opens the file and denies other programs read access to the file. OpenFile fails if the file has been opened
in compatibility mode or for read access by any other program.

OF_SHARE_DENY_READ 0x0030

OF_SHARE_DENY_WRITE 0x0020

Opens the file and denies other programs write access to the file. OpenFile fails if the file has been opened
in compatibility or for write access by any other program.

OF_SHARE_DENY_WRITE 0x0020

OF_SHARE_EXCLUSIVE 0x0010

Opens the file with exclusive mode, denying other programs both read and write access to the file.
OpenFile fails if the file has been opened in any other mode for read or write access, even by the current
program.

OF_SHARE_EXCLUSIVE 0x0010

OF_VERIFY 0x0400

Compares the time and date in the OF_STRUCT with the time and date of the specified file. The function
returns HFILE_ERROR if the dates and times do not agree.

OF_VERIFY 0x0400

OF_WRITE 0x0001

Opens the file for writing only.

OF_WRITE 0x0001

OpenSound (2.x)
int OpenSound(void)

This function is obsolete. Use the Windows multimedia audio functions instead. For information about
these functions, see the Microsoft Windows Multimedia Programmer's Reference.

OutputDebugString (3.0)
void OutputDebugString(lpszOutputString)
LPCSTR lpszOutputString; /* address of string to display */

The OutputDebugString function displays the specified character string on the debugging terminal if a
debugger is running.

Parameter Description
lpszOutputString Points to a null-terminated string to be displayed.

Returns
This function does not return a value.

Comments
This function preserves all registers.

Example
The following example uses the OutputDebugString function to display information on the debugging
terminal:

OutputDebugString("\n\rcalling ValidateCodeSegments");
ValidateCodeSegments();
OutputDebugString("\n\rdone");
See Also
DebugOutput

Correction

The previous description of this function indicated that it worked only with the debugging version of
Windows. OutputDebugString works with both the debugging and retail version of Windows.

PrestoChangoSelector (3.0)
UINT PrestoChangoSelector(uSourceSelector, uDestSelector)
UINT uSourceSelector; /* selector to convert */
UINT uDestSelector; /
* converted selector (allocated by AllocSelector) *
/

The PrestoChangoSelector function generates a code selector that corresponds to a given data selector, or
it generates a data selector that corresponds to a given code selector.

An application should not use this function unless it is absolutely necessary, because its use violates
preferred Windows programming practices.

Parameter Description
uSourceSelector Specifies the selector to be converted.
uDestSelector Specifies a selector previously allocated by the AllocSelector function. This

previously allocated selector receives the converted selector.

Returns
The return value is the copied and converted selector if the function is successful. Otherwise, it is zero.

Comments
Windows does not track changes to the source selector. Consequently, before any memory can be moved,
the application should use the converted destination selector immediately after it is returned by this
function.

The PrestoChangoSelector function modifies the destination selector to have the same properties as the
source selector, but with the opposite code or data attribute. This function changes only the attributes of
the selector, not the value of the selector.

This function was named ChangeSelector in the Windows 3.0 documentation.

See Also
AllocDStoCSAlias, AllocSelector

ProfClear (3.0)
void ProfClear(void)

The ProfClear function discards all Microsoft Windows Profiler samples currently in the sampling buffer.

Returns
This function does not return a value.

Example
The following example uses the ProfClear function to clear the Profiler sampling buffer before changing
the sampling rate:

ProfClear(); /* clears existing buffer */
ProfSampRate(5, 1); /* changes sampling rate */

ProfFinish (3.0)
void ProfFinish(void)

The ProfFinish function stops Microsoft Windows Profiler sampling and flushes the output buffer to disk.

Returns
This function does not return a value.

Comments
If Profiler is running in 386 enhanced mode, the ProfFinish function also frees the buffer for system use.

Example
The following example uses the ProfFinish function to stop sampling and flush the output buffer during
WM_DESTROY message processing:

case WM_DESTROY:
ProfFinish();
PostQuitMessage(0);
break;

ProfFlush (3.0)
void ProfFlush(void)

The ProfFlush function flushes the Microsoft Windows Profiler sampling buffer to disk.

Returns
This function does not return a value.

Comments
Excessive use of the ProfFlush function can seriously impair application performance. An application
should not use ProfFlush when MS-DOS may be unstable (inside an interrupt handler, for example).

Example
The following example uses the ProfFlush function to flush the Profiler buffer before changing the buffer
size:

ProfFlush(); /* flushes existing buffer */
ProfSetup(1024, 0); /* uses a 1024K buffer*/

ProfInsChk (3.0)
int ProfInsChk(void)

The ProfInsChk function determines whether Microsoft Windows Profiler is installed.

Returns
The return value is 1 if Profiler is installed for a mode other than 386 enhanced mode, or it is 2 if Profiler
is installed for 386 enhanced mode. Otherwise, the return value is 0, indicating that Profiler is not
installed.

Example
The following example uses the ProfInsChk function to determine whether the Profiler is installed:

int ick;
char szMsg[80];
if ((ick = ProfInsChk()) == 0)

MessageBox(hwnd, "Profiler is not installed!",
"ProfInsChk", MB_ICONSTOP);

else {
strcpy(szMsg, "Profiler is installed");
if (ick == 2) {
strcat(szMsg, " in 386 enhanced mode");
ProfSetup(128, 0); /* uses a 128K buffer */
}
MessageBox(hwnd, szMsg, "ProfInsChk", MB_OK);

}

ProfSampRate (3.0)
void ProfSampRate(nRate286, nRate386)
int nRate286; /* sample rate for non-386 enhanced mode */
int nRate386; /* sample rate
for 386 enhanced mode *
/

The ProfSampRate function sets the Microsoft Windows Profiler code-sampling rate.

Parameter Description
nRate286 Specifies the sampling rate if the application is not running in 386 enhanced mode. The

nRate286 parameter can be one of the following values:

Value Sampling rate
1 122.070 microseconds
2 244.141 microseconds
3 488.281 microseconds
4 976.562 microseconds
5 1.953125 milliseconds
6 3.90625 milliseconds
7 7.8125 milliseconds
8 15.625 milliseconds
9 31.25 milliseconds
10 62.5 milliseconds
11 125 milliseconds
12 250 milliseconds
13 500 milliseconds

nRate386 Specifies the sampling rate, in milliseconds if the application is running in 386 enhanced
mode. This value is in the range 1 through 1000.

Returns
This function does not return a value.

Comments
Only the rate parameter appropriate to the current mode is used; the other parameter is ignored.

The default rate is 2 milliseconds in 386 enhanced mode; in any other mode, the value is 5, which specifies
a rate of 1.953125 milliseconds.

Example
The following example uses the ProfSampRate function to change the Profiler sampling rate to 1
millisecond in 386 enhanced mode:

ProfClear(); /* clears existing buffer */
ProfSampRate(5, 1); /* changes sampling rate */

ProfSetup (3.0)
void ProfSetup(nBufferKB, nSamplesKB)
int nBufferKB; /* size of output buffer */
int nSamplesKB; /* amount of
sample data written to disk *
/

The ProfSetup function specifies the size of the Microsoft Windows Profiler output buffer and how much
sampling data Profiler is to write to the disk.

Profiler ignores the ProfSetup function when running with Windows in any mode other than 386 enhanced
mode.

Parameter Description
nBufferKB Specifies the size, in kilobytes, of the output buffer. This value is in the range 1 through

1064. The default value is 64.
nSamplesKB Specifies the amount, in kilobytes, of sampling data Profiler writes to the disk. A value

of zero (the default value) specifies unlimited sampling data.

Returns
This function does not return a value.

Comments
Do not call the ProfSetup function after calling ProfStart. To resize memory after ProfStart has been
called, first call the ProfStop function.

Example
The following example uses the ProfSetup function to set the output buffer size to 128K if Profiler is
installed in 386 enhanced mode:

int ick;
char szMsg[80];
if ((ick = ProfInsChk()) == 0)

MessageBox(hwnd, "Profiler is not installed!",
"ProfInsChk", MB_ICONSTOP);

else {
strcpy(szMsg, "Profiler is installed");
if (ick == 2) {
strcat(szMsg, " in 386 enhanced mode");
ProfSetup(128, 0); /* uses a 128K buffer */
}
MessageBox(hwnd, szMsg, "ProfInsChk", MB_OK);

}
See Also
ProfStart, ProfStop

ProfStart (3.0)
void ProfStart(void)

The ProfStart function starts Microsoft Windows Profiler sampling.

Returns
This function does not return a value.

Example
The following example uses the ProfStart and ProfStop functions to sample during the message-queue
dispatch process:

/* Acquire and dispatch messages until WM_QUIT is received. */
while (GetMessage(&msg, /* message structure */

(HWND) NULL, /* handle of window receiving message */
0, /* lowest message to examine*/
0)) /* highest message to examine */
{
ProfStart();
TranslateMessage(&msg); /* translates virtual-key codes */
DispatchMessage(&msg); /* dispatches message to window */
ProfStop();

}
See Also
ProfStop

ProfStop (3.0)
void ProfStop(void)

The ProfStop function stops Microsoft Windows Profiler sampling.

Returns
This function does not return a value.

Example
The following example uses the ProfStart and ProfStop functions to sample during the message-queue
dispatch process:

/* Acquire and dispatch messages until WM_QUIT is received. */
while (GetMessage(&msg, /* message structure */

(HWND) NULL, /* handle of window receiving message */
0, /* lowest message to examine*/
0)) /* highest message to examine */
{
ProfStart();
TranslateMessage(&msg); /* translates virtual-key codes */
DispatchMessage(&msg); /* dispatches message to window */
ProfStop();

}
See Also
ProfStart

SetErrorMode (2.x)
UINT SetErrorMode(fuErrorMode)
UINT fuErrorMode; /* specifies the error-mode flag */

The SetErrorMode function controls whether Windows handles MS-DOS Interrupt 24h errors or allows
the calling application to handle them.

Parameter Description
fuErrorMode Specifies the error-mode flag. The flag can be a combination of the following values:

Value Meaning
SEM_FAILCRITICALERRORS Windows does not display the critical-

error-handler message box and returns the
error to the calling application.

SEM_NOGPFAULTERRORBOX Windows does not display the general-
protection-fault message box. This flag
should be set only by debugging
applications that handle GP faults
themselves.

SEM_NOOPENFILEERRORBOX Windows does not display a message box
when it fails to find a file.

Returns
The return value is the previous state of the error-mode flag, if the function is successful.

Example
The following example uses the SetErrorMode function to turn off the file-not-found message box (the
application handles this error itself):

/* Turn off the "File not found" error box. */
SetErrorMode(SEM_NOOPENFILEERRORBOX);
/* Load the TOOLHELP.DLL library module. */
hinstToolHelp = LoadLibrary("TOOLHELP.DLL");
if (hinstToolHelp > HINSTANCE_ERROR) { /* loaded successfully */

.

. /* Use the DLL here. */

.
}
else {

strcpy(szBuf, "LoadLibrary failed");
}
MessageBox(NULL, szBuf, "Library Functions", MB_ICONHAND);

SEM_FAILCRITICALERRORS 0x0001

Windows does not display the critical-error-handler message box and returns the error to the calling
application.

SEM_FAILCRITICALERRORS 0x0001

SEM_NOGPFAULTERRORBOX 0x0002

Windows does not display the general-protection-fault message box. This flag should be set only by
debugging applications that handle GP faults themselves.

SEM_NOGPFAULTERRORBOX 0x0002

SEM_NOOPENFILEERRORBOX 0x8000

Windows does not display a message box when it fails to find a file.

SEM_NOOPENFILEERRORBOX 0x8000

SetHandleCount (3.0)
UINT SetHandleCount(cHandles)
UINT cHandles; /* number of file handles needed */

The SetHandleCount function changes the number of file handles available to a task.

Parameter Description
cHandles Specifies the number of file handles the application requires. This count cannot be

greater than 255.

Returns
The return value is the number of file handles available to the application, if the function is successful.
This number may be less than the number of handles specified.

Comments
By default, the maximum number of file handles available to a task is 20.

Example
The following example uses the SetHandleCount function to set the number of available file handles to 30:

UINT cHandles;
char szBuf[80];
cHandles = SetHandleCount(30);
sprintf(szBuf, "%d handles available", cHandles);
MessageBox(hwnd, szBuf, "SetHandleCount", MB_OK);

SetResourceHandler (2.x)
RSRCHDLRPROC SetResourceHandler(hinst, lpszType, lpLoadProc)
HINSTANCE hinst; /* handle of application instance */
LPCSTR lpszType; /
* address of resource-type identifier *
/
RSRCHDLRPROC lpLoadProc; /
* callback procedure-instance address *
/

The SetResourceHandler function installs a callback function that loads resources.

Parameter Description
hinst Identifies the instance of the module whose executable file contains the resource.
lpszType Points to a null-terminated string that specifies a resource type. For predefined resource

types, the high-order word should be zero and the low-order word should indicate the
resource type.

lpLoadProc Specifies the procedure-instance address of the application-supplied callback function.
For more information, see the description of the LoadProc callback function.

Returns
The return value is a pointer to the previously installed resource handler, if the function is successful. If no
resource handler has been explicitly installed, the return value is a pointer to the default resource handler.

Comments
An application may find this function useful for handling its own resource types, but the use of this
function is not required.

The address passed as the lpLoadProc parameter must be created by using the MakeProcInstance function.

See Also
FindResource, LoadProc, LockResource, MakeProcInstance

Correction

The second parameter points to a null-terminated string that specifies the resource type. Previous
documentation stated that it pointed to a short integer.

SetSelectorBase (3.1)
UINT SetSelectorBase(selector, dwBase)
UINT selector; /* selector to modify */
DWORD dwBase; /* new base */

The SetSelectorBase function sets the base address of a selector.

Parameter Description
selector Specifies the selector value to modify.
dwBase Specifies the new base value. This value is the starting linear address that selector will

reference.

Returns
The return value is the selector value, if the function is successful. If an error occurred, the return value is
zero.

Comments
Because this function is selector-based, it will not exist in the Win32 API.

See Also
GetSelectorBase, GetSelectorLimit, SetSelectorLimit

SetSelectorLimit (3.1)
UINT SetSelectorLimit(selector, dwLimit)
UINT selector; /* selector to modify */
DWORD dwLimit; /* new limit */

The SetSelectorLimit function sets the limit of a selector.

Parameter Description
selector Specifies the selector to modify.
dwLimit Specifies the new limit value for selector. On a 80286, this value must be less than

0x10000.

Returns
The return value is always zero.

Comments
Because this function is selector-based, it will not exist in the Win32 API.

See Also
GetSelectorBase, GetSelectorLimit, SetSelectorBase

SetSoundNoise (2.x)
int SetSoundNoise(fnSource, nDuration)
int fnSource; /* source of noise */
int nDuration; /* duration of noise */

This function is obsolete. Use the Microsoft Windows multimedia audio functions instead. For information
about audio functions, see the Microsoft Windows Multimedia Programmer's Reference.

SetSwapAreaSize (2.x)
LONG SetSwapAreaSize(cCodeParagraphs)
UINT cCodeParagraphs; /* number of paragraphs for code */

The SetSwapAreaSize function sets the amount of memory that an application uses for its code segments.

Parameter Description
cCodeParagraphs Specifies the number of 16-byte paragraphs requested by the application for use

as code segments. If this parameter is zero, the return value specifies the current
size of the code-segment space.

Returns
The return value is the amount of space available for the code segment, if the function is successful. The
low-order word specifies the number of paragraphs obtained for use as a code-segment space (or the
current size if the cCodeParagraphs parameter is zero); the high-order word specifies the maximum size
available.

Comments
If cCodeParagraphs specifies a size larger than is available, this function sets the size to the available
amount. The maximum amount of memory available is one half the space remaining after Windows is
loaded.

Calling this function can improve an application's performance by preventing Windows from swapping
code segments to the hard disk. However, increasing the code-segment space reduces the amount of
memory available for data objects and can reduce the performance of other applications.

See Also
GetNumTasks, GlobalAlloc

SetVoiceAccent (2.x)
int SetVoiceAccent(nVoice, nTempo, nVolume, fnMode, nPitch)
int nVoice; /* voice queue */
int nTempo; /* number of quarter
notes per minute *
/
int nVolume; /
* volume level *
/
int fnMode; /
* how notes are to be played *
/
int nPitch; /
* pitch *
/

This function is obsolete. Use the Microsoft Windows multimedia audio functions instead. For information
about these functions, see the Microsoft Windows Multimedia Programmer's Reference.

SetVoiceEnvelope (2.x)
int SetVoiceEnvelope(nVoice, nShape, nRepeat)
int nVoice; /* voice queue */
int nShape; /* index into an OEM
wave-shape table *
/
int nRepeat; /
* repetition count *
/

This function is obsolete. Use the Microsoft Windows multimedia audio functions instead. For information
about these functions, see the Microsoft Windows Multimedia Programmer's Reference.

SetVoiceNote (2.x)
int SetVoiceNote(voice, value, length, cdots)
int voice; /* voice queue */
int value; /* note */
int length; /* length of note */
int cdots; /
* duration of note *
/

This function is obsolete. Use the Microsoft Windows multimedia audio functions instead. For information
about these functions, see the Microsoft Windows Multimedia Programmer's Reference.

SetVoiceQueueSize (2.x)
int SetVoiceQueueSize(nVoice, cbQueue)
int nVoice; /* voice queue */
int cbQueue; /* size of queue */

This function is obsolete. Use the Microsoft Windows multimedia audio functions instead. For information
about these functions, see the Microsoft Windows Multimedia Programmer's Reference.

SetVoiceSound (2.x)
int SetVoiceSound(nVoice, dwFrequency, nDuration)
int nVoice; /* voice queue */
DWORD dwFrequency; /* frequency */
int nDuration; /
* duration of sound *
/

This function is obsolete. Use the Microsoft Windows multimedia audio functions instead. For information
about these functions, see the Microsoft Windows Multimedia Programmer's Reference.

SetVoiceThreshold (2.x)
int SetVoiceThreshold(voice, cNotesThreshold)
int voice; /* voice queue */
int cNotesThreshold; /* threshold level */

This function is obsolete. Use the Microsoft Windows multimedia audio functions instead. For information
about these functions, see the Microsoft Windows Multimedia Programmer's Reference.

SetWinDebugInfo (3.1)
BOOL SetWinDebugInfo(lpwdi)
const WINDEBUGINFO FAR* lpwdi; /* address of WINDEBUGINFO structure */

The SetWinDebugInfo function sets current system-debugging information for the debugging version of
the Windows 3.1 operating system.

Parameter Description
lpwdi Points to a WINDEBUGINFO structure that specifies the type of debugging information

to be set.

Returns
The return value is nonzero if the function is successful. It is zero if the pointer specified in the lpwdi
parameter is invalid, the flags member of the WINDEBUGINFO structure is invalid, or the function is not
called in the debugging version of Windows 3.1.

Comments
The flags member of the WINDEBUGINFO structure specifies which debugging information should be
set. Applications need initialize only those members of the WINDEBUGINFO structure that correspond to
the flags set in the flags member.

Changes to debugging information made by calling SetWinDebugInfo apply only until you exit the system
or restart your computer.

See Also
GetWinDebugInfo, WINDEBUGINFO

SizeofResource (2.x)
DWORD SizeofResource(hinst, hrsrc)
HINSTANCE hinst; /* handle of module with resource */
HRSRC hrsrc; /* handle of
resource *
/

The SizeofResource function returns the size, in bytes, of the given resource.

Parameter Description
hinst Identifies the instance of the module whose executable file contains the resource.
hrsrc Identifies the resource. This handle must have been created by using the FindResource

function.

Returns
The return value specifies the number of bytes in the resource, if the function is successful. It is zero if the
resource cannot be found.

Comments
The value returned may be larger than the resource due to alignment. An application should not rely upon
this value for the exact size of a resource.

See Also
AccessResource, FindResource

Windows 3.1 changes

The return value is now a DWORD instead of a WORD.

StartSound (2.x)
int StartSound(void)

This function is obsolete. Use the Microsoft Windows multimedia audio functions instead. For information
about these functions, see the Microsoft Windows Multimedia Programmer's Reference.

StopSound (2.x)
int StopSound(void)

This function is obsolete. Use the Microsoft Windows multimedia audio functions instead. For information
about these functions, see the Microsoft Windows Multimedia Programmer's Reference.

SwapRecording (3.0)
void SwapRecording(fuFlag)
UINT fuFlag; /* whether to start or stop swap recording */

The SwapRecording function starts or stops recording data about memory swapping. Because this function
can be used only in real mode, it cannot be used with Windows 3.1.

SwitchStackBack (3.0)
void SwitchStackBack(void)

The SwitchStackBack function restores the stack of the current task, canceling the effect of the
SwitchStackTo function.

Returns
This function does not return a value.

Comments
SwitchStackBack preserves the contents of the AX:DX registers when it returns.

See Also
SwitchStackTo

SwitchStackTo (3.0)
void SwitchStackTo(uStackSegment, uStackPointer, uStackTop)
UINT uStackSegment; /* new stack data segment */
UINT uStackPointer; /* offset of
beginning of stack *
/
UINT uStackTop; /
* offset of top of stack *
/

The SwitchStackTo function changes the stack of the current task to the specified data segment.

Parameter Description
uStackSegment Specifies the data segment to contain the stack.
uStackPointer Specifies the offset to the beginning of the stack in the data segment.
uStackTop Specifies the offset to the top of the stack from the beginning of the stack.

Returns
This function does not return a value.

Comments
Dynamic-link libraries (DLLs) do not have private stacks; instead, a DLL uses the stack of the task that
calls the library. As a result, a DLL function fails if it treats the contents of the data-segment (DS) and
stack-segment (SS) registers as equal. A task can call SwitchStackTo before calling a function in a DLL
that treats the SS and DS registers as equal. When the DLL function returns, the task must then call the
SwitchStackBack function to redirect its stack to its own data segment.

A DLL can also call SwitchStackTo before calling a function that assumes SS and DS to be equal and then
call SwitchStackBack before returning to the task that called the DLL function.

Calls to SwitchStackTo and SwitchStackBack cannot be nested. That is, after calling SwitchStackTo, an
application must call SwitchStackBack before calling SwitchStackTo again.

See Also
SwitchStackBack

SyncAllVoices (2.x)
int SyncAllVoices(void)

This function is obsolete. Use the Microsoft Windows multimedia audio functions instead. For information
about these functions, see the Microsoft Windows Multimedia Programmer's Reference.

Throw (2.x)
void Throw(lpCatchBuf, nErrorReturn)
const int FAR* lpCatchBuf; /* address of CATCHBUF saved by Catch */
int nErrorReturn; /
* value to return from Catch function *
/

The Throw function restores the execution environment to the values saved in the specified array.
Execution then transfers to the Catch function that copied the environment to the array.

Parameter Description
lpCatchBuf Points to a CATCHBUF array that contains the execution environment. This array must

have been set by a previous call to the Catch function.
nErrorReturn Specifies the value to be returned to the Catch function. The meaning of the value is

determined by the application. The value should be nonzero, so that the call to the Catch
function can distinguish between a return from Catch (which returns zero) and a return
from Throw.

Returns
This function does not return a value.

Comments
The Throw function is similar to the C run-time function longjmp.

The function that calls Catch must free any resources allocated between the time Catch was called and the
time Throw was called.

Do not use the Throw function across messages. For example, if an application calls Catch while
processing a WM_CREATE message and then calls Throw while processing a WM_PAINT message, the
application will terminate.

Example
The following example calls the Catch function to save the current execution environment before calling a
recursive sort function. The first return from Catch is zero. If the doSort function calls the Throw function,
execution will again return to the Catch function. This time, Catch returns the STACKOVERFLOW error
passed by the doSort function. The doSort function is recursive--that is, it calls itself. It maintains a
variable, wStackCheck, that is used to check the amount of stack space used. If more than 3K of the stack
has been used, doSort calls Throw to drop out of all the nested function calls back into the function that
called Catch.

#define STACKOVERFLOW 1
UINT uStackCheck;
CATCHBUF catchbuf;
{

int iReturn;
char szBuf[80];
if ((iReturn = Catch((int FAR*) catchbuf)) != 0) {
.
. /* Error processing goes here. */
.
}
else {
uStackCheck = 0; /* initializes stack-usage count */
doSort(1, 100); /* calls sorting function */
}
break;

}
void doSort(int sLeft, int sRight)
{

int sLast;

/*
* Determine whether more than 3K of the stack has been
* used, and if so, call Throw to drop back into the
* original calling application.
*
* The stack is incremented by the size of the two parameters,
* the two local variables, and the return value (2 for a near
* function call).
*/

uStackCheck += (sizeof(int) * 4) + 2;
if (uStackCheck > (3 * 1024))
Throw((int FAR*) catchbuf, STACKOVERFLOW);
.
. /* A sorting algorithm goes here. */
.
doSort(sLeft, sLast - 1); /* note recursive call*/
uStackCheck -= 10;/* updates stack-check variable */

}
See Also
Catch

ToAscii (3.0)
int ToAscii(uVirtKey, uScanCode, lpbKeyState, lpdwTransKey, fuState)
UINT uVirtKey; /* virtual-key code */
UINT uScanCode; /* scan
code *
/
BYTE FAR* lpbKeyState; /
* address of key-state array *
/
DWORD FAR* lpdwTransKey; /
* 32-bit buffer for translated key *
/
UINT fuState; /
* active-menu flag *
/

The ToAscii function translates the specified virtual-key code and keyboard state to the corresponding
Windows character or characters.

Parameter Description
uVirtKey Specifies the virtual-key code to be translated.
uScanCode Specifies the hardware scan code of the key to be translated. The high-order bit of this

value is set if the key is not pressed (is up).
lpbKeyState Points to a 256-byte array that contains the current keyboard state. Each element

(byte) in the array contains the state of one key. If the high-order bit of a byte is set,
the key is pressed (is down).

lpdwTransKey Points to a doubleword buffer to receive the translated Windows character or
characters.

fuState Specifies whether a menu is active. This parameter must be 1 if a menu is active, or
zero otherwise.

Returns
The return value is a negative value if the specified key is a dead key. Otherwise, it is one of the following
values:

Value Meaning
2 Two characters were copied to the buffer. This is usually an accent and a dead-key character,

when the dead key cannot be translated otherwise.
1 One Windows character was copied to the buffer.
0 The specified virtual key has no translation for the current state of the keyboard.

Comments
If a previous dead key is stored in the keyboard driver, the parameters supplied to the ToAscii function
might not be sufficient to translate the virtual-key code.

Typically, ToAscii performs the translation based on the virtual-key code. In some cases, however, the
uScanCode parameter may be used to distinguish between a key press and a key release. The scan code is
used for translating ALT+number key combinations.

See Also
OemKeyScan, VkKeyScan

UnlockSegment (2.x)
void UnlockSegment(uSegment)
UINT uSegment; /* specifies segment to unlock */

The UnlockSegment function unlocks the specified discardable memory segment. The function
decrements (decreases by one) the segment's lock count. The segment is completely unlocked and subject
to discarding when the lock count reaches zero.

Parameter Description
uSegment Specifies the segment address of the segment to be unlocked. If this parameter is -1, the

UnlockSegment function unlocks the current data segment.

Returns
The return value is the lock count for the segment, if the function is successful. This function returns its
result in the CX register. When the CX register contains zero, the segment is completely unlocked.

The value returned when the function is called in C should be ignored, because the return value can be
checked only in assembly language.

Comments
An application should not rely on the return value to determine the number of times it must subsequently
call UnlockSegment for the segment.

Other functions also can affect the lock count of a memory object. For a list of these functions, see the
description of the GlobalFlags function.

Each time an application calls LockSegment for a segment, it must eventually call UnlockSegment for the
segment.

See Also
GlobalFlags, LockSegment, UnlockData

ValidateCodeSegments (3.0)
void ValidateCodeSegments(void)

The ValidateCodeSegments function tests all code segments for random memory overwrites. The function
works only in real mode (for Windows versions earlier than 3.1) and only with the debugging version of
Windows.

Returns
This function does not return a value.

Comments
Because code segments are not writeable in protected mode (standard or enhanced), this function does
nothing in Windows 3.1.

See Also
ValidateFreeSpaces

ValidateFreeSpaces (2.x)
void ValidateFreeSpaces(void)

The ValidateFreeSpaces function checks free segments in memory for valid contents. This function is
available only in the debugging version of Windows.

Returns
This function does not return a value.

Comments
In the debugging version of Windows, the kernel fills all the bytes in free segments with the hexadecimal
value 0x0CC. This function begins checking for valid contents in the free segment with the lowest address;
it continues checking until it finds an invalid byte or until it has determined that all free space contains
valid contents. Before calling this function, put the following lines in the WIN.INI file:

[KERNEL]
EnableFreeChecking=1
EnableHeapChecking=1
Windows sends debugging information to the debugging terminal if an invalid byte is encountered, and
then it performs a fatal exit.

The [KERNEL] entries in WIN.INI cause automatic checking of free memory. Before returning a memory
object to the application in response to a call to the GlobalAlloc function, Windows checks that memory to
make sure it is filled with 0x0CC. Before a call to the GlobalCompact function, all free memory is
checked. Note that using this function slows Windows systemwide by about twenty percent.

See Also
GlobalAlloc, GlobalCompact, ValidateCodeSegments

VkKeyScan (2.x)
UINT VkKeyScan(uChar)
UINT uChar; /* character to translate */

The VkKeyScan function translates a Windows character to the corresponding virtual-key code and shift
state for the current keyboard.

Parameter Description
uChar Specifies the character to be translated to a virtual-key code.

Returns
The return value is the virtual-key code and shift state, if the function is successful. The low-order byte
contains the virtual-key code; the high-order byte contains the shift state, which can be one of the
following:

Value Meaning
1 Character is shifted.
2 Character is a control character.
3-5 Shift-key combination that is not used for characters.
6 Character is generated by the CTRL+ALT key combination.
7 Character is generated by the SHIFT+CTRL+ALT key combination.

If no key is found that translates to the passed Windows code, the return value is -1.

Comments
Translations for the numeric keypad (VK_NUMPAD0 through VK_DIVIDE) are ignored. This function is
intended to force a translation for the main keyboard only.

Applications that send characters by using the WM_KEYUP and WM_KEYDOWN messages use this
function.

See Also
OemKeyScan

WaitSoundState (2.x)
int WaitSoundState(fnState)
int fnState; /* state to wait for */

This function is obsolete. Use the Microsoft Windows multimedia audio functions instead. For information
about these functions, see the Microsoft Windows Multimedia Programmer's Reference.

WinExec (3.0)
UINT WinExec(lpszCmdLine, fuCmdShow)
LPCSTR lpszCmdLine; /* address of command line */
UINT fuCmdShow; /* window state
of new app. *
/

The WinExec function runs the specified application.

Parameter Description
lpszCmdLine Points to a null-terminated Windows character string that contains the command line

(filename plus optional parameters) for the application to be run. If the string does not
contain a path, Windows searches the directories in this order:

1 The current directory.
2 The Windows directory (the directory containing WIN.COM); the GetWindowsDirectory function

retrieves the path of this directory.

3 The Windows system directory (the directory containing such system files as GDI.EXE); the
GetSystemDirectory function retrieves the path of this directory.

4 The directory containing the executable file for the current task; the GetModuleFileName function
retrieves the path of this directory.

5 The directories listed in the PATH environment variable.
6 The directories mapped in a network.
fuCmdShow Specifies how a Windows application window is to be shown. See the description of

the ShowWindow function for a list of the acceptable values for the fuCmdShow
parameter. For a non-Windows application, the program-information file (PIF), if any,
for the application determines the window state.

Returns
The return value identifies the instance of the loaded module, if the function is successful. Otherwise, the
return value is an error value less than 32.
Errors

The error value may be one of the following:

Value Meaning
0 System was out of memory, executable file was corrupt, or relocations were invalid.
2 File was not found.
3 Path was not found.
5 Attempt was made to dynamically link to a task, or there was a sharing or network-protection

error.
6 Library required separate data segments for each task.
8 There was insufficient memory to start the application.
10 Windows version was incorrect.
11 Executable file was invalid. Either it was not a Windows application or there was an error in

the .EXE image.
12 Application was designed for a different operating system.
13 Application was designed for MS-DOS 4.0.
14 Type of executable file was unknown.
15 Attempt was made to load a real-mode application (developed for an earlier version of

Windows).
16 Attempt was made to load a second instance of an executable file containing multiple data

segments that were not marked read-only.
19 Attempt was made to load a compressed executable file. The file must be decompressed

before it can be loaded.
20 Dynamic-link library (DLL) file was invalid. One of the DLLs required to run this application

was corrupt.
21 Application requires Microsoft Windows 32-bit extensions.

Comments
The LoadModule function provides an alternative method for running an application.

Example
The following example uses the WinExec function to run DRAW.EXE:

WORD wReturn;
char szMsg[80];
wReturn = WinExec("draw", SW_SHOW);
if (wReturn < 32) {

sprintf(szMsg, "WinExec failed; error code = %d", wReturn);
MessageBox(hwnd, szMsg, "Error", MB_ICONSTOP);

}
else {

sprintf(szMsg, "WinExec returned %d", wReturn);
MessageBox(hwnd, szMsg, "", MB_OK);

}
See Also
GetModuleFileName, GetSystemDirectory, GetWindowsDirectory, LoadModule, ShowWindow

WritePrivateProfileString (3.0)
BOOL WritePrivateProfileString(lpszSection, lpszEntry, lpszString, lpszFilename)
LPCSTR lpszSection; /* address of section */
LPCSTR lpszEntry; /*
address of entry *
/
LPCSTR lpszString; /
* address of string to add *
/
LPCSTR lpszFilename; /
* address of initialization filename *
/

The WritePrivateProfileString function copies a character string into the specified section of the specified
initialization file.

Parameter Description
lpszSection Points to a null-terminated string that specifies the section to which the string will be

copied. If the section does not exist, it is created. The name of the section is case-
independent; the string may be any combination of uppercase and lowercase letters.

lpszEntry Points to the null-terminated string containing the entry to be associated with the
string. If the entry does not exist in the specified section, it is created. If this parameter
is NULL, the entire section, including all entries within the section, is deleted.

lpszString Points to the null-terminated string to be written to the file. If this parameter is NULL,
the entry specified by the lpszEntry parameter is deleted.

lpszFilename Points to a null-terminated string that names the initialization file.

Returns
The return value is nonzero if the function is successful. Otherwise, it is zero.

Comments
To improve performance, Windows keeps a cached version of the most-recently accessed initialization
file. If that filename is specified and the other three parameters are NULL, Windows flushes the cache.

Sections in the initialization file have the following form:

[section]
entry=string
.
.
.

If lpszFilename does not contain a fully qualified path and filename for the file, WritePrivateProfileString
searches the Windows directory for the file. If the file does not exist, this function creates the file in the
Windows directory.

If lpszFilename contains a fully qualified path and filename and the file does not exist, this function
creates the file. The specified directory must already exist.

An application should use a private (application-specific) initialization file to record information that
affects only that application. This improves the performance of both the application and Windows itself by
reducing the amount of information that Windows must read when it accesses the initialization file. The
exception to this is that device drivers should use the SYSTEM.INI file, to reduce the number of
initialization files Windows must open and read during the startup process.

An application can use the WriteProfileString function to add a string to the WIN.INI file.

Example
The following example uses the WritePrivateProfileString function to add the string "testcode.c" to the
LastFile entry in the [MyApp] section of the TESTCODE.INI initialization file:

BOOL fSuccess;
DebugBreak();

fSuccess = WritePrivateProfileString("MyApp",
"LastFile", "testcode.c", "testcode.ini");

if (fSuccess)
MessageBox(hwnd, "String added successfully",

"WritePrivateProfileString", MB_OK);
else

MessageBox(hwnd, "String could not be added",
"WritePrivateProfileString", MB_ICONSTOP);

See Also
WriteProfileString

Correction

The Windows 3.0 documentation stated that this function would fail if the lpszFilename parameter
specified a full path and the file did not exist. In fact, Windows will create the specified file. The directory
where the file is to be created must exist, however; Windows will not create the directory.

WriteProfileString (2.x)
BOOL WriteProfileString(lpszSection, lpszEntry, lpszString)
LPCSTR lpszSection; /* address of section */
LPCSTR lpszEntry; /* address of
entry *
/
LPCSTR lpszString; /
* address of string to write *
/

The WriteProfileString function copies a string into the specified section of the Windows initialization file,
WIN.INI.

Parameter Description
lpszSection Points to a null-terminated string that specifies the section to which the string is to be

copied. If the section does not exist, it is created. The name of the section is case-
independent; the string may be any combination of uppercase and lowercase letters.

lpszEntry Points to the null-terminated string containing the entry to be associated with the string.
If the entry does not exist in the specified section, it is created. If this parameter is
NULL, the entire section, including all entries within the section, is deleted.

lpszString Points to the null-terminated string to be written to the file. If this parameter is NULL,
the entry specified by the lpszEntry parameter is deleted.

Returns
The return value is nonzero if the function is successful. Otherwise, it is zero.

Comments
Windows keeps a cached version of WIN.INI to improve performance. If all three parameters are NULL,
Windows flushes the cache.

Sections in the WIN.INI initialization file have the following form:

[section]
entry=string

.

.

.

Example
The following example calls the GetWindowRect function to retrieve the dimensions of the current
window, converts the dimensions of a string, and writes the string to WIN.INI by using the
WriteProfileString function. The next time the application is run, it could call the GetProfileString
function to read the string, convert it to numbers, and pass the numbers as parameters to the
CreateWindow function, thereby creating the window again with the same dimensions it had when the
application terminated.

RECT rect;
BOOL fSuccess;
char szBuf[20];
GetWindowRect(hwnd, &rect);
sprintf(szBuf, "%u %u %u %u",

rect.left, rect.right - rect.left,
rect.top, rect.bottom - rect.top);

fSuccess = WriteProfileString("MySection",
"Window dimensions", szBuf);

if (fSuccess)
MessageBox(hwnd, "String added successfully",

"WriteProfileString", MB_OK);
else

MessageBox(hwnd, "String could not be added",

"WriteProfileString", MB_ICONSTOP);
See Also
GetProfileString, WritePrivateProfileString

wsprintf (3.0)
int _cdecl wsprintf(lpszOutput, lpszFormat, ...)
LPSTR lpszOutput; /* address of string for output */
LPSTR lpszFormat; /* address of
format-control string *
/

The wsprintf function formats and stores a series of characters and values in a buffer. Each argument (if
any) is converted according to the corresponding format specified in the format string.

Parameter Description
lpszOutput Points to a null-terminated string to receive the string formatted as specified in the

lpszFormat parameter.
lpszFormat Points to a null-terminated string that contains the format-control string. In addition to

the standard ASCII characters, a format specification for each argument appears in this
string. For more information about the format specification, see the following
Comments section.

. . . Specifies zero or more optional arguments. The number and type of the optional
arguments depend on the corresponding format-control character sequences specified in
the lpszFormat parameter.

Returns
The return value is the number of bytes stored in the lpszOutput string, not counting the terminating null
character, if the function is successful.

Comments
The largest buffer that wsprintf can create is 1K.

Unlike most Windows functions, wsprintf uses the C calling convention (_cdecl) rather than the Pascal
calling convention. As a result, the calling function must pop arguments off the stack. Also, arguments
must be pushed on the stack from right to left. In C-language modules, the C compiler performs this task.
(The wvsprintf function uses the Pascal calling convention.)

The format-control string contains format specifications that determine the output format for the
arguments that follow the lpszFormat parameter. Format specifications always begin with a percent sign
(%). If a percent sign is followed by a character that has no meaning as a format field, the character is not
formatted. For example, %% produces a single percent-sign character.

The format-control string is read from left to right. When the first format specification is encountered, it
causes the value of the first argument after the format-control string to be converted according to the
format specification. The second format specification causes the second argument to be converted, and so
on. If there are more arguments than there are format specifications, the extra arguments are ignored. The
results are undefined if there are not enough arguments for all of the format specifications.

A format specification has the following form:

%[-][#][0][width][.precision]type

Each field of the format specification is a single character or number signifying a particular format option.
The type characters, for example, determine whether the associated argument is interpreted as a character,
a string, or a number. The simplest format specification contains only the percent sign and a type character
(for example, %s). The optional fields (in brackets) control other aspects of the formatting. Following are
the optional and required fields and their meanings:

Field Meaning
- Pad the output value with blanks or zeros to the right to fill the field width, aligning the

output value to the left. If this field is omitted, the output value is padded to the left,
aligning it to the right.

Prefix hexadecimal values with 0x (lowercase) or 0X (uppercase).
0 Pad the output value with zeros to fill the field width. If this field is omitted, the output

value is padded with blank spaces.
width Convert the specified minimum number of characters. The width field is a nonnegative

integer. The width specification never causes a value to be truncated; if the number of
characters in the output value is greater than the specified width, or if the width field is not
present, all characters of the value are printed, subject to the value of the precision field.

precision Convert the specified minimum number of digits. If there are fewer digits in the argument
than the specified value, the output value is padded on the left with zeros. The value is not
truncated when the number of digits exceeds the specified precision. If the specified
precision is zero or omitted entirely, or if the period (.) appears without a number following
it, the precision is set to 1.
For strings, convert the specified maximum number of characters.

type Format the corresponding argument as a character, a string, or a number. This field may be
any of the following character sequences:
Sequence Meaning
c Insert a single character argument. The wsprintf function ignores

character arguments with a numeric value of zero.
d, i Insert a signed decimal integer argument.
ld, li Insert a long signed decimal integer argument.
u Insert an unsigned integer argument.
lu Insert a long unsigned integer argument.
lx, lX Insert a long unsigned hexadecimal integer argument in lowercase or

uppercase.
s Insert a string.

See Also
wvsprintf

Yield (2.x)
void Yield(void)

The Yield function stops the current task and starts any waiting task.

Returns
This function does not return a value.

Comments
The Yield function should be used only when the application is guaranteed not to receive any messages.

Applications that contain windows should use a DispatchMessage, PeekMessage, or TranslateMessage
loop rather than call the Yield function directly. The message-loop functions handle message
synchronization properly and yield at the appropriate times.

See Also
DirectedYield, DispatchMessage, PeekMessage, TranslateMessage

Kernel functions (3.1)
_hread Reads from a file
_hwrite Writes to a file
_lclose Closes an open file
_lcreat Creates or opens a file
_llseek Repositions the file pointer
_lopen Opens a file
_lread Reads from a file
_lwrite Writes to a file
AccessResource Opens a resource file and locates a resource
AddAtom Adds a string to the local atom table
AllocDStoCSAlias Translates a data segment to a code segment
AllocResource Allocates memory for a resource
AllocSelector Allocates a new selector
AnsiToOem Translates a Windows string to an OEM string
AnsiToOemBuff Translates a Windows string to an OEM string
Catch Captures the current execution environment
CloseSound Not used in Windows 3.1
CountVoiceNotes Not used in Windows 3.1
DebugBreak Causes a breakpoint exception
DebugOutput Sends messages to the debugging terminal
DeleteAtom Decrements the reference count of a local atom
DirectedYield Forces execution of a specified task to continue
DOS3Call Issues a DOS Int 21h function request
FatalAppExit Terminates an application
FatalExit Displays debug info after breakpoint exception
FindAtom Retrieves string atom from local atom table
FindResource Locates a resource in a resource file
FreeLibrary Unloads a library module instance
FreeModule Unloads a module instance
FreeProcInstance Frees a function instance
FreeResource Unloads a resource instance
FreeSelector Frees an allocated selector
GetAtomHandle Retrieves an atom handle
GetAtomName Retrieves a local atom string
GetCodeHandle Determines the location of a function
GetCodeInfo Retrieves code-segment information
GetCurrentPDB Returns the selector address of the current PDB
GetCurrentTask Returns the current task handle
GetDOSEnvironment Returns a far pointer to the current environment
GetDriveType Determines the drive type
GetFreeSpace Returns number of free bytes in global heap
GetInstanceData Copies data from previous instance to current one
GetKBCodePage Returns the current code page
GetKeyboardType Retrieves keyboard information
GetKeyNameText Retrieves a string representing the key name
GetModuleFileName Returns the filename for a module handle
GetModuleHandle Returns a module handle for a named module
GetModuleUsage Returns the reference count for a module
GetNumTasks Returns the current number of tasks
GetPrivateProfileInt Retrieves integer value from initialization file
GetPrivateProfileString Retrieves a string from an initialization file
GetProcAddress Returns the address of an exported DLL function
GetProfileInt Retrieves an integer value from WIN.INI
GetProfileString Retrieves a string from WIN.INI
GetSelectorBase Retrieves the base address of a selector
GetSelectorLimit Retrieves the limit of a selector
GetSystemDirectory Returns the Windows system directory
GetTempDrive Returns a disk drive letter for temporary files
GetTempFileName Creates a temporary filename
GetThresholdEvent Not used in Windows 3.1
GetThresholdStatus Not used in Windows 3.1
GetVersion Returns the current DOS and Windows versions
GetWinDebugInfo Retrieves current system-debugging information

GetWindowsDirectory Returns the Windows directory
GetWinFlags Returns the current system configuration flags
GlobalAlloc Allocates memory from the global heap
GlobalCompact Generates free global memory by compacting
GlobalDosAlloc Allocates memory available to DOS in real mode
GlobalDosFree Frees global memory allocated by GlobalDosAlloc
GlobalFix Locks a global memory object in linear memory
GlobalFlags Returns information about a global memory object
GlobalFree Frees a global memory object
GlobalHandle Retrieves a handle for a specified selector
GlobalLock Locks global memory object and returns pointer
GlobalLRUNewest Moves global memory object to newest LRU position
GlobalLRUOldest Moves global memory object to oldest LRU position
GlobalNotify Installs a notification procedure
GlobalPageLock Increments global memory page-lock count
GlobalPageUnlock Decrements global memory page-lock count
GlobalReAlloc Changes size/attributes of global memory object
GlobalSize Returns the size of a global memory object
GlobalUnfix Unlocks a global memory object in linear memory
GlobalUnlock Unlocks a global memory object
GlobalUnWire Not used in Windows 3.1
GlobalWire Not used in Windows 3.1
hmemcpy Copies bytes from source to destination buffer
InitAtomTable Sets the size of the local atom table
IsBadCodePtr Determines whether a code pointer is valid
IsBadHugeReadPtr Determines whether a huge read pointer is valid
IsBadHugeWritePtr Determines whether a huge write pointer is valid
IsBadReadPtr Determines whether a read pointer is valid
IsBadStringPtr Determines whether a string pointer is valid
IsBadWritePtr Determines whether a write pointer is valid
IsDBCSLeadByte Determines whether character is DBCS lead byte
IsTask Determines whether a task handle is valid
LimitEmsPages Not used in Windows 3.1
LoadLibrary Loads the specified library module
LoadModule Loads and executes a program
LoadResource Loads the specified resource in global memory
LocalAlloc Allocates memory from the local heap
LocalCompact Generates free local memory by compacting
LocalFlags Returns local memory object information
LocalFree Frees a local memory object
LocalHandle Returns the handle of a local memory object
LocalInit Initializes a local heap
LocalLock Locks local memory object and returns pointer
LocalReAlloc Changes size or attributes of local memory object
LocalShrink Shrinks the specified local heap
LocalSize Returns the size of a local memory object
LocalUnlock Unlocks a local memory object
LockResource Returns the address of a resource
LockSegment Locks a discardable memory segment
LogError Identifies an error message
LogParamError Identifies a parameter validation error
lstrcat Appends one string to another
lstrcpy Copies a string to a buffer
lstrcpyn Copies characters in a string to a buffer
lstrlen Returns the number of characters in a string
MakeProcInstance Returns address of prolog code for function
MapVirtualKey Translates a virtual-key code or scan code
MulDiv Multiplies two values and divides the result
NetBIOSCall Issues a NETBIOS Interrupt 5Ch call
OemKeyScan Maps OEM ASCII to scan codes
OemToAnsi Translates an OEM string to a Windows string
OemToAnsiBuff Translates an OEM string to a Windows string
OpenFile Creates, opens, reopens, or deletes a file
OpenSound Not used in Windows 3.1

OutputDebugString Sends a character string to the debugger
PrestoChangoSelector Converts code or data selector
ProfClear Discards all buffered Profiler samples
ProfFinish Stops Profiler sampling and flushes buffer
ProfFlush Flushes the Profiler sampling buffer to a disk
ProfInsChk Determines whether Profiler is installed
ProfSampRate Sets the Profiler sampling rate
ProfSetup Sets the Profiler buffer size and sample quantity
ProfStart Starts Profiler sampling
ProfStop Stops Profiler sampling
SetErrorMode Controls Interrupt 24h error handling
SetHandleCount Changes the number of available file handles
SetResourceHandler Installs a load-resource callback function
SetSelectorBase Sets the base of an existing selector
SetSelectorLimit Sets the limit of a selector
SetSoundNoise Not used in Windows 3.1
SetSwapAreaSize Sets the amount of memory used for code segments
SetVoiceAccent Not used in Windows 3.1
SetVoiceEnvelope Not used in Windows 3.1
SetVoiceNote Not used in Windows 3.1
SetVoiceQueueSize Not used in Windows 3.1
SetVoiceSound Not used in Windows 3.1
SetVoiceThreshold Not used in Windows 3.1
SetWinDebugInfo Sets the current system-debugging information
SizeofResource Returns the size of a resource
StartSound Not used in Windows 3.1
StopSound Not used in Windows 3.1
SwapRecording Starts or stops recording of memory swapping
SwitchStackBack Restores the current task stack
SwitchStackTo Changes the location of the stack
SyncAllVoices Not used in Windows 3.1
Throw Restores the execution environment
ToAscii Translates virtual-key code to Windows character
UnlockSegment Unlocks a discardable memory segment
ValidateCodeSegments Tests for memory overwrites
ValidateFreeSpaces Checks free memory for valid contents
VkKeyScan Translates Windows character to virtual-key code
WaitSoundState Not used in Windows 3.1
WinExec Runs a program
WritePrivateProfileString Writes a string to an initialization file
WriteProfileString Writes a string to WIN.INI
wsprintf Formats a string
Yield Stops the current task

CopyLZFile (3.1)
#include lzexpand.h

LONG CopyLZFile(hfSource, hfDest)
HFILE hfSource; /* handle of source file */
HFILE hfDest; /* handle of destination
file *
/

The CopyLZFile function copies a source file to a destination file. If the source file is compressed, this
function creates a decompressed destination file. If the source file is not compressed, this function
duplicates the original file.

Parameter Description
hfSource Identifies the source file.
hfDest Identifies the destination file.

Returns
The return value specifies the size, in bytes, of the destination file if the function is successful. Otherwise,
it is an error value less than zero; it may be one of the following:

Value Meaning
LZERROR_BADINHANDLE The handle identifying the source file was not valid.
LZERROR_BADOUTHANDLE The handle identifying the destination file was not valid.
LZERROR_BADVALUE The input parameter is out of the allowable range.
LZERROR_GLOBALLOC There is insufficient memory for the required buffers.
LZERROR_GLOBLOCK The handle identifying the internal data structures is invalid.
LZERROR_READ The source file format was not valid.
LZERROR_UNKNOWNALG The source file was compressed with an unrecognized

compression algorithm.
LZERROR_WRITE There is insufficient space for the output file.

Comments
This function is identical to the LZCopy function.

The CopyLZFile function is designed for copying or decompressing multiple files, or both. To allocate
required buffers, an application should call the LZStart function prior to calling CopyLZFile. To free these
buffers, an application should call the LZDone function after copying the files.

If the function is successful, the file identified by hfDest is decompressed.

If the source or destination file is opened by using a C run-time function (rather than by using the _lopen
or OpenFile function), it must be opened in binary mode.

Example
The following example uses the CopyLZFile function to create copies of four text files:

#define STRICT
#include <windows.h>
#include <lzexpand.h>
#define NUM_FILES 4
char *szSrc[NUM_FILES] =

{"readme.txt", "data.txt", "update.txt", "list.txt"};
char *szDest[NUM_FILES] =

{"readme.bak", "data.bak", "update.bak", "list.bak"};
OFSTRUCT ofStrSrc;
OFSTRUCT ofStrDest;
HFILE hfSrcFile, hfDstFile;
int i;
/* Allocate internal buffers for the CopyLZFile function. */

LZStart();
/* Open, copy, and then close the files. */
for (i = 0; i < NUM_FILES; i++) {

hfSrcFile = LZOpenFile(szSrc[i], &ofStrSrc, OF_READ);
hfDstFile = LZOpenFile(szDest[i], &ofStrDest, OF_CREATE);
CopyLZFile(hfSrcFile, hfDstFile);
LZClose(hfSrcFile);
LZClose(hfDstFile);

}
LZDone(); /* free the internal buffers */
See Also
_lopen, LZCopy, LZDone, LZStart, OpenFile

GetExpandedName (3.1)
#include lzexpand.h

int GetExpandedName(lpszSource, lpszBuffer)
LPCSTR lpszSource; /* specifies name of compressed file */
LPSTR lpszBuffer; /
* points to buffer receiving original filename *
/

The GetExpandedName function retrieves the original name of a compressed file if the file was
compressed with the COMPRESS.EXE utility and the /r option was specified.

Parameter Description
lpszSource Points to a string that specifies the name of a compressed file.
lpszBuffer Points to a buffer that receives the name of the compressed file.

Returns
The return value is TRUE if the function is successful. Otherwise, it is an error value that is less than zero,
and it may be LZERROR_BADINHANDLE, which means that the handle identifying the source file was
not valid.

Example
The following example uses the GetExpandedName function to retrieve the original filename of a
compressed file:

char szSrc[] = {"readme.cmp"};
char szFileName[128];
OFSTRUCT ofStrSrc;
OFSTRUCT ofStrDest;
HFILE hfSrcFile, hfDstFile, hfCompFile;
int cbRead;
BYTE abBuf[512];
/* Open the compressed source file. */
hfSrcFile = OpenFile(szSrc, &ofStrSrc, OF_READ);
/*
* Initialize internal data structures for the decompression
* operation.
*/
hfCompFile = LZInit(hfSrcFile);
/* Retrieve the original name for the compressed file. */
GetExpandedName(szSrc, szFileName);
/* Create the destination file using the original name. */
hfDstFile = LZOpenFile(szFileName, &ofStrDest, OF_CREATE);
/* Copy the compressed source file to the destination file. */
do {

if ((cbRead = LZRead(hfCompFile, abBuf, sizeof(abBuf))) > 0)
_lwrite(hfDstFile, abBuf, cbRead);
else {
.
. /* handle error condition */
.
}

} while (cbRead == sizeof(abBuf));

/* Close the files. */
LZClose(hfSrcFile);
LZClose(hfDstFile);
Comments
This function retrieves the original filename from the header of the compressed file. If the source file is not
compressed, the filename to which lpszSource points is copied to the buffer to which lpszBuffer points.

If the /r option was not set when the file was compressed, the string in the buffer to which lpszBuffer
points is invalid.

LZClose (3.1)
#include lzexpand.h

void LZClose(hf)
HFILE hf; /* handle of file to be closed */

The LZClose function closes a file that was opened by the LZOpenFile or OpenFile function.

Parameter Description
hf Identifies the source file.

Returns
This function does not return a value.

Comments
If the file was compressed by Microsoft File Compression Utility (COMPRESS.EXE) and opened by the
LZOpenFile function, LZClose frees any global heap space that was required to expand the file.

Example
The following example uses LZClose to close a file opened by LZOpenFile:

char szSrc[] = {"readme.txt"};
char szDst[] = {"readme.bak"};
OFSTRUCT ofStrSrc;
OFSTRUCT ofStrDest;
HFILE hfSrcFile, hfDstFile;
/* Open the source file. */
hfSrcFile = LZOpenFile(szSrc, &ofStrSrc, OF_READ);
/* Create the destination file. */
hfDstFile = LZOpenFile(szDst, &ofStrDest, OF_CREATE);
/* Copy the source file to the destination file. */
LZCopy(hfSrcFile, hfDstFile);
/* Close the files. */
LZClose(hfSrcFile);
LZClose(hfDstFile);
See Also
OpenFile, LZOpenFile

LZCopy (3.1)
#include lzexpand.h

LONG LZCopy(hfSource, hfDest)
HFILE hfSource; /* handle of source file */
HFILE hfDest; /* handle of destination
file *
/

The LZCopy function copies a source file to a destination file. If the source file was compressed by
Microsoft File Compression Utility (COMPRESS.EXE), this function creates a decompressed destination
file. If the source file was not compressed, this function duplicates the original file.

Parameter Description
hfSource Identifies the source file. (This handle is returned by the LZOpenFile function when a

compressed file is opened.)
hfDest Identifies the destination file.

Returns
The return value is the size, in bytes, of the destination file if the function is successful. Otherwise, it is an
error value that is less than zero and may be one of the following:

Value Meaning
LZERROR_BADINHANDLE The handle identifying the source file was not valid.
LZERROR_BADOUTHANDLE The handle identifying the destination file was not valid.
LZERROR_BADVALUE The input parameter is out of the allowable range.
LZERROR_GLOBALLOC There is insufficient memory for the required buffers.
LZERROR_GLOBLOCK The handle identifying the internal data structures is invalid.
LZERROR_READ The source file format was not valid.
LZERROR_UNKNOWNALG The source file was compressed with an unrecognized

compression algorithm.
LZERROR_WRITE There is insufficient space for the output file.

Comments
This function is identical to the CopyLZFile function.

If the function is successful, the file identified by hfDest is uncompressed.

If the source or destination file is opened by a C run-time function (rather than the _lopen or OpenFile
function), it must be opened in binary mode.

Example
The following example uses the LZCopy function to copy a file:

char szSrc[] = {"readme.txt"};
char szDst[] = {"readme.bak"};
OFSTRUCT ofStrSrc;
OFSTRUCT ofStrDest;
HFILE hfSrcFile, hfDstFile;
/* Open the source file. */
hfSrcFile = LZOpenFile(szSrc, &ofStrSrc, OF_READ);
/* Create the destination file. */
hfDstFile = LZOpenFile(szDst, &ofStrDest, OF_CREATE);
/* Copy the source file to the destination file. */
LZCopy(hfSrcFile, hfDstFile);
/* Close the files. */

LZClose(hfSrcFile);
LZClose(hfDstFile);
See Also
CopyLZFile, _lopen, LZOpenFile, OpenFile

LZERROR_BADINHANDLE (-1)

The handle identifying the source file was not valid.

LZERROR_BADINHANDLE (-1)

LZERROR_BADOUTHANDLE (-2)

The handle identifying the destination file was not valid.

LZERROR_BADOUTHANDLE (-2)

LZERROR_BADVALUE (-7)

The input parameter is out of the allowable range.

LZERROR_BADVALUE (-7)

LZERROR_GLOBALLOC (-5)

There is insufficient memory for the required buffers.

LZERROR_GLOBALLOC (-5)

LZERROR_GLOBLOCK (-6)

The handle identifying the internal data structures is invalid.

LZERROR_GLOBLOCK (-6)

LZERROR_READ (-3)

The source file format was not valid.

LZERROR_READ (-3)

LZERROR_UNKNOWNALG (-8)

The source file was compressed with an unrecognized compression algorithm.

LZERROR_UNKNOWNALG (-8)

LZERROR_WRITE (-4)

There is insufficient space for the output file.

LZERROR_WRITE (-4)

LZDone (3.1)
#include lzexpand.h

void LZDone(void)

The LZDone function frees buffers that the LZStart function allocated for multiple-file copy operations.

Returns
This function does not return a value.

Comments
Applications that copy multiple files should call LZStart before copying the files with the CopyLZFile
function. LZStart allocates buffers for the file copy operations.

Example
The following example uses LZDone to free buffers allocated by LZStart:

#define NUM_FILES 4
char *szSrc[NUM_FILES] =

{"readme.txt", "data.txt", "update.txt", "list.txt"};
char *szDest[NUM_FILES] =

{"readme.bak", "data.bak", "update.bak", "list.bak"};
OFSTRUCT ofStrSrc;
OFSTRUCT ofStrDest;
HFILE hfSrcFile, hfDstFile;
int i;
/* Allocate internal buffers for the CopyLZFile function. */
LZStart();
/* Open, copy, and then close the files. */
for (i = 0; i < NUM_FILES; i++) {

hfSrcFile = LZOpenFile(szSrc[i], &ofStrSrc, OF_READ);
hfDstFile = LZOpenFile(szDest[i], &ofStrDest, OF_CREATE);
CopyLZFile(hfSrcFile, hfDstFile);
LZClose(hfSrcFile);
LZClose(hfDstFile);

}
LZDone(); /* free the internal buffers */
See Also
CopyLZFile, LZCopy, LZStart

LZInit (3.1)
#include lzexpand.h

HFILE LZInit(hfSrc)
HFILE hfSrc; /* handle of source file */

The LZInit function allocates memory for, creates, and initializes the internal data structures that are
required to decompress files.

Parameter Description
hfSrc Identifies the source file.

Returns
The return value is the original file handle if the function is successful and the file is not compressed. If the
function is successful and the file is compressed, the return value is a new file handle. If the function fails,
the return value is an error value that is less than zero and may be one of the following:

Value Meaning
LZERROR_BADINHANDLE The handle identifying the source file is invalid.
LZERROR_GLOBALLOC There is insufficient memory for the required internal data

structures. This value is returned when an application attempts to
open more than 16 files.

LZERROR_GLOBLOCK The handle identifying global memory is invalid. (The internal call
to the GlobalLock function failed.)

LZERROR_READ The source file format is invalid.
LZERROR_UNKNOWNALG The file was compressed with an unrecognized compression

algorithm.

Comments
A maximum of 16 compressed files can be open at any given time.

Example
The following example uses LZInit to initialize the internal structures that are required to decompress a
file:

char szSrc[] = {"readme.cmp"};
char szFileName[128];
OFSTRUCT ofStrSrc;
OFSTRUCT ofStrDest;
HFILE hfSrcFile, hfDstFile, hfCompFile;
int cbRead;
BYTE abBuf[512];
/* Open the compressed source file. */
hfSrcFile = OpenFile(szSrc, &ofStrSrc, OF_READ);
/*
* Initialize internal data structures for the decompression
* operation.
*/
hfCompFile = LZInit(hfSrcFile);
/* Retrieve the original name for the compressed file. */
GetExpandedName(szSrc, szFileName);
/* Create the destination file using the original name. */
hfDstFile = LZOpenFile(szFileName, &ofStrDest, OF_CREATE);
/* Copy the compressed source file to the destination file. */

do {
if ((cbRead = LZRead(hfCompFile, abBuf, sizeof(abBuf))) > 0)
_lwrite(hfDstFile, abBuf, cbRead);
else {
.
. /* handle error condition */
.
}

} while (cbRead == sizeof(abBuf));
/* Close the files. */
LZClose(hfSrcFile);
LZClose(hfDstFile);

LZOpenFile (3.1)
#include lzexpand.h

HFILE LZOpenFile(lpszFile, lpof, style)
LPCSTR lpszFile; /* address of filename */
OFSTRUCT FAR* lpof; /*
address of structure for file info *
/
UINT style; /
* action to be taken *
/

The LZOpenFile function creates, opens, reopens, or deletes the file specified by the string to which
lpszFile points.

Parameter Description
lpszFile Points to a string that specifies the name of a file.
lpof Points to the OFSTRUCT structure that is to receive information about the file when the

file is opened. The structure can be used in subsequent calls to LZOpenFile to refer to
the open file.
The szPathName member of this structure contains characters from the OEM character
set.

style Specifies the action to be taken. These styles can be combined by using the bitwise OR
operator:

Value Meaning
OF_CANCEL Adds a Cancel button to the OF_PROMPT dialog

box. Choosing the Cancel button directs
LZOpenFile to return a file-not-found error
message.

OF_CREATE Directs LZOpenFile to create a new file. If the file
already exists, it is truncated to zero length.

OF_DELETE Deletes the file.
OF_EXIST Opens the file, and then closes it. This action is

used to test for file existence.
OF_PARSE Fills the OFSTRUCT structure, but carries out no

other action.
OF_PROMPT Displays a dialog box if the requested file does

not exist. The dialog box informs the user that
Windows cannot find the file and prompts the
user to insert the disk containing the file in drive
A.

OF_READ Opens the file for reading only.
OF_READWRITE Opens the file for reading and writing.
OF_REOPEN Opens the file using information in the reopen

buffer.
OF_SHARE_DENY_NONE Opens the file without denying other programs

read access or write access to the file.
LZOpenFile fails if the file has been opened in
compatibility mode by any other program.

OF_SHARE_DENY_READ Opens the file and denies other programs read
access to the file. LZOpenFile fails if the file has
been opened in compatibility mode or for read
access by any other program.

OF_SHARE_DENY_WRITE Opens the file and denies other programs write
access to the file. LZOpenFile fails if the file has
been opened in compatibility mode or for write
access by any other program.

OF_SHARE_EXCLUSIVE Opens the file in exclusive mode, denying other
programs both read access and write access to the

file. LZOpenFile fails if the file has been opened
in any other mode for read access or write access,
even by the current program.

OF_WRITE Opens the file for writing only.

Returns
The return value is a handle identifying the file if the function is successful and the value specified by style
is not OF_READ. If the file is compressed and opened with style set to the OF_READ value, the return
value is a special file handle. If the function fails, the return value is -1.

Comments
If style is OF_READ (or OF_READ and any of the OF_SHARE_ flags) and the file is compressed,
LZOpenFile calls the LZInit function, which performs the required initialization for the decompression
operations.

Example
The following example uses LZOpenFile to open a source file and create a destination file into which the
source file can be copied:

char szSrc[] = {"readme.txt"};
char szDst[] = {"readme.bak"};
OFSTRUCT ofStrSrc;
OFSTRUCT ofStrDest;
HFILE hfSrcFile, hfDstFile;
/* Open the source file. */
hfSrcFile = LZOpenFile(szSrc, &ofStrSrc, OF_READ);
/* Create the destination file. */
hfDstFile = LZOpenFile(szDst, &ofStrDest, OF_CREATE);
/* Copy the source file to the destination file. */
LZCopy(hfSrcFile, hfDstFile);
/* Close the files. */
LZClose(hfSrcFile);
LZClose(hfDstFile);
See Also
LZInit

LZRead (3.1)
#include lzexpand.h

int LZRead(hf, lpvBuf, cb)
HFILE hf; /* handle of the file */
void FAR* lpvBuf; /* address of
buffer for file data *
/
int cb; /
* number of bytes to read *
/

The LZRead function reads into a buffer bytes from a file.

Parameter Description
hf Identifies the source file.
lpvBuf Points to a buffer that is to receive the bytes read from the file.
cb Specifies the maximum number of bytes to be read.

Returns
The return value is the actual number of bytes read if the function is successful. Otherwise, it is an error
value that is less than zero and may be any of the following:

Value Meaning
LZERROR_BADINHANDLE The handle identifying the source file was invalid.
LZERROR_BADVALUE The cb parameter specified a negative value.
LZERROR_GLOBLOCK The handle identifying required initialization data is invalid.
LZERROR_READ The format of the source file was invalid.
LZERROR_UNKNOWNALG The file was compressed with an unrecognized compression

algorithm.

Comments
If the file is not compressed, LZRead calls the _lread function, which performs the read operation.

If the file is compressed, LZRead emulates _lread on an expanded image of the file and copies the bytes of
data into the buffer to which lpvBuf points.

If the source file was compressed by Microsoft File Compression Utility (COMPRESS.EXE), the
LZOpenFile, LZSeek, and LZRead functions can be called instead of the OpenFile, _llseek, and _lread
functions.

Example
The following example uses LZRead to copy and decompress a compressed file:

char szSrc[] = {"readme.cmp"};
char szFileName[128];
OFSTRUCT ofStrSrc;
OFSTRUCT ofStrDest;
HFILE hfSrcFile, hfDstFile, hfCompFile;
int cbRead;
BYTE abBuf[512];
/* Open the compressed source file. */
hfSrcFile = OpenFile(szSrc, &ofStrSrc, OF_READ);
/*
* Initialize internal data structures for the decompression
* operation.
*/
hfCompFile = LZInit(hfSrcFile);
/* Retrieve the original name for the compressed file. */

GetExpandedName(szSrc, szFileName);
/* Create the destination file using the original name. */
hfDstFile = LZOpenFile(szFileName, &ofStrDest, OF_CREATE);
/* Copy the compressed source file to the destination file. */
do {

if ((cbRead = LZRead(hfCompFile, abBuf, sizeof(abBuf))) > 0)
_lwrite(hfDstFile, abBuf, cbRead);
else {
.
. /* handle error condition */
.
}

} while (cbRead == sizeof(abBuf));
/* Close the files. */
LZClose(hfSrcFile);
LZClose(hfDstFile);
See Also
_llseek, _lread, LZOpenFile, LZRead, LZSeek

LZSeek (3.1)
#include lzexpand.h

LONG LZSeek(hf, lOffset, nOrigin)
HFILE hf; /* handle of file */
LONG lOffset; /* number of bytes to move *
/
int nOrigin; /
* original position *
/

The LZSeek function moves a file pointer from its original position to a new position.

Parameter Description
hf Identifies the source file.
lOffset Specifies the number of bytes by which the file pointer should be moved.
nOrigin Specifies the starting position of the pointer. This parameter must be one of the

following values:

Value Meaning
0 Move the file pointer lOffset bytes from the beginning of the file.
1 Move the file pointer lOffset bytes from the current position.
2 Move the file pointer lOffset bytes from the end of the file.

Returns
The return value is the offset from the beginning of the file to the new pointer position, if the function is
successful. Otherwise, it is an error value that is less than zero and may be one of the following:

Value Meaning
LZERROR_BADINHANDLE The handle identifying the source file was invalid.
LZERROR_BADVALUE One of the parameters exceeds the range of valid values.
LZERROR_GLOBLOCK The handle identifying the initialization data is invalid.

Comments
If the file is not compressed, LZSeek calls the _llseek function and moves the file pointer by the specified
offset.

If the file is compressed, LZSeek emulates _llseek on an expanded image of the file.

See Also
_llseek

LZStart (3.1)
#include lzexpand.h

int LZStart(void)

The LZStart function allocates the buffers that the CopyLZFile function uses to copy a source file to a
destination file.

Returns
The return value is nonzero if the function is successful. Otherwise, it is LZERROR_GLOBALLOC.

Comments
Applications that copy (or copy and decompress) multiple consecutive files should call the LZStart,
CopyLZFile, and LZDone functions. Applications that copy a single file should call the LZCopy function.

Example
The following example uses LZStart to allocate buffers used by CopyLZFile:

#define NUM_FILES 4
char *szSrc[NUM_FILES] =

{"readme.txt", "data.txt", "update.txt", "list.txt"};
char *szDest[NUM_FILES] =

{"readme.bak", "data.bak", "update.bak", "list.bak"};
OFSTRUCT ofStrSrc;
OFSTRUCT ofStrDest;
HFILE hfSrcFile, hfDstFile;
int i;
/* Allocate internal buffers for the CopyLZFile function. */
LZStart();
/* Open, copy, and then close the files. */
for (i = 0; i < NUM_FILES; i++) {

hfSrcFile = LZOpenFile(szSrc[i], &ofStrSrc, OF_READ);
hfDstFile = LZOpenFile(szDest[i], &ofStrDest, OF_CREATE);
CopyLZFile(hfSrcFile, hfDstFile);
LZClose(hfSrcFile);
LZClose(hfDstFile);

}
LZDone(); /* free the internal buffers */
See Also
CopyLZFile, LZCopy, LZDone

Lempel-Ziv Encoding functions
CopyLZFile Copies files and decompresses them if compressed
GetExpandedName Retrieves the original filename of a compressed file
LZClose Closes a file
LZCopy Copies a file and decompresses it if compressed
LZDone Frees buffers allocated by the LZStart function
LZInit Initializes structures needed for decompression
LZOpenFile Opens a file (both compressed and uncompressed)
LZRead Reads a specified number of bytes from a compressed file
LZSeek Repositions a pointer in a file
LZStart Allocates buffers for the CopyLZFile function

DECLARE_HANDLE (3.1)
DECLARE_HANDLE(name)

The DECLARE_HANDLE macro creates a data type that can be used to define 16-bit handles.

Parameter Description
name Specifies the name of the new data type.

Comments
The DECLARE_HANDLE macro is defined in WINDOWS.H as follows:

#define DECLARE_HANDLE(name) struct name##__ { int unused; }; \
typedef const struct name##__ NEAR* name

See Also
DECLARE_HANDLE32

DECLARE_HANDLE32 (3.1)
#include ddeml.h

DECLARE_HANDLE32(name)

The DECLARE_HANDLE32 macro creates a data type that can be used to define 32-bit handles.

Parameter Description
name Specifies the name of the new data type.

Parameter Description
name Specifies the name of the variable for which a pointer is created.

Comments
The DECLARE_HANDLE32 macro is defined in DDEML.H as follows:

#define DECLARE_HANDLE32(name) struct name##__ { int unused; }; \
typedef const struct name##__ _far* name

See Also
DECLARE_HANDLE

FIELDOFFSET (3.1)
int FIELDOFFSET(type, field)

The FIELDOFFSET macro computes the address offset of the specified member in the structure specified
by the type parameter.

Parameter Description
type Specifies the name of the structure.
field Specifies the name of the member defined within the given structure.

Returns
The return value is the address offset of the given structure member.

Comments
The FIELDOFFSET macro is defined in WINDOWS.H as follows:

#define FIELDOFFSET(type, field) ((int)(&((type NEAR*)1)->field)-1)

GetBValue (3.1)
BYTE GetBValue(rgb)
DWORD rgb; /* RGB color value */

The GetBValue macro extracts the intensity value of the blue color field from the 32-bit integer value
specified by the rgb parameter.

Parameter Description
rgb Specifies the RGB color value.

Returns
The return value specifies the intensity of the blue color field.

Comments
The GetBValue macro is defined in WINDOWS.H as follows:

#define GetBValue(rgb) ((BYTE)((rgb)>>16))
See Also
GetGValue, GetRValue, RGB

GetGValue (3.1)
BYTE GetGValue(rgb)
DWORD rgb; /* RGB color value */

The GetGValue macro extracts the intensity value of the green color field from the 32-bit integer value
specified by the rgb parameter.

Parameter Description
rgb Specifies the RGB color value.

Returns
The return value specifies the intensity of the green color field.

Comments
The GetGValue macro is defined in WINDOWS.H as follows:

#define GetGValue(rgb) ((BYTE)(((WORD)(rgb)) >> 8))
See Also
GetBValue, GetRValue, RGB

GetRValue (3.1)
BYTE GetRValue(rgb)
DWORD rgb; /* RGB color value */

The GetRValue macro extracts the intensity value of the red color field from the 32-bit integer value
specified by the rgb parameter.

Parameter Description
rgb Specifies the RGB color value.

Returns
The return value specifies the intensity of the red color field.

Comments
The GetRValue macro is defined in WINDOWS.H as follows:

#define GetRValue(rgb) ((BYTE)(rgb))
See Also
GetBValue, GetGValue, RGB

GlobalDiscard (2.x)
HGLOBAL GlobalDiscard(hglb)
HGLOBAL hglb; /* handle of object to discard */

The GlobalDiscard macro discards the given global memory object. The lock count of the memory object
must be zero.

Parameter Description
hglb Identifies the global memory object to be discarded.

Returns
The return value is a handle of the discarded object if the macro is successful. Otherwise, it is NULL.

Comments
The GlobalDiscard macro discards only global objects that an application allocated with the
GMEM_DISCARDABLE and GMEM_MOVEABLE flags set. The macro fails if an application attempts
to discard a fixed or locked object.

Although GlobalDiscard removes the global memory object from memory, the object's handle remains
valid. An application can subsequently pass the handle to the GlobalReAlloc function to allocate another
global memory object identified by the same handle.

The GlobalDiscard macro is defined in WINDOWS.H as follows:

#define GlobalDiscard(h) GlobalReAlloc(h, 0L, GMEM_MOVEABLE)
See Also
GlobalFree, GlobalReAlloc

HIBYTE (2.x)
BYTE HIBYTE(wInteger)
UINT uVal; /* value from which high byte is retrieved */

The HIBYTE macro retrieves the high-order byte from the integer value specified by the wInteger
parameter.

Parameter Description
uVal Specifies the value to be converted.

Returns
The return value specifies the high-order byte of the given value.

Comments
The HIBYTE macro is defined in WINDOWS.H as follows:

#define HIBYTE(w) ((BYTE)(((UINT)(w) >> 8) & 0xFF))

HIWORD (2.x)
WORD HIWORD(dwInteger)
DWORD dwInteger; /* value from which high word is retrieved */

The HIWORD macro retrieves the high-order word from the 32-bit integer value specified by the
dwInteger parameter.

Parameter Description
dwInteger Specifies the value to be converted.

Returns
The return value specifies the high-order word of the given 32-bit integer value.

Comments
The HIWORD macro is defined in WINDOWS.H as follows:

#define HIWORD(l) ((WORD)((((DWORD)(l)) >> 16) & 0xFFFF))

LOBYTE (2.x)
BYTE LOBYTE(uVal)
UINT uVal; /* value from which low byte is retrieved */

The LOBYTE macro extracts the low-order byte from the 16-bit integer value specified by the uVal
parameter.

Parameter Description
uVal Specifies the value to be converted.

Returns
The return value specifies the low-order byte of the value.

Comments
The LOBYTE macro is defined in WINDOWS.H as follows:

#define LOBYTE(w) ((BYTE)(w))
See Also
LOWORD

LocalDiscard (2.x)
HLOCAL LocalDiscard(hloc)
HLOCAL hloc; /* handle of object to discard */

The LocalDiscard macro discards the given local memory object. The lock count of the memory object
must be zero.

Parameter Description
hloc Identifies the local memory object to be discarded.

Returns
The return value is equal to the hloc parameter if the macro is successful. Otherwise, it is NULL.

Comments
Although the LocalDiscard macro removes the local memory object from memory, the object's handle
remains valid. An application can subsequently pass the handle to the LocalReAlloc function to allocate
another local memory object identified by the same handle.

The LocalLock function increments (increases by one) a memory object's lock count. The LocalUnlock
function decrements (decreases by one) the lock count.

The LocalDiscard macro is defined in WINDOWS.H as follows:

#define LocalDiscard(h) LocalReAlloc(h, 0, LMEM_MOVEABLE)
See Also
LocalLock, LocalReAlloc, LocalUnlock

LockData (2.x)
HANDLE LockData(dummy)

The LockData macro locks the current data segment in memory. It is intended to be used in modules that
have movable data segments.

Parameter Description
dummy This parameter is ignored.

Returns
The return value identifies the locked data segment if the function is successful. Otherwise, it is NULL.

Comments
The LockData macro is defined in WINDOWS.H as follows:

#define LockData(dummy) LockSegment((UINT)-1)
See Also
LockSegment

LOWORD (2.x)
WORD LOWORD(dwVal)
DWORD dwVal; /* value from which low word is retrieved */

The LOWORD macro extracts the low-order word from the 32-bit integer value specified by the dwVal
parameter.

Parameter Description
dwVal Specifies the value to be converted.

Returns
The return value specifies the low-order word of the 32-bit integer value.

Comments
The LOWORD macro is defined in WINDOWS.H as follows:

#define LOWORD(l) ((WORD)(DWORD)(l))
See Also
LOBYTE

MAKEINTATOM (2.x)
LPCSTR MAKEINTATOM(wInteger)
WORD wInteger; /* integer to make into atom */

The MAKEINTATOM macro creates an integer atom that represents a character string of decimal digits.

Integer atoms created by this macro can be added to the atom table using the AddAtom function.

Parameter Description
wInteger Specifies the numeric value to be made into an integer atom.

Returns
The return value is a pointer to the atom created for the given integer.

Comments
Although the return value of the MAKEINTATOM macro is cast as an LPCSTR, the return value cannot
be used as a string pointer, except when it is passed to atom-management functions that require an
LPCSTR parameter.

The DeleteAtom function always succeeds for integer atoms, even though it does nothing. The string
returned by the GetAtomName function for an integer atom will be a null-terminated string where the first
character is a pound sign (#) and the remaining characters are the word used in the MAKEINTATOM
macro.

The MAKEINTATOM macro is defined in WINDOWS.H as follows:

#define MAKEINTATOM(i) ((LPCSTR)MAKELP(NULL, (i)))
Example
The following example uses the MAKEINTATOM macro to convert the number 32,565 into an integer
atom. The atom is then added to the local atom table by the AddAtom function:

ATOM at;
char szMsg[80];
LPCSTR lpszAtom;
lpszAtom = MAKEINTATOM(32565);
at = AddAtom(lpszAtom);
if (at == 0)

MessageBox(hwnd, "AddAtom failed", "", MB_ICONSTOP);
else {

wsprintf(szMsg, "AddAtom returned %u", at);
MessageBox(hwnd, szMsg, "", MB_OK);

}
See Also
AddAtom, DeleteAtom, GetAtomName

MAKEINTRESOURCE (2.x)
LPCSTR MAKEINTRESOURCE(idResource)
WORD idResource; /* resource identifier to convert */

The MAKEINTRESOURCE macro converts an integer resource identifier into a value compatible with
Windows resource-management functions. This macro is used in place of a string containing the name of
the resource.

Parameter Description
idResource Specifies the integer resource identifier to be converted.

Returns
The return value contains the idResource parameter in the low-order word and zero in the high-order word.

Comments
The MAKEINTRESOURCE macro is defined in WINDOWS.H as follows:

#define MAKEINTRESOURCE(i) ((LPCSTR)MAKELP(NULL, (i)))
See Also
MAKELP

MAKELONG (2.x)
DWORD MAKELONG(uLow, uHigh)
UINT uLow; /* low-order word of long value */
UINT uHigh; /* high-order word of
long value *
/

The MAKELONG macro creates an unsigned long integer by concatenating two integer values, specified
by the uLow and uHigh parameters.

Parameter Description
uLow Specifies the low-order word of the new long value.
uHigh Specifies the high-order word of the new long value.

Returns
The return value specifies an unsigned long-integer value.

Comments
The MAKELONG macro is defined in WINDOWS.H as follows:

#define MAKELONG(low, high) \
((LONG)(((WORD)(low)) | (((DWORD)((WORD)(high))) << 16)))

MAKELP (3.1)
void FAR* MAKELP(wSel, wOff)
WORD wSel; /* selector */
WORD wOff; /* offset */

The MAKELP macro combines a segment selector and an address offset to create a long (32-bit) pointer to
a memory address.

Parameter Description
wSel Specifies a segment selector.
wOff Specifies an offset from the beginning of the given segment to the desired byte.

Returns
The return value is a long pointer to an unspecified data type.

Comments
The MAKELP macro is defined in WINDOWS.H as follows:

#define MAKELP(sel, off) ((void FAR*)MAKELONG((off), (sel)))
See Also
MAKELONG

MAKELPARAM (3.1)
LPARAM MAKELPARAM(wLow, wHigh)
WORD wLow; /* low-order word */
WORD wHigh; /* high-order word */

The MAKELPARAM macro creates an unsigned long integer for use as an lParam parameter in a
message. The macro concatenates two integer values, specified by the wLow and wHigh parameters.

Parameter Description
wLow Specifies the low-order word of the new long value.
wHigh Specifies the high-order word of the new long value.

Returns
The return value specifies an unsigned long-integer value.

Comments
The MAKELPARAM macro is defined in WINDOWS.H as follows:

#define MAKELPARAM(low, high) ((LPARAM)MAKELONG(low, high))
See Also
MAKELONG, MAKELRESULT

MAKELRESULT (3.1)
LRESULT MAKELRESULT(wLow, wHigh)
WORD wLow; /* low-order word */
WORD wHigh; /* high-order word */

The MAKELRESULT macro creates an unsigned long integer for use as a return value from a window
procedure. The macro concatenates two integer values, specified by the wLow and wHigh parameters.

Parameter Description
wLow Specifies the low-order word of the new long value.
wHigh Specifies the high-order word of the new long value.

Returns
The return value specifies an unsigned long-integer value.

Comments
The MAKELRESULT macro is defined in WINDOWS.H as follows:

#define MAKELRESULT(low, high) ((LRESULT)MAKELONG(low, high))
See Also
MAKELONG, MAKELPARAM

MAKEPOINT (2.x)
POINT MAKEPOINT(lval)
DWORD lval; /* coordinates of a point */

The MAKEPOINT macro converts a long value that contains the x- and y-coordinates of a point into a
POINT structure. This macro is useful for converting the long value returned by the GetMessagePos
function into a POINT structure and for converting the lParam value passed with mouse messages into a
POINT structure containing the mouse coordinates.

Parameter Description
lval Specifies the coordinates of a point. The x-coordinate is in the low-order word, and the

y-coordinate is in the high-order word.

Returns
The return value is a pointer to a POINT structure.

Comments
The MAKEPOINT macro is defined in WINDOWS.H as follows:

#define MAKEPOINT(l) (*((POINT FAR*)&(l)))
The MAKEPOINT macro is not compatible with the Windows 32-bit application programming interface
(API).

See Also
GetMessagePos, POINT

max (2.x)
int max(value1, value2)

The max macro compares two values and returns the value of the larger one. The data type can be any
numerical data type, signed or unsigned. The type of the arguments and the return value is the same.

Parameter Description
value1 Specifies the first of two values.
value2 Specifies the second of two values.

Returns
The return value is value1 or value2, whichever is greater.

Comments
The max macro is defined in WINDOWS.H as follows:

#define max(a, b) (((a) > (b)) ? (a) : (b))
See Also
min

min (2.x)
int min(value1, value2)

The min macro compares two values and returns the value of the smaller one. The data type can be any
numerical data type, signed or unsigned. The type of the arguments and the return value is the same.

Parameter Description
value1 Specifies the first of two values.
value2 Specifies the second of two values.

Returns
The return value is value1 or value2, whichever is smaller.

Comments
The min macro is defined in WINDOWS.H as follows:

#define min(a, b) (((a) < (b)) ? (a) : (b))
See Also
max

OFFSETOF (3.1)
WORD OFFSETOF(lp)
void FAR* lp; /* long pointer */

The OFFSETOF macro retrieves the address offset of the specified long pointer.

Parameter Description
lp Specifies a long pointer.

Returns
The return value is the offset address.

Comments
The OFFSETOF macro is defined in WINDOWS.H as follows:

#define OFFSETOF(lp) LOWORD(lp)
See Also
LOWORD, SELECTOROF

PALETTEINDEX (3.0)
COLORREF PALETTEINDEX(wPaletteIndex)
WORD wPaletteIndex; /* index to palette entry */

The PALETTEINDEX macro accepts an index to a logical-color palette entry and returns a value
consisting of 1 in the high-order byte and the palette-entry index in the low-order byte. This is called a
palette-entry specifier. An application using a color palette can pass this specifier instead of an explicit
RGB value to functions that expect a color. This allows the function to use the color in the specified
palette entry.

Parameter Description
wPaletteIndex Specifies an index to the palette entry containing the color to be used for a graphics

operation.

Returns
The return value is a logical-palette index specifier. When using a logical palette, an application can use
this specifier in place of an explicit RGB value for graphics-device interface (GDI) functions that require a
color.

Comments
The PALETTEINDEX macro is defined in WINDOWS.H as follows:

#define PALETTEINDEX(i) ((COLORREF)(0x01000000L | (DWORD)(WORD)(i)))
See Also
PALETTERGB, RGB

PALETTERGB (3.0)
COLORREF PALETTERGB(cRed, cGreen, cBlue)
BYTE cRed; /* red component of palette-relative RGB */
BYTE cGreen; /* green
component of palette-relative RGB *
/
BYTE cBlue; /
* blue component of palette-relative RGB *
/

The PALETTERGB macro accepts three values representing relative intensities of red, green, and blue
and returns a value consisting of 2 in the high-order byte and an RGB value in the three low-order bytes.
This is called a palette-relative RGB specifier. An application using a color palette can pass this specifier
instead of an explicit RGB value to functions that expect a color.

For output devices that support logical palettes, Windows matches a palette-relative RGB value to the
nearest color in the logical palette of the device context as though the application had specified an index to
that palette entry. If an output device does not support a system palette, then Windows uses the palette-
relative RGB as though it were a conventional RGB doubleword returned by the RGB macro.

Parameter Description
cRed Specifies the intensity of the red color field.
cGreen Specifies the intensity of the green color field.
cBlue Specifies the intensity of the blue color field.

Returns
The return value specifies a palette-relative RGB value.

Comments
The PALETTERGB macro is defined in WINDOWS.H as follows:

#define PALETTERGB(r,g,b) (0x02000000L | RGB(r,g,b))
See Also
PALETTEINDEX, RGB

RGB (2.x)
COLORREF RGB(cRed, cGreen, cBlue)
BYTE cRed; /* red component of color */
BYTE cGreen; /* green component of color *
/
BYTE cBlue; /
* blue component of color *
/

The RGB macro selects an RGB color based on the parameters supplied and the color capabilities of the
output device.

Parameter Description
cRed Specifies the intensity of the red color field.
cGreen Specifies the intensity of the green color field.
cBlue Specifies the intensity of the blue color field.

Returns
The return value specifies the resultant RGB color.

Comments
The intensity for each argument can range from 0 through 255. If all three intensities are specified as zero,
the result is black. If all three intensities are specified as 255, the result is white.

Comments
The RGB macro is defined in WINDOWS.H as follows:

#define RGB(r,g,b) ((COLORREF)(((BYTE)(r)|((WORD)(g)<<8))| \
(((DWORD)(BYTE)(b))<<16)))

See Also
GetBValue, GetGValue, GetRValue, PALETTEINDEX, PALETTERGB

SELECTOROF (3.1)
WORD SELECTOROF(lp)
void FAR* lp; /* long pointer */

The SELECTOROF macro retrieves the segment selector from the specified long pointer.

Parameter Description
lp Specifies a long pointer.

Returns
The return value is the segment selector.

Comments
The SELECTOROF macro is defined in WINDOWS.H as follows:

#define SELECTOROF(lp) HIWORD(lp)
See Also
HIWORD, OFFSETOF

UnlockData (2.x)
HANDLE UnlockData(dummy)

The UnlockData macro unlocks the current data segment. It is intended to be used by modules that have
movable data segments.

Parameter Description
dummy This parameter is ignored.

Returns
The return value specifies the outcome of the UnlockSegment function. It is zero if the segment's lock
count was decreased to zero. Otherwise, the return value is nonzero.

Comments
The UnlockData macro is defined in WINDOWS.H as follows:

#define UnlockData(dummy) UnlockSegment((UINT)-1)
See Also
LockData, UnlockSegment

UnlockResource (2.x)
BOOL UnlockResource(hglblResData)
HGLOBAL hglblResData; /* handle of memory object to unlock */

The UnlockResource macro unlocks the resource specified by the hglblResData parameter and decreases
the reference count of the resource by one.

Parameter Description
hglblResData Identifies the global memory object to be unlocked.

Returns
The return value is zero if the object's reference count is decreased to zero. Otherwise, it is nonzero.

Comments
The UnlockResource macro is defined in WINDOWS.H as follows:

#define UnlockResource(h) GlobalUnlock(h)
See Also
GlobalUnlock

Windows macros (3.1)
DECLARE_HANDLE Creates a 32-bit handle data type
DECLARE_HANDLE32 Creates a 16-bit handle data type
FIELDOFFSET Computes the address offset of a structure member
GetBValue Retrieves the blue color field of an RGB value
GetGValue Retrieves the green color field of an RGB value
GetRValue Retrieves the red color field of an RGB value
GlobalDiscard Discards a global memory object
HIBYTE Retrieves the high-order byte of an integer
HIWORD Retrieves the high-order word of a 32-bit integer
LOBYTE Retrieves the low-order byte of a 16-bit integer
LocalDiscard Discards a local memory object
LockData Locks the current data segment in memory
LOWORD Retrieves the low-order word of a 32-bit integer
MAKEINTATOM Creates an integer atom
MAKEINTRESOURCE Converts a resource identifier into a string
MAKELONG Creates a 32-bit integer from two 16-bit integers
MAKELP Creates a long pointer to a memory address
MAKELPARAM Creates unsigned long-integer message parameter
MAKELRESULT Creates unsigned long-integer message result
MAKEPOINT Converts a long value into a POINT structure
max Returns the larger of two values
min Returns the smaller of two values
OFFSETOF Retrieves the address offset of a long pointer
PALETTEINDEX Returns a logical-palette index specifier
PALETTERGB Returns a palette-relative RGB specifier
RGB Creates an RGB value from three colors
SELECTOROF Retrieves the segment selector from a long pointer
UnlockData Unlocks the current data segment
UnlockResource Unlocks a resource and decreases its reference count

Information in this document is subject to change without notice and does not represent a commitment on
the part of Microsoft Corporation. The software, which includes information contained in any databases,
described in this document is furnished under a license agreement or nondisclosure agreement and may be
used or copied only in accordance with the terms of that agreement. It is against the law to copy the
software except as specifically allowed in the license or nondisclosure agreement. No part of this manual
may be reproduced or transmitted in any form or by any means, electronic or mechanical, including
photocopying and recording, for any purpose without the express written permission of Microsoft
Corporation.

(C) Copyright Microsoft Corporation, 1992. All rights reserved.
Simultaneously published in the U.S. and Canada.

MS Windows (3.1)
Copyright
Database version
New 3.1 API
Alphabetical functions
Function Groups
Macros
Messages
Notification messages
Overviews
Printer escapes
Resource statements
Structures
Tables
Tools

New 3.1 API
Common dialog box functions
DDE functions
Toolhelp functions
Drag-drop functions
Installable-driver functions
Lempel-Ziv Encoding functions
OLE functions
Printer escapes
Registration functions
Shell functions
Stress functions
TrueType functions
Version functions
New 3.1 messages
New 3.1 GDI functions
New 3.1 kernel functions
New 3.1 user functions

Microsoft Windows
Software Development Kit

Version 3.1

Windows function groups (3.1)
32-bit Memory Management functions Lempel-Ziv Encoding functions
Application-Execution functions Line-Output functions
Atom functions Mapping functions
Bitmap functions Memory-Management functions
Brush functions Menu functions
Callback functions Message functions
Caret functions Metafile functions
Clipboard functions Module-Management functions
Clipping functions OLE function Groups
Common-dialog box functions Optimization-Tool functions
Communication functions Painting functions
Coordinate functions Palette functions
Cursor functions Pen functions
DDE functions Pointer Validation Functions
Debugging functions Printer-Control functions
Device-Context functions Property functions
Dialog-Box functions Rectangle functions
Display and movement functions Region functions
Drag-drop functions Registration functions
Drawing-Attribute functions Resource-Management functions
Drawing-Tool functions Screen-Saver functions
Ellipse and Polygon functions Scrolling functions
Error functions Segment functions
File I/O functions Shell functions
Font functions Stress functions
GDI functions String-Manipulation functions
Hardware functions System functions
Hook functions Task functions
Icon functions Text functions
Information functions Toolhelp functions
Initialization-File functions TrueType functions
Input functions User functions
Installable-Driver functions Version functions
Kernel functions Window-Creation functions

32-bit Memory Manager Functions
GetWinMem32Version Retrieves the version of the 32-bit memory API
Global16PointerAlloc Converts a 16:32 pointer to a 16:16 pointer alias
Global16PointerFree Frees a 16:16 pointer alias
Global32Alloc Allocates a USE32 memory object
Global32CodeAlias Creates a USE32 alias selector for 32-bit object
Global32CodeAliasFree Frees a USE32 code-segment alias selector
Global32Free Frees a USE32 memory object
Global32Realloc Changes the size of a USE32 memory object

Alphabetical functions
Callback functions
Common dialog box functions
DDEML functions
Drag-drop functions
GDI functions
Kernel functions
LZExpand functions
OLE functions
Registration functions
Screen saver functions
Shell functions
Stress functions
Toolhelp functions
User functions
Version functions

Caret Functions (3.1)
CreateCaret Creates a new shape for the system caret
DestroyCaret Destroys the current caret shape
GetCaretBlinkTime Retrieves the caret blink rate
GetCaretPos Retrieves the current caret position
HideCaret Removes the caret from the screen
SetCaretBlinkTime Sets the caret blink rate
SetCaretPos Sets the caret position
ShowCaret Shows (unhides) the caret on the screen

Clipboard Functions (3.1)
The clipboard provides a mechanism that makes it possible for applications to pass data handles to other
applications. Clipboard functions carry out data interchange between Windows applications.
ChangeClipboardChain Removes window from clipboard-viewer chain
CloseClipboard Closes the clipboard
CountClipboardFormats Retrieves the number of clipboard formats
EmptyClipboard Empties the clipboard and frees data handles
EnumClipboardFormats Returns the available clipboard formats
GetClipboardData Retrieves a handle to clipboard data
GetClipboardFormatName Retrieves the registered clipboard-format name
GetClipboardOwner Retrieves clipboard-owner window handle
GetClipboardViewer Retrieves first clipboard-viewer window handle
GetPriorityClipboardFormat Retrieves first clipboard format in priority list
IsClipboardFormatAvailable Determines whether format data is available
OpenClipboard Opens the clipboard
RegisterClipboardFormat Registers a new clipboard format
SetClipboardData Sets the data in the clipboard
SetClipboardViewer Adds a window to the clipboard-viewer chain

Cursor Functions (3.1)
ClipCursor Confines the cursor to a specified rectangle
CreateCursor Creates a cursor with specified dimensions
DestroyCursor Destroys a cursor created by CreateCursor or LoadCursor
GetCursorPos Retrieves the current cursor position in screen coordinates
LoadCursor Loads a cursor resource
SetCursor Changes the mouse cursor
SetCursorPos Sets the mouse-cursor position in screen coordinates
ShowCursor Shows or hides the mouse cursor

Dialog-Box Functions (3.1)
CheckDlgButton Changes a check mark by a dialog box button
CheckRadioButton Adds a check mark to a radio button
CreateDialog Creates a modeless dialog box
CreateDialogIndirect Creates modeless dialog box from memory template
CreateDialogIndirectParam Creates modeless dialog box from memory template
CreateDialogParam Creates a modeless dialog box
DefDlgProc Provides default window message processing
DialogBox Creates a modal dialog box
DialogBoxIndirect Creates modal dialog box from memory template
DialogBoxIndirectParam Creates modal dialog box from memory template
DialogBoxParam Creates a modal dialog box
DlgDirList Fills a directory list box
DlgDirListComboBox Fills a directory list box
DlgDirSelect Retrieves a selection from a directory list box
DlgDirSelectEx Retrieves a selection from a directory list box
DlgDirSelectComboBox Retrieves a selection from a directory list box
DlgDirSelectComboBoxEx Retrieves a selection from a directory list box
EndDialog Hides a modal dialog box
GetDialogBaseUnits Returns dialog base units
GetDlgCtrlID Returns the handle of a child window
GetDlgItem Retrieves the handle of a dialog box control
GetDlgItemInt Translates control text into an integer
GetDlgItemText Retrieves control text or title
GetNextDlgGroupItem Returns handle of previous or next group control
GetNextDlgTabItem Returns the next or previous WS_TABSTOP control
IsDialogMessage Determines if message is for modeless dialog box
IsDlgButtonChecked Determines the state of a button
MapDialogRect Maps dialog box units to pixels
SendDlgItemMessage Sends a message to a dialog box control
SetDlgItemInt Converts an integer to a dialog box string
SetDlgItemText Sets title or text of a control

Display and Movement Functions (3.1)
ArrangeIconicWindows Arranges minimized child windows
BeginDeferWindowPos Creates a window-position structure
BringWindowToTop Uncovers an overlapped window
CloseWindow Minimizes (but does not destroy) a window
DeferWindowPos Updates a window-position structure
EndDeferWindowPos Updates the position and size of multiple windows
GetClientRect Retrieves a window's client coordinates
GetWindowRect Retrieves a window's screen coordinates
GetWindowText Copies window title or control text to a buffer
GetWindowTextLength Returns length of window title or control text
IsIconic Determines whether a window is minimized
IsWindowVisible Determines the visibility state of a window
IsZoomed Determines whether a window is maximized
MoveWindow Changes the position and dimensions of a window
OpenIcon Activates and displays a minimized window
SetWindowPos Sets a window's size, position, and z-order
SetWindowText Sets control text or window title
ShowOwnedPopups Shows or hides pop-up windows
ShowWindow Sets a window's visibility state

Error Functions (3.1)
FlashWindow Flashes a window once
MessageBeep Generates a beep sound
MessageBox Creates and displays a message-box window

Hardware Functions (3.1)
EnableHardwareInput Controls mouse and keyboard input queuing
GetAsyncKeyState Determines the key state
GetInputState Determines mouse, keyboard and timer queuing status
GetKeyboardState Copies virtual-keyboard keys status to a buffer
GetKeyNameText Retrieves the string representing the name of a key
GetKeyState Retrieves the virtual-key state
GetKBCodePage Returns the current Windows code page
OemKeyScan Translates OEM ASCII to scan codes
SetKeyboardState Sets the Windows keyboard-state table
MapVirtualKey Translates a virtual-key code or scan code
VkKeyScan Translates a Windows character to a virtual-key code

Hook Functions (3.1)
CallMsgFilter Passes a message to a message-filter function
DefHookProc Calls the next function in a hook-function chain
SetWindowsHook Installs an application-defined hook function
SetWindowsHookEx Installs an application-defined hook function
UnhookWindowsHook Removes an application-defined hook function

Icon Functions (3.1)
ArrangeIconicWindows Arranges minimized child windows
CopyIcon Copies an icon
CreateIcon Creates an icon with the specified dimensions
DestroyIcon Destroys an icon created by CreateIcon or LoadIcon
DrawIcon Draws an icon in the specified device context
IsIconic Determines whether a window is minimized
LoadIcon Loads an icon resource
OpenIcon Activates and displays a minimized window

Information Functions (3.1)
AnyPopup Indicates whether pop-up or overlapped window exists
ChildWindowFromPoint Determines which child window contains a point
EnumChildWindows Enumerates child windows
EnumTaskWindows Enumerates windows associated with task on screen
EnumWindows Enumerates parent windows
FindWindow Returns window handle for class name and window name
GetNextWindow Returns handle of window in window manager's list
GetParent Returns parent window handle
GetTopWindow Returns handle for top-level child of given window
GetWindow Returns handle of window with specified relationship
GetWindowTask Returns the task handle associated with a window
IsChild Determines whether a window is a child
IsWindow Determines whether a window handle is valid
SetParent Changes a child's parent window
WindowFromPoint Returns the handle of window containing a point

Input Functions (3.1)
EnableWindow Enables or disables input to a window or control
GetActiveWindow Retrieves the handle of the active window
GetCapture Returns the handle for the mouse-capture window
GetCurrentTime Retrieves the elapsed time since Windows started
GetDoubleClickTime Retrieves mouse double-click time
GetFocus Returns handle of window with input focus
GetTickCount Retrieves the amount of time Windows has been running
IsWindowEnabled Determines whether a window accepts user input
KillTimer Removes a timer
ReleaseCapture Releases the mouse capture
SetActiveWindow Makes a top-level window active
SetCapture Sets the mouse capture to a window
SetDoubleClickTime Sets the mouse double-click time
SetFocus Sets the input focus to a window
SetSysModalWindow Makes a window the system-modal window
SetTimer Installs a system timer
SwapMouseButton Reverses the meaning of mouse buttons

Installable-Driver Functions (3.1)
CloseDriver Closes an installable driver
DefDriverProc Default processing of installable-driver messages
DriverProc Processes installable-driver messages
GetDriverModuleHandle Returns an installable-driver instance handle
GetDriverInfo Retrieves installable-driver data
GetNextDriver Enumerates installable-driver instances
OpenDriver Opens an installable driver
SendDriverMessage Sends a message to an installable driver

Menu Functions (3.1)
A menu is an input tool in a Windows application that offers users one or more items, which they can
select with the mouse or keyboard. An item in a menu bar can display a pop-up menu, and any item in a
pop-up menu can display another pop-up menu. In addition, a pop-up menu can appear anywhere on the
screen.
AppendMenu Appends a new item to the end of a menu
CheckMenuItem Changes a check mark by a menu item
CreateMenu Creates a menu
CreatePopupMenu Creates an empty pop-up window
DeleteMenu Deletes an item from a menu
DestroyMenu Destroys a menu
DrawMenuBar Redraws the menu bar of a window
EnableMenuItem Enables, disables, or grays a menu item
GetMenu Returns a menu handle for the specified window
GetMenuCheckMarkDimensions Retrieves default check mark bitmap dimensions
GetMenuItemCount Retrieves the number of items in a menu
GetMenuItemID Returns the handle of a menu item
GetMenuState Retrieves status flags for a menu item
GetMenuString Copies a menu-item label into a buffer
GetSubMenu Returns a pop-up menu handle
GetSystemMenu Provides access to the System menu
HiliteMenuItem Changes highlighting of top-level menu item
InsertMenu Inserts a new item in a menu
LoadMenuIndirect Returns a menu handle for a menu template
ModifyMenu Changes an existing menu item
RemoveMenu Deletes a menu item and pop-up menu
SetMenu Sets the menu for a window
SetMenuItemBitmaps Associates bitmaps with a menu item
TrackPopupMenu Displays and tracks a pop-up menu

Message functions (3.1)
CallWindowProc Passes message information to a window procedure
DispatchMessage Dispatches a message to a window
GetMessage Retrieves a message from the message queue
GetMessagePos Retrieves the cursor position for the last message
GetMessageTime Retrieves the time for the last message
InSendMessage Determines whether window is processing SendMessage
PeekMessage Checks an application's message queue
PostAppMessage Posts a message to an application (task)
PostMessage Places a message in a window's message queue
PostQuitMessage Informs Windows that an application is exiting
ReplyMessage Replies to a message sent through SendMessage
SendMessage Sends a message to a window
SetMessageQueue Creates a new message queue
TranslateAccelerator Processes accelerator keys for menu commands
TranslateMDISysAccel Processes MDI keyboard accelerators
TranslateMessage Translates virtual-key messages
WaitMessage Suspends an application and yields control

Network functions (3.1)
WNetAddConnection Adds a network connection
WNetCancelConnection Removes a network connection
WNetGetConnection Lists the network connection

Painting Functions (3.1)
BeginPaint Prepares a window for painting
DrawFocusRect Draws a rectangle in the focus style
DrawIcon Draws an icon in the specified device context
EndPaint Marks the end of painting in the specified window
ExcludeUpdateRgn Excludes an updated region from a clipping region
FrameRect Draws a window border with the specified brush
GetDC Returns a window device-context handle
GetUpdateRect Retrieves window update-region dimensions
GetUpdateRgn Retrieves the window update region
GetWindowDC Retrieves the window device context
GrayString Draws gray text at the specified location
InvalidateRect Adds a rectangle to a window's update region
InvalidateRgn Adds a region to a window's update region
InvertRect Inverts a rectangular area
ReleaseDC Frees a device context
UpdateWindow Updates a window's client area
ValidateRect Removes a rectangle from a window's update region
ValidateRgn Removes a region from a window's update region

Property Functions (3.1)
EnumProps Enumerates property-list entries
GetProp Returns a data handle from a window property list
RemoveProp Removes a property-list entry
SetProp Adds or changes a property-list entry

Scrolling Functions (3.1)
GetScrollPos Retrieves the current scroll-bar thumb position
GetScrollRange Retrieves the minimum and maximum scroll-bar positions
ScrollDC Scrolls a rectangle of bits horizontally and vertically
ScrollWindow Scrolls the contents of a window's client area
ScrollWindowEx Scrolls the contents of a window's client area
SetScrollPos Sets the scroll-bar thumb position
SetScrollRange Sets minimum and maximum scroll-bar positions
ShowScrollBar Shows or hides a scroll bar

System Functions (3.1)
GetSysColor Retrieves the display-element color
GetSystemMetrics Retrieves the system metrics
GetTickCount Retrieves the amount of time Windows has been running
SetSysColors Sets one or more system colors

Window-Creation Functions (3.1)
AdjustWindowRect Computes the required size of a window rectangle
AdjustWindowRectEx Computes the required size of a window rectangle
CreateWindow Creates an overlapped, pop-up, or child window
CreateWindowEx Creates an overlapped, pop-up, or child window
DefDlgProc Provides default window message processing
DefFrameProc Provides default MDI frame window message processing
DefMDIChildProc Provides default MDI child window message processing
DefWindowProc Calls the default window procedure
DestroyWindow Destroys a window
GetClassInfo Returns window class information
GetClassLong Retrieves a long value from extra class memory window class
GetClassName Retrieves class name of a window
GetClassWord Retrieves a word value from extra class memory window class memory word
GetLastActivePopup Determines most recently active pop-up window
GetWindowLong Retrieves a long value from extra window memory
GetWindowWord Retrieves a word value from extra window memory
RegisterClass Registers a window class
SetClassLong Sets a long value in extra class memory
SetClassWord Sets a word value in extra class memory
SetWindowLong Sets a long value in extra window memory
SetWindowWord Sets a word value in extra window memory
UnregisterClass Frees a window class

New 3.1 user functions
CallNextHookEx Passes hook information down the hook chain
CloseDriver Closes an installable driver
CopyCursor Copies a cursor
CopyIcon Copies an icon
DefDriverProc Provides default processing of installable-driver messages
EnableCommNotification Enables or disables WM_COMMNOTIFY posting
EnableScrollBar Enables or disables scroll-bar arrows
GetClipCursor Retrieves screen coordinates for cursor-confining rectangle
GetCursor Returns current cursor handle
GetDCEx Returns the handle of a device context
GetDriverInfo Retrieves installable-driver data
GetDriverModuleHandle Returns an installable-driver instance handle
GetFreeSystemResources Returns percentage of free system resource space
GetMessageExtraInfo Retrieves information about a hardware message
GetNextDriver Enumerates installable-driver instances
GetOpenClipboardWindow Returns handle to window that opened clipboard
GetQueueStatus Determines queued message type
GetSystemDebugState Returns system-state information to a debugger
GetTimerResolution Retrieves the timer resolution
GetWindowPlacement Retrieves window show state and min/max positions
IsMenu Determines whether a menu handle is valid
LockInput Locks input to all tasks except the current one
LockWindowUpdate Disables or reenables drawing in a window
MapWindowPoints Converts points to another coordinate system
OpenDriver Opens an installable driver
QuerySendMessage Determines whether message originated in task
RedrawWindow Updates rectangle or region in window's client area
ScrollWindowEx Scrolls the contents of a window's client area
SendDriverMessage Sends a message to an installable driver
SetWindowPlacement Sets window show state and min/max position
SetWindowsHookEx Installs an application defined hook function
SubtractRect Creates a rectangle from the difference of two
SystemParametersInfo Queries or sets system-wide parameters
UnhookWindowsHookEx Removes a function from the hook chain
WNetAddConnection Adds a network connection
WNetCancelConnection Removes a network connection
WNetGetConnection Lists a network connection

Bitmap Functions (3.1)
BitBlt Copies a bitmap between device contexts
CreateBitmap Creates a device-dependent memory bitmap
CreateBitmapIndirect Creates a bitmap using a BITMAP structure
CreateCompatibleBitmap Creates a bitmap compatible with a device context
CreateDIBitmap Creates a bitmap handle from DIB specification
CreateDiscardableBitmap Creates a discardable bitmap
GetBitmapBits Copies bitmap bits into a buffer
GetBitmapDimension Retrieves the width and height of a bitmap
GetBitmapDimensionEx Retrieves the width and height of a bitmap
GetDIBits Copies DIB bits into a buffer
GetPixel Retrieves the RGB color of a specified pixel
LoadBitmap Loads a bitmap resource
PatBlt Creates a bit pattern on a device
SetBitmapBits Sets bitmap bits from an array of bytes
SetBitmapDimension Sets the width and height of bitmap
SetBitmapDimensionEx Sets the width and height of bitmap
SetDIBits Sets the bits of a bitmap
SetDIBitsToDevice Sets DIB bits to a device
SetPixel Sets a pixel to a specified color
StretchBlt Sets the bitmap-stretching mode
StretchDIBits Moves DIB from source to destination rectangle

Clipping Functions (3.1)
ExcludeClipRect Creates new clipping region, excluding rectangle
GetClipBox Retrieves a rectangle for the clipping region
IntersectClipRect Creates a clipping region from an intersection
OffsetClipRgn Moves a clipping region
PtVisible Queries whether a point is within the clipping region
RectVisible Queries whether a rectangle is within the clipping region
SelectClipRgn Selects a clipping region for the device context

Coordinate Functions (3.1)
ChildWindowFromPoint Determines which child window contains a point
ClientToScreen Converts client point to screen coordinates
DPtoLP Converts device points to logical coordinates
GetCurrentPosition Retrieves position in logical coordinates
GetCurrentPositionEx Retrieves position in logical coordinates
LPtoDP Converts logical points to device coordinates
MapWindowPoints Converts points to another coordinate system
ScreenToClient Converts screen points to client coordinates
WindowFromPoint Returns the handle of a window containing a point

Device-Context Functions (3.1)
CreateCompatibleDC Creates a DC compatible with a specified device
CreateDC Creates a device context
CreateIC Creates an information context
DeleteDC Deletes a device context
GetDC Retrieves the handle of a device context
GetDCEx Retrieves the handle of a device context
GetDCOrg Retrieves the translation origin for a device context
ResetDC Updates a device context
RestoreDC Restores a device context
ReleaseDC Frees a device context
SaveDC Saves the current state of a device context

Drawing-Attribute Functions (3.1)
GetBkColor Retrieves the current background color
GetBkMode Retrieves the background mode
GetPolyFillMode Retrieves the current polygon-filling mode
GetROP2 Retrieves the current drawing mode
GetStretchBltMode Retrieves the current bitmap-stretching mode
GetTextColor Retrieves the current text color
SetBkColor Sets the background color
SetBkMode Sets the background mode
SetPolyFillMode Sets the polygon-filling mode
SetROP2 Sets the drawing mode
SetStretchBltMode Sets the bitmap-stretching mode
SetTextColor Sets the foreground color of text

Drawing-Tool Functions (3.1)
CreateBrushIndirect Creates a brush with the specified attributes
CreateDIBPatternBrush Creates a pattern brush from a DIB
CreateHatchBrush Creates a hatched brush
CreatePatternBrush Creates a pattern brush from a bitmap
CreatePen Creates a pen with the specified attributes
CreatePenIndirect Creates a pen using a LOGPEN structure
CreateSolidBrush Creates a solid brush with a specified color
DeleteObject Deletes an object from memory
EnumObjects Enumerates the pens and brushes in a device context
GetBrushOrg Retrieves the origin of the current brush
GetObject Retrieves information about an object
GetStockObject Retrieves the handle of a stock pen, brush, or font
IsGDIObject Determines if handle is not handle of GDI object
SelectObject Selects an object into a device context
SetBrushOrg Sets the origin of the current brush
UnrealizeObject Resets brush origins or logical palettes

Ellipse and Polygon Functions (3.1)
Chord Draws a chord
DrawFocusRect Draws a rectangle in the focus style
Ellipse Draws an ellipse
Pie Draws a pie-shaped wedge
Polygon Draws a polygon
PolyPolygon Draws a series of polygons
Rectangle Draws a rectangle
RoundRect Draws a rectangle with rounded corners

Font Functions (3.1)
AddFontResource Adds a font resource to the font table
CreateFont Creates a logical font
CreateFontIndirect Creates a font using the LOGFONT structure
CreateScalableFontResource Creates a resource file with font information
EnumFontFamilies Enumerates fonts in a specified family
EnumFonts Enumerates fonts on a specified device
GetAspectRatioFilter Retrieves the current aspect-ratio filter
GetAspectRatioFilterEx Retrieves the current aspect-ratio filter
GetCharABCWidths Retrieves the widths of consecutive characters
GetCharWidth Retrieves character widths
GetFontData Retrieves font-metric information
GetGlyphOutline Retrieves data for individual outline character
GetKerningPairs Retrieves kerning pairs for the current font
GetOutlineTextMetrics Retrieves metrics for TrueType fonts
GetRasterizerCaps Retrieves status of TrueType fonts on system
RemoveFontResource Removes an added font resource
SetMapperFlags Sets the font-mapper flag

Line-Output Functions (3.1)
Arc Draws an arc
LineDDA Computes successive points in a line
LineTo Draws a line from the current position
MoveTo Moves the current position
MoveToEx Moves the current position
Polyline Draws line segments to connect specified points

Mapping Functions (3.1)
GetMapMode Retrieves the mapping mode
GetViewportExt Retrieves viewport extents
GetViewportExtEx Retrieves viewport extents
GetViewportOrg Retrieves the viewport origin
GetViewportOrgEx Retrieves the viewport origin
GetWindowExt Retrieves the window extents
GetWindowExtEx Retrieves the window extents
GetWindowOrg Retrieves the window origin
GetWindowOrgEx Retrieves the window origin
OffsetViewportOrg Moves the viewport origin
OffsetViewportOrgEx Moves the viewport origin
OffsetWindowOrg Moves the window origin
OffsetWindowOrgEx Moves the window origin
ScaleViewportExt Scales the viewport extents
ScaleViewportExtEx Scales the viewport extents
ScaleWindowExt Scales the window extents
ScaleWindowExtEx Scales the window extents
SetMapMode Sets the mapping mode
SetViewportExt Sets the viewport extents
SetViewportExtEx Sets the viewport extents
SetViewportOrg Sets the viewport origin
SetViewportOrgEx Sets the viewport origin
SetWindowExt Sets the window extents
SetWindowExtEx Sets the window extents
SetWindowOrg Sets the window origin
SetWindowOrgEx Sets the window origin

Metafile Functions (3.1)
CloseMetaFile Closes a metafile device context and creates a handle
CopyMetaFile Copies a source metafile to a file
CreateMetaFile Creates a metafile device context
DeleteMetaFile Invalidates a metafile handle
EnumMetaFile Enumerates the metafile records in a metafile
GetMetaFile Creates a handle to a metafile
GetMetaFileBits Creates a memory object from a metafile
PlayMetaFile Plays a metafile
PlayMetaFileRecord Plays a metafile record
SetMetaFileBits Creates a memory object from a metafile
SetMetaFileBitsBetter Creates a memory object from a metafile

Palette Functions (3.1)
AnimatePalette Replaces entries in a logical palette
CreatePalette Creates a logical color palette
GetNearestColor Retrieves the closest available color
GetNearestPaletteIndex Retrieves the nearest match for a color
GetPaletteEntries Retrieves a range of palette entries
GetSystemPaletteEntries Retrieves entries from the system palette
GetSystemPaletteUse Determines access to the entire system palette
RealizePalette Maps entries from logical to system palette
ResizePalette Changes the size of a logical palette
SelectPalette Selects a palette into a device context
SetPaletteEntries Sets colors and flags for a logical palette
SetSystemPaletteUse Sets the use of static colors in the system palette

Printer-Control Functions (3.1)
AbortDoc Terminates a print job
DeviceCapabilities Retrieves the capabilities of a device
DeviceMode Displays a dialog box for the printing modes
EndDoc Ends a print job
EndPage Ends a page
Escape Allows access to device capabilities
ExtDeviceMode Displays a dialog box for the printing modes
GetDeviceCaps Retrieves the device capabilities
SetAbortProc Sets the abort function for a print job
SpoolFile Puts a file in the spooler queue
StartDoc Starts a print job
StartPage Prepares the printer driver to accept data
QueryAbort Queries whether to terminate a print job

Rectangle Functions (3.1)
CopyRect Copies the dimensions of a rectangle
EqualRect Determines whether two rectangles are equal
FrameRect Draws a window border with the specified brush
FillRect Fills a rectangle with the specified brush
GetBoundsRect Returns current accumulated bounding rectangle
InflateRect Changes rectangle dimensions
IntersectRect Calculates the intersection of two rectangles
InvertRect Inverts a rectangular area
IsRectEmpty Determines whether a rectangle is empty
OffsetRect Moves a rectangle by the specified offsets
PtInRect Determines whether a point is in a rectangle
SetBoundsRect Controls bounding-rectangle accumulation
SetRect Sets rectangle coordinates
SetRectEmpty Creates an empty rectangle
SubtractRect Creates rectangle from difference of two others
UnionRect Creates the union of two rectangles

Region Functions (3.1)
CombineRgn Creates a region by combining two regions
CreateEllipticRgn Creates an elliptical region
CreateEllipticRgnIndirect Creates an elliptical region
CreatePolygonRgn Creates a polygonal region
CreatePolyPolygonRgn Creates a region consisting of polygons
CreateRectRgn Creates a rectangular region
CreateRectRgnIndirect Creates a region using a RECT structure
CreateRoundRectRgn Creates a rectangular region with round corners
EqualRgn Compares two regions for equality
FillRgn Fills a region with the specified brush
FrameRgn Draws a border around a region
GetRgnBox Retrieves the bounding rectangle for a region
InvertRgn Inverts the colors in a region
OffsetRgn Moves a region by the specified offsets
PaintRgn Fills region with brush in device context
PtInRegion Queries whether a point is in a region
RectInRegion Queries whether a rectangle overlaps a region
SetRectRgn Changes a region into the specified rectangle

Text Functions (3.1)
DrawText
ExtTextOut Writes a character string in a rectangular region
GetTabbedTextExtent Determines the dimensions of a tabbed string
GetTextAlign Retrieves the status of text-alignment flags
GetTextCharacterExtra Retrieves the intercharacter spacing
GetTextExtent Computes the dimensions of a string
GetTextExtentPoint Computes the dimensions of a string
GetTextFace Retrieves the typeface name of the current font
GetTextMetrics Retrieves the metrics for the current font
SetTextAlign Sets text-alignment flags for the device context
SetTextCharacterExtra Sets the intercharacter spacing
SetTextJustification Sets the justification for text output
TabbedTextOut Writes a tabbed character string
TextOut Writes a character string at the specified location

TrueType Functions (3.1)
CreateScalableFontResource Creates a resource file with font information
GetCharABCWidths Retrieves the widths of consecutive characters
GetFontData Retrieves font-metric information
GetGlyphOutline Retrieves data for individual outline character
GetKerningPairs Retrieves kerning pairs for the current font
GetOutlineTextMetrics Retrieves metric information for TrueType fonts
GetRasterizerCaps Retrieves status of TrueType fonts on system

Pen Functions (3.1)
CreatePen Creates a pen with the specified attributes
CreatePenIndirect Creates a pen using a LOGPEN structure
GetStockObject Retrieves the handle of a stock pen, brush, or font
LineTo Draws a line from the current position

Brush Functions (3.1)
CreateBrushIndirect Creates a brush with the specified attributes
CreateHatchBrush Creates a hatched brush
CreatePatternBrush Creates a pattern brush from a bitmap
CreateSolidBrush Creates a solid brush with a specified color
GetBrushOrg Retrieves the origin of the current brush
GetBrushOrgEx Retrieves the origin of the current brush
GetStockObject Retrieves the handle of a stock pen, brush, or font
SetBrushOrg Sets the origin of the current brush

New 3.1 GDI functions
AbortDoc Terminates a print job
CreateScalableFontResource Creates a resource file with font information
EndDoc Ends a print job
EndPage Ends a page
EnumFontFamilies Enumerates fonts in a specified family
GetAspectRatioFilterEx Retrieves the current aspect-ratio filter
GetBoundsRect Returns current accumulated bounding rectangle
GetBrushOrgEx Retrieves the origin of the current brush
GetCharABCWidths Retrieves the widths of consecutive characters
GetCurrentPositionEx Retrieves the current position in logical units
GetFontData Retrieves font-metric information
GetGlyphOutline Retrieves data for individual outline character
GetKerningPairs Retrieves kerning pairs for the current font
GetOutlineTextMetrics Retrieves metrics for TrueType fonts
GetRasterizerCaps Retrieves status of TrueType fonts on system
GetTextExtentPoint Computes the dimensions of a string
GetViewportExtEx Retrieves the viewport extents
GetViewportOrgEx Retrieves the viewport origin
GetWindowExtEx Retrieves the window extents
GetWindowOrgEx Retrieves the window origin
IsGDIObject Determines whether handle is not a GDI object
MoveToEx Moves the current position
OffsetViewportOrgEx Moves the viewport origin
OffsetWindowOrgEx Moves the window origin
QueryAbort Queries whether to terminate a print job
ResetDC Updates a device context
ScaleViewportExtEx Scales the viewport extents
ScaleWindowExtEx Scales the window extents
SetAbortProc Sets the abort function for a print job
SetBitmapDimensionEx Sets the width and height of a bitmap
SetBoundsRect Controls bounding-rectangle accumulation
SetMetaFileBitsBetter Creates a memory object from a metafile
SetViewportExtEx Sets the viewport extents
SetViewportOrgEx Sets the viewport origin
SetWindowExtEx Sets the window extents
SetWindowOrgEx Sets the window origin
SpoolFile Puts a file in the spooler queue
StartDoc Starts a print job
StartPage Prepares a printer driver to accept data

Application Execution Functions (3.1)
LoadModule Loads and executes Windows application
WinExec Runs the specified application
WinHelp Invokes Windows Help

Atom-management Functions (3.1)
Atom-management functions create and manipulate atoms. Atoms are integers that uniquely identify
character strings. They are useful in applications that use many character strings and in applications that
need to conserve memory. Windows stores atoms in atom tables. A local atom table is allocated in an
application's data segment; it cannot be accessed by other applications. The global atom table can be
shared and is useful in applications that use dynamic data exchange (DDE).
AddAtom Adds a string to the local atom table
DeleteAtom Decrements the reference count of a local atom
FindAtom Retrieves a string atom from a local atom table
GetAtomHandle Retrieves an atom handle
GetAtomName Retrieves a local atom string
GlobalAddAtom Adds a string to the system atom table
GlobalDeleteAtom Decrements the reference count of a global atom
GlobalFindAtom Retrieves a string atom from a global atom table
GlobalGetAtomName Retrieves a global atom string
InitAtomTable Sets the size of the local atom hash table

Communication Functions (3.1)
BuildCommDCB Translates a device-definition string to a DCB
ClearCommBreak Restores character transmission
CloseComm Closes a communications device
EnableCommNotification Enables or disables WM_COMMNOTIFY posting
EscapeCommFunction Passes an extended function to a device
FlushComm Flushes a transmission or receiving queue
GetCommError Retrieves the communications-device status
GetCommEventMask Retrieves the device event word
GetCommState Retrieves the device control block
OpenComm Opens a communications device
ReadComm Reads from a communications device
SetCommBreak Suspends character transmission
SetCommEventMask Enables events in a device event word
SetCommState Sets the communications-device state
TransmitCommChar Places a character in the transmission queue
UngetCommChar Puts a character back in the receiving queue
WriteComm Writes to a communications device

Debugging Functions (3.1)
DebugBreak Causes a breakpoint exception
DebugOutput Sends messages to the debugging terminal
DirectedYield Forces execution of a specified task
FatalAppExit Terminates an application
FatalExit Sends current state of Windows to the debugger
GetSystemDebugState Returns system-state information to a debugger
GetWinDebugInfo Retrieves current system-debugging information
LockInput Locks input to all tasks except the current one
LogError Identifies the most recent system error
LogParamError Identifies a parameter validation error
OutputDebugString Sends a character string to the debugger
QuerySendMessage Determines whether a message originated in a task
SetWinDebugInfo Sets the current system-debugging information
ValidateCodeSegments Tests for random memory overwrites
ValidateFreeSpaces Checks free memory for valid contents

File I/O Functions (3.1)
GetDriveType Determines the drive type
GetSystemDirectory Returns the path of the Windows system directory
GetTempDrive Returns a disk drive letter for temporary files
GetTempFileName Creates a temporary filename
GetWindowsDirectory Returns the path of the Windows directory
_hread Reads data from a file
_hwrite Writes data to a file
_lclose Closes an open file
_lcreat Creates or opens a file
_llseek Repositions the file pointer
_lopen Opens an existing file
_lread Reads data from a file
_lwrite Writes data to a file
hmemcpy Copies bytes from source to destination buffer
OpenFile Creates, opens, reopens, or deletes a file
SetHandleCount Changes the number of available file handles

Initialization-File Functions (3.1)
Initialization-file functions obtain information from and copy information to a Windows or private
(application-specific) initialization file. The Windows initialization file (WIN.INI) is a special ASCII file
that contains entry-value pairs representing run-time options for applications.

An application should use a private initialization file to record information that affects it alone. This
improves the performance of the application and Windows by reducing the amount of information that
Windows must read when it accesses the initialization file. An application should record information in
WIN.INI only if the information affects the Windows environment or other applications and should send
the WM_WININICHANGE message to all top-level windows.

The WININI.WRI and SYSINI.WRI files supplied with the retail version of Windows describe the
contents of the WIN.INI and SYSTEM.INI files, respectively.
GetPrivateProfileInt Retrieves integer value from initialization file
GetPrivateProfileString Retrieves a string from an initialization file
GetProfileInt Retrieves an integer value from WIN.INI
GetProfileString Retrieves a string from WIN.INI
WritePrivateProfileString Writes a string to an initialization file
WriteProfileString Writes a string to WIN.INI

Memory-Management Functions (3.1)
Memory-management functions manage system memory. There are two categories of memory-
management functions: those that manage global memory and those that manage local memory. Global
memory is all memory in the system that has not been allocated by an application or reserved by the
system. Local memory is the memory in the data segment of a Windows application.
GetFreeSpace Returns the number of free bytes in the global heap
GetFreeSystemResources Returns the percentage of free system-resource space
GetSelectorBase Retrieves the base address of a selector
GetSelectorLimit Retrieves the limit of a selector
GetWinFlags Returns the current system configuration flags
GlobalAlloc Allocates memory from the global heap
GlobalCompact Generates free global memory by compacting
GlobalDosAlloc Allocates memory available to MS-DOS in real mode
GlobalDosFree Frees global memory allocated by GlobalDosAlloc
GlobalFlags Returns information about a global memory object
GlobalFree Frees a global memory object
GlobalHandle Retrieves the handle for a specified selector
GlobalLock Locks global memory object and returns pointer
GlobalLRUNewest Moves global memory object to newest LRU position
GlobalLRUOldest Moves global memory object to oldest LRU position
GlobalNotify Installs a notification procedure
GlobalReAlloc Changes size or attributes of global memory object
GlobalSize Returns the size of a global memory object
GlobalUnlock Unlocks a global memory object
GlobalUnwire Not used in Windows 3.1
GlobalWire Not used in Windows 3.1
LimitEMSPages Not used in Windows 3.1
LocalAlloc Allocates memory from the local heap
LocalCompact Generates free local memory by compacting
LocalFlags Returns local memory object information
LocalFree Frees a local memory object
LocalHandle Returns the handle of a local memory object
LocalInit Initializes the specified local heap
LocalLock Locks local memory object and returns pointer
LocalReAlloc Changes size or attributes of local memory object
LocalShrink Shrinks the specified local heap
LocalSize Returns the size of a local memory object
LocalUnlock Unlocks a local memory object
LockSegment Locks a discardable memory segment
SetSelectorBase Sets the base address of a selector
SetSelectorLimit Sets the limit of a selector
SetSwapAreaSize Sets the amount of memory used for code segments
SwitchStackBack Restores the current task stack
SwitchStackTo Changes the location of the current task stack
UnLockSegment Unlocks a discardable memory segment

Module-Management Functions (3.1)
Module-management functions alter and retrieve information about Windows modules, which are
loadable, executable units of code and data.
FreeLibrary Frees a loaded library module
FreeModule Frees a loaded module
FreeProcInstance Frees a function instance
GetCodeHandle Determines the location of a function
GetInstanceData Copies data from previous instance to current one
GetModuleFileName Returns the filename for a module
GetModuleHandle Retrieves a handle for the specified module
GetModuleUsage Retrieves the reference count of a module
GetProcAddress Returns the address of an exported DLL function
GetVersion Returns the current MS-DOS and Windows versions
LoadLibrary Loads the specified library module
MakeProcInstance Returns address of prolog code for function

Optimization-Tool Functions (3.1)
ProfClear Discards all buffered Profiler samples
ProfFinish Stops Profiler sampling and flushes the buffer
ProfFlush Flushes the Profiler sampling buffer to a disk
ProfInsChk Determines whether Profiler is installed
ProfSampRate Sets the Profiler code-sampling rate
ProfSetup Sets the Profiler buffer size and sample quantity
ProfStart Starts Profiler sampling
ProfStop Stops Profiler sampling
SwapRecording Starts or stops recording of memory swapping

Pointer-Validation Functions (3.1)
IsBadCodePtr Determines whether a code pointer is valid
IsBadHugeReadPtr Determines whether a huge read pointer is valid
IsBadHugeWritePtr Determines whether a huge write pointer is valid
IsBadReadPtr Determines whether a read pointer is valid
IsBadStringPtr Determines whether a string pointer is valid
IsBadWritePtr Determines whether a write pointer is valid

Resource-Management Functions (3.1)
Resource-management functions find and load application resources from a Windows executable file. A
resource can be a cursor, icon, bitmap, string, or font.
AccessResource Opens an executable file and locates a resource
AllocResource Allocates memory for a resource
FindResource Locates a resource in a resource file
FreeResource Frees a loaded resource
LoadAccelerators Loads an accelerator table
LoadBitmap Loads a bitmap resource
LoadCursor Loads a cursor resource
LoadIcon Loads an icon resource
LoadMenu Loads a menu resource
LoadResource Loads the specified resource in global memory
LoadString Loads a string resource
LockResource Locks a resource in memory
SetResourceHandler Installs a callback function that loads resources
SizeofResource Returns the size of a resource

Segment Functions (3.1)
Segment functions allocate, free, and convert selectors; lock and unlock memory objects referenced by
selectors; and retrieve information about segments.

An application should not use these functions unless it is absolutely necessary. Use of these functions
violates preferred Windows programming practices.
AllocDStoCSAlias Translates a data segment to a code segment
AllocSelector Allocates a new selector
FreeSelector Frees an allocated selector
GetCodeInfo Retrieves code-segment information
GlobalFix Locks a global memory object in linear memory
GlobalPageLock Increments the global memory page-lock count
GlobalPageUnlock Decrements the global memory page-lock count
GlobalUnfix Unlocks a global memory object in linear memory
LockSegment Locks a discardable memory segment
PrestoChangoSelector Converts a code or data selector
UnlockSegment Unlocks a discardable memory segment

String-Manipulation Functions (3.1)
String-manipulation functions translate strings from one character set to another, determine and convert
the case of strings, determine whether a character is alphabetic or alphanumeric, find adjacent characters in
a string, and perform other string manipulations.
AnsiLower Converts a string to lowercase
AnsiLowerBuff Converts a buffer string to lowercase
AnsiNext Moves to the next character in a string
AnsiPrev Moves to the previous character in a string
AnsiToOem Translates a Windows string to an OEM string
AnsiToOemBuff Translates a Windows string to an OEM string
AnsiUpper Converts a string to uppercase
AnsiUpperBuff Converts a buffer string to uppercase
IsCharAlpha Determines whether a character is alphabetic
IsCharAlphaNumeric Determines whether a character is alphanumeric
IsCharLower Determines whether a character is lowercase
IsCharUpper Determines whether a character is uppercase
lstrcat Appends one string to another
lstrcmp Compares two character strings
lstrcmpi Compares two character strings
lstrcpy Copies a string to a buffer
lstrcpyn Copies characters from a string to a buffer
lstrlen Returns the length, in bytes, of a string
OemToAnsi Translates an OEM string to a Windows string
OemToAnsiBuff Translates an OEM string to a Windows string
ToAscii Translates virtual-key code to Windows character
wsprintf Formats and stores a string in a buffer
wvsprintf Formats and stores a string in a buffer

Task Functions (3.1)
Task functions alter the execution status of tasks, return information associated with a task, and retrieve
information about the environment in which the task is being executed. A task is a single Windows
application call.
Catch Captures the current execution environment
ExitWindows Restarts or terminates Windows
GetCurrentPDB Returns the selector address of the current PDB
GetCurrentTask Returns the current task handle
GetDOSEnvironment Returns a far pointer to the current environment
GetNumTasks Retrieves the current number of tasks
IsTask Determines whether a task handle is valid
SetErrorMode Controls Interrupt 24h error handling
Throw Restores the execution environment
Yield Stops the current task

New 3.1 kernel functions
_hread Reads data from a file
_hwrite Writes data to a file
DebugOutput Sends messages to the debugging terminal
DirectedYield Forces execution to continue with specified task
GetSelectorBase Retrieves the base address of a selector
GetSelectorLimit Retreives the limit of a selector
GetWinDebugInfo Queries current system-debugging information
hmemcpy Copies bytes from source to destination buffer
IsBadCodePtr Determines whether a code pointer is valid
IsBadHugeReadPtr Determines whether huge read pointer is valid
IsBadHugeWritePtr Determines whether a huge write pointer is valid
IsBadReadPtr Determines whether a read pointer is valid
IsBadStringPtr Determines whether a string pointer is valid
IsBadWritePtr Determines whether a write pointer is valid
IsDBCSLeadByte Determines whether character is DBCS lead byte
IsTask Determines whether a task handle is valid
LogError Identifies a system error
LogParamError Identifies a parameter validation error
SetSelectorBase Sets the base address of a selector
SetSelectorLimit Sets the limit of a selector
SetWinDebugInfo Sets the current system-debugging information

OLE function groups (3.1)
Document Functions
Link Functions
Object-creation Functions
Object-management Functions
Server Functions (Client)
Server Functions (Server)

Document Functions (3.1)
OleEnumObjects Enumerates objects in a document
OleRegisterClientDoc Registers a document with the library
OleRegisterServerDoc Registers a document with the server library
OleRename Informs the library that an object is renamed
OleRenameClientDoc Informs the library that a document is renamed
OleRenameServerDoc Informs the library that a document is renamed
OleRevertClientDoc Informs library that document reverted to saved state
OleRevertServerDoc Informs library that document is reset to saved state
OleRevokeClientDoc Informs the library that a document is not open
OleRevokeServerDoc Revokes the specified document
OleSavedClientDoc Informs library that a document has been saved
OleSavedServerDoc Informs library that a document has been saved

Link Functions (3.1)
OleGetLinkUpdateOptions Retrieves update options for an object
OleQueryLinkFromClip Retrieves link data for clipboard object
OleQueryOutOfDate Determines whether an object is out-of-date
OleSetLinkUpdateOptions Sets link-update options for an object
OleUpdate Updates the specified object

Object-creation Functions (3.1)
OleClone Makes a copy of an object
OleCopyFromLink Makes an embedded copy of a linked object
OleCreate Creates an object of a specified class
OleCreateFromClip Creates an object from the clipboard
OleCreateFromFile Creates an object from a file
OleCreateFromTemplate Creates an object from a template
OleCreateInvisible Creates an object without displaying it
OleCreateLinkFromClip Creates a link to an object from the clipboard
OleCreateLinkFromFile Creates a link to an object in a file
OleLoadFromStream Loads an object from the containing document
OleObjectConvert Creates a new object using a specified protocol
OleQueryCreateFromClip Retrieves protocol data for clipboard object

Object-management Functions (3.1)
OleActivate Opens an object for an operation
OleCopyToClipboard Puts the specified object on the clipboard
OleDelete Deletes an object
OleDraw Draws an object into a device context
OleEnumFormats Enumerates data formats for an object
OleEqual Compares two objects for equality
OleGetData Retrieves data from an object in a specified format
OleQueryBounds Retrieves the bounding rectangle for an object
OleQueryClientVersion Retrieves the version number of a client library
OleQueryName Retrieves the name of an object
OleQueryProtocol Determines whether an object supports a protocol
OleQuerySize Retrieves the size of an object
OleQueryType Determines if object is linked, embedded, or static
OleRelease Releases an object from memory
OleSaveToStream Saves an object to the stream
OleSetBounds Sets the bounding rectangle for an object
OleSetColorScheme Specifies the client's recommended object colors
OleSetData Sends data in the specified format to the server
OleSetHostNames Sets the client name and object name for server
OleSetTargetDevice Specifies the target device for an object

Server Functions (Client) (3.1)
OleClose Closes the specified open object
OleExecute Sends DDE execute commands to a server
OleLockServer Keeps an open server application in memory
OleQueryOpen Determines whether an object is open
OleQueryReleaseError Determines the status of a released operation
OleQueryReleaseMethod Determines which operation released
OleQueryReleaseStatus Determines whether an operation released
OleReconnect Reconnects to an open linked object
OleRequestData Retrieves data from a server in a specified format
OleUnlockServer Releases a server locked with OleLockServer

Server Functions (Server) (3.1)
OleBlockServer Queues incoming requests for the server
OleQueryServerVersion Retrieves the version number of the server library
OleRegisterServer Registers the specified server
OleRevokeObject Revokes access to an object
OleRevokeServer Revokes the specified server
OleUnblockServer Processes requests from a queue

Alphabetized Windows functions (3.1)
_hread Reads from a file
_hwrite Writes to a file
_lclose Closes an open file
_lcreat Creates or opens a file
_llseek Repositions the file pointer
_lopen Opens a file
_lread Reads from a file
_lwrite Writes to a file
AbortDoc Terminates a print job
AccessResource Opens a resource file and locates a resource
AddAtom Adds a string to the local atom table
AddFontResource Adds a font to the font table
AdjustWindowRect Computes the required size of a window rectangle
AdjustWindowRectEx Computes the required size of a window rectangle
AllocDiskSpace Creates a file to consume space on a disk partition.
AllocDStoCSAlias Translates a data segment to a code segment
AllocFileHandles Allocates up to 256 file handles
AllocGDIMem Allocates all available memory in the GDI heap.
AllocMem Allocates all available memory.
AllocResource Allocates memory for a resource
AllocSelector Allocates a new selector
AllocUserMem Allocates all available memory in the User heap.
AnimatePalette Replaces entries in a logical palette
AnsiLower Converts a string to lower case
AnsiLowerBuff Converts a string buffer to lower case
AnsiNext Moves to the next character in a string
AnsiPrev Move to the previous character in a string
AnsiToOem Translates a Windows string to an OEM string
AnsiToOemBuff Translates a Windows string to an OEM string
AnsiUpper Converst a string to upper case
AnsiUpperBuff Converts a string buffer to upper case
AnyPopup Indicates if pop-up or overlapped window exists
AppendMenu Appends a new item to a menu
Arc Draws an arc
ArrangeIconicWindows Arranges minimized child windows
BeginDeferWindowPos Creates a window-position structure
BeginPaint Prepares a window for painting
BitBlt Copies a bitmap between device contexts
BringWindowToTop Uncovers an overlapped window
BuildCommDCB Translates a device definition string to a DCB
CallMsgFilter Passes a message to a message-filter function
CallNextHookEx Passes hook information down the hook chain
CallWindowProc Passes a message to a window procedure
Catch Captures the current execution environment
ChangeClipboardChain Removes a window from the clipboard-viewer chain
ChangeMenu Obsolete
CheckDlgButton Changes a check mark by a dialog button
CheckMenuItem Changes a check mark by a menu item
CheckRadioButton Places a check mark by a radio button
ChildWindowFromPoint Determines the window containing a point
ChooseColor Creates a color-selection dialog box
ChooseFont Creates a font-selection dialog box
Chord Draws a chord
ClassFirst Retrieves information about first class in class list
ClassNext Retrieves information about next class in class list
ClearCommBreak Restores character transmission
ClientToScreen Converts client point to screen coordinates
ClipCursor Confines the cursor to a specified rectangle
CloseClipboard Closes the clipboard
CloseComm Closes a communications device
CloseDriver Closes an installable driver
CloseMetaFile Closes metafile dc and gets handle
CloseSound Obsolete

CloseWindow Minimizes a window
CombineRgn Creates a region by combining two regions
CommDlgExtendedError Retrieves Error Data
CopyCursor Copies a cursor
CopyIcon Copies an icon
CopyLZFile Copies a file and decompresss it if compressed
CopyMetaFile Copies a metafile
CopyRect Copies the dimensions of a rectangle
CountClipboardFormats Returns the number of clipboard formats
CountVoiceNotes Obsolete
CreateBitmap Creates device-dependent memory bitmap
CreateBitmapIndirect Creates bitmap using BITMAP structure
CreateBrushIndirect Creates a brush with specified attributes
CreateCaret Creates a new shape for the system caret
CreateCompatibleBitmap Creates bitmap compatible with DC
CreateCompatibleDC Creates a DC compatible with specified DC
CreateCursor Creates a cursor with specified dimensions
CreateDC Creates a device context
CreateDialog Creates a modeless dialog box
CreateDialogIndirect Creates modeless dialog box from memory template
CreateDialogIndirectParam Creates modeless dialog box from memory template
CreateDialogParam Creates a modeless dialog box
CreateDIBitmap Creates bitmap handle from DIB spec
CreateDIBPatternBrush Creates a pattern brush from a DIB
CreateDiscardableBitmap Creates discardable bitmap
CreateEllipticRgn Creates an elliptical region
CreateEllipticRgnIndirect Creates an elliptical region
CreateFont Creates a logical font
CreateFontIndirect Creates a font using LOGFONT structure
CreateHatchBrush Creates a hatched brush
CreateIC Creates an information context
CreateIcon Creates an icon with the specified dimensions
CreateMenu Creates a menu
CreateMetaFile Creates a metafile device context
CreatePalette Creates a logical color palette
CreatePatternBrush Creates a pattern brush from a bitmap
CreatePen Creates a pen
CreatePenIndirect Creates a pen using a LOGPEN structure
CreatePolygonRgn Creates a polygonal region
CreatePolyPolygonRgn Creates a region consisting of polygons
CreatePopupMenu Creates a pop-up window
CreateRectRgn Creates a rectangular region
CreateRectRgnIndirect Creates a region using a RECT structure
CreateRoundRectRgn Creates a rectangular region with round corners
CreateScalableFontResource Creates resource file with font info
CreateSolidBrush Creates a solid brush with a specified color
CreateWindow Creates a window
CreateWindowEx Creates a window
DdeAbandonTransaction Abandons an asynchronous transaction
DdeAccessData Accesses a DDE global memory object
DdeAddData Adds data to a DDE global memory object
DdeClientTransaction Begins a DDE data transaction
DdeCmpStringHandles Compares two DDE string handles
DdeConnect Establishes a conversation with a server
DdeConnectList Establishes multiple DDE conversations
DdeCreateDataHandle Creates a DDE data handle
DdeCreateStringHandle Creates a DDE string handle
DdeDisconnect Terminates a DDE conversation
DdeDisconnectList Destroys a DDE conversation list
DdeEnableCallback Enables or disables one or more DDE conversations
DdeFreeDataHandle Frees a global memory object
DdeFreeStringHandle Frees a DDE string handle
DdeGetData Copies data from a global memory object to a buffer
DdeGetLastError Returns an error code set by a DDEML function

DdeInitialize Registers an application with the DDEML
DdeKeepStringHandle Increments the usage count for a string handle
DdeNameService Registers or unregisters a service name
DdePostAdvise Prompts a server to send advise data to a client
DdeQueryConvInfo Retrieves information about a DDE conversation
DdeQueryNextServer Obtains the next handle in a conversation list
DdeQueryString Copies string-handle text to a buffer
DdeReconnect Reestablishes a conversation with a server
DdeSetUserHandle Associates a user-defined handle with a transaction
DdeUnaccessData Frees a DDE global memory object
DdeUninitialize Frees an application's DDEML resources
DebugBreak Causes a breakpoint exception
DebugOutput sends messages to the debugging terminal
DefDlgProc Provides default window message processing
DefDriverProc Calls the default installable-driver procedure
DeferWindowPos Updates a multiple window position structure
DefFrameProc Default MDI frame window message processing
DefHookProc Calls the next function in a hook-function chain
DefMDIChildProc Default MDI child window message processing
DefScreenSaverProc Calls default screen-saver window procedure
DefWindowProc Calls the default window procedure
DeleteAtom Decrements a local atom's reference count
DeleteDC Deletes a device context
DeleteMenu Deletes an item from a menu
DeleteMetaFile Invalidates a metafile handle
DeleteObject Deletes an object from memory
DestroyCaret Destroys the current caret
DestroyCursor Destroys a cursor
DestroyIcon Destroys an icon
DestroyMenu Destroys a menu
DestroyWindow Destroys a window
DeviceCapabilities Retrieves the capabilities of a device
DeviceMode Displays dialog box for printing modes
DialogBox Creates a modal dialog box
DialogBoxIndirect Creates modal dialog box from template in memory
DialogBoxIndirectParam Creates modal dialog box from template in memory
DialogBoxParam Creates a modal dialog box
DirectedYield Forces execution to continue at a specified task
DispatchMessage Dispatches a message to a window
DlgChangePassword Changes password for screen saver
DlgDirList Fills a directory list box
DlgDirListComboBox Fills a directory list box
DlgDirSelect Retrieves a selection from a directory list box
DlgDirSelectComboBox Retrieves a selction from a directory list box
DlgDirSelectComboBoxEx Retrieves selection from dir. list box
DlgDirSelectEx Retrieves a selection from a directory list box
DlgGetPassword Retrieves password for screen saver
DlgInvalidPassword Warns of invalid screen saver password
DOS3Call Issues a DOS Int 21h function request
DPtoLP Converts device points to logical points
DragAcceptFiles Registers whether a windows accepts dropped files
DragFinish Releases memory allocated for dropping files
DragQueryFile Retrieves filename of dropped file
DragQueryPoint Retrieves mouse position at file drop
DrawFocusRect Draws a rectangle in the focus style
DrawIcon Draws an icon in the specified device context
DrawMenuBar Redraws the menu bar
DrawText Draws formatted text in a rectangle
Ellipse Draws an ellipse
EmptyClipboard Empties the clipboard and frees data handles
EnableCommNotification Enables/disables WM_COMMNOTIFY posting to window
EnableHardwareInput Controls mouse and keyboard input queuing
EnableMenuItem Enabls, disables, or grays a menu item
EnableScrollBar Enables or disables scroll-bar arrows

EnableWindow Sets the window-enable state
EndDeferWindowPos Updates position and size of multiple windows
EndDialog Hides a modal dialog box
EndDoc Ends a print job
EndPage Ends a page
EndPaint Marks end of painting in the specified window
EnumChildWindows Passes child-window handles to callback function
EnumClipboardFormats Returns available clipboard formats
EnumFontFamilies Retrieves fonts in a specified family
EnumFonts Enumerates fonts on specified device
EnumMetaFile Enumerates metafile records
EnumObjects Enumerates pens and brushes in a device context
EnumProps Passes property-list entries to callback
EnumTaskWindows Passes task's window handles to callback
EnumWindows Passes parent-window handles to a callback
EqualRect Determines whether two rectangles are equal
EqualRgn Compares two regions for equality
Escape Allows access to device facilities
EscapeCommFunction Passes an extended function to a device
ExcludeClipRect Changes clipping region, excluding rectangle
ExcludeUpdateRgn Excludes an updated region from clipping region
ExitWindows Restarts or terminates Windows
ExitWindowsExec Terminates Windows, runs MS-DOS app
ExtDeviceMode Displays dialog box for printing modes
ExtFloodFill Fills area with current brush
ExtractIcon Retrieves handle of icon from executable file
ExtTextOut Writes a character string in rectangular region
FatalAppExit Terminates an application
FatalExit Displays debug info., causes breakpoint exception
FillRect Fills a rectangle with the specified brush
FillRgn Fills a region with a brush
FindAtom Retrieves a string atom from the local atom table
FindExecutable Retrieves name and handle of program for a file
FindResource Locates a resource in a resource file
FindText Creates a find-text dialog box
FindWindow Returns window handle for class and window name
FlashWindow Flashes a window once
FloodFill Fills area with current brush
FlushComm Flushes a transmit or receive queue
FrameRect Draws a window border with a specified brush
FrameRgn Draws a border around a region
FreeAllGDIMem Frees memory allocated by AllocGDIMem.
FreeAllMem Frees memory allocated by AllocMem.
FreeAllUserMem Frees memory allocated by AllocUserMem.
FreeLibrary Unloads a library module instance
FreeModule Unloads a module instance
FreeProcInstance Frees a function instance
FreeResource Unloads a resource instance
FreeSelector Fress an allocated selector
GetActiveWindow Retrieves the handle of the active window
GetAspectRatioFilter Retrieves setting of aspect-ratio filter
GetAspectRatioFilterEx Retrieves current aspect-ratio filter
GetAsyncKeyState Determines key state
GetAtomHandle Retrieves an atom handle
GetAtomName Retrieves a local atom string
GetBitmapBits Copies bitmap bits to a buffer
GetBitmapDimension Retrieves width and height of bitmap
GetBitmapDimensionEx Retrieves width and height of bitmap
GetBkColor Retrieves the current background color
GetBkMode Retrieves the background mode
GetBoundsRect Returns current accumulated bounding rectangle
GetBrushOrg Retrieves the origin of the current brush
GetBrushOrgEx Retrieves the origin of the current brush
GetCapture Returns the handle for the mouse-capture window

GetCaretBlinkTime Returns the caret blink rate
GetCaretPos Returns the current caret position
GetCharABCWidths Retrieves widths of TrueType characters
GetCharWidth Retrieves character widths
GetClassInfo Returns window class information
GetClassLong Returns window-class data
GetClassName Returns window class name
GetClassWord Returns window class memory word
GetClientRect Returns window client area coordinates
GetClipboardData Returns a handle to clipboard data
GetClipboardFormatName Returns registered clipboard format name
GetClipboardOwner Returns clipboard owner window handle
GetClipboardViewer Returns first clipboard viewer window handle
GetClipBox Retrieves rectangle for clipping region
GetClipCursor Returns cursor-confining rectangle coordinates
GetCodeHandle Determines the location of a function
GetCodeInfo Retrieves code-segment information
GetCommError Returns communications-device status
GetCommEventMask Retrieves the device event mask
GetCommState Reads communications device status
GetCurrentPDB Returns the selector address of the current PDB
GetCurrentPosition Retrieves current position
GetCurrentPositionEx Retrieves position in logical units
GetCurrentTask Returns current task handle
GetCurrentTime Returns elapsed time since Windows started
GetCursor Returns current cursor handle
GetCursorPos Returns current cursor position
GetDC Returns window device-context handle
GetDCEx Retrieves the handle of a device context
GetDCOrg Retrieves translation origin for device context
GetDesktopWindow Returns desktop window handle
GetDeviceCaps Retrieves device capabilities
GetDialogBaseUnits Returns dialog base units
GetDIBits Copies DIB bits into a buffer
GetDlgCtrlID Returns child window ID
GetDlgItem Returns handle of a dialog control
GetDlgItemInt Translates dialog text into an integer
GetDlgItemText Retrieves dialog control text
GetDOSEnvironment Returns a far pointer to the current environment
GetDoubleClickTime Returns mouse double click time
GetDriverInfo Retrieves installable-driver data
GetDriverModuleHandle Retrieves an installable-driver instance handle
GetDriveType Determines drive type
GetExpandedName Retrieves original filename for a compressed file
GetFileResource Copies a resource into a buffer
GetFileResourceSize Returns the size of a resource
GetFileTitle Retrieves a filename
GetFileVersionInfo Returns version information about a file
GetFileVersionInfoSize Returns the size of a file's version information
GetFocus Returns current focus window handle
GetFontData Retrieves font metric data
GetFreeFileHandles Returns the number of free file handles
GetFreeSpace Returns number of free bytes in the global heap
GetFreeSystemResources Returns percentage of free system resource space
GetGlyphOutline Retrieves data for individual outline character
GetInputState Returns mouse, keyboard and timer queue status
GetInstanceData Copy previous instance data into current instance
GetKBCodePage Returns the current code page
GetKerningPairs Retrieves kerning pairs for current font
GetKeyboardState Returns virtual-keyboard keys status
GetKeyboardType Retrieves keyboard information
GetKeyNameText Retrieves string representing the name of a key
GetKeyState Returns specified virtual key state
GetLastActivePopup Determines most recently active pop-up window

GetMapMode Retrieves mapping mode
GetMenu Returns menu handle for the specified window
GetMenuCheckMarkDimensions Returns default check mark bitmap dimensions
GetMenuItemCount Returns the number of items in a menu
GetMenuItemID Returns a menu-item identifier
GetMenuState Returns status flags for the specified menu item
GetMenuString Copies a menu-itme label into a buffer
GetMessage Retrieves a message from the message queue
GetMessageExtraInfo Retrieves information about a hardware message
GetMessagePos Returns cursor position for last message
GetMessageTime Returns the time for the last message
GetMetaFile Creates handle to a metafile
GetMetaFileBits Creates memory block from metafile
GetModuleFileName Returns the file name for a module handle
GetModuleHandle Returns a module handle for a named module
GetModuleUsage Returns the reference count for a module
GetNearestColor Retrieves closest available color
GetNearestPaletteIndex Retrieves nearest match for a color
GetNextDlgGroupItem Returns handle of previous or next group control
GetNextDlgTabItem Returns the next or previous WS_TABSTOP control
GetNextDriver Enumerates installable-driver instances
GetNextWindow Returns next or previous window-manager window
GetNumTasks Returns the current number of tasks
GetObject Retrieves infOrmation about an object
GetOpenClipboardWindow Returns handle to window that opened clipboard
GetOpenFileName Creates an open-filename dialog box
GetOutlineTextMetrics Retrieves metrics for TrueType fonts
GetPaletteEntries Retrieves range of palette entries
GetParent Returns parent window handle
GetPixel Retrieves RGB color of specified pixel
GetPolyFillMode Retrieves the current polygon-filling mode
GetPriorityClipboardFormat Returns first clipboard format
GetPrivateProfileInt Retrieves integer value from .ini file
GetPrivateProfileString Retrieves a string from an initialization file
GetProcAddress Returns the address of an exported DLL function
GetProfileInt Retrieves an integer value from WIN.INI
GetProfileString Retrieves a string from WIN.INI
GetProp Returns data handle from a window property list
GetQueueStatus Determines queued message type
GetRasterizerCaps Retrieves status of TrueType on system
GetRgnBox Retrieves bounding rectangle for region
GetROP2 Retrieves the current drawing mode
GetSaveFileName Creates a save-filename dialog box
GetScrollPos Returns current scroll-bar thumb position
GetScrollRange Returns minimum and maximum scroll-bar positions
GetSelectorBase Retrieves the base address of a selector
GetSelectorLimit Retreives the limit of a selector
GetStockObject Retrieves handle of a stock pen, brush, or font
GetStretchBltMode Retrieves the current bitmap-stretching mode
GetSubMenu Returns pop-up menu handle
GetSysColor Returns display-element color
GetSysModalWindow Returns system-model window handle
GetSystemDebugState Returns system-state information to a debugger
GetSystemDir Returns the Windows system subdirectory
GetSystemDirectory Returns the Windows system directory
GetSystemMenu Provides access to the System menu
GetSystemMetrics Retrieves the system metrics
GetSystemPaletteEntries Retrieves entries from system palette
GetSystemPaletteUse Determines use of entire system palette
GetTabbedTextExtent Determines dimensions of tabbed string
GetTempDrive Returns a disk drive letter for temporary files
GetTempFileName Creates a temporary filename
GetTextAlign Retrieves text-alignment flags
GetTextCharacterExtra Retrieves intercharacter spacing

GetTextColor Retrieves the current text color
GetTextExtent Determines dimensions of a string
GetTextExtentPoint Retrieves dimensions of string
GetTextFace Retrieves typeface name of the current font
GetTextMetrics Retrieves the metrics for the current font
GetThresholdEvent Obsolete
GetThresholdStatus Obsolete
GetTickCount Returns amount of time Windows has been running
GetTimerResolution Retrieves the timer resolution
GetTopWindow Returns handle for top child of given window
GetUpdateRect Returns window update region dimensions
GetUpdateRgn Returns window update region
GetVersion Returns the current Dos and Windows versions
GetViewportExt Retrieves viewport extent
GetViewportExtEx Retrieves viewport extent
GetViewportOrg Retrieves viewport origin
GetViewportOrgEx Retrieves viewport origin
GetWinDebugInfo Queries current system-debugging information
GetWindow Returns specified window handle
GetWindowDC Returns window device context
GetWindowExt Retrieves window extents
GetWindowExtEx Retrieves window extents
GetWindowLong Returns long value from extra window memory
GetWindowOrg Retrieves window origin
GetWindowOrgEx Retrieves window origin
GetWindowPlacement Returns window show state and min/max position
GetWindowRect Retrieves a window's coordinates
GetWindowsDir Returns the Windows directory
GetWindowsDirectory Returns the Windows directory
GetWindowTask Returns the task associated with a window
GetWindowText Copies window title-bar text to a buffer
GetWindowTextLength Returns length of window title bar text
GetWindowWord Returns a word value from extra window memory
GetWinFlags Returns system configuration flags
GetWinMem32Version Retrieves version of the 32-bit memory API
Global16PointerAlloc Converts 16:32 pointer to 16:16
Global16PointerFree Frees a 16:16 pointer alias
Global32Alloc Allocates a USE32 memory object
Global32CodeAlias Creates USE32 alias selector for 32-bit object
Global32CodeAliasFree Frees a USE32 code-segment alias selector
Global32Free Frees a USE32 memory object
Global32Realloc Changes size of a USE32 memory object
GlobalAddAtom Adds a string to the system atom table
GlobalAlloc Allocates memory from the global heap
GlobalCompact Generates free global memory by compacting
GlobalDeleteAtom Decrements a global atom's reference count
GlobalDosAlloc Allocates memory available to DOS in real mode
GlobalDosFree Frees global memory allocated by GlobalDosAlloc
GlobalEntryHandle Retrieves information about global memory object
GlobalEntryModule Retrieves information about specific memory object
GlobalFindAtom Retrieves string atom from the global atom table
GlobalFirst Retrieves information about first global memory object
GlobalFix Locks a global memory block in linear memory
GlobalFlags Returns information about a global memory object
GlobalFree Frees a global memory object
GlobalGetAtomName Retrieves a global atom string
GlobalHandle Returns a handle for a specified selector
GlobalHandleToSel Converts a global handle to a selector
GlobalInfo Retrieves information about the global heap
GlobalLock Locks global memory object and returns a pointer
GlobalLRUNewest Moves global memory block to newest LRU position
GlobalLRUOldest Moves global memory block to oldest LRU position
GlobalNext Retrieves information about next global memory object
GlobalNotify Installs a notification procedure

GlobalPageLock Increments global memory page-lock count
GlobalPageUnlock Decrements global memory page-lock count
GlobalReAlloc Changes size/attributes of global memory object
GlobalSize Returns the size of a global memory object
GlobalUnfix Unlocks a global-memory block in linear memory
GlobalUnlock Unlocks a global memory object
GlobalUnWire Should not be used
GlobalWire Should not be used
GrayString Draws gray text at the specified location
HelpMessageFilterHookFunction Posts screen saver help message
HideCaret Removes the caret from the screen
HiliteMenuItem Changes highlight of top-level menu item
hmemcpy Copies bytes
InflateRect Changes rectangle dimensions
InitAtomTable Sets the size of the local atom table
InSendMessage Determines if a window is processing SendMessage
InsertMenu Inserts a new item in a menu
InterruptRegister Installs function to handle system interrupts
InterruptUnRegister Removes function that processed system interrupts
IntersectClipRect Creates clipping region from intersection
IntersectRect Calculates a rectangle intersection
InvalidateRect Adds a rectangle to the update region
InvalidateRgn Adds a region to the update region
InvertRect Inverts a rectangular region
InvertRgn Inverts the colors in a region
IsBadCodePtr Determines whether a code pointer is valid
IsBadHugeReadPtr Determines if a huge read pointer is valid
IsBadHugeWritePtr Determines if a huge write pointer is valid
IsBadReadPtr Determines whether a read pointer is valid
IsBadStringPtr Determines whether a string pointer is valid
IsBadWritePtr Determines whether a write pointer is valid
IsCharAlpha Determines if a character is alphabetical
IsCharAlphaNumeric Determines is a character is alphanumeric
IsCharLower Determines if a character is lower case
IsCharUpper Determines if a character is upper case
IsChild Determines if a window is a child
IsClipboardFormatAvailable Determines if specified format data is available
IsDBCSLeadByte Determines if a character is a DBCS lead byte
IsDialogMessage Determines if a message is for a dialog box
IsDlgButtonChecked Determines the state of a button control
IsGDIObject Determines if handle is not GDI object
IsIconic Determines if a window is minimized
IsMenu Determines if a menu handle is valid
IsRectEmpty Determines whether rectangle is empty
IsTask Determines whether a task handle is valid
IsWindow Determines if a window handle is valid
IsWindowEnabled Determines if a window accepts user input
IsWindowVisible Determines visibility state of a window
IsZoomed Determines if a window is maximized
KillTimer Removes a timer
LimitEmsPages Obsolete
LineDDA Computes successive points in a line
LineTo Draws a line from the current position
LoadAccelerators Loads an accelerator table
LoadBitmap Loads a bitmap resource
LoadCursor Loads a cursor resource
LoadIcon Loads an icon resource
LoadLibrary Returns a handle to a library module
LoadMenu Loads a menu resource
LoadMenuIndirect Obtains a menu handle for a menu template
LoadModule Loads and executes a program
LoadResource Returns a handle to a resource
LoadString Loads a string resource
LocalAlloc Allocate memory from the local heap

LocalCompact Generates free local memory by compacting
LocalFirst Retrieves information about first local memory object
LocalFlags Returns local memory object information
LocalFree Frees a local memory object
LocalHandle Returns the handle of a local memory object
LocalInfo Fills structure with information about local heap
LocalInit Initializes a local heap
LocalLock Locks a local memory object and returns a pointer
LocalNext Retrieves information about next local memory object
LocalReAlloc Changes local memory size or attributes
LocalShrink Shrinks the specified local heap
LocalSize Returns the size of a local memory object
LocalUnlock Unlocks a local memory object
LockInput Locks input to all tasks except the current one
LockResource Returns the address of a resource
LockSegment Locks a discardable memory segment
LockWindowUpdate Disables or reenables drawing in a window
LogError Identifies an error message
LogParamError Identifies a parameter validation error
LPtoDP Converts logical points to device points
lstrcat Appends one string to another
lstrcmp Compares two character strings
lstrcmpi Compares two character strings
lstrcpy Copies a string to a buffer
lstrlen Returns the number of characters in a string
LZClose Closes a file
LZCopy Copies a file and expands it if compressed
LZDone Frees buffers allocated by LZStart
LZInit Initializes data structures needed for decompression
LZOpenFile Opens a file (both compressed and uncompressed)
LZRead Reads a specified number of bytes from a compressed file
LZSeek Repositions pointer in file
LZStart Allocates buffers for CopyLZFile function
MakeProcInstance Returns the address of prolog code for a function
MapDialogRect Maps dialog box units to pixels
MapVirtualKey Translates a virual-key code or scan code
MapWindowPoints Converts points to another coordinate system
MemManInfo Retrieves information about the memory manager
MemoryRead Reads memory from an arbitrary global heap object
MemoryWrite Writes memory to an arbitrary global heap object
MessageBeep Generates a beep
MessageBox Creates a message-box window
ModifyMenu Changes an existing menu item
ModuleFindHandle Retrieves information about a module
ModuleFindName Retrieves information about a module
ModuleFirst Retrieves information about first module
ModuleNext Retrieves information about next module
MoveTo Moves the current position
MoveToEx Moves the current position
MoveWindow Changes the position and dimensions of a window
MulDiv Multiplies two values and divides the result
NetBIOSCall Issues a NETBIOS Interrupt 5Ch
NotifyRegister Installs a notification callback function
NotifyUnRegister Removes a notification callback function
OemKeyScan Maps OEM ASCII to scan codes
OemToAnsi Translates an OEM string to a Windows string
OemToAnsiBuff Translates an OEM string to a Windows string
OffsetClipRgn Moves a clipping region
OffsetRect Moves a rectangle by an offset
OffsetRgn Moves a region by a specified offset
OffsetViewportOrg Moves viewport origin
OffsetViewportOrgEx Moves viewport origin
OffsetWindowOrg Moves window origin
OffsetWindowOrgEx Moves window origin

OleActivate Activates an object
OleBlockServer Queues incoming requests for the server
OleClone Makes a copy of an object
OleClose Closes specified object
OleCopyFromLink Makes an embedded copy of a linked object
OleCopyToClipboard Puts the specified object on the clipboard
OleCreate Creates an object of a specified class
OleCreateFromClip Creates an object from the clipboard
OleCreateFromFile Creates an object from a file
OleCreateFromTemplate Creates an object from a template
OleCreateInvisible Creates an object without displaying it
OleCreateLinkFromClip Creates link to object from the clipboard
OleCreateLinkFromFile Creates link to object in a file
OleDelete Deletes an object
OleDraw Draws an object into a device context
OleEnumFormats Enumerates data formats for an object
OleEnumObjects Enumerates objects in a document
OleEqual Compares two objects for equality
OleExecute Sends DDE execute commands to a server
OleGetData Retrieves data for an object in a specified format
OleGetLinkUpdateOptions Retrieves update options for an object
OleIsDcMeta Identifies metafile device context
OleLoadFromStream Loads an object from containing document
OleLockServer Keeps server in memory
OleObjectConvert Creates a new object using a specified protocol
OleQueryBounds Retrieves bounding rectangle for object
OleQueryClientVersion Retrieves version of client library
OleQueryCreateFromClip Retrieves create data for clipboard object
OleQueryLinkFromClip Retrieves link data for clipboard object
OleQueryName Retrieves the name of an object
OleQueryOpen Determines whether an object is open
OleQueryOutOfDate Determines whether an object is out-of-date
OleQueryProtocol Determines if an object supports a protocol
OleQueryReleaseError Determines status of released operation
OleQueryReleaseMethod Determines which operation released
OleQueryReleaseStatus Determines whether an operation released
OleQueryServerVersion Retrieves version of server library
OleQuerySize Retrieves the size of an object
OleQueryType Determines if object is linked, embedded, or static
OleReconnect Reconnects to an open linked object
OleRegisterClientDoc Registers a document with the library
OleRegisterServer Registers the specified server
OleRegisterServerDoc Registers document with server library
OleRelease Releases an object from memory
OleRename Informs library an object is renamed
OleRenameClientDoc Informs library a document is renamed
OleRenameServerDoc Informs library a document is renamed
OleRequestData Retrieves data from a server in a specified format
OleRevertClientDoc Informs library a doc reverted to saved state
OleRevertServerDoc Informs library a doc is reset to saved state
OleRevokeClientDoc Informs library a document is not open
OleRevokeObject Revokes access to an object
OleRevokeServer Revokes the specified server
OleRevokeServerDoc Revokes the specified document
OleSavedClientDoc Informs library a doc has been saved
OleSavedServerDoc Informs library a doc has been saved
OleSaveToStream Saves an object to the stream
OleSetBounds Sets bounding rectangle for object
OleSetColorScheme Specifies client's recommended object colors
OleSetData Sends data in specified format to server
OleSetHostNames Sets client name and object name for server
OleSetLinkUpdateOptions Sets update options for an object
OleSetTargetDevice Sets target device for an object
OleUnblockServer Processes requests from queue

OleUnlockServer Releases server locked with OleLockServer
OleUpdate Updates an object
OpenClipboard Opens the clipboard
OpenComm Opens a communications device
OpenDriver Opens an installable driver
OpenFile Creates, opens, reopens or deletes a file
OpenIcon Activates a minimized window
OpenSound Obsolete
OutputDebugString Sends a character string to the debugger
PaintRgn Fills region with brush in device context
PatBlt Creates a bitmap pattern
PeekMessage Checks message queue
Pie Draws a pie-shaped wedge
PlayMetaFile Plays a metafile
PlayMetaFileRecord Plays a metafile record
Polygon Draws a polygon
Polyline Draws line segments to connect specified points
PolyPolygon Draws a series of polygons
PostAppMessage Posts a message to an application
PostMessage Places a message in a window's message queue
PostQuitMessage Tells Windows that an application is terminating
PrestoChangoSelector Generates code selector from data
PrintDlg Creates a print-text dialog box
ProfClear Discards all buffered Profiler samples
ProfFinish Stops profile sampling and flushes profile buffer
ProfFlush Flushes the Profiler sampling buffer to disk
ProfInsChk Determines whether Profiler is installed
ProfSampRate Sets the Profiler sampling rate
ProfSetup Sets Profiler buffer size and sample quantity
ProfStart Starts profile sampling
ProfStop Stops profile sampling
PtInRect Determines if a point is in a rectangle
PtInRegion Queries whether a point is in a region
PtVisible Queries whether point is within clipping region
QueryAbort Queries whether to terminate a print job
QuerySendMessage Determines if a message originated within a task
ReadComm Reads from a communications device
RealizePalette Maps entries from logical to system palette
Rectangle Draws a rectangle
RectInRegion Queries whether rectangle overlaps region
RectVisible Queries whether rectangle is in clip region
RedrawWindow Updates a client rectangle or region
RegCloseKey Closes a key
RegCreateKey Creates a key
RegDeleteKey Deletes a key
RegEnumKey Enumerates subkeys of specified key
RegisterClass Registers a window class
RegisterClipboardFormat Registers a new clipboard format
RegisterDialogClasses Registers dialog classes for screen-savers
RegisterWindowMessage Defines a new unique window message
RegOpenKey Opens a key
RegQueryValue Retrieves text string for specified key
RegSetValue Associates a text string with a specified key
ReleaseCapture Releases mouse capture
ReleaseDC Frees a device context
RemoveFontResource Removes font resource
RemoveMenu Deletes a menu item and pop-up menu
RemoveProp Removes a property-list entry
ReplaceText Creates a replace-text dialog box
ReplyMessage Replies to a SendMessage
ResetDC Updates a device context
ResizePalette Changes the size of a logical palette
RestoreDC Restores device context
RoundRect Draws a rectangle with rounded corners

SaveDC Saves current state of device context
ScaleViewportExt Scales viewport extents
ScaleViewportExtEx Scales viewport extents
ScaleWindowExt Scales window extents
ScaleWindowExtEx Scales window extents
ScreenSaverConfigureDialog Processes input to screensaver config. dialog
ScreenSaverProc Processes input to a screen-saver window
ScreenToClient Converts screen point to client coordinates
ScrollDC Scrolls a rectangle horizontally and vertically
ScrollWindow Scrolls a window's client area
ScrollWindowEx Scrolls a window's client area
SelectClipRgn Selects clipping region for device context
SelectObject Selects object into a device context
SelectPalette Selects a palette into a device context
SendDlgItemMessage Sends a message to a dialog box control
SendDriverMessage Sends a message to an installable driver
SendMessage Sends a message to a window
SetAbortProc Sets the abort function for a print job
SetActiveWindow Makes a top-level window active
SetBitmapBits Sets bitmap bits from array of bytes
SetBitmapDimension Sets width and height of bitmap
SetBitmapDimensionEx Sets width and height of bitmap
SetBkColor Sets the current background color
SetBkMode Sets the background mode
SetBoundsRect Controls bounding-rectangle accumulation
SetBrushOrg Sets the origin of the current brush
SetCapture Sets the mouse capture to a window
SetCaretBlinkTime Sets caret blink rate
SetCaretPos Sets the caret position
SetClassLong Sets a long value in extra class memory
SetClassWord Sets a word value in extra class memory
SetClipboardData Sets the data in the clipboard
SetClipboardViewer Adds a window to the clipboard-viewer chain
SetCommBreak Suspends character transmission
SetCommEventMask Enables events in a device event mask
SetCommState Sets communications-device state
SetCursor Changes the mouse cursor
SetCursorPos Sets mouse-cursor position in screen coordinates
SetDIBits Sets the bits of a bitmap
SetDIBitsToDevice Sets DIB bits to device
SetDlgItemInt Converts an integer to a dialog text string
SetDlgItemText Sets dialog title or item text
SetDoubleClickTime Sets the mouse double-click time
SetErrorMode Controls Interrupt 24h Error Handling
SetFocus Sets the input focus to a window
SetHandleCount Changes the number of available file handles
SetKeyboardState Sets the keyboard state table
SetMapMode Sets mapping mode
SetMapperFlags Sets font-mapper flag
SetMenu Sets the menu for a window
SetMenuItemBitmaps Associates bitmaps with a menu item
SetMessageQueue Creates a new message queue
SetMetaFileBits Creates memory block from metafile
SetMetaFileBitsBetter Creates memory block from metafile
SetPaletteEntries Sets colors and flags for a color palette
SetParent Changes a child's paren window
SetPixel Sets pixel to specified color
SetPolyFillMode Sets the polygon-filling mode
SetProp Adds or changes a property-list entry
SetRect Sets a rectangle's dimensions
SetRectEmpty Creates an empty rectangle
SetRectRgn Changes a region into specified rectangle
SetResourceHandler Installs a load-resource callback function
SetROP2 Sets the current drawing mode

SetScrollPos Sets scroll-bar thumb position
SetScrollRange Sets minimum and maximum scroll-bar positions
SetSelectorBase Sets the base and limit of a selector
SetSelectorLimit Sets the limit of a selector
SetSoundNoise Obsolete
SetStretchBltMode Sets the bitmap-stretching mode
SetSwapAreaSize Sets the amount of memory used for code segments
SetSysColors Sets one or more system colors
SetSysModalWindow Makes a window the system-modal window
SetSystemPaletteUse Use of system palette static colors
SetTextAlign Sets text-alignment flags
SetTextCharacterExtra Sets intercharacter spacing
SetTextColor Sets the foreground color of text
SetTextJustification Sets alignment for text output
SetTimer Installs a system timer
SetViewportExt Sets viewport extents
SetViewportExtEx Sets viewport extents
SetViewportOrg Sets viewport origin
SetViewportOrgEx Sets viewport origin
SetVoiceAccent Obsolete
SetVoiceEnvelope Obsolete
SetVoiceNote Obsolete
SetVoiceQueueSize Obsolete
SetVoiceSound Obsolete
SetVoiceThreshold Obsolete
SetWinDebugInfo Sets current system-debugging information
SetWindowExt Sets window extents
SetWindowExtEx Sets window extents
SetWindowLong Sets a long value in extra window memory
SetWindowOrg Sets the window origin
SetWindowOrgEx Sets the window origin
SetWindowPlacement Sets window show state and min/max position
SetWindowPos Sets a windows size, position, and order
SetWindowsHook Installs a hook function
SetWindowsHookEx Installs a hook function
SetWindowText Sets text in a caption title or control window
SetWindowWord Sets a word value in extra window memory
ShellExecute Opens or prints specified file
ShowCaret Shows (unhides) the caret
ShowCursor Shows or hides the mouse cursor
ShowOwnedPopups Shows or hides pop-up windows
ShowScrollBar Shows or hides a scroll bar
ShowWindow Sets window visibility state
SizeofResource Returns the size of a resource
SpoolFile Puts a file in the spooler queue
StackTraceCSIPFirst Retrieves information about a stack frame
StackTraceFirst Retrieves information about the first stack frame
StackTraceNext Retrieves information about the next stack frame
StartDoc Starts a print job
StartPage Prepares printer driver to receive data
StartSound Obsolete
StopSound Obsolete
StretchBlt Copies a bitmap, transforming if required
StretchDIBits Moves DIB from source to destination rectangle
SubtractRect Creates rect from difference of two rects
SwapMouseButton Reverses the meaning of the mouse buttons
SwapRecording Starts or stops memory swap recording
SwitchStackBack Restores the current-task stack
SwitchStackTo Changes the location of the stack
SyncAllVoices Obsolete
SystemHeapInfo Retrieves information about the USER heap
SystemParametersInfo Queries or sets systemwide parameters
TabbedTextOut Writes a tabbed character string
TaskFindHandle Retrieves information about a task

TaskFirst Retrieves information about first task in task queue
TaskGetCSIP Returns the next CS:IP value of a task.
TaskNext Retrieves information about next task in the task queue
TaskSetCSIP Sets the CS:IP of a sleeping task.
TaskSwitch Switches to a specific address within a new task
TerminateApp Terminates an application
TextOut Writes a character string at specified location
Throw Restores the execution environment
TimerCount Retrieves execution times
ToAscii Translates virtual-key code to Windows character
TrackPopupMenu Displays and tracks a pop-up menu
TranslateAccelerator Processes menu command keyboard accelerators
TranslateMDISysAccel Processes MDI keyboard accelerators
TranslateMessage Translates virtual-key messages
TransmitCommChar Places a character in the transmit queue
UnAllocDiskSpace Deletes the file created by AllocDiskSpace.
UnAllocFileHandles Frees file handles allocated by AllocFileHandles.
UngetCommChar Puts a character back in the receive queue
UnhookWindowsHook Removes a filter function
UnhookWindowsHookEx Removes a function from the hook chain
UnionRect Creates the union of two rectangles
UnlockSegment Unlocks a discardable memory segment
UnrealizeObject Resets brush origins and realizes palettes
UnregisterClass Removes a window class
UpdateColors Updates colors in client area
UpdateWindow Updates a window's client area
ValidateCodeSegments Test for memory overwrites
ValidateFreeSpaces Checks free memory for valid contents
ValidateRect Removes a rectangle from the update region
ValidateRgn Removes a region from the update region
VerFindFile Determines where to install a file
VerInstallFile Installs a file
VerLanguageName Converts a binary language identifier into a string
VerQueryValue Returns version information about a block
VkKeyScan Translates Windows character to virtual-key code
WaitMessage Suspends an application and yields control
WaitSoundState Obsolete
WindowFromPoint Returns window containing a point
WinExec Runs a program
WinHelp Invokes Windows Help
WNetAddConnection Adds network connections
WNetCancelConnection Removes network connections
WNetGetConnection Lists network connections
WriteComm Writes to a communications device
WritePrivateProfileString Writes a string to an initialization file
WriteProfileString Writes a string to WIN.INI
wsprintf Formats a string
wvsprintf Formats a string
XTYP_ADVDATA Passes advise data to a client
XTYP_ADVREQ Prompts a server to send advise data to a client
XTYP_ADVSTART Requests an advise loop
XTYP_ADVSTOP Ends an advise loop
XTYP_CONNECT Requests a DDE conversation
XTYP_CONNECT_CONFIRM Confirms a DDE conversation
XTYP_DISCONNECT Terminates a DDE conversation
XTYP_ERROR Notifies a DDEML application of a critical error
XTYP_EXECUTE Executes a server command
XTYP_MONITOR Informs a DDE monitor application of a DDE event
XTYP_POKE Sends unsolicited data to a server
XTYP_REGISTER Registers a service name
XTYP_REQUEST Requests data from a server
XTYP_UNREGISTER Unregisters a service name
XTYP_WILDCONNECT Requests multiple DDE conversation
XTYP_XACT_COMPLETE Confirms completion of asynchronous transaction

Yield Stops the current task

Message groups (3.1)
Button messages
Clipboard messages
Combo box messages
DDE messages
Edit-control messages
Installable-driver messages
List box messages

Button messages
BM_GETCHECK Retrieves the button check state
BM_GETSTATE Determines the state of a button or check box
BM_SETCHECK Sets the button check state
BM_SETSTATE Sets the highlighting state of a button
BM_SETSTYLE Sets the style of a button

Clipboard messages
WM_ASKCBFORMATNAME Retrieves the name of the clipboard format
WM_CHANGECBCHAIN Notifies clipboard viewer of removal from chain
WM_COPY Copies a selection to the clipboard
WM_CUT Deletes a selection and copies it to the clipboard
WM_DESTROYCLIPBOARD Notifies owner that the clipboard was emptied
WM_DRAWCLIPBOARD Indicates the clipboard's contents have changed
WM_HSCROLLCLIPBOARD Prompts owner to scroll clipboard contents
WM_PAINTCLIPBOARD Prompts owner to display clipboard contents
WM_PASTE Inserts clipboard data into an edit control
WM_RENDERALLFORMATS Notifies owner to render all clipboard formats
WM_RENDERFORMAT Notifies owner to render clipboard data
WM_SIZECLIPBOARD Indicates a change in the chipboard's size
WM_VSCROLLCLIPBOARD Prompts owner to scroll clipboard contents

Combo box messages
CB_ADDSTRING Adds a string to the list box of a combo box
CB_DELETESTRING Deletes list-box string in a combo box
CB_DIR Adds file names to the list box of a combo box
CB_FINDSTRING Finds a string in the list box of a combo box
CB_GETCOUNT Gets the number of list-box items in a combo box
CB_GETCURSEL Gets index of selected list-box item in combo box
CB_GETDROPPEDCONTROLRECT Gets rectangle of combo-box drop-down list box
CB_GETDROPPEDSTATE Determines if a combo box's list box is visible
CB_GETEDITSEL Gets position of selection in edit control
CB_GETEXTENDEDUI Determines if combo box has extended interface
CB_GETITEMDATA Retrieves a value associated with an item
CB_GETITEMHEIGHT Retrieves the height of items in a combo box
CB_GETLBTEXT Gets a string from the list box of a combo box
CB_GETLBTEXTLEN Gets length of a list-box string in a combo box
CB_INSERTSTRING Inserts a string into the list box of a combo box
CB_LIMITTEXT Limits amount of edit-control text in a combo box
CB_RESETCONTENT Removes all items from list box of a combo box
CB_SELECTSTRING Selects a string in the list box of a combo box
CB_SETCURSEL Selects a string in the list box of a combo box
CB_SETEDITSEL Sets the edit-control selection of a combo box
CB_SETEXTENDEDUI Sets the default or extended user interface
CB_SETITEMDATA Sets the value associated with an item
CB_SETITEMHEIGHT Sets the height of items in a combo box
CB_SHOWDROPDOWN Shows or hides the list box of a combo box

DDE messages
WM_DDE_ACK Acknowledges the receipt of a DDE transaction
WM_DDE_ADVISE Starts an advise loop with a DDE server
WM_DDE_DATA Passes a data item to a DDE client
WM_DDE_EXECUTE Passes a command to a DDE server
WM_DDE_INITIATE Initiates a DDE conversation
WM_DDE_POKE Send unsolicited data to a server
WM_DDE_REQUEST Requests a data item from a DDE server
WM_DDE_TERMINATE Terminates a DDE conversation
WM_DDE_UNADVISE Ends a DDE advise loop

Edit-control messages
EM_CANUNDO Determines if edit-control operation can be undone
EM_EMPTYUNDOBUFFER Resets (clears) the edit-control undo flag
EM_FMTLINES Sets soft line-break characters on or off
EM_GETFIRSTVISIBLELINE Gets index of top line in an edit control
EM_GETHANDLE Gets the handle of the memory for an MLE
EM_GETLINE Retrieves a line from an MLE
EM_GETLINECOUNT Retrieves number of lines in an MLE
EM_GETMODIFY Checks whether edit-control contents have changed
EM_GETRECT Gets the coordinates of an edit-control rectangle
EM_GETSEL Gets position of current edit-contol selection
EM_LIMITTEXT Limits amount of text in an edit control
EM_LINEFROMCHAR Retrieves a line number from a character index
EM_LINEINDEX Retrieves the character index of an MLE line
EM_LINELENGTH Retrieves the length of a line in an MLE
EM_LINESCROLL Scrolls text in an MLE
EM_REPLACESEL Replaces current selection in an edit control
EM_SETHANDLE Sets the memory handle for an MLE
EM_SETMODIFY Sets or clears edit-control modification flag
EM_SETPASSWORDCHAR Sets or removes edit-control password character
EM_SETREADONLY Sets the read-only state of an edit control
EM_SETRECT Sets the formatting rectangle of an MLE
EM_SETRECTNP Sets the formatting rectangle of an MLE
EM_SETSEL Selects text within an edit control
EM_SETTABSTOPS Sets the tab stops in an MLE
EM_SETWORDBREAKPROC Provides custom word breaks in edit controls
EM_UNDO Undoes the last operation in an edit control

List box messages
LB_ADDSTRING Adds a string to a list box
LB_DELETESTRING Deletes a string in a list box
LB_DIR Adds file names to a list box
LB_FINDSTRING Finds a string in a list box
LB_GETCARETINDEX Gets index of list-box item with focus rectangle
LB_GETCOUNT Gets the number of items in a list box
LB_GETCURSEL Gets index of selected item in a list box
LB_GETHORIZONTALEXTENT Gets the horizontal extent of a list box
LB_GETITEMDATA Retrieves value associated with a list-box item
LB_GETITEMHEIGHT Retrieves the height of items in a list box
LB_GETITEMRECT Retrieves the bounding rectangle for an item
LB_GETSEL Retrieves the selection state of an item
LB_GETSELCOUNT Retrieves a count of selected list-box items
LB_GETSELITEMS Lists item numbers of selected list-box items
LB_GETTEXT Gets a string from a list box
LB_GETTEXTLEN Gets the length of a string in a list box
LB_GETTOPINDEX Retrieves index of first visible list-box item
LB_INSERTSTRING Inserts a string into a list box
LB_RESETCONTENT Removes all items from a list box
LB_SELECTSTRING Selects a string in a list box
LB_SELITEMRANGE Selects consecutive items in a list box
LB_SETCARETINDEX Sets the focus rectangle in a list box
LB_SETCOLUMNWIDTH Sets the width of columns in a list box
LB_SETCURSEL Selects a string in a list box
LB_SETHORIZONTALEXTENT Sets the horizontal extent of a list box
LB_SETITEMDATA Associates a value with a list-box item
LB_SETITEMHEIGHT Sets the height of items in a list box
LB_SETSEL Selects a string in a multi-selection list box
LB_SETTABSTOPS Sets tab stops in a list box
LB_SETTOPINDEX Ensures that a list-box item is visible

New 3.1 messages
CB_FINDSTRINGEXACT Finds a string in the list box of a combo box
CB_GETDROPPEDCONTROLRECT Gets rectangle of combo-box drop-down list box
CB_GETDROPPEDSTATE Determines if a combo box's list box is visible
CB_GETEXTENDEDUI Selects the default or extended user interface
CB_GETITEMHEIGHT Retrieves the height of items in a combo box
CB_SETEXTENDEDUI Sets the default or extended user interface
CB_SETITEMHEIGHT Sets the height of items in a combo box
EM_GETFIRSTVISIBLELINE Gets index of top line in an edit control
EM_GETPASSWORDCHAR Retrieves edit-control password character
EM_GETWORDBREAKPROC Retrieves edit-control wordwrap function
EM_SETREADONLY Sets the read-only state of an edit control
EM_SETWORDBREAKPROC Provides custom word breaks in edit controls
LB_FINDSTRINGEXACT Finds a string in a list box
LB_GETCARETINDEX Gets index of list-box item with focus rectangle
LB_GETITEMHEIGHT Retrieves the height of items in a list box
LB_SETCARETINDEX Sets the focus rectangle in a list box
LB_SETITEMHEIGHT Sets the height of items in a list box
STM_GETICON Gets icon handle associated with an icon control
STM_SETICON Associates an icon handle with an icon control
WM_CHOOSEFONT_GETLOGFONT Retrieves LOGFONT for Font Dialog
WM_COMMNOTIFY Notifies a window about the status of its queues
WM_DROPFILES Indicates that a file has been dropped
WM_PALETTEISCHANGING Indicates that the palette is changing
WM_POWER Indicates the system is entering suspended mode
WM_QUEUESYNC Delimits CBT messages
WM_SYSTEMERROR Indicates a system error has occurred
WM_WINDOWPOSCHANGED Notifies window of size or position change
WM_WINDOWPOSCHANGING Notifies window of new size or position

BM_GETCHECK (2.x)

BM_GETCHECK
wParam = 0;/* not used, must be zero */
lParam = 0L; /* not used, must be zero */
An application sends a BM_GETCHECK message to retrieve the check state of a button.
Parameters

This message has no parameters.

Returns
The return value from a button created with the BS_AUTOCHECKBOX, BS_AUTORADIOBUTTON,
BS_AUTO3STATE, BS_CHECKBOX, BS_RADIOBUTTON, or BS_3STATE style may be one of the
following values:

Value Meaning
0 Button state is unchecked.
1 Button state is checked.
2 Button state is indeterminate (applies only if the button has the BS_3STATE or

BS_AUTO3STATE style).

If the button has any other style, the return value is 0.

Example
This example determines if the ID_MYCHECKBOX control is currently checked:

int checked;
checked = (int) SendDlgItemMessage(hwndDlg, ID_MYCHECKBOX,

BM_GETCHECK, 0, 0);
See Also
BM_GETSTATE, BM_SETCHECK, SendDlgItemMessage

BM_GETSTATE (2.x)

BM_GETSTATE
wParam = 0;/* not used, must be zero */
lParam = 0L; /* not used, must be zero */
An application sends a BM_GETSTATE message to retrieve the state of a button.
Parameters

This message has no parameters.

Returns
The return value specifies the current state of the button. You can use the following masks to extract
information about the state:

Mask Description
0x0003 Specifies the check state (radio buttons and check boxes only). A value of 0 indicates the button

is unchecked. A value of 1 indicates the button is checked. A radio button is checked when it
contains a dot; a check box is checked when it contains an X. A value of 2 indicates the check
state is indeterminate (3-state check boxes only). The state of a 3-state check box is
indeterminate when it is grayed.

0x0004 Specifies the highlight state. A nonzero value indicates that the button is highlighted. A button
is highlighted when the user presses and holds the left mouse button. The highlighting is
removed when the user releases the mouse button.

0x0008 Specifies the focus state. A nonzero value indicates that the button has the focus.

Example
This example determines whether a button currently has the focus:

#define BFFOCUS 0x0008
DWORD dwResult;
dwResult = SendDlgItemMessage(hdlg, ID_MYBUTTON, BM_GETSTATE, 0, 0);
if (dwResult & BFFOCUS)

/* button has the focus */

See Also
BM_GETCHECK, BM_SETSTATE

BM_SETCHECK (2.x)

BM_SETCHECK
wParam = (WPARAM) fCheck; /* check state */
lParam = 0L; /* not used, must be zero */
An application sends a BM_SETCHECK message to set the check state of a button.

Parameter Description
fCheck Value of wParam. Specifies the check state. This parameter can be one of the following

values:

Value Meaning
0 Set the button state to unchecked.
1 Set the button state to checked.
2 Set the button state to indeterminate. This value can be used only if the

button has the BS_3STATE or BS_AUTO3STATE style.

Returns
The return value is always zero.

Comments
The BM_SETCHECK message has no effect on push buttons.

Example
This example places a dot inside a radio button:

SendDlgItemMessage(hdlg, ID_MYRADIOBUTTON, BM_SETCHECK, TRUE, 0);
See Also
BM_GETCHECK, BM_SETSTATE

BM_SETSTATE (2.x)

BM_SETSTATE
wParam = (WPARAM) fState; /* highlight state */
lParam = 0L; /* not used, must be zero */
An application sends a BM_SETSTATE message to set the highlight state of a button.

Parameter Description
fState Value of wParam. Specifies whether the button is to be highlighted. A nonzero value

highlights the button. A zero value removes any highlighting.

Returns
The return value is always zero.

Comments
Highlighting affects the exterior of a button. It has no effect on the check state of a radio button or check
box.

A button is automatically highlighted when the user presses and holds the left mouse button. The
highlighting is removed when the user releases the mouse button.

Example
This example highlights and then removes highlighting from a push button, simulating the visual effect of
a user clicking the button:

SendDlgItemMessage(hdlg, ID_MYPUSHBUTTON, BM_SETSTATE, TRUE, 0);
/*
* Perform some action; then remove the highlighting,
* thereby returning it to its normal state.
*/
SendDlgItemMessage(hdlg, ID_MYPUSHBUTTON, BM_SETSTATE, FALSE, 0);
See Also
BM_GETSTATE, BM_SETCHECK

BM_SETSTYLE (2.x)

BM_SETSTYLE
wParam = (WPARAM) LOWORD(dwStyle); /* style */
lParam = MAKELPARAM(fRedraw, 0); /* redraw flag */
An application sends a BM_SETSTYLE message to change the style of a button.

Parameter Description
dwStyle Value of wParam. Specifies the button style. For a list of possible buttons styles, see the

Button styles topic.
fRedraw Value of the low-order word of lParam. Specifies whether the button is to be redrawn. A

value of TRUE redraws the button. A value of FALSE does not redraw the button.

Returns
The return value is always zero.

Comments
Unlike BM_SETCHECK and BM_SETSTATE, BM_SETSTYLE does not have a corresponding message
to retrieve the current style. Use the GetWindowLong function with the GWL_STYLE offset to retrieve
the complete button style. The low word of the complete button style is the button-specific style.

An application should not attempt to change a button's type (for example, changing a radio button to a
check box).

Example
This example sends a BM_SETSTYLE message to make a button become the default push button:

SendDlgItemMessage(hdlg, ID_MYPUSHBUTTON, BM_SETSTYLE,
(WPARAM) BS_DEFPUSHBUTTON, TRUE);

See Also
GetWindowLong

CB_ADDSTRING (3.0)

CB_ADDSTRING
wParam = 0;/* not used, must be zero */
lParam = (LPARAM) (LPCSTR) lpsz; /* address of string to add */
An application sends a CB_ADDSTRING message to add a string to the list box of a combo box. If the
combo box does not have the CBS_SORT style, the string is added to the end of the list. Otherwise, the
string is inserted into the list and the list is sorted.

Parameter Description
lpsz Value of lParam. Points to the null-terminated string to be added. If the combo box was

created with an owner-drawn style but without the CBS_HASSTRINGS style, the value
of the lpsz parameter is stored rather than the string it would otherwise point to.

Returns
The return value is the zero-based index to the string in the list box of the combo box. The return value is
CB_ERR if an error occurs; the return value is CB_ERRSPACE if insufficient space is available to store
the new string.

Comments
If an owner-drawn combo box was created with the CBS_SORT style but not the CBS_HASSTRINGS
style, the WM_COMPAREITEM message is sent one or more times to the owner of the combo box so that
the new item can be properly placed in the list.

To insert a string into a specific location within the list, use the CB_INSERTSTRING message.

Example
This example adds the string "my string" to the list box of a combo box:

DWORD dwIndex;
dwIndex = SendDlgItemMessage(hdlg, ID_MYCOMBOBOX,

CB_ADDSTRING, 0, (LPARAM) ((LPSTR) "my string"));
See Also
CB_INSERTSTRING, WM_COMPAREITEM, CB_DIR

CB_DELETESTRING (3.0)

CB_DELETESTRING
wParam = (WPARAM) index; /* item to delete */
lParam = 0L; /* not used, must be zero */
An application sends a CB_DELETESTRING message to delete a string in the list box of a combo box.

Parameter Description
index Value of wParam. Specifies the zero-based index of the string to delete.

Returns
The return value is a count of the strings remaining in the list. The return value is CB_ERR if the index
parameter specifies an index greater than the number of items in the list.

Comments
If the combo box was created with an owner-drawn style but without the CBS_HASSTRINGS style, a
WM_DELETEITEM message is sent to the owner of the combo box so that the application can free any
additional data associated with the item.

Example
This example deletes the first string in a combo box:

DWORD dwRemaining;
dwRemaining = SendDlgItemMessage(hdlg, ID_MYCOMBOBOX,

CB_DELETESTRING, 0, 0);
See Also
WM_DELETEITEM, CB_RESETCONTENT

CB_DIR (3.0)

CB_DIR
wParam = (WPARAM) (UINT) uAttrs; /* file attributes*/
lParam = (LPARAM) (LPCSTR) lpszFileSpec; /* address of filename */
An application sends a CB_DIR message to add a list of filenames to the list box of a combo box.

Parameter Description
uAttrs Value of wParam. Specifies the attributes of the files to be added to the list box. It can

be any combination of the following values:

Value Meaning
DDL_READWRITE File can be read from or written to.
DDL_READONLY File can be read from but not written to.
DDL_HIDDEN File is hidden and does not appear in a directory listing.
DDL_SYSTEM File is a system file.
DDL_DIRECTORY The name pointed to by the lpszFileSpec parameter

specifies a directory.
DDL_ARCHIVE File has been archived.
DDL_DRIVES All drives that match the name specified by the

lpszFileSpec parameter are included. If the DDL_DRIVES
flag is set, the DDL_EXCLUSIVE flag is set
automatically. Therefore, to create a directory listing that
includes drives and files, the developer must send this
message twice: once with the DDL_DRIVES flag set and
once with the flags for the rest of the list.

DDL_EXCLUSIVE Exclusive flag. If the exclusive flag is set, only files of the
specified type are listed. Otherwise, files of the specified
type are listed in addition to files that do not match the
specified type.

lpszFileSpec Value of lParam. Points to the null-terminated string that specifies the filename to add
to the list. If the filename contains any wildcards (for example, *.*), all files that match
and have the attributes specified by the uAttrs parameter will be added to the list.

Returns
The return value is the zero-based index of the last filename added to the list. The return value is CB_ERR
if an error occurs. The return value is CB_ERRSPACE if insufficient space is available to store the new
strings.

Example
This example adds the names of all available drives to a combo box:

DWORD dwIndexLastItem;
dwIndexLastItem = SendDlgItemMessage(hdlg, ID_MYCOMBOBOX, CB_DIR,

0x4000 | 0x8000, (LPARAM) ((LPSTR) "*"));
See Also
DlgDirList, DlgDirListComboBox, CB_ADDSTRING, CB_INSERTSTRING

CB_FINDSTRING (3.0)

CB_FINDSTRING
wParam = (WPARAM) indexStart; /* item before start of search */
lParam = (LPARAM) (LPCSTR) lpszFind; /* address of prefix string */
An application sends a CB_FINDSTRING message to search the list box of a combo box for an item that
begins with the characters in a specified string.

Parameter Description
indexStart Value of wParam. Specifies the zero-based index of the item before the first item to be

searched. When the search reaches the bottom of the list box, it continues from the top
of the list box back to the item specified by the indexStart parameter. If indexStart is -1,
the entire list box is searched from the beginning.

lpszFind Value of lParam. Points to the null-terminated string that contains the prefix to search
for. The search is not case-sensitive, so this string can contain any combination of
uppercase and lowercase letters.

Returns
The return value is the zero-based index of the matching item, or it is CB_ERR if the search was
unsuccessful.

Comments
If the combo box was created with an owner-drawn style but without the CBS_HASSTRINGS style, the
action taken by the CB_FINDSTRING message depends on whether the CBS_SORT style is used. If the
CBS_SORT style is used, WM_COMPAREITEM messages are sent to the owner of the combo box to
determine which item matches the specified string. Otherwise, CB_FINDSTRING attempts to match the
doubleword value against the value of the lpszFind parameter.

Example
This example searches for the string "my string" in a combo box and copies it, if found, to the szBuf
buffer:

char szBuf[20];
DWORD dwIndex;
dwIndex = SendDlgItemMessage(hdlg, ID_MYCOMBOBOX,

CB_FINDSTRING, 0, (LPARAM) ((LPSTR) "my string"));
if (dwIndex != CB_ERR)

SendDlgItemMessage(hdlg, ID_MYCOMBOBOX,
CB_GETLBTEXT, (WPARAM) dwIndex, (LPARAM) ((LPSTR) szBuf));

See Also
CB_FINDSTRINGEXACT, CB_SELECTSTRING, WM_COMPAREITEM

CB_FINDSTRINGEXACT (3.1)

CB_FINDSTRINGEXACT
wParam = (WPARAM) indexStart; /* item before start of search */
lParam = (LPARAM) (LPCSTR) lpszFind; /* address of prefix string */
An application sends a CB_FINDSTRINGEXACT message to find the first list box string (in a combo
box) that matches the string specified in the lpszFind parameter.

Parameter Description
indexStart Value of wParam. Specifies the zero-based index of the item before the first item to be

searched. When the search reaches the bottom of the list box, it continues from the top
of the list box back to the item specified by the indexStart parameter. If indexStart is -1,
the entire list box is searched from the beginning.

lpszFind Value of lParam. Points to the null-terminated string to search for. This string can
contain a complete filename, including the extension. The search is not case-sensitive,
so this string can contain any combination of uppercase and lowercase letters.

Returns
The return value is the zero-based index of the matching item, or it is CB_ERR if the search was
unsuccessful.

Comments
If the combo box was created with an owner-drawn style but without the CBS_HASSTRINGS style, the
action taken by the CB_FINDSTRINGEXACT message depends on whether the CBS_SORT style is
used. If the CBS_SORT style is used, WM_COMPAREITEM messages are sent to the owner of the
combo box to determine which item matches the specified string. Otherwise, CB_FINDSTRINGEXACT
attempts to match the doubleword value against the value of the lpszFind parameter.

Example
This example searches for the string "my string" in a combo box and copies it, if found, to the szBuf
buffer:

char szBuf[20];
DWORD dwIndex;
dwIndex = SendDlgItemMessage(hdlg, ID_MYCOMBOBOX,

CB_FINDSTRINGEXACT, 0, (LPARAM) ((LPSTR) "my string"));
if (dwIndex != CB_ERR)

SendDlgItemMessage(hdlg, ID_MYCOMBOBOX,
CB_GETLBTEXT, (WPARAM) dwIndex, (LPARAM) ((LPSTR) szBuf));

See Also
CB_FINDSTRING, CB_SELECTSTRING, WM_COMPAREITEM

CB_GETCOUNT (3.0)

CB_GETCOUNT
wParam = 0;/* not used, must be zero */
lParam = 0L; /* not used, must be zero */
An application sends a CB_GETCOUNT message to retrieve the number of items in the list box of a
combo box.
Parameters

This message has no parameters.

Returns
The return value is the number of items in the list box.

Comments
The returned count is one greater than the index value of the last item (the index is zero-based).

Example
This example retrieves the number of items in a combo box:

WORD cListItems;
cListItems = (WORD) SendDlgItemMessage(hdlg, ID_MYCOMBOBOX,

CB_GETCOUNT, 0, 0);

CB_GETCURSEL (3.0)

CB_GETCURSEL
wParam = 0;/* not used, must be zero */
lParam = 0L; /* not used, must be zero */
An application sends a CB_GETCURSEL message to retrieve the index of the currently selected item, if
any, in the list box of a combo box.
Parameters

This message has no parameters.

Returns
The return value is the zero-based index of the currently selected item, or it is CB_ERR if no item is
selected.

Example
This example retrieves the index of the currently selected string in the list box of a combo box and then
retrieves that string:

char szBuf[20];
DWORD dwIndex;
dwIndex = SendDlgItemMessage(hdlg, ID_MYCOMBOBOX, CB_GETCURSEL, 0, 0);
if (dwIndex != CB_ERR)

SendDlgItemMessage(hdlg, ID_MYCOMBOBOX,
CB_GETLBTEXT, (WPARAM) dwIndex, (LPARAM) ((LPSTR) szBuf));

See Also
CB_SELECTSTRING, CB_SETCURSEL

CB_GETDROPPEDCONTROLRECT (3.1)

CB_GETDROPPEDCONTROLRECT
wParam = 0; /* not used, must be zero */
lParam = (LPARAM) (RECT FAR*) lprc;/* address of RECT structure */
An application sends a CB_GETDROPPEDCONTROLRECT message to retrieve the screen coordinates
of the visible (dropped-down) list box of a combo box.

Parameter Description
lprc Value of lParam. Points to the RECT structure that is to receive the coordinates.

Returns
The return value is always CB_OKAY.

Example
This example retrieves the bounding rectangle of the list box of a combo box:

RECT rcl;
SendDlgItemMessage(hdlg, ID_MYCOMBOBOX,

CB_GETDROPPEDCONTROLRECT, 0, (DWORD) ((LPRECT) &rcl));

CB_GETDROPPEDSTATE (3.1)

CB_GETDROPPEDSTATE
wParam = 0;/* not used, must be zero */
lParam = 0L; /* not used, must be zero */
An application sends a CB_GETDROPPEDSTATE message to determine whether the list box of a combo
box is visible (dropped down).
Parameters

This message has no parameters.

Returns
The return value is nonzero if the list box is visible; otherwise, it is zero.

Example
This example determines whether the list box of a combo box is visible:

BOOL fDropped;
fDropped = (BOOL) SendDlgItemMessage(hdlg, ID_MYCOMBOBOX,

CB_GETDROPPEDSTATE, 0, 0L);
See Also
CB_SHOWDROPDOWN

CB_GETEDITSEL (2.x)

CB_GETEDITSEL
wParam = 0;/* not used, must be zero */
lParam = 0L; /* not used, must be zero */
An application sends a CB_GETEDITSEL message to retrieve the starting and ending character positions
of the current selection in the edit control of a combo box.
Parameters

This message has no parameters.

Returns
The return value is a doubleword value that contains the starting position in the low-order word and the
position of the first nonselected character after the end of the selection in the high-order word.

Example
This example retrieves the selection positions of the edit control of a combo box, and converts them into
starting and ending positions:

DWORD dwResult;
WORD wStart, wEnd;
dwResult = SendDlgItemMessage(hdlg, ID_MYCOMBOBOX,

CB_GETEDITSEL, 0, 0);
wStart = LOWORD(dwResult);
wEnd = HIWORD(dwResult);
See Also
CB_SETEDITSEL

CB_GETEXTENDEDUI (3.1)

CB_GETEXTENDEDUI
wParam = 0;/* not used, must be zero */
lParam = 0L; /* not used, must be zero */
An application sends a CB_GETEXTENDEDUI message to determine whether a combo box has the
default user interface or the extended user interface.
Parameters

This message has no parameters.

Returns
The return value is nonzero if the combo box has the extended user interface; otherwise, it is zero.

Comments
The extended user interface differs from the default user interface in the following ways:

Clicking the static control displays the list box (CBS_DROPDOWNLIST style only).
Pressing the DOWN ARROW key displays the list box (F4 is disabled).
Scrolling in the static control is disabled when the item list is not visible (arrow keys are disabled).

Example
This example determines whether a combo box has the extended user interface:

BOOL fExtended;
fExtended = (BOOL) SendDlgItemMessage(hdlg, ID_MYCOMBOBOX,

CB_GETEXTENDEDUI, 0, 0L);
See Also
CB_SETEXTENDEDUI

CB_GETITEMDATA (3.0)

CB_GETITEMDATA
wParam = (WPARAM) index; /* item index */
lParam = 0L; /* not used, must be zero */
An application sends a CB_GETITEMDATA message to a combo box to retrieve the application-
supplied doubleword value associated with the specified item in the combo box. (This is the value in the
lParam parameter of a CB_SETITEMDATA message.)

Parameter Description
index Value of wParam. Specifies the zero-based index of the item.

Returns
The return value is the doubleword value associated with the item, or it is CB_ERR if an error occurs.

See Also
CB_SETITEMDATA

CB_GETITEMHEIGHT (3.1)

CB_GETITEMHEIGHT
wParam = (WPARAM) index; /* item index */
lParam = 0L; /* not used, must be zero */
An application sends a CB_GETITEMHEIGHT message to retrieve the height of list items in a combo
box.

Parameter Description
index Value of wParam. Specifies the component of the combo box whose height is to be

retrieved. If the index parameter is -1, the height of the edit-control (or static-text)
portion of the combo box is retrieved. If the combo box has the
CBS_OWNERDRAWVARIABLE style, index specifies the zero-based index of the list
item whose height is to be retrieved. Otherwise, index should be set to zero.

Returns
The return value is the height, in pixels, of the list items in a combo box. The return value is the height of
the item specified by the index parameter if the combo box has the CBS_OWNERDRAWVARIABLE
style. The return value is the height of the edit-control (or static-text) portion of the combo box if index is -
1. The return value is CB_ERR if an error occurred.

Example
This example sends a CB_GETITEMHEIGHT message to retrieve the height of the list items in a combo
box:

LRESULT lrHeight;
lrHeight = SendDlgItemMessage(hdlg, ID_MYCOMBOBOX,

CB_GETITEMHEIGHT, 0, 0L);
See Also
CB_SETITEMHEIGHT, WM_MEASUREITEM

CB_GETLBTEXT (3.0)

CB_GETLBTEXT
wParam = (WPARAM) index; /* item index */
lParam = (LPARAM) (LPCSTR) lpszBuffer; /* address of buffer */
An application sends a CB_GETLBTEXT message to retrieve a string from the list box of a combo box.

Parameter Description
index Value of wParam. Specifies the zero-based index of the string to retrieve.
lpszBuffer Value of lParam. Points to the buffer that receives the string. The buffer must have

sufficient space for the string and a terminating null character. A
CB_GETLBTEXTLEN message can be sent before the CB_GETLBTEXT message to
retrieve the length, in bytes, of the string.

Returns
The return value is the length of the string, in bytes, excluding the terminating null character. If the index
parameter does not specify a valid index, the return value is CB_ERR.

Comments
If the combo box was created with an owner-drawn style but without the CBS_HASSTRINGS style, the
buffer pointed to by the lpszBuffer parameter of the message receives the doubleword value associated
with the item.

Example
This example retrieves the length of the first item in the list box of a combo box, allocates sufficient
memory for the string, and sends a CB_GETLBTEXT message to retrieve the string:

DWORD cbItemString;
PSTR psz;
cbItemString = SendDlgItemMessage(hdlg, ID_MYCOMBOBOX,

CB_GETLBTEXTLEN, 0, 0);
if (cbItemString != CB_ERR) {

psz = (PSTR) LocalAlloc(LMEM_FIXED, (WORD) cbItemString);
SendDlgItemMessage(hdlg, ID_MYCOMBOBOX,
CB_GETLBTEXT, 0, (LPARAM) ((LPSTR) psz));

}
See Also
CB_GETLBTEXTLEN

CB_GETLBTEXTLEN (3.0)

CB_GETLBTEXTLEN
wParam = (WPARAM) index; /* item index */
lParam = 0L; /* not used, must be zero */
An application sends a CB_GETLBTEXTLEN message to retrieve the length of a string in the list box of
a combo box.

Parameter Description
index Value of wParam. Specifies the zero-based index of the string.

Returns
The return value is the length of the string, in bytes, excluding the terminating null character. If the index
parameter does not specify a valid index, the return value is CB_ERR.

Example
This example retrieves the length of the first item in the list box of a combo box:

DWORD cbItemString;
cbItemString = SendDlgItemMessage(hdlg, ID_MYCOMBOBOX,

CB_GETLBTEXTLEN, 0, 0);
See Also
CB_GETLBTEXT

CB_INSERTSTRING (3.0)

CB_INSERTSTRING
wParam = (WPARAM) index; /* item index */
lParam = (LPARAM) (LPCSTR) lpsz; /* address of string to insert */
An application sends a CB_INSERTSTRING message to insert a string into the list box of a combo box.
Unlike the CB_ADDSTRING message, the CB_INSERTSTRING message does not cause a list with the
CBS_SORT style to be sorted.

Parameter Description
index Value of wParam. Specifies the zero-based index of the position at which to insert the

string. If this parameter is -1, the string is added to the end of the list.
lpsz Value of lParam. Points to the null-terminated string that is to be inserted. If the combo

box was created with an owner-drawn style but without the CBS_HASSTRINGS style,
the value of the lpsz parameter is stored rather than the string it would otherwise point
to.

Returns
The return value is the index of the position at which the string was inserted. The return value is CB_ERR
if an error occurs. The return value is CB_ERRSPACE if insufficient space is available to store the new
string.

Example
This example inserts the string "my string" into the third position in the list box of a combo box:

SendDlgItemMessage(hdlg, ID_MYCOMBOBOX,
CB_INSERTSTRING, 2, (LPARAM) ((LPSTR) "my string"));

See Also
CB_ADDSTRING, CB_DIR

CB_LIMITTEXT (3.0)

CB_LIMITTEXT
wParam = (WPARAM) cchLimit; /* maximum number of characters */
lParam = 0L; /* not used, must be zero */
An application sends a CB_LIMITTEXT message to limit the length of the text that the user may type in
the edit control of a combo box.

Parameter Description
cchLimit Value of wParam. Specifies the length, in bytes, of the text the user can enter. If this

parameter is zero, the text length is set to 65,535 bytes.

Returns
The return value is 1 if the message is successful. If this message is sent to a combo box with the style
CBS_DROPDOWNLIST, the return value is CB_ERR.

Comments
If the combo box does not have the style CBS_AUTOHSCROLL, setting the text limit to be larger than
the size of the edit control has no effect.

The CB_LIMITTEXT message limits only the text the user can enter. It has no effect on any text already
in the edit control when the message is sent, nor does it affect the length of the text copied to the edit
control when a string in the list box is selected.

Example
This example limits the text of the edit control of a combo box to five characters:

SendDlgItemMessage(hdlg, ID_MYCOMBOBOX, CB_LIMITTEXT, 5, 0);

CB_RESETCONTENT (3.0)

CB_RESETCONTENT
wParam = 0;/* not used, must be zero */
lParam = 0L; /* not used, must be zero */
An application sends a CB_RESETCONTENT message to remove all items from the list box and edit
control of a combo box.
Parameters

This message has no parameters.

Returns
The return value is always CB_OKAY.

Comments
If the combo box was created with an owner-drawn style but without the CBS_HASSTRINGS style, the
owner of the combo box receives a WM_DELETEITEM message for each item in the combo box.

Example
This example removes all items from the list box and edit control of a combo box:

SendDlgItemMessage(hdlg, ID_MYCOMBOBOX, CB_RESETCONTENT, 0, 0);
See Also
CB_DELETESTRING, WM_DELETEITEM

CB_SELECTSTRING (3.0)

CB_SELECTSTRING
wParam = (WPARAM) indexStart;/* item before first selection */
lParam = (LPARAM) (LPCSTR) lpszSelect; /* address of prefix string *
/
An application sends a CB_SELECTSTRING message to search the list box of a combo box for an item
that begins with the characters in a specified string. If a matching item is found, the item is selected and
copied to the edit control.

Parameter Description
indexStart Value of wParam. Specifies the zero-based index of the item before the first item to be

searched. When the search reaches the bottom of the list box, it continues from the top
of the list box back to the item specified by the indexStart parameter. If indexStart is -1,
the entire list box is searched from the beginning.

lpszSelect Value of lParam. Points to the null-terminated string that contains the prefix to search
for. The search is not case-sensitive, so this string can contain any combination of
uppercase and lowercase letters.

Returns
The return value is the index of the selected item if the string was found. The return value is CB_ERR and
the current selection is not changed if the search was unsuccessful.

Comments
A string is selected only if its initial characters (from the starting point) match the characters in the prefix
string.

If the combo box was created with an owner-drawn style but without the CBS_HASSTRINGS style, the
action taken by the CB_SELECTSTRING message depends on whether the CBS_SORT style is used. If
the CBS_SORT style is used, WM_COMPAREITEM messages are sent to the owner of the combo box to
determine which item matches the specified string. Otherwise, CB_SELECTSTRING attempts to match
the doubleword value against the value of the lpszFind parameter.

Example
This example searches the entire list box of a combo box for the string "my string" and, if the string is
found, selects it:

DWORD dwIndexFoundString;
dwIndexFoundString = SendDlgItemMessage(hdlg, ID_MYCOMBOBOX,

CB_SELECTSTRING, -1, (LPARAM) ((LPSTR) "my string"));
See Also
CB_FINDSTRING, CB_FINDSTRINGEXACT, CB_SETCURSEL, WM_COMPAREITEM

CB_SETCURSEL (3.0)

CB_SETCURSEL
wParam = (WPARAM) index; /* item index */
lParam = 0L; /* not used, must be zero */
An application sends a CB_SETCURSEL message to select a string in the list box of a combo box. If
necessary, the list box scrolls the string into view (if the list box is visible). The text in the edit control of
the combo box is changed to reflect the new selection. Any previous selection in the list box is removed.

Parameter Description
index Value of wParam. Specifies the zero-based index of the string to select. If the index

parameter is -1, any current selection in the list box is removed and the edit control is
cleared.

Returns
The return value is the index of the item selected if the message is successful. The return value is CB_ERR
if the index parameter is greater than the number of items in the list or if index is set to -1 (which clears the
selection).

Example
This example retrieves the number of items in the list box of a combo box and sends a CB_SETCURSEL
message to select the last item in the list:

WORD cListItems;
cListItems = (WPARAM) SendDlgItemMessage(hdlg,

ID_MYCOMBOBOX, CB_GETCOUNT, 0, 0);
SendDlgItemMessage(hdlg, ID_MYCOMBOBOX,

CB_SETCURSEL,
cListItems - 1, /* zero-based index, so subtract one from total *

/
0);

See Also
CB_GETCURSEL, CB_SELECTSTRING

CB_SETEDITSEL (3.0)

CB_SETEDITSEL
wParam = 0; /* not used, must be zero */
lParam = MAKELPARAM((ichStart), (ichEnd); /* start and end positions *
/
An application sends a CB_SETEDITSEL message to select characters in the edit control of a combo box.

Parameter Description
ichStart Value of the low-order word of lParam. Specifies the starting position. If this parameter

is set to -1, the selection, if any, is removed.
ichEnd Value of the high-order word of lParam. Specifies the ending position. If this parameter

is set to -1, all text from the starting position to the last character in the edit control is
selected.

Returns
The return value is nonzero if the message is successful. It is CB_ERR if the message is sent to a combo
box with the CBS_DROPDOWNLIST style.

Comments
The positions are zero-based. To select the first character of the edit control, you specify a starting position
of zero. The ending position is for the character just after the last character to select. For example, to select
the first four characters of the edit control, you would use a starting position of 0 and an ending position of
4.

Example
This example selects the first four characters of the edit control of a combo box:

SendDlgItemMessage(hdlg, ID_MYCOMBOBOX,
CB_SETEDITSEL, 0, MAKELONG(0, 4));

See Also
CB_GETEDITSEL

CB_SETEXTENDEDUI (3.1)

CB_SETEXTENDEDUI
wParam = (WPARAM) (BOOL) fExtended;/* extended UI flag */
lParam = 0L; /* not used, must be zero */
An application sends a CB_SETEXTENDEDUI message to select either the default user interface or the
extended user interface for a combo box that has the CBS_DROPDOWN or CBS_DROPDOWNLIST
style.

Parameter Description
fExtended Value of wParam. Specifies whether the combo box should use the extended user

interface or the default user interface. A value of TRUE selects the extended user
interface; a value of FALSE selects the standard user interface.

Returns
The return value is CB_OKAY if the operation is successful, or it is CB_ERR if an error occurred.

Comments
The extended user interface differs from the default user interface in the following ways:

Clicking the static control displays the list box (CBS_DROPDOWNLIST style only).
Pressing the DOWN ARROW key displays the list box (F4 is disabled).
Scrolling in the static control is disabled when the item list is not visible (the arrow keys are

disabled).

Example
This example selects the extended user interface for a combo box:

SendDlgItemMessage(hdlg, ID_MYCOMBOBOX, CB_SETEXTENDEDUI,
TRUE, 0L);

See Also
CB_GETEXTENDEDUI

CB_SETITEMDATA (3.0)

CB_SETITEMDATA
wParam = (WPARAM) index; /* item index */
lParam = (LPARAM) (DWORD) dwData; /* item data */
An application sends a CB_SETITEMDATA message to set the doubleword value associated with the
specified item in a combo box.

Parameter Description
index Value of wParam. Specifies the zero-based index to the item.
dwData Value of lParam. Specifies the new value to be associated with the item.

Returns
The return value is CB_ERR if an error occurs.

See Also
CB_GETITEMDATA

CB_SETITEMHEIGHT (3.1)

CB_SETITEMHEIGHT
wParam = (WPARAM) index; /* item index */
lParam = (LPARAM) (int) height; /* item height */
An application sends a CB_SETITEMHEIGHT message to set the height of list items in a combo box or
the height of the edit-control (or static-text) portion of a combo box.

Parameter Description
index Value of wParam. Specifies whether the height of list items or the height of the edit-

control (or static-text) portion of the combo box is set.
If the combo box has the CBS_OWNERDRAWVARIABLE style, the index parameter
specifies the zero-based index of the list item whose height is to be set; otherwise, index
must be zero and the height of all list items will be set.
If index is -1, the height of the edit-control or static-text portion of the combo box is to
be set.

height Value of the low-order word of lParam. Specifies the height, in pixels, of the combo box
component identified by index.

Returns
The return value is CB_ERR if the index or height is invalid.

Comments
The height of the edit-control (or static-text) portion of the combo box is set independently of the height of
the list items. An application must ensure that the height of the edit-control (or static-text) portion isn't
smaller than the height of a particular list box item.

Example
This example sends a CB_SETITEMHEIGHT message to set the height of list items in a combo box:

LPARAM lrHeight;
SendDlgItemMessage(hdlg, ID_MYCOMBOBOX, CB_SETITEMHEIGHT,

0, lrHeight);
See Also
CB_GETITEMHEIGHT, WM_MEASUREITEM

CB_SHOWDROPDOWN (3.0)

CB_SHOWDROPDOWN
wParam = (WPARAM) (BOOL) fShow;/* the show/hide flag*/
lParam = 0L; /* not used, must be zero */
An application sends a CB_SHOWDROPDOWN message to show or hide the list box of a combo box
that has the CBS_DROPDOWN or CBS_DROPDOWNLIST style.

Parameter Description
fShow Value of wParam. Specifies whether the drop-down list box is to be shown or hidden. A

value of TRUE shows the list box. A value of FALSE hides the list box.

Returns
The return value is always nonzero.

Comments
This message has no effect on a combo box created with the CBS_SIMPLE style.

Example
This example shows the list box of a combo box:

SendDlgItemMessage(hdlg, ID_MYCOMBOBOX, CB_SHOWDROPDOWN, TRUE, 0);
See Also
CB_GETDROPPEDSTATE

DM_GETDEFID

DM_GETDEFID
wParam = 0;/* not used, must be zero */
lParam = 0L; /* not used, must be zero */
An application sends a DM_GETDEFID message to get the identifier of the default push button for a
dialog box.
Parameters

This message has no parameters.

Returns
The return value is a doubleword value. If the default push button has an identifier value, the high-order
word contains DC_HASDEFID and the low-order word contains the identifier value. The return value is
zero if the default push button does not have an identifier value.

Example
This example gets the identifier of the default push button of a dialog box:

DWORD dwResult;
WORD idDefPushButton;
dwResult = SendMessage(hdlg, DM_GETDEFID, 0, 0);
if (HIWORD(dwResult) == DC_HASDEFID)

idDefPushButton = LOWORD(dwResult);
See Also
DM_SETDEFID

DM_SETDEFID (2.x)

DM_SETDEFID
wIDPushBtn = wParam; /* identifier of new default push button */
An application sends a DM_SETDEFID message to change the identifier of the default push button for a
dialog box.

Parameter Description
wIDPushBtn Value of wParam. Specifies the identifier of the push button that will become the

default.

Returns
The return value is always nonzero.

See Also
DM_GETDEFID

EM_CANUNDO (2.x)

EM_CANUNDO
wParam = 0;/* not used, must be zero */
lParam = 0L; /* not used, must be zero */
An application sends an EM_CANUNDO message to determine whether an edit-control operation can be
undone.
Parameters

This message has no parameters.

Returns
The return value is nonzero if the last edit operation can be undone, or it is zero if the last edit operation
cannot be undone.

Example
This example sends an EM_CANUNDO message to determine whether the last edit-control operation can
be undone and, if so, sends an EM_UNDO message to undo the last operation:

if (SendDlgItemMessage(hdlg, ID_MYEDITCONTROL, EM_CANUNDO, 0, 0))
SendDlgItemMessage(hdlg, ID_MYEDITCONTROL, EM_UNDO, 0, 0);

See Also
EM_EMPTYUNDOBUFFER, EM_UNDO

EM_EMPTYUNDOBUFFER (3.0)

EM_EMPTYUNDOBUFFER
wParam = 0;/* not used, must be zero */
lParam = 0L; /* not used, must be zero */
An application sends an EM_EMPTYUNDOBUFFER message to reset (clear) the undo flag of an edit
control. The undo flag is set whenever an operation within the edit control can be undone.
Parameters

This message has no parameters.

Returns
This message does not return a value.

Comments
The undo flag is automatically cleared whenever the edit control receives a WM_SETTEXT or
EM_SETHANDLE message.

Example
This example resets the undo flag of an edit control:

SendDlgItemMessage(hdlg, ID_MYEDITCONTROL, EM_EMPTYUNDOBUFFER, 0, 0);
See Also
EM_CANUNDO, EM_UNDO

EM_FMTLINES (2.x)

EM_FMTLINES
wParam = (WPARAM) (BOOL) fAddEOL; /* line break flag */
lParam = 0L; /* not used, must be zero */
An application sends an EM_FMTLINES message to set the inclusion of soft line break characters on or
off within a multiline edit control. A soft line break consists of two carriage returns and a linefeed inserted
at the end of a line that is broken because of wordwrapping.

This message is processed only by multiline edit controls.

Parameter Description
fAddEOL Value of wParam. Specifies whether soft line break characters are to be inserted. A

value of TRUE inserts the characters; a value of FALSE removes them.

Returns
The return value is identical to the fAddEOL parameter.

Comments
This message affects only the buffer returned by the EM_GETHANDLE message and the text returned by
the WM_GETTEXT message. It has no effect on the display of the text within the edit control.

A line that ends with a hard line break is not affected by the EM_FMTLINES message. A hard line break
consists of one carriage return and a linefeed.

Example
This example sends an EM_FMTLINES message to turn off soft line breaks, then allocates a buffer for the
text, and then retrieves the text by sending a WM_GETTEXT message:

WPARAM cbText;
HGLOBAL hmem;
LPSTR lpstr;
SendDlgItemMessage(hdlg, ID_MYEDITCONTROL,

EM_FMTLINES, FALSE, 0);
cbText = (WPARAM) SendDlgItemMessage(hdlg, ID_MYEDITCONTROL,

WM_GETTEXTLENGTH, 0, 0);
cbText++; /* make room for the terminating null character */
hmem = (HGLOBAL) GlobalAlloc(GMEM_MOVEABLE, (DWORD) cbText);
lpstr = GlobalLock(hmem);
SendDlgItemMessage(hdlg, ID_MYEDITCONTROL,

WM_GETTEXT, cbText, (LPARAM) lpstr);
See Also
EM_GETWORDBREAKPROC, EM_SETWORDBREAKPROC

EM_GETFIRSTVISIBLELINE (3.1)

EM_GETFIRSTVISIBLELINE
wParam = 0;/* not used, must be zero */
lParam = 0L; /* not used, must be zero */
An application sends an EM_GETFIRSTVISIBLELINE message to determine the topmost visible line in
an edit control.
Parameters

This message has no parameters.

Returns
The return value is the zero-based index of the topmost visible line. For single-line edit controls, the return
value is zero.

Example
This example gets the index of the topmost visible line in an edit control:

int FirstVis;
FirstVis = (int) SendDlgItemMessage(hdlg, IDD_EDIT,

EM_GETFIRSTVISIBLELINE, 0, 0L);

EM_GETHANDLE (2.x)

EM_GETHANDLE
wParam = 0;/* not used, must be zero */
lParam = 0L; /* not used, must be zero */
An application sends an EM_GETHANDLE message to retrieve a handle to the memory currently
allocated for a multiline edit control. The handle is a local memory handle and can be used by any of the
functions that take a local memory handle as a parameter.

This message is processed only by multiline edit controls.
Parameters

This message has no parameters.

Returns
The return value is a local memory handle identifying the buffer that holds the contents of the edit control.
If an error occurs, such as sending the message to a single-line edit control, the return value is zero.

Comments
An application can send this message to a multiline edit control in a dialog box only if it created the dialog
box with the DS_LOCALEDIT style flag set. If the DS_LOCALEDIT style is not set, the return value is
still nonzero, but the return value will not be meaningful.

Example
This example sends an EM_GETHANDLE message to a multiline edit control and calls the LocalSize
function to determine the current size of the edit control using the handle returned by the
EM_GETHANDLE message:

HANDLE hmemMle;
WORD cbMle;
hmemMle = (HLOCAL) SendDlgItemMessage(hdlg, ID_MYEDITCONTROL,

EM_GETHANDLE, 0, 0);
cbMle = LocalSize(hmemMle);
See Also
EM_SETHANDLE

EM_GETLINE (2.x)

EM_GETLINE
wParam = (WPARAM) line; /* line number to retrieve */
lParam = (LPARAM) (LPSTR) lpch; /* address of buffer for line */
An application sends an EM_GETLINE message to retrieve a line of text from an edit control.

Parameter Description
line Value of wParam. Specifies the line number of the line to retrieve from a multiline edit

control. Line numbers are zero-based; a value of zero specifies the first line. This
parameter is ignored by a single-line edit control.

lpch Value of lParam. Points to the buffer that receives a copy of the line. The first word of
the buffer specifies the maximum number of bytes that can be copied to the buffer.

Returns
The return value is the number of bytes actually copied. The return value is zero if the line number
specified by the line parameter is greater than the number of lines in the edit control.

Comments
The copied line does not contain a terminating null character.

Example
This example sets the maximum size of the buffer, sends an EM_GETLINE message to get the first line of
the multiline edit control, and adds a terminating null character to the end of the retrieved line:

unsigned char szBuf[128];
WORD cbText;
*(WORD *) szBuf = sizeof(szBuf) - 1; /* sets the buffer size */
cbText = (WORD) SendDlgItemMessage(hdlg, ID_MYEDITCONTROL,

EM_GETLINE,
0, /* line number */
(DWORD) (LPSTR) szBuf); /* buffer address */

szBuf[cbText] = '\0'; /* terminating null character */
See Also
EM_LINELENGTH, WM_GETTEXT

EM_GETLINECOUNT (2.x)

EM_GETLINECOUNT
wParam = 0;/* not used, must be zero */
lParam = 0L; /* not used, must be zero */
An application sends an EM_GETLINECOUNT message to retrieve the number of lines in a multiline edit
control.

This message is processed only by multiline edit controls.
Parameters

This message has no parameters.

Returns
The return value is an integer containing the number of lines in the multiline edit control. If no text is in
the edit control, the return value is 1.

Example
This example sends an EM_GETLINECOUNT message to retrieve the number of lines in a multiline edit
control and then sends an EM_LINESCROLL message to scroll the edit control so that the last line is
displayed at the top of the edit control.

int cLines;
cLines = (int) SendDlgItemMessage(hdlg, ID_MYEDITCONTROL,

EM_GETLINECOUNT, 0, 0);
SendDlgItemMessage(hdlg, ID_MYEDITCONTROL,

EM_LINESCROLL, 0, MAKELONG(cLines - 1, 0));

EM_GETMODIFY (2.x)

EM_GETMODIFY
wParam = 0;/* not used, must be zero */
lParam = 0L; /* not used, must be zero */
An application sends an EM_GETMODIFY message to determine whether the contents of an edit control
have been modified.
Parameters

This message has no parameters.

Returns
The return value is nonzero if the edit-control contents have been modified, or it is zero if the contents
have remained unchanged.

Comments
Windows maintains an internal flag indicating whether the contents of the edit control have been changed.
This flag is cleared when the edit control is first created; or an EM_SETMODIFY message can be sent to
clear the flag.

Example
This example sends an EM_GETMODIFY message to determine whether the edit control has been
modified and, if it has, retrieves the current contents of the edit control and clears the modification flag by
sending an EM_SETMODIFY message:

char szBuf[128];
if (SendDlgItemMessage(hdlg, ID_MYEDITCONTROL,

EM_GETMODIFY, 0, 0)) {
SendDlgItemMessage(hdlg, ID_MYEDITCONTROL,
WM_GETTEXT, sizeof(szBuf), (LPARAM) ((LPSTR) szBuf));
SendDlgItemMessage(hdlg, ID_MYEDITCONTROL,
EM_SETMODIFY, FALSE, 0);

}
See Also
EM_SETMODIFY

EM_GETPASSWORDCHAR (3.1)

EM_GETPASSWORDCHAR
wParam = 0;/* not used, must be zero */
lParam = 0L; /* not used, must be zero */
An application sends an EM_GETPASSWORDCHAR message to retrieve the password character
displayed in an edit control when the user enters text.
Parameters

This message has no parameters.

Returns
The return value specifies the character to be displayed in place of the character typed by the user. The
return value is NULL if no password character exists.

Comments
If the edit control is created with the ES_PASSWORD style, the default password character is set to an
asterisk (*).

See Also
EM_SETPASSWORDCHAR

EM_GETRECT (2.x)

EM_GETRECT
wParam = 0;/* not used, must be zero */
lParam = (LPARAM) (RECT FAR*) lprc; /* address of RECT structure */
An application sends an EM_GETRECT message to retrieve the formatting rectangle of an edit control.
The formatting rectangle is the limiting rectangle of the text. The limiting rectangle is independent of the
size of the edit-control window.

Parameter Description
lprc Value of lParam. Points to the RECT structure that receives the formatting rectangle.

Returns
The return value is not a meaningful value.

Comments
The formatting rectangle of a multiline edit control can be modified by the EM_SETRECT and
EM_SETRECTNP messages.

Example
This example sends an EM_GETRECT message to retrieve the formatting rectangle of an edit control:

RECT rcl;
SendDlgItemMessage(hdlg, ID_MYEDITCONTROL,

EM_GETRECT, 0, (DWORD) ((LPRECT) &rcl));
See Also
EM_SETRECT, EM_SETRECTNP, RECT

EM_GETSEL (2.x)

EM_GETSEL
wParam = 0;/* not used, must be zero */
lParam = 0L; /* not used, must be zero */
An application sends an EM_GETSEL message to get the starting and ending character positions of the
current selection in an edit control.
Parameters

This message has no parameters.

Returns
The return value is a doubleword value that contains the starting position in the low-order word and the
position of the first nonselected character after the end of the selection in the high-order word.

Example
This example gets the selection positions of an edit control and converts them into starting and ending
positions:

DWORD dwResult;
WORD wStart, wEnd;
dwResult = SendDlgItemMessage(hdlg, ID_MYCOMBOBOX, EM_GETSEL, 0, 0);
wStart = LOWORD(dwResult);
wEnd = HIWORD(dwResult);
See Also
EM_REPLACESEL, EM_SETSEL

EM_GETWORDBREAKPROC (3.1)

EM_GETWORDBREAKPROC
wParam = 0;/* not used, must be zero */
lParam = 0L; /* not used, must be zero */
An application sends the EM_GETWORDBREAKPROC message to an edit control to retrieve the current
wordwrap function.
Parameters

This message has no parameters.

Returns
The return value specifies the procedure-instance address of the application-defined wordwrap function.
The return value is NULL if no wordwrap function exists.

Comments
A wordwrap function scans a text buffer (which contains text to be sent to the display), looking for the
first word that does not fit on the current display line. The wordwrap function places this word at the
beginning of the next line on the display. A wordwrap function defines at what point Windows should
break a line of text for multiline edit controls, usually at a space character that separates two words.

See Also
EM_FMTLINES, EM_SETWORDBREAKPROC, MakeProcInstance, WordBreakProc

EM_LIMITTEXT (2.x)

EM_LIMITTEXT
wParam = (WPARAM) cchMax; /* text length */
lParam = 0L; /* not used, must be zero */
An application sends an EM_LIMITTEXT message to limit the length of the text the user can enter into an
edit control.

Parameter Description
cchMax Value of wParam. Specifies the length, in bytes, of the text the user can enter. If this

parameter is zero, the text length is set to 65,535 bytes.

Returns
This message does not return a value.

Comments
The EM_LIMITTEXT message limits only the text the user can enter. It has no effect on any text already
in the edit control when the message is sent, nor does it affect the length of text copied to the edit control
by the WM_SETTEXT message.

If an application uses the WM_SETTEXT message to place more text into an edit control than is specified
in the EM_LIMITTEXT message, the user can edit the entire contents of the edit control.

EM_LINEFROMCHAR (2.x)

EM_LINEFROMCHAR
wParam = (WPARAM) ich; /* character index */
lParam = 0L; /* not used, must be zero */
An application sends an EM_LINEFROMCHAR message to retrieve the line number of the line that
contains the specified character index. A character index is the number of characters from the beginning of
the edit control.

This message is processed only by multiline edit controls.

Parameter Description
ich Value of wParam. Specifies the character index of the character contained in the line

whose number is to be retrieved. If the ich parameter is -1, either the line number of the
current line (the line containing the caret) is retrieved or, if there is a selection, the line
number of the line containing the beginning of the selection is retrieved.

Returns
The return value is the zero-based line number of the line containing the character index specified by ich.

Example
This example sends an EM_LINEFROMCHAR message to retrieve the line number of the current line in a
multiline edit control:

SendDlgItemMessage(hdlg, ID_MYEDITCONTROL,
EM_LINEFROMCHAR, -1, 0);

See Also
EM_LINEINDEX

EM_LINEINDEX (2.x)

EM_LINEINDEX
wParam = (WPARAM) line; /* line number */
lParam = 0L; /* not used, must be zero */
An application sends an EM_LINEINDEX message to retrieve the character index of a line within a
multiline edit control. The character index is the number of characters from the beginning of the edit
control to the specified line.

This message is processed only by multiline edit controls.

Parameter Description
line Value of wParam. Specifies the zero-based line number. A value of -1 specifies the

current line number (the line that contains the caret).

Returns
The return value is the character index of the line specified in the line parameter, or it is -1 if the specified
line number is greater than the number of lines in the edit control.

Example
This example uses the EM_GETLINECOUNT message to retrieve the number of lines in an edit control
and then uses EM_LINEINDEX to retrieve the character index for the last line in the edit control:

WPARAM cLines, index;
cLines = (WPARAM) SendDlgItemMessage(hdlg, ID_MYEDITCONTROL,

EM_GETLINECOUNT, 0, 0);
index = (WPARAM) SendDlgItemMessage(hdlg, ID_MYEDITCONTROL,

EM_LINEINDEX, cLines - 1, 0);
See Also
EM_LINEFROMCHAR

EM_LINELENGTH (2.x)

EM_LINELENGTH
wParam = (WPARAM) ich; /* character index */
lParam = 0L; /* not used, must be zero */
An application sends an EM_LINELENGTH message to retrieve the length of a line in an edit control.

Parameter Description
ich Value of wParam. Specifies the character index of a character in the line whose length is

to be retrieved when EM_LINELENGTH is sent to a multiline edit control. If this
parameter is -1, the message returns the number of unselected characters on lines
containing selected characters. For example, if the selection extended from the fourth
character of one line through the eighth character from the end of the next line, the
return value would be 10 (three characters on the first line and seven on the next).
When EM_LINELENGTH is sent to a single-line edit control, this parameter is ignored.

Returns
The return value is the length, in bytes, of the line specified by the ich parameter when an
EM_LINELENGTH message is sent to a multiline edit control. The return value is the length, in bytes, of
the text in the edit control when an EM_LINELENGTH message is sent to a single-line edit control.

Comments
Use the EM_LINEINDEX message to retrieve a character index for a given line number within a multiline
edit control.

Example
This example sends an EM_LINEINDEX message to retrieve the length of the first line in a multiline edit
control (or the entire text of a single-line edit control):

SendDlgItemMessage(hdlg, ID_MYEDITCONTROL,
EM_LINELENGTH, 0, 0);

See Also
EM_GETLINE

EM_LINESCROLL (2.x)

EM_LINESCROLL
wParam = 0; /* not used, must be zero */
lParam = MAKELPARAM(dv, dh); /* lines and characters to scroll */
An application sends an EM_LINESCROLL message to scroll the text of a multiline edit control.

This message is processed only by multiline edit controls.

Parameter Description
dv Value of the low-order word of lParam. Specifies the number of lines to scroll vertically.
dh Value of the high-order word of lParam. Specifies the number of character positions to

scroll horizontally. This value is ignored if the edit control has either the ES_RIGHT or
ES_CENTER style.

Returns
The return value is nonzero if the message is sent to a multiline edit control, or it is zero if the message is
sent to a single-line edit control.

Comments
The edit control does not scroll vertically past the last line of text in the edit control. If the current line plus
the number of lines specified by the dv parameter exceeds the total number of lines in the edit control, the
value is adjusted so that the last line of the edit control is scrolled to the top of the edit-control window.

The EM_LINESCROLL message can be used to scroll horizontally past the last character of any line.

Example
This example sends an EM_LINESCROLL message to scroll the text in a multiline edit control vertically
by five lines:

SendDlgItemMessage(hdlg, ID_MYEDITCONTROL,
EM_LINESCROLL, 0, MAKELONG(5, 0));

EM_REPLACESEL (2.x)

EM_REPLACESEL
wParam = 0; /* not used, must be zero */
lParam = (LPARAM) (LPCSTR) lpszReplace;/* address of new string */
An application sends an EM_REPLACESEL message to replace the current selection in an edit control
with the text specified by the lpszReplace parameter.

Parameter Description
lpszReplace Value of lParam. Points to a null-terminated string containing the replacement text.

Returns
This message does not return a value.

Comments
Use the EM_REPLACESEL message when you want to replace only a portion of the text in an edit
control. If you want to replace all of the text, use the WM_SETTEXT message.

If there is no current selection, the replacement text is inserted at the current cursor location.

Example
This example sets the selection to the beginning of the edit control and inserts the string "C:\":

SendDlgItemMessage(hdlg, ID_MYEDITCONTROL,
EM_SETSEL, 0, MAKELONG(0, 0));

SendDlgItemMessage(hdlg, ID_MYEDITCONTROL,
EM_REPLACESEL, 0, (LPARAM) ((LPSTR) "C:\\"));

See Also
EM_GETSEL, EM_SETSEL

EM_SETHANDLE (2.x)

EM_SETHANDLE
wParam = (WPARAM) (HLOCAL) hloc; /* handle of local memory object */
lParam = 0L; /* not used, must be zero */
An application sends an EM_SETHANDLE message to set the handle to the local memory that will be
used by a multiline edit control.

This message is processed only by multiline edit controls.

Parameter Description
hloc Value of wParam. Identifies the local memory. This handle must have been created by a

previous call to the LocalAlloc function using the LMEM_MOVEABLE flag. The
memory should contain a null-terminated string, or the first byte of the allocated
memory should be set to zero.

Returns
This message does not return a value.

Comments
Before an application sets a new memory handle, it should send an EM_GETHANDLE message to
retrieve the handle to the current memory buffer and should free that memory by using the LocalFree
function.

Sending an EM_SETHANDLE message clears the undo buffer (EM_CANUNDO returns zero) and the
internal modification flag (EM_GETMODIFY returns zero). The edit-control window is redrawn.

An application can send this message to a multiline edit control in a dialog box only if it has created the
dialog box with the DS_LOCALEDIT style flag set.

Example
This example frees the current memory for the edit control, allocates new memory, and reads up to
BUF_SIZE bytes of a file into the allocated memory. It then sends an EM_SETHANDLE message to set
the handle of the edit control to the new memory, effectively placing up to BUF_SIZE bytes of the file
into the edit control.

#define BUF_SIZE 4 * 1024
HFILE hf;
OFSTRUCT of;
HLOCAL hlocOldMem, hlocNewMem;
PSTR pBuf;
int cbRead;
/* Get the handle to the old memory and free it. */
hlocOldMem = (HLOCAL) SendDlgItemMessage(hdlg,

ID_MYEDITCONTROL, EM_GETHANDLE, 0, 0);
LocalFree(hlocOldMem);
/* Allocate new memory and read the file into it. */
hlocNewMem = LocalAlloc(LMEM_MOVEABLE, BUF_SIZE);
pBuf = LocalLock(hlocNewMem);
of.cBytes = sizeof(OFSTRUCT);
hf = OpenFile("test.txt", &of, OF_READ);
cbRead = _lread(hf, pBuf, BUF_SIZE);
pBuf[cbRead] = '\0'; /* add terminating null character */
_lclose(hf);
/* Adjust the buffer for the amount actually read in. */
LocalReAlloc(hlocNewMem, cbRead, 0);
/* Set the handle to the new buffer. */

LocalUnlock(hlocNewMem);
SendDlgItemMessage(hdlg, ID_MYEDITCONTROL,

EM_SETHANDLE, (WPARAM) hlocNewMem, 0);
See Also
EM_GETHANDLE, LocalAlloc, LocalFree

EM_SETMODIFY (2.x)

EM_SETMODIFY
wParam = (WPARAM) (UINT) fModified;/* modification flag */
lParam = 0L; /* not used, must be zero */
An application sends an EM_SETMODIFY message to set or clear the modification flag for an edit
control. The modification flag indicates whether the text within the edit control has been modified. It is
automatically set whenever the user changes the text. An EM_GETMODIFY message can be sent to
retrieve the value of the modification flag.

Parameter Description
fModified Value of wParam. Specifies the new value for the modification flag. A value of TRUE

indicates the text has been modified, and a value of FALSE indicates it has not been
modified.

Returns
This message does not return a value.

Example
This example sends an EM_SETMODIFY message to clear the modification flag:

SendDlgItemMessage(hdlg, ID_MYEDITCONTROL, EM_SETMODIFY, FALSE, 0);
See Also
EM_GETMODIFY

EM_SETPASSWORDCHAR (3.0)

EM_SETPASSWORDCHAR
wParam = (WPARAM) (UINT) ch; /* character to display */
lParam = 0L;/* not used, must be zero */
An application sends an EM_SETPASSWORDCHAR message to set or remove a password character
displayed in an edit control when the user types text. When a password character is set, that character is
displayed for each character the user types.

This message has no effect on a multiline edit control.

Parameter Description
ch Value of wParam. Specifies the character to be displayed in place of the character typed

by the user. If the ch parameter is zero, the actual characters typed by the user are
displayed.

Returns
The return value is nonzero if the message is sent to an edit control.

Comments
When the EM_SETPASSWORDCHAR message is received by an edit control, the edit control redraws all
visible characters by using the character specified by the ch parameter.

If the edit control is created with the ES_PASSWORD style, the default password character is set to an
asterisk (*). This style is removed if an EM_SETPASSWORDCHAR message is sent with the wParam
parameter set to zero.

Example
This example sends an EM_SETPASSWORDCHAR message to set the password character of an edit
control to a question mark:

SendDlgItemMessage(hdlg, ID_MYEDITCONTROL,
EM_SETPASSWORDCHAR, (WORD) '?', 0);

See Also
EM_GETPASSWORDCHAR

EM_SETREADONLY (3.1)

EM_SETREADONLY
wParam = (WPARAM) (BOOL) fReadOnly;/* read-only flag */
lParam = 0L; /* not used, must be zero */
An application sends an EM_SETREADONLY message to set the read-only state of an edit control.

Parameter Description
fReadOnly Value of wParam. Specifies whether to set or remove the read-only state of the edit

control. A value of TRUE sets the state to read-only; a value of FALSE sets the state to
read/write.

Returns
The return value is nonzero if the operation is successful, or it is zero if an error occurs.

Comments
When the state of an edit control is set to read-only, the user cannot change the text within the edit control.

EM_SETREADONLY does not have a corresponding message to retrieve the current style. Calling the
GetWindowLong function with the GWL_STYLE offset retrieves the full control style.

Example
This example sets the state of an edit control to read-only:

SendDlgItemMessage(hdlg, IDD_EDIT, EM_SETREADONLY,
TRUE, 0L);

See Also
GetWindowLong

EM_SETRECT (2.x)

EM_SETRECT
wParam = 0; /* not used, must be zero */
lParam = (LPARAM) (const RECT FAR*) lprc; /* address of RECT */
An application sends an EM_SETRECT message to set the formatting rectangle of a multiline edit control.
The formatting rectangle is the limiting rectangle of the text. The limiting rectangle is independent of the
size of the edit-control window. When the edit control is first created, the formatting rectangle is the same
as the client area of the edit-control window. By using the EM_SETRECT message, an application can
make the formatting rectangle larger or smaller than the edit-control window.

This message is processed only by multiline edit controls.

Parameter Description
lprc Value of lParam. Points to a RECT structure that specifies the new dimensions of the

rectangle.

Returns
This message does not return a value.

Comments
The EM_SETRECT message causes the text of the edit control to be redrawn. To change the size of the
formatting rectangle without redrawing the text, use the EM_SETRECTNP message.

If the edit control does not have a horizontal scroll bar, and the formatting rectangle is set to be larger than
the edit-control window, lines of text exceeding the width of the edit-control window (but smaller than the
width of the formatting rectangle) are clipped instead of wrapped.

If the edit control contains a border, the formatting rectangle is reduced by the size of the border. If you are
adjusting the rectangle returned by an EM_GETRECT message, you must remove the size of the border
before using the rectangle with the EM_SETRECT message.

Example
This example retrieves the current formatting rectangle for a multiline edit control, removes the border
width dimensions, and sets the right border to 32767 so that all text sent to the edit control is clipped rather
than wrapped if it exceeds the width of the edit-control window. The example then sends an
EM_SETRECT message to set the new formatting rectangle.

RECT rect;
SendDlgItemMessage(hdlg, ID_MYEDITCONTROL,

EM_GETRECT, 0, (LPARAM) (RECT FAR*) &rect);
rect.left = 0; /* remove border width */
rect.right = 32767; /* clip all lines */
rect.bottom += rect.top; /* remove border height */
rect.top = 0; /* remove border height */
SendDlgItemMessage(hdlg, ID_MYEDITCONTROL,

EM_SETRECT, 0, (LPARAM) (RECT FAR*) &rect);
See Also
EM_GETRECT, EM_SETRECTNP, RECT

EM_SETRECTNP (2.x)

EM_SETRECTNP
wParam = 0;/* not used, must be zero */
lParam = (LPARAM) (const RECT FAR*) lprc; /* address of RECT*/
An application sends an EM_SETRECTNP message to set the formatting rectangle of a multiline edit
control. The formatting rectangle is the limiting rectangle of the text. The limiting rectangle is independent
of the size of the edit-control window. When the edit control is first created, the formatting rectangle is the
same as the client area of the edit-control window. By using the EM_SETRECTNP message, an
application can make the formatting rectangle larger or smaller than the edit-control window.

The EM_SETRECTNP message is identical to the EM_SETRECT message, except that the edit-control
window is not redrawn.

This message is processed only by multiline edit controls.

Parameter Description
lprc Value of lParam. Points to a RECT structure that specifies the new dimensions of the

rectangle.

Returns
This message does not return a value.

See Also
EM_GETRECT, EM_SETRECT, RECT

EM_SETSEL (2.x)

EM_SETSEL
wParam = (WPARAM) (UINT) fScroll; /* flag for caret scrolling */
lParam = MAKELPARAM(ichStart, ichEnd); /* start and end positions *
/
An application sends an EM_SETSEL message to select a range of characters in an edit control.

Parameter Description
fScroll Value of wParam. When this parameter is zero, the caret is scrolled into view. When this

parameter is one, the caret is not scrolled into view.
ichStart Value of the low-order word of lParam. Specifies the starting position.
ichEnd Value of the high-order word of lParam. Specifies the ending position.

Returns
The return value is nonzero if the message is sent to an edit control.

Comments
If the ichStart parameter is 0 and the ichEnd parameter is -1, all the text in the edit control is selected. If
ichStart is -1, any current selection is removed. The caret is placed at the end of the selection indicated by
the greater of the two values ichEnd and ichStart.

Example
This example sends an EM_SETSEL message to select the entire contents of an edit control. It then sends
a WM_CUT message to copy the contents of the edit control to the clipboard and then to delete the
contents of the edit control.

SendDlgItemMessage(hdlg, ID_MYEDITCONTROL,
EM_SETSEL, 0, MAKELONG(0, -1));

SendDlgItemMessage(hdlg, ID_MYEDITCONTROL,
WM_CUT, 0, 0);

See Also
EM_GETSEL, EM_REPLACESEL

Windows 3.1 changes

The meaning of the wParam parameter has changed. The wParam parameter specifies whether or not to
scroll the caret.

EM_SETTABSTOPS (3.0)

EM_SETTABSTOPS
wParam = (WPARAM) cTabs; /* number of tab stops */
lParam = (LPARAM) (const int FAR*) lpTabs;/* tab-stop array */
An application sends an EM_SETTABSTOPS message to set the tab stops in a multiline edit control
(MLE). When text is copied to an MLE, any tab character in the text causes space to be generated up to the
next tab stop.

This message is processed only by MLEs.

Parameter Description
cTabs Value of wParam. Specifies the number of tab stops contained in the lpTabs parameter.

If this parameter is 0, the lpTabs parameter is ignored and default tab stops are set at
every 32 dialog box units. If this parameter is 1, tab stops are set at every n dialog box
units, where n is the distance pointed to by the lpTabs parameter. If the cTabs parameter
is greater than 1, lpTabs points to an array of tab stops.

lpTabs Low and high-order words of lParam. Points to an array of unsigned integers specifying
the tab stops, in dialog box units. If the cTabs parameter is 1, lpTabs points to an
unsigned integer containing the distance between all tab stops, in dialog units.

Returns
The return value is nonzero if the tabs were set; otherwise, the return value is zero.

Comments
The EM_SETTABSTOPS message does not automatically redraw the edit-control window. If the
application is changing the tab stops for text already in the edit control, it should call the InvalidateRect
function to redraw the edit-control window.

Example
This example sends an EM_SETTABSTOPS message to set tab stops at every 64 dialog box units. It then
calls InvalidateRect to redraw the edit-control window.

WORD wTabSpacing = 64;
SendDlgItemMessage(hdlg, ID_MYEDITCONTROL,

EM_SETTABSTOPS, 1, (LPARAM) (int far*) &wTabSpacing);
InvalidateRect(GetDlgItem(hdlg, ID_MYEDITCONTROL),

NULL, TRUE);
See Also
GetDialogBaseUnits

EM_SETWORDBREAKPROC (3.1)

EM_SETWORDBREAKPROC
wParam = 0; /* not used, must be zero */
lParam = (LPARAM) (EDITWORDBREAKPROC) ewbprc; /* address of function *
/
An application sends the EM_SETWORDBREAKPROC message to an edit control to replace the default
wordwrap function with an application-defined wordwrap function.

Parameter Description
ewbprc Value of lParam. Specifies the procedure-instance address of the application-defined

wordwrap function. The MakeProcInstance function must be used to create the address.
For more information, see the description of the WordBreakProc callback function.

Returns
This message does not return a value.

Comments
A wordwrap function scans a text buffer (which contains text to be sent to the display), looking for the
first word that does not fit on the current display line. The wordwrap function places this word at the
beginning of the next line on the display.

A wordwrap function defines the point at which Windows should break a line of text for multiline edit
controls, usually at a space character that separates two words. Either a multiline or a single-line edit
control might call this function when the user presses arrow keys in combination with the CTRL key to
move the cursor to the next word or previous word. The default wordwrap function breaks a line of text at
a space character. The application-defined function may define wordwrap to occur at a hyphen or a
character other than the space character.

See Also
EM_FMTLINES, EM_GETWORDBREAKPROC, MakeProcInstance, WordBreakProc

EM_UNDO (2.x)

EM_UNDO
wParam = 0;/* not used, must be zero */
lParam = 0L; /* not used, must be zero */
An application sends an EM_UNDO message to undo the last edit-control operation.
Parameters

This message has no parameters.

Returns
The return value is always nonzero for a single-line edit control. For a multiline edit control, the return
value is nonzero if the undo operation is successful or zero if the undo operation fails.

Comments
An undo operation can also be undone. For example, you can restore deleted text with the first
EM_UNDO message and remove the text again with a second EM_UNDO message as long as there is no
intervening edit-control operation.

Example
This example undoes the last edit-control operation:

SendDlgItemMessage(hdlg, ID_MYEDITCONTROL, EM_UNDO, 0, 0);
See Also
EM_CANUNDO, EM_EMPTYUNDOBUFFER, WM_UNDO

LB_ADDSTRING (2.x)

LB_ADDSTRING
wParam = 0; /* not used, must be zero */
lParam = (LPARAM) (LPCSTR) lpsz; /* address of string to add */
An application sends an LB_ADDSTRING message to add a string to a list box. If the list box does not
have the CBS_SORT style, the string is added to the end of the list. Otherwise, the string is inserted into
the list and the list is sorted.

Parameter Description
lpsz Value of lParam. Points to the null-terminated string that is to be added. If the list box

was created with an owner-drawn style but without the LBS_HASSTRINGS style, the
value of the lpsz parameter is stored rather than the string it would otherwise point to.

Returns
The return value is the zero-based index to the string in the list box. The return value is LB_ERR if an
error occurs; the return value is LB_ERRSPACE if insufficient space is available to store the new string.

Comments
If an owner-drawn list box was created with the LBS_SORT style but not the LBS_HASSTRINGS style,
the WM_COMPAREITEM message is sent one or more times to the owner of the list box so the new item
can be properly placed in the list box.

Example
This example adds the string "my string" to a list box:

DWORD dwIndex;
dwIndex = SendDlgItemMessage(hdlg, ID_MYLISTBOX,

LB_ADDSTRING, 0, (LPARAM) ((LPSTR) "my string"));
See Also
LB_DIR, LB_INSERTSTRING, WM_COMPAREITEM

LB_DELETESTRING (2.x)

LB_DELETESTRING
wParam = (WPARAM) index; /* index of string to delete */
lParam = 0L; /* not used, must be zero */
An application sends an LB_DELETESTRING message to delete a string in a list box.

Parameter Description
index Value of wParam. Specifies the zero-based index of the string to delete.

Returns
The return value is a count of the strings remaining in the list. The return value is LB_ERR if the index
parameter specifies an index greater than the number of items in the list.

Comments
If the list box was created with an owner-drawn style but without the LBS_HASSTRINGS style, a
WM_DELETEITEM message is sent to the owner of the list box so that the application can free any
additional data associated with the item.

Example
This example deletes the first string in a list box:

DWORD dwRemaining;
dwRemaining = SendDlgItemMessage(hdlg, ID_MYLISTBOX,

LB_DELETESTRING, 0, 0);
See Also
LB_RESETCONTENT, WM_DELETEITEM

LB_DIR (2.x)

LB_DIR
wParam = (WPARAM) (UINT) uAttrs; /* file attributes */
lParam = (LPARAM) (LPCSTR) lpszFileSpec; /* filename string's address *
/
An application sends an LB_DIR message to add a list of filenames to a list box.

Parameter Description
uAttrs Value of wParam. Specifies the attributes of the files to be added to the list box. It can

be any combination of the following values:

Value Meaning
DDL_READWRITE File can be read from or written to.
DDL_READONLY File can be read from but not written to.
DDL_HIDDEN File is hidden and does not appear in a directory listing.
DDL_SYSTEM File is a system file.
DDL_DIRECTORY The name pointed to by the lpszFileSpec parameter

specifies a directory.
DDL_ARCHIVE File has been archived.
DDL_DRIVES All drives that match the name specified by the

lpszFileSpec parameter are included. If the DDL_DRIVES
flag is set, the DDL_EXCLUSIVE flag is set
automatically. Therefore, to create a directory listing that
includes drives and files, the developer must send this
message twice: once with the DDL_DRIVES flag set and
once with the flags for the rest of the list.

DDL_EXCLUSIVE Exclusive flag. If the exclusive flag is set, only files of the
specified type are listed. Otherwise, files of the specified
type are listed in addition to files that do not match the
specified type.

lpszFileSpec Value of lParam. Points to the null-terminated string that specifies the filename to add
to the list. If the filename contains wildcards (for example, *.*), all files that match and
have the attributes specified by the uAttrs parameter are added to the list.

Returns
The return value is the zero-based index of the last filename added to the list. The return value is LB_ERR
if an error occurs; the return value is LB_ERRSPACE if insufficient space is available to store the new
strings.

Example
This example adds the names of all available drives to a list box:

DWORD dwIndexLastItem;
dwIndexLastItem = SendDlgItemMessage(hdlg, ID_MYLISTBOX, LB_DIR,

0x4000 | 0x8000, (LPARAM) ((LPSTR) "*"));
See Also
DlgDirList, LB_ADDSTRING, LB_INSERTSTRING

LB_FINDSTRING (3.0)

LB_FINDSTRING
wParam = (WPARAM) indexStart; /* item before start of search */
lParam = (LPARAM) (LPCSTR) lpszFind; /* address of search string */
An application sends an LB_FINDSTRING message to search a list box for an item that begins with the
characters in a specified string.

Parameter Description
indexStart Value of wParam. Specifies the zero-based index of the item before the first item to be

searched. When the search reaches the bottom of the list box, it continues from the top
of the list box back to the item specified by the indexStart parameter. If indexStart is -1,
the entire list box is searched from the beginning.

lpszFind Value of lParam. Points to the null-terminated string that contains the prefix to search
for. The search is not case-sensitive, so this string can contain any combination of
uppercase and lowercase letters.

Returns
The return value is the index of the matching item, or it is LB_ERR if the search was unsuccessful.

Comments
If the combo box was created with an owner-drawn style but without the CBS_HASSTRINGS style, the
action taken by the LB_FINDSTRING message depends on whether the CBS_SORT style is used. If the
CBS_SORT style is used, WM_COMPAREITEM messages are sent to the owner of the combo box to
determine which item matches the specified string. Otherwise, LB_FINDSTRING attempts to match the
doubleword value against the value of the lpszFind parameter.

Example
This example searches for the string "my string" in a list box and copies it, if found, to the szBuf buffer:

char szBuf[20];
DWORD dwIndex;
dwIndex = SendDlgItemMessage(hdlg, ID_MYLISTBOX,

LB_FINDSTRING, 0, (LPARAM) ((LPSTR) "my string"));
if (dwIndex != LB_ERR)

SendDlgItemMessage(hdlg, ID_MYLISTBOX,
LB_GETTEXT, (WPARAM) dwIndex, (LPARAM) ((LPSTR) szBuf));

See Also
LB_FINDSTRINGEXACT, LB_SELECTSTRING, WM_COMPAREITEM

LB_FINDSTRINGEXACT (3.1)

LB_FINDSTRINGEXACT
wParam = (WPARAM) indexStart; /* item before start of search */
lParam = (LPARAM) (LPCSTR) lpszFind; /* address of search string */
An application sends an LB_FINDSTRINGEXACT message to find the first list box string that matches
the string specified in the lpszFind parameter.

Parameter Description
indexStart Value of wParam. Specifies the zero-based index of the item before the first item to be

searched. When the search reaches the bottom of the list box, it continues from the top
of the list box back to the item specified by the indexStart parameter. If indexStart is -1,
the entire list box is searched from the beginning.

lpszFind Value of lParam. Points to the null-terminated string to search for. This string can
contain a complete filename, including the extension. The search is not case-sensitive,
so the string can contain any combination of uppercase and lowercase letters.

Returns
The return value is the index of the matching item, or it is LB_ERR if the search was unsuccessful.

Comments
If the combo box was created with an owner-drawn style but without the CBS_HASSTRINGS style, the
action taken by the LB_FINDSTRINGEXACT message depends on whether the CBS_SORT style is used.
If the CBS_SORT style is used, WM_COMPAREITEM messages are sent to the owner of the combo box
to determine which item matches the specified string. Otherwise, LB_FINDSTRINGEXACT attempts to
match the doubleword value against the value of the lpszFind parameter.

Example
This example searches for the string "my string" in a list box and copies it, if found, to the szBuf buffer:

char szBuf[20];
DWORD dwIndex;
dwIndex = SendDlgItemMessage(hdlg, ID_MYLISTBOX,

LB_FINDSTRINGEXACT, 0, (LPARAM) ((LPSTR) "my string"));
if (dwIndex != LB_ERR)

SendDlgItemMessage(hdlg, ID_MYLISTBOX,
LB_GETTEXT, (WPARAM) dwIndex, (LPARAM) ((LPSTR) szBuf));

See Also
LB_FINDSTRING, LB_SELECTSTRING, WM_COMPAREITEM

LB_GETCARETINDEX (3.1)

LB_GETCARETINDEX
wParam = 0;/* not used, must be zero */
lParam = 0L; /* not used, must be zero */
An application sends an LB_GETCARETINDEX message to determine the index of the item that has the
focus rectangle in a multiple-selection list box. The item may or may not be selected.
Parameters

This message has no parameters.

Returns
The return value is the zero-based index of the item that has the focus rectangle in a list box. If the list box
is a single-selection list box, the return value is the index of the item that is selected, if any.

Example
This example sends an LB_GETCARETINDEX message to retrieve the index of the item that has the
focus rectangle in the list box:

LRESULT lrIndex;
lrIndex = SendDlgItemMessage(hdlg, ID_MYLISTBOX,

LB_GETCARETINDEX, 0, 0L);
See Also
LB_SETCARETINDEX

LB_GETCOUNT (2.x)

LB_GETCOUNT
wParam = 0;/* not used, must be zero */
lParam = 0L; /* not used, must be zero */
An application sends an LB_GETCOUNT message to retrieve the number of items in a list box.
Parameters

This message has no parameters.

Returns
The return value is the number of items in the list box, or it is LB_ERR if an error occurs.

Comments
The returned count is one greater than the index value of the last item (the index is zero-based).

Example
This example retrieves the number of items in a list box:

DWORD cListItems;
cListItems = SendDlgItemMessage(hdlg, ID_MYLISTBOX, LB_GETCOUNT, 0, 0)
;

LB_GETCURSEL (2.x)

LB_GETCURSEL
wParam = 0;/* not used, must be zero */
lParam = 0L; /* not used, must be zero */
An application sends an LB_GETCURSEL message to retrieve the index of the currently selected item, if
any, in a single-selection list box.
Parameters

This message has no parameters.

Returns
The return value is the zero-based index of the currently selected item. It is LB_ERR if no item is currently
selected.

Comments
An application should use the LB_GETCARETINDEX to retrieve the index of the item that has the focus
rectangle in a multiple-selection list box.

The LB_GETCURSEL message cannot be sent to a multiple-selection list box.

Example
This example retrieves the index of the currently selected string in a list box and then retrieves that string:

char szBuf[20];
DWORD dwIndex;
dwIndex = SendDlgItemMessage(hdlg, ID_MYLISTBOX, LB_GETCURSEL, 0, 0);
if (dwIndex != LB_ERR)

SendDlgItemMessage(hdlg, ID_MYLISTBOX,
LB_GETTEXT, (WPARAM) dwIndex, (LPARAM) ((LPSTR) szBuf));

See Also
LB_GETSEL, LB_SETCURSEL, LB_SELECTSTRING

LB_GETHORIZONTALEXTENT (3.0)

LB_GETHORIZONTALEXTENT
wParam = 0;/* not used, must be zero */
lParam = 0L; /* not used, must be zero */
An application sends the LB_GETHORIZONTALEXTENT message to retrieve from a list box the width,
in pixels, by which the list box can be scrolled horizontally if the list box has a horizontal scroll bar.
Parameters

This message has no parameters.

Returns
The return value is the scrollable width of the list box, in pixels.

Comments
To respond to the LB_GETHORIZONTALEXTENT message, the list box must have been defined with
the WS_HSCROLL style.

This message is not useful for multicolumn listboxes.

Example
This example gets the horizontal extent of a list box:

SendDlgItemMessage(hDlg, ID_MYLISTBOX,
LB_GETHORIZONTALEXTENT, 0, 0L);

See Also
LB_SETHORIZONTALEXTENT

LB_GETITEMDATA (3.0)

LB_GETITEMDATA
wParam = (WPARAM) index; /* item index */
lParam = 0L; /* not used, must be zero */
An application sends the LB_GETITEMDATA message to retrieve the application-supplied doubleword
value associated with the specified item in a list box. (This is the value of the lParam parameter of an
LB_SETITEMDATA message.)

Parameter Description
index Value of wParam. Specifies the zero-based index of the item.

Returns
The return value is the doubleword value associated with the item, or it is LB_ERR if an error occurs.

Example
This example retrieves the value associated with an item in a list box. The value is the handle of a global
memory object.

HGLOBAL hglbData;
LPSTR lpLBData;
HWND hListBox;
WPARAM nIndex;
if ((hglbData = (HGLOBAL) LOWORD(SendMessage(hListBox, LB_GETITEMDATA,

nIndex, 0)))) {
if ((lpLBData = GlobalLock(hglbData))) {
.
. /* Access or manipulate the data */
.
GlobalUnlock(hglbData);
}

}
See Also
LB_SETITEMDATA

LB_GETITEMHEIGHT (3.1)

LB_GETITEMHEIGHT
wParam = (WPARAM) index; /* item index */
lParam = 0L; /* not used, must be zero */
An application sends an LB_GETITEMHEIGHT message to determine the height of items in a list box.

Parameter Description
index Value of wParam. Specifies the zero-based index of the item in the list box. This

parameter is used only if the list box has the LBS_OWNERDRAWVARIABLE style;
otherwise, it should be set to zero.

Returns
The return value is the height, in pixels, of the items in the list box. The return value is the height of the
item specified by the index parameter if the list box has the LBS_OWNERDRAWVARIABLE style. The
return value is LB_ERR if an error occurs.

Example
This example sends an LB_GETITEMHEIGHT message to retrieve the height of the items in a list box:

LRESULT lrHeight;
lrHeight = SendDlgItemMessage(hdlg, ID_MYLISTBOX,

LB_GETITEMHEIGHT, 0, 0L);
See Also
LB_GETITEMRECT, LB_SETITEMHEIGHT, WM_MEASUREITEM

LB_GETITEMRECT (3.0)

LB_GETITEMRECT
wParam = (WPARAM) index; /* item index */
lParam = (LPARAM) (RECT FAR*) lprc; /* address of RECT structure */
An application sends an LB_GETITEMRECT message to retrieve the dimensions of the rectangle that
bounds an item as it is currently displayed in the list box window.

Parameter Description
index Value of wParam. Specifies the zero-based index of the item.
lprc Value of lParam. Specifies a long pointer to a RECT structure that receives the client

coordinates for the item in the list box.

Returns
The return value is LB_ERR if an error occurs.

See Also
LB_GETITEMHEIGHT, LB_SETITEMHEIGHT, WM_MEASUREITEM, RECT

LB_GETSEL (2.x)

LB_GETSEL
wParam = (WPARAM) index; /* item index */
lParam = 0L; /* not used, must be zero */
An application sends an LB_GETSEL message to retrieve the selection state of an item.

Parameter Description
index Value of wParam. Specifies the zero-based index of the item.

Returns
The return value is a positive number if an item is selected; otherwise, it is zero. The return value is
LB_ERR if an error occurs.

See Also
LB_GETCURSEL, LB_SELECTSTRING, LB_SELITEMRANGE, LB_SETSEL

LB_GETSELCOUNT (3.0)

LB_GETSELCOUNT
wParam = 0;/* not used, must be zero */
lParam = 0L; /* not used, must be zero */
An application sends an LB_GETSELCOUNT message to retrieve the total number of selected items in a
multiple-selection list box.
Parameters

This message has no parameters.

Returns
The return value is the count of selected items in a list box. The return value is LB_ERR if the list box is a
single-selection list box.

See Also
LB_GETSELITEMS

LB_GETSELITEMS (3.0)

LB_GETSELITEMS
wParam = (WPARAM) cItems; /* maximum number of items */
lParam = (LPARAM) (int FAR*) lpItems; /* address of buffer */
An application sends an LB_GETSELITEMS message to fill a buffer with an array of integers that specify
the item numbers of selected items in a multiple-selection list box.

Parameter Description
cItems Value of wParam. Specifies the maximum number of selected items whose item

numbers are to be placed in the buffer.
lpItems Value of lParam. Specifies a long pointer to a buffer large enough for the number of

integers specified by the cItems parameter.

Returns
The return value is the actual number of items placed in the buffer. The return value is LB_ERR if the list
box is a single-selection list box.

See Also
LB_GETSELCOUNT

LB_GETTEXT (2.x)

LB_GETTEXT
wParam = (WPARAM) index;/* item index */
lParam = (LPARAM) (LPCSTR) lpszBuffer; /* address of buffer */
An application sends an LB_GETTEXT message to retrieve a string from a list box.

Parameter Description
index Value of wParam. Specifies the zero-based index of the string to retrieve.
lpszBuffer Value of lParam. Points to the buffer that receives the string. The buffer must have

sufficient space for the string and a terminating null character. An LB_GETTEXTLEN
message can be sent before the LB_GETTEXT message to retrieve the length, in bytes,
of the string.

Returns
The return value is the length of the string, in bytes, excluding the terminating null character. The return
value is LB_ERR if the index parameter does not specify a valid index.

Comments
If the list box was created with an owner-drawn style but without the LBS_HASSTRINGS style, the buffer
pointed to by the lpszBuffer parameter receives the doubleword value associated with the item.

Example
This example retrieves the length of the first item in the list box, allocates sufficient memory for the string,
and then sends an LB_GETTEXT message to retrieve the string:

DWORD cbItemString;
PSTR psz;
cbItemString = SendDlgItemMessage(hdlg, ID_MYLISTBOX,

LB_GETTEXTLEN, 0, 0);
if (cbItemString != LB_ERR) {

psz = (PSTR) LocalAlloc(LMEM_FIXED, (WORD) cbItemString);
SendDlgItemMessage(hdlg, ID_MYLISTBOX,
LB_GETTEXT, 0, (LPARAM) ((LPSTR) psz));

}
See Also
LB_GETTEXTLEN

LB_GETTEXTLEN (2.x)

LB_GETTEXTLEN
wParam = (WPARAM) index; /* item index */
lParam = 0L; /* not used, must be zero */
An application sends an LB_GETTEXTLEN message to retrieve the length of a string in a list box.

Parameter Description
index Value of wParam. Specifies the zero-based index of the string.

Returns
The return value is the length of the string, in bytes, excluding the terminating null character. The return
value is LB_ERR if the index parameter does not specify a valid index.

Example
This example retrieves the length of the first item in the list box:

DWORD cbItemString;
cbItemString = SendDlgItemMessage(hdlg, ID_MYLISTBOX,

LB_GETTEXTLEN, 0, 0);
See Also
LB_GETTEXT

LB_GETTOPINDEX (3.0)

LB_GETTOPINDEX
wParam = 0;/* not used, must be zero */
lParam = 0L; /* not used, must be zero */
An application sends an LB_GETTOPINDEX message to retrieve the index of the first visible item in a
list box. Initially, the item with index 0 is at the top of the list box, but if the list box is scrolled, another
item may be at the top.
Parameters

This message has no parameters.

Returns
The return value is the zero-based index of the first visible item in a list box.

See Also
LB_SETTOPINDEX

LB_INSERTSTRING (2.x)

LB_INSERTSTRING
wParam = (WPARAM) index; /* item index */
lParam = (LPARAM) (LPCSTR) lpsz; /* address of string to insert */
An application sends an LB_INSERTSTRING message to insert a string into a list box. Unlike the
LB_ADDSTRING message, the LB_INSERTSTRING message does not cause a list with the LBS_SORT
style to be sorted.

Parameter Description
index Value of wParam. Specifies the zero-based index of the position at which to insert the

string. If this parameter is -1, the string is added to the end of the list.
lpsz Value of lParam. Points to the null-terminated string that is to be inserted. If the list was

created with an owner-drawn style but without the LBS_HASSTRINGS style, the value
of the lpsz parameter is stored rather than the string it would otherwise point to.

Returns
The return value is the index of the position at which the string was inserted. The return value is LB_ERR
if an error occurs. The return value is LB_ERRSPACE if insufficient space is available to store the new
string.

Example
This example inserts the string "my string" into the third position of the list box:

SendDlgItemMessage(hdlg, ID_MYLISTBOX,
LB_INSERTSTRING, 2, (LPARAM) ((LPSTR) "my string"));

See Also
LB_ADDSTRING, LB_DIR

LB_RESETCONTENT (2.x)

LB_RESETCONTENT
wParam = 0;/* not used, must be zero */
lParam = 0L; /* not used, must be zero */
An application sends an LB_RESETCONTENT message to remove all items from a list box.
Parameters

This message has no parameters.

Returns
This message does not return a value.

Comments
If the list box was created with an owner-drawn style but without the LBS_HASSTRINGS style, the
owner of the list box receives a WM_DELETEITEM message for each item in the list box.

Example
This example removes all items from a list box:

SendDlgItemMessage(hdlg, ID_MYLISTBOX, LB_RESETCONTENT, 0, 0);
See Also
LB_DELETESTRING, WM_DELETEITEM

LB_SELECTSTRING (2.x)

LB_SELECTSTRING
wParam = (WPARAM) indexStart; /* item before start of search */
lParam = (LPARAM) (LPCSTR) lpszFind; /* address of search string */
An application sends an LB_SELECTSTRING message to search a list box for an item that begins with
the characters in a specified string. If a matching item is found, the item is selected.

Parameter Description
indexStart Value of wParam. Specifies the zero-based index of the item before the first item to be

searched. When the search reaches the bottom of the list box, it continues from the top
of the list box back to the item specified by the indexStart parameter. If indexStart is -1,
the entire list box is searched from the beginning.

lpszFind Value of lParam. Points to the null-terminated string that contains the prefix to search
for. The search is not case-sensitive, so this string can contain any combination of
uppercase and lowercase letters.

Returns
The return value is the index of the selected item if the search was successful. The return value is LB_ERR
if the search was unsuccessful and the current selection is not changed.

Comments
The list box is scrolled, if necessary, to bring the selected item into view.

An item is selected only if its initial characters (from the starting point) match the characters in the string
specified by the lpszFind parameter.

If the combo box was created with an owner-drawn style but without the CBS_HASSTRINGS style, the
action taken by the LB_SELECTSTRING message depends on whether the CBS_SORT style is used. If
the CBS_SORT style is used, WM_COMPAREITEM messages are sent to the owner of the combo box to
determine which item matches the specified string. Otherwise, LB_SELECTSTRING attempts to match
the doubleword value against the value of the lpszFind parameter.

Example
This example searches the entire list box for an item that matches the string "my string" and, if the item is
found, selects it:

DWORD dwIndexFoundString;
dwIndexFoundString = SendDlgItemMessage(hdlg, ID_MYLISTBOX,

LB_SELECTSTRING, -1, (LPARAM) ((LPSTR) "my string"));
See Also
LB_FINDSTRING, LB_FINDSTRINGEXACT, LB_SELITEMRANGE, LB_SETCURSEL,
LB_SETSEL, WM_COMPAREITEM

LB_SELITEMRANGE (3.0)

LB_SELITEMRANGE
wParam = (WPARAM) (BOOL) fSelect; /* selection flag */
lParam = MAKELPARAM(wFirst, wLast); /* first and last items */
An application sends an LB_SELITEMRANGE message to select one or more consecutive items in a
multiple-selection list box.

Parameter Description
fSelect Value of wParam. Specifies how to set the selection. If the fSelect parameter is nonzero,

the string is selected and highlighted; if fSelect is zero, the highlight is removed and the
string is no longer selected.

wFirst Value of the low-order word of lParam. Specifies the zero-based index of the first item
to set.

wLast Value of the high-order word of lParam. Specifies the zero-based index of the last item
to set.

Returns
The return value is LB_ERR if an error occurs.

Comments
This message should be used only with multiple-selection list boxes.

See Also
LB_SELECTSTRING, LB_SETSEL

LB_SETCARETINDEX (3.1)

LB_SETCARETINDEX
wParam = (WPARAM) index; /* item index */
lParam = MAKELPARAM(fScroll, 0); /* flag for scrolling item */
An application sends an LB_SETCARETINDEX message to set the focus rectangle to the item at the
specified index in a multiple-selection list box. If the item is not visible, it is scrolled into view.

Parameter Description
index Value of wParam. Specifies the zero-based index of the item to receive the focus

rectangle in the list box.
fScroll Value of lParam. If this value is zero, the item is scrolled until it is fully visible. If this

value is nonzero, the item is scrolled until it is at least partially visible.

Returns
The return value is LB_ERR if an error occurs.

Example
This example sends an LB_SETCARETINDEX message to set the focus rectangle to an item in a list box:

WPARAM wIndex;
wIndex = 0;/* set index to first item */
SendDlgItemMessage(hdlg, ID_MYLISTBOX, LB_SETCARETINDEX,

wIndex, 0L);
See Also
LB_GETCARETINDEX

Windows 3.1 Changes

In previous versions of Windows, the lParam was not used.

LB_SETCOLUMNWIDTH (3.0)

LB_SETCOLUMNWIDTH
wParam = (WPARAM) cxColumn;/* column width */
lParam = 0L;/* not used, must be zero */
An application sends an LB_SETCOLUMNWIDTH message to a multiple-column list box (created with
the LBS_MULTICOLUMN style) to set the width, in pixels, of all columns in the list box.

Parameter Description
cxColumn Value of wParam. Specifies the width, in pixels, of all columns.

Returns
This message does not return a value.

Example
This example sets the width of the columns in a multiple-column list box:

WPARAM wColWidth;
wColWidth = 100; /* set column width to 100 pixels */
SendDlgItemMessage(hDlg, ID_MYLISTBOX, LB_SETCOLUMNWIDTH,

wColWidth, 0L);
See Also
LB_SETHORIZONTALEXTENT

LB_SETCURSEL (2.x)

LB_SETCURSEL
wParam = (WPARAM) index; /* item index */
lParam = 0L; /* not used, must be zero */
An application sends an LB_SETCURSEL message to select a string and scroll it into view, if necessary.
When the new string is selected, the list box removes the highlight from the previously selected string.

Parameter Description
index Value of wParam. Specifies the zero-based index of the string that is selected. If the

index parameter is -1, the list box is set to have no selection.

Returns
The return value is LB_ERR if an error occurs. The return value will be LB_ERR even though no error
has occurred if the index parameter is -1.

Comments
This message should be used only with single-selection list boxes. It cannot be used to set or remove a
selection in a multiple-selection list box.

See Also
LB_GETCURSEL, LB_SELECTSTRING, LB_SETSEL

LB_SETHORIZONTALEXTENT (3.0)

LB_SETHORIZONTALEXTENT
wParam = (WPARAM) cxExtent; /* horizontal scroll width */
lParam = 0L; /* not used, must be zero */
An application sends the LB_SETHORIZONTALEXTENT message to set the width, in pixels, by which a
list box can be scrolled horizontally. If the size of the list box is smaller than this value, the horizontal
scroll bar horizontally scrolls items in the list box. If the size of the list box is equal to or greater than this
value, the horizontal scroll bar is hidden.

Parameter Description
cxExtent Value of wParam. Specifies the number of pixels by which the list box can be scrolled.

Returns
This message does not return a value.

Comments
To respond to the LB_SETHORIZONTALEXTENT message, the list box must have been defined with
the WS_HSCROLL style.

By default, the horizontal extent of a list box is zero. Windows does not display the scroll bar unless the
horizontal extent is set to a value greater than the width, in pixels, of the client area of the list box.

This message is not useful for multicolumn listboxes. Multicolumn listboxes should instead use the
LB_SETCOLUMNWIDTH message.

Example
This example sets the horizontal extent of a list box based on the width of the string about to be added to
the list box. The horizontal extent is set if the string is wider than the widest string in the list box and is
wider than the client area of the list box.

DWORD dwStringExt;
HDC hdcLB;
PSTR pszString;
TEXTMETRIC tm;
WORD wLongest;
WORD wLBWidth;
dwStringExt = GetTextExtent(hdcLB, (LPSTR) pszString,

strlen(pszString)) + tm.tmAveCharWidth;
if ((LOWORD(dwStringExt) > wLongest) &&

(LOWORD(dwStringExt) > wLBWidth)) {
SendDlgItemMessage(hDlg, ID_MYLISTBOX, LB_SETHORIZONTALEXTENT,
LOWORD(dwStringExt), 0L);
wLongest = LOWORD(dwStringExt);

}
SendDlgItemMessage(hDlg, ID_MYLISTBOX, LB_ADDSTRING, 0,

(LPARAM) ((LPCSTR) pszString));
See Also
LB_GETHORIZONTALEXTENT, LB_SETCOLUMNWIDTH

LB_SETITEMDATA (3.0)

LB_SETITEMDATA
wParam = (WPARAM) index; /* item index */
lParam = (LPARAM) dwData; /* value to associate with item */
An application sends the LB_SETITEMDATA message to set a doubleword value associated with the
specified item in a list box.

Parameter Description
index Value of wParam. Specifies the zero-based index of the item.
dwData Value of lParam. Specifies the value to be associated with the item.

Returns
The return value is LB_ERR if an error occurs.

Example
This example associates a handle of a 64-byte memory object with each item in a list box:

HGLOBAL hglbData;
LPSTR lpLBData;
HWND hListBox;
WPARAM nIndex;
case WM_INITDIALOG:

if ((hglbData = GlobalAlloc(GMEM_MOVEABLE, 64))) {
if ((lpLBData = GlobalLock(hglbData))) {
.
. /* Store the data in the memory object. */
.
GlobalUnlock(hglbData);
}
}
SendMessage(hListBox, LB_SETITEMDATA, nIndex,
MAKELONG(hglbData, 0));

See Also
LB_GETITEMDATA

LB_SETITEMHEIGHT (3.1)

LB_SETITEMHEIGHT
wParam = (WPARAM) index; /* item index */
lParam = MAKELPARAM(cyItem, 0); /* item height */
An application sends an LB_SETITEMHEIGHT message to set the height of items in a list box. If the list
box has the LBS_OWNERDRAWVARIABLE style, this message sets the height of the item specified by
the wParam parameter. Otherwise, this message sets the height of all items in the list box.

Parameter Description
index Value of wParam. Specifies the zero-based index of the item in the list box. This

parameter is used only if the list box has the LBS_OWNERDRAWVARIABLE style;
otherwise, it should be set to zero.

cyItem Value of the low-order word of lParam. Specifies the height, in pixels, of the item.

Returns
The return value is LB_ERR if the index or height is invalid.

Example
This example sends an LB_SETITEMHEIGHT message to set the height of the items in a list box:

LPARAM lpmHeight;
SendDlgItemMessage(hdlg, ID_MYLISTBOX, LB_SETITEMHEIGHT,

0, lpmHeight);
See Also
LB_GETITEMHEIGHT, LB_GETITEMRECT, WM_MEASUREITEM

LB_SETSEL (2.x)

LB_SETSEL
wParam = (WPARAM) (BOOL) fSelect; /* selection flag */
lParam = MAKELPARAM(index, 0); /* item index*/
An application sends an LB_SETSEL message to select a string in a multiple-selection list box.

Parameter Description
fSelect Value of wParam. Specifies how to set the selection. If the fSelect parameter is TRUE,

the string is selected and highlighted; if fSelect is FALSE, the highlight is removed and
the string is no longer selected.

index Value of the low-order word of lParam. Specifies the zero-based index of the string to
set. If the index parameter is -1, the selection is added to or removed from all strings,
depending on the value of fSelect.

Returns
The return value is LB_ERR if an error occurs.

Comments
This message should be used only with multiple-selection list boxes.

See Also
LB_GETSEL, LB_SETCURSEL, LB_SELECTSTRING, LB_SELITEMRANGE

LB_SETTABSTOPS (3.0)

LB_SETTABSTOPS
wParam = (WPARAM) cTabs; /* number of tab stops */
lParam = (LPARAM) (int FAR*) lpTabs; /* address of tab-stop array */
An application sends an LB_SETTABSTOPS message to set the tab-stop positions in a list box.

Parameter Description
cTabs Value of wParam. Specifies the number of tab stops in the list box.
lpTabs Value of lParam. Points to the first member of an array of integers containing the tab

stops, in dialog box units. The tab stops must be sorted in increasing order; back tabs are
not allowed.

Returns
The return value is nonzero if all the tabs were set; otherwise, the return value is zero.

Comments
To respond to the LB_SETTABSTOPS message, the list box must have been created with the
LBS_USETABSTOPS style.

If the cTabs parameter is zero and the lpTabs parameter is NULL, the default tab stop is two dialog box
units.

If cTabs is 1, the list box will have tab stops separated by the distance specified by lpTabs.

If lpTabs points to more than a single value, a tab stop will be set for each value in lpTabs, up to the
number specified by cTabs.

A dialog box unit is a horizontal or vertical distance. One horizontal dialog box unit is equal to one-fourth
of the current dialog box base width unit. The dialog box base units are computed based on the height and
width of the current system font. The GetDialogBaseUnits function returns the current dialog box base
units, in pixels.

LB_SETTOPINDEX (3.0)

LB_SETTOPINDEX
wParam = (WPARAM) index; /* item index */
lParam = 0L;/* not used, must be zero */
An application sends an LB_SETTOPINDEX message to ensure that a particular item in a list box is
visible.

Parameter Description
index Value of wParam. Specifies the zero-based index of the item in the list box.

Returns
The return value is LB_ERR if an error occurs.

Comments
The system scrolls the list box so that either the specified item appears at the top of the list box or the
maximum scroll range has been reached.

Example
This example searches for an item in a list box that matches the string "my string" and, if a match is found,
ensures that the item is visible:

int iIndex;

iIndex = (int) SendMessage(hMyListbox, LB_FINDSTRING, -1,
(LPARAM) (LPSTR) "my string");

if (iIndex != LB_ERR)
SendMessage(hMyListbox, LB_SETTOPINDEX, (WPARAM) iIndex, 0);

See Also
LB_GETTOPINDEX

STM_GETICON (3.1)

STM_GETICON
wParam = 0;/* not used, must be zero */
lParam = 0L; /* not used, must be zero */
An application sends an STM_GETICON message to retrieve the handle of the icon associated with an
icon resource.
Parameters

This message has no parameters.

Returns
The return value is the icon handle if the operation is successful, or it is zero if the icon has no associated
icon resource or if an error occurred.

Example
This example gets the handle of the icon associated with an icon resource:

HICON hicon;
hicon = (HICON) SendDlgItemMessage(hdlg, IDD_ICON,

STM_GETICON, 0, 0L);
See Also
STM_SETICON

STM_SETICON (3.1)

STM_SETICON
wParam = (WPARAM) (HICON) hicon; /* handle of the icon*/
lParam = 0L; /* not used, must be zero */
An application sends an STM_SETICON message to associate an icon with an icon resource.

Parameter Description
hicon Value of wParam. Identifies the icon to associate with the icon resource.

Returns
The return value is the handle of the icon that was previously associated with the icon resource, or it is
zero if an error occurred.

Example
This example associates the system-defined question-mark icon with an icon resource:

HICON hicon, hiconOld;
hicon = LoadIcon(NULL, IDI_QUESTION);
hiconOld = (HICON) SendDlgItemMessage(hdlg, IDD_ICON,

STM_SETICON, (WPARAM) hicon, 0);
See Also
STM_GETICON, LoadIcon

WM_ACTIVATE (2.x)

WM_ACTIVATE
fActive = wParam; /* activation flag */
fMinimized = (BOOL) HIWORD(lParam); /* minimized flag */
hwnd = (HWND) LOWORD(lParam); /* window handle */
The WM_ACTIVATE message is sent when a window is being activated or deactivated. This message is
sent first to the window procedure of the main window being deactivated and then to the window
procedure of the main window being activated.

Parameter Description
fActive Value of wParam. Specifies whether the window is being activated or deactivated. It can

be one of the following values:

Value Description
WA_INACTIVE The window is being deactivated.
WA_ACTIVE The window is being activated through some method other

than a mouse click (for example, by use of the keyboard
interface to select the window).

WA_CLICKACTIVE The window is being activated by a mouse click.
fMinimized Value of the high-order word of lParam. Specifies the minimized state of the window

being activated or deactivated. A nonzero value indicates the window is minimized.
hwnd Value of the low-order word of lParam. Identifies the window being activated or

deactivated. This handle can be NULL.

Returns
An application should return zero if it processes this message.

Comments
If the window is activated with a mouse click, it also receives a WM_MOUSEACTIVATE message.

Example
This example sets the input focus while processing the WM_ACTIVATE message:

case WM_ACTIVATE:
if (wParam && !HIWORD(lParam))
SetFocus(hwnd);
break;

See Also
WM_MOUSEACTIVATE, WM_NCACTIVATE, DefWindowProc, SetFocus

WM_ACTIVATEAPP (2.x)

WM_ACTIVATEAPP
fActive = (BOOL) wParam; /* the activation/deactivation flag */
htask = (HTASK) LOWORD(lParam); /* task handle */
The WM_ACTIVATEAPP message is sent when a window is about to be activated and that window
belongs to a different task than the active window. The message is sent to all top-level windows of the task
being activated and to all top-level windows of the task being deactivated.

Parameter Description
fActive Value of wParam. Specifies whether the window is being activated or deactivated. A

nonzero value means the window is being activated. A zero value means the window is
being deactivated.

htask Value of the low-order word of lParam. Specifies a task handle. If the fActive parameter
is nonzero, the handle identifies the task that owns the window being deactivated. If
fActive is zero, the handle identifies the task that owns the window being activated.

Returns
An application should return zero if it processes this message.

See Also
WM_ACTIVATE

WM_ASKCBFORMATNAME (2.x)

WM_ASKCBFORMATNAME
wParam = (WPARAM) cbMax; /* maximum bytes to copy */
lParam = (LPARAM) lpszFormatName; /* address of format name */
A clipboard viewer application sends a WM_ASKCBFORMATNAME message to the clipboard owner
when the clipboard contains the data handle of the CF_OWNERDISPLAY format (that is, when the
clipboard owner should display the clipboard contents).

Parameter Description
cbMax Value of wParam. Specifies the maximum number of bytes to copy.
lpszFormatName Value of lParam. Points to the buffer where the copy of the format name is to be

stored.

Returns
An application should return zero if it processes this message.

Comments
The clipboard owner should copy the name of the CF_OWNERDISPLAY format into the specified buffer,
not exceeding the maximum number of bytes.

See Also
WM_PAINTCLIPBOARD

WM_CANCELMODE (2.x)

WM_CANCELMODE
The WM_CANCELMODE message is sent to inform a window to cancel any internal mode. This
message is sent to the focus window when a dialog box or message box is displayed, giving the focus
window the opportunity to cancel modes such as mouse capture.
Parameters

This message has no parameters.

Returns
An application should return zero if it processes this message.

Comments
The DefWindowProc function processes this message by calling the ReleaseCapture function.
DefWindowProc does not cancel any other modes.

See Also
DefWindowProc, ReleaseCapture

WM_CHANGECBCHAIN (2.x)

WM_CHANGECBCHAIN
hwndRemoved = (HWND) wParam; /* handle of removed window */
hwndNext = (HWND) LOWORD(lParam); /* handle of next window */
The WM_CHANGECBCHAIN message notifies the first window in the clipboard-viewer chain that a
window is being removed from the chain.

Parameter Description
hwndRemoved Value of wParam. Identifies the window that is being removed from the clipboard-

viewer chain.
hwndNext Value of the low-order word of lParam. Identifies the window that follows the

window being removed from the clipboard-viewer chain.

Returns
An application should return zero if it processes this message.

Comments
Each window that receives the WM_CHANGECBCHAIN message should call the SendMessage function
to pass the message on to the next window in the clipboard-viewer chain. If the window being removed is
the next window in the chain, the window specified by the hwndNext parameter becomes the next window
and clipboard messages are passed on to it.

See Also
ChangeClipboardChain, SendMessage

WM_CHAR (2.x)

WM_CHAR
nVKey = wParam; /* virtual-key code */
dwKeyData = (DWORD) lParam; /* key data */
The WM_CHAR message is sent when a WM_KEYUP message and a WM_KEYDOWN message are
translated. The WM_CHAR message contains the value of the key being pressed or released.

Parameter Description
nVKey Value of wParam. Specifies the virtual-key code value of the key.
dwKeyData Value of lParam. Specifies the repeat count, scan code, extended key, context code,

previous key state, and key-transition state, as shown in the following table:

Bit Description
0-15 Specifies the repeat count. The value is the number of times the keystroke is

repeated as a result of the user holding down the key.
16-23 Specifies the scan code. The value depends on the original equipment

manufacturer (OEM).
24 Specifies whether the key is an extended key, such as a function key or a key

on the numeric keypad. The value is 1 if it is an extended key; otherwise, it is
0.

25-26 Not used.
27-28 Used internally by Windows.
29 Specifies the context code. The value is 1 if the ALT key is held down while

the key is pressed; otherwise, the value is 0.
30 Specifies the previous key state. The value is 1 if the key is down before the

message is sent, or it is 0 if the key is up.
31 Specifies the key-transition state. The value is 1 if the key is being released,

or it is 0 if the key is being pressed.

Returns
An application should return zero if it processes this message.

Comments
Because there is not necessarily a one-to-one correspondence between keys pressed and character
messages generated, the information in the high-order word of the dwKeyData parameter is usually not
useful to applications. The information in the high-order word applies only to the most recent
WM_KEYUP or WM_KEYDOWN message that precedes the posting of the character message.

For IBM Enhanced 101- and 102-key keyboards, enhanced keys are the right ALT key and the right CTRL
key on the main section of the keyboard; the INS, DEL, HOME, END, PAGE UP, PAGE DOWN, and arrow keys
in the clusters to the left of the numeric keypad; and the division (/) and ENTER keys on the numeric
keypad. Some other keyboards may support the extended-key bit in the dwKeyData parameter.

See Also
WM_KEYDOWN, WM_KEYUP

WM_CHARTOITEM (3.0)

WM_CHARTOITEM
nKey = wParam; /* key value */
hwndListBox = (HWND) LOWORD(lParam); /* list box handle */
iCaretPos = HIWORD(lParam); /* caret position */
The WM_CHARTOITEM message is sent by a list box with the LBS_WANTKEYBOARDINPUT style
to its owner in response to a WM_CHAR message.

Parameter Description
nKey Value of wParam. Specifies the value of the key the user pressed.
hwndListBox Value of the low-order word of lParam. Identifies the list box.
iCaretPos Value of the high-order word of lParam. Specifies the current caret position.

Returns
The return value specifies the action that the application performed in response to the message. A return
value of -2 indicates that the application handled all aspects of selecting the item and requires no further
action by the list box. A return value of -1 indicates that the list box should perform the default action in
response to the keystroke. A return value of 0 or greater specifies the zero-based index of an item in the
list box and indicates that the list box should perform the default action for the keystroke on the given
item.

Comments
Only owner-drawn list boxes that do not have the LBS_HASSTRINGS style can receive this message.

See Also
WM_CHAR, WM_VKEYTOITEM

WM_CHILDACTIVATE (2.x)

WM_CHILDACTIVATE
The WM_CHILDACTIVATE message is sent to a multiple document interface (MDI) child window when
the user clicks the window's title bar or when the window is activated, moved, or sized.
Parameters

This message has no parameters.

Returns
An application should return zero if it processes this message.

See Also
MoveWindow, SetWindowPos

WM_CHOOSEFONT_GETLOGFONT (3.1)

WM_CHOOSEFONT_GETLOGFONT
wParam = 0; /* not used, must be zero */
lplf = (LPLOGFONT) lParam; /* address of a LOGFONT structure */
An application sends a WM_CHOOSEFONT_GETLOGFONT message to the Font dialog box created by
the ChooseFont function to retrieve the current LOGFONT structure.

Parameter Description
lplf Points to a LOGFONT structure that receives information about the current logical font.

Returns
This message does not return a value.

Comments
An application uses this message to retrieve the LOGFONT structure while the Font dialog box is open.
When the user closes the dialog box, the ChooseFont function receives information about the LOGFONT
structure.

See Also
WM_GETFONT, ChooseFont, LOGFONT

WM_CLEAR (2.x)

WM_CLEAR
wParam = 0;/* not used, must be zero */
lParam = 0L; /* not used, must be zero */
An application sends a WM_CLEAR message to an edit control or combo box to delete (clear) the current
selection, if any, in the edit control.
Parameters

This message has no parameters.

Returns
The return value is nonzero if this message is sent to an edit control or a combo box.

Comments
The deletion performed by the WM_CLEAR message can be undone by sending the edit control an
EM_UNDO message.

To delete the current selection and place the deleted contents into the clipboard, use the WM_CUT
message.

Example
This example sends an EM_SETSEL message to select the entire contents of an edit control. It then sends
a WM_CLEAR message to delete the contents of the edit control.

SendDlgItemMessage(hdlg, ID_MYEDITCONTROL,
EM_SETSEL, 0, MAKELONG(0, -1));

SendDlgItemMessage(hdlg, ID_MYEDITCONTROL,
WM_CLEAR, 0, 0);

See Also
EM_UNDO, WM_COPY, WM_CUT, WM_PASTE

WM_CLOSE (2.x)

WM_CLOSE
wParam = 0;/* not used, must be zero */
lParam = 0L; /* not used, must be zero */
The WM_CLOSE message is sent as a signal that a window or an application should terminate. An
application can prompt the user for confirmation prior to destroying the window by processing the
WM_CLOSE message and calling the DestroyWindow function only if the user confirms the choice.
Parameters

This message has no parameters.

Returns
An application should return zero if it processes this message.

Example
This example processes a WM_CLOSE message and requests confirmation from the user before
terminating the application:

case WM_CLOSE:
if (MessageBox(hwnd, "Are you sure you want to exit?", "MyApp",

MB_ICONQUESTION | MB_OKCANCEL) == IDOK)
DestroyWindow(hwnd);
return 0L;

See Also
DestroyWindow, PostQuitMessage, WM_DESTROY, WM_QUERYENDSESSION, WM_QUIT

WM_COMMAND (2.x)

WM_COMMAND
idItem = wParam; /* control or menu item identifier */
hwndCtl = (HWND) LOWORD(lParam); /* handle of control */
wNotifyCode = HIWORD(lParam); /* notification message */
The WM_COMMAND message is sent to a window when the user selects an item from a menu, when a
control sends a notification message to its parent window, or when an accelerator keystroke is translated.

Parameter Description
idItem Value of wParam. Specifies the identifier of the menu item or control.
hwndCtl Value of the low-order word of lParam. Identifies the control sending the message if

the message is from a control. Otherwise, this parameter is zero.
wNotifyCode Value of the high-order word of lParam. Specifies the notification message if the

message is from a control. If the message is from an accelerator, this parameter is 1. If
the message is from a menu, this parameter is 0.

Returns
An application should return zero if it processes this message.

Comments
Accelerator keystrokes that are defined to select items from the System menu (sometimes referred to as the
Control menu) are translated into WM_SYSCOMMAND messages.

If an accelerator keystroke that corresponds to a menu item occurs when the window that owns the menu is
minimized, no WM_COMMAND message is sent. However, if an accelerator keystroke occurs that does
not match any of the items on the window's menu or on the System menu, a WM_COMMAND message
is sent even if the window is minimized.

Example
This example creates an Options dialog box in response to a WM_COMMAND message sent as a result of
a menu selection:

FARPROC lpProc;
case WM_COMMAND:

switch (wParam) {
case IDM_OPTIONS:
lpProc = MakeProcInstance(OptionsProc, hInstance);
DialogBox(hInstance, "OptionsBox", hwnd, (DLGPROC) lpProc);
FreeProcInstance(lpProc);
break;
.
. /* Process other menu commands. */
.
}
break;

See Also
WM_SYSCOMMAND

WM_COMMNOTIFY (3.1)

WM_COMMNOTIFY
idDevice = wParam; /* communication-device ID */
nNotifyStatus = LOWORD(lParam); /* notification-status flag */
The WM_COMMNOTIFY message is posted by a communication device driver whenever a COM port
event occurs. The message indicates the status of a window's input or output queue.

Parameter Description
idDevice Value of wParam. Specifies the identifier of the communication device that is posting

the notification message.
nNotifyStatus Value of the low-order word of lParam. Specifies the notification status in the low-

order word. The notification status may be one or more of the following flags:

Value Meaning
CN_EVENT Indicates that an event has occurred that was enabled in the

event word of the communication device. This event was
enabled by a call to the SetCommEventMask function. The
application should call the GetCommEventMask function to
determine which event occurred and to clear the event.

CN_RECEIVE Indicates that at least cbWriteNotify bytes are in the input
queue. The cbWriteNotify parameter is a parameter of the
EnableCommNotification function.

CN_TRANSMIT Indicates that fewer than cbOutQueue bytes are in the output
queue waiting to be transmitted. The cbOutQueue parameter is
a parameter of the EnableCommNotification function.

Returns
An application should return zero if it processes this message.

Comments
This message is sent only when the event word changes for the communication device. The application
that sends WM_COMMNOTIFY must clear each event to be sure of receiving future notifications.

See Also
EnableCommNotification

WM_COMPACTING (3.0)

WM_COMPACTING
wCompactRatio = wParam; /* compacting ratio */
The WM_COMPACTING message is sent to all top-level windows when Windows detects that more than
12.5 percent of system time over a 30- to 60-second interval is being spent compacting memory. This
indicates that system memory is low.

Parameter Description
wCompactRatio Value of wParam. Specifies the ratio of central processing unit (CPU) time currently

spent by Windows compacting memory to CPU time currently spent by Windows
performing other operations. For example, 0x8000 represents 50 percent of CPU
time spent compacting memory.

Returns
An application should return zero if it processes this message.

Comments
When an application receives this message, it should free as much memory as possible, taking into account
the current level of activity of the application and the total number of applications running with Windows.
The application can call the GetNumTasks function to determine how many applications are running.

See Also
GetNumTasks

WM_COMPAREITEM (3.0)

WM_COMPAREITEM
idCtl = wParam; /* control identifier */
lpcis = (const COMPAREITEMSTRUCT FAR*) lParam; /* structure*/
The WM_COMPAREITEM message determines the relative position of a new item in the sorted list of an
owner-drawn combo box or list box. Whenever the application adds a new item, Windows sends this
message to the owner of a combo box or list box created with the CBS_SORT or LBS_SORT style.

Parameter Description
idCtl Value of wParam. Specifies the identifier of the control that sent the

WM_COMPAREITEM message.
lpcis Value of lParam. Points to a COMPAREITEMSTRUCT data structure that contains the

identifiers and application-supplied data for two items in the combo box or list box.

Returns
The return value indicates the relative position of the two items. It may be any of the following values:

Value Meaning
-1 Item 1 precedes item 2 in the sorted order.
0 Item 1 and item 2 are equivalent in the sorted order.
1 Item 1 follows item 2 in the sorted order.

Comments
When the owner of an owner-drawn combo box or list box receives this message, the owner returns a
value indicating which of the items specified in the COMPAREITEMSTRUCT structure should appear
before the other. Typically, Windows sends this message several times until it determines the exact
position for the new item.

See Also
COMPAREITEMSTRUCT

Windows 3.1 changes

The meaning of the wParam parameter has changed. The wParam parameter specifies the identifier of the
control.

WM_COPY (2.x)

WM_COPY
wParam = 0;/* not used, must be zero */
lParam = 0L; /* not used, must be zero */
An application sends a WM_COPY message to an edit control or combo box to copy the current selection
to the clipboard in CF_TEXT format.
Parameters

This message has no parameters.

Returns
The return value is nonzero if this message is sent to an edit control or a combo box.

Example
This example sends an EM_SETSEL message to select the entire contents of an edit control. It then sends
a WM_COPY message to copy the contents of the edit control to the clipboard.

SendDlgItemMessage(hdlg, ID_MYEDITCONTROL,
EM_SETSEL, 0, MAKELONG(0, -1));

SendDlgItemMessage(hdlg, ID_MYEDITCONTROL,
WM_COPY, 0, 0);

See Also
WM_CLEAR, WM_CUT, WM_PASTE

WM_CREATE (2.x)

WM_CREATE
lpcs = (CREATESTRUCT FAR*) lParam; /* structure address*/
The WM_CREATE message is sent when an application requests that a window be created by calling the
CreateWindowEx or CreateWindow function. The window procedure for the new window receives this
message after the window is created but before the window becomes visible. The message is sent to the
window before the CreateWindowEx or CreateWindow function returns.

Parameter Description
lpcs Value of lParam. Points to a CREATESTRUCT data structure containing information

about the window being created. The members of the CREATESTRUCT structure are
identical to the parameters of the CreateWindowEx function.

Returns
If an application processes this message, it should return 0 to continue creation of the window. If the
application returns -1, the window will be destroyed and the CreateWindowEx or CreateWindow function
will return a NULL handle.

See Also
CreateWindow, CreateWindowEx, WM_NCCREATE, CREATESTRUCT

WM_CTLCOLOR (2.x)

WM_CTLCOLOR
hdcChild = (HDC) wParam; /* child-window display context */
hwndChild = (HWND) LOWORD(lParam); /* handle of child window */
nCtlType = (int) HIWORD(lParam); /* type of control */
The WM_CTLCOLOR message is sent to the parent of a system-defined control class or a message box
when the control or message box is about to be drawn. The following controls send this message:

Combo boxes
Edit controls
List boxes
Buttons
Static controls
Scroll bars

Parameter Description
hdcChild Value of wParam. Identifies the display context for the child window.
hwndChild Value of the low-order word of lParam. Identifies the child window.
nCtlType Value of the high-order word of lParam. Specifies the type of the control. This

parameter can be one of the following values:

Value Meaning
CTLCOLOR_BTN Button
CTLCOLOR_DLG Dialog box
CTLCOLOR_EDIT Edit control
CTLCOLOR_LISTBOX List box
CTLCOLOR_MSGBOX Message box
CTLCOLOR_SCROLLBAR Scroll bar
CTLCOLOR_STATIC Static control

Returns
If an application processes the WM_CTLCOLOR message, it must return a handle to the brush that is to
be used for painting the control background or it must return NULL.

Comments
The WM_CTLCOLOR message is sent to the parent window for all control types except dialog boxes.
When the nCtlType parameter specifies CTLCOLOR_DLG, the message is sent to the dialog box
procedure.

To change the text color, the application should call the SetTextColor function with the desired red, green,
and blue (RGB) values.

To change the background color of a single-line edit control, the application must set the brush handle in
both the CTLCOLOR_EDIT and CTLCOLOR_MSGBOX message codes, and the application must call
the SetBkColor function in response to the CTLCOLOR_EDIT code.

The return value from this message has no effect on a button with the BS_PUSHBUTTON or
BS_DEFPUSHBUTTON style.

To change the color of the list box for a drop-down combo box, applications should subclass the combo
box and check for the WM_CTLCOLOR message with CTLCOLOR_LISTBOX in the nCtlType
parameter. This procedure can return a handle to the brush that will be used to paint the background. In
this case, the SetBkColor function must be used to set the background color for the text.

Example
This example creates a green brush and passes the handle of the brush to a single-line edit control in
response to a WM_CTLCOLOR message:

static HBRUSH hbrGreen;
switch(msg) {

case WM_INITDIALOG:
/* Create a green brush */

hbrGreen = CreateSolidBrush(RGB(0, 255, 0));
return TRUE;
case WM_CTLCOLOR:
switch(HIWORD(lParam)) {
case CTLCOLOR_EDIT:
/* Set text to white and background to green */
SetTextColor((HDC) wParam, RGB(255, 255, 255));
SetBkColor((HDC) wParam, RGB(0, 255, 0));
return (LRESULT) hbrGreen;
case CTLCOLOR_MSGBOX:
/*
* For single-line edit controls, this code must be
* processed so that the background color of the format
* rectangle will also be painted with the new color.
*/
return (LRESULT) hbrGreen;
}
return (LRESULT) NULL;

}
See Also
SetBkColor

WM_CUT (2.x)

WM_CUT
wParam = 0;/* not used, must be zero */
lParam = 0L; /* not used, must be zero */
An application sends a WM_CUT message to an edit control or combo box to delete (cut) the current
selection, if any, in the edit control and copy the deleted text to the clipboard in CF_TEXT format.
Parameters

This message has no parameters.

Returns
The return value is nonzero if this message is sent to an edit control or a combo box.

Comments
An EM_UNDO message can be sent to the edit control to undo the deletion performed by the WM_CUT
message.

To delete the current selection without placing the deleted text onto the clipboard, use the WM_CLEAR
message.

Example
This example sends an EM_SETSEL message to select the entire contents of an edit control. It then sends
a WM_CUT message to delete the contents of the edit control and to copy the deleted text to the clipboard.

SendDlgItemMessage(hdlg, ID_MYEDITCONTROL,
EM_SETSEL, 0, MAKELONG(0, -1));

SendDlgItemMessage(hdlg, ID_MYEDITCONTROL,
WM_CUT, 0, 0);

See Also
WM_CLEAR, WM_COPY, WM_PASTE

WM_DDE_ACK (2.x)

#include <dde.h>
WM_DDE_ACK
wParam = (WPARAM) hwnd; /* handle of posting window */
lParam = MAKELPARAM(wLow, wHigh); /* depending on received message */
The WM_DDE_ACK message notifies an application of the receipt and processing of a
WM_DDE_INITIATE, WM_DDE_EXECUTE, WM_DDE_DATA, WM_DDE_ADVISE,
WM_DDE_UNADVISE, or WM_DDE_POKE message, and in some cases, of a WM_DDE_REQUEST
message.

Parameter Description
hwnd Value of wParam. Specifies the

handle of the window posting the
message.

wLow Value of the low-order word of
lParam. Specifies data as follows,
depending on the message to which
the WM_DDE_ACK message is
responding:

Message Parameter Description
WM_DDE_INITIATE aApplication An atom that contains the name

of the replying application.
WM_DDE_EXECUTE and all other messages wStatus A series of flags that indicate

the status of the response.
wHigh Value of high-order word of lParam.

Specifies data as follows, depending
on the message to which the
WM_DDE_ACK message is
responding:

Message Parameter Description
WM_DDE_INITIATE aTopic An atom that contains the topic with which the replying

server window is associated.
WM_DDE_EXECUTE hCommands A handle that identifies the data item containing the

command string.
All other messages aItem An atom that specifies the data item for which the

response is sent.

Returns
This message does not return a value.

Comments
The wStatus word consists of a DDEACK data structure.

Posting

Except in response to the WM_DDE_INITIATE message, the application posts the WM_DDE_ACK
message by calling the PostMessage function, not the SendMessage function. When responding to
WM_DDE_INITIATE, the application sends the WM_DDE_ACK message by calling SendMessage.

When acknowledging any message with an accompanying aItem atom, the application posting
WM_DDE_ACK can either reuse the aItem atom that accompanied the original message or delete it and
create a new one.

When acknowledging WM_DDE_EXECUTE, the application that posts WM_DDE_ACK should reuse
the hCommands object that accompanied the original WM_DDE_EXECUTE message.

If an application has initiated the termination of a conversation by posting WM_DDE_TERMINATE and
is awaiting confirmation, the waiting application should not acknowledge (positively or negatively) any
subsequent messages sent by the other application. The waiting application should delete any atoms or
shared memory objects received in these intervening messages (but should not delete the atoms in
response to the WM_DDE_ACK message).

Receiving

The application that receives WM_DDE_ACK should delete all atoms accompanying the message.

If the application receives WM_DDE_ACK in response to a message with an accompanying hData object,
the application should delete the hData object.

If the application receives a negative WM_DDE_ACK message posted in reply to a WM_DDE_ADVISE
message, the application should delete the hOptions object posted with the original WM_DDE_ADVISE
message.

If the application receives a negative WM_DDE_ACK message posted in reply to a
WM_DDE_EXECUTE message, the application should delete the hCommands object posted with the
original WM_DDE_EXECUTE message.

See Also
DDEACK, PostMessage, WM_DDE_ADVISE, WM_DDE_DATA, WM_DDE_EXECUTE,
WM_DDE_INITIATE, WM_DDE_POKE, WM_DDE_REQUEST, WM_DDE_TERMINATE,
WM_DDE_UNADVISE, DDEACK

WM_DDE_ADVISE (2.x)

#include <dde.h>
WM_DDE_ADVISE
wParam = (WPARAM) hwnd;/* handle of posting window */
lParam = MAKELPARAM(hOptions, aItem); /* send options and data item */
A dynamic data exchange (DDE) client application posts the WM_DDE_ADVISE message to a DDE
server application to request the server to supply an update for a data item whenever it changes.

Parameter Description
hwnd Value of wParam. Identifies the sending window.
hOptions Value of the low-order word of lParam. Specifies a handle of a global memory object

that specifies how the data is to be sent.
aItem Value of the high-order word of lParam. Specifies the data item being requested.

Returns
This message does not return a value.

Comments
The global memory object identified by the hOptions parameter consists of a DDEADVISE data structure.

If an application supports more than one clipboard format for a single topic and item, it can post multiple
WM_DDE_ADVISE messages for the topic and item, specifying a different clipboard format with each
message.

Posting

The application posts the WM_DDE_ADVISE message by calling the PostMessage function, not the
SendMessage function.

The application allocates hOptions by calling the GlobalAlloc function with the GMEM_DDESHARE
option.

The application allocates aItem by calling the GlobalAddAtom function.

If the receiving (server) application responds with a negative WM_DDE_ACK message, the posting
(client) application must delete the hOptions object.

Receiving

The application posts the WM_DDE_ACK message to respond positively or negatively. When posting
WM_DDE_ACK, the application can reuse the aItem atom or delete it and create a new one. If the
WM_DDE_ACK message is positive, the application should delete the hOptions object; otherwise, the
application should not delete the object.

See Also
DDEADVISE, GlobalAddAtom, GlobalAlloc, PostMessage, WM_DDE_DATA, WM_DDE_REQUEST,
DDEADVISE

WM_DDE_DATA (2.x)

#include <dde.h>
WM_DDE_DATA
wParam = (WPARAM) hwnd; /* handle of posting window */
lParam = MAKELPARAM(hData, aItem); /* memory object and data item */
A dynamic data exchange (DDE) server application posts a WM_DDE_DATA message to a DDE client
application to pass a data item to the client or to notify the client of the availability of a data item.

Parameter Description
hwnd Value of wParam. Specifies the handle of the window posting the message.
hData Value of the low-order word of lParam. Identifies the global memory object containing

the data and additional information. The handle should be set to NULL if the server is
notifying the client that the data item value has changed during a warm link. A warm
link is established when the client sends a WM_DDE_ADVISE message with the
fDeferUpd bit set.

aItem Value of the high-order word of lParam. Specifies the data item for which data or
notification is sent.

Returns
This message does not return a value.

Comments
The global memory object identified by the hData parameter consists of a DDEDATA structure.

Posting

The application posts the WM_DDE_DATA message by calling the PostMessage function, not the
SendMessage function.

The application allocates hData by calling the GlobalAlloc function with the GMEM_DDESHARE option.

The application allocates aItem by calling the GlobalAddAtom function.

If the receiving (client) application responds with a negative WM_DDE_ACK message, the posting
(server) application must delete the hData object.

If the posting (server) application sets the fRelease member of the DDEDATA structure to FALSE, the
posting application is responsible for deleting hData upon receipt of either a positive or negative
acknowledgment.

The application should not set both the fAckReq and fRelease members of the DDEDATA structure to
FALSE. If both members are set to FALSE, it is difficult for the posting (server) application to determine
when to delete hData.

Receiving

If fAckReq is TRUE, the application posts the WM_DDE_ACK message to respond positively or
negatively. When posting WM_DDE_ACK, the application can reuse the aItem atom or delete it and
create a new one.

If fAckReq is FALSE, the application deletes the aItem atom.

If the posting (server) application specified hData as NULL, the receiving (client) application can request
the server to send the actual data by posting a WM_DDE_REQUEST message.

After processing a WM_DDE_DATA message in which hData is not NULL, the application should delete
hData unless either of the following conditions is true:

The fRelease member is FALSE.
The fRelease member is TRUE, but the receiving (client) application responds with a negative

WM_DDE_ACK message.

See Also
DDEDATA, GlobalAddAtom, GlobalAlloc, PostMessage, WM_DDE_ACK, WM_DDE_ADVISE,
WM_DDE_POKE, WM_DDE_REQUEST

WM_DDE_EXECUTE (2.x)

#include <dde.h>
WM_DDE_EXECUTE
wParam = (WPARAM) hwnd; /* handle of posting window */
lParam = MAKELPARAM(reserved, hCommands); /* commands to execute */
A dynamic data exchange (DDE) client application posts a WM_DDE_EXECUTE message to a DDE
server application to send a string to the server to be processed as a series of commands. The server
application is expected to post a WM_DDE_ACK message in response.

Parameter Description
hwnd Value of wParam. Identifies the sending window.
reserved Value of the low-order word of lParam. Reserved; must be zero.
hCommands Value of the high-order word of lParam. Identifies a global memory object containing

the command(s) to be executed.

Returns
This message does not return a value.

Comments
The command string is a null-terminated string, consisting of one or more opcode strings enclosed in
single brackets ([]) and separated by spaces.

Each opcode string has the following syntax. The parameters list is optional.

opcode parameters

The opcode is any application-defined single token. It cannot include spaces, commas, parentheses, or
quotation marks.

The parameters list can contain any application-defined value or values. Multiple parameters are separated
by commas, and the entire parameter list is enclosed in parentheses. Parameters cannot include commas or
parentheses except inside a quoted string. If a bracket or parenthesis character is to appear in a quoted
string, it must be doubled--for example, "((".

The following are valid command strings:

[connect][download(query1,results.txt)][disconnect]
[query("sales per employee for each district")]
[open("sample.xlm")][run("r1c1")]
Posting

The application posts the WM_DDE_EXECUTE message by calling the PostMessage function, not the
SendMessage function.

The application allocates hCommands by calling the GlobalAlloc function with the GMEM_DDESHARE
option.

When processing a WM_DDE_ACK message posted in reply to a WM_DDE_EXECUTE message, the
application that posted the original WM_DDE_EXECUTE message must delete the hCommands object
sent back in the WM_DDE_ACK message.

Receiving

The application posts the WM_DDE_ACK message to respond positively or negatively, reusing the
hCommands object.

See Also
PostMessage, WM_DDE_ACK

WM_DDE_INITIATE (2.x)

#include <dde.h>
WM_DDE_INITIATE
wParam = (WPARAM) hwnd;/* sending window's handle */
lParam = MAKELPARAM(aApplication, aTopic); /* app. and topic atoms *
/
A dynamic data exchange (DDE) client application sends a WM_DDE_INITIATE message to initiate a
conversation with server applications responding to the specified application and topic names.

Upon receiving this message, all server applications with names that match the aApplication application
and that support the aTopic topic are expected to acknowledge it (see the WM_DDE_ACK message).

Parameter Description
hwnd Value of wParam. Identifies the sending window.
aApplication Value of the low-order word of lParam. Specifies the atom identifying the name of the

application with which a conversation is requested. The application name cannot
contain slash marks (/) or backslashes (\). These characters are reserved for future use
in network implementations. If aApplication is NULL, a conversation with all
applications is requested.

aTopic Value of the high-order word of lParam. Specifies the atom identifying the the topic for
which a conversation is requested. If the topic is NULL, a conversation for all
available topics is requested.

Returns
This message does not return a value.

Comments
If aApplication is NULL, any application can respond. If aTopic is NULL, any topic is valid. Upon
receiving a WM_DDE_INITIATE request with the aTopic parameter set to NULL, an application is
expected to send a WM_DDE_ACK message for each of the topics it supports.

Sending

The application sends the WM_DDE_INITIATE message by calling the SendMessage function, not the
PostMessage function. The application broadcasts the message to all windows by setting the first
parameter of SendMessage to -1, as shown:

SendMessage(-1, WM_DDE_INITIATE, hwndClient, MAKELONG(aApp, aTopic));
If the application has already obtained the window handle of the desired server, it can send
WM_DDE_INITIATE directly to the server window by passing the server's window handle as the first
parameter of SendMessage.

The application allocates aApplication and aTopic by calling GlobalAddAtom.

When SendMessage returns, the application deletes the aApplication and aTopic atoms.

Receiving

To complete the initiation of a conversation, the application responds with one or more WM_DDE_ACK
messages, where each message is for a separate topic. When sending a WM_DDE_ACK message, the
application creates new aApplication and aTopic atoms; it should not reuse the atoms sent with the
WM_DDE_INITIATE message.

See Also
GlobalAddAtom, SendMessage, WM_DDE_ACK

WM_DDE_POKE (2.x)

#include <dde.h>
WM_DDE_POKE
wParam = (WPARAM) hwnd; /* handle of posting window */
lParam = MAKELPARAM(hData, aItem); /* data handle and item*/
A dynamic data exchange (DDE) client application posts a WM_DDE_POKE message to a server
application. A client uses this message to request the server to accept an unsolicited data item. The server
is expected to reply with a WM_DDE_ACK message indicating whether it accepted the data item.

Parameter Description
hwnd Value of wParam. Specifies the handle of the window posting the message.
hData Value of the low-order word of lParam. Identifies the data being posted. The handle

identifies a global memory object that contains a DDEPOKE data structure.
aItem Value of the high-order word of lParam. Specifies a global atom that identifies the data

item being offered to the server.

Returns
This message does not return a value.

Comments
Posting

The posting (client) application should do the following:
Use the PostMessage function to post the WM_DDE_POKE message.
Use the GlobalAlloc function with the GMEM_DDESHARE option to allocate memory for the

data.
Use the GlobalAddAtom function to create the atom for the data item.
Delete the global memory object if the server application responds with a negative

WM_DDE_ACK message.
Delete the global memory object if the client has set the fRelease member of the DDEPOKE

structure to FALSE and the server responds with either a positive or negative WM_DDE_ACK.

Receiving

The receiving (server) application should do the following:
Post the WM_DDE_ACK message to respond positively or negatively. When posting

WM_DDE_ACK, reuse the data-item atom or delete it and create a new one.
Delete the global memory object after processing WM_DDE_POKE unless either the fRelease flag

was set to FALSE or the fRelease flag was set to TRUE but the server has responded with a negative
WM_DDE_ACK message.

See Also
DDEPOKE, GlobalAlloc, PostMessage, WM_DDE_ACK, WM_DDE_DATA, DDEPOKE

WM_DDE_REQUEST (2.x)

#include <dde.h>
WM_DDE_REQUEST
wParam = (WPARAM) hwnd;/* handle of posting window */
lParam = MAKELPARAM(cfFormat, aItem); /* clipboard format and item */
A dynamic data exchange (DDE) client application posts a WM_DDE_REQUEST message to a DDE
server application to request the value of a data item.

Parameter Description
hwnd Value of wParam. Identifies the sending window.
cfFormat Value of the low-order word of lParam. Specifies a standard or registered clipboard

format number.
aItem Value of the high-order word of lParam. Specifies which data item is being requested

from the server.

Returns
This message does not return a value.

Comments
Posting

The application posts the WM_DDE_REQUEST message by calling the PostMessage function, not the
SendMessage function.

The application allocates aItem by calling the GlobalAddAtom function.

Receiving

If the receiving (server) application can satisfy the request, it responds with a WM_DDE_DATA message
containing the requested data. Otherwise, it responds with a negative WM_DDE_ACK message.

When responding with either a WM_DDE_DATA or WM_DDE_ACK message, the application can reuse
the aItem atom or delete it and create a new one.

See Also
GlobalAddAtom, PostMessage, WM_DDE_ACK

WM_DDE_TERMINATE (2.x)

#include <dde.h>
WM_DDE_TERMINATE
wParam = (WPARAM) hwnd; /* handle of posting window */
lParam = 0L; /* not used, must be zero */
A dynamic data exchange (DDE) application (client or server) posts a WM_DDE_TERMINATE message
to terminate a conversation.

Parameter Description
hwnd Value of wParam. Identifies the sending window.

Returns
This message does not return a value.

Comments
Posting

The application posts the WM_DDE_TERMINATE message by calling the PostMessage function, not the
SendMessage function.

While waiting for confirmation of the termination, the posting application should not acknowledge any
other messages sent by the receiving application. If the posting application receives messages (other than
WM_DDE_TERMINATE) from the receiving application, it should delete any atoms or shared memory
objects accompanying the messages.

Receiving

The application responds by posting a WM_DDE_TERMINATE message.

See Also
PostMessage

WM_DDE_UNADVISE (2.x)

#include <dde.h>
WM_DDE_UNADVISE
wParam = (WPARAM) hwnd; /* handle of posting window */
lParam = MAKELPARAM(cfFormat, aItem); /* clipboard format and item *
/
A dynamic data exchange (DDE) client application posts a WM_DDE_UNADVISE message to inform a
server application that the specified item or a particular clipboard format for the item should no longer be
updated. This terminates the warm or hot link for the specified item.

Parameter Description
hwnd Value of wParam. Identifies the sending window.
cfFormat Value of the low-order word of lParam. Specifies the clipboard format of the item for

which the update request is being retracted. When the cfFormat parameter is NULL, all
active WM_DDE_ADVISE conversations for the item are to be terminated.

aItem Value of the high-order word of lParam. Specifies the item for which the update request
is being retracted. When aItem is NULL, all active WM_DDE_ADVISE conversations
associated with the client are to be terminated.

Returns
This message does not return a value.

Comments
Posting

The application posts the WM_DDE_UNADVISE message by calling the PostMessage function, not the
SendMessage function.

The application allocates aItem by calling the GlobalAddAtom function.

Receiving

The application posts the WM_DDE_ACK message to respond positively or negatively. When posting
WM_DDE_ACK, the application can reuse the aItem atom or delete it and create a new one.

See Also
GlobalAddAtom, PostMessage, WM_DDE_ACK

WM_DEADCHAR (2.x)

WM_DEADCHAR
chDeadKey = wParam;/* dead-key character */
dwKeyData = (DWORD) lParam; /* key data */
The WM_DEADCHAR message is sent when a WM_KEYUP message and a WM_KEYDOWN message
are translated. It specifies the character value of a dead key. A dead key is a key, such as the umlaut
(double-dot) character, that is combined with other characters to form a composite character. For example,
the umlaut-O character consists of the dead key, umlaut, and the O key.

Parameter Description
chDeadKey Value of wParam. Specifies the dead-key character value.
dwKeyData Value of lParam. Specifies the repeat count, scan code, extended key, context code,

previous key state, and key-transition state, as shown in the following table:

Bit Description
0-15 Specifies the repeat count. The value is the number of times the keystroke is

repeated as a result of the user holding down the key.
16-23 Specifies the scan code. The value depends on the original equipment

manufacturer (OEM).
24 Specifies whether the key is an extended key, such as a function key or a key

on the numeric keypad. The value is 1 if it is an extended key; otherwise, it is
0.

25-26 Not used.
27-28 Used internally by Windows.
29 Specifies the context code. The value is 1 if the ALT key is held down while

the key is pressed; otherwise, the value is 0.
30 Specifies the previous key state. The value is 1 if the key is down before the

message is sent, or it is 0 if the key is up.
31 Specifies the key-transition state. The value is 1 if the key is being released,

or it is 0 if the key is being pressed.

Returns
An application should return zero if it processes this message.

Comments
An application typically uses the WM_DEADCHAR message to give the user feedback about each key
pressed. For example, an application can display the accent in the current character position without
moving the caret.

Because there is not necessarily a one-to-one correspondence between keys pressed and character
messages generated, the information in the high-order word of the dwKeyData parameter is usually not
useful to applications. The information in the high-order word applies only to the most recent
WM_KEYUP or WM_KEYDOWN message that precedes the posting of the character message.

For IBM Enhanced 101- and 102-key keyboards, enhanced keys are the right ALT key and the right CTRL
key on the main section of the keyboard; the INS, DEL, HOME, END, PAGE UP, PAGE DOWN, and arrow keys
in the clusters to the left of the numeric keypad; and the division (/) and ENTER keys on the numeric
keypad. Some other keyboards may support the extended-key bit in the dwKeyData parameter.

See Also
WM_KEYDOWN

WM_DELETEITEM (3.0)

WM_DELETEITEM
idCtl = wParam; /* control identifier */
lpdis = (const DELETEITEMSTRUCT FAR*) lParam; /* structure */
The WM_DELETEITEM message is sent to the owner of an owner-drawn list box or combo box when the
list box or combo box is destroyed or when items are removed by the LB_DELETESTRING,
LB_RESETCONTENT, CB_DELETESTRING, or CB_RESETCONTENT message.

Parameter Description
idCtl Value of wParam. Specifies the identifier of the control that sent the

WM_DELETEITEM message.
lpdis Value of lParam. Points to a DELETEITEMSTRUCT structure that contains

information about the item deleted from the list box.

Returns
An application should return TRUE if it processes this message.

See Also
CB_DELETESTRING, CB_RESETCONTENT, LB_DELETESTRING, LB_RESETCONTENT,
DELETEITEMSTRUCT

Windows 3.1 changes

The meaning of the wParam parameter has changed. The wParam parameter specifies the identifier of the
control.

WM_DESTROY (2.x)

WM_DESTROY
The WM_DESTROY message is sent when a window is being destroyed. It is sent to the window
procedure of the window being destroyed after the window is removed from the screen.

This message is sent first to the window being destroyed and then to the child windows as they are
destroyed. During the processing of the WM_DESTROY message, it can be assumed that all child
windows still exist.
Parameters

This message has no parameters.

Returns
An application should return zero if it processes this message.

Comments
If the window being destroyed is part of the clipboard-viewer chain (set by calling the SetClipboardViewer
function), the window must remove itself from the clipboard-viewer chain by calling the
ChangeClipboardChain function before returning from the WM_DESTROY message.

Example
This example processes the WM_DESTROY message by calling the PostQuitMessage function:

case WM_DESTROY:
PostQuitMessage(0);
return 0L;

See Also
ChangeClipboardChain, DestroyWindow, PostQuitMessage, SetClipboardViewer, WM_CLOSE

WM_DESTROYCLIPBOARD (2.x)

WM_DESTROYCLIPBOARD
The WM_DESTROYCLIPBOARD message is sent to the clipboard owner when the clipboard is emptied
by a call to the EmptyClipboard function.
Parameters

This message has no parameters.

Returns
An application should return zero if it processes this message.

See Also
EmptyClipboard

WM_DEVMODECHANGE (2.x)

WM_DEVMODECHANGE
lpszDev = (LPCSTR) lParam; /* address of device name */
The WM_DEVMODECHANGE message is sent to all top-level windows when the default device-mode
settings have changed.

Parameter Description
lpszDev Value of lParam. Points to the device name specified in the Windows initialization file,

WIN.INI.

Returns
An application should return zero if it processes this message.

Comments
Applications that receive this message may reinitialize their device-mode settings. Applications that use
the ExtDeviceMode function to save and restore device settings typically do not process this message.

This message is not sent when the user changes the default printer from Control Panel. In this case, a
WM_WININICHANGE message is generated.

See Also
ExtDeviceMode, WM_WININICHANGE

WM_DRAWCLIPBOARD (2.x)

WM_DRAWCLIPBOARD
The WM_DRAWCLIPBOARD message is sent to the first window in the clipboard-viewer chain when
the contents of the clipboard change. Only applications that have joined the clipboard-viewer chain by
calling the SetClipboardViewer function need to process this message.
Parameters

This message has no parameters.

Returns
An application should return zero if it processes this message.

Comments
Each window that receives the WM_DRAWCLIPBOARD message should call the SendMessage function
to pass the message on to the next window in the clipboard-viewer chain. The handle of the next window
is returned by the SetClipboardViewer function; the handle may be modified in response to a
WM_CHANGECBCHAIN message.

See Also
SendMessage, SetClipboardViewer, WM_CHANGECBCHAIN

WM_DRAWITEM (3.0)

WM_DRAWITEM
idCtl = (int) wParam; /* control identifier */
lpdis = (const DRAWITEMSTRUCT FAR*) lParam; /* structure*/
The WM_DRAWITEM message is sent to the owner of an owner-drawn button, combo box, list box, or
menu when a visual aspect of the button, combo box, list box, or menu has changed.

Parameter Description
idCtl Value of wParam. Specifies the identifier of the control that sent the WM_DRAWITEM

message. This parameter is zero if the message was sent by a menu.
lpdis Value of lParam. Points to a DRAWITEMSTRUCT structure that contains information

about the item to be drawn and the type of drawing required.

Returns
An application should return TRUE if it processes this message.

Comments
The itemAction member of the DRAWITEMSTRUCT structure defines the drawing operation that is to be
performed. The data in this member allows the owner of the control to determine what drawing action is
required.

Before returning from processing this message, an application should ensure that the device context
identified by the hDC member of the DRAWITEMSTRUCT structure is in the default state.

Example
This example shows how to process the WM_DRAWITEM message:

LPDRAWITEMSTRUCT lpdis;
case WM_DRAWITEM:

lpdis = (DRAWITEMSTRUCT FAR*) lParam;
switch (lpdis->itemAction) {
case ODA_DRAWENTIRE:
.
. /* Redraw the entire control or menu. */
.
return TRUE;
case ODA_SELECT:
.
. /* Redraw to reflect current selection state. */
.
return TRUE;
case ODA_FOCUS:
.
. /* Redraw to reflect current focus state. */
.
return TRUE;
}
break;

See Also
WM_COMPAREITEM, WM_DELETEITEM, WM_INITDIALOG, WM_MEASUREITEM,
DRAWITEMSTRUCT

Windows 3.1 changes

The meaning of the wParam parameter has changed. If a control sends the WM_DRAWITEM message,
the wParam parameter specifies the identifier of the control. If a menu sends the message, wParam is zero.

WM_DROPFILES (3.1)

WM_DROPFILES
hDrop = (HANDLE) wParam; /* handle of internal drop structure */
The WM_DROPFILES message is sent when the user releases the left mouse button over the window of
an application that has registered itself as a recipient of dropped files.

Parameter Description
hDrop Value of wParam. Identifies an internal data structure describing the dropped files. This

handle is valid only during the processing of the WM_DROPFILES message; if an
application needs to use the data later, it must allocate memory and save the data.
This handle is used by the DragFinish, DragQueryFile, and DragQueryPoint functions to
retrieve information about the dropped files.

Returns
An application should return zero if it processes this message.

Comments
This message is posted, not sent.

See Also
DragAcceptFiles, DragFinish, DragQueryFile, DragQueryPoint

WM_ENABLE (2.x)

WM_ENABLE
fEnabled = (BOOL) wParam; /* the enabled/disabled flag */
The WM_ENABLE message is sent when an application changes the enabled state of a window. It is sent
to the window whose enabled state is changing. This message is sent before the EnableWindow function
returns but after the enabled state (WS_DISABLE style bit) of the window has changed.

Parameter Description
fEnabled Value of wParam. Specifies whether the window has been enabled or disabled. This

parameter is TRUE if the window has been enabled; it is FALSE if the window has been
disabled.

Returns
An application should return zero if it processes this message.

See Also
EnableWindow

WM_ENDSESSION (2.x)

WM_ENDSESSION
fEndSession = (BOOL) wParam; /* end-session flag */
The WM_ENDSESSION message is sent to an application that has returned a nonzero value in response
to a WM_QUERYENDSESSION message. The WM_ENDSESSION message informs the application
whether the session is actually ending.

Parameter Description
fEndSession Value of wParam. Specifies whether the session is being ended. It is TRUE if the

session is being ended; otherwise, it is FALSE.

Returns
An application should return zero if it processes this message.

Comments
If the fEndSession parameter is TRUE, Windows can terminate any time after all applications have
returned from processing this message. Therefore, an application should perform all tasks required for
termination before returning from this message.

The application does not need to call the DestroyWindow or PostQuitMessage function when the session
is ending.

See Also
DestroyWindow, ExitWindows, PostQuitMessage, WM_QUERYENDSESSION

WM_ENTERIDLE (2.x)

WM_ENTERIDLE
fwSource = wParam; /* idle-source flag*/
hwndDlg = (HWND) LOWORD(lParam); /* handle of dialog box or window *
/
The WM_ENTERIDLE message informs an application's main window procedure that a modal dialog
box or a menu is entering an idle state. A modal dialog box or menu enters an idle state when no messages
are waiting in its queue after it has processed one or more previous messages.

Parameter Description
fwSource Value of wParam. Specifies whether the message is the result of a dialog box or a menu

being displayed. This parameter can be one of the following values:

Value Description
MSGF_DIALOGBOX The system is idle because a dialog box is being displayed.
MSGF_MENU The system is idle because a menu is being displayed.

hwndDlg Value of the low-order word of lParam. Identifies the dialog box (if fwSource is
MSGF_DIALOGBOX) or the handle of the window containing the displayed menu (if
fwSource is MSGF_MENU).

Returns
An application should return zero if it processes this message.

Comments
The DefWindowProc function returns zero when it processes this message.

See Also
DefWindowProc

WM_ERASEBKGND (2.x)

WM_ERASEBKGND
hdc = (HDC) wParam; /* device-context handle */
The WM_ERASEBKGND message is sent when the window background needs to be erased (for example,
when a window is resized). It is sent to prepare an invalidated region for painting.

Parameter Description
hdc Value of wParam. Identifies the device context.

Returns
An application should return nonzero if it erases the background; otherwise, it should return zero.

Comments
The DefWindowProc function erases the background by using the class background brush specified by the
hbrbackground member of the WNDCLASS structure.

If the hbrbackground member is NULL, the application should process the WM_ERASEBKGND message
and erase the background color. When processing the WM_ERASEBKGND message, the application
must align the origin of the intended brush with the window coordinates by first calling the
UnrealizeObject function for the brush and then selecting the brush.

An application should return nonzero in response to WM_ERASEBKGND if it processes the message and
erases the background; this indicates that no futher erasing is required. If the app returns zero the window
will remain marked as needing to be erased. (Typically, this means that the fErase member of the
PAINTSTRUCT structure will be TRUE.)

Windows computes the background by using the MM_TEXT mapping mode. If the device context is using
any other mapping mode, the area erased may not be within the visible part of the client area.

See Also
UnrealizeObject, WM_ICONERASEBKGND

WM_FONTCHANGE (2.x)

WM_FONTCHANGE
wParam = 0;/* not used, must be zero */
lParam = 0L; /* not used, must be zero */
An application sends the WM_FONTCHANGE message to all top-level windows in the system after
changing the pool of font resources.
Parameters

This message has no parameters.

Returns
An application should return zero if it processes this message.

Comments
An application that adds or removes fonts from the system (for example, by using the AddFontResource or
RemoveFontResource function) should send this message to all top-level windows.

To send the WM_FONTCHANGE message to all top-level windows, an application can call the
SendMessage function with the hwnd parameter set to HWND_BROADCAST.

See Also
AddFontResource, RemoveFontResource, SendMessage

WM_GETDLGCODE (2.x)

WM_GETDLGCODE
The WM_GETDLGCODE message is sent to the dialog box procedure associated with a control.
Normally, Windows handles all arrow-key and TAB-key input to the control. By responding to the
WM_GETDLGCODE message, an application can take control of a particular type of input and process
the input itself.
Parameters

This message has no parameters.

Returns
The return value is any combination of the following values, indicating which type of input the application
processes:

Value Meaning
DLGC_BUTTON Button (generic)
DLGC_DEFPUSHBUTTON Default push button
DLGC_HASSETSEL EM_SETSEL messages
DLGC_UNDEFPUSHBUTTON No default push button processing. (An application can use this

flag with DLGC_BUTTON to indicate that it processes button
input but relies on the system for default push-button processing.)

DLGC_RADIOBUTTON Radio button
DLGC_STATIC Static control
DLGC_WANTALLKEYS All keyboard input
DLGC_WANTARROWS Arrow keys
DLGC_WANTCHARS WM_CHAR messages
DLGC_WANTMESSAGE All keyboard input (the application passes this message on to the

control)
DLGC_WANTTAB TAB key

Comments
Although the DefWindowProc function always returns zero in response to the WM_GETDLGCODE
message, the window procedures for the predefined control classes return a code appropriate for each
class.

The WM_GETDLGCODE message and the returned values are useful only with user-defined dialog box
controls or standard controls modified by subclassing.

See Also
DefWindowProc

WM_GETFONT (3.0)

WM_GETFONT
wParam = 0;/* not used, must be zero */
lParam = 0L; /* not used, must be zero */
An application sends a WM_GETFONT message to a control to retrieve the font with which the control is
currently drawing its text.
Parameters

This message has no parameters.

Returns
The return value is the handle of the font used by the control, or it is NULL if the control is using the
system font.

See Also
WM_SETFONT

WM_GETMINMAXINFO (2.x)

WM_GETMINMAXINFO
lpmmi = (MINMAXINFO FAR*) lParam; /* address of structure */
The WM_GETMINMAXINFO message is sent to a window whenever Windows needs the maximized
position or dimensions of the window or needs the maximum or minimum tracking size of the window.
The maximized size of a window is the size of the window when its borders are fully extended. The
maximum tracking size of a window is the largest window size that can be achieved by using the borders
to size the window. The minimum tracking size of a window is the smallest window size that can be
achieved by using the borders to size the window.

Windows fills in a MINMAXINFO data structure, specifying default values for the various positions and
dimensions. The application may change these values if it processes this message.

Parameter Description
lpmmi Value of lParam. Points to a MINMAXINFO data structure.

Returns
An application should return zero if it processes this message.

Example
This example processes a WM_GETMINMAXINFO message and sets the minimum tracking width of the
window to 200 and the minimum tracking height of the window to 500:

MINMAXINFO FAR* lpmmi;
case WM_GETMINMAXINFO:

lpmmi = (MINMAXINFO FAR*) lParam;
lpmmi->ptMinTrackSize.x = 200;
lpmmi->ptMinTrackSize.y = 500;
break;

See Also
MINMAXINFO

WM_GETTEXT (2.x)

WM_GETTEXT
wParam = (WPARAM) cchTextMax; /* number of bytes to copy */
lParam = (LPARAM) lpszText;/* address of buffer for text */
An application sends a WM_GETTEXT message to copy the text that corresponds to a window into a
buffer provided by the caller.

Parameter Description
cchTextMax Value of wParam. Specifies the maximum number of bytes to be copied, including the

terminating null character.
lpszText Value of lParam. Points to the buffer that is to receive the text.

Returns
The return value is the number of bytes copied. It is CB_ERR if the message is sent to a combo box that
has no edit control.

Comments
For an edit control, the text to be copied is the contents of the edit control. For a combo box, the text is the
contents of the edit-control (or static-text) portion of the combo box. For a button, the text is the button
name. For other windows, the text is the window title. To copy the text of an item in a list box, an
application can use the LB_GETTEXT message.

When the WM_GETTEXT message is sent to a static control with the SS_ICON style, the handle of the
icon will be returned in the first two bytes of the buffer pointed to by lpszText. This is true only if the
WM_SETTEXT message has been used to set the icon.

Example
This example copies text from an edit control to a buffer:

HWND hwndMyEdit;
char szBuffer[32];
hwndMyEdit = GetDlgItem(hdlg, ID_MYEDITCONTROL);
SendMessage(hwndMyEdit, WM_GETTEXT, sizeof(szBuffer),

(LPARAM) ((LPSTR) szBuffer));
See Also
LB_GETTEXT, WM_GETTEXTLENGTH, WM_SETTEXT

WM_GETTEXTLENGTH (2.x)

WM_GETTEXTLENGTH
wParam = 0;/* not used, must be zero */
lParam = 0L; /* not used, must be zero */
An application sends a WM_GETTEXTLENGTH message to determine the length, in bytes, of the text
associated with a window. The length does not include the terminating null character.
Parameters

This message has no parameters.

Returns
The return value is a word specifying the length, in bytes, of the text.

Comments
For an edit control, the text to be copied is the contents of the edit control. For a combo box, the text is the
contents of the edit-control (or static-text) portion of the combo box. For a button, the text is the button
name. For other windows, the text is the window title. To determine the length of an item in a list box, an
application can use the LB_GETTEXTLEN message.

Example
This example enables the push button in a dialog box if the user has entered text in an edit control in the
dialog box:

case ID_MYEDITCONTROL:
if (HIWORD(lParam) == EN_CHANGE)
EnableWindow(GetDlgItem(hdlg, IDOK),
(BOOL) SendMessage((HWND) LOWORD(lParam),
WM_GETTEXTLENGTH, 0, 0L));
return TRUE;

See Also
LB_GETTEXTLEN, WM_GETTEXT

WM_HSCROLL (2.x)

WM_HSCROLL
wScrollCode = wParam; /* scroll bar code */
nPos = LOWORD(lParam);/* current position of scroll box */
hwndCtl = (HWND) HIWORD(lParam); /* handle of the control */
The WM_HSCROLL message is sent to a window when the user clicks the window's horizontal scroll
bar.

Parameter Description
wScrollCode Value of wParam. Specifies a scroll bar code that indicates the user's scrolling request.

This parameter can be one of the following values:

Value Description
SB_BOTTOM Scroll to bottom.
SB_ENDSCROLL End scroll.
SB_LINEDOWN Scroll one line down.
SB_LINEUP Scroll one line up.
SB_PAGEDOWN Scroll one page down.
SB_PAGEUP Scroll one page up.
SB_THUMBPOSITION Scroll to absolute position. The current position is

specified by the nPos parameter.
SB_THUMBTRACK Drag scroll box (thumb) to specified position. The

current position is specified by the nPos parameter.
SB_TOP Scroll to top.

nPos Value of the low-order word of lParam. Specifies the current position of the scroll box
if the wScrollCode parameter is SB_THUMBPOSITION or SB_THUMBTRACK;
otherwise, the nPos parameter is not used.

hwndCtl Value of the high-order word of lParam. Identifies the control if WM_HSCROLL is
sent by a scroll bar. If WM_HSCROLL is sent as a result of the user clicking a pop-up
window's scroll bar, the high-order word is not used.

Returns
An application should return zero if it processes this message.

Comments
The SB_THUMBTRACK scroll bar code typically is used by applications that give some feedback while
the scroll box is being dragged.

If an application scrolls the contents of the window, it must also reset the position of the scroll box by
using the SetScrollPos function.

See Also
SetScrollPos, WM_VSCROLL

WM_HSCROLLCLIPBOARD (2.x)

WM_HSCROLLCLIPBOARD
hwndCBViewer = (HWND) wParam; /* handle of clipboard viewer */
wScrollCode = LOWORD(lParam); /* scroll bar code */
nPos = (int) HIWORD(lParam); /* scroll box position */
The WM_HSCROLLCLIPBOARD message is sent by the clipboard viewer to the clipboard owner when
the clipboard data has the CF_OWNERDISPLAY format and an event occurs in the clipboard viewer's
horizontal scroll bar. The owner should scroll the clipboard image, invalidate the appropriate section, and
update the scroll bar values.

Parameter Description
hwndCBViewer Value of wParam. Identifies a clipboard-viewer window.
wScrollCode Value of the low-order word of lParam. Specifies a scroll bar code. This parameter

can be one of the following values:

Value Description
SB_BOTTOM Scroll to lower right.
SB_ENDSCROLL End scroll.
SB_LINEDOWN Scroll one line down.
SB_LINEUP Scroll one line up.
SB_PAGEDOWN Scroll one page down.
SB_PAGEUP Scroll one page up.
SB_THUMBPOSITION Scroll to absolute position.
SB_TOP Scroll to upper left.

nPos Value of the high-order word of lParam. Specifies the scroll box position if the scroll
bar code is SB_THUMBPOSITION; otherwise, the high-order word of lParam is not
used.

Returns
An application should return zero if it processes this message.

Comments
The clipboard owner should use the InvalidateRect function or repaint as needed. The scroll bar position
should also be reset.

See Also
InvalidateRect, WM_VSCROLLCLIPBOARD

WM_ICONERASEBKGND (3.0)

WM_ICONERASEBKGND
hdc = (HDC) wParam;/* device-context handle */
The WM_ICONERASEBKGND message is sent to a minimized (iconic) window when the background of
the icon must be filled before painting the icon. A window receives this message only if a class icon is
defined for the window; otherwise, WM_ERASEBKGND is sent.

Parameter Description
hdc Value of wParam. Identifies the device context of the icon.

Returns
An application should return zero if it processes this message.

Comments
The DefWindowProc function fills the icon background with the background brush of the parent window.

See Also
DefWindowProc, WM_ERASEBKGND

WM_INITDIALOG (2.x)

WM_INITDIALOG
hwndFocus = (HWND) wParam; /* handle of control for focus */
dwData = lParam; /* application-specific data */
The WM_INITDIALOG message is sent to a dialog box procedure immediately before the dialog box is
displayed.

Parameter Description
hwndFocus Value of wParam. Identifies the first control in the dialog box that can be given the input

focus. Usually, this is the first control in the dialog box with the WS_TABSTOP style.
dwData Value of lParam. Specifies application-specific data that was passed by the function

used to create the dialog box if the dialog box was created by one of the following
functions:

CreateDialogParam
DialogBoxIndirectParam
DialogBoxParam

Returns
An application should return nonzero to set the input focus to the control identified by the hwndFocus
parameter. An application should return zero if the dialog box procedure uses the SetFocus function to set
the input focus to a different control in the dialog box.

Example
This example changes the font used by controls in a dialog box to a font that is not bold.

HFONT hfontDlg;
LOGFONT lFont;
case WM_INITDIALOG:

/* Get dialog box font and create version that is not bold. */
hfontDlg = (HFONT) NULL;
if ((hfontDlg = (HFONT) SendMessage(hdlg, WM_GETFONT, 0, 0L))) {
if (GetObject(hfontDlg, sizeof(LOGFONT), (LPSTR) &lFont)) {
lFont.lfWeight = FW_NORMAL;
if (hfontDlg = CreateFontIndirect((LPLOGFONT) &lFont)) {
SendDlgItemMessage(hdlg, ID_CTRL1, WM_SETFONT,
(WPARAM) hfontDlg, 0);
SendDlgItemMessage(hdlg, ID_CTRL2, WM_SETFONT,
(WPARAM) hfontDlg, 0);
.
. /* Set font for remaining controls. */
.
}
}
}
return TRUE;

See Also
CreateDialogParam, DialogBoxIndirectParam, DialogBoxParam, SetFocus

WM_INITMENU (2.x)

WM_INITMENU
hmenuInit = (HMENU) wParam; /* handle of menu to initialize */
The WM_INITMENU message is sent when a menu is about to become active. It occurs when the user
clicks an item on the menu bar or presses a menu key. This allows an application to modify the menu
before it is displayed.

Parameter Description
hmenuInit Value of wParam. Identifies the menu to be initialized.

Returns
An application should return zero if it processes this message.

Comments
This message is sent only when a menu is first accessed; only one WM_INITMENU message is generated
for each access. This means, for example, that moving the mouse across several menu items while holding
down the button does not generate new messages. WM_INITMENU does not provide information about
menu items.

See Also
WM_INITMENUPOPUP

WM_INITMENUPOPUP (2.x)

WM_INITMENUPOPUP
hmenuPopup = (HMENU) wParam; /* handle of pop-up menu */
nIndex = (int) LOWORD(lParam); /* index of pop-up menu */
fSystemMenu = (BOOL) HIWORD(lParam); /* System-menu flag */
The WM_INITMENUPOPUP message is sent when a pop-up menu is about to become active. This allows
an application to modify the pop-up menu before it is displayed, without changing the entire menu.

Parameter Description
hmenuPopup Value of wParam. Identifies the pop-up menu.
nIndex Value of the low-order word of lParam. Specifies the index of the pop-up menu in the

main menu.
fSystemMenu Value of the high-order word of lParam. Specifies a nonzero value if the pop-up menu

is the System menu (sometimes referred to as the Control menu); otherwise, this
parameter is zero.

Returns
An application should return zero if it processes this message.

Example
This example initializes the items in a pop-up menu:

int cItems;
int pos;
UINT id;
case WM_INITMENUPOPUP:

cItems = GetMenuItemCount((HMENU) wParam);
for (pos = 0; pos < cItems; pos++) {
id = GetMenuItemID((HMENU) wParam, pos);
.
. /* Initialize menu items. */
.
}
break;

See Also
WM_INITMENU

WM_KEYDOWN (2.x)

WM_KEYDOWN
wVkey = wParam; /* virtual-key code */
dwKeyData = lParam;/* key data */
The WM_KEYDOWN message is sent when a nonsystem key is pressed. A nonsystem key is a key that is
pressed when the ALT key is not pressed, or it is a key that is pressed when a window has the input focus.

Parameter Description
wVkey Value of wParam. Specifies the virtual-key code of the given key.
dwKeydata Value of lParam. Specifies the repeat count, scan code, extended key, context code,

previous key state, and key-transition state, as shown in the following table:

Bit Description
0-15 Specifies the repeat count. The value is the number of times the keystroke is

repeated as a result of the user holding down the key.
16-23 Specifies the scan code. The value depends on the original equipment

manufacturer (OEM).
24 Specifies whether the key is an extended key, such as a function key or a key

on the numeric keypad. The value is 1 if it is an extended key; otherwise, it is
0.

25-26 Not used.
27-28 Used internally by Windows.
29 Specifies the context code. The value is 1 if the ALT key is held down while

the key is pressed; otherwise, the value is 0.
30 Specifies the previous key state. The value is 1 if the key is down before the

message is sent, or it is 0 if the key is up.
31 Specifies the key-transition state. The value is 1 if the key is being released,

or it is 0 if the key is being pressed.
For a WM_KEYDOWN message, the value of bit 29 (context code) is 0 and the value of
bit 31 (key-transition state) is 0.

Returns
An application should return zero if it processes this message.

Comments
Because of the autorepeat feature, more than one WM_KEYDOWN message may occur before a
WM_KEYUP message is sent. The previous key state (bit 30) can be used to determine whether the
WM_KEYDOWN message indicates the first down transition or a repeated down transition.

For IBM Enhanced 101- and 102-key keyboards, enhanced keys are the right ALT key and the right CTRL
key on the main section of the keyboard; the INS, DEL, HOME, END, PAGE UP, PAGE DOWN, and arrow keys
in the clusters to the left of the numeric keypad; and the division (/) and ENTER key on the numeric keypad.
Some other keyboards may support the extended-key bit in the dwKeyData parameter.

See Also
WM_CHAR, WM_KEYUP

WM_KEYUP (2.x)

WM_KEYUP
wVkey = wParam; /* virtual-key code */
dwKeyData = lParam;/* key data */
The WM_KEYUP message is sent when a nonsystem key is released. A nonsystem key is a key that is
pressed when the ALT key is not pressed, or it is a key that is pressed when a window has the input focus.

Parameter Description
wVkey Value of wParam. Specifies the virtual-key code of the given key.
dwKeyData Value of lParam. Specifies the repeat count, scan code, extended key, context code,

previous key state, and key-transition state, as shown in the following table:

Bit Description
0-15 Specifies the repeat count. The value is the number of times the keystroke is

repeated as a result of the user holding down the key.
16-23 Specifies the scan code. The value depends on the original equipment

manufacturer (OEM).
24 Specifies whether the key is an extended key, such as a function key or a key

on the numeric keypad. The value is 1 if it is an extended key; otherwise, it is
0.

25-26 Not used.
27-28 Used internally by Windows.
29 Specifies the context code. The value is 1 if the ALT key is held down while

the key is pressed; otherwise, the value is 0.
30 Specifies the previous key state. The value is 1 if the key is down before the

message is sent, or it is 0 if the key is up.
31 Specifies the key-transition state. The value is 1 if the key is being released,

or it is 0 if the key is being pressed.
For a WM_KEYUP message, the value of bit 29 (context code) is 0 and the value of bit
31 (key-transition state) is 1.

Returns
An application should return zero if it processes this message.

Comments
For IBM Enhanced 101- and 102-key keyboards, enhanced keys are the right ALT key and the right CTRL
key on the main section of the keyboard; the INS, DEL, HOME, END, PAGE UP, PAGE DOWN, and arrow keys
in the clusters to the left of the numeric keypad; and the division (/) and ENTER keys on the numeric
keypad. Some other keyboards may support the extended-key bit in the dwKeyData parameter.

See Also
WM_CHAR, WM_KEYDOWN

WM_KILLFOCUS (2.x)

WM_KILLFOCUS
hwndGetFocus = (HWND) lParam; /* handle of window receiving focus */
The WM_KILLFOCUS message is sent immediately before a window loses the input focus.

Parameter Description
hwndGetFocus Value of wParam. Identifies the window that receives the input focus. (This

parameter may be NULL.)

Returns
An application should return zero if it processes this message.

Comments
If an application is displaying a caret, the caret should be destroyed at this point.

See Also
SetFocus, WM_SETFOCUS

WM_LBUTTONDBLCLK (2.x)

WM_LBUTTONDBLCLK
fwKeys = wParam;/* key flags */
xPos = LOWORD(lParam); /* horizontal position of cursor */
yPos = HIWORD(lParam); /* vertical position of cursor */
The WM_LBUTTONDBLCLK message is sent when the user double-clicks the left mouse button.

Parameter Description
fwKeys Value of wParam. Indicates whether various virtual keys are down. This parameter can

be any combination of the following values:

Value Description
MK_CONTROL Set if CTRL key is down.
MK_LBUTTON Set if left button is down.
MK_MBUTTON Set if middle button is down.
MK_RBUTTON Set if right button is down.
MK_SHIFT Set if SHIFT key is down.

xPos Value of the low-order word of lParam. Specifies the x-coordinate of the cursor. The
coordinate is relative to the upper-left corner of the window.

yPos Value of the high-order word of lParam. Specifies the y-coordinate of the cursor. The
coordinate is relative to the upper-left corner of the window.

Returns
An application should return zero if it processes this message.

Comments
Only windows that have the CS_DBLCLKS class style can receive WM_LBUTTONDBLCLK messages.
Windows generates a WM_LBUTTONDBLCLK message when the user presses, releases, and again
presses the left mouse button within the system's double-click time limit. Double-clicking the left mouse
button actually generates four messages: a WM_LBUTTONDOWN message, a WM_LBUTTONUP
message, the WM_LBUTTONDBLCLK message, and another WM_LBUTTONUP message.

See Also
WM_LBUTTONDOWN, WM_LBUTTONUP

WM_LBUTTONDOWN (2.x)

WM_LBUTTONDOWN
fwKeys = wParam;/* key flags */
xPos = LOWORD(lParam); /* horizontal position of cursor */
yPos = HIWORD(lParam); /* vertical position of cursor */
The WM_LBUTTONDOWN message is sent when the user presses the left mouse button.

Parameter Description
fwKeys Value of wParam. Specifies whether various virtual keys are down. This parameter can

be any combination of the following values:

Value Description
MK_CONTROL Set if CTRL key is down.
MK_MBUTTON Set if middle button is down.
MK_RBUTTON Set if right button is down.
MK_SHIFT Set if SHIFT key is down.

xPos Value of the low-order word of lParam. Specifies the x-coordinate of the cursor. The
coordinate is relative to the upper-left corner of the window.

yPos Value of the high-order word of lParam. Specifies the y-coordinate of the cursor. The
coordinate is relative to the upper-left corner of the window.

Returns
An application should return zero if it processes this message.

See Also
WM_LBUTTONDBLCLK, WM_LBUTTONUP

WM_LBUTTONUP (2.x)

WM_LBUTTONUP
fwKeys = wParam;/* key flags */
xPos = LOWORD(lParam); /* horizontal position of cursor */
yPos = HIWORD(lParam); /* vertical position of cursor */
The WM_LBUTTONUP message is sent when the user releases the left mouse button.

Parameter Description
fwKeys Value of wParam. Indicates whether various virtual keys are down. This parameter can

be any combination of the following values:

Value Description
MK_CONTROL Set if CTRL key is down.
MK_MBUTTON Set if middle button is down.
MK_RBUTTON Set if right button is down.
MK_SHIFT Set if SHIFT key is down.

xPos Value of the low-order word of lParam. Specifies the x-coordinate of the cursor. The
coordinate is relative to the upper-left corner of the window.

yPos Value of the high-order word of lParam. Specifies the y-coordinate of the cursor. The
coordinate is relative to the upper-left corner of the window.

Returns
An application should return zero if it processes this message.

See Also
WM_LBUTTONDBLCLK, WM_LBUTTONDOWN

WM_MBUTTONDBLCLK (2.x)

WM_MBUTTONDBLCLK
fwKeys = wParam;/* key flags */
xPos = LOWORD(lParam); /* horizontal position of cursor */
yPos = HIWORD(lParam); /* vertical position of cursor */
The WM_MBUTTONDBLCLK message is sent when the user double-clicks the middle mouse button.

Parameter Description
fwKeys Value of wParam. Indicates whether various virtual keys are down. This parameter can

be any combination of the following values:

Value Description
MK_CONTROL Set if CTRL key is down.
MK_LBUTTON Set if left button is down.
MK_MBUTTON Set if middle button is down.
MK_RBUTTON Set if right button is down.
MK_SHIFT Set if SHIFT key is down.

xPos Value of the low-order word of lParam. Specifies the x-coordinate of the cursor. The
coordinate is relative to the upper-left corner of the window.

yPos Value of the high-order word of lParam. Specifies the y-coordinate of the cursor. The
coordinate is relative to the upper-left corner of the window.

Returns
An application should return zero if it processes this message.

Comments
Only windows that have the CS_DBLCLKS class style can receive WM_MBUTTONDBLCLK messages.
Windows generates a WM_MBUTTONDBLCLK message when the user presses, releases, and again
presses the middle mouse button within the system's double-click time limit. Double-clicking the middle
mouse button actually generates four messages: a WM_MBUTTONDOWN message, a
WM_MBUTTONUP message, the WM_MBUTTONDBLCLK message, and another
WM_MBUTTONUP message.

See Also
WM_MBUTTONDOWN, WM_MBUTTONUP

WM_MBUTTONDOWN (2.x)

WM_MBUTTONDOWN
fwKeys = wParam;/* key flags */
xPos = LOWORD(lParam); /* horizontal position of cursor */
yPos = HIWORD(lParam); /* vertical position of cursor */
The WM_MBUTTONDOWN message is sent when the user presses the middle mouse button.

Parameter Description
fwKeys Value of wParam. Indicates whether various virtual keys are down. This parameter can

be any combination of the following values:

Value Description
MK_CONTROL Set if CTRL key is down.
MK_LBUTTON Set if left button is down.
MK_RBUTTON Set if right button is down.
MK_SHIFT Set if SHIFT key is down.

xPos Value of the low-order word of lParam. Specifies the x-coordinate of the cursor. The
coordinate is relative to the upper-left corner of the window.

yPos Value of the high-order word of lParam. Specifies the y-coordinate of the cursor. The
coordinate is relative to the upper-left corner of the window.

Returns
An application should return zero if it processes this message.

See Also
WM_MBUTTONDBLCLK, WM_MBUTTONUP

WM_MBUTTONUP (2.x)

WM_MBUTTONUP
fwKeys = wParam;/* key flags */
xPos = LOWORD(lParam); /* horizontal position of cursor */
yPos = HIWORD(lParam); /* vertical position of cursor */
The WM_MBUTTONUP message is sent when the user releases the middle mouse button.

Parameter Description
fwKeys Value of wParam. Indicates whether various virtual keys are down. This parameter can

be any combination of the following values:

Value Description
MK_CONTROL Set if CTRL key is down.
MK_LBUTTON Set if left button is down.
MK_RBUTTON Set if right button is down.
MK_SHIFT Set if SHIFT key is down.

xPos Value of the low-order word of lParam. Specifies the x-coordinate of the cursor. The
coordinate is relative to the upper-left corner of the window.

yPos Value of the high-order word of lParam. Specifies the y-coordinate of the cursor. The
coordinate is relative to the upper-left corner of the window.

Returns
An application should return zero if it processes this message.

See Also
WM_MBUTTONDBLCLK, WM_MBUTTONDOWN

WM_MDIACTIVATE (3.0)

WM_MDIACTIVATE
/* Message sent to MDI client */
wParam = (WPARAM) (HWND) hwndChildAct; /* child to activate */
lParam = 0L; /* not used, must be zero */
/* Message received by MDI child */
wParam = (WPARAM) fActivate; /* activation flag */
hwndAct = (HWND) LOWORD(lParam); /* child being activated */
hwndDeact = (HWND) HIWORD(lParam); /* child being deactivated */
An application sends the WM_MDIACTIVATE message to a multiple document interface (MDI) client
window to instruct the client window to activate a different MDI child window. As the client window
processes this message, it sends WM_MDIACTIVATE to the child window being deactivated and to the
child window being activated.

Parameter Description
In message sent to MDI client window:
hwndChildAct Value of wParam. Identifies the MDI child window

to be activated.
In message received by MDI child window:
fActivate Value of wParam. Specifies whether to activate or

deactivate the child window. If this parameter is
TRUE, the child window is activated. If this
parameter is FALSE, the child window is
deactivated.

hwndAct Value of the low-order word of lParam. Identifies
the child window being activated.

hwndDeact Value of the high-order word of lParam. Identifies
the child window being deactivated.

Returns
An application should return zero if it processes this message.

Comments
An MDI child window is activated independently of the MDI frame window. When the frame window
becomes active, the child window that was last activated with the WM_MDIACTIVATE message receives
the WM_NCACTIVATE message to draw an active window frame and title bar; it does not receive
another WM_MDIACTIVATE message.

See Also
WM_MDIGETACTIVE, WM_NCACTIVATE, WM_MDINEXT

WM_MDICASCADE (3.0)

WM_MDICASCADE
fnCascade = wParam;/* cascade flag */
The WM_MDICASCADE message is sent to a multiple document interface (MDI) client window to
arrange all its child windows in a cascade format.

Parameter Description
fnCascade Value of wParam. Specifies a cascade flag. Currently, only the following flag may be

specified:

Value Meaning
MDITILE_SKIPDISABLED Prevents disabled MDI child windows from

being cascaded.

Returns
An application should return zero if it processes this message.

See Also
WM_MDIICONARRANGE, WM_MDITILE

Windows 3.1 changes

The following cascade flag has been added:

Value Meaning
MDITILE_SKIPDISABLED Prevents disabled MDI child windows from being cascaded.

WM_MDICREATE (3.0)

WM_MDICREATE
wParam = 0; /* not used, must be zero */
lParam = (LPARAM) (MDICREATESTRUCT FAR*) lpmcs; /* structure address *
/
An application sends the WM_MDICREATE message to a multiple document interface (MDI) client
window to create a child window.

Parameter Description
lpmcs Value of lParam. Points to an MDICREATESTRUCT structure.

Returns
The return value is the handle of the new window in the low-order word and zero in the high-order word.

Comments
The window is created with the style bits WS_CHILD, WS_CLIPSIBLINGS, WS_CLIPCHILDREN,
WS_SYSMENU, WS_CAPTION, WS_THICKFRAME, WS_MINIMIZEBOX, and
WS_MAXIMIZEBOX, plus additional style bits specified in the MDICREATESTRUCT structure to
which lpmcs points. Windows adds the title of the new child window to the window menu of the frame
window. An application should create all child windows of the client window with this message.

CreateWindow will override the default style bits if the MDIS_ALLCHILDSTYLES style is set when
creating the MDI client window.

If a client window receives any message that changes the activation of child windows while the currently
active MDI child window is maximized, Windows restores the currently active child window and
maximizes the newly activated child window.

When the MDI child window is created, Windows sends the WM_CREATE message to the window. The
lpmcs parameter of the WM_CREATE message contains a pointer to a CREATESTRUCT structure. The
lpCreateParams member of the CREATESTRUCT structure contains a pointer to the
MDICREATESTRUCT structure passed with the WM_MDICREATE message that created the MDI child
window.

An application should not send a second WM_MDICREATE message while a WM_MDICREATE
message is still being processed. For example, it should not send a WM_MDICREATE message while an
MDI child window is processing its WM_CREATE message.

See Also
WM_MDIDESTROY, CREATESTRUCT, MDICREATESTRUCT

WM_MDIDESTROY (3.0)

WM_MDIDESTROY
hwndChild = (HWND) wParam; /* handle of child to destroy */
An application sends the WM_MDIDESTROY message to a multiple document interface (MDI) client
window to close an MDI child window.

Parameter Description
hwndChild Value of wParam. Identifies the child window to destroy.

Returns
An application should return zero if it processes this message.

Comments
This message removes the title of the child window from the frame window and deactivates the child
window. An application should close all MDI child windows with this message.

If a client window receives any message that changes the activation of child windows while the currently
active MDI child window is maximized, Windows restores the currently active child window and
maximizes the newly activated child window.

See Also
WM_MDICREATE

WM_MDIGETACTIVE (3.0)

WM_MDIGETACTIVE
The WM_MDIGETACTIVE message retrieves the multiple document interface (MDI) child window that
is active, along with a flag indicating whether the child window is maximized.
Parameters

This message has no parameters.

Returns
The return value is the handle of the active MDI child window in its low-order word. If the window is
maximized, the high-order word is 1; otherwise, the high-order word is 0.

See Also
WM_MDIACTIVATE

WM_MDIICONARRANGE (3.0)

WM_MDIICONARRANGE
The WM_MDIICONARRANGE message is sent to a multiple document interface (MDI) client window to
arrange all minimized document child windows. It does not affect child windows that are not minimized.
Parameters

This message has no parameters.

Returns
An application should return zero if it processes this message.

See Also
WM_MDICASCADE, WM_MDITILE

WM_MDIMAXIMIZE (3.0)

WM_MDIMAXIMIZE
hwndMaximize = (HWND) wParam; /* handle of child to maximize */
The WM_MDIMAXIMIZE message causes a multiple document interface (MDI) client window to
maximize an MDI child window. When a child window is maximized, Windows resizes it to make its
client area fill the client window. Windows places the child window's System menu (sometimes referred
to as the Control menu) in the frame's menu bar so that the user can restore or minimize the child window;
Windows adds the title of the child window to the frame window's menu of child windows.

Parameter Description
hwndMaximize Value of wParam. Identifies the child window to maximize.

Returns
An application should return zero if it processes this message.

Comments
If an MDI client window receives any message that changes the activation of its child windows while the
currently active MDI child window is maximized, Windows restores the currently active child window and
maximizes the newly activated child window.

WM_MDINEXT (3.0)

WM_MDINEXT
wParam = (WPARAM) hwndChild; /* handle of child window */
lParam = (LPARAM) fNext;/* next or previous child window */
An application sends the WM_MDINEXT message to a multiple document interface (MDI) client window
to activate the child window immediately behind the currently active child window and place the currently
active child window behind all other child windows.

Parameter Description
hwndChild Value of wParam. Specifies the handle of the child window.
fNext Value of lParam. If this parameter is zero, the message specifies that the next MDI child

window should be activated. If this parameter is nonzero, the message specifies that the
previous MDI child window should be activated.

Returns
An application should return zero if it processes this message.

Comments
If an MDI client window receives any message that changes the activation of its child windows while the
currently active MDI child window is maximized, Windows restores the currently active child window and
maximizes the newly activated child window.

See Also
WM_MDIACTIVATE, WM_MDIGETACTIVE

WM_MDIRESTORE (3.0)

WM_MDIRESTORE
wParam = (WPARAM) wIDChild; /* handle of child window */
An application sends the WM_MDIRESTORE message to a multiple document interface (MDI) client
window to restore an MDI child window from maximized or minimized size.

Parameter Description
wIDChild Value of wParam. Specifies the handle of the child window.

Returns
An application should return zero if it processes this message.

See Also
WM_MDIMAXIMIZE

WM_MDISETMENU (3.0)

WM_MDISETMENU
wParam = (WPARAM) (BOOL) fRefresh; /* refresh flag */
lParam = MAKELPARAM(hmenuFrame, hmenuWindow); /* new menus */
An application sends a WM_MDISETMENU message to replace the menu of a multiple document
interface (MDI) frame window, the Window pop-up menu, or both.

Parameter Description
fRefresh Value of wParam. Specifies whether to refresh the current menus or specify new

menus. It is TRUE if the menus should just be refreshed. It is FALSE if, instead, the
hmenuFrame and hmenuWindow parameters should be used to specify new menus for
the window.

hmenuFrame Value of the low-order word of lParam. Identifies the new frame-window menu. If
this parameter is zero, the frame-window menu is not changed.

hmenuWindow Value of the high-order word of lParam. Identifies the new Window pop-up menu. If
this parameter is zero, the Window pop-up menu is not changed.

Returns
The return value is the handle of the frame-window menu replaced by this message.

Comments
After sending this message, an application must call the DrawMenuBar function to update the menu bar.

If this message replaces the Window pop-up menu, MDI child-window menu items are removed from the
previous Window menu and added to the new Window pop-up menu.

If an MDI child window is maximized and this message replaces the MDI frame-window menu, the
System menu (sometimes referred to as the Control menu) and restore controls are removed from the
previous frame-window menu and added to the new menu.

See Also
DrawMenuBar

Windows 3.1 changes

The wParam parameter specifies whether or not to refresh the same menus. It is nonzero if the menus
should just be refreshed. It is zero if, instead, the lParam parameter should be used to specify new menus
for the window.

The previous release of the documentation stated that wParam was not used.

WM_MDITILE (3.0)

WM_MDITILE
fTile = wParam;/* tiling flag */
The WM_MDITILE message is sent to a multiple document interface (MDI) client window to arrange all
its child windows in a tiled format.

Parameter Description
fTile Value of wParam. Specifies a tiling flag. This parameter can be one of the following

flags:

Value Meaning
MDITILE_HORIZONTAL Tiles MDI child windows so that they are wide

rather than tall.
MDITILE_SKIPDISABLED Prevents disabled MDI child windows from

being tiled.
MDITILE_VERTICAL Tiles MDI child windows so that they are tall

rather than wide.

Returns
An application should return zero if it processes this message.

See Also
WM_MDICASCADE, WM_MDIICONARRANGE

Windows 3.1 changes

The following tiling flags have been added:

Value Meaning
MDITILE_HORIZONTAL Tiles MDI child windows horizontally (one window appears beside

another).
MDITILE_SKIPDISABLED Prevents disabled MDI child windows from being tiled.
MDITILE_VERTICAL Tiles MDI child windows vertically (one window appears above

another).

WM_MEASUREITEM (3.0)

WM_MEASUREITEM
nIDCtl = (int) wParam; /* control identifier */
lpmisCtl = (MEASUREITEMSTRUCT FAR*) lParam; /* address of structure */
The WM_MEASUREITEM message is sent to the owner of an owner-drawn button, combo box, list box,
or menu item when the control is created. When the owner receives the message, the owner fills in the
MEASUREITEMSTRUCT structure pointed to by the lpmisCtl message parameter and returns; this
informs Windows of the dimensions of the control. If a list box or combo box is created with the
LBS_OWNERDRAWVARIABLE or CBS_OWNERDRAWVARIABLE style, this message is sent to the
owner for each item in the control; otherwise, this message is sent once.

Parameter Description
nIDCtl Value of wParam. Specifies the identifier of the control that sent the

WM_MEASUREITEM message. This parameter is 0 if the message was sent by a
menu. This parameter is -1 when the system is requesting the dimensions of an edit
control in an owner-drawn combo box.

lpmisCtl Value of lParam. Points to a MEASUREITEMSTRUCT structure that contains the
dimensions of the owner-drawn control.

Returns
An application should return TRUE if it processes this message.

Comments
Windows sends the WM_MEASUREITEM message to the owner of a combo box or list box created with
the OWNERDRAWFIXED style before sending WM_INITDIALOG. As a result, when the owner
receives this message, Windows has not yet determined the height and width of the font used in the
control; function calls and calculations requiring these values should occur in the main function of the
application or library.

See Also
WM_COMPAREITEM, WM_DELETEITEM, WM_DRAWITEM, WM_INITDIALOG,
MEASUREITEMSTRUCT

Windows 3.1 changes

The meaning of the wParam parameter has changed. If a control sends the WM_MEASUREITEM
message, the wParam parameter specifies the identifier of the control. If a menu sends the message,
wParam is zero.

WM_MENUCHAR (2.x)

WM_MENUCHAR
chUser = wParam;/* ASCII character */
fMenu = LOWORD(lParam); /* menu flag*/
hmenu = (HMENU) HIWORD(lParam);/* handle of the menu */
The WM_MENUCHAR message is sent when the user presses the key corresponding to a menu
mnemonic character that doesn't match any of the predefined mnemonics in the current menu. It is sent to
the window that owns the menu.

Parameter Description
chUser Value of wParam. Specifies the ASCII character that corresponds to the key the user

pressed.
fMenu Value of the low-order word of lParam. Specifies the type of the selected menu. This

parameter can be one of the following values:

Value Meaning
MF_POPUP The menu is a pop-up menu.
MF_SYSMENU The menu is a System menu (sometimes referred to as a Control

menu).
hmenu Value of the high-order word of lParam. Identifies the selected menu.

Returns
The return value is one of the following command code values in the high-order word:

Value Description
0 Informs Windows that it should discard the character corresponding to the key the user

pressed, and creates a short beep on the system speaker.
1 Informs Windows that it should close the current menu.
2 Informs Windows that the low-order word of the return value contains the item number for a

specific item. This item is selected by Windows.

The low-order word is ignored if the high-order word contains 0 or 1. An application should process this
message when an accelerator key has been used to select a bitmap placed in a menu.

Comments
The WM_MENUCHAR message is generated when the user presses ALT and any key, even if the key does
not correspond to a mnemonic character. In this case, the hmenu parameter contains the window handle of
the menu.

WM_MENUSELECT (2.x)

WM_MENUSELECT
wIDItem = wParam;/* item identifier or menu handle */
fwMenu = LOWORD(lParam); /* menu flags */
hmenu = (HMENU) HIWORD(lParam); /* handle of the menu */
The WM_MENUSELECT message is sent to the window associated with a menu when the user selects a
menu item.

Parameter Description
wIDItem Value of wParam. Specifies the menu-item identifier if the selected item is a menu item.

If the selected item contains a pop-up menu, wIDItem contains the handle of the pop-up
menu.

fwMenu Low word of lParam. Specifies one or more menu flags. This parameter can be a
combination of the following values:

Flag Description
MF_BITMAP Item is a bitmap.
MF_CHECKED Item is checked.
MF_DISABLED Item is disabled.
MF_GRAYED Item is grayed.
MF_MOUSESELECT Item was selected with a mouse.
MF_OWNERDRAW Item is an owner-drawn item.
MF_POPUP Item contains a pop-up menu.
MF_SEPARATOR Item is a menu-item separator.
MF_SYSMENU Item is contained in the System menu (sometimes referred to

as the Control menu). The hmenu parameter identifies the
System menu associated with the message.

hmenu High word of lParam. If the fwMenu parameter contains the MF_SYSMENU flag, this
parameter specifies the menu handle of the System menu.

Returns
An application should return zero if it processes this message.

Comments
If the fwMenu parameter contains -1 and the hmenu parameter contains 0, Windows has closed the menu.
This occurs both when the menu is closed because the user pressed ESC or clicked outside the menu and
when the user has selected a menu item.

WM_MOUSEACTIVATE (2.x)

WM_MOUSEACTIVATE
hwndTopLevel = (HWND) wParam; /* handle of top-level parent */
wHitTestCode = LOWORD(lParam); /* hit-test code */
wMsg = HIWORD(lParam);/* mouse-message identifier */
The WM_MOUSEACTIVATE message is sent when the cursor is in an inactive window and the user
presses a mouse button. The parent window receives this message only if the child window passes it to the
DefWindowProc function.

Parameter Description
hwndTopLevel Value of wParam. Identifies the top-level parent window of the window being

activated.
wHitTestCode Value of the low-order word of lParam. Specifies the hit-test area code. A hit test is a

test that determines the location of the cursor.
wMsg Value of the high-order word of lParam. Specifies the identifier of the mouse

message.

Returns
The return value specifies whether the window should be activated and whether the mouse event should be
discarded. It must be one of the following values:

Value Meaning
MA_ACTIVATE Activate the window.
MA_NOACTIVATE Do not activate the window.
MA_ACTIVATEANDEAT Activate the window and discard the mouse event.
MA_NOACTIVATEANDEAT Do not activate the window; discard the mouse event.

Comments
If the child window passes the message to the DefWindowProc function, DefWindowProc passes this
message to a window's parent window before any processing occurs. If the parent window returns a
nonzero value, processing is halted.

See Also
DefWindowProc

Windows 3.1 changes

The following returns were added:

Value Meaning
MA_ACTIVATE Activate the window.
MA_NOACTIVATE Do not activate the window.
MA_ACTIVATEANDEAT Activate the window and discard the mouse event.
MA_NOACTIVATEANDEAT Do not activate the window and discard the mouse event.

WM_MOUSEMOVE (2.x)

WM_MOUSEMOVE
fwKeys = wParam;/* key flags */
xPos = LOWORD(lParam); /* horizontal position of cursor */
yPos = HIWORD(lParam); /* vertical position of cursor */
The WM_MOUSEMOVE message is sent to a window when the mouse cursor moves. If the mouse is not
captured, the message goes to the window beneath the cursor. Otherwise, the message goes to the window
that has captured the mouse.

Parameter Description
fwKeys Value of wParam. Indicates whether various virtual keys are down. This parameter can

be any combination of the following values:

Value Description
MK_CONTROL Set if CTRL key is down.
MK_LBUTTON Set if left button is down.
MK_MBUTTON Set if middle button is down.
MK_RBUTTON Set if right button is down.
MK_SHIFT Set if SHIFT key is down.

xPos Value of the low-order word of lParam. Specifies the x-coordinate of the cursor, as a
screen coordinate.

yPos Value of the high-order word of lParam. Specifies the y-coordinate of the cursor, as a
screen coordinate.

Returns
An application should return zero if it processes this message.

Comments
The MAKEPOINT macro can be used to convert the lParam parameter to a POINT structure.

See Also
SetCapture, WM_NCHITTEST, MAKEPOINT, POINT

WM_MOVE (2.x)

WM_MOVE
xPos = (int) LOWORD(lParam); /* horizontal position */
yPos = (int) HIWORD(lParam); /* vertical position */
The WM_MOVE message is sent after a window has been moved.

Parameter Description
xPos Value of the low-order word of lParam. Specifies the new x-coordinate of the upper-left

corner of the client area of the window.
yPos Value of the high-order word of lParam. Specifies the new y-coordinate of the upper-

left corner of the client area of the window.

Returns
An application should return zero if it processes this message.

Comments
The xPos and yPos parameters are given in screen coordinates for overlapped and pop-up windows and in
parent-client coordinates for child windows.

An application can use the MAKEPOINT macro to convert the lParam parameter to a POINT data
structure.

See Also
MAKEPOINT, POINT

WM_NCACTIVATE (2.x)

WM_NCACTIVATE
fActive = (BOOL) wParam; /* the active/inactive flag */
The WM_NCACTIVATE message is sent to a window when its nonclient area needs to be changed to
indicate an active or inactive state.

Parameter Description
fActive Value of wParam. Specifies when a title bar or icon needs to be changed to indicate an

active or inactive state. The fActive parameter is TRUE if an active title bar or icon is to
be drawn. It is FALSE for an inactive title bar or icon.

Returns
When the fActive parameter is FALSE, an application should return TRUE to indicate that Windows
should proceed with the default processing or FALSE to prevent the caption bar or icon from being
deactivated. When fActive is TRUE, the return value is ignored.

Comments
The DefWindowProc function draws the title bar and title bar text in their active colors when the fActive
parameter is TRUE and in their inactive colors when fActive is FALSE.

See Also
DefWindowProc

WM_NCCALCSIZE (2.x)

WM_NCCALCSIZE
fCalcValidRects = (BOOL) wParam; /* valid-area flag */
lpncsp = (NCCALCSIZE_PARAMS FAR*) lParam; /* address of data */
The WM_NCCALCSIZE message is sent when the size and position of a window's client area needs to be
calculated. By processing this message, an application can control the contents of the window's client area
when the size or position of the window changes.

Parameter Description
fCalcValidRects Value of wParam. Specifies whether the application should specify which part of

the client area contains valid information. Windows will copy the valid information
to the specified area within the new client area. If this parameter is TRUE, the
application should specify which part of the client area is valid.

lpncsp Value of lParam. Points to an NCCALCSIZE_PARAMS data structure that
contains information an application can use to calculate the new size and position of
the client rectangle.
Regardless of the value of fCalcValidRects, the first rectangle in the array specified
by the rgrc member contains the coordinates of the window. For a child window,
the coordinates are relative to the parent window's client area. For top-level
windows, the coordinates are screen coordinates. An application should process
WM_NCCALCSIZE by modifying the rgrc[0] rectangle to reflect the size and
position of the client area.
The rgrc[1] and rgrc[2] rectangles are valid only if fCalcValidRects is TRUE. In
this case, the rgrc[1] rectangle contains the coordinates of the window before it was
moved or resized. The rgrc[2] rectangle contains the coordinates of the window's
client area before the window was moved. All coordinates are relative to the parent
window or screen.

Returns
An application should return zero if fCalcValidRects is FALSE.

An application can return zero or a valid combination of the following values if fCalcValidRects is TRUE:

Value Meaning
WVR_ALIGNTOP, WVR_ALIGNLEFT, WVR_ALIGNBOTTOM, WVR_ALIGNRIGHT

These values, used in combination, specify that the client area of the window is to be preserved and
aligned appropriately relative to the new location of the client window. For example, to align the
client area to the lower-left, return WVR_ALIGNLEFT | WVR_ALIGNTOP.

WVR_HREDRAW, WVR_VREDRAW
These values, used in combination with any other values, cause the window to be completely
redrawn if the client rectangle changed size horizontally or vertically. These values are similar to the
CS_HREDRAW and CS_VREDRAW class styles.

WVR_REDRAW
This value causes the entire window to be redrawn. It is a combination of WVR_HREDRAW and
WVR_VREDRAW.

WVR_VALIDRECTS
This value indicates that, upon return from WM_NCCALCSIZE, the rgrc[1] and rgrc[2] rectangles
contain valid source and destination area rectangles, respectively. Windows combines these
rectangles to calculate the area of the window that can be preserved. Windows copies any part of the
window image that is within the source rectangle and clips the image to the destination rectangle.
Both rectangles are in parent-relative or screen-relative coordinates.

This return value allows an application to implement more elaborate client-area preservation
strategies, such as centering or preserving a subset of the client area.

If fCalcValidRects is TRUE and an application returns zero, the old client area is preserved and is aligned
with the upper-left corner of the new client area.

Comments
Redrawing of the window may occur, depending on whether CS_HREDRAW or CS_VREDRAW was
specified. This is the default, backward-compatible DefWindowProc processing of this message (in
addition to the usual client rectangle calculation described in the preceding table).

See Also

DefWindowProc, MoveWindow, SetWindowPos, NCCALCSIZE_PARAMS, RECT

WM_NCCREATE (2.x)

WM_NCCREATE
lpcs = (CREATESTRUCT FAR*) lParam; /* address of initialization data *
/
The WM_NCCREATE message is sent prior to the WM_CREATE message when a window is first
created.

Parameter Description
lpcs Value of lParam. Points to the CREATESTRUCT data structure for the window.

Returns
The return value is nonzero if the nonclient area is created. It is zero if an error occurs; in this case, the
CreateWindow or CreateWindowEx function will return NULL.

Comments
Scroll bars are initialized (the scroll bar position and range are set), and the window text is set. Memory
used internally to create and maintain the window is allocated.

See Also
CreateWindow, WM_CREATE, CREATESTRUCT

WM_NCDESTROY (2.x)

WM_NCDESTROY
The WM_NCDESTROY message informs a window that its nonclient area is being destroyed. The
DestroyWindow function sends the WM_NCDESTROY message to the window following the
WM_DESTROY message. WM_NCDESTROY is used to free the allocated memory object associated
with the window.
Parameters

This message has no parameters.

Returns
An application should return zero if it processes this message.

Comments
This message frees any memory internally allocated for the window.

See Also
DestroyWindow, WM_NCCREATE

WM_NCHITTEST (2.x)

WM_NCHITTEST
xPos = (int) LOWORD(lParam); /* horizontal position of cursor */
yPos = (int) HIWORD(lParam); /* vertical position of cursor */
The WM_NCHITTEST message is sent to the window that contains the cursor or to the window that used
the SetCapture function to capture the mouse input. It is sent every time the mouse is moved.

Parameter Description
xPos Value of the low-order word of lParam. Specifies the x-coordinate of the cursor, in

screen coordinates.
yPos Value of the high-order word of lParam. Specifies the y-coordinate of the cursor, in

screen coordinates.

Returns
The return value of the DefWindowProc function is one of the following values indicating the position of
the cursor:

Value Meaning
HTBORDER In the border of a window that does not have a sizing border
HTBOTTOM In the lower horizontal border of a window
HTBOTTOMLEFT In the lower-left corner of a window border
HTBOTTOMRIGHT In the lower-right corner of a window border
HTCAPTION In a title bar area
HTCLIENT In a client area
HTERROR On the screen background or on a dividing line between windows (same as

HTNOWHERE except that the DefWindowProc function produces a system
beep to indicate an error)

HTGROWBOX In a size box (same as HTSIZE)
HTHSCROLL In the horizontal scroll bar
HTLEFT In the left border of a window
HTMAXBUTTON In a Maximize button
HTMENU In a menu area
HTMINBUTTON In a Minimize button
HTNOWHERE On the screen background or on a dividing line between windows
HTREDUCE In a Minimize button
HTRIGHT In the right border of a window
HTSIZE In a size box (same as HTGROWBOX)
HTSYSMENU In a System menu (sometimes referred to as a Control menu) or in a close

button in a child window
HTTOP In the upper horizontal border of a window
HTTOPLEFT In the upper-left corner of a window border
HTTOPRIGHT In the upper-right corner of a window border
HTTRANSPARENT In a window currently covered by another window
HTVSCROLL In the vertical scroll bar
HTZOOM In a Maximize button

Comments
The MAKEPOINT macro can be used to convert the lParam parameter to a POINT structure.

Example
This example shows a portion of a subclass procedure that detects mouse messages in a static window:

LONG lRetVal;
case WM_NCHITTEST:

lRetVal = DefWindowProc(hwnd, msg, wParam, lParam);
if (lRetVal == HTTRANSPARENT) {
.

. /* Process mouse events in static window. */

.
}
break;

default:
CallWindowProc(lpStaticProc, hwnd, msg, wParam, lParam);

See Also
DefWindowProc, GetCapture, MAKEPOINT, POINT

Windows 3.1 changes

The following hit-test code was previously undocumented:

Value Meaning
HTBORDER In the border of a window that does not have a sizing border.

WM_NCLBUTTONDBLCLK (2.x)

WM_NCLBUTTONDBLCLK
nHittest = wParam; /* hit-test code */
xCursor = LOWORD(lParam); /* cursor horizontal position */
yCursor = HIWORD(lParam); /* cursor vertical position */
The WM_NCLBUTTONDBLCLK message is sent when the user double-clicks the left mouse button
while the cursor is within a nonclient area of the window.

Parameter Description
nHittest Value of wParam. Specifies the code returned by WM_NCHITTEST. For more

information, see the description of the WM_NCHITTEST message.
xCursor Value of the low-order word of lParam. Specifies the horizontal position of the cursor,

in screen coordinates.
yCursor Value of the high-order word of lParam. Specifies the vertical position of the cursor, in

screen coordinates.

Returns
An application should return zero if it processes this message.

Comments
If appropriate, WM_SYSCOMMAND messages are sent.

See Also
WM_NCHITTEST, WM_SYSCOMMAND, POINT

WM_NCLBUTTONDOWN (2.x)

WM_NCLBUTTONDOWN
wHitTestCode = wParam; /* hit-test code */
xPos = LOWORD(lParam); /* horizontal cursor position */
yPos = HIWORD(lParam); /* vertical cursor position */
The WM_NCLBUTTONDOWN message is sent to a window when the user presses the left mouse button
while the cursor is within a nonclient area of the window.

Parameter Description
wHitTestCode Value of wParam. Specifies the code returned by WM_NCHITTEST. For more

information, see the description of the WM_NCHITTEST message.
xPos Value of the low-order word of lParam. Specifies the x-coordinate of the cursor, in

screen coordinates.
yPos Value of the high-order word of lParam. Specifies the y-coordinate of the cursor, in

screen coordinates.

Returns
An application should return zero if it processes this message.

Comments
If appropriate, WM_SYSCOMMAND messages are sent.

See Also
WM_NCHITTEST, WM_NCLBUTTONDBLCLK, WM_NCLBUTTONUP, WM_SYSCOMMAND,
POINT

WM_NCLBUTTONUP (2.x)

WM_NCLBUTTONUP
wHitTestCode = wParam; /* hit-test code */
xPos = LOWORD(lParam); /* horizontal cursor position */
yPos = HIWORD(lParam); /* vertical cursor position */
The WM_NCLBUTTONUP message is sent to a window when the user releases the left mouse button
while the cursor is within a nonclient area of the window.

Parameter Description
wHitTestCode Value of wParam. Specifies the code returned by WM_NCHITTEST. For more

information, see the description of the WM_NCHITTEST message.
xPos Value of the low-order word of lParam. Specifies the x-coordinate of the cursor, in

screen coordinates.
yPos Value of the high-order word of lParam. Specifies the y-coordinate of the cursor, in

screen coordinates.

Returns
An application should return zero if it processes this message.

Comments
If appropriate, WM_SYSCOMMAND messages are sent.

See Also
WM_NCHITTEST, WM_NCLBUTTONDOWN, WM_NCLBUTTONUP, WM_SYSCOMMAND

WM_NCMBUTTONDBLCLK (2.x)

WM_NCMBUTTONDBLCLK
wHitTestCode = wParam; /* hit-test code */
xPos = LOWORD(lParam); /* horizontal cursor position */
yPos = HIWORD(lParam); /* vertical cursor position */
The WM_NCRBUTTONDOWN message is sent to a window when the user double-clicks the middle
mouse button while the cursor is within a nonclient area of the window.

Parameter Description
wHitTestCode Value of wParam. Specifies the code returned by WM_NCHITTEST. For more

information, see the description of the WM_NCHITTEST message.
xPos Value of the low-order word of lParam. Specifies the x-coordinate of the cursor, as a

screen coordinate.
yPos Value of the high-order word of lParam. Specifies the y-coordinate of the cursor, as a

screen coordinate.

Returns
An application should return zero if it processes this message.

See Also
WM_NCHITTEST, WM_NCMBUTTONDOWN, WM_NCMBUTTONUP, POINT

WM_NCMBUTTONDOWN (2.x)

WM_NCMBUTTONDOWN
wHitTestCode = wParam; /* hit-test code */
xPos = LOWORD(lParam); /* horizontal cursor position */
yPos = HIWORD(lParam); /* vertical cursor position */
The WM_NCMBUTTONDOWN message is sent to a window when the user presses the middle mouse
button while the cursor is within a nonclient area of the window.

Parameter Description
wHitTestCode Value of wParam. Specifies the code returned by WM_NCHITTEST. For more

information, see the description of the WM_NCHITTEST message.
xPos Value of the low-order word of lParam. Specifies the x-coordinate of the cursor, as a

screen coordinate.
yPos Value of the high-order word of lParam. Specifies the y-coordinate of the cursor, as a

screen coordinate.

Returns
An application should return zero if it processes this message.

See Also
WM_NCHITTEST, WM_NCMBUTTONDBLCLK, WM_NCMBUTTONUP

WM_NCMBUTTONUP (2.x)

WM_NCMBUTTONUP
wHitTestCode = wParam; /* hit-test code */
xPos = LOWORD(lParam); /* horizontal cursor position */
yPos = HIWORD(lParam); /* vertical cursor position */
The WM_NCMBUTTONUP message is sent to a window when the user releases the left mouse button
while the cursor is within a nonclient area of the window.

Parameter Description
wHitTestCode Value of wParam. Specifies the code returned by WM_NCHITTEST. For more

information, see the description of the WM_NCHITTEST message.
xPos Value of the low-order word of lParam. Specifies the x-coordinate of the cursor, as a

screen coordinate.
yPos Value of the high-order word of lParam. Specifies the y-coordinate of the cursor, as a

screen coordinate.

Returns
An application should return zero if it processes this message.

See Also
WM_NCHITTEST, WM_NCMBUTTONDBLCLK, WM_NCMBUTTONDOWN

WM_NCMOUSEMOVE (2.x)

WM_NCMOUSEMOVE
wHitTestCode = wParam; /* hit-test code */
xPos = LOWORD(lParam); /* horizontal cursor position */
yPos = HIWORD(lParam); /* vertical cursor position */
The WM_NCMOUSEMOVE message is sent to a window when the cursor is moved within a nonclient
area of the window.

Parameter Description
wHitTestCode Value of wParam. Specifies the code returned by WM_NCHITTEST. For more

information, see the description of the WM_NCHITTEST message.
xPos Value of the low-order word of lParam. Specifies the x-coordinate of the cursor, as a

screen coordinate.
yPos Value of the high-order word of lParam. Specifies the y-coordinate of the cursor, as a

screen coordinate.

Returns
An application should return zero if it processes this message.

Comments
If appropriate, WM_SYSCOMMAND messages are sent.

See Also
WM_NCHITTEST, WM_SYSCOMMAND, POINT

WM_NCPAINT (2.x)

WM_NCPAINT
The WM_NCPAINT message is sent to a window when its frame needs painting.
Parameters

This message has no parameters.

Returns
An application should return zero if it processes this message.

Comments
The DefWindowProc function paints the window frame.

An application can intercept this message and paint its own custom window frame. The clipping region for
a window is always rectangular, even if the shape of the frame is altered.

See Also
DefWindowProc

WM_NCRBUTTONDBLCLK (2.x)

WM_NCRBUTTONDBLCLK
wHitTestCode = wParam; /* hit-test code */
xPos = LOWORD(lParam); /* horizontal cursor position */
yPos = HIWORD(lParam); /* vertical cursor position */
The WM_NCRBUTTONDBLCLK message is sent to a window when the user double-clicks the right
mouse button while the cursor is within a nonclient area of the window.

Parameter Description
wHitTestCode Value of wParam. Specifies the code returned by WM_NCHITTEST. For more

information, see the description of the WM_NCHITTEST message.
xPos Value of the low-order word of lParam. Specifies the x-coordinate of the cursor, as a

screen coordinate.
yPos Value of the high-order word of lParam. Specifies the y-coordinate of the cursor, as a

screen coordinate.

Returns
An application should return zero if it processes this message.

See Also
WM_NCHITTEST, WM_NCRBUTTONDOWN, WM_NCRBUTTONUP, POINT

WM_NCRBUTTONDOWN (2.x)

WM_NCRBUTTONDOWN
wHitTestCode = wParam; /* hit-test code */
xPos = LOWORD(lParam); /* horizontal cursor position */
yPos = HIWORD(lParam); /* vertical cursor position */
The WM_NCRBUTTONDOWN message is sent to a window when the user presses the right mouse
button while the cursor is within a nonclient area of the window.

Parameter Description
wHitTestCode Value of wParam. Specifies the code returned by WM_NCHITTEST. For more

information, see the description of the WM_NCHITTEST message.
xPos Value of the low-order word of lParam. Specifies the x-coordinate of the cursor, as a

screen coordinate.
yPos Value of the high-order word of lParam. Specifies the y-coordinate of the cursor, as a

screen coordinate.

Returns
An application should return zero if it processes this message.

See Also
WM_NCHITTEST, WM_NCRBUTTONDBLCLK, WM_NCRBUTTONUP, POINT

WM_NCRBUTTONUP (2.x)

WM_NCRBUTTONUP
wHitTestCode = wParam; /* hit-test code */
xPos = LOWORD(lParam); /* horizontal cursor position */
yPos = HIWORD(lParam); /* vertical cursor position */
The WM_NCRBUTTONUP message is sent to a window when the user releases the right mouse button
while the cursor is within a nonclient area of the window.

Parameter Description
wHitTestCode Value of wParam. Specifies the code returned by WM_NCHITTEST. For more

information, see the description of the WM_NCHITTEST message.
xPos Value of the low-order word of lParam. Specifies the x-coordinate of the cursor, as a

screen coordinate.
yPos Value of the high-order word of lParam. Specifies the y-coordinate of the cursor, as a

screen coordinate.

Returns
An application should return zero if it processes this message.

See Also
WM_NCHITTEST, WM_NCRBUTTONDBLCLK, WM_NCRBUTTONDOWN, POINT

WM_NEXTDLGCTL (2.x)

WM_NEXTDLGCTL
wCtlFocus = wParam;/* identifies control for focus */
fHandle = (BOOL) LOWORD(lParam); /* wParam handle flag */
An application sends the WM_NEXTDLGCTL message to a dialog box procedure to set the focus to a
different control in a dialog box.

Parameter Description
wCtlFocus Value of wParam. If the fHandle parameter is nonzero, the wCtlFocus parameter is the

handle of the control that receives the focus. If fHandle is zero, wCtlFocus is a flag that
indicates whether the next or previous control with the WS_TABSTOP style receives
the focus. If wCtlFocus is zero, the next control receives the focus; otherwise, the
previous control with the WS_TABSTOP style receives the focus.

fHandle Low-order word of lParam. Indicates how Windows uses the wParam parameter. If
fHandle is nonzero, wParam is a handle associated with the control that receives the
focus; otherwise, wParam is a flag that indicates whether the next or previous control
with the WS_TABSTOP style receives the focus.

Returns
An application should return zero if it processes this message.

Comments
The effect of this message differs from that of the SetFocus function because WM_NEXTDLGCTL
modifies the border around the default button.

Do not use the SendMessage function to send a WM_NEXTDLGCTL message if your application will
concurrently process other messages that set the control focus. In this case, use the PostMessage function
instead.

See Also
PostMessage, SendMessage, SetFocus

WM_PAINT (2.x)

WM_PAINT
The WM_PAINT message is sent when Windows or an application makes a request to repaint a portion of
an application's window. The message is sent when the UpdateWindow or RedrawWindow function is
called or by the DispatchMessage function when the application obtains a WM_PAINT message by using
the GetMessage or PeekMessage function.
Parameters

This message has no parameters.

Returns
An application should return zero if it processes this message.

Comments
The DispatchMessage function sends this message when there are no other messages in the application's
message queue.

A window may receive internal paint messages as a result of calling the RedrawWindow function with the
RDW_INTERNALPAINT flag set. In this case, the window may not have an update region. An
application should call the GetUpdateRect function to determine whether the window has an update
region. If GetUpdateRect returns zero, the application should not call the BeginPaint and EndPaint
functions.

It is an application's responsibility to check for any necessary internal repainting or updating by looking at
its internal data structures for each WM_PAINT message, because a WM_PAINT message may have been
caused by both an invalid area and a call to the RedrawWindow function with the
RDW_INTERNALPAINT flag set.

An internal WM_PAINT message is sent only once by Windows. After an internal WM_PAINT message
is returned from the GetMessage or PeekMessage function or is sent to a window by the UpdateWindow
function, no further WM_PAINT messages will be sent or posted until the window is invalidated or until
the RedrawWindow function is called again with the RDW_INTERNALPAINT flag set.

See Also
BeginPaint, DispatchMessage, EndPaint, GetMessage, PeekMessage, RedrawWindow, UpdateWindow

Windows 3.1 changes

A window that may receive internal paint messages as a result of calling the RedrawWindow function with
the RDW_INTERNALPAINT flag set. In this case, the window may not have an update region. An
application should call the GetUpdateRect function to determine whether the window has an update
region. If GetUpdateRect returns zero, the application should not call the BeginPaint and EndPaint
functions.

It is an application's responsibility to check for any necessary internal repainting or updating by looking at
its internal data structures for each WM_PAINT message, since a WM_PAINT message may have been
caused by both an invalid area and a call to the RedrawWindow function with the
RDW_INTERNALPAINT flag set.

Internal WM_PAINT messages are only sent once by Windows. After an internal WM_PAINT message is
returned from the GetMessage or PeekMessage function, or sent to a window by the UpdateWindow
function, no further WM_PAINT messages will be sent or posted until the window is invalidated or until
the RedrawWindow function is called again with the RDW_INTERNALPAINT flag set.

WM_PAINTCLIPBOARD (2.x)

WM_PAINTCLIPBOARD
hwndViewer = (HWND) wParam; /* handle of viewer*/
pps = (PAINTSTRUCT FAR*) LOWORD(lParam); /* points to paint data */
The WM_PAINTCLIPBOARD message is sent by a clipboard viewer to the clipboard owner when the
owner has placed data on the clipboard in the CF_OWNERDISPLAY format and the clipboard viewer's
client area needs repainting.

Parameter Description
hwndViewer Value of wParam. Specifies a handle to the clipboard viewer window.
pps Value of the low-order word of lParam. Points to a PAINTSTRUCT data structure that

defines which part of the client area to paint.

Returns
An application should return zero if it processes this message.

Comments
To determine whether the entire client area or just a portion of it needs repainting, the clipboard owner
must compare the dimensions of the drawing area given in the rcPaint member of the PAINTSTRUCT
structure to the dimensions given in the most recent WM_SIZECLIPBOARD message.

An application must use the GlobalLock function to lock the memory that contains the PAINTSTRUCT
data structure. The application should unlock that memory by using the GlobalUnlock function before it
yields or returns control.

See Also
GlobalLock, GlobalUnlock, WM_SIZECLIPBOARD, PAINTSTRUCT

WM_PALETTECHANGED (3.0)

WM_PALETTECHANGED
hwndPalChg = (HWND) wParam; /* handle of window that changed palette *
/
The WM_PALETTECHANGED message is sent to all top-level and overlapped windows after the
window with the input focus has realized its logical palette, thereby changing the system palette. This
message allows a window without the input focus that uses a color palette to realize its logical palette and
update its client area.

Parameter Description
hwndPalChg Value of wParam. Specifies the handle of the window that caused the system palette to

change.

Returns
An application should return zero if it processes this message.

Comments
This message is sent to all top-level and overlapped windows, including the one that changed the system
palette and caused this message to be sent. If any child windows use a color palette, this message must be
passed on to them.

To avoid an infinite loop, a window that receives this message should not realize its palette unless it
determines that wParam does not contain its own window handle.

Example
This example shows how an application selects and realizes its logical palette:

HDC hdc;
HPALETTE hpalApp, hpalT;
UINT i;
/*
* If this application changed the palette, ignore the message.
*/
case WM_PALETTECHANGED:

if ((HWND) wParam == hwnd)
return 0;

/* Otherwise, fall through to WM_QUERYNEWPALETTE. */
case WM_QUERYNEWPALETTE:

/*
* If realizing the palette causes the palette to change,
* redraw completely.
*/

hdc = GetDC(hwnd);
hpalT = SelectPalette (hdc, hpalApp, FALSE);
i = RealizePalette(hdc); /* i == entries that changed */
SelectPalette (hdc, hpalT, FALSE);
ReleaseDC(hwnd, hdc);

/* If any palette entries changed, repaint the window. */
if (i > 0)
InvalidateRect(hwnd, NULL, TRUE);
return i;

See Also
WM_PALETTEISCHANGING, WM_QUERYNEWPALETTE, RealizePalette

WM_PALETTEISCHANGING (3.1)

WM_PALETTEISCHANGING
hwndRealize = (HWND) wParam; /* handle of window to realize palette */
The WM_PALETTEISCHANGING message informs applications that an application is going to realize
its logical palette.

Parameter Description
hwndRealize Value of wParam. Specifies the handle of the window that is going to realize its logical

palette.

Returns
An application should return zero if it processes this message.

See Also
WM_PALETTECHANGED, WM_QUERYNEWPALETTE

WM_PARENTNOTIFY (3.0)

WM_PARENTNOTIFY
fwEvent = wParam; /* event flags */
wValue1 = LOWORD(lParam); /* child handle/cursor x-coordinate */
wValue2 = HIWORD(lParam); /* child ID/cursor y-coordinate*/
The WM_PARENTNOTIFY message is sent to the parent of a child window when the child window is
created or destroyed or when the user clicks a mouse button while the cursor is over the child window.
When the child window is being created, the system sends WM_PARENTNOTIFY just before the
CreateWindow or CreateWindowEx function that creates the window returns. When the child window is
being destroyed, the system sends the message before any processing to destroy the window takes place.

Parameter Description
fwEvent Value of wParam. Specifies the event for which the parent is being notified. It can be

any of the following values:

Value Description
WM_CREATE The child window is being created.
WM_DESTROY The child window is being destroyed.
WM_LBUTTONDOWN The user has placed the mouse cursor over the child

window and clicked the left mouse button.
WM_MBUTTONDOWN The user has placed the mouse cursor over the child

window and clicked the middle mouse button.
WM_RBUTTONDOWN The user has placed the mouse cursor over the child

window and clicked the right mouse button.
wValue1 Value of the low-order word of lParam. If the fwEvent parameter is WM_CREATE or

WM_DESTROY, the wValue1 parameter specifies the handle of the child window.
Otherwise, wValue1 specifies the x-coordinate of the cursor.

wValue2 Value of the high-order word of lParam. If fwEvent is WM_CREATE or
WM_DESTROY, the wValue2 parameter specifies the identifier of the child window.
Otherwise, wValue2 specifies the y-coordinate of the cursor.

Returns
An application should return zero if it processes this message.

Comments
This message is also sent to all ancestor windows of the child window, including the top-level window.

All child windows except those that have the WS_EX_NOPARENTNOTIFY send this message to their
parent windows. By default, child windows in a dialog box have the WS_EX_NOPARENTNOTIFY style
unless the CreateWindowEx function was called to create the child window without this style.

See Also
CreateWindow, CreateWindowEx, WM_CREATE, WM_DESTROY, WM_LBUTTONDOWN,
WM_MBUTTONDOWN, WM_RBUTTONDOWN

WM_PASTE (2.x)

WM_PASTE
wParam = 0;/* not used, must be zero */
lParam = 0L; /* not used, must be zero */
An application sends the WM_PASTE message to an edit control or combo box to insert the data from the
clipboard into the edit control at the current cursor position. Data is inserted only if the clipboard contains
data in CF_TEXT format.
Parameters

This message has no parameters.

Returns
The return value is nonzero if this message is sent to an edit control or a combo box.

Example
This example pastes data from the clipboard to an edit control:

SendDlgItemMessage(hdlg, IDD_MYEDITCONTROL, WM_PASTE, 0, 0L);
See Also
WM_CLEAR, WM_COPY, WM_CUT

WM_POWER (3.1)

WM_POWER
fwPowerEvt = wParam; /* power-event notification message */
The WM_POWER message is sent when the system, typically a battery-powered personal computer, is
about to enter the suspended mode.

Parameter Description
fwPowerEvt Value of wParam. Specifies a power-event notification message. This parameter may be

one of the following values:

Value Meaning
PWR_SUSPENDREQUEST Indicates that the system is about to enter the

suspended mode.
PWR_SUSPENDRESUME Indicates that the system is resuming operation

after entering the suspended mode normally--that
is, the system sent a PWR_SUSPENDREQUEST
notification message to the application before the
system was suspended. An application should
perform any necessary recovery actions.

PWR_CRITICALRESUME Indicates that the system is resuming operation
after entering the suspended mode without first
sending a PWR_SUSPENDREQUEST notification
message to the application. An application should
perform any necessary recovery actions.

Returns
The value an application should return depends on the value of the wParam parameter, as follows:

Value of wParam Return Value
PWR_SUSPENDREQUEST PWR_FAIL to prevent the system from entering the suspended state;

otherwise PWR_OK
PWR_SUSPENDRESUME 0
PWR_CRITICALRESUME 0

Comments
This message is sent only to an application that is running on a system that conforms to the advanced
power management (APM) basic input-and-output system (BIOS) specification. The message is sent by
the power-management driver to each window returned by the EnumWindows function.

The suspended mode is the state in which the greatest amount of power savings occurs, but all operational
data and parameters are preserved. Random-access memory (RAM) contents are preserved, but many
devices are likely to be turned off.

See Also
EnumWindows

WM_QUERYDRAGICON (3.0)

WM_QUERYDRAGICON
The WM_QUERYDRAGICON message is sent to a minimized (iconic) window that does not have an
icon defined for its class. The system sends this message whenever it needs to display an icon for the
window.
Parameters

This message has no parameters.

Returns
An application should return a doubleword value that contains a cursor or icon handle in the low-order
word. The cursor or icon must be compatible with the display driver's resolution. If the application returns
NULL, the system displays the default cursor. The default return value is NULL.

Comments
If an application returns the handle of an icon or cursor, the system converts it to black-and-white.

The application can call the LoadCursor or LoadIcon function to load a cursor or icon from the resources
in its executable file and to obtain this handle.

Example
This example returns an icon handle in response to the WM_QUERYDRAGICON message. The icon is
loaded from the resources in the application's executable file.

static HICON hIcon;
switch(msg) {

case WM_CREATE:
/* Load icon resource. */
hIcon = LoadIcon(hInstance, (LPCSTR) "MyIcon");
.
. /* Initialize other variables. */
.
return 0L;
case WM_QUERYDRAGICON:
/* Icon is about to be dragged. Return handle to custom icon. */
return (hIcon);
.
. /* Process other messages. */
.

}
See Also
LoadCursor, LoadIcon

WM_QUERYENDSESSION (2.x)

WM_QUERYENDSESSION
The WM_QUERYENDSESSION message is sent when the user chooses to end the Windows session, or
when an application calls the ExitWindows function. If any application returns zero, the Windows session
is not ended. Windows stops sending WM_QUERYENDSESSION messages as soon as one application
returns zero and sends WM_ENDSESSION messages, with the wParam parameter set to FALSE, to any
applications that have already returned nonzero.
Parameters

This message has no parameters.

Returns
An application should return nonzero if it can conveniently terminate; otherwise, it should return zero.

Comments
The DefWindowProc function returns nonzero when it processes this message.

See Also
DefWindowProc, ExitWindows, WM_ENDSESSION

WM_QUERYNEWPALETTE (3.0)

WM_QUERYNEWPALETTE
The WM_QUERYNEWPALETTE message informs an application that it is about to receive the input
focus, giving the application an opportunity to realize its logical palette when it receives the focus.
Parameters

This message has no parameters.

Returns
An application should return nonzero if it realizes its logical palette; otherwise, it should return zero.

Example
This example shows how an application selects and realizes its logical palette:

HDC hdc;
HPALETTE hpalApp, hpalT;
UINT i;
/*
* If this application changed the palette, ignore the message.
*/
case WM_PALETTECHANGED:

if ((HWND) wParam == hwnd)
return 0;

/* Otherwise, fall through to WM_QUERYNEWPALETTE. */
case WM_QUERYNEWPALETTE:

/*
* If realizing the palette causes the palette to change,
* redraw completely.
*/

hdc = GetDC(hwnd);
hpalT = SelectPalette (hdc, hpalApp, FALSE);
i = RealizePalette(hdc); /* i == entries that changed */
SelectPalette (hdc, hpalT, FALSE);
ReleaseDC(hwnd, hdc);

/* If any palette entries changed, repaint the window. */
if (i > 0)
InvalidateRect(hwnd, NULL, TRUE);
return i;

See Also
WM_PALETTECHANGED, WM_PALETTEISCHANGING

WM_QUERYOPEN (2.x)

WM_QUERYOPEN
The WM_QUERYOPEN message is sent to a minimized window when the user requests that the window
be restored to its preminimized size and position.
Parameters

This message has no parameters.

Returns
An application that processes this message should return a nonzero value if the icon can be opened or zero
to prevent the icon from opened.

Comments
While processing this message, the application should not perform any action that would cause an
activation or focus change (for example, creating a dialog box).

The DefWindowProc function returns nonzero when it processes this message.

See Also
DefWindowProc

WM_QUEUESYNC (3.1)

WM_QUEUESYNC
The WM_QUEUESYNC message is sent by a computer-based training (CBT) application to separate
user-input messages from other messages sent through the journal playback hook
(WH_JOURNALPLAYBACK).
Parameters

This message has no parameters.

Returns
A CBT application should return zero if it processes this message.

Comments
Whenever a CBT application uses the journal playback hook, the first and last messages rendered are
WM_QUEUESYNC. This allows the CBT application to intercept and examine user-initiated messages
without doing so for events that it sends.

WM_QUIT (2.x)

WM_QUIT
wExit = wParam; /* exit code */
The WM_QUIT message indicates a request to terminate an application and is generated when the
application calls the PostQuitMessage function. It causes the GetMessage function to return zero.

Parameter Description
wExit Value of wParam. Specifies the exit code given in the PostQuitMessage function.

Returns
This message does not have a return value, because it causes the message loop to terminate before the
message is sent to the application's window procedure.

See Also
GetMessage, PostQuitMessage

WM_RBUTTONDBLCLK (2.x)

WM_RBUTTONDBLCLK
fwKeys = wParam;/* key flags */
xPos = LOWORD(lParam); /* horizontal position of cursor */
yPos = HIWORD(lParam); /* vertical position of cursor */
The WM_RBUTTONDBLCLK message is sent when the user double-clicks the right mouse button.

Parameter Description
fwKeys Value of wParam. Indicates whether various virtual keys are down. This parameter can

be any combination of the following values:

Value Description
MK_CONTROL Set if CTRL key is down.
MK_LBUTTON Set if left button is down.
MK_MBUTTON Set if middle button is down.
MK_RBUTTON Set if right button is down.
MK_SHIFT Set if SHIFT key is down.

xPos Value of the low-order word of lParam. Specifies the x-coordinate of the cursor. The
coordinate is relative to the upper-left corner of the window.

yPos Value of the high-order word of lParam. Specifies the y-coordinate of the cursor. The
coordinate is relative to the upper-left corner of the window.

Returns
An application should return zero if it processes this message.

Comments
Only windows that have the CS_DBLCLKS class style can receive WM_RBUTTONDBLCLK messages.
Windows generates a WM_RBUTTONDBLCLK message when the user presses, releases, and again
presses the right mouse button within the system's double-click time limit. Double-clicking the right
mouse button actually generates four messages: a WM_RBUTTONDOWN message, a
WM_RBUTTONUP message, the WM_RBUTTONDBLCLK message, and another WM_RBUTTONUP
message.

See Also
WM_RBUTTONDOWN, WM_RBUTTONUP

WM_RBUTTONDOWN (2.x)

WM_RBUTTONDOWN
fwKeys = wParam;/* key flags */
xPos = LOWORD(lParam); /* horizontal position of cursor */
yPos = HIWORD(lParam); /* vertical position of cursor */
The WM_RBUTTONDOWN message is sent when the user presses the right mouse button.

Parameter Description
fwKeys Indicates whether various virtual keys are down. This parameter can be any combination

of the following values:

Value Description
MK_CONTROL Set if CTRL key is down.
MK_LBUTTON Set if left mouse button is down.
MK_MBUTTON Set if middle mouse button is down.
MK_SHIFT Set if SHIFT key is down.

xPos Value of the low-order word of lParam. Specifies the x-coordinate of the cursor. The
coordinate is relative to the upper-left corner of the window.

yPos Value of the high-order word of lParam. Specifies the y-coordinate of the cursor. The
coordinate is relative to the upper-left corner of the window.

Returns
An application should return zero if it processes this message.

See Also
WM_RBUTTONDBLCLK, WM_RBUTTONUP

WM_RBUTTONUP (2.x)

WM_RBUTTONUP
fwKeys = wParam;/* key flags */
xPos = LOWORD(lParam); /* horizontal position of cursor */
yPos = HIWORD(lParam); /* vertical position of cursor */
The WM_RBUTTONUP message is sent when the user releases the right mouse button.

Parameter Description
fwKeys Value of wParam. Indicates whether various virtual keys are down. This parameter can

be any combination of the following values:

Value Description
MK_CONTROL Set if CTRL key is down.
MK_LBUTTON Set if left mouse button is down.
MK_MBUTTON Set if middle mouse button is down.
MK_SHIFT Set if SHIFT key is down.

xPos Value of the low-order word of lParam. Specifies the x-coordinate of the cursor. The
coordinate is relative to the upper-left corner of the window.

yPos Value of the high-order word of lParam. Specifies the y-coordinate of the cursor. The
coordinate is relative to the upper-left corner of the window.

Returns
An application should return zero if it processes this message.

See Also
WM_RBUTTONDBLCLK, WM_RBUTTONDOWN

WM_RENDERALLFORMATS (2.x)

WM_RENDERALLFORMATS
The WM_RENDERALLFORMATS message is sent to the clipboard owner when the owner application is
being destroyed.
Parameters

This message has no parameters.

Returns
An application should return zero if it processes this message.

Comments
The clipboard owner should render the data in all the formats it is capable of generating and pass a data
handle for each format to the clipboard by calling the SetClipboardData function. This ensures that the
clipboard contains valid data even though the application that rendered the data is destroyed. The
application should call the OpenClipboard function before calling SetClipboardData and should call the
CloseClipboard function afterward.

Example
In this example, the application sends a WM_RENDERFORMAT message to itself for each clipboard
format that the application supports:

case WM_RENDERALLFORMATS:
OpenClipboard(hwnd);
SendMessage(hwnd, WM_RENDERFORMAT, CF_DIB, 0L);
SendMessage(hwnd, WM_RENDERFORMAT, CF_BITMAP, 0L);
CloseClipboard();
break;

See Also
CloseClipboard, OpenClipboard, SetClipboardData, WM_RENDERFORMAT

WM_RENDERFORMAT (2.x)

WM_RENDERFORMAT
uFmt = (UINT) wParam; /* clipboard data format */
The WM_RENDERFORMAT message is sent to the clipboard owner when a particular format with
delayed rendering needs to be rendered. The receiver should render the data in that format and pass it to
the clipboard by calling the SetClipboardData function.

Parameter Description
uFmt Specifies the data format. It can be any one of the formats described with the

SetClipboardData function.

Returns
An application should return zero if it processes this message.

Comments
The application should not call the OpenClipboard and CloseClipboard functions while processing this
message.

Example
This example uses an application-defined function to render clipboard data. The function returns a data
handle that is passed to the clipboard by the SetClipboardData function.

HANDLE hData;
case WM_RENDERFORMAT:

if (hData = RenderFormat(wParam))
SetClipboardData(wParam, hData);
break;

See Also
CloseClipboard, OpenClipboard, SetClipboardData, WM_RENDERALLFORMATS

WM_SETCURSOR (2.x)

WM_SETCURSOR
hwndCursor = (HWND) wParam; /* handle of window with cursor */
nHittest = LOWORD(lParam); /* hit-test code */
wMouseMsg = HIWORD(lParam); /* mouse-message number */
The WM_SETCURSOR message is sent to a window if mouse input is not captured and the mouse causes
cursor movement within the window.

Parameter Description
hwndCursor Value of wParam. Specifies a handle to the window that contains the cursor.
nHittest Value of the low-order word of lParam. Specifies the hit-test area code.
wMouseMsg Value of the high-order word of lParam. Specifies the number of the mouse message.

Returns
An application should return TRUE to halt further processing or zero to continue.

Comments
If the nHittest parameter is HTERROR and the wMouseMsg parameter is a mouse button–down message,
the MessageBeep function is called.

The DefWindowProc function passes the WM_SETCURSOR message to a parent window before
processing. If the parent window returns TRUE, further processing is halted. Passing the message to a
window's parent window gives the parent window control over the cursor's setting in a child window. The
DefWindowProc function also uses this message to set the cursor to a pointer if it is not in the client area
or to the registered-class cursor if it is in the client area.

For a standard dialog box to set the cursor for one of its child window controls, it must force the
DefDlgProc function to return TRUE in response to the WM_SETCURSOR message. (DefDlgProc
provides default processing for the standard dialog box class.) When DefDlgProc returns TRUE, the dialog
procedure retains control over the cursor. When the dialog procedure processes the WM_SETCURSOR
message, it can return TRUE by using the SetWindowLong function and the DWL_MSGRESULT offset,
as shown in the following example:

SetWindowLong(hwndDlg, DWL_MSGRESULT, MAKELONG(TRUE, 0));
See Also
DefWindowProc, MessageBeep, SetWindowLong

WM_SETFOCUS (2.x)

WM_SETFOCUS
hwnd = (HWND) wParam; /* handle of window losing focus */
The WM_SETFOCUS message is sent after a window gains the input focus.

Parameter Description
hwnd Value of wParam. Contains the handle of the window that loses the input focus. (This

parameter may be NULL.)

Returns
An application should return zero if it processes this message.

Comments
To display a caret, an application should call the appropriate caret functions at this point.

WM_SETFONT (3.0)

WM_SETFONT
wParam = (WPARAM) hfont; /* handle of the font */
lParam = (LPARAM) MAKELONG((WORD) fRedraw, 0); /* redraw flag */
An application sends the WM_SETFONT message to specify the font that a control is to use when
drawing text.

Parameter Description
hfont Value of wParam. Specifies the handle of the font. If this parameter is NULL, the

control will use the default system font to draw text.
fRedraw Value of the low-order word of lParam. Specifies whether the control should be redrawn

immediately upon setting the font. Setting the fRedraw parameter to TRUE causes the
control to redraw itself.

Returns
An application should return zero if it processes this message.

Comments
The WM_SETFONT message applies to all controls, not just those in dialog boxes.

The best time for the owner of a dialog box to set the font of the control is when it receives the
WM_INITDIALOG message. The application should call the DeleteObject function to delete the font
when it is no longer needed--for example, after the control is destroyed.

The size of the control is not changed as a result of receiving this message. To prevent Windows from
clipping text that does not fit within the boundaries of the control, the application should correct the size of
the control window before changing the font.

Before Windows creates a dialog box with the DS_SETFONT style, Windows sends the WM_SETFONT
message to the dialog box window before creating the controls. An application creates a dialog box with
the DS_SETFONT style by calling any of the following functions:

CreateDialogIndirect
CreateDialogIndirectParam
DialogBoxIndirect
DialogBoxIndirectParam

The DialogBoxHeader structure that the application passes to these functions must have the
DS_SETFONT style set and must contain the wPointSize and szFaceName members that define the font
the dialog box will use to draw text.

For more information about the DialogBoxHeader structure, see the Resource Format Overview.

Example
This example changes the font used by controls in a dialog box to a font that is not bold.

HFONT hfontDlg;
LOGFONT lFont;
case WM_INITDIALOG:

/* Get dialog box font and create version that is not bold. */
hfontDlg = (HFONT) NULL;
if ((hfontDlg = (HFONT) SendMessage(hdlg, WM_GETFONT, 0, 0L))) {
if (GetObject(hfontDlg, sizeof(LOGFONT), (LPSTR) &lFont)) {
lFont.lfWeight = FW_NORMAL;
if (hfontDlg = CreateFontIndirect((LPLOGFONT) &lFont)) {
SendDlgItemMessage(hdlg, ID_CTRL1, WM_SETFONT,
(WPARAM) hfontDlg, 0);
SendDlgItemMessage(hdlg, ID_CTRL2, WM_SETFONT,
(WPARAM) hfontDlg, 0);
.
. /* Set font for remaining controls. */
.
}

}
}
return TRUE;

See Also
CreateDialogIndirect, CreateDialogIndirectParam, DeleteObject, DialogBoxIndirect,
DialogBoxIndirectParam, WM_INITDIALOG, WM_SETFONT

WM_SETREDRAW (2.x)

WM_SETREDRAW
wParam = (WPARAM) fRedraw; /* state of redraw flag */
lParam = 0L; /* not used, must be zero */
An application sends a WM_SETREDRAW message to a window to allow changes in that window to be
redrawn or to prevent changes in that window from being redrawn.

Parameter Description
fRedraw Value of wParam. Specifies the state of the redraw flag. If this parameter is nonzero, the

redraw flag is set. If this parameter is zero, the flag is cleared.

Returns
An application should return zero if it processes this message.

Comments
This message sets or clears the redraw flag. If the redraw flag is cleared, the contents of the specified
window will not be updated after each change, and the window will not be repainted until the redraw flag
is set. For example, an application that needs to add several items to a list box can clear the redraw flag,
add the items, and then set the redraw flag. Finally, the application can call the InvalidateRect function to
cause the list box to be repainted.

WM_SETTEXT (2.x)

WM_SETTEXT
wParam = 0;/* not used, must be zero */
lParam = (LPARAM) (LPCSTR) pszText; /* address of window-text string *
/
An application sends a WM_SETTEXT message to set the text of a window.

Parameter Description
pszText Value of lParam. Points to a null-terminated string that is the window text.

Returns
The return value is LB_ERRSPACE (for a list box) or CB_ERRSPACE (for a combo box) if insufficient
space is available to set the text in the edit control. It is CB_ERR if this message is sent to a combo box
without an edit control.

Comments
For an edit control, the text to be set is the contents of the edit control. For a combo box, the text is the
contents of the edit-control (or static-text) portion of the combo box. For a button, the text is the button
name. For other windows, the text is the window title.

This message does not change the current selection in the list box of a combo box. An application should
use the CB_SELECTSTRING message to select the item in the list box that matches the text in the edit
control.

See Also
WM_GETTEXT

WM_SHOWWINDOW (2.x)

WM_SHOWWINDOW
fShow = (BOOL) wParam; /* show/hide flag */
fnStatus = LOWORD(lParam); /* status flag */
The WM_SHOWWINDOW message is sent to a window when it is about to be hidden or shown. A
window is hidden or shown when the ShowWindow function is called; when an overlapped window is
maximized or restored; or when an overlapped or pop-up window is minimized or displayed on the screen.
When an overlapped window is minimized, all pop-up windows associated with that window are hidden.

Parameter Description
fShow Value of wParam. Specifies whether a window is being shown. It is TRUE if the

window is being shown; it is FALSE if the window is being hidden.
fnStatus Value of the low-order word of lParam. Specifies the status of the window being shown.

The fnStatus parameter is zero if the message is sent because of a ShowWindow
function call; otherwise, fnStatus is one of the following values:

Value Description
SW_PARENTCLOSING Parent window is being minimized, or a pop-up

window is being hidden.
SW_PARENTOPENING Parent window is opening (being displayed) or a pop-

up window is being shown.

Returns
An application should return zero if it processes this message.

Comments
The DefWindowProc function hides or shows the window as specified by the message.

The WM_SHOWWINDOW message is not sent under the following circumstances:
When a main window is created with the WS_MAXIMIZE or WS_MINIMIZE style
When the SW_SHOWNORMAL flag is specified in the call to the ShowWindow function

See Also
DefWindowProc, ShowWindow

WM_SIZE (2.x)

WM_SIZE
fwSizeType = wParam; /* sizing-type flag */
nWidth = LOWORD(lParam); /* width of client area */
nHeight = HIWORD(lParam); /* height of client area */
The WM_SIZE message is sent to a window after its size has changed.

Parameter Description
fwSizeType Value of wParam. Specifies the type of resizing requested. This parameter can be one of

the following values:

Value Description
SIZE_MAXIMIZED Window has been maximized.
SIZE_MINIMIZED Window has been minimized.
SIZE_RESTORED Window has been resized, but neither SIZE_MINIMIZED

nor SIZE_MAXIMIZED applies.
SIZE_MAXHIDE Message is sent to all pop-up windows when some other

window is maximized.
SIZE_MAXSHOW Message is sent to all pop-up windows when some other

window has been restored to its former size.
nWidth Value of the low-order word of lParam. Specifies the new width of the client area.
nHeight Value of the high-order word of lParam. Specifies the new height of the client area.

Returns
An application should return zero if it processes this message.

Comments
If the SetScrollPos or MoveWindow function is called for a child window as a result of the WM_SIZE
message, the fRepaint parameter should be nonzero to cause the window to be repainted.

See Also
MoveWindow, SetScrollPos

WM_SIZECLIPBOARD (2.x)

WM_SIZECLIPBOARD
hwndViewer = (HWND) wParam; /* handle of clipboard viewer */
hglb = (HGLOBAL) LOWORD(lParam); /* handle of global object */
The WM_SIZECLIPBOARD message is sent by the clipboard viewer to the clipboard owner when the
clipboard contains data with the CF_OWNERDISPLAY attribute and the size of the client area of the
clipboard-viewer window has changed.

Parameter Description
hwndViewer Value of wParam. Identifies the clipboard-application window.
hglb Value of the low-order word of lParam. Identifies a global memory object that contains

a RECT data structure. The structure specifies the area that the clipboard owner should
paint.

Returns
An application should return zero if it processes this message.

Comments
A WM_SIZECLIPBOARD message is sent with a null rectangle (0,0,0,0) as the new size when the
clipboard application is about to be destroyed or minimized. This permits the clipboard owner to free its
display resources.

An application must use the GlobalLock function to lock the memory that contains the RECT data
structure. The application should unlock that memory by using the GlobalUnlock function before it yields
or returns control.

See Also
GlobalLock, GlobalUnlock, SetClipboardData, SetClipboardViewer, RECT

WM_SPOOLERSTATUS (3.0)

WM_SPOOLERSTATUS
fwJobStatus = wParam; /* job-status flag*/
cJobsLeft = LOWORD(lParam); /* number of jobs remaining */
The WM_SPOOLERSTATUS message is sent from Print Manager whenever a job is added to or removed
from the Print Manager queue.

Parameter Description
fwJobStatus Value of wParam. Specifies the SP_JOBSTATUS flag.
cJobsLeft Value of the low-order word of lParam. Specifies the number of jobs remaining in the

Print Manager queue.

Returns
An application should return zero if it processes this message.

Comments
This message is for informational purposes only.

WM_SYSCHAR (2.x)

WM_SYSCHAR
wKeyCode = wParam; /* ASCII key code */
dwKeyData = lParam;/* key data */
The WM_SYSCHAR message is sent to the window with the input focus when a WM_SYSKEYUP and a
WM_SYSKEYDOWN message are translated. It specifies the virtual-key code of the System-menu key.
(The System menu is sometimes referred to as the Control menu.)

Parameter Description
wKeyCode Value of wParam. Specifies the ASCII-character key code of a System-menu key.
dwKeyData Value of lParam. Specifies the repeat count, scan code, extended key, context code,

previous key state, and key-transition state, as shown in the following table:

Bit Description
0-15 Specifies the repeat count. The value is the number of times the keystroke is

repeated as a result of the user holding down the key.
16-23 Specifies the scan code. The value depends on the original equipment

manufacturer (OEM).
24 Specifies whether the key is an extended key, such as a function key or a key

on the numeric keypad. The value is 1 if it is an extended key; otherwise, it is
0.

25-26 Not used.
27-28 Used internally by Windows.
29 Specifies the context code. The value is 1 if the ALT key is held down while

the key is pressed; otherwise, the value is 0.
30 Specifies the previous key state. The value is 1 if the key is down before the

message is sent, or it is 0 if the key is up.
31 Specifies the key-transition state. The value is 1 if the key is being released,

or it is 0 if the key is being pressed.

Returns
An application should return zero if it processes this message.

Comments
When the context code is zero, the message can be passed to the TranslateAccelerator function, which will
handle it as though it were a normal key message instead of a System-menu key message. This allows
accelerator keys to be used with the active window even if the active window does not have the input
focus.

For IBM Enhanced 101- and 102-key keyboards, enhanced keys are the right ALT key and the right CTRL
key on the main section of the keyboard; the INS, DEL, HOME, END, PAGE UP, PAGE DOWN, and arrow keys
in the clusters to the left of the numeric keypad; and the division (/) and ENTER keys on the numeric
keypad. Some other keyboards may support the extended-key bit in the lParam parameter.

See Also
TranslateAccelerator, WM_SYSKEYDOWN, WM_SYSKEYUP

WM_SYSCOLORCHANGE (2.x)

WM_SYSCOLORCHANGE
The WM_SYSCOLORCHANGE message is sent to all top-level windows when a change is made in the
system color setting.
Parameters

This message has no parameters.

Returns
An application should return zero if it processes this message.

Comments
Windows sends a WM_PAINT message to any window that is affected by a system color change.

Applications that have brushes that use the existing system colors should delete those brushes and re-
create them by using the new system colors.

See Also
SetSysColors, WM_PAINT

WM_SYSCOMMAND (2.x)

WM_SYSCOMMAND
wCmdType = wParam; /* command value */
xPos = LOWORD(lParam); /* horizontal position of cursor */
yPos = HIWORD(lParam); /* vertical position of cursor */
The WM_SYSCOMMAND message is sent when the user selects a command from the System menu
(sometimes referred to as the Control menu) or when the user selects the Maximize button or the Minimize
button.

Parameter Description
wCmdType Value of wParam. Specifies the type of system command requested. This parameter can

be one of the following values:

Value Meaning
SC_CLOSE Close the window.
SC_HOTKEY Activate the window associated with the

application-specified hot key. The low-order
word of lParam identifies the window to
activate.

SC_HSCROLL Scroll horizontally.
SC_KEYMENU Retrieve a menu through a keystroke.
SC_MAXIMIZE (or SC_ZOOM) Maximize the window.
SC_MINIMIZE (or SC_ICON) Minimize the window.
SC_MOUSEMENU Retrieve a menu through a mouse click.
SC_MOVE Move the window.
SC_NEXTWINDOW Move to the next window.
SC_PREVWINDOW Move to the previous window.
SC_RESTORE Restore window to normal position and size.
SC_SCREENSAVE Execute the screen-saver application specified

in the [boot] section of the SYSTEM.INI file.
SC_SIZE Size the window.
SC_TASKLIST Execute or activate the Windows Task Manager

application.
SC_VSCROLL Scroll vertically.

xPos Value of the low-order word of lParam. Specifies the x-coordinate of the cursor, if a
System-menu command is chosen with the mouse. Otherwise, this parameter is not
used.

yPos Value of the high-order word of lParam. Specifies the y-coordinate of the cursor, if a
System-menu command is chosen with the mouse. Otherwise, this parameter is not
used.

Returns
An application should return zero if it processes this message.

Comments
The DefWindowProc function carries out the System-menu request for the predefined actions specified in
the preceding table.

In WM_SYSCOMMAND messages, the four low-order bits of the wCmdType parameter are used
internally by Windows. When an application tests the value of wCmdType, it must combine the value
0xFFF0 with the wCmdType value by using the bitwise AND operator to obtain the correct result.

The menu items in a System menu can be modified by using the GetSystemMenu, AppendMenu,
InsertMenu, and ModifyMenu functions. Applications that modify the System menu must process
WM_SYSCOMMAND messages. Any WM_SYSCOMMAND messages not handled by the application
must be passed to the DefWindowProc function. Any command values added by an application must be
processed by the application and cannot be passed to DefWindowProc.

An application can carry out any system command at any time by passing a WM_SYSCOMMAND
message to the DefWindowProc function.

Accelerator keystrokes that are defined to select items from the System menu are translated into
WM_SYSCOMMAND messages; all other accelerator key strokes are translated into WM_COMMAND
messages.

See Also
AppendMenu, DefWindowProc, GetSystemMenu, InsertMenu, ModifyMenu, WM_COMMAND

Windows 3.1 changes

The following system-commmand values have been added:

Value Meaning
SC_HOTKEY Activate the window associated with the application-specified hot key. The

low-order word of lParam identifies the window to activate.
SC_SCREENSAVE Executes the screen-save application specified in the Desktop section of

Control Panel.

WM_SYSDEADCHAR (2.x)

WM_SYSDEADCHAR
wDeadKey = wParam; /* dead-key character */
cRepeat = (int) LOWORD(lParam); /* repeat count */
cAutoRepeat = HIWORD(lParam); /* auto-repeat count */
The WM_SYSDEADCHAR message is sent to the window with the input focus when WM_SYSKEYUP
and WM_SYSKEYDOWN messages are translated. It specifies the character value of a dead key.

Parameter Description
wDeadKey Value of wParam. Specifies the dead-key character value.
cRepeat Value of the low-order word of lParam. Specifies the repeat count.
cAutoRepeat Value of the high-order word of lParam. Specifies the auto-repeat count.

Returns
An application should return zero if it processes this message.

See Also
WM_SYSKEYDOWN, WM_SYSKEYUP

WM_SYSKEYDOWN (2.x)

WM_SYSKEYDOWN
wVkey = wParam; /* virtual-key code */
dwKeyData = lParam;/* key data */
The WM_SYSKEYDOWN message is sent to the window with the input focus when the user holds down
the ALT key and then presses another key. If no window currently has the input focus, the
WM_SYSKEYDOWN message is sent to the active window. The window that receives the message can
distinguish between these two contexts by checking the context code in the dwKeyData parameter.

Parameter Description
wVkey Value of wParam. Specifies the virtual-key code of the key being pressed.
dwKeyData Value of lParam. Specifies the repeat count, scan code, extended key, context code,

previous key state, and key-transition state, as shown in the following table:

Bit Description
0-15 Specifies the repeat count. The value is the number of times the keystroke is

repeated as a result of the user holding down the key.
16-23 Specifies the scan code. The value depends on the original equipment

manufacturer (OEM).
24 Specifies whether the key is an extended key, such as a function key or a key

on the numeric keypad. The value is 1 if it is an extended key; otherwise, it is
0.

25-26 Not used.
27-28 Used internally by Windows.
29 Specifies the context code. The value is 1 if the ALT key is held down while

the key is pressed; otherwise, the value is 0.
30 Specifies the previous key state. The value is 1 if the key is down before the

message is sent, or it is 0 if the key is up.
31 Specifies the key-transition state. The value is 1 if the key is being released,

or it is 0 if the key is being pressed.
For WM_SYSKEYDOWN messages, the value of bit 29 (context code) is 1 if the ALT
key is down while the key is pressed; it is 0 if the message is sent to the active window
because no window has the input focus. The value of bit 31 (key-transition state) is 0.

Returns
An application should return zero if it processes this message.

Comments
When the context code is zero, the message can be passed to the TranslateAccelerator function, which will
handle it as though it were a normal key message instead of a system-key message. This allows accelerator
keys to be used with the active window even if the active window does not have the input focus.

Because of the autorepeat feature, more than one WM_SYSKEYDOWN message may occur before a
WM_SYSKEYUP message is sent. The previous key state (bit 30) can be used to determine whether the
WM_SYSKEYDOWN message indicates the first down transition or a repeated down transition.

For IBM Enhanced 101- and 102-key keyboards, enhanced keys are the right ALT key and the right CTRL
key on the main section of the keyboard; the INS, DEL, HOME, END, PAGE UP, PAGE DOWN, and arrow keys
in the clusters to the left of the numeric keypad; and the division (/) and ENTER keys on the numeric
keypad. Some other keyboards may support the extended-key bit in the lParam parameter.

See Also
TranslateAccelerator, WM_SYSKEYUP

WM_SYSKEYUP (2.x)

WM_SYSKEYUP
wVkey = wParam; /* virtual-key code */
dwKeyData = lParam;/* key data */
The WM_SYSKEYUP message is sent to the window with the input focus when the user releases a key
that was pressed while the ALT key was held down. If no window currently has the input focus, the
WM_SYSKEYUP message is sent to the active window. The window that receives the message can
distinguish between these two contexts by checking the context code in the lParam parameter.

Parameter Description
wVkey Value of wParam. Specifies the virtual-key code of the key being pressed.
dwKeyData Value of lParam. Specifies the repeat count, scan code, extended key, context code,

previous key state, and key-transition state, as shown in the following table:

Bit Description
0-15 Specifies the repeat count. The value is the number of times the keystroke is

repeated as a result of the user holding down the key.
16-23 Specifies the scan code. The value depends on the original equipment

manufacturer (OEM).
24 Specifies whether the key is an extended key, such as a function key or a key

on the numeric keypad. The value is 1 if it is an extended key; otherwise, it is
0.

25-26 Not used.
27-28 Used internally by Windows.
29 Specifies the context code. The value is 1 if the ALT key is held down while

the key is pressed; otherwise, the value is 0.
30 Specifies the previous key state. The value is 1 if the key is down before the

message is sent, or it is 0 if the key is up.
31 Specifies the key-transition state. The value is 1 if the key is being released,

or it is 0 if the key is being pressed.
For WM_SYSKEYUP messages, the value of bit 29 (context code) is 1 if the ALT key is
down while the key is pressed; it is 0 if the message is sent to the active window because
no window has the input focus. The value of bit 31 (key-transition state) is 1.

Returns
An application should return zero if it processes this message.

Comments
When the context code is zero, the message can be passed to the TranslateAccelerator function, which will
handle it as though it were a normal key message instead of a system-key message. This allows accelerator
keys to be used with the active window even if the active window does not have the input focus.

For IBM Enhanced 101- and 102-key keyboards, enhanced keys are the right ALT key and the right CTRL
key on the main section of the keyboard; the INS, DEL, HOME, END, PAGE UP, PAGE DOWN, and arrow keys
in the clusters to the left of the numeric keypad; and the division (/) and ENTER keys on the numeric
keypad. Some other keyboards may support the extended-key bit in the lParam parameter.

For non-U.S. Enhanced 102-key keyboards, the right ALT key is handled as the CTRL+ALT key
combination. The following list shows the messages that result when the user presses and releases this key,
in the sequence they occur:

1 WM_KEYDOWN VK_CONTROL
2 WM_KEYDOWN VK_MENU
3 WM_KEYUP VK_CONTROL
4 WM_SYSKEYUP VK_MENU

See Also
TranslateAccelerator, WM_SYSKEYDOWN

WM_SYSTEMERROR (3.1)

WM_SYSTEMERROR
wErrSpec = wParam; /* specifies when error occurred */
The WM_SYSTEMERROR message is sent when the Windows kernel encounters an error but cannot
display the system-error message box.

Parameter Description
wErrSpec Value of wParam. Specifies when the error occurred. Currently, the only valid value is

1, indicating that the error occurred when a task or library was terminating.

Returns
An application should return zero if it processes this message.

Comments
A shell application should process this message, displaying a message box that indicates an error has
occurred.

WM_TIMECHANGE (2.x)

WM_TIMECHANGE
wParam = 0;/* not use, must be zero */
lParam = 0L; /* not use, must be zero */
An application sends the WM_TIMECHANGE message to all top-level windows after changing the
system time.
Parameters

This message has no parameters.

Returns
An application should return zero if it processes this message.

Comments
Any application that changes the system time should send this message to all top-level windows. To send
the WM_TIMECHANGE message to all top-level windows, an application can use the SendMessage
function with the hwnd parameter set to HWND_BROADCAST.

See Also
SendMessage

WM_TIMER (2.x)

WM_TIMER
wTimerID = wParam; /* timer identifier */
tmprc = (TIMERPROC FAR*) lParam;/* address of timer callback*/
The WM_TIMER message is posted to the installing application's message queue or sent to the
appropriate TimerProc callback function after each interval specified in the SetTimer function used to
install a timer.

Parameter Description
wTimerID Value of wParam. Specifies the identifier of the timer.
tmprc Value of lParam. Points to a callback function that was passed to the SetTimer function

when the timer was installed. If the tmprc parameter is not NULL, the system passes the
WM_TIMER message to the specified callback function rather than posting the message
to the application's message queue.

Returns
An application should return zero if it processes this message.

Comments
The DispatchMessage function sends this message when no other messages are in the application's
message queue.

Example
This example uses the WM_TIMER message to create a blinking effect for a line of text:

DWORD dwXYVal;
WORD wXVal, wYVal;
char szMessage[16];
case WM_TIMER:

hdc = GetDC(hwnd);
dwXYVal = GetTextExtent(hdc, (LPCSTR) szMessage,
lstrlen(szMessage));
wXVal = LOWORD(dwXYVal);
wYVal = HIWORD(dwXYVal);
PatBlt(hdc, 10, 10, (int) wXVal, (int) wYVal, PATINVERT);
ReleaseDC(hwnd, hdc);
ValidateRect(hwnd, NULL);
break;

See Also
SetTimer, TimerProc

WM_UNDO (2.x)

WM_UNDO
An application sends the WM_UNDO message to an edit control to undo the last operation. When this
message is sent to an edit control, the previously deleted text is restored or the previously added text is
deleted.
Parameters

This message has no parameters.

Returns
The return value is nonzero if the operation is successful, or it is zero if an error occurs.

See Also
WM_CLEAR, WM_COPY, WM_CUT, WM_PASTE

WM_USER (2.x)

WM_USER
WM_USER is a constant used by applications to help define private messages.

Comments
The WM_USER constant is used to distinguish between message values that are reserved for use by
Windows and values that can be used by an application to send messages within a private window class.
There are four ranges of message numbers:

Range Meaning
0 through WM_USER - 1 Messages reserved for use by Windows.
WM_USER through 0x7FFF Integer messages for use by private window classes.
0x8000 through 0xBFFF Messages reserved for use by Windows.
0xC000 through 0xFFFF String messages for use by applications.

Message numbers in the first range (0 through WM_USER - 1) are defined by Windows. Values in this
range that are not explicitly defined are reserved for future use by Windows. This topic describes messages
in this range.

Message numbers in the second range (WM_USER through 0x7FFF) can be defined and used by an
application to send messages within a private window class. These values cannot be used to define
messages that are meaningful throughout an application, because some predefined window classes already
define values in this range. For example, such predefined control classes as BUTTON, EDIT, LISTBOX,
and COMBOBOX may use these values. Messages in this range should not be sent to other applications
unless the applications have been designed to exchange messages and to attach the same meaning to the
message numbers.

Message numbers in the third range (0x8000 through 0xBFFF) are reserved for future use by Windows.

Message numbers in the fourth range (0xC000 through 0xFFFF) are defined at run time when an
application calls the RegisterWindowMessage function to obtain a message number for a string. All
applications that register the same string can use the associated message number for exchanging messages.
The actual message number, however, is not a constant and cannot be assumed to be the same in different
Windows sessions.

See Also
RegisterWindowMessage

WM_VKEYTOITEM (3.0)

WM_VKEYTOITEM
wVkey = wParam; /* virtual-key code */
hwndLB = (HWND) LOWORD(lParam);/* handle of the list box */
nCaretPos = HIWORD(lParam); /* caret position */
The WM_VKEYTOITEM message is sent by a list box with the LBS_WANTKEYBOARDINPUT style
to its owner in response to a WM_KEYDOWN message.

Parameter Description
wVkey Value of wParam. Specifies the virtual-key code of the key that the user pressed.
hwndLB Value of the low-order word of lParam. Identifies the list box.
nCaretPos Value of the high-order word of lParam. Specifies the current position of the caret.

Returns
The return value specifies the action that the application performed in response to the message. A return
value of -2 indicates that the application handled all aspects of selecting the item and requires no further
action by the list box. A return value of -1 indicates that the list box should perform the default action in
response to the keystroke. A return value of 0 or greater specifies the zero-based index of an item in the
list box and indicates that the list box should perform the default action for the keystroke on the given
item.

Comments
Only list boxes that have the LBS_HASSTRINGS style can receive this message.

See Also
WM_CHARTOITEM, WM_KEYDOWN

WM_VSCROLL (2.x)

WM_VSCROLL
wScrollCode = wParam; /* scroll bar code */
nPos = LOWORD(lParam);/* current scroll box position */
hwndCtl = (HWND) HIWORD(lParam); /* handle of the control */
The WM_VSCROLL message is sent to a window when the user clicks the window's vertical scroll bar.

Parameter Description
wScrollCode Value of wParam. Specifies a scroll bar code that indicates the user's scrolling request.

This parameter can be one of the following values:

Value Description
SB_BOTTOM Scroll to bottom.
SB_ENDSCROLL End scroll.
SB_LINEDOWN Scroll one line down.
SB_LINEUP Scroll one line up.
SB_PAGEDOWN Scroll one page down.
SB_PAGEUP Scroll one page up.
SB_THUMBPOSITION Scroll to absolute position. The current position is

specified by the nPos parameter.
SB_THUMBTRACK Drag scroll box (thumb) to specified position. The

current position is specified by the nPos parameter.
SB_TOP Scroll to top.

nPos Value of the low-order word of lParam. Specifies the current position of the scroll box
if wScrollCode is SB_THUMBPOSITION or SB_THUMBTRACK; otherwise, this
parameter is not used.

hwndCtl Value of the high-order word of lParam. Identifies the control if WM_VSCROLL is
sent by a scroll bar. If WM_VSCROLL is sent as a result of the user clicking a pop-up
window's scroll bar, the high-order word is not used.

Returns
An application should return zero if it processes this message.

Comments
The SB_THUMBTRACK message typically is used by applications that give some feedback while the
scroll box is being dragged.

If an application scrolls the contents of the window, it must also reset the position of the scroll box by
using the SetScrollPos function.

See Also
SetScrollPos, WM_HSCROLL

WM_VSCROLLCLIPBOARD (2.x)

WM_VSCROLLCLIPBOARD
hwndViewer = (HWND) wParam;/* handle of clipboard viewer */
wScrollCode = LOWORD(lParam); /* scroll bar code */
wThumbPos = HIWORD(lParam);/* scroll box position */
The WM_HSCROLLCLIPBOARD message is sent by the clipboard viewer to the clipboard owner when
the clipboard data has the CF_OWNERDISPLAY format and there is an event in the clipboard viewer's
vertical scroll bar. The owner should scroll the clipboard image, invalidate the appropriate section, and
update the scroll bar values.

Parameter Description
hwndViewer Value of wParam. Specifies a handle to a clipboard-viewer window.
wScrollCode Value of the low-order word of lParam. Specifies one of the following scroll bar values:

Value Description
SB_BOTTOM Scroll to lower right.
SB_ENDSCROLL End scroll.
SB_LINEDOWN Scroll one line down.
SB_LINEUP Scroll one line up.
SB_PAGEDOWN Scroll one page down.
SB_PAGEUP Scroll one page up.
SB_THUMBPOSITION Scroll to absolute position.
SB_TOP Scroll to upper left.

wThumbPos Value of the high-order word of lParam. Specifies the scroll box position if the scroll
bar code is SB_THUMBPOSITION; otherwise, the high-order word is not used.

Returns
An application should return zero if it processes this message.

Comments
The clipboard owner should use the InvalidateRect function or repaint the window as needed. The scroll
bar position should also be reset.

See Also
InvalidateRect, WM_HSCROLLCLIPBOARD

WM_WINDOWPOSCHANGED (3.1)

WM_WINDOWPOSCHANGED
pwp = (const WINDOWPOS FAR*) lParam; /* structure address*/
The WM_WINDOWPOSCHANGED message is sent to a window whose size, position, or z-order has
changed as a result of a call to SetWindowPos or another window-management function.

Parameter Description
pwp Value of lParam. Points to a WINDOWPOS data structure that contains information

about the window's new size and position.

Returns
An application should return zero if it processes this message.

Comments
The DefWindowProc function, when it processes the WM_WINDOWPOSCHANGED message, sends the
WM_SIZE and WM_MOVE messages to the window. These messages are not sent if an application
handles the WM_WINDOWPOSCHANGED message without calling DefWindowProc. It is more
efficient to perform any move or size change processing during the WM_WINDOWPOSCHANGED
message without calling DefWindowProc.

See Also
WM_MOVE, WM_SIZE, WM_WINDOWPOSCHANGING, EndDeferWindowPos, SetWindowPos

WM_WINDOWPOSCHANGING (3.1)

WM_WINDOWPOSCHANGING
pwp = (WINDOWPOS FAR*) lParam; /* address of WINDOWPOS structure */
The WM_WINDOWPOSCHANGING message is sent to a window whose size, position, or z-order is
about to change as a result of a call to SetWindowPos or another window-management function.

Parameter Description
pwp Value of lParam. Points to a WINDOWPOS data structure that contains information

about the window's new size and position.

Returns
An application should return zero if it processes this message.

Comments
During this message, modifying any of the values in the WINDOWPOS structure affects the new size,
position, or z-order. An application can prevent changes to the window by setting or clearing the
appropriate bits in the flags member of the WINDOWPOS structure.

For a window with the WS_OVERLAPPED or WS_THICKFRAME style, the DefWindowProc function
handles a WM_WINDOWPOSCHANGING message by sending a WM_GETMINMAXINFO message to
the window. This is done to validate the new size and position of the window and to enforce the
CS_BYTEALIGNCLIENT and CS_BYTEALIGN client styles. An application can override this
functionality by not passing the WM_WINDOWPOSCHANGING message to the DefWindowProc
function.

See Also
WM_WINDOWPOSCHANGED, EndDeferWindowPos, SetWindowPos

WM_WININICHANGE (2.x)

WM_WININICHANGE
wParam = 0; /* not used, must be zero */
lParam = (LPARAM) (LPCSTR) pszSection; /* address of string*/
An application sends the WM_WININICHANGE message to all top-level windows after making a change
to the Windows initialization file, WIN.INI. The SystemParametersInfo function sends the
WM_WININICHANGE message after an application uses the function to change a setting in the WIN.
INI file.

Parameter Description
pszSection Value of lParam. Points to a string that specifies the name of the section that has

changed (the string does not include the square brackets that enclose the section name).

Returns
An application should return zero if it processes this message.

Comments
To send the WM_WININICHANGE message to all top-level windows, an application can use the
SendMessage function with the hwnd parameter set to HWND_BROADCAST.

If an application changes many different sections in WIN.INI at the same time, the application should send
the WM_WININICHANGE message once with the pszSection parameter set to NULL. Otherwise, an
application should send a separate WM_WININICHANGE message for each change it makes to WIN.
INI.

If an application receives a WM_WININICHANGE message with the pszSection parameter set to NULL,
the application should check all sections in WIN.INI that affect the application.

See Also
SendMessage, SystemParametersInfo

Messages (3.1)
BM_GETCHECK Retrieves the check state of a button
BM_GETSTATE Retrieves the state of a button
BM_SETCHECK Sets the check state of a button
BM_SETSTATE Sets the highlight state of a button
BM_SETSTYLE Changes the style of a button
CB_ADDSTRING Adds a string to the list box of a combo box
CB_DELETESTRING Deletes a string in the list box of a combo box
CB_DIR Adds filenames to the list box of a combo box
CB_FINDSTRING Finds exact string in the list box of a combo box
CB_FINDSTRINGEXACT Finds prefix string in the list box of a combo box
CB_GETCOUNT Gets the number of list-box items in a combo box
CB_GETCURSEL Gets index of selected list-box item in combo box
CB_GETDROPPEDCONTROLRECT Gets rectangle of drop-down list box in combo box
CB_GETDROPPEDSTATE Determines if list box of combo box is visible
CB_GETEDITSEL Gets position of a selection in an edit control
CB_GETEXTENDEDUI Determines if combo box has extended interface
CB_GETITEMDATA Retrieves value associated with combo-box item
CB_GETITEMHEIGHT Retrieves the height of list items in a combo box
CB_GETLBTEXT Gets string from the list box of a combo box
CB_GETLBTEXTLEN Gets length of string in list-box of combo box
CB_INSERTSTRING Inserts a string into the list box of a combo box
CB_LIMITTEXT Limits amount of edit-control text in a combo box
CB_RESETCONTENT Removes all items from the list box of a combo box
CB_SELECTSTRING Selects matching string in list box of combo box
CB_SETCURSEL Selects indexed string in list box of combo box
CB_SETEDITSEL Selects characters in edit control of combo box
CB_SETEXTENDEDUI Sets the default or extended user interface
CB_SETITEMDATA Associates a value with combo-box item
CB_SETITEMHEIGHT Sets the height of list items in a combo box
CB_SHOWDROPDOWN Shows or hides the list box of a combo box
DM_GETDEFID Gets the identifier of the default push button
DM_SETDEFID Sets the default push button of a dialog box
EM_CANUNDO Determines if edit-control operation can be undone
EM_EMPTYUNDOBUFFER Resets (clears) undo flag of edit control
EM_FMTLINES Sets soft line break characters on or off
EM_GETFIRSTVISIBLELINE Determines topmost line in an edit control
EM_GETHANDLE Gets handle of memory for multiline edit control
EM_GETLINE Retrieves line from multiline edit control
EM_GETLINECOUNT Retrieves number of lines in an MLE
EM_GETMODIFY Checks whether edit-control contents have changed
EM_GETPASSWORDCHAR Retrieves edit-control password character
EM_GETRECT Retrieves coordinates of edit-control rectangle
EM_GETSEL Gets position of current edit-control selection
EM_GETWORDBREAKPROC Retrieves the edit-control wordwrap function
EM_LIMITTEXT Limits the amount of text in an edit control
EM_LINEFROMCHAR Retrieves a line number from a character index
EM_LINEINDEX Retrieves character index of edit-control line
EM_LINELENGTH Retrieves length of line in edit control
EM_LINESCROLL Scrolls text of a multiline edit control
EM_REPLACESEL Replaces the current selection in an edit control
EM_SETHANDLE Sets memory handle for multiline edit control
EM_SETMODIFY Sets or clears edit-control modification flag
EM_SETPASSWORDCHAR Sets or removes edit-control password character
EM_SETREADONLY Sets the read-only state of an edit control
EM_SETRECT Sets the formatting rectangle of an edit control
EM_SETRECTNP Sets the formatting rectangle of an edit control
EM_SETSEL Selects text in a multiline edit control
EM_SETTABSTOPS Sets tab stops in multiline edit control
EM_SETWORDBREAKPROC Provides custom word breaks in an edit control
EM_UNDO Undoes the last edit-control operation
LB_ADDSTRING Adds a string to a list box
LB_DELETESTRING Deletes a string in a list box
LB_DIR Adds a list of filenames to a list box

LB_FINDSTRING Finds a prefix string in a list box
LB_FINDSTRINGEXACT Finds an exact string in a list box
LB_GETCARETINDEX Gets index of list-box item with focus rectangle
LB_GETCOUNT Retrieves the number of items in a list box
LB_GETCURSEL Retrieves index of selected item in a list box
LB_GETHORIZONTALEXTENT Retrieves the horizontal extent of a list box
LB_GETITEMDATA Retrieves the value associated with list-box item
LB_GETITEMHEIGHT Determines the height of items in a list box
LB_GETITEMRECT Retrieves the bounding rectangle for an item
LB_GETSEL Retrieves the selection state of an item
LB_GETSELCOUNT Retrieves the count of selected list-box items
LB_GETSELITEMS Lists item numbers of selected list-box items
LB_GETTEXT Retrieves a string from a list box
LB_GETTEXTLEN Retrieves the length of a string in a list box
LB_GETTOPINDEX Retrieves index of first visible list-box item
LB_INSERTSTRING Inserts a string into a list box
LB_RESETCONTENT Removes all items from a list box
LB_SELECTSTRING Selects a matching string in a list box
LB_SELITEMRANGE Selects consecutive items in a list box
LB_SETCARETINDEX Sets the focus rectangle in a list box
LB_SETCOLUMNWIDTH Sets the width of columns in a list box
LB_SETCURSEL Selects an indexed string in a list box
LB_SETHORIZONTALEXTENT Sets the horizontal extent of a list box
LB_SETITEMDATA Associates a value with a list-box item
LB_SETITEMHEIGHT Sets the height of items in a list box
LB_SETSEL Selects a string in a multiple-selection list box
LB_SETTABSTOPS Sets tab stops in a list box
LB_SETTOPINDEX Ensures that a list-box item is visible
STM_GETICON Gets icon handle associated with icon resource
STM_SETICON Associates icon handle with icon resource
WM_ACTIVATE Indicates a change in the activation state
WM_ACTIVATEAPP Notifies applications when a new task is activated
WM_ASKCBFORMATNAME Retrieves the name of the clipboard format
WM_CANCELMODE Notifies a window to cancel internal modes
WM_CHANGECBCHAIN Notifies clipboard viewer of removal from chain
WM_CHAR Passes keyboard events to focus window
WM_CHARTOITEM Provides list-box keystrokes to owner window
WM_CHILDACTIVATE Notifies a child window of activation
WM_CHOOSEFONT_GETLOGFONT Retrieves LOGFONT structure for Font dialog box
WM_CLEAR Clears an edit control or combo box
WM_CLOSE Signals a window or application to terminate
WM_COMMAND Specifies a command message
WM_COMMNOTIFY Notifies a window about the status of its queues
WM_COMPACTING Indicates a low memory condition
WM_COMPAREITEM Determines position of combo-box or list-box item
WM_COPY Copies a selection to the clipboard
WM_CREATE Indicates that a window is being created
WM_CTLCOLOR Indicates that a control is about to be drawn
WM_CUT Deletes a selection and copies it to the clipboard
WM_DDE_ACK Acknowledges the receipt of a DDE transaction
WM_DDE_ADVISE Starts an advise loop with a DDE server
WM_DDE_DATA Passes a data item to a DDE client
WM_DDE_EXECUTE Passes a command to a DDE server
WM_DDE_INITIATE Initiates a DDE conversation
WM_DDE_POKE Sends an unsolicited data item to a server
WM_DDE_REQUEST Requests value of a data item from a DDE server
WM_DDE_TERMINATE Terminates a DDE conversation
WM_DDE_UNADVISE Ends a DDE advise loop
WM_DEADCHAR Indicates when a dead key is pressed
WM_DELETEITEM Indicates owner-drawn item or control is altered
WM_DESTROY Indicates window is about to be destroyed
WM_DESTROYCLIPBOARD Notifies owner when clipboard is emptied
WM_DEVMODECHANGE Indicates when device-mode settings are changed
WM_DRAWCLIPBOARD Indicates when clipboard contents are changed

WM_DRAWITEM Indicates when owner-drawn control or menu changes
WM_DROPFILES Indicates when a file is dropped
WM_ENABLE Indicates when enable state of window is changing
WM_ENDSESSION Indicates whether the Windows session is ending
WM_ENTERIDLE Indicates a modal dialog box or menu is idle
WM_ERASEBKGND Indicates when background of window needs erasing
WM_FONTCHANGE Indicates a change in the font-resource pool
WM_GETDLGCODE Allows processing of control input
WM_GETFONT Retrieves the font that a control is using
WM_GETMINMAXINFO Retrieves minimum and maximum sizing information
WM_GETTEXT Copies the text that corresponds to a window
WM_GETTEXTLENGTH Determines length of text associated with a window
WM_HSCROLL Indicates a click in a horizontal scroll bar
WM_HSCROLLCLIPBOARD Prompts owner to scroll clipboard contents
WM_ICONERASEBKGND Notifies minimized window to fill icon background
WM_INITDIALOG Initializes a dialog box
WM_INITMENU Indicates when a menu is about to become active
WM_INITMENUPOPUP Indicates when a pop-up menu is being created
WM_KEYDOWN Indicates when a nonsystem key is pressed
WM_KEYUP Indicates when a nonsystem key is released
WM_KILLFOCUS Indicates window is about to lose input focus
WM_LBUTTONDBLCLK Indicates double-click of left mouse button
WM_LBUTTONDOWN Indicates when left mouse button is pressed
WM_LBUTTONUP Indicates when left mouse button is released
WM_MBUTTONDBLCLK Indicates double-click of middle mouse button
WM_MBUTTONDOWN Indicates when middle mouse button is pressed
WM_MBUTTONUP Indicates when middle mouse button is released
WM_MDIACTIVATE Activates a new MDI child window
WM_MDICASCADE Arranges MDI child windows in a cascade format
WM_MDICREATE Prompts an MDI client to create a child window
WM_MDIDESTROY Closes an MDI child window
WM_MDIGETACTIVE Retrieves data about the active MDI child window
WM_MDIICONARRANGE Arranges minimized MDI child windows
WM_MDIMAXIMIZE Maximizes an MDI child window
WM_MDINEXT Activates the next MDI child window
WM_MDIRESTORE Prompts an MDI client to restore a child window
WM_MDISETMENU Replaces the menu of a MDI frame window
WM_MDITILE Arranges MDI child windows in a tiled format
WM_MEASUREITEM Requests dimensions of owner-drawn control
WM_MENUCHAR Indicates when unknown menu mnemonic is pressed
WM_MENUSELECT Indicates when a menu item is selected
WM_MOUSEACTIVATE Indicates a mouse click in an inactive window
WM_MOUSEMOVE Indicates mouse-cursor movement
WM_MOVE Indicates the position of a window has changed
WM_NCACTIVATE Changes the active state of a nonclient area
WM_NCCALCSIZE Calculates the size of a window's client area
WM_NCCREATE Indicates a nonclient area is being created
WM_NCDESTROY Indicates when nonclient area is being destroyed
WM_NCHITTEST Indicates mouse-cursor movement
WM_NCLBUTTONDBLCLK Indicates non-client left button double-click
WM_NCLBUTTONDOWN Indicates left button pressed in nonclient area
WM_NCLBUTTONUP Indicates left button released in nonclient area
WM_NCMBUTTONDBLCLK Indicates middle button nonclient double-click
WM_NCMBUTTONDOWN Indicates middle button pressed in nonclient area
WM_NCMBUTTONUP Indicates middle button released in nonclient area
WM_NCMOUSEMOVE Indicates mouse-cursor movement in nonclient area
WM_NCPAINT Indicates a window's frame needs painting
WM_NCRBUTTONDBLCLK Indicates right button nonclient double-click
WM_NCRBUTTONDOWN Indicates right button pressed in nonclient area
WM_NCRBUTTONUP Indicates right button released in nonclient area
WM_NEXTDLGCTL Sets the focus to a different dialog box control
WM_PAINT Indicates a window frame needs painting
WM_PAINTCLIPBOARD Paints the specified portion of the window
WM_PALETTECHANGED Indicates focus-window has realized its palette

WM_PALETTEISCHANGING Informs windows about change to palette
WM_PARENTNOTIFY Notifies parent of child-window activity
WM_PASTE Inserts clipboard data into an edit control
WM_POWER Indicates the system is entering suspended mode
WM_QUERYDRAGICON Requests a cursor handle for a minimized window
WM_QUERYENDSESSION Requests that the Windows session be ended
WM_QUERYNEWPALETTE Allows a window to realize its logical palette
WM_QUERYOPEN Requests that a minimized window be restored
WM_QUEUESYNC Delimits CBT messages
WM_QUIT Requests that an application be terminated
WM_RBUTTONDBLCLK Indicates a double-click of right mouse button
WM_RBUTTONDOWN Indicates when the right mouse button is pressed
WM_RBUTTONUP Indicates when the right mouse button is released
WM_RENDERALLFORMATS Notifies owner to render all clipboard formats
WM_RENDERFORMAT Notifies owner to render particular clipboard data
WM_SETCURSOR Displays the appropriate mouse cursor shape
WM_SETFOCUS Indicates when a window has gained input focus
WM_SETFONT Sets the font for a control
WM_SETREDRAW Allows or prevents redrawing in a window
WM_SETTEXT Sets the text of a window
WM_SHOWWINDOW Indicates a window is about to be hidden or shown
WM_SIZE Indicates a change in window size
WM_SIZECLIPBOARD Indicates a change in clipboard size
WM_SPOOLERSTATUS Indicates when a print job is added or removed
WM_SYSCHAR Indicates when a System-menu key is pressed
WM_SYSCOLORCHANGE Indicates when a system color setting is changed
WM_SYSCOMMAND Indicates when a System-command is requested
WM_SYSDEADCHAR Indicates when a system dead key is pressed
WM_SYSKEYDOWN Indicates that ALT plus another key was pressed
WM_SYSKEYUP Indicates that ALT plus another key was released
WM_SYSTEMERROR Indicates that a system error has occurred
WM_TIMECHANGE Indicates that the system time has been set
WM_TIMER Indicates timeout interval for a timer has elapsed
WM_UNDO Undoes the last operation in an edit control
WM_USER Indicates a range of message values
WM_VKEYTOITEM Provides list-box keystrokes to owner window
WM_VSCROLL Indicates a click in a vertical scroll bar
WM_VSCROLLCLIPBOARD Prompts the owner to scroll clipboard contents
WM_WINDOWPOSCHANGED Notifies a window of a size or position change
WM_WINDOWPOSCHANGING Notifies a window of a new size or position
WM_WININICHANGE Notifies applications of change to WIN.INI

BN_CLICKED (2.x)
BN_CLICKED

The BN_CLICKED notification message is sent to the parent window when the user clicks a button.
Unlike the other button-notification messages, this message is intended for applications written for any
version of Windows.

Parameter Description
wParam Specifies the control identifier.
lParam Contains a handle that identifies the button control in its low-order word and the

BN_CLICKED notification code in its high-order word.

See Also
DRAWITEMSTRUCT, WM_DRAWITEM

BN_DISABLE (2.x)
BN_DISABLE

The BN_DISABLE notification message is sent when a button is disabled. This notification is provided
for compatibility with applications written prior to Windows version 3.0. New applications should use the
BS_OWNERDRAW button style and the DRAWITEMSTRUCT structure for this task.

See Also
DRAWITEMSTRUCT, WM_DRAWITEM

BN_DOUBLECLICKED (2.x)
BN_DOUBLECLICKED

The BN_DOUBLECLICKED notification message is sent when the user double clicks a button. This
notification is provided for compatibility with applications written prior to Windows version 3.0. New
applications should use the BS_OWNERDRAW button style and the DRAWITEMSTRUCT structure for
this task.

See Also
DRAWITEMSTRUCT, WM_DRAWITEM

BN_HILITE (2.x)
BN_HILITE

The BN_HILITE notification message is sent when the user highlights a button. This notification is
provided for compatibility with applications written prior to Windows version 3.0. New applications
should use the BS_OWNERDRAW button style and the DRAWITEMSTRUCT structure for this task.

See Also
DRAWITEMSTRUCT, WM_DRAWITEM

BN_PAINT (2.x)
BN_PAINT

The BN_PAINT notification message is sent when a button should be painted. This notification is
provided for compatibility with applications written prior to Windows version 3.0. New applications
should use the BS_OWNERDRAW button style and the DRAWITEMSTRUCT structure for this task.

See Also
DRAWITEMSTRUCT, WM_DRAWITEM

BN_UNHILITE (2.x)
BN_UNHILITE

The BN_UNHILITE notification message is sent when the highlight should be removed from a button.
This notification is provided for compatibility with applications written prior to Windows version 3.0.
New applications should use the BS_OWNERDRAW button style and the DRAWITEMSTRUCT
structure for this task.

See Also
DRAWITEMSTRUCT, WM_DRAWITEM

CBN_CLOSEUP (3.1)
CBN_CLOSEUP

The CBN_CLOSEUP notification message is sent when the list box of a combo box is hidden. The
control's parent window receives this notification message through a WM_COMMAND message.

Parameter Description
wParam Specifies the identifier of the combo box.
lParam Specifies the handle of the combo box in the low-order word, and specifies the

CBN_CLOSEUP notification message in the high-order word.

Comments
This notification message is not sent to a combo box that has the CBS_SIMPLE style.

The order in which notifications will be sent cannot be predicted. In particular, a CBN_SELCHANGE
notification may occur either before or after a CBN_CLOSEUP notification.

See Also
CBN_DROPDOWN, CBN_SELCHANGE, WM_COMMAND

CBN_DBLCLK (3.0)
CBN_DBLCLK

The CBN_DBLCLK notification message is sent when the user double-clicks a string in the list box of a
combo box. The control's parent window receives this notification message through a WM_COMMAND
message.

Parameter Description
wParam Specifies the identifier of the combo box.
lParam Specifies the handle of the combo box in the low-order word and the CBN_DBLCLK

notification message in the high-order word.

Comments
This notification message can occur only for a combo box with the CBS_SIMPLE style. For a combo box
with the CBS_DROPDOWN or CBS_DROPDOWNLIST style, a double-click cannot occur because a
single click hides the list box.

See Also
CBN_SELCHANGE, WM_COMMAND

CBN_DROPDOWN (3.0)
CBN_DROPDOWN

The CBN_DROPDOWN notification message is sent when the list box of a combo box is about to be
dropped down (made visible). The parent window of the combo box receives this notification message
through a WM_COMMAND message.

Parameter Description
wParam Specifies the identifier of the combo box.
lParam Specifies the handle of the combo box in the low-order word, and specifies the

CBN_DROPDOWN notification message in the high-order word.

Comments
This notification message can occur only for a combo box with the CBS_DROPDOWN or
CBS_DROPDOWNLIST style.

See Also
CBN_CLOSEUP, WM_COMMAND

CBN_EDITCHANGE (3.0)
CBN_EDITCHANGE

The CBN_EDITCHANGE notification message is sent after the user has taken an action that may have
altered the text in the edit-control portion of a combo box. Unlike the CBN_EDITUPDATE notification
message, this notification message is sent after Windows updates the screen. The parent window of the
combo box receives this notification message through a WM_COMMAND message.

Parameter Description
wParam Specifies the identifier of the combo box.
lParam Specifies the handle of the combo box in the low-order word, and specifies the

CBN_EDITCHANGE notification message in the high-order word.

Comments
This message does not occur if the combo box has the CBS_DROPDOWNLIST style.

See Also
CBN_EDITUPDATE, WM_COMMAND

CBN_EDITUPDATE (3.0)
CBN_EDITUPDATE

The CBN_EDITUPDATE notification message is sent when the edit-control portion of a combo box is
about to display altered text. This notification is sent after the control has formatted the text, but before it
displays the text. The parent window of the combo box receives this notification message through a
WM_COMMAND message.

Parameter Description
wParam Specifies the identifier of the combo box.
lParam Specifies the handle of the combo box in the low-order word, and specifies the

CBN_EDITUPDATE notification message in the high-order word.

Comments
This message does not occur if the combo box has the CBS_DROPDOWNLIST style.

See Also
CBN_EDITCHANGE, WM_COMMAND

CBN_ERRSPACE (3.0)
CBN_ERRSPACE

The CBN_ERRSPACE notification message is sent when a combo box cannot allocate enough memory to
meet a specific request. The parent window of the combo box receives this notification message through a
WM_COMMAND message.

Parameter Description
wParam Specifies the identifier of the combo box.
lParam Specifies the handle of the combo box in the low-order word, and specifies the

CBN_ERRSPACE notification message in the high-order word.

See Also
WM_COMMAND

CBN_KILLFOCUS (3.0)
CBN_KILLFOCUS

The CBN_KILLFOCUS notification message is sent when a combo box loses the input focus. The parent
window of the combo box receives this notification message through a WM_COMMAND message.

Parameter Description
wParam Specifies the identifier of the combo box.
lParam Specifies the handle of the combo box in the low-order word, and specifies the

CBN_KILLFOCUS notification message in the high-order word.

See Also
CBN_SETFOCUS, WM_COMMAND

CBN_SELCHANGE (3.0)
CBN_SELCHANGE

The CBN_SELCHANGE notification message is sent when the selection in the list box of a combo box is
about to be changed as a result of the user either clicking in the list box or changing the selection by using
the arrow keys. The parent window of the combo box receives this code through a WM_COMMAND
message.

Parameter Description
wParam Specifies the identifier of the combo box.
lParam Specifies the handle of the combo box in the low-order word, and specifies the

CBN_SELCHANGE notification message in the high-order word.

See Also
CBN_DBLCLK, CB_SETCURSEL, WM_COMMAND

CBN_SELENDCANCEL (3.1)
CBN_SELENDCANCEL

The CBN_SELENDCANCEL notification message is sent when the user clicks an item and then clicks
another window or control to hide the list box of a combo box. This notification message is sent before the
CBN_CLOSEUP notification message to indicate that the user's selection should be ignored.

Parameter Description
wParam Specifies the identifier of the combo box.
lParam Specifies the handle of the combo box in the low-order word, and specifies the

CBN_SELENDCANCEL notification message in the high-order word.

Comments
The CBN_SELENDCANCEL or CBN_SELENDOK notification message is sent even if the
CBN_CLOSEUP notification message is not sent (as in the case of a combo box with the CBS_SIMPLE
style).

See Also
CBN_SELENDOK, WM_COMMAND

CBN_SELENDOK (3.1)
CBN_SELENDOK

The CBN_SELENDOK notification message is sent when the user selects an item and then either presses
the ENTER key or clicks the DOWN ARROW key to hide the list box of a combo box. This notification
message is sent before the CBN_CLOSEUP notification message to indicate that the user's selection
should be considered valid.

Parameter Description
wParam Specifies the identifier of the combo box.
lParam Specifies the handle of the combo box in the low-order word, and specifies the

CBN_SELENDOK notification message in the high-order word.

Comments
The CBN_SELENDOK or CBN_SELENDCANCEL notification message is sent even if the
CBN_CLOSEUP notification message is not sent (as in the case of a combo box with the CBS_SIMPLE
style).

See Also
CBN_SELENDCANCEL, WM_COMMAND

CBN_SETFOCUS (3.0)
CBN_SETFOCUS

The CBN_SETFOCUS notification message is sent when a combo box receives the input focus. The
parent window of the combo box receives this notification message through a WM_COMMAND message.

Parameter Description
wParam Specifies the identifier of the combo box.
lParam Specifies the handle of the combo box in the low-order word, and specifies the

CBN_SETFOCUS notification message in the high-order word.

See Also
CBN_KILLFOCUS, WM_COMMAND

EN_CHANGE (2.x)
EN_CHANGE

The EN_CHANGE notification message is sent when the user has taken an action that may have altered
text in an edit control. Unlike the EN_UPDATE notification message, this notification message is sent
after Windows updates the display. The control's parent window receives this notification message
through a WM_COMMAND message.

Parameter Description
wParam Specifies the identifier of the edit control.
lParam Specifies the handle of the edit control in the low-order word, and specifies the

EN_CHANGE notification message in the high-order word.

See Also
EN_UPDATE, WM_COMMAND

EN_ERRSPACE (2.x)
EN_ERRSPACE

The EN_ERRSPACE notification message is sent when an edit control cannot allocate enough memory to
meet a specific request. The control's parent window receives this notification message through a
WM_COMMAND message.

Parameter Description
wParam Specifies the identifier of the edit control.
lParam Specifies the handle of the edit control in the low-order word, and specifies the

EN_ERRSPACE notification message in the high-order word.

See Also
WM_COMMAND

EN_HSCROLL (2.x)
EN_HSCROLL

The EN_HSCROLL notification message is sent when the user clicks an edit control's horizontal scroll
bar. The control's parent window receives this notification message through a WM_COMMAND
message. The parent window is notified before the screen is updated.

Parameter Description
wParam Specifies the identifier of the edit control.
lParam Specifies the handle of the edit control in the low-order word, and specifies the

EN_HSCROLL notification message in the high-order word.

See Also
EN_VSCROLL, WM_COMMAND

EN_KILLFOCUS (2.x)
EN_KILLFOCUS

The EN_KILLFOCUS notification message is sent when an edit control loses the input focus. The
control's parent window receives this notification message through a WM_COMMAND message.

Parameter Description
wParam Specifies the identifier of the edit control.
lParam Specifies the handle of the edit control in the low-order word, and specifies the

EN_KILLFOCUS notification message in the high-order word.

See Also
EN_SETFOCUS, WM_COMMAND

EN_MAXTEXT (3.0)
EN_MAXTEXT

The EN_MAXTEXT notification message is sent when the current insertion has exceeded the specified
number of characters for the edit control. The insertion has been truncated.

This message is also sent when an edit control does not have the ES_AUTOHSCROLL style and the
number of characters to be inserted would exceed the width of the edit control.

This message is also sent when an edit control does not have the ES_AUTOVSCROLL style and the total
number of lines resulting from a text insertion would exceed the height of the edit control.

The control's parent window receives this notification message through a WM_COMMAND message.

Parameter Description
wParam Specifies the identifier of the edit control.
lParam Specifies the handle of the edit control in the low-order word, and specifies the

EN_MAXTEXT notification message in the high-order word.

See Also
EM_LIMITTEXT, WM_COMMAND

EN_SETFOCUS (2.x)
EN_SETFOCUS

The EN_SETFOCUS notification message is sent when an edit control receives the input focus. The
control's parent window receives this notification message through a WM_COMMAND message.

Parameter Description
wParam Specifies the identifier of the edit control.
lParam Specifies the handle of the edit control in the low-order word, and specifies the

EN_SETFOCUS notification message in the high-order word.

See Also
EN_KILLFOCUS, WM_COMMAND

EN_UPDATE (2.x)
EN_UPDATE

The EN_UPDATE notification message is sent when an edit control is about to display altered text. This
notification is sent after the control has formatted the text but before it screens the text. This makes it
possible to alter the window size, if necessary. The control's parent window receives this notification
message through a WM_COMMAND message.

Parameter Description
wParam Specifies the identifier of the edit control.
lParam Specifies the handle of the edit control in the low-order word, and specifies the

EN_UPDATE notification message in the high-order word.

See Also
EN_CHANGE, WM_COMMAND

EN_VSCROLL (2.x)
EN_VSCROLL

The EN_VSCROLL notification message is sent when the user clicks an edit control's vertical scroll bar.
The control's parent window receives this notification message through a WM_COMMAND message.
The parent window is notified before the screen is updated.

Parameter Description
wParam Specifies the identifier of the edit control.
lParam Specifies the handle of the edit control in the low-order word, and specifies the

EN_VSCROLL notification message in the high-order word.

See Also
EN_HSCROLL, WM_COMMAND

LBN_DBLCLK (2.x)
LBN_DBLCLK

The LBN_DBLCLK notification message is sent when the user double-clicks a string in a list box. The
parent window of the list box receives this notification message through a WM_COMMAND message.

Parameter Description
wParam Specifies the identifier of the list box.
lParam Specifies the handle of the list box in the low-order word, and specifies the

LBN_DBLCLK notification message in the high-order word.

Comments
Only a list box that has LBS_NOTIFY style will send this notification message.

See Also
LBN_SELCHANGE, WM_COMMAND

LBN_ERRSPACE (2.x)
LBN_ERRSPACE

The LBN_ERRSPACE notification message is sent when a list box cannot allocate enough memory to
meet a specific request. The parent window of the list box receives this notification message through a
WM_COMMAND message.

Parameter Description
wParam Specifies the identifier of the list box.
lParam Specifies the handle of the list box in the low-order word, and specifies the

LBN_ERRSPACE notification message in the high-order word.

See Also
WM_COMMAND

LBN_KILLFOCUS (3.0)
LBN_KILLFOCUS

The LBN_KILLFOCUS notification message is sent when a list box loses the input focus. The parent
window of the list box receives this notification message through a WM_COMMAND message.

Parameter Description
wParam Specifies the identifier of the list box.
lParam Specifies the handle of the list box in the low-order word, and specifies the

LBN_KILLFOCUS notification message in the high-order word.

See Also
LBN_SETFOCUS, WM_COMMAND

LBN_SELCANCEL (3.1)
LBN_SELCANCEL

The LBN_SELCANCEL notification message is sent when the user cancels the selection in a list box. The
parent window of the list box receives this notification message through a WM_COMMAND message.

Parameter Description
wParam Specifies the identifier of the list box.
lParam Specifies the handle of the list box in the low-order word, and specifies the

LBN_SELCANCEL notification message in the high-order word.

Comments
This notification applies only to a list box that has the LBS_NOTIFY style.

See Also
LBN_DBLCLK, LBN_SELCHANGE, LB_SETCURSEL, WM_COMMAND

LBN_SELCHANGE (2.x)
LBN_SELCHANGE

The LBN_SELCHANGE notification message is sent when the selection in a list box is about to change.
The parent window of the list box receives this notification message through a WM_COMMAND
message.

Parameter Description
wParam Specifies the identifier of the list box.
lParam Specifies the handle of the list box in the low-order word, and specifies the

LBN_SELCHANGE notification message in the high-order word.

Comments
This notification is not sent if the selection is changed by the LB_SETCURSEL message.

This notification applies only to a list box that has the LBS_NOTIFY style.

The LBN_SELCHANGE notification is sent for a multiple-selection list box whenever the user presses an
arrow key, even if the selection does not change.

See Also
LBN_DBLCLK, LBN_SELCANCEL, LB_SETCURSEL, WM_COMMAND

LBN_SETFOCUS (3.0)
LBN_SETFOCUS

The LBN_SETFOCUS notification message is sent when a list box receives the input focus. The parent
window of the list box receives this notification message through a WM_COMMAND message.

Parameter Description
wParam Specifies the identifier of the list box.
lParam Specifies the handle of the list box in the low-order word, and specifies the

LBN_SETFOCUS notification message in the high-order word.

See Also
LBN_KILLFOCUS, WM_COMMAND

Notification messages (3.1)
BN_CLICKED Indicates the user clicked a button
BN_DISABLE Indicates a button is disabled
BN_DOUBLECLICKED Indicates the user double-clicked a button
BN_HILITE Indicates the user highlighted a button
BN_PAINT Indicates the button should be painted
BN_UNHILITE Indicates the highlight should be removed
CBN_CLOSEUP Indicates the list box of a combo box has closed
CBN_DBLCLK Indicates the user double-clicked a string
CBN_DROPDOWN Indicates the list box of a combo box is dropping down
CBN_EDITCHANGE Indicates the user has changed text in the edit control
CBN_EDITUPDATE Indicates altered text is about to be displayed
CBN_ERRSPACE Indicates the combo box is out of memory
CBN_KILLFOCUS Indicates the combo box is losing the input focus
CBN_SELCHANGE Indicates a new combo box list item is selected
CBN_SELENDCANCEL Indicates the user's selection should be cancelled
CBN_SELENDOK Indicates the user's selection is valid
CBN_SETFOCUS Indicates the combo box is receiving the input focus
EN_CHANGE Indicates the display is updated after text changes
EN_ERRSPACE Indicates the edit control is out of memory
EN_HSCROLL Indicates the user clicked the scroll bar
EN_KILLFOCUS Indicates the edit control is losing the input focus
EN_MAXTEXT Indicates the insertion is truncated
EN_SETFOCUS Indicates the edit-control is receiving the input focus
EN_UPDATE Indicates edit-control is about to display altered text
EN_VSCROLL Indicates the user clicked the vertical scroll bar
LBN_DBLCLK Indicates that the user double-clicked a string
LBN_ERRSPACE Indicates the list box is out of memory
LBN_KILLFOCUS Indicates the list box is losing the input focus
LBN_SELCANCEL Indicates the selection is cancelled
LBN_SELCHANGE Indicates the selection is about to change
LBN_SETFOCUS Indicates the list box is receiving the input focus

OleActivate (3.1)
#include ole.h

OLESTATUS OleActivate(lpObject, verb, fShow, fTakeFocus, hwnd, lprcBound)
LPOLEOBJECT lpObject; /* address of object to activate */
UINT verb; /
* operation to perform *
/
BOOL fShow; /
* whether to show window *
/
BOOL fTakeFocus; /
* whether server gets focus *
/
HWND hwnd; /
* window handle of destination document *
/
const RECT FAR* lprcBound; /
* bounding rectangle for object display *
/

The OleActivate function opens an object for an operation. Typically, the object is edited or played.

Parameter Description
lpObject Points to the object to activate.
verb Specifies which operation to perform (0 = the primary verb, 1 = the secondary verb, and

so on).
fShow Specifies whether the window is to be shown. If the window is to be shown, this value is

TRUE; otherwise, it is FALSE.
fTakeFocus Specifies whether the server should get the focus. If the server should get the focus, this

value is TRUE; otherwise, it is FALSE. This parameter is relevant only if the fShow
parameter is TRUE.

hwnd Identifies the window of the document containing the object.
lprcBound Points to a RECT structure containing the coordinates of the bounding rectangle in

which the destination document displays the object. The mapping mode of the device
context determines the units for these coordinates.

Returns
The return value is OLE_OK if the function is successful. Otherwise, it is an error value, which may be
one of the following:

OLE_BUSY
OLE_ERROR_OBJECT
OLE_WAIT_FOR_RELEASE

Comments
Typically, a server is launched in a separate window; editing then occurs asynchronously. The client is
notified of changes to the object through the callback function.

A client application might set the fShow parameter to FALSE if a server needed to remain active without
being visible on the display. (In this case, the application would also use the OleSetData function.)

Client applications typically specify the primary verb when the user double-clicks an object. The server
can take any action in response to the specified verb. If the server supports only one action, it takes that
action no matter which value is passed in the verb parameter.

In future releases of the object linking and embedding (OLE) protocol, the hwnd and lprcBound
parameters will be used to help determine the placement of the server's editing window.

See Also
OleQueryOpen, OleSetData, RECT

OleBlockServer (3.1)
#include ole.h

OLESTATUS OleBlockServer(lhSrvr)
LHSERVER lhSrvr; /* handle of server */

The OleBlockServer function causes requests to the server to be queued until the server calls the
OleUnblockServer function.

Parameter Description
lhSrvr Identifies the server for which requests are to be queued.

Returns
The return value is OLE_OK if the function is successful. Otherwise, it is an error value, which may be
OLE_ERROR_HANDLE.

Comments
The server must call the OleUnblockServer function after calling the OleBlockServer function.

A server application can use the OleBlockServer and OleUnblockServer functions to control when the
server library processes requests from client applications. Because only messages from the client to the
server are blocked, a blocked server can continue to send messages to client applications.

A server application receives a handle when it calls the OleRegisterServer function.

See Also
OleRegisterServer, OleUnblockServer

OleClone (3.1)
#include ole.h

OLESTATUS OleClone(lpObject, lpClient, lhClientDoc, lpszObjname, lplpObject)
LPOLEOBJECT lpObject; /* address of object to copy */
LPOLECLIENT lpClient; /
* address of OLECLIENT for new object *
/
LHCLIENTDOC lhClientDoc; /
* long handle of client document *
/
LPCSTR lpszObjname; /
* address of string for object name *
/
LPOLEOBJECT FAR* lplpObject; /
* address of pointer to new object *
/

The OleClone function makes a copy of an object. The copy is identical to the source object, but it is not
connected to the server.

Parameter Description
lpObject Points to the object to copy.
lpClient Points to an OLECLIENT structure for the new object.
lhClientDoc Identifies the client document in which the object is to be created.
lpszObjname Points to a null-terminated string specifying the client's name for the object. This name

must be unique with respect to the names of any other objects in the document and
cannot contain a slash mark (/).

lplpObject Points to a variable where the library will store the long pointer to the new object.

Returns
The return value is OLE_OK if the function is successful. Otherwise, it is an error value, which may be
one of the following:

OLE_BUSY
OLE_ERROR_HANDLE
OLE_ERROR_OBJECT
OLE_WAIT_FOR_RELEASE

Comments
Client applications often use the OleClone function to support the Undo command.

A client application can supply a new OLECLIENT structure for the cloned object, if required.

See Also
OleEqual, OLECLIENT

OleClose (3.1)
#include ole.h

OLESTATUS OleClose(lpObject)
LPOLEOBJECT lpObject; /* address of object to close */

The OleClose function closes the specified open object. Closing an object terminates the connection with
the server application.

Parameter Description
lpObject Points to the object to close.

Returns
The return value is OLE_OK if the function is successful. Otherwise, it is an error value, which may be
one of the following:

OLE_BUSY
OLE_ERROR_OBJECT
OLE_WAIT_FOR_RELEASE

See Also
OleActivate, OleDelete, OleReconnect

OleCopyFromLink (3.1)
#include ole.h

OLESTATUS OleCopyFromLink(lpObject, lpszProtocol, lpClient, lhClientDoc, lpszObjname,
lplpObject)

LPOLEOBJECT lpObject; /* address of object to embed */
LPCSTR lpszProtocol; /
* address of protocol name *
/
LPOLECLIENT lpClient; /
* address of client structure *
/
LHCLIENTDOC lhClientDoc; /
* long handle of client document *
/
LPCSTR lpszObjname; /
* address of string for object name *
/
LPOLEOBJECT FAR* lplpObject; /
* address of pointer to new object *
/

The OleCopyFromLink function makes an embedded copy of a linked object.

Parameter Description
lpObject Points to the linked object that is to be embedded.
lpszProtocol Points to a null-terminated string specifying the name of the protocol required for the

new embedded object. Currently, this value can be StdFileEditing (the name of the
object linking and embedding protocol).

lpClient Points to an OLECLIENT structure for the new object.
lhClientDoc Identifies the client document in which the object is to be created.
lpszObjname Points to a null-terminated string specifying the client's name for the object.
lplpObject Points to a variable where the library will store the long pointer to the new object.

Returns
The return value is OLE_OK if the function is successful. Otherwise, it is an error value, which may be
one of the following:

OLE_BUSY
OLE_ERROR_HANDLE
OLE_ERROR_NAME
OLE_ERROR_OBJECT
OLE_ERROR_PROTOCOL
OLE_WAIT_FOR_RELEASE

Comments
Making an embedded copy of a linked object may involve starting the server application.

See Also
OleObjectConvert

OleCopyToClipboard (3.1)
#include ole.h

OLESTATUS OleCopyToClipboard(lpObject)
LPOLEOBJECT lpObject; /* address of object */

The OleCopyToClipboard function puts the specified object on the clipboard.

Parameter Description
lpObject Points to the object to copy to the clipboard.

Returns
The return value is OLE_OK if the function is successful. Otherwise, it is an error value, which may be
OLE_ERROR_OBJECT.

Comments
A client application typically calls the OleCopyToClipboard function when a user chooses the Copy or Cut
command from the Edit menu.

The client application should open and empty the clipboard, call the OleCopyToClipboard function, and
close the clipboard.

OleCreate (3.1)
#include ole.h

OLESTATUS OleCreate(lpszProtocol, lpClient, lpszClass, lhClientDoc, lpszObjname, lplpObject,
renderopt, cfFormat)

LPCSTR lpszProtocol; /* address of string for protocol name */
LPOLECLIENT lpClient; /
* address of client structure *
/
LPCSTR lpszClass; /
* address of string for classname *
/
LHCLIENTDOC lhClientDoc; /
* long handle of client document *
/
LPCSTR lpszObjname; /
* address of string for object name *
/
LPOLEOBJECT FAR* lplpObject; /
* address of pointer to object *
/
OLEOPT_RENDER renderopt; /
* rendering options *
/
OLECLIPFORMAT cfFormat; /
* clipboard format *
/

The OleCreate function creates an embedded object of a specified class. The server is opened to perform
the initial editing.

Parameter Description
lpszProtocol Points to a null-terminated string specifying the name of the protocol required for the

new embedded object. Currently, this value can be StdFileEditing (the name of the
object linking and embedding protocol).

lpClient Points to an OLECLIENT structure for the new object.
lpszClass Points to a null-terminated string specifying the registered name of the class of the

object to be created.
lhClientDoc Identifies the client document in which the object is to be created.
lpszObjname Points to a null-terminated string specifying the client's name for the object. This name

must be unique with respect to the names of any other objects in the document and
cannot contain a slash mark (/).

lplpObject Points to a variable where the library will store the long pointer to the new object.
renderopt Specifies the client's preference for presentation data for the object. This parameter can

be one of the following values:

Value Meaning
olerender_draw The client calls the OleDraw function, and the library

obtains and manages presentation data.
olerender_format The client calls the OleGetData function to retrieve data in a

specific format. The library obtains and manages the data in
the requested format, as specified by the cfFormat
parameter.

olerender_none The client library does not obtain any presentation data and
does not draw the object.

Returns
cfFormatSpecifies the clipboard format when the renderopt parameter isolerender_format. This clipboard
format is used in a subsequent callto OleGetData. If this clipboard format isCF_METAFILEPICT,
CF_DIB, or CF_BITMAP, the library manages the data anddraws the object. The library does not support
drawing for any otherformats. The return value is OLE_OK if the function is successful. Otherwise, it is an
error value, which may be one of the following:

OLE_ERROR_HANDLE
OLE_ERROR_NAME
OLE_ERROR_PROTOCOL
OLE_WAIT_FOR_RELEASE

Comments
The olerender_none rendering option is typically used to support hyperlinks. With this option, the client
does not call OleDraw and calls OleGetData only for ObjectLink, OwnerLink, and Native formats.

The olerender_format rendering option allows a client to compute data (instead of painting it), use an
unusual data format, or modify a standard data format. With this option, the client does not call OleDraw.
The client calls OleGetData to retrieve data in the specified format.

The olerender_draw rendering option is the most typical option. It is the easiest rendering option for the
client to implement (the client simply calls OleDraw), and it allows the most flexibility. An object handler
can exploit this flexibility to store no presentation data, a private presentation data format, or several
different formats that it can choose among dynamically. Future implementations of object linking and
embedding (OLE) may also exploit the flexibility that is inherent in this option.

See Also
OleCreateFromClip, OleCreateFromTemplate, OleDraw, OleGetData

OleCreateFromClip (3.1)
#include ole.h

OLESTATUS OleCreateFromClip(lpszProtocol, lpClient, lhClientDoc, lpszObjname, lplpObject,
renderopt, cfFormat)

LPCSTR lpszProtocol; /* address of string for protocol name */
LPOLECLIENT lpClient; /
* address of client structure *
/
LHCLIENTDOC lhClientDoc; /
* long handle of client document *
/
LPCSTR lpszObjname; /
* address of string for object name *
/
LPOLEOBJECT FAR* lplpObject; /
* address of pointer to object *
/
OLEOPT_RENDER renderopt; /
* rendering options *
/
OLECLIPFORMAT cfFormat; /
* clipboard format *
/

The OleCreateFromClip function creates an object from the clipboard.

Parameter Description
lpszProtocol Points to a null-terminated string specifying the name of the protocol required for the

new embedded object. Currently, this value can be StdFileEditing (the name of the
object linking and embedding protocol) or Static (for uneditable pictures only).

lpClient Points to an OLECLIENT structure allocated and initialized by the client application.
This pointer is used to locate the callback function and is passed in callback
notifications.

lhClientDoc Identifies the client document in which the object is being created.
lpszObjname Points to a null-terminated string specifying the client's name for the object. This name

must be unique with respect to the names of any other objects in the document and
cannot contain a slash mark (/).

lplpObject Points to a variable where the library will store the long pointer to the new object.
renderopt Specifies the client's preference for presentation data for the object. This parameter can

be one of the following values:

Value Meaning
olerender_draw The client calls the OleDraw function, and the library

obtains and manages presentation data.
olerender_format The client calls the OleGetData function to retrieve data in a

specific format. The library obtains and manages the data in
the requested format, as specified by the cfFormat
parameter.

olerender_none The client library does not obtain any presentation data and
does not draw the object.

cfFormat Specifies the clipboard format when the renderopt parameter is olerender_format. This
clipboard format is used in a subsequent call to OleGetData. If this clipboard format is
CF_METAFILEPICT, CF_DIB, or CF_BITMAP, the library manages the data and
draws the object. The library does not support drawing for any other formats.

Returns
The return value is OLE_OK if the function is successful. Otherwise, it is an error value, which may be
one of the following:

OLE_ERROR_CLIP
OLE_ERROR_FORMAT

OLE_ERROR_HANDLE
OLE_ERROR_NAME
OLE_ERROR_OPTION
OLE_ERROR_PROTOCOL
OLE_WAIT_FOR_RELEASE

Comments
The client application should open and empty the clipboard, call the OleCreateFromClip function, and
close the clipboard.

The olerender_none rendering option is typically used to support hyperlinks. With this option, the client
does not call OleDraw and calls OleGetData only for ObjectLink, OwnerLink, and Native formats.

The olerender_format rendering option allows a client to compute data (instead of painting it), use an
unusual data format, or modify a standard data format. With this option, the client does not call OleDraw.
The client calls OleGetData to retrieve data in the specified format.

The olerender_draw rendering option is the most typical option. It is the easiest rendering option for the
client to implement (the client simply calls OleDraw), and it allows the most flexibility. An object handler
can exploit this flexibility to store no presentation data, a private presentation data format, or several
different formats that it can choose among dynamically. Future implementations of object linking and
embedding (OLE) may also exploit the flexibility that is inherent in this option.

See Also
OleCreate, OleCreateFromTemplate, OleDraw, OleGetData, OleQueryCreateFromClip

OleCreateFromFile (3.1)
#include ole.h

OLESTATUS OleCreateFromFile(lpszProtocol, lpClient, lpszClass, lpszFile, lhClientDoc, lpszObjname,
lplpObject, renderopt, cfFormat)

LPCSTR lpszProtocol; /* address of string for protocol name */
LPOLECLIENT lpClient; /
* address of client structure *
/
LPCSTR lpszClass; /
* address of string for class name *
/
LPCSTR lpszFile; /
* address of string for filename *
/
LHCLIENTDOC lhClientDoc; /
* long handle of client document *
/
LPCSTR lpszObjname; /
* address of string for object name *
/
LPOLEOBJECT FAR* lplpObject; /
* address of pointer to object *
/
OLEOPT_RENDER renderopt; /
* rendering options *
/
OLECLIPFORMAT cfFormat; /
* clipboard format *
/

The OleCreateFromFile function creates an embedded object from the contents of a named file.

Parameter Description
lpszProtocol Points to a null-terminated string specifying the name of the protocol required for the

new embedded object. Currently, this value can be StdFileEditing (the name of the
object linking and embedding protocol).

lpClient Points to an OLECLIENT structure allocated and initialized by the client application.
This pointer is used to locate the callback function and is passed in callback
notifications.

lpszClass Points to a null-terminated string specifying the name of the class for the new object. If
this value is NULL, the library uses the extension of the filename pointed to by the
lpszFile parameter to find the class name for the object.

lpszFile Points to a null-terminated string specifying the name of the file containing the object.
lhClientDoc Identifies the client document in which the object is being created.
lpszObjname Points to a null-terminated string specifying the client's name for the object. This name

must be unique with respect to the names of any other objects in the document and
cannot contain a slash mark (/).

lplpObject Points to a variable where the library will store the long pointer to the new object.
renderopt Specifies the client's preference for presentation data for the object. This parameter can

be one of the following values:

Value Meaning
olerender_draw The client calls the OleDraw function, and the library

obtains and manages presentation data.
olerender_format The client calls the OleGetData function to retrieve data in a

specific format. The library obtains and manages the data in
the requested format, as specified by the cfFormat
parameter.

olerender_none The client library does not obtain any presentation data and
does not draw the object.

cfFormat Specifies the clipboard format when the renderopt parameter is olerender_format. This
clipboard format is used in a subsequent call to OleGetData. If this clipboard format is
CF_METAFILEPICT, CF_DIB, or CF_BITMAP, the library manages the data and
draws the object. The library does not support drawing for any other formats.

Returns
The return value is OLE_OK if the function is successful. Otherwise, it is an error value, which may be
one of the following:

OLE_ERROR_CLASS
OLE_ERROR_HANDLE
OLE_ERROR_MEMORY
OLE_ERROR_NAME
OLE_ERROR_PROTOCOL
OLE_WAIT_FOR_RELEASE

Comments
When a client application calls the OleCreateFromFile function, the server is started to render the Native
and presentation data and then is closed. (If the server and document are already open, this function simply
retrieves the information, without closing the server.) The server does not show the object to the user for
editing.

The olerender_none rendering option is typically used to support hyperlinks. With this option, the client
does not call OleDraw and calls OleGetData only for ObjectLink, OwnerLink, and Native formats.

The olerender_format rendering option allows a client to compute data (instead of painting it), use an
unusual data format, or modify a standard data format. With this option, the client does not call OleDraw.
The client calls OleGetData to retrieve data in the specified format.

The olerender_draw rendering option is the most typical option. It is the easiest rendering option for the
client to implement (the client simply calls OleDraw), and it allows the most flexibility. An object handler
can exploit this flexibility to store no presentation data, a private presentation data format, or several
different formats that it can choose among dynamically. Future implementations of object linking and
embedding (OLE) may also exploit the flexibility that is inherent in this option.

If a client application accepts files dropped from File Manager, it should respond to the WM_DROPFILES
message by calling OleCreateFromFile and specifying Packager for the lpszClass parameter to indicate
Microsoft Windows Object Packager.

See Also
OleCreate, OleCreateFromTemplate, OleDraw, OleGetData

OleCreateFromTemplate (3.1)
#include ole.h

OLESTATUS OleCreateFromTemplate(lpszProtocol, lpClient, lpszTemplate, lhClientDoc,
lpszObjname, lplpObject, renderopt, cfFormat)

LPCSTR lpszProtocol; /* address of string for protocol name */
LPOLECLIENT lpClient; /
* address of client structure *
/
LPCSTR lpszTemplate; /
* address of string for path of file *
/
LHCLIENTDOC lhClientDoc; /
* long handle of client document *
/
LPCSTR lpszObjname; /
* address of string for object name *
/
LPOLEOBJECT FAR* lplpObject; /
* address of pointer to object *
/
OLEOPT_RENDER renderopt; /
* rendering options *
/
OLECLIPFORMAT cfFormat; /
* clipboard format *
/

The OleCreateFromTemplate function creates an object by using another object as a template. The server
is opened to perform the initial editing.

Parameter Description
lpszProtocol Points to a null-terminated string specifying the name of the protocol required for the

new embedded object. Currently, this value can be StdFileEditing (the name of the
object linking and embedding protocol).

lpClient Points to an OLECLIENT structure for the new object.
lpszTemplate Points to a null-terminated string specifying the path of the file to be used as a

template for the new object. The server is opened for editing and loads the initial state
of the new object from the named template file.

lhClientDoc Identifies the client document in which the object is being created.
lpszObjname Points to a null-terminated string specifying the client's name for the object. This

name must be unique with respect to the names of any other objects in the document
and cannot contain a slash mark (/).

lplpObject Points to a variable where the library will store the long pointer to the new object.
renderopt Specifies the client's preference for presentation data for the object. This parameter

can be one of the following values:

Value Meaning
olerender_draw The client calls the OleDraw function, and the library

obtains and manages presentation data.
olerender_format The client calls the OleGetData function to retrieve data in a

specific format. The library obtains and manages the data in
the requested format, as specified by the cfFormat
parameter.

olerender_none The client library does not obtain any presentation data and
does not draw the object.

cfFormat Specifies the clipboard format when the renderopt parameter is olerender_format. This
clipboard format is used in a subsequent call to the OleGetData function. If this
clipboard format is CF_METAFILEPICT, CF_DIB, or CF_BITMAP, the library
manages the data and draws the object. The library does not support drawing for any
other formats.

Returns
The return value is OLE_OK if the function is successful. Otherwise, it is an error value, which may be
one of the following:

OLE_ERROR_CLASS
OLE_ERROR_HANDLE
OLE_ERROR_MEMORY
OLE_ERROR_NAME
OLE_ERROR_PROTOCOL
OLE_WAIT_FOR_RELEASE

Comments
The client library uses the filename extension of the file specified in the lpszTemplate parameter to
identify the server for the object. The association between the extension and the server is stored in the
registration database.

The olerender_none rendering option is typically used to support hyperlinks. With this option, the client
does not call OleDraw and calls OleGetData only for ObjectLink, OwnerLink, and Native formats.

The olerender_format rendering option allows a client to compute data (instead of painting it), use an
unusual data format, or modify a standard data format. With this option, the client does not call OleDraw.
The client calls OleGetData to retrieve data in the specified format.

The olerender_draw rendering option is the most typical option. It is the easiest rendering option for the
client to implement (the client simply calls OleDraw), and it allows the most flexibility. An object handler
can exploit this flexibility to store no presentation data, a private presentation data format, or several
different formats that it can choose among dynamically. Future implementations of object linking and
embedding (OLE) may also exploit the flexibility that is inherent in this option.

See Also
OleCreate, OleCreateFromClip, OleDraw, OleGetData, OleObjectConvert

OleCreateInvisible (3.1)
#include ole.h

OLESTATUS OleCreateInvisible(lpszProtocol, lpClient, lpszClass, lhClientDoc, lpszObjname,
lplpObject, renderopt, cfFormat, fActivate)

LPCSTR lpszProtocol; /* address of string for protocol name */
LPOLECLIENT lpClient; /
* address of client structure *
/
LPCSTR lpszClass; /
* address of string for classname *
/
LHCLIENTDOC lhClientDoc; /
* long handle of client document *
/
LPCSTR lpszObjname; /
* address of string for object name *
/
LPOLEOBJECT FAR* lplpObject; /
* address of pointer to object *
/
OLEOPT_RENDER renderopt; /
* rendering options *
/
OLECLIPFORMAT cfFormat; /
* clipboard format *
/
BOOL fActivate; /
* server activation flag *
/

The OleCreateInvisible function creates an object without displaying the server application to the user.
The function either starts the server to create the object or creates a blank object of the specified class and
format without starting the server.

Parameter Description
lpszProtocol Points to a null-terminated string specifying the name of the protocol required for the

new embedded object. Currently, this value can be StdFileEditing (the name of the
object linking and embedding protocol) or Static (for uneditable pictures only).

lpClient Points to an OLECLIENT structure allocated and initialized by the client application.
This pointer is used to locate the callback function and is passed in callback
notifications.

lpszClass Points to a null-terminated string specifying the registered name of the class of the
object to be created.

lhClientDoc Identifies the client document in which the object is being created.
lpszObjname Points to a null-terminated string specifying the client's name for the object. This name

must be unique with respect to the names of any other objects in the document and
cannot contain a slash mark (/).

lplpObject Points to a variable where the library will store the long pointer to the new object.
renderopt Specifies the client's preference for presentation data for the object. This parameter can

be one of the following values:

Value Meaning
olerender_draw The client calls the OleDraw function, and the library

obtains and manages presentation data.
olerender_format The client calls the OleGetData function to retrieve data in a

specific format. The library obtains and manages the data in
the requested format, as specified by the cfFormat
parameter.

olerender_none The client library does not obtain any presentation data and
does not draw the object.

cfFormat Specifies the clipboard format when the renderopt parameter is olerender_format. This
clipboard format is used in a subsequent call to OleGetData. If this clipboard format is
CF_METAFILEPICT, CF_DIB, or CF_BITMAP, the library manages the data and
draws the object. The library does not support drawing for any other formats.

fActivate Specifies whether to start the server for the object. If this parameter is TRUE the server
is started (but not shown). If this parameter is FALSE, the server is not started and the
function creates a blank object of the specified class and format.

Returns
The return value is OLE_OK if the function is successful. Otherwise, it is an error value, which may be
one of the following:

OLE_ERROR_HANDLE
OLE_ERROR_NAME
OLE_ERROR_PROTOCOL

Comments
An application can avoid redrawing an object repeatedly by calling the OleCreateInvisible function before
using such functions as OleSetBounds, OleSetColorScheme, and OleSetTargetDevice to set up the object.
After setting up the object, the application can either call the OleActivate function to display the object or
call the OleUpdate and OleClose functions to update the object without displaying it.

See Also
OleActivate, OleClose, OleSetBounds, OleSetColorScheme, OleSetTargetDevice, OleUpdate

OleCreateLinkFromClip (3.1)
#include ole.h

OLESTATUS OleCreateLinkFromClip(lpszProtocol, lpClient, lhClientDoc, lpszObjname, lplpObject,
renderopt, cfFormat)

LPCSTR lpszProtocol; /* address of string for protocol name */
LPOLECLIENT lpClient; /
* address of client structure *
/
LHCLIENTDOC lhClientDoc; /
* long handle of client document *
/
LPCSTR lpszObjname; /
* address of string for object name *
/
LPOLEOBJECT FAR* lplpObject; /
* address of pointer to object *
/
OLEOPT_RENDER renderopt; /
* rendering options *
/
OLECLIPFORMAT cfFormat; /
* clipboard format *
/

The OleCreateLinkFromClip function typically creates a link to an object from the clipboard.

Parameter Description
lpszProtocol Points to a null-terminated string specifying the name of the required protocol.

Currently, this value can be StdFileEditing (the name of the object linking and
embedding protocol).

lpClient Points to an OLECLIENT structure allocated and initialized by the client application.
This pointer is used to locate the callback function and is passed in callback
notifications.

lhClientDoc Identifies the client document in which the object is being created.
lpszObjname Points to a null-terminated string specifying the client's name for the object. This name

must be unique with respect to the names of any other objects in the document and
cannot contain a slash mark (/).

lplpObject Points to a variable where the library will store the long pointer to the new object.
renderopt Specifies the client's preference for presentation data for the object. This parameter can

be one of the following values:

Value Meaning
olerender_draw The client calls the OleDraw function, and the library

obtains and manages presentation data.
olerender_format The client calls the OleGetData function to retrieve data in a

specific format. The library obtains and manages the data in
the requested format, as specified by the cfFormat
parameter.

olerender_none The client library does not obtain any presentation data and
does not draw the object.

cfFormat Specifies the clipboard format when the renderopt parameter is olerender_format. This
clipboard format is used in a subsequent call to OleGetData. If this clipboard format is
CF_METAFILEPICT, CF_DIB, or CF_BITMAP, the library manages the data and
draws the object. The library does not support drawing for any other formats.

Returns
The return value is OLE_OK if the function is successful. Otherwise, it is an error value, which may be
one of the following:

OLE_ERROR_CLIP
OLE_ERROR_FORMAT

OLE_ERROR_HANDLE
OLE_ERROR_NAME
OLE_ERROR_PROTOCOL
OLE_WAIT_FOR_RELEASE

Comments
The olerender_none rendering option is typically used to support hyperlinks. With this option, the client
does not call the OleDraw function and calls OleGetData only for ObjectLink, OwnerLink, and Native
formats.

The olerender_format rendering option allows a client to compute data (instead of painting it), use an
unusual data format, or modify a standard data format. With this option, the client does not call OleDraw.
The client calls OleGetData to retrieve data in the specified format.

The olerender_draw rendering option is the most typical option. It is the easiest rendering option for the
client to implement (the client simply calls OleDraw), and it allows the most flexibility. An object handler
can exploit this flexibility to store no presentation data, a private presentation data format, or several
different formats that it can choose among dynamically. Future implementations of object linking and
embedding (OLE) may also exploit the flexibility that is inherent in this option.

See Also
OleCreate, OleCreateFromTemplate, OleDraw, OleGetData, OleQueryLinkFromClip

OleCreateLinkFromFile (3.1)
#include ole.h

OLESTATUS OleCreateLinkFromFile(lpszProtocol, lpClient, lpszClass, lpszFile, lpszItem, lhClientDoc,
lpszObjname, lplpObject, renderopt, cfFormat)

LPCSTR lpszProtocol; /* address of string for protocol name */
LPOLECLIENT lpClient; /
* address of client structure *
/
LPCSTR lpszClass; /
* string for class name *
/
LPCSTR lpszFile; /
* address of string for filename *
/
LPCSTR lpszItem; /
* address of string for doc. part to link *
/
LHCLIENTDOC lhClientDoc; /
* long handle of client document *
/
LPCSTR lpszObjname; /
* address of string for object name *
/
LPOLEOBJECT FAR* lplpObject; /
* address of pointer to new object *
/
OLEOPT_RENDER renderopt; /
* rendering options *
/
OLECLIPFORMAT cfFormat; /
* clipboard format *
/

The OleCreateLinkFromFile function creates a linked object from a file that contains an object. If
necessary, the library starts the server to render the presentation data, but the object is not shown in the
server for editing.

Parameter Description
lpszProtocol Points to a null-terminated string specifying the name of the required protocol.

Currently, this value can be StdFileEditing (the name of the object linking and
embedding protocol).

lpClient Points to an OLECLIENT structure allocated and initialized by the client application.
This pointer is used to locate the callback function and is passed in callback
notifications.

lpszClass Points to a null-terminated string specifying the name of the class for the new object. If
this value is NULL, the library uses the extension of the filename pointed to by the
lpszFile parameter to find the class name for the object.

lpszFile Points to a null-terminated string specifying the name of the file containing the object.
lpszItem Points to a null-terminated string identifying the part of the document to link to. If this

value is NULL, the link is to the entire document.
lhClientDoc Identifies the client document in which the object is being created.
lpszObjname Points to a null-terminated string specifying the client's name for the object. This name

must be unique with respect to the names of any other objects in the document and
cannot contain a slash mark (/).

lplpObject Points to a variable where the library will store the long pointer to the new object.
renderopt Specifies the client's preference for presentation data for the object. This parameter can

be one of the following values:

Value Meaning
olerender_draw The client calls the OleDraw function, and the library

obtains and manages presentation data.

olerender_format The client calls the OleGetData function to retrieve data in a
specific format. The library obtains and manages the data in
the requested format, as specified by the cfFormat
parameter.

olerender_none The client library does not obtain any presentation data and
does not draw the object.

cfFormat Specifies the clipboard format when the renderopt parameter is olerender_format. This
clipboard format is used in a subsequent call to OleGetData. If this clipboard format is
CF_METAFILEPICT, CF_DIB, or CF_BITMAP, the library manages the data and
draws the object. The library does not support drawing for any other formats.

Returns
The return value is OLE_OK if the function is successful. Otherwise, it is an error value, which may be
one of the following:

OLE_ERROR_CLASS
OLE_ERROR_HANDLE
OLE_ERROR_MEMORY
OLE_ERROR_NAME
OLE_ERROR_PROTOCOL
OLE_WAIT_FOR_RELEASE

Comments
The olerender_none rendering option is typically used to support hyperlinks. With this option, the client
does not call OleDraw and calls OleGetData only for ObjectLink, OwnerLink, and Native formats.

The olerender_format rendering option allows a client to compute data (instead of painting it), use an
unusual data format, or modify a standard data format. With this option, the client does not call OleDraw.
The client calls OleGetData to retrieve data in the specified format.

The olerender_draw rendering option is the most typical option. It is the easiest rendering option for the
client to implement (the client simply calls OleDraw), and it allows the most flexibility. An object handler
can exploit this flexibility to store no presentation data, a private presentation data format, or several
different formats that it can choose among dynamically. Future implementations of object linking and
embedding (OLE) may also exploit the flexibility that is inherent in this option.

See Also
OleCreate, OleCreateFromFile, OleCreateFromTemplate, OleDraw, OleGetData

OleDelete (3.1)
#include ole.h

OLESTATUS OleDelete(lpObject)
LPOLEOBJECT lpObject; /* address of object to delete */

The OleDelete function deletes an object and frees memory that was associated with that object. If the
object was open, it is closed.

Parameter Description
lpObject Points to the object to delete.

Returns
The return value is OLE_OK if the function is successful. Otherwise, it is an error value, which may be
one of the following:

OLE_BUSY
OLE_ERROR_OBJECT
OLE_WAIT_FOR_RELEASE

Comments
An application uses the OleDelete function when the object is no longer part of the client document.

The OleDelete function, unlike OleRelease, indicates that the object has been permanently removed.

See Also
OleClose, OleRelease

OleDraw (3.1)
#include ole.h

OLESTATUS OleDraw(lpObject, hdc, lprcBounds, lprcWBounds, hdcFormat)
LPOLEOBJECT lpObject; /* address of object to draw */
HDC hdc; /
* handle of DC for drawing object *
/
const RECT FAR* lprcBounds; /
* bounding rectangle for drawing object *
/
const RECT FAR* lprcWBounds; /
* bounding rectangle for metafile DC *
/
HDC hdcFormat; /
* handle of DC for formatting object *
/

The OleDraw function draws a specified object into a bounding rectangle in a device context.

Parameter Description
lpObject Points to the object to draw.
hdc Identifies the device context in which to draw the object.
lprcBounds Points to a RECT structure defining the bounding rectangle, in logical units for the

device context specified by the hdc parameter, in which to draw the object.
lprcWBounds Points to a RECT structure defining the bounding rectangle if the hdc parameter

specifies a metafile. The left and top members of the RECT structure should specify the
window origin, and the right and bottom members should specify the window extents.

hdcFormat Identifies a device context describing the target device for which to format the object.

Returns
The return value is OLE_OK if the function is successful. Otherwise, it is an error value, which may be
one of the following:

OLE_ERROR_ABORT
OLE_ERROR_BLANK
OLE_ERROR_DRAW
OLE_ERROR_MEMORY
OLE_ERROR_OBJECT

Comments
This function returns OLE_ERROR_ABORT if the callback function returns FALSE during drawing.

When the hdc parameter specifies a metafile device context, the rectangle specified by the lprcWBounds
parameter contains the rectangle specified by the lprcBounds parameter. If hdc does not specify a metafile
device context, the lprcWBounds parameter is ignored.

The library may use an object handler to render the object, and this object handler may need information
about the target device. Therefore, the device-context handle specified by the hdcFormat parameter is
required. The lprcBounds parameter identifies the rectangle on the device context (relative to its current
mapping mode) that the object should be mapped onto. This may involve scaling the picture and can be
used by client applications to impose a view scaling between the displayed view and the final printed
image.

An object handler should format an object as if it were to be drawn at the size specified by a call to the
OleSetBounds function for the device context specified by the hdcFormat parameter. Often this formatting
will already have been done by the server application; in this case, the library simply renders the
presentation data with suitable scaling for the required bounding rectangle. If cropping or banding is
required, the device context in which the object is drawn may include a clipping region smaller than the
specified bounding rectangle.

See Also
OleSetBounds

OleEnumFormats (3.1)
#include ole.h

OLECLIPFORMAT OleEnumFormats(lpObject, cfFormat)
LPOLEOBJECT lpObject; /* address of object to query */
OLECLIPFORMAT cfFormat; /
* format from previous function call *
/

The OleEnumFormats function enumerates the data formats that describe a specified object.

Parameter Description
lpObject Points to the object to be queried.
cfFormat Specifies the format returned by the last call to the OleEnumFormats function. For the

first call to this function, this parameter is zero.

Returns
The return value is the next available format if any further formats are available. Otherwise, the return
value is NULL.

Comments
When an application specifies NULL for the cfFormat parameter, the OleEnumFormats function returns
the first available format. Whenever an application specifies a format that was returned by a previous call
to OleEnumFormats, the function returns the next available format, in sequence. When no more formats
are available, the function returns NULL.

See Also
OleGetData

OleEnumObjects (3.1)
#include ole.h

OLESTATUS OleEnumObjects(lhDoc, lplpObject)
LHCLIENTDOC lhDoc; /* document handle */
LPOLEOBJECT FAR* lplpObject; /
* address of pointer to object *
/

The OleEnumObjects function enumerates the objects in a specified document.

Parameter Description
lhDoc Identifies the document for which the objects are enumerated.
lplpObject Points to an object in the document when the function returns. For the first call to this

function, this parameter should point to a NULL object.

Returns
The return value is OLE_OK if the function is successful. Otherwise, it is an error value, which may be
one of the following:

OLE_ERROR_HANDLE
OLE_ERROR_OBJECT

Comments
When an application specifies a NULL object for the lplpObject parameter, the OleEnumObjects function
returns the first object in the document. Whenever an application specifies an object that was returned by a
previous call to OleEnumObjects, the function returns the next object, in sequence. When there are no
more objects in the document, the lplpObject parameter points to a NULL object.

Only objects that have been loaded and not released are enumerated by this function.

See Also
OleDelete, OleRelease

OleEqual (3.1)
#include ole.h

OLESTATUS OleEqual(lpObject1, lpObject2)
LPOLEOBJECT lpObject1; /* address of first object to compare */
LPOLEOBJECT lpObject2; /
* address of second object to compare *
/

The OleEqual function compares two objects for equality.

Parameter Description
lpObject1 Points to the first object to test for equality.
lpObject2 Points to the second object to test for equality.

Returns
The return value is OLE_OK if the specified objects are equal. Otherwise, it is an error value, which may
be one of the following:

OLE_ERROR_OBJECT
OLE_ERROR_NOT_EQUAL

Comments
Embedded objects are equal if their class, item, and native data are identical. Linked objects are equal if
their class, document, and item are identical.

See Also
OleClone, OleQueryOutOfDate

OleExecute (3.1)
#include ole.h

OLESTATUS OleExecute(lpObject, hglbCmds, reserved)
LPOLEOBJECT lpObject; /* address of object receiving DDE commands */
HGLOBAL hglbCmds; /
* handle of memory with commands *
/
UINT reserved; /
* reserved *
/

The OleExecute function sends dynamic data exchange (DDE) execute commands to the server for the
specified object.

Parameter Description
lpObject Points to an object identifying the server to which DDE execute commands are sent.
hglbCmds Identifies the memory containing one or more DDE execute commands.
reserved Reserved; must be zero.

Returns
The return value is OLE_OK if the function is successful. Otherwise, it is an error value, which may be
one of the following:

OLE_BUSY
OLE_ERROR_COMMAND
OLE_ERROR_MEMORY
OLE_ERROR_NOT_OPEN
OLE_ERROR_OBJECT
OLE_ERROR_PROTOCOL
OLE_ERROR_STATIC
OLE_WAIT_FOR_RELEASE

Comments
The client application should call the OleQueryProtocol function, specifying StdExecute, before calling
the OleExecute function. The OleQueryProtocol function succeeds if the server for an object supports the
OleExecute function.

See Also
OleQueryProtocol

OleGetData (3.1)
#include ole.h

OLESTATUS OleGetData(lpObject, cfFormat, lphData)
LPOLEOBJECT lpObject; /* address of object to query */
OLECLIPFORMAT cfFormat; /
* format for retrieved data *
/
HANDLE FAR* lphData; /
* address of memory to contain data *
/

The OleGetData function retrieves data in the requested format from the specified object and supplies the
handle of a memory or graphics device interface (GDI) object containing the data.

Parameter Description
lpObject Points to the object from which data is retrieved.
cfFormat Specifies the format in which data is returned. This parameter can be one of the

predefined clipboard formats or the value returned by the RegisterClipboardFormat
function.

lphData Points to the handle of a memory object that contains the data when the function returns.

Returns
The return value is OLE_OK if the function is successful. Otherwise, it is an error value, which may be
one of the following:

OLE_ERROR_BLANK
OLE_ERROR_FORMAT
OLE_ERROR_OBJECT
OLE_WARN_DELETE_DATA

Comments
If the OleGetData function returns OLE_WARN_DELETE_DATA, the client application owns the data
and should free the memory associated with the data when the client has finished using it. For other return
values, the client should not free the memory or modify the data, because the data is controlled by the
client library. If the application needs the data for long-term use, it should copy the data.

The OleGetData function typically returns OLE_WARN_DELETE_DATA if an object handler generates
data for an object that the client library cannot interpret. In this case, the client application is responsible
for controlling that data.

When the OleGetData function specifies CF_METAFILE or CF_BITMAP, the lphData parameter points
to a GDI object, not a memory object, when the function returns. OleGetData supplies the handle of a
memory object for all other formats.

See Also
OleEnumFormats, OleSetData, RegisterClipboardFormat

OleGetLinkUpdateOptions (3.1)
#include ole.h

OLESTATUS OleGetLinkUpdateOptions(lpObject, lpUpdateOpt)
LPOLEOBJECT lpObject; /* address of object to query */
OLEOPT_UPDATE FAR* lpUpdateOpt; /
* address of update options *
/

The OleGetLinkUpdateOptions function retrieves the link-update options for the presentation of a
specified object.

Parameter Description
lpObject Points to the object to query.
lpUpdateOpt Points to a variable in which the function stores the current value of the link-update

option for the specified object. The link-update option setting may be one of the
following values:

Value Meaning
oleupdate_always Update the linked object whenever possible. This option

supports the Automatic link-update radio button in the
Links dialog box.

oleupdate_oncall Update the linked object only on request from the client
application. This option supports the Manual link-update
radio button in the Links dialog box.

oleupdate_onsave Update the linked object when the source document is
saved by the server.

Returns
The return value is OLE_OK if the function is successful. Otherwise, it is an error value, which may be
one of the following:

OLE_ERROR_OBJECT
OLE_ERROR_STATIC

See Also
OleSetLinkUpdateOptions

OleIsDcMeta (3.1)
#include ole.h

BOOL OleIsDcMeta(hdc)
HDC hdc; /* device-context handle */

The OleIsDcMeta function determines whether the specified device context is a metafile device context.

Parameter Description
hdc Identifies the device context to query.

Returns
The return value is a positive value if the device context is a metafile device context. Otherwise, it is
NULL.

OleLoadFromStream (3.1)
#include ole.h

OLESTATUS OleLoadFromStream(lpStream, lpszProtocol, lpClient, lhClientDoc, lpszObjname,
lplpObject)

LPOLESTREAM lpStream; /* address of stream for object */
LPCSTR lpszProtocol; /
* address of string for protocol name *
/
LPOLECLIENT lpClient; /
* address of client structure *
/
LHCLIENTDOC lhClientDoc; /
* long handle of client document *
/
LPCSTR lpszObjname; /
* address of string for object name *
/
LPOLEOBJECT FAR* lplpObject; /
* address of pointer to object *
/

The OleLoadFromStream function loads an object from the containing document.

Parameter Description
lpStream Points to an OLESTREAM structure that was allocated and initialized by the client

application. The library calls the Get function in the OLESTREAMVTBL structure to
obtain the data for the object.

lpszProtocol Points to a null-terminated string specifying the name of the required protocol.
Currently, this value can be StdFileEditing (the name of the object linking and
embedding protocol) or Static (for uneditable pictures only).

lpClient Points to an OLECLIENT structure allocated and initialized by the client application.
This pointer is used to locate the callback function and is passed in callback
notifications.

lhClientDoc Identifies the client document in which the object is being created.
lpszObjname Points to a null-terminated string specifying the client's name for the object.
lplpObject Points to a variable in which the library stores a pointer to the loaded object.

Returns
The return value is OLE_OK if the function is successful. Otherwise, it is an error value, which may be
one of the following:

OLE_ERROR_HANDLE
OLE_ERROR_NAME
OLE_ERROR_PROTOCOL
OLE_ERROR_STREAM
OLE_WAIT_FOR_RELEASE

Comments
To load an object, the client application needs only the location of that object in a file. A client typically
loads an object only when the object is needed (for example, when it must be displayed).

If an object cannot be loaded when the lpszProtocol parameter specifies StdFileEditing, the application can
call the OleLoadFromStream function again, specifying Static.

If the object is linked and the server and document are open, the library automatically makes the link
between the client and server applications when an application calls OleLoadFromStream.

See Also
OleQuerySize, OleSaveToStream

OleLockServer (3.1)
#include ole.h

OLESTATUS OleLockServer(lpObject, lphServer)
LPOLEOBJECT lpObject; /* address of object */
LHSERVER FAR* lphServer; /
* address of handle of server *
/

The OleLockServer function is called by a client application to keep an open server application in
memory. Keeping the server application in memory allows the client library to use the server application
to open objects quickly.

Parameter Description
lpObject Points to an object the client library uses to identify the open server application to keep

in memory. When the server has been locked, this object can be deleted.
lphServer Points to the handle of the server application when the function returns.

Returns
The return value is OLE_OK if the function is successful. Otherwise, it is an error value, which may be
one of the following:

OLE_ERROR_COMM
OLE_ERROR_LAUNCH
OLE_ERROR_OBJECT

Comments
A client calls OleLockServer to speed the opening of objects when the same server is used for a number of
different objects. Before the client terminates, it must call the OleUnlockServer function to release the
server from memory.

When OleLockServer is called more than once for a given server, even by different client applications, the
server's lock count is increased. Each call to OleUnlockServer decrements the lock count. The server
remains locked until the lock count is zero. If the object identified by the lpObject parameter is deleted
before calling the OleUnlockServer function, OleUnlockServer must still be called to decrement the lock
count.

If necessary, a server can terminate even though a client has called the OleLockServer function.

See Also
OleUnlockServer

OleObjectConvert (3.1)
#include ole.h

OLESTATUS OleObjectConvert(lpObject, lpszProtocol, lpClient, lhClientDoc, lpszObjname,
lplpObject)

LPOLEOBJECT lpObject; /* address of object to convert */
LPCSTR lpszProtocol; /
* address of string for protocol name *
/
LPOLECLIENT lpClient; /
* address of client for new object *
/
LHCLIENTDOC lhClientDoc; /
* long handle of client document *
/
LPCSTR lpszObjname; /
* address of string for object name *
/
LPOLEOBJECT FAR* lplpObject; /
* address of pointer to new object *
/

The OleObjectConvert function creates a new object that supports a specified protocol by converting an
existing object. This function neither deletes nor replaces the original object.

Parameter Description
lpObject Points to the object to convert.
lpszProtocol Points to a null-terminated string specifying the name of the required protocol.

Currently this value can be Static (for uneditable pictures only).
lpClient Points to an OLECLIENT structure for the new object.
lhClientDoc Identifies the client document in which the object is being created.
lpszObjname Points to a null-terminated string specifying the client's name for the object. This name

must be unique with respect to the names of any other objects in the document and
cannot contain a slash mark (/).

lplpObject Points to a variable in which the library stores a pointer to the new object.

Returns
The return value is OLE_OK if the function is successful. Otherwise, it is an error value, which may be
one of the following:

OLE_BUSY
OLE_ERROR_HANDLE
OLE_ERROR_NAME
OLE_ERROR_OBJECT
OLE_ERROR_STATIC

Comments
The only conversion currently supported is that of changing a linked or embedded object to a static object.

See Also
OleClone

OleQueryBounds (3.1)
#include ole.h

OLESTATUS OleQueryBounds(lpObject, lpBounds)
LPOLEOBJECT lpObject; /* address of object to query */
RECT FAR* lpBounds; /
* address of structure for bounding rectangle *
/

The OleQueryBounds function retrieves the extents of the bounding rectangle on the target device for the
specified object. The coordinates are in MM_HIMETRIC units.

Parameter Description
lpObject Points to the object to query.
lpBounds Points to a RECT structure for the extents of the bounding rectangle. The members of

the RECT structure have the following meanings:

Member Meaning
rect.left 0
rect.top 0
rect.right x-extent
rect.bottom y-extent

Returns
The return value is OLE_OK if the function is successful. Otherwise, it is an error value, which may be
one of the following:

OLE_ERROR_BLANK
OLE_ERROR_MEMORY
OLE_ERROR_OBJECT

See Also
OleSetBounds, SetMapMode, RECT

OleQueryClientVersion (3.1)
#include ole.h

DWORD OleQueryClientVersion(void)

The OleQueryClientVersion function retrieves the version number of the client library.

Returns
The return value is a doubleword value. The major version number is in the low-order byte of the low-
order word, and the minor version number is in the high-order byte of the low-order word. The high-order
word is reserved.

See Also
OleQueryServerVersion

OleQueryCreateFromClip (3.1)
#include ole.h

OLESTATUS OleQueryCreateFromClip(lpszProtocol, renderopt, cfFormat)
LPCSTR lpszProtocol; /* address of string for protocol name */
OLEOPT_RENDER renderopt; /
* rendering options *
/
OLECLIPFORMAT cfFormat; /
* format for clipboard data *
/

The OleQueryCreateFromClip function checks whether the object on the clipboard supports the specified
protocol and rendering options.

Parameter Description
lpszProtocol Points to a null-terminated string specifying the name of the protocol needed by the

client. Currently, this value can be StdFileEditing (the name of the object linking and
embedding protocol) or Static (for uneditable pictures only).

renderopt Specifies the client's preference for presentation data for the object. This parameter can
be one of the following values:

Value Meaning
olerender_draw The client calls the OleDraw function, and the library obtains

and manages presentation data.
olerender_format The library obtains and manages the data in the requested

format, as specified by the cfFormat parameter.
olerender_none The client library does not obtain any presentation data and

does not draw the object.
cfFormat Specifies the clipboard format. This parameter is used only when the renderopt

parameter is olerender_format. If the clipboard format is CF_METAFILEPICT,
CF_DIB, or CF_BITMAP, the library manages the data and draws the object. The
library does not support drawing for any other formats.

Returns
The return value is OLE_OK if the function is successful. Otherwise, it is an error value, which may be
one of the following:

OLE_ERROR_FORMAT
OLE_ERROR_PROTOCOL

Comments
The OleQueryCreateFromClip function is typically used to check whether to enable a Paste command.

The olerender_none rendering option is typically used to support hyperlinks. With this option, the client
does not call OleDraw and calls the OleGetData function only for ObjectLink, OwnerLink, and Native
formats.

The olerender_format rendering option allows a client to compute data (instead of painting it), use an
unusual data format, or modify a standard data format. With this option the client does not call OleDraw.
The client calls OleGetData to retrieve data in the specified format.

The olerender_draw rendering option is the most typical option. It is the easiest rendering option for the
client to implement (the client simply calls OleDraw), and it allows the most flexibility. An object handler
can exploit this flexibility to store no presentation data, a private presentation data format, or several
different formats that it can choose among dynamically. Future implementations of object linking and
embedding (OLE) may also exploit the flexibility that is inherent in this option.

See Also
OleCreateFromClip, OleDraw, OleGetData

OleQueryLinkFromClip (3.1)
#include ole.h

OLESTATUS OleQueryLinkFromClip(lpszProtocol, renderopt, cfFormat)
LPCSTR lpszProtocol; /* address of string for protocol name */
OLEOPT_RENDER renderopt; /
* rendering options *
/
OLECLIPFORMAT cfFormat; /
* format for clipboard data *
/

The OleQueryLinkFromClip function checks whether a client application can use the data on the clipboard
to produce a linked object that supports the specified protocol and rendering options.

Parameter Description
lpszProtocol Points to a null-terminated string specifying the name of the protocol needed by the

client. Currently this value can be StdFileEditing (the name of the object linking and
embedding protocol).

renderopt Specifies the client's preference for presentation data for the object. This parameter can
be one of the following values:

Value Meaning
olerender_draw The client calls the OleDraw function, and the library obtains

and manages presentation data.
olerender_format The library obtains and manages the data in the requested

format, as specified by the cfFormat parameter.
olerender_none The client library does not obtain any presentation data and

does not draw the object.
cfFormat Specifies the clipboard format. This parameter is used only when the renderopt

parameter is olerender_format. If this clipboard format is CF_METAFILEPICT,
CF_DIB, or CF_BITMAP, the library manages the data and draws the object. The
library does not support drawing for any other formats.

Returns
The return value is OLE_OK if the function is successful. Otherwise, it is an error value, which may be
one of the following:

OLE_ERROR_FORMAT
OLE_ERROR_PROTOCOL

Comments
The OleQueryLinkFromClip function is typically used to check whether to enable a Paste Link command.

The olerender_none rendering option is typically used to support hyperlinks. With this option, the client
does not call OleDraw and calls the OleGetData function only for ObjectLink, OwnerLink, and Native
formats.

The olerender_format rendering option allows a client to compute data (instead of painting it), use an
unusual data format, or modify a standard data format. With this option, the client does not call OleDraw.
The client calls OleGetData to retrieve data in the specified format.

The olerender_draw rendering option is the most typical option. It is the easiest rendering option for the
client to implement (the client simply calls OleDraw), and it allows the most flexibility. An object handler
can exploit this flexibility to store no presentation data, a private presentation data format, or several
different formats that it can choose among dynamically. Future implementations of object linking and
embedding (OLE) may also exploit the flexibility that is inherent in this option.

See Also
OleCreateLinkFromClip, OleDraw, OleGetData

OleQueryName (3.1)
#include ole.h

OLESTATUS OleQueryName(lpObject, lpszObject, lpwBuffSize)
LPOLEOBJECT lpObject; /* address of object */
LPSTR lpszObject; /*
address of string for object name *
/
UINT FAR* lpwBuffSize; /
* address of word for size of buffer *
/

The OleQueryName function retrieves the name of a specified object.

Parameter Description
lpObject Points to the object whose name is being queried.
lpszObject Points to a character array that contains a null-terminated string. When the function

returns, this string specifies the name of the object.
lpwBuffSize Points to a variable containing the size, in bytes, of the buffer pointed to by the

lpszObject parameter. When the function returns, this value is the number of bytes
copied to the buffer.

Returns
The return value is OLE_OK if the function is successful. Otherwise, it is an error value, which may be
OLE_ERROR_OBJECT.

See Also
OleRename

OleQueryOpen (3.1)
#include ole.h

OLESTATUS OleQueryOpen(lpObject)
LPOLEOBJECT lpObject; /* address of object to query */

The OleQueryOpen function checks whether the specified object is open.

Parameter Description
lpObject Points to the object to query.

Returns
The return value is OLE_OK if the object is open. Otherwise, it is an error value, which may be one of the
following:

OLE_ERROR_COMM
OLE_ERROR_OBJECT
OLE_ERROR_STATIC

See Also
OleActivate

OleQueryOutOfDate (3.1)
#include ole.h

OLESTATUS OleQueryOutOfDate(lpObject)
LPOLEOBJECT lpObject; /* address of object to query */

The OleQueryOutOfDate function checks whether an object is out-of-date.

Parameter Description
lpObject Points to the object to query.

Returns
The return value is OLE_OK if the object is up-to-date. Otherwise, it is an error value, which may be one
of the following:

OLE_ERROR_OBJECT
OLE_ERROR_OUTOFDATE

Comments
The OleQueryOutOfDate function has not been implemented for the current version of object linking and
embedding (OLE). For linked objects, OleQueryOutOfDate always returns OLE_OK.

A linked object might be out-of-date if the document that is the source for the link has been updated. An
embedded object that contains links to other objects might also be out-of-date.

See Also
OleEqual, OleUpdate

OleQueryProtocol (3.1)
#include ole.h

void FAR* OleQueryProtocol(lpobj, lpszProtocol)
LPOLEOBJECT lpobj; /* address of object to query */
LPCSTR lpszProtocol; /
* address of string for protocol to query *
/

The OleQueryProtocol function checks whether an object supports a specified protocol.

Parameter Description
lpobj Points to the object to query.
lpszProtocol Points to a null-terminated string specifying the name of the requested protocol. This

value can be StdFileEditing or StdExecute.

Returns
The return value is a void pointer to an OLEOBJECT structure if the function is successful, or it is NULL
if the object does not support the requested protocol. The library can return OLE_WAIT_FOR_RELEASE
when an application calls this function.

Comments
The OleQueryProtocol function queries whether the specified protocol is supported and returns a modified
object pointer that allows access to the function table for the protocol. This modified object pointer points
to a structure that has the same form as the OLEOBJECT structure; the new structure also points to a table
of functions and may contain additional state information. The new pointer does not point to a different
object--if the object is deleted, secondary pointers become invalid. If a protocol includes delete functions,
calling a delete function invalidates all pointers to that object.

A client application typically calls OleQueryProtocol, specifying StdExecute for the lpszProtocol
parameter, before calling the OleExecute function. This allows the client application to check whether the
server for an object supports dynamic data exchange (DDE) execute commands.

See Also
OleExecute

OleQueryReleaseError (3.1)
#include ole.h

OLESTATUS OleQueryReleaseError(lpobj)
LPOLEOBJECT lpobj; /* address of object to query */

The OleQueryReleaseError function checks the error value for an asynchronous operation on an object.

Parameter Description
lpobj Points to an object for which the error value is to be queried.

Returns
The return value, if the function is successful, is either OLE_OK if the asynchronous operation completed
successfully or the error value for that operation. If the pointer passed in the lpobj parameter is invalid, the
function returns OLE_ERROR_OBJECT.

Comments
A client application receives the OLE_RELEASE notification when an asynchronous operation has
terminated. The client should then call OleQueryReleaseError to check whether the operation has
terminated successfully or with an error value.

See Also
OleQueryReleaseMethod, OleQueryReleaseStatus

OleQueryReleaseMethod (3.1)
#include ole.h

OLE_RELEASE_METHOD OleQueryReleaseMethod(lpobj)
LPOLEOBJECT lpobj; /* address of object to query */

The OleQueryReleaseMethod function finds out the operation that finished for the specified object.

Parameter Description
lpobj Points to an object for which the operation is to be queried.

Returns
The return value indicates the server operation (method) that finished. It can be one of the following
values:

Value Server operation
OLE_ACTIVATE Activate
OLE_CLOSE Close
OLE_COPYFROMLNK CopyFromLink (autoreconnect)
OLE_CREATE Create
OLE_CREATEFROMFILE CreateFromFile
OLE_CREATEFROMTEMPLATE CreateFromTemplate
OLE_CREATEINVISIBLE CreateInvisible
OLE_CREATELINKFROMFILE CreateLinkFromFile
OLE_DELETE Object Delete
OLE_EMBPASTE Paste and Update
OLE_LNKPASTE PasteLink (autoreconnect)
OLE_LOADFROMSTREAM LoadFromStream (autoreconnect)
OLE_NONE No operation active
OLE_OTHER Other miscellaneous asynchronous operations
OLE_RECONNECT Reconnect
OLE_REQUESTDATA OleRequestData
OLE_RUN Run
OLE_SERVERUNLAUNCH Server is stopping
OLE_SETDATA OleSetData
OLE_SETUPDATEOPTIONS Setting update options
OLE_SHOW Show
OLE_UPDATE Update

If the pointer passed in the lpobj parameter is invalid, the function returns OLE_ERROR_OBJECT.

Comments
A client application receives the OLE_RELEASE notification when an asynchronous operation has ended.
The client can then call OleQueryReleaseMethod to check which operation caused the library to send the
OLE_RELEASE notification. The client calls OleQueryReleaseError to determine whether the operation
terminated successfully or with an error value.

See Also
OleQueryReleaseError, OleQueryReleaseStatus

OleQueryReleaseStatus (3.1)
#include ole.h

OLESTATUS OleQueryReleaseStatus(lpobj)
LPOLEOBJECT lpobj; /* address of object to query */

The OleQueryReleaseStatus function determines whether an operation has finished for the specified
object.

Parameter Description
lpobj Points to an object for which the operation is queried.

Returns
The return value, if the function is successful, is either OLE_BUSY if an operation is in progress or
OLE_OK. If the pointer passed in the lpobj parameter is invalid, the function returns
OLE_ERROR_OBJECT.

See Also
OleQueryReleaseError, OleQueryReleaseMethod

OleQueryServerVersion (3.1)
#include ole.h

DWORD OleQueryServerVersion(void)

The OleQueryServerVersion function retrieves the version number of the server library.

Returns
The return value is a doubleword value. The major version number is in the low-order byte of the low-
order word, and the minor version number is in the high-order byte of the low-order word. The high-order
word is reserved.

See Also
OleQueryClientVersion, HIBYTE, LOBYTE

OleQuerySize (3.1)
#include ole.h

OLESTATUS OleQuerySize(lpObject, pdwSize)
LPOLEOBJECT lpObject; /* address of object to query */
DWORD FAR* pdwSize; /*
address of size of object *
/

The OleQuerySize function retrieves the size of the specified object.

Parameter Description
lpObject Points to the object to query.
pdwSize Points to a variable for the size of the object. This variable contains the size of the object

when the function returns.

Returns
The return value is OLE_OK if the function is successful. Otherwise, it is an error value, which may be
one of the following:

OLE_ERROR_BLANK
OLE_ERROR_MEMORY
OLE_ERROR_OBJECT

See Also
OleLoadFromStream

OleQueryType (3.1)
#include ole.h

OLESTATUS OleQueryType(lpObject, lpType)
LPOLEOBJECT lpObject; /* address of object to query */
LONG FAR* lpType; /*
address of type of object *
/

The OleQueryType function checks whether a specified object is embedded, linked, or static.

Parameter Description
lpObject Points to the object for which the type is to be queried.
lpType Points to a long variable that contains the type of the object when the function returns.

This parameter can be one of the following values:

Value Meaning
OT_EMBEDDED Object is embedded.
OT_LINK Object is a link.
OT_STATIC Object is a static picture.

Returns
The return value is OLE_OK if the function is successful. Otherwise, it is an error value, which may be
one of the following:

OLE_ERROR_GENERIC
OLE_ERROR_OBJECT

See Also
OleEnumFormats

OleReconnect (3.1)
#include ole.h

OLESTATUS OleReconnect(lpObject)
LPOLEOBJECT lpObject; /* address of object to reconnect to */

The OleReconnect function reestablishes a link to an open linked object. If the specified object is not open,
this function does not open it.

Parameter Description
lpObject Points to the object to reconnect to.

Returns
The return value is OLE_OK if the function is successful. Otherwise, it is an error value, which may be
one of the following:

OLE_BUSY
OLE_ERROR_NOT_LINK
OLE_ERROR_OBJECT
OLE_ERROR_STATIC
OLE_WAIT_FOR_RELEASE

Comments
A client application can use OleReconnect to keep the presentation for a linked object up-to-date.

See Also
OleActivate, OleClose, OleUpdate

OleRegisterClientDoc (3.1)
#include ole.h

OLESTATUS OleRegisterClientDoc(lpszClass, lpszDoc, reserved, lplhDoc)
LPCSTR lpszClass; /* address of string for class name */
LPCSTR lpszDoc; /
* address of string for document name *
/
LONG reserved; /
* reserved *
/
LHCLIENTDOC FAR* lplhDoc; /
* address of handle of document *
/

The OleRegisterClientDoc function registers an open client document with the library and returns the
handle of that document.

Parameter Description
lpszClass Points to a null-terminated string specifying the class of the client document.
lpszDoc Points to a null-terminated string specifying the location of the client document. (This

value should be a fully qualified path.)
reserved Reserved. Must be zero.
lplhDoc Points to the handle of the client document when the function returns. This handle is

used to identify the document in other document-management functions.

Returns
The return value is OLE_OK if the function is successful. Otherwise, it is an error value, which may be
one of the following:

OLE_ERROR_ALREADY_REGISTERED
OLE_ERROR_MEMORY
OLE_ERROR_NAME

Comments
When a document being copied onto the clipboard exists only because the client application is copying
Native data that contains objects, the name specified in the lpszDoc parameter must be Clipboard.

Client applications should register open documents with the library and notify the library when a
document is renamed, closed, saved, or restored to a changed state.

See Also
OleRenameClientDoc, OleRevertClientDoc, OleRevokeClientDoc, OleSavedClientDoc

OleRegisterServerDoc (3.1)
#include ole.h

OLESTATUS OleRegisterServerDoc(lhsrvr, lpszDocName, lpdoc, lplhdoc)
LHSERVER lhsrvr; /* server handle */
LPCSTR lpszDocName; /
* address of string for document name *
/
LPOLESERVERDOC lpdoc; /
* address of OLESERVERDOC structure *
/
LHSERVERDOC FAR* lplhdoc; /
* handle of registered document *
/

The OleRegisterServerDoc function registers a document with the server library in case other client
applications have links to it. A server application uses this function when the server is started with the /
Embedding filename option or when it creates or opens a document that is not requested by the library.

Parameter Description
lhsrvr Identifies the server. Server applications obtain this handle by calling the

OleRegisterServer function.
lpszDocName Points to a null-terminated string specifying the permanent name for the document.

This parameter should be a fully qualified path.
lpdoc Points to an OLESERVERDOC structure allocated and initialized by the server

application.
lplhdoc Points to a handle that will identify the document. This parameter points to the handle

when the function returns.

Returns
If the function is successful, the return value is OLE_OK. Otherwise, it is an error value, which may be
one of the following:

OLE_ERROR_ADDRESS
OLE_ERROR_HANDLE
OLE_ERROR_MEMORY

Comments
If the document was created or opened in response to a request from the server library, the server should
not register the document by using OleRegisterServerDoc. Instead, the server should return a pointer to the
OLESERVERDOC structure through the parameter to the relevant function.

See Also
OleRegisterServer, OleRevokeServerDoc

OleRegisterServer (3.1)
#include ole.h

OLESTATUS OleRegisterServer(lpszClass, lpsrvr, lplhserver, hinst, srvruse)
LPCSTR lpszClass; /* address of string for class name */
LPOLESERVER lpsrvr; /
* address of OLESERVER structure *
/
LHSERVER FAR* lplhserver; /
* address of server handle *
/
HINSTANCE hinst; /
* instance handle *
/
OLE_SERVER_USE srvruse; /
* single or multiple instances *
/

The OleRegisterServer function registers the specified server, class name, and instance with the server
library.

Parameter Description
lpszClass Points to a null-terminated string specifying the class name being registered.
lpsrvr Points to an OLESERVER structure allocated and initialized by the server application.
lplhserver Points to a variable of type LHSERVER in which the library stores the handle of the

server. This handle is used in such functions as OleRegisterServerDoc and
OleRevokeServer.

hinst Identifies the instance of the server application. This handle is used to ensure that clients
connect to the correct instance of a server application.

srvruse Specifies whether the server uses a single instance or multiple instances to support
multiple objects. This value must be either OLE_SERVER_SINGLE or
OLE_SERVER_MULTI.

Returns
The return value is OLE_OK if the function is successful. Otherwise, it is an error value, which may be
one of the following:

OLE_ERROR_CLASS
OLE_ERROR_MEMORY
OLE_ERROR_PROTECT_ONLY

Comments
When the server application starts, it creates an OLESERVER structure and calls the OleRegisterServer
function. Servers that support several class names can allocate a structure for each or reuse the same
structure. The class name is passed to server-application functions that are called through the library, so
that servers supporting more than one class can check which class is being requested.

The srvruse parameter is used when the libraries open an object. When OLE_SERVER_MULTI is
specified for this parameter and all current instances are already editing an object, a new instance of the
server is started. Servers that support the multiple document interface (MDI) typically specify
OLE_SERVER_SINGLE.

See Also
OleRegisterServerDoc, OleRevokeServer

OleRelease (3.1)
#include ole.h

OLESTATUS OleRelease(lpObject)
LPOLEOBJECT lpObject; /* address of object to release */

The OleRelease function releases an object from memory and closes it if it was open. This function does
not indicate that the object has been deleted from the client document.

Parameter Description
lpObject Points to the object to release.

Returns
If the function is successful, the return value is OLE_OK. Otherwise, it is an error value, which may be
one of the following:

OLE_BUSY
OLE_ERROR_OBJECT
OLE_WAIT_FOR_RELEASE

Comments
The OleRelease function should be called for all objects when closing the client document.

See Also
OleDelete

OleRename (3.1)
#include ole.h

OLESTATUS OleRename(lpObject, lpszNewname)
LPOLEOBJECT lpObject; /* address of object being renamed */
LPCSTR lpszNewname; /
* address of string for new object name *
/

The OleRename function renames an object.

Parameter Description
lpObject Points to the object that is being renamed.
lpszNewname Points to a null-terminated string specifying the new name of the object.

Returns
The return value is OLE_OK if the function is successful. Otherwise, it is an error value, which may be
OLE_ERROR_OBJECT.

Comments
Object names need not be seen by the user. They must be unique within the containing document and must
be preserved when the document is saved.

See Also
OleQueryName

OleRenameClientDoc (3.1)
#include ole.h

OLESTATUS OleRenameClientDoc(lhClientDoc, lpszNewDocname)
LHCLIENTDOC lhClientDoc; /* handle of client document */
LPCSTR lpszNewDocname; /
* address of string for new document name *
/

The OleRenameClientDoc function informs the client library that a document has been renamed. A client
application calls this function when a document name has changed--for example, when the user chooses
the Save or Save As command from the File menu.

Parameter Description
lhClientDoc Identifies the document that has been renamed.
lpszNewDocname Points to a null-terminated string specifying the new name of the document.

Returns
The return value is OLE_OK if the function is successful. Otherwise, it is an error value, which may be
OLE_ERROR_HANDLE.

Comments
Client applications should register open documents with the library and notify the library when a
document is renamed, closed, saved, or restored to a changed state.

See Also
OleRegisterClientDoc, OleRevertClientDoc, OleRevokeClientDoc, OleSavedClientDoc

OleRenameServerDoc (3.1)
#include ole.h

OLESTATUS OleRenameServerDoc(lhDoc, lpszDocName)
LHSERVERDOC lhDoc; /* handle of document */
LPCSTR lpszDocName; /
* address of string for path and filename *
/

The OleRenameServerDoc function informs the server library that a document has been renamed.

Parameter Description
lhDoc Identifies the document that has been renamed.
lpszDocName Points to a null-terminated string specifying the new name of the document. This

parameter is typically a fully qualified path.

Returns
The return value is OLE_OK if the function is successful. Otherwise, it is an error value, which may be
one of the following:

OLE_ERROR_HANDLE
OLE_ERROR_MEMORY

Comments
The OleRenameServerDoc function has the same effect as sending the OLE_RENAMED notification to
the client application's callback function. The server application calls this function when it renames a
document to which the active links need to be reconnected or when the user chooses the Save As
command from the File menu while working with an embedded object.

Server applications should register open documents with the server library and notify the library when a
document is renamed, closed, saved, or restored to a changed state.

See Also
OleRegisterServerDoc, OleRevertServerDoc, OleRevokeServerDoc, OleSavedServerDoc

OleRequestData (3.1)
#include ole.h

OLESTATUS OleRequestData(lpObject, cfFormat)
LPOLEOBJECT lpObject; /* address of object to query */
OLECLIPFORMAT cfFormat; /
* format for retrieved data *
/

The OleRequestData function requests the library to retrieve data in a specified format from a server.

Parameter Description
lpObject Points to the object that is associated with the server from which data is to be retrieved.
cfFormat Specifies the format in which data is to be returned. This parameter can be one of the

predefined clipboard formats or the value returned by the RegisterClipboardFormat
function.

Returns
The return value is OLE_OK if the function is successful. Otherwise, it is an error value, which may be
one of the following:

OLE_BUSY
OLE_ERROR_NOT_OPEN
OLE_ERROR_OBJECT
OLE_ERROR_STATIC
OLE_WAIT_FOR_RELEASE

Comments
The client application should be connected to the server application when the client calls the
OleRequestData function. When the client receives the OLE_RELEASE notification, it can retrieve the
data from the object by using the OleGetData function or query the data by using such functions as
OleQueryBounds.

If the requested data format is the same as the presentation data for the object, the library manages the data
and updates the presentation.

The OleRequestData function returns OLE_WAIT_FOR_RELEASE if the server is busy. In this case, the
application should continue to dispatch messages until it receives a callback notification with the
OLE_RELEASE argument.

See Also
OleEnumFormats, OleGetData, OleSetData, RegisterClipboardFormat

OleRevertClientDoc (3.1)
#include ole.h

OLESTATUS OleRevertClientDoc(lhClientDoc)
LHCLIENTDOC lhClientDoc; /* handle of client document */

The OleRevertClientDoc function informs the library that a document has been restored to a previously
saved condition.

Parameter Description
lhClientDoc Identifies the document that has been restored to its saved state.

Returns
The return value is OLE_OK if the function is successful. Otherwise, it is an error value, which may be
OLE_ERROR_HANDLE.

Comments
A client application should call the OleRevertClientDoc function when it reloads a document without
saving changes to the document.

Client applications should register open documents with the library and notify the library when a
document is renamed, closed, saved, or restored to a saved state.

See Also
OleRegisterClientDoc, OleRenameClientDoc, OleRevokeClientDoc, OleSavedClientDoc

OleRevertServerDoc (3.1)
#include ole.h

OLESTATUS OleRevertServerDoc(lhDoc)
LHSERVERDOC lhDoc; /* handle of document */

The OleRevertServerDoc function informs the server library that the server has restored a document to its
saved state without closing it.

Parameter Description
lhDoc Identifies the document that has been restored to its saved state.

Returns
The return value is OLE_OK if the function is successful. Otherwise, it is an error value, which may be
OLE_ERROR_HANDLE.

Comments
Server applications should register open documents with the server library and notify the library when a
document is renamed, closed, saved, or restored to a saved state.

See Also
OleRegisterServerDoc, OleRenameServerDoc, OleRevokeServerDoc, OleSavedServerDoc

OleRevokeClientDoc (3.1)
#include ole.h

OLESTATUS OleRevokeClientDoc(lhClientDoc)
LHCLIENTDOC lhClientDoc; /* handle of client document */

The OleRevokeClientDoc function informs the client library that a document is no longer open.

Parameter Description
lhClientDoc Identifies the document that is no longer open. This handle is invalid following the call

to OleRevokeClientDoc.

Returns
The return value is OLE_OK if the function is successful. Otherwise, it is an error value, which may be
one of the following:

OLE_ERROR_HANDLE
OLE_ERROR_NOT_EMPTY

Comments
The client application should delete all the objects in a document before calling OleRevokeClientDoc.

Client applications should register open documents with the library and notify the library when a
document is renamed, closed, saved, or restored to a changed state.

See Also
OleRegisterClientDoc, OleRenameClientDoc, OleRevertClientDoc, OleSavedClientDoc

OleRevokeServerDoc (3.1)
#include ole.h

OLESTATUS OleRevokeServerDoc(lhdoc)
LHSERVERDOC lhdoc; /* document handle */

The OleRevokeServerDoc function revokes the specified document. A server application calls this
function when a registered document is being closed or otherwise made unavailable to client applications.

Parameter Description
lhdoc Identifies the document to revoke. This handle was returned by a call to the

OleRegisterServerDoc function or was associated with a document by using one of the
server-supplied functions that create documents.

Returns
The return value is OLE_OK if the function is successful. Otherwise, it is an error value, which may be
one of the following:

OLE_ERROR_HANDLE
OLE_WAIT_FOR_RELEASE

Comments
If this function returns OLE_WAIT_FOR_RELEASE, the server application should not free the
OLESERVERDOC structure or exit until the library calls the server's Release function.

See Also
OleRegisterServerDoc, OleRevokeObject, OleRevokeServer, OLESERVERDOC

OleRevokeObject (3.1)
#include ole.h

OLESTATUS OleRevokeObject(lpClient)
LPOLECLIENT lpClient; /* address of OLECLIENT structure */

The OleRevokeObject function revokes access to an object. A server application typically calls this
function when the user destroys an object.

Parameter Description
lpClient Points to the OLECLIENT structure associated with the object being revoked.

Returns
The return value is OLE_OK if the function is successful. Otherwise, it is an error value.

See Also
OleRevokeServer, OleRevokeServerDoc

OleRevokeServer (3.1)
#include ole.h

OLESTATUS OleRevokeServer(lhServer)
LHSERVER lhServer; /* server handle */

The OleRevokeServer function is called by a server application to close any registered documents.

Parameter Description
lhServer Identifies the server to revoke. A server application obtains this handle in a call to the

OleRegisterServer function.

Returns
The return value is OLE_OK if the function is successful. Otherwise, it is an error value, which may be
one of the following:

OLE_ERROR_HANDLE
OLE_WAIT_FOR_RELEASE

Comments
The OleRevokeServer function returns OLE_WAIT_FOR_RELEASE if communications between clients
and the server are in the process of terminating. In this case, the server application should continue to send
and dispatch messages until the library calls the server's Release function.

See Also
OleRegisterServer, OleRevokeObject, OleRevokeServerDoc

OleSavedClientDoc (3.1)
#include ole.h

OLESTATUS OleSavedClientDoc(lhClientDoc)
LHCLIENTDOC lhClientDoc; /* handle of client document */

The OleSavedClientDoc function informs the client library that a document has been saved.

Parameter Description
lhClientDoc Identifies the document that has been saved.

Returns
The return value is OLE_OK if the function is successful. Otherwise, it is an error value, which may be
OLE_ERROR_HANDLE.

Comments
Client applications should register open documents with the client library and notify the library when a
document is renamed, closed, saved, or restored to a saved state.

See Also
OleRegisterClientDoc, OleRenameClientDoc, OleRevertClientDoc, OleRevokeClientDoc

OleSavedServerDoc (3.1)
#include ole.h

OLESTATUS OleSavedServerDoc(lhDoc)
LHSERVERDOC lhDoc; /* handle of document */

The OleSavedServerDoc function informs the server library that a document has been saved.

Parameter Description
lhDoc Identifies the document that has been saved.

Returns
The return value is OLE_OK if the function is successful. Otherwise, it is an error value, which may be
one of the following:

OLE_ERROR_CANT_UPDATE_CLIENT
OLE_ERROR_HANDLE

Comments
The OleSavedServerDoc function has the same effect as sending the OLE_SAVED notification to the
client application's callback function. The server application calls this function when saving a document or
when updating an embedded object without closing the document.

When a server application receives the OLE_ERROR_CANT_UPDATE_CLIENT error value, it should
display a message box indicating that the user cannot update the document until the server terminates.

Server applications should register open documents with the server library and notify the library when a
document is renamed, closed, saved, or restored to a saved state.

See Also
OleRegisterServerDoc, OleRenameServerDoc, OleRevertServerDoc, OleRevokeServerDoc

OleSaveToStream (3.1)
#include ole.h

OLESTATUS OleSaveToStream(lpObject, lpStream)
LPOLEOBJECT lpObject; /* address of object to save */
LPOLESTREAM lpStream; /
* address of OLESTREAM structure *
/

The OleSaveToStream function saves an object to the stream.

Parameter Description
lpObject Points to the object to be saved to the stream.
lpStream Points to an OLESTREAM structure allocated and initialized by the client application.

The library calls the Put function in the OLESTREAM structure to store the data from
the object.

Returns
The return value is OLE_OK if the function is successful. Otherwise, it is an error value, which may be
one of the following:

OLE_ERROR_BLANK
OLE_ERROR_MEMORY
OLE_ERROR_OBJECT
OLE_ERROR_STREAM

Comments
An application can use the OleQuerySize function to find the number of bytes to allocate for the object.

See Also
OleLoadFromStream, OleQuerySize

OleSetBounds (3.1)
#include ole.h

OLESTATUS OleSetBounds(lpObject, lprcBound)
LPOLEOBJECT lpObject; /* address of object */
RECT FAR* lprcBound; /
* address of structure for bounding rectangle *
/

The OleSetBounds function sets the coordinates of the bounding rectangle for the specified object on the
target device.

Parameter Description
lpObject Points to the object for which the bounding rectangle is set.
lprcBound Points to a RECT structure containing the coordinates of the bounding rectangle. The

coordinates are specified in MM_HIMETRIC units. Neither the width nor height of an
object should exceed 32,767 MM_HIMETRIC units.

Returns
The return value is OLE_OK if the function is successful. Otherwise, it is an error value, which may be
one of the following:

OLE_BUSY
OLE_ERROR_MEMORY
OLE_ERROR_OBJECT
OLE_WAIT_FOR_RELEASE

The OleSetBounds function returns OLE_ERROR_OBJECT when it is called for a linked object.

Comments
The OleSetBounds function is ignored for linked objects, because the size of a linked object is determined
by the source document for the link.

A client application uses OleSetBounds to change the bounding rectangle. The client does not need to call
OleSetBounds every time a server is opened.

The bounding rectangle specified in the OleSetBounds function does not necessarily have the same
dimensions as the rectangle specified in the call to the OleDraw function. These dimensions may be
different because of the view scaling used by the container application. An application can use
OleSetBounds to cause the server to reformat the picture to fit the rectangle more closely.

In the MM_HIMETRIC mapping mode, the positive y-direction is up.

See Also
OleDraw, OleQueryBounds, SetMapMode, RECT

OleSetColorScheme (3.1)
#include ole.h

OLESTATUS OleSetColorScheme(lpObject, lpPalette)
LPOLEOBJECT lpObject; /* address of object */
const LOGPALETTE FAR* lpPalette; /
* address of preferred palette *
/

The OleSetColorScheme function specifies the palette a client application recommends be used when the
server application edits the specified object. The server application can ignore the recommended palette.

Parameter Description
lpObject Points to an OLEOBJECT structure describing the object for which a palette is

recommended.
lpPalette Points to a LOGPALETTE structure specifying the recommended palette.

Returns
The return value is OLE_OK if the function is successful. Otherwise, it is an error value, which may be
one of the following:

OLE_BUSY
OLE_ERROR_COMM
OLE_ERROR_MEMORY
OLE_ERROR_OBJECT
OLE_ERROR_PALETTE
OLE_ERROR_STATIC
OLE_WAIT_FOR_RELEASE

The OleSetColorScheme function returns OLE_ERROR_OBJECT when it is called for a linked object.

Comments
A client application uses OleSetColorScheme to change the color scheme. The client does not need to call
OleSetColorScheme every time a server is opened.

The first palette entry in the LOGPALETTE structure specifies the foreground color recommended by the
client application. The second palette entry specifies the background color. The first half of the remaining
palette entries are fill colors, and the second half are colors for lines and text.

Client applications should specify an even number of palette entries. When there is an uneven number of
entries, the server interprets the odd entry as a fill color; that is, if there are five entries, three are
interpreted as fill colors and two as line and text colors.

When server applications render metafiles, they should use the suggested palette.

See Also
LOGPALETTE

OleSetData (3.1)
#include ole.h

OLESTATUS OleSetData(lpObject, cfFormat, hData)
LPOLEOBJECT lpObject; /* address of object */
OLECLIPFORMAT cfFormat; /
* format of data to send *
/
HANDLE hData; /
* memory containing data *
/

The OleSetData function sends data in the specified format to the server associated with a specified object.

Parameter Description
lpObject Points to an object specifying the server to which data is to be sent.
cfFormat Specifies the format of the data.
hData Identifies a memory object containing the data in the specified format.

Returns
The return value is OLE_OK if the function is successful. Otherwise, it is an error value, which may be
one of the following:

OLE_BUSY
OLE_ERROR_BLANK
OLE_ERROR_MEMORY
OLE_ERROR_NOT_OPEN
OLE_ERROR_OBJECT
OLE_WAIT_FOR_RELEASE

If the specified object cannot accept the data, the function returns an error value. If the server is not open
and the requested data format is different from the format of the presentation data, the return value is
OLE_ERROR_NOT_OPEN.

See Also
OleGetData, OleRequestData

OleSetHostNames (3.1)
#include ole.h

OLESTATUS OleSetHostNames(lpObject, lpszClient, lpszClientObj)
LPOLEOBJECT lpObject; /* address of object */
LPCSTR lpszClient; /
* address of string with name of client app *
/
LPCSTR lpszClientObj; /
* address of string with client's name for object *
/

The OleSetHostNames function specifies the name of the client application and the client's name for the
specified object. This information is used in window titles when the object is being edited in the server
application.

Parameter Description
lpObject Points to the object for which a name is to be set.
lpszClient Points to a null-terminated string specifying the name of the client application.
lpszClientObj Points to a null-terminated string specifying the client's name for the object.

Returns
The return value is OLE_OK if the function is successful. Otherwise, it is an error value, which may be
one of the following:

OLE_BUSY
OLE_ERROR_MEMORY
OLE_ERROR_OBJECT
OLE_WAIT_FOR_RELEASE

The OleSetHostNames function returns OLE_ERROR_OBJECT when it is called for a linked object.

Comments
When a server application is started for editing of an embedded object, it displays in its title bar the string
specified in the lpszClientObj parameter. The object name specified in this string should be the name of
the client document containing the object.

A client application uses OleSetHostNames to set the name of an object the first time that object is
activated or to change the name of an object. The client does not need to call OleSetHostNames every time
a server is opened.

OleSetLinkUpdateOptions (3.1)
#include ole.h

OLESTATUS OleSetLinkUpdateOptions(lpObject, UpdateOpt)
LPOLEOBJECT lpObject; /* address of object */
OLEOPT_UPDATE UpdateOpt; /
* link-update options *
/

The OleSetLinkUpdateOptions function sets the link-update options for the presentation of the specified
object.

Parameter Description
lpObject Points to the object for which the link-update option is set.
UpdateOpt Specifies the link-update option for the specified object. This parameter can be one of

the following values:

Option Description
oleupdate_always Update the linked object whenever possible. This option

supports the Automatic link-update radio button in the
Links dialog box.

oleupdate_oncall Update the linked object only on request from the client
application. This option supports the Manual link-update
radio button in the Links dialog box.

oleupdate_onsave Update the linked object when the source document is
saved by the server.

Returns
The return value is OLE_OK if the function is successful. Otherwise, it is an error value, which may be
one of the following:

OLE_BUSY
OLE_ERROR_OBJECT
OLE_ERROR_OPTION
OLE_ERROR_STATIC
OLE_WAIT_FOR_RELEASE

See Also
OleGetLinkUpdateOptions

OleSetTargetDevice (3.1)
#include ole.h

OLESTATUS OleSetTargetDevice(lpObject, hotd)
LPOLEOBJECT lpObject; /* address of object */
HGLOBAL hotd; /
* handle of OLETARGETDEVICE structure *
/

The OleSetTargetDevice function specifies the target output device for an object.

Parameter Description
lpObject Points to the object for which a target device is specified.
hotd Identifies an OLETARGETDEVICE structure that describes the target device for the

object.

Returns
The return value is OLE_OK if the function is successful. Otherwise, it is an error value, which may be
one of the following:

OLE_BUSY
OLE_ERROR_MEMORY
OLE_ERROR_OBJECT
OLE_ERROR_STATIC
OLE_WAIT_FOR_RELEASE

Comments
The OleSetTargetDevice function allows a linked or embedded object to be formatted correctly for a target
device, even when the object is rendered on a different device. A client application should call this
function whenever the target device changes, so that servers can be notified to change the rendering of the
object, if necessary. The client application should call the OleUpdate function to ensure that the
information is sent to the server, so that the server can make the necessary changes to the object's
presentation. The client application should call the library to redraw the object if it receives a notification
from the server that the object has changed.

A client application uses the OleSetTargetDevice function to change the target device. The client does not
need to call OleSetTargetDevice every time a server is opened.

See Also
OLETARGETDEVICE

OleUnblockServer (3.1)
#include ole.h

OLESTATUS OleUnblockServer(lhSrvr, lpfRequest)
LHSERVER lhSrvr; /* handle of server */
BOOL FAR* lpfRequest; /
* address of flag for more requests *
/

The OleUnblockServer function processes a request from a queue created by calling the OleBlockServer
function.

Parameter Description
lhSrvr Identifies the server for which requests were queued.
lpfRequest Points to a flag indicating whether there are further requests in the queue. If there are

further requests in the queue, this flag is TRUE when the function returns. Otherwise, it
is FALSE when the function returns.

Returns
The return value is OLE_OK if the function is successful. Otherwise, it is an error value, which may be
one of the following:

OLE_ERROR_HANDLE
OLE_ERROR_MEMORY

Comments
A server application can use the OleBlockServer and OleUnblockServer functions to control when the
server library processes requests from client applications. It is best to use OleUnblockServer outside the
GetMessage function in a message loop, unblocking all blocked messages before getting the next message.
Unblocking message loops should not be run inside server-defined functions that are called by the library.

See Also
OleBlockServer

OleUnlockServer (3.1)
#include ole.h

OLESTATUS OleUnlockServer(hServer)
LHSERVER hServer; /* handle of server to unlock */

The OleUnlockServer function unlocks a server that was locked by the OleLockServer function.

Parameter Description
hServer Identifies the server to release from memory. This handle was retrieved by a call to the

OleLockServer function.

Returns
The return value is OLE_OK if the function is successful. Otherwise, it is an error value, which may be
one of the following:

OLE_ERROR_HANDLE
OLE_WAIT_FOR_RELEASE

Comments
When the OleLockServer function is called more than once for a given server, the server's lock count is
incremented. Each call to OleUnlockServer decrements the lock count. The server remains locked until the
lock count is zero.

If the OleUnlockServer function returns OLE_WAIT_FOR_RELEASE, the application should call the
OleQueryReleaseStatus function to determine whether the unlocking process has finished. In the call to
OleQueryReleaseStatus, the application can cast the server handle to a long pointer to an object linking
and embedding (OLE) object (LPOLEOBJECT):

OleQueryReleaseStatus((LPOLEOBJECT) lhserver);
When OleQueryReleaseStatus no longer returns OLE_BUSY, the server has been unlocked.

See Also
OleLockServer, OleQueryReleaseStatus

OleUpdate (3.1)
#include ole.h

OLESTATUS OleUpdate(lpObject)
LPOLEOBJECT lpObject; /* address of object */

The OleUpdate function updates the specified object. This function updates the presentation of the object
and ensures that the object is up-to-date with respect to any linked objects it contains.

Parameter Description
lpObject Points to the object to be updated.

Returns
The return value is OLE_OK if the function is successful. Otherwise, it is an error value, which may be
one of the following:

OLE_BUSY
OLE_ERROR_OBJECT
OLE_ERROR_STATIC
OLE_WAIT_FOR_RELEASE

See Also
OleQueryOutOfDate

OLE functions (3.1)
OleActivate Activates an object
OleBlockServer Queues incoming requests for the server
OleClone Makes a copy of an object
OleClose Closes a specified open object
OleCopyFromLink Makes an embedded copy of a linked object
OleCopyToClipboard Puts the specified object on the clipboard
OleCreate Creates an embedded object of a specified class
OleCreateFromClip Creates an object from the clipboard
OleCreateFromFile Creates an embedded object from a file
OleCreateFromTemplate Creates an object from a template
OleCreateInvisible Creates an object without displaying it
OleCreateLinkFromClip Creates link to object from the clipboard
OleCreateLinkFromFile Creates a link to an object in a file
OleDelete Deletes an object and frees associated memory
OleDraw Draws a specified object into a device context
OleEnumFormats Enumerates data formats for an object
OleEnumObjects Enumerates objects in a document
OleEqual Compares two objects for equality
OleExecute Sends DDE execute commands to a server
OleGetData Retrieves data from an object in a specified format
OleGetLinkUpdateOptions Retrieves link-update options for an object
OleIsDcMeta Identifies a metafile device context
OleLoadFromStream Loads an object from the containing document
OleLockServer Keeps an open server application in memory
OleObjectConvert Creates a new object using a specified protocol
OleQueryBounds Retrieves a bounding rectangle for the object
OleQueryClientVersion Retrieves the version number of a client library
OleQueryCreateFromClip Retrieves presentation data for a clipboard object
OleQueryLinkFromClip Retrieves link data for a clipboard object
OleQueryName Retrieves the name of an object
OleQueryOpen Determines whether an object is open
OleQueryOutOfDate Determines whether an object is out-of-date
OleQueryProtocol Determines whether an object supports a protocol
OleQueryReleaseError Determines the status of a released operation
OleQueryReleaseMethod Determines which server operation released
OleQueryReleaseStatus Determines whether an operation released
OleQueryServerVersion Retrieves the version number of a server library
OleQuerySize Retrieves the size of an object
OleQueryType Checks if object is linked, embedded, or static
OleReconnect Reconnects to an open linked object
OleRegisterClientDoc Registers an open client document with the library
OleRegisterServerDoc Registers a document with the server library
OleRegisterServer Registers the specified server
OleRelease Releases an object from memory and closes it
OleRename Informs library that an object is renamed
OleRenameClientDoc Informs library that a document is renamed
OleRenameServerDoc Informs library that a document is renamed
OleRequestData Retrieves data from a server in a specified format
OleRevertClientDoc Informs library that a doc reverted to saved state
OleRevertServerDoc Informs library that a doc is reset to saved state
OleRevokeClientDoc Informs library that a document is not open
OleRevokeServerDoc Revokes the specified document
OleRevokeObject Revokes access to an object
OleRevokeServer Revokes the specified server
OleSavedClientDoc Informs library that a document has been saved
OleSavedServerDoc Informs library that a document has been saved
OleSaveToStream Saves an object to the stream
OleSetBounds Sets a bounding rectangle for the object
OleSetColorScheme Specifies a client's recommended object colors
OleSetData Sends data in specified format to server
OleSetHostNames Sets the client name and object name for a server
OleSetLinkUpdateOptions Sets link-update options for an object
OleSetTargetDevice Sets target output device for an object

OleUnblockServer Processes requests from a queue
OleUnlockServer Releases a server locked with OleLockServer
OleUpdate Updates an object

Windows Overviews (3.1)
32-Bit Memory Management Library International Applications
Common Dialog Box Library Network Applications
Compatibility Issues Object Linking and Embedding
Control Panel Applications Screen Saver Library
Creating Windows Applications Self-Loading Windows Applications
Data Decompression Library Shell Dynamic Data Exchange Interface
DDE Management Library Shell Library
DPMI Applications Stress-Testing Library
File Formats Tool Helper Library
File Installation Video Techniques
File Manager Extensions Window Management
Floating Point Emulation Library Windows Application Startup
Fonts Windows Debugging Version
Graphics Device Interface Windows Prologs and Epilogs
Installable Drivers

File Formats (3.1)
Calendar File Format
Clipboard-File Format
Executable-File Format
Font-File Format
Graphics-File Formats
Group-File Format
Metafile Format
Resource Formats
Symbol File Format
Write File Format

Video Techniques
This topic describes some techniques that can improve the video performance of applications for the
Microsoft Windows operating system. These techniques include using an identity palette to speed up
image drawing, accommodating differences in video adapters, and modifying device-independent bitmaps
(DIBs) by using the DIB driver.

Using an Identity Palette

Windows reserves a group of system palette entries for a fixed number of colors. These colors, which
are named system colors, are used for drawing screen elements such as scroll bars. Windows also uses
the system colors as replacement color entries when inactive windows request more color entries than
are available in the system palette. Windows places the system colors at the top and bottom of the
system palette to ensure that logical operations (such as XOR) work correctly.

By arranging logical palettes the same way that Windows arranges the system palette, you can avoid
unexpected color changes and improve the speed at which your application draws DIBs. To do this, you
must create an identity palette, a logical palette that matches the system palette. To use identity palettes,
however, you need to understand how Windows sets up the system palette.

Understanding the System Palette

When an application realizes a palette (that is, requests the palette be given specified colors), Windows
adds the logical palette entries to the system palette. Windows always reserves system palette entries for
the system colors. For example, a 256-color video graphics adapter (VGA) driver with 20 system colors
allows an application to use a maximum of 236 system palette entries. If a logical palette contains more
entries than can fit in the system palette (after the system colors are added), Windows truncates the
palette, using only as many colors as it can fit without encroaching on the reserved system colors. You
can force Windows to relinquish the system color entries (by using the SetSystemPaletteUse function),
but by doing so you change the coloring of all Windows screen elements to black and white.

The maximum number of colors available to a foreground window equals the number of colors
supported by the video driver minus the number of system reserved colors and the number of palette
entries reserved by the application.

Windows places the system colors at the top and bottom of the system palette. For example, a 256-color
VGA driver uses the top 10 and bottom 10 system palette entries for the system colors. If a logical
palette does not contain the system colors or if the system colors appear in locations other than the
default positions, Windows changes the ordering of the palette entries when your application realizes its
palette. At this point, logical palette entry n does not necessarily match system palette entry n. When
your application draws a bitmap to the device context, Windows must translate the bitmap palette
indices to the new locations on the system palette. This translation step takes time.

The goal is to make the logical palette exactly match the system palette. By doing so, your images can
be colored exactly as you expect. The video driver can also draw the images faster because the
translation step is avoided.

Creating an Identity Palette

An identity palette is a logical palette that exactly matches the system palette and therefore has the same
number of entries as the system palette and includes color entries for the system colors. The system
colors appear at the top and bottom of the color table.

The Microsoft Windows Paintbrush application always saves bitmaps with an identity palette. To
convert a bitmap palette to an identity palette, you can open the bitmap in Paintbrush and then save it.

Accommodating Different Video Adapters and Drivers

This section contains information on adapting your logical palette to a different display type.

Distinguishing Between Standard VGA and Super VGA

Most super VGA adapters are single-plane devices, which makes them well-suited for displaying DIBs.
On a super VGA adapter, there is little speed difference between drawing DIBs and drawing device-
dependent bitmaps--you can choose whichever format is more convenient for your application.

Standard VGA adapters have multiple planes and are not as well suited for displaying DIBs. It is faster
to work with device-dependent bitmaps on standard VGA. To determine whether a standard VGA
adapter is present, use the following code:

hDC = CreateDC("DISPLAY", NULL, NULL, NULL);

bIsMultiplane = (GetDeviceCaps(hDC, PLANES) > 1);
DeleteDC(hDC);
Adapting Identity Palettes to Different Display Adapters

Even if two display devices use the same number of system colors, you cannot assume that the red,
green, and blue (RGB) values for the low-intensity colors match. One particular problem is the
difference between super VGA and 8514 systems. Both provide 256 colors and use 20 system colors,
but the low-intensity system color values for the VGA are different from those for the 8514. An identity
palette created on a VGA system is not the same as an identity palette on an 8514 system.

If you create an identity palette on a VGA system and then display the DIB on an 8514 system,
Windows recognizes the low-intensity colors in the logical palette as custom colors rather than system
colors. It puts these colors in the custom-color section of the palette (in entries 10 through 245) and the
8514 system colors in the top and bottom of the system palette.

To avoid misrecognition of colors, an application can do the following:
1 When the application loads, it should use the GetSystemColors function to retrieve the system colors

from the system palette and compare these colors against the system colors used in the DIB palettes.

2 If the colors do not match, the application should copy the current system colors (retrieved from the
system palette) over the DIB system colors.

Using a Device-Independent Bitmap Driver

Many MS-DOS applications manipulate screen memory directly. To maintain the device independence
of Windows, it is not possible to allow an application to access screen memory directly. However, an
application can use the DIB driver (DIB.DRV) to directly manipulate an image in memory.

Creating a Driver Display Context

An application can load the DIB driver by passing the DIB driver name and a BITMAPINFO structure
containing the DIB bits to the CreateDC function. For example, the following example creates a DIB
display context that represents the packed DIB described by the BITMAPINFO structure bi:

hdc = CreateDC("DIB", NULL, NULL, &bi);
An application must observe the following rules when working with a device context created in this
manner:

If the last parameter of CreateDC is NULL, the display context is associated with a 0-by-0 8-bit
DIB. Any attempt to draw with it will fail.

The BITMAPINFO structure must remain locked for the life of the device context.
The DIB driver supports 1-bit, 4-bit, or 8-bit DIB bitmaps. The run-length encoding (RLE) format

is not supported.
The DIB driver supports only Windows version 3.0 or later DIB headers.
Multiple DIB-driver display contexts can be active.
DIBs reside in the memory-based image buffer in the CF_DIB (packed-DIB) format.
The DIB driver expects the RGBQUAD structure for color matching; it does not use palette

indices. (If an application uses an RGB value for drawing, the DIB driver uses the closest match found in
the color table of the DIB.)

The following example uses the DIB driver to draw a circle in a DIB copied from the clipboard:

if (IsClipboardFormatAvailable(CF_DIB) && OpenClipboard()) {
HANDLE hdib;
HDChdc;
/* Get the DIB from the clipboard. */
hdib = GetClipboardData(CF_DIB);
/* Create a DIB driver hdc on the DIB surface. */
hdc = CreateDC("DIB", NULL, NULL,
(LPBITMAPINFO) GlobalLock(hdib));
/* Draw a circle in the DIB. */

Ellipse(hdc, 0, 0, 100, 100);
/* Delete the DIB driver HDC now that you are done with it. */
DeleteDC(hdc);
/* Unlock the DIB. */
GlobalUnlock(hdib);
/* Release the clipboard. */
CloseClipboard();

}
Moving Bitmaps to and from the Display

The DIB driver is a separate driver and is not associated with the display driver. Because of this, an
application cannot use the BitBlt function to move bitmaps between a DIB-driver device context and a
screen device context. An application can use the GetDIBits function to copy from the screen device
context to a DIB device context. To copy a DIB device context to the screen device context, an
application can use the StretchDIBits function.

An application can maximize the speed of StretchDIBits by using one of the following methods:
One-to-one mapping for the palette
DIB_PAL_COLORS, an option that prevents color matching by the graphics device interface

(GDI)

Modifying Bitmaps

DIBs offer many advantages over device-dependent bitmaps. Unlike device-dependent bitmaps,
however, DIBs cannot be selected into a video device context. Before the DIB driver was available, this
meant that applications could not take advantage of the extensive graphics device interface (GDI)
functions to modify DIBs directly. To use GDI routines to draw in or otherwise modify a DIB, an
application would follow a procedure such as this:
1 Create a memory device context.

2 Use the CreateDIBitmap function to convert the DIB to device-dependent format.
3 Select the device-dependent bitmap into the memory device context.

4 Call GDI routines to modify the device-dependent bitmap.
5 Use the GetDIBits function to convert the device-dependent bitmap to DIB format.

This method works well if you only use GDI routines to modify the bitmap. If you want to speed up
certain operations by writing replacement functions that directly modify the DIB bits, however, the
procedure can become complicated. The direct-manipulation routines work on the DIB, but the GDI
routines work on the device-dependent bitmap.

Direct manipulation can be considerably faster than using equivalent GDI routines; in one sample
application, a direct-manipulation function (drawing a triangle) ran eight times faster than the equivalent
GDI operation. Also, direct-manipulation routines for other products may be reusable.

The DIB driver makes it possible for you to mix GDI calls with direct-manipulation routines, so you can
combine the advantages of both methods.

Creating a Driver Device Context

The DIB driver makes it possible for you to create a DIB device context. To create the DIB device
context, call the CreateDC function, supplying a pointer to a BITMAPINFO structure:

hdc = CreateDC("DIB", NULL, NULL, lpbi);
You can use the device-context handle returned by the CreateDC function with most GDI functions to
modify the bitmap. Concurrently, you can call your own direct-manipulation functions to modify the
actual bitmap bits. Any changes made directly to the bitmap bits are reflected in the DIB-driver device
context. When you finish modifying the bitmap, you can use the StretchDIBits function to transfer the DIB
to the video device context.

The DIB driver can handle 1-bit, 4-bit, or 8-bit DIBs. You can create multiple DIB driver contexts. Note
the following limitations:
1 The BITMAPINFO structure must be locked for the life of the device context.

2 The DIB driver handles only the Windows BITMAPINFOHEADER format.
3 The RLE format is not supported.

4 The DIB must use the DIB_RGB_COLORS format. The DIB driver does not support the
DIB_PAL_COLORS (palette indexes) format.

You can distribute the DIB driver with applications that run under Windows.

Fonts Overview
This topic describes the fonts an application can use with the Microsoft Windows 3.1 operating system and
discusses how to use Windows font functions in applications. The information includes a description of
TrueType font technology, which is new for Windows 3.1.

The following topics discuss the use of fonts in Windows applications:

Font Fundamentals
Fonts in Windows
TrueType Font Technology
Using Fonts in Applications

Font Fundamentals
The vocabulary used to describe fonts may be unfamiliar to application developers. This section defines
some of the terms and concepts that a developer needs to use when describing a font.

Font Organization

A typeface is a collection of characters that share design characteristics; for example, Courier is a
common typeface. A font is a collection of characters that have the same typeface and size.

The Windows graphics device interface (GDI) organizes fonts by family; each family consists of fonts
that have a common design. Families are distinguished by stroke width and serif characteristics. A
stroke is a horizontal or vertical line. A horizontal stroke is called a cross-stroke. The main vertical line
in a character is called a stem.

Serifs are short cross-lines drawn at the ends of the main strokes of a letter. Typefaces without serifs are
called sans serif typefaces.

Within a font family, fonts are distinguished by stylistic variations that generally involve their weight and
slant. Weights are described by adjectives such as "extra light," "light," "demi," "demi bold," "book," "bold,
" "heavy bold," "extra bold," and "black." The slant of a font is described by "roman," "italic," and "oblique.
" A roman font is the upright form of the font; an oblique font is slanted; and an italic font is both slanted
and relatively cursive. Font families usually do not include both italic and oblique fonts.
GDI uses five family names to categorize typefaces and fonts. A sixth name (FF_DONTCARE) allows an
application to use the default font. Following are the font-family names, each described briefly:

Font-family name Description
FF_DECORATIVE Specifies a novelty font. An example is Old English.
FF_DONTCARE Specifies a generic family name. This name is used when information about a

font does not exist or does not matter.
FF_MODERN Specifies a font that has a constant stroke width, with or without serifs. Fixed-

pitch fonts are usually modern; examples include Pica, Elite, and Courier
New®.

FF_ROMAN Specifies a font that has a variable stroke width, with serifs. An example is
Times New Roman®.

FF_SCRIPT Specifies a font that is designed to look like handwriting; examples include
Script and Cursive.

FF_SWISS Specifies a font that has a variable stroke width, without serifs. An example is
Arial®.

GDI family names do not always correspond to traditional typographic categories.

Measuring Characters

Both the visible and invisible parts of a character affect its measurement. The visible part of a character
is called a glyph. The invisible part is a rectangular region that contains the character; this region is
called a character cell. The origin of a character cell is its upper-left corner. When a text-output function
specifies coordinates at which the text should appear, GDI places the origin of the first character cell at
those coordinates. (This is the default behavior for GDI. An application can change this at any time by
using the SetTextAlign function.)

The most common unit of measurement for measuring characters is the point. In the computer industry,
a point is exactly 1/72 of an inch. Font heights in Windows can be specified in "twips," which are 1/20
of a point (that is, 1/1440 of an inch). Point size refers to the size of the character cell, but only loosely
to the size of the visible characters; the glyphs from different 12-point fonts can have different heights.

The following example shows the different font heights in alternating glyphs from Courier New, Times
New Roman, and Arial at 18 points:

Following are some of the character-cell measurements an application can affect or query when it creates a
font:

Measurement Description
Ascent Specifies the distance from the base line to the top of a character. The ascender of a

character is the part of the character above the base line. In Windows, the value for
the ascent is the distance from the base line to the top of the character cell; this can
include white space. The typographic ascent, on the other hand, corresponds to the
tallest character in a font. For TrueType fonts, this character is often the lowercase "f.
"

Base line Specifies the line on which all characters stand. The base line is typically the lowest
point of most of the capital letters in a font. (Though the tail of the "Q," for example,
can extend below the base line.)

Descent Specifies the distance from the base line to the bottom of a character. The descender
of a character is the part of the character below the base line. For example, the tail of
the letter "g" is a descender. In Windows, the value for the descent is the distance
from the base line to the bottom of the character cell; this can include white space.
The typographic descent, on the other hand, corresponds to the character in a font
that extends farthest beneath the base line. For TrueType fonts, this character is often
the lowercase "g."

Height Specifies the vertical space required for a font. The height of a font is the sum of the
ascent, descent, and internal leading for that font.

Width Specifies the horizontal space required for a character cell in a font. GDI returns
widths for the average character cell in a font and for the widest character cell. The
average width can be simple or weighted, depending on the font. An application can
also retrieve the widths for individual characters. These widths include the empty
space preceding and following the glyph.

Measuring Line and Intercharacter Spacing

Line spacing, like character size, is typically specified in points. If a 10-point font is displayed with 12-
point line spacing, this is abbreviated as "10/12" and is called "ten on twelve" line spacing.

Following are some of the line and intercharacter measurements an application can affect or query when
it creates a font:

Measurement Description
External leading Specifies the space between rows of text. External leading is not part of the

character cell. When the internal leading for a font does not contain parts of
characters, the apparent line spacing is the external leading plus the internal
leading. Windows does not support negative values for external leading.

Internal leading Specifies the difference between the height of the character glyphs for a font (the
font's em square) and the height of the character cell for a font. Applications use
internal leading to determine the point size for a font; the point size is the height of
the character cell minus its internal leading. Some applications have used internal
leading incorrectly; specifically, internal leading is not strictly reserved for
diacritical marks, nor should it be used as the space to be removed from the first
line on a page.

Overhang Specifies a characteristic of some glyphs that occupy the same horizontal space as
adjacent glyphs. All of the characters in most italic fonts use overhangs to keep the
characters relatively close together--for example, in the italic word Is, the top part
of the letter "I" is directly over the bottom of the letter "s."

Pitch Specifies the general type of horizontal character spacing. A font can have either
fixed or variable pitch. The character cells in a fixed-pitch font are all the same
size, but in a variable-pitch font they vary depending on the width of the glyph.
Another term for a fixed-pitch font is a monospace font.

The external leading for a font is specified by the designers of the font. The concept of internal leading is
specific to Windows.

The following figure shows internal and external leading and their relationship to the height of a font. The
names beginning with the letters "tm" are members of the TEXTMETRIC structure.

Character Sets

All fonts use a character set. A character set contains punctuation marks, numerals, uppercase and
lowercase letters, and all other printable characters. Each element of a character set is identified by a
number.

Most character sets used in Windows are supersets of the U.S. ASCII character set, which defines
characters for the 96 numeric values from 32 through 127. There are four major groups of character sets:

Windows
OEM
Symbol
Vendor-specific

Windows Character Set

The Windows character set is the most commonly used character set in Windows programming. It is
essentially equivalent to the ANSI character set. The blank character is the first character in the
Windows character set. It has a hexadecimal value of 0x20 (decimal 32). The last character in the
Windows character set has a hexadecimal value of 0xFF (decimal 255).

Many fonts specify a default character. Whenever a request is made for a character that is not in the font,
GDI provides this default character. Many fonts using the Windows character set specify the period (.)
as the default character. TrueType fonts typically use an open box as the default character.

Fonts use a break character to separate words and justify text. Most fonts using the Windows character
set specify the blank character, whose hexadecimal value is 0x20 (decimal 32).

For Windows version 3.1, 24 characters have been added to the Windows code page:

Character Name Windows character code
‚ base line single quote 130
ƒ florin 131
„ base line double quote 132
… ellipsis 133
† dagger 134
‡ double dagger 135
ˆ circumflex 136
‰ permille 137
Š S Hacek 138
‹ left single guillemet 139
Œ OE ligature 140
‘ left single quote 145
’ right single quote 146
“ left double quote 147
” right double quote 148
• bullet 149
– en dash 150
— em dash 151
˜ tilde 152
™ trademark ligature 153
š s Hacek 154
› right single guillemet 155
œ oe ligature 156
Ÿ Y Dieresis 159

The characters for left and right single quote were added to the character set for the release of Windows
version 3.0.

OEM Character Set

The OEM character set is typically used in full-screen MS-DOS sessions for screen display. Characters
32 through 127 are usually the same in the OEM, U.S. ASCII, and Windows character sets. The other

characters in the OEM character set (0 through 31 and 128 through 255) correspond to the characters
that can be displayed in a full-screen MS-DOS session. These characters are generally different from the
Windows characters.

Symbol Character Set

The Symbol character set contains special characters typically used to represent mathematical and
scientific formulas.

Vendor-Specific Character Sets

Many printers and other output devices provide fonts based on character sets that differ from the
Windows and OEM sets--for example, the EBCDIC character set. To use one of these character sets, the
printer driver translates from the Windows character set to the vendor-specific character set.

Fonts in Windows
Windows applications can use three different kinds of font technologies to display and print text. This
section discusses these font technologies and gives Windows-specific background information about fonts.

Raster, Vector, and TrueType Fonts

Previous versions of Windows had two types of fonts: raster and vector. Windows version 3.1
introduces a third type--TrueType fonts.

Raster fonts are stored as bitmaps. These bitmaps are designed for output devices of a particular
resolution. GDI typically synthesizes bold, italic, underline, and strikeout characteristics for raster fonts;
however, the results are not always attractive. When GDI must change the size of a raster font, aliasing
problems can also reduce the attractiveness of the text. Raster fonts are useful for specialized
applications in which TrueType fonts are not available. Another possible advantage to using raster fonts
derives from the large number of raster fonts that are often present on a user's system; an application
could look for the name of a particular specialized or decorative font and use a TrueType font if the
specified font was not present.

When an application requests an italic or bold font that is not available, GDI synthesizes the font by
transforming the character bitmaps. When an application using only raster fonts requests a point size that
is not available, GDI also transforms the bitmaps to produce the font. Because TrueType font families
include bold, italic, and bold italic fonts, and because TrueType fonts are scalable to any requested point
size, GDI does not synthesize fonts as frequently as it did for earlier versions of Windows.

Windows version 3.1 contains a new set of raster fonts. This set, called Small Fonts, is for use at
resolutions of less than 8 points. Although TrueType fonts can be scaled to less than 8 points, glyphs
this small may not be legible enough for regular use. Because glyphs this small contain very little detail,
it is more efficient to use the raster small fonts than to scale TrueType fonts to the small size. (GDI
synthesizes bold and italic attributes for the raster small fonts, when necessary.)

Vector fonts are stored as collections of GDI calls. They are time-consuming to generate but are useful
for such devices as plotters, on which bitmapped characters cannot be used. (By drawing lines, GDI can
simulate vector fonts on a device that does not directly support them.) Prior to the introduction of
TrueType fonts, vector fonts were also useful for applications that used very large or distorted characters
or characters that needed to be perpendicular to a base line that was at an angle across the display
surface.

TrueType fonts are stored as collections of points and hints that define character outlines. (Hints are
algorithms that distort scaled font outlines to improve the appearance of the bitmaps at specific
resolutions.) When an application requests a TrueType font, the TrueType rasterizer uses the outline and
the hints to produce a bitmap of the size requested by the application.

The default font for a device context is the System font, a proportionally spaced raster font representing
characters in the Windows character set. Its font name is System. Windows uses the System font for
menus, window titles, and other text.

It is possible to have multiple fonts in the system that have the same name (for example, a Courier
device font and a Courier GDI raster font). However, applications typically do not present a font name
to the user more than once--instead, they discard duplicates. Applications can control which font is
presented to the user when duplicate font names occur by using the lfOutPrecision member of the
LOGFONT structure.

Font Resource Files

The SYSTEM subdirectory of a user's Windows directory (the directory in which Windows is installed)
contains the system's font resource files. A font resource file is an empty Windows library; it contains
no code or data but does contain resources.

Raster and vector font resource files are identified by the .FON filename extension. TrueType font
resource files have the .FOT filename extension. Each .FOT file is a relatively short header that refers to
a file containing TrueType font information. These TrueType font-information files have the same base
filename as the .FOT files, but have the .TTF filename extension.

Some of the filenames for raster and vector fonts are followed by a lowercase letter that indicates the
resolution for which the font was designed. This letter varies according to the type of display device that
was specified when the fonts were installed. Following are the lowercase letters used to identify
different resolutions:

Letter Device
a CGA

b EGA
c Okidata printers
d IBM and Epson printers
e VGA
f IBM 8514/A

For more information about the format of font resource files, see Resource Formats.

Basics of TrueType Fonts

The TrueType fonts incorporated into Windows 3.1 are much more versatile than the fonts that were
available in previous versions of Windows. TrueType fonts can be scaled and rotated; they allow the
same fonts to be used on the screen as are used on printers; and they allow documents to be portable
between printers, applications, and systems.

The following table lists the 13 core TrueType fonts distributed with Windows version 3.1. (Windows 3.
1 may include additional TrueType fonts that supplement this core set.)

Font family Font name Type
Arial Arial Sans serif, variable pitch

Arial Bold Sans serif, variable pitch
Arial Italic Sans serif, variable pitch
Arial Bold Italic Sans serif, variable pitch

Courier New Courier New Serif, fixed pitch
Courier New Bold Serif, fixed pitch
Courier New Italic Serif, fixed pitch
Courier New Bold Italic Serif, fixed pitch

Symbol® Symbol N/A
Times New Roman Times New Roman Serif, variable pitch

Times New Roman Bold Serif, variable pitch
Times New Roman Italic Serif, variable pitch
Times New Roman Bold Italic Serif, variable pitch

TrueType font technology offers many benefits to application designers, at little or no cost. It is not
necessary to revise an application written for Windows version 3.0 for that application to use TrueType
fonts. If you want your application to take full advantage of the greater precision and versatility available
with TrueType fonts, however, you can use the following new font functions:

Function Description
CreateScalableFontResource Creates a font resource file for a specified TrueType font.
EnumFontFamilies Retrieves the fonts available on a specified device.
GetCharABCWidths Retrieves the widths of consecutive TrueType characters.
GetFontData Retrieves font-metric data (or the entire font) from a TrueType

font file.
GetGlyphOutline Retrieves data describing an individual character in a TrueType

font.
GetOutlineTextMetrics Retrieves font metrics for TrueType fonts.
GetRasterizerCaps Determines whether TrueType is installed.

Benefits of TrueType

TrueType fonts offer many advantages over previous font technologies for Windows:
What you see is what you get (WYSIWYG).

Applications can scale and rotate TrueType fonts. TrueType fonts are attractive at all sizes. An
application can use the same fonts on the screen and the printer.

Printer portability.
TrueType fonts work on different printers. Because detailed font metrics are available, an application
can compose documents in a device-independent fashion.

Document portability.
Applications can embed TrueType fonts in documents. TrueType fonts work on different platforms.
Applications can use the detailed font metrics to compose documents in a platform-independent
fashion.

Simplicity.
The versatility of TrueType fonts reduces the number of required choices and compromises.

TrueType solves two important problems: matching fonts to the printer in use, and presenting high-quality
fonts at any size on all devices.

The most obvious benefit of TrueType fonts is that they are scalable. Users can use TrueType to get
virtually any point size they like. With TrueType, Windows users no longer need to think about the
availability of point sizes on their printer or screen, about running a utility to create raster fonts, or about
disk storage for these bitmaps.

TrueType fonts are presented to applications through the same enumeration and selection functions as the
raster fonts. As a result, TrueType fonts work with every Windows application. Windows printer drivers
have also been modified as required to support the use of TrueType.

Compatibility with Earlier Windows Versions

The introduction of TrueType fonts introduces a few issues that are important for applications developed
for earlier versions of Windows.

Identifying TrueType Fonts for Users

Before TrueType fonts were introduced, some users had many different fonts to choose between; now,
these users have still more choices. (Users can simplify their choices by selecting the "Enable TrueType
Fonts" and "Show Only TrueType Fonts in Applications" check boxes in the Fonts dialog box from
Control Panel.) Applications can use the standard font dialog box to make it easier for users to manage
the fonts on their systems.

Character Widths

TrueType fonts use ABC character spacing, a spacing method that does not rely on the width of a
character cell and any overhang (the method used for raster fonts). The extra accuracy of ABC spacing
can introduce a problem for applications written prior to Windows version 3.1. Older applications that
use character widths instead of ABC widths with TrueType fonts incorrectly calculate the end of the last
glyph in the line. This calculation could be off by as much as several pixels. It is also possible that a line
could start slightly to the left of the starting point specified by the application. These inaccuracies
sometimes lead to problems when the screen is redrawn or when a selection of text is highlighted; pieces
of glyphs can be handled incorrectly at either end of a line of text.

Many applications written before TrueType became available use the ExtTextOut function to clip or
redraw lines of text that extend beyond the visible margins of the document.This method prevents any
extra pieces of glyphs from being left behind because of incorrect character-width calculations.

MS Serif and MS Sans Serif Fonts

In Windows version 3.1, the raster fonts Tms Rmn and Helv have been replaced by identical fonts
named MS Serif and MS Sans Serif, respectively. The Tms Rmn and Helv font names are mapped to
their replacements in a new section of WIN.INI called [FontSubstitutes]. Whenever an application
requests Helv or Tms Rmn, the font mapper checks this section and makes the appropriate substitution.
The [FontSubstitutes] section also maps Helvetica®to Arial and Times®to Times New Roman.

A user could change the [FontSubstitutes] section to map any font name to any other font name. For
example, a user could map Tms Rmn and Helv to the Times New Roman and Arial TrueType fonts.
Entries in [FontSubstitutes] do not change the names of fonts, however; a user could not force Arial to
appear as Helvetica in font menus.

The EnumFonts and EnumFontFamilies functions use the [FontSubstitutes] section of WIN.INI so that
applications written prior to Windows version 3.1 do not fail unexpectedly when enumerating
preexisting font names. If an application specifies Helv in a call to EnumFontFamilies, GDI enumerates
the available MS Sans Serif fonts. When an application calls either of these functions with a NULL
family name, GDI enumerates a representative font from each available family, returning the actual
names of the fonts, not the remapped names.

Because most Windows applications display font menus that include only the fonts that can be printed
on the current printer, this change in font names does not affect most users. Only users of dot-matrix
printers see the new names in font menus and dialog boxes.

Font-Height Metrics Can Depend on Attributes

Because the members of a TrueType font family, such as bold and italic, come from different outlines,
in some cases the font-height metrics could be different within a TrueType font family. For raster fonts
this is not a problem, because when Windows simulates attributes, these metrics are preserved, and

because hand-tuned bitmaps were made with matching heights. For the set of fonts shipped with
Windows 3.1, most (but not all) of the height metrics match.

Text and Character Attributes

Character attributes are such features as whether a character is bold or italic and whether it has serifs.
Text attributes are such features as line and character spacing and text justification. This section
introduces some of these attribute categories. For descriptions of individual attributes, see the
descriptions of the LOGFONT, NEWTEXTMETRIC, TEXTMETRIC, and OUTLINETEXTMETRIC
structures in the Microsoft Windows Programmer's Reference, Volume 3.

Line and Character Spacing

Before the introduction of TrueType fonts, it was difficult for an application to position characters
exactly, especially if the characters were in a string that included bold or italic text. Instead of the width
of the character glyph, most Windows functions use the advance width of characters, which includes
space on either side of the glyph, as in the following figure:

Applications can control the spacing of TrueType characters accurately by using ABC character spacing.
GDI constructs ABC spacing from information provided by the TrueType rasterizer. The "A" spacing is the
width to add to the current position before placing the glyph. The "B" spacing is the width of the glyph
itself. The "C" spacing is the white space to the right of the glyph. The total advance width is given by A+
B+C.

Because either or both of the A and C increments can be negative, characters can overhang or underhang
the character cell in a way that was not previously possible with GDI. For example, in the following
figure the A, B, and C increments for the letter "g" are all positive, but the A and C increments for the
letter "f" are negative.

An application can use the GetCharABCWidths function to retrieve the ABC spacing for characters in a
TrueType font.
When an application using TrueType fonts calls a text-output function, GDI uses the font's complete set of
ABC widths to provide character-placement information to the device driver.
Some applications determine the line spacing between text lines of different sizes by using a font's
maximum ascender and descender. An application can retrieve these values by calling the GetTextMetrics
function and then checking the tmAscent and tmDescent members of the NEWTEXTMETRIC structure.

The maximum ascent and descent are different from the typographic ascent and descent; in TrueType
fonts, the typographic ascent and descent are typically the top of the "f" glyph and bottom of the "g"
glyph. Rounded characters typically extend slightly beyond the limits of characters with straight edges,
to overcome an optical illusion that would make them appear too small otherwise. An application can
retrieve the typographic ascender and descender for a TrueType font by calling the
GetOutlineTextMetrics function and checking the values in the otmAscent and otmDescent members of
the OUTLINETEXTMETRIC structure.

Applications that use the HPPCL5A printer driver may experience problems with line spacing for the
scalable fonts that are built into the HP LaserJet III printer. These fonts use external leading in the place
of internal leading; accent marks for capital letters print outside the character cell reported by the
tmHeight member of the NEWTEXTMETRIC structure.

TrueType font metrics do not correspond exactly to the metrics for Windows raster fonts, because
TrueType font metrics have been designed by Apple Computer, Inc. TrueType metrics are required for
any application that produces a document that is portable between Windows and an Apple Macintosh
computer.

The following figure shows the difference between the vertical text metric values returned in the
NEWTEXTMETRIC and OUTLINETEXTMETRIC structures. (The names beginning with "otm" are
members of the OUTLINETEXTMETRIC structure.)

The overhang added by GDI when it synthesizes a bold or italic font is not taken into account by the
GetTextExtent function.

Logical and Physical Inches

A logical inch is a measure Windows uses for presenting legible fonts on the screen; it is generally 30 to
40 percent larger than a physical inch. A 10-point font on a screen is larger than a 10-point font
produced by a printer. Fonts on the screen are made larger because most screens do not have high
enough resolutions to make a 10-point font legible. Furthermore, users generally read text on screens
from a greater distance than they read text on paper.

Although logical inches solve the problem of legible fonts on the screen, they prevent a perfect match
between the output of the screen and printer. The text on a screen is not simply a scaled version of the
text that will appear on the page, particularly if graphics are incorporated into the text.

An application can retrieve the physical dimensions of a font by calling the GetOutlineTextMetrics
function. To determine the dimensions of an output device, an application can call the GetDeviceCaps
function. GetDeviceCaps returns both physical and logical dimensions.

Font Sizes

Most Windows applications use the MM_TEXT mapping mode instead of MM_TWIPS, because
MM_TEXT makes possible a relatively simple conversion from logical to physical font sizes. With
MM_TEXT, each logical unit is mapped to one pixel.

To determine the point size for a font, an application must first convert the information returned in the
NEWTEXTMETRIC or OUTLINETEXTMETRIC structure using the size of the logical inch for the
output device. For example, an application using MM_TEXT units might use a font that has a cell height
(tmHeight) of 12 and an internal leading (tmInternalLeading) of 2. The cell height minus the internal
leading gives the point size in logical units; in this case, the point size of the font is 10 units (pixels).

To convert this value into a typographic point size (that is, a value in which one point equals 1/72 inch),
the application should use the GetDeviceCaps function to determine the vertical size and resolution of
the screen and the number of pixels per logical inch supported by that device. For example, if an
application working in MM_TEXT mapping mode requires a 12-point font, it could use the value
produced by the following algorithm in the lfHeight member of the LOGFONT structure:

-1 * ((LOGPIXELSY * 12) / 72)

Using a negative value in the lfHeight member causes GDI to use the value as the height of the character
glyphs, not the height of the character cell. The LOGPIXELSY value is returned by a call to the
GetDeviceCaps function. The point size of the requested font is 12, and the number of points in a physical
inch is 72.

Similarly, an application could use the following algorithm to determine the point size of a font from
information returned in the NEWTEXTMETRIC structure:

((tmHeight - tmInternalLeading) * 72) / LOGPIXELSY

Font Mapper

When calling a font-creation function, an application describes the font either by using a LOGFONT
structure in a call to the CreateFontIndirect function or by using the parameters of the CreateFont
function. The font returned by these functions is called a logical font, because a font matching the
described characteristics is not necessarily available in the system. GDI uses the logical font to create a
physical font, by finding the closest match to the logical font among the available TrueType, raster,
vector, and device-dependent fonts.

The Windows font mapper determines which of the available fonts is the closest match to the requested
logical font. The font mapper often chooses a TrueType font as the closest match; it will choose a raster
or vector font only when the logical font matches the characteristics of the raster or vector font very
closely or when the logical font specifies the name of the raster or vector font. Typically, a TrueType
font is chosen when it is specifically requested or when GDI would otherwise have to synthesize the
font. For example, if a font name is not specified in the logical font or if the specified name does not
exist, the font mapper chooses a TrueType font that matches the requested point size, serif
characteristics, and pitch.

When the font mapper determines that a TrueType font is the closest match for a requested logical font,
the TrueType engine produces enhanced GDI raster characters that are presented to the raster device.
(The characters are enhanced by the use of ABC character widths.) For devices that do not have raster

font capabilities, the driver must request the TrueType engine to provide the glyphs in a form the driver
can use.

When the font mapper chooses between raster fonts, it chooses the font that is closest to the requested
size without being larger than that size.

When an application requests a very small font, the font mapper may choose one of the small fonts
stored in the SMALLX.FON font resource file. TrueType fonts specify a suggested minimum size,
which can be retrieved by calling the GetOutlineTextMetrics function and checking the
otmusMinimumPPEM member of the OUTLINETEXTMETRIC structure. When an application
requests a font smaller than this size, the font mapper typically chooses a small font instead of a
TrueType font. If the requested size is not available as a small font, however, GDI scales the TrueType
font instead. Microsoft's 13 core TrueType fonts are designed to be readable as small as 8 points on a
VGA screen, although they can be used at smaller sizes.

Standard Font Dialog Box

Windows applications should take advantage of the standard font dialog box for Windows 3.1.
Following are the advantages of this dialog box:

It shows the user the font family name (for example, Times New Roman) along with the styles (for
example, Regular, Bold Italic, and other combinations of italic and weight) for the installed fonts.

It allows Windows version 3.0 simulations and effects to be applied, if the user wants them. When
bold or italic simulations are applied, the user is warned that the font may not print as selected.

It displays weights or styles outside the four standard styles (regular, bold, italic, bold italic).
It clearly tells the user which fonts are TrueType and which are not.

The standard font dialog box also introduces a consistent user interface and frees applications from having
to implement their own dialog boxes for fonts, while retaining enough flexibility for applications to add
custom controls. The dialog box looks like this:

TrueType Font Technology
With TrueType fonts, applications have much greater control over the final appearance of documents than
was possible with previous Windows font technologies. Much of this added control is the result of the
portability of TrueType fonts: An application can move them from the system to a printer, from a printer
to the system, from one system to another system (by "embedding" them in documents), and even port
them between incompatible operating systems.

Sophisticated desktop-publishing and word-processing applications go to great lengths to make the screen
output mimic the printer output. Some applications even change the way the fonts appear on the screen, in
an attempt to show users what the printer output will look like. This kind of application benefits greatly
from exploiting the advantages of TrueType.

What You See Is What You Get: WYSIWYG

WYSIWYG means that the screen output matches the printer output. With perfect WYSIWYG, the user
would be able to place a page of printed output over the same screen output and see every character and
graphic element in exactly the same place. If the screen and printer have different resolutions, however,
this degree of matching is impossible. Usually, WYSIWYG simply means that line breaks, paragraph
breaks, and page breaks are the same on both devices and that justified paragraphs are presented
properly. WYSIWYG does not mean the same document on two different printers will be formatted in
exactly the same way. Because most applications make the best use of the available printer, WYSIWYG
often applies only to the correspondence between the screen and printer for a given printer.

TrueType offers a higher level of WYSIWYG than was available with earlier versions of Windows,
because it works on every device. Most Windows applications lay out the screen based on the target
printer. The fonts they enumerate for the user are the fonts that can be printed. Because TrueType fonts
work on the target printer, they are enumerated by the printer driver to the application and are typically
displayed to the user as printer fonts. When the application and GDI match screen fonts to the printer
fonts, the TrueType fonts are used on the screen as well.

If no screen font matches the widths of characters in the chosen printer font, WYSIWYG is difficult to
achieve. When this happens, applications sometimes make the average width of the characters match,
with as little variation in specific characters as possible. More exact matching is achieved with a
technique known as metric coercion. There are two basic methods of coercing character metrics: width
coercion and shape coercion. Width coercion simply adjusts the spacing between words and characters,
and shape coercion applies a transformation to each character to force it into a bounding box. Because
shape coercion can lead to unacceptably deformed characters, width coercion is typographically
preferred.

Although Windows does not include a function to deform individual characters, the lfWidth member of
the LOGFONT structure allows an application to scale the width of a TrueType font independently of its
height. (Most applications do not scale TrueType fonts in this manner, however, because the results are
usually unattractive.)

Embedded Fonts

Embedding a font is the technique of bundling the fonts used by a document into the document itself for
transmission to another computer. Embedding a font guarantees that a font specified in a transmitted
document will be present on the computer receiving the document. Not all fonts can be moved from
computer to computer, however, since most fonts are licensed to only one computer at a time. In
Windows, only TrueType fonts can be embedded.

Applications should embed a font in a document only on request from a user. An application cannot be
distributed along with documents that contain embedded fonts, nor can an application itself contain an
embedded font. Whenever an application distributes a font, in any format, the proprietary rights of the
owner of the font must be acknowledged.

A font's license may not allow embedding; it may give read-write permission for a font to be installed
and used on the destination computer; or it may give read-only permission. Read-only permission allows
a document to be viewed and printed (but not modified) by the destination computer; documents with
read-only embedded fonts are themselves read-only. Read-only embedded fonts may not be unbundled
from the document and installed on the destination computer.

Applications that support embedded fonts determine the license status of a font by checking the
otmfsType member of the OUTLINETEXTMETRIC structure. If bit 1 of otmfsType is set, embedding
is not permitted for the font. If bit 1 is clear, the font can be embedded. If bit 2 is set, the embedding is
read-only.

It may be a violation of a font vendor's proprietary rights and/or user license agreement to embed any
fonts for which embedding is not permitted or to fail to observe the following guidelines on embedding
fonts.

Embedding a Font in a Document

When an application has determined that a font can be embedded, it can use the GetFontData function to
read the font file. (Setting the dwTable and dwOffset parameters of GetFontData to 0L and the cbData
parameter to -1L ensures that the application will read the entire font file, starting at the beginning of the
font).

After retrieving the font data, the application can store it with the document, using any applicable
format. Most applications build a font directory in the document, listing which fonts are embedded and
whether the embedding is read-write or read-only. (An application can use the otmpStyleName and
otmFamilyName members of the OUTLINETEXTMETRIC structure to identify the font.)

If the read-only bit is set for the embedded font, applications must encrypt the font data before storing it
with the document. The encryption method need not be complicated; for example, using the XOR
operator to combine the font data with an application-specified constant is adequate and fast.

Installing and Using an Embedded Font

An embedded font must be separated from the containing document and installed in the user's system
before Windows can use it. Although the exact procedure for separating the font from the document
depends on the method the application uses to embed it, the following three steps are always taken:
1 Resolve name conflicts before installing the font.

2 Write the font data to a file, decoding read-only fonts as necessary.
3 Use the CreateScalableFontResource function to create a font resource file for the unembedded font.

An application should avoid installing a font with the same name as a preexisting font. To determine
whether there is duplication in style names, an application could compare the information returned by
EnumFontFamilies against the family name and style name stored with the embedded font.

Embedded fonts that have read-write permission (that is, that can be permanently installed on the user's
system) should be written to a file that has the .TTF filename extension. Embedded fonts with read-only
permission should not use the .TTF extension and should avoid the .FOT and .FON extensions. (A typical
filename extension for read-only embedded fonts is .TTR.) Because files for read-only embedded fonts
must be removed from the system and from storage as soon as the containing document is closed, their
names do not need to be meaningful except to the application.

Most applications put the files for embedded fonts that have read-write permission into either the
SYSTEM subdirectory of the user's Windows directory or into the application's working directory. Files
for read-only embedded fonts are typically put into a temporary directory.

Before installing an embedded font, an application must use the CreateScalableFontResource function to
create a font resource file. Font resource files for fonts with read-write permission should use the .FOT
filename extension. Font resource files for read-only fonts should use a different extension (for example, .
FOR) and should be hidden from other applications in the system by specifying 1 for the first parameter of
CreateScalableFontResource. The font resource files can be installed by using the AddFontResource
function.

Applications should offer users the option of permanently installing embedded fonts that have read-write
permission. To permanently install a font, applications should concatenate the family and style names and
then use the WriteProfileString function to insert this string along with the .FOT file name in the [Fonts]
section of the WIN.INI file. A typical font entry in the [Fonts] section looks like this example:

Times New Roman Bold (TrueType)=TIMESBD.FOT

If a document contains one or more read-only embedded fonts, the user must not be permitted to edit the
document. If the user is allowed to edit the document in any way, the application must first strip away and
delete the read-only embedded fonts. As mentioned earlier, read-only embedded fonts must be removed
from the system and storage immediately when the document in which they were bundled is closed.

To delete read-only embedded fonts, an application should follow these steps:
1 Call the RemoveFontResource function for each font to be deleted.

2 Delete the font resource file for each font.
3 Delete each TrueType font file for each font.

When an application creating a file for a read-only embedded font specifies 1 for the first parameter of the
CreateScalableFontResource function, the EnumFonts and EnumFontFamilies functions will not
enumerate this font. Hiding read-only embedded fonts in this manner makes it unlikely that another
application could use them, even though Windows resources are theoretically available to all processes in
Windows. If an application does use a read-only embedded font installed by another application, it could
be difficult for the installing application to delete the font. The RemoveFontResource function will not
delete a font that is currently in use. In this case, an application should delete the resource file and the
TrueType font file when the user closes the document that contained the read-only fonts.

It is very important that applications delete the TrueType font file for read-only embedded fonts. If the
delete operation fails when the user closes the document, the application should periodically attempt to
delete the file as the application runs, when it closes, and the next time it starts.

In some cases, an application could be unable to delete a TrueType font file for a read-only embedded font
because of external events (such as a system failure). There is no legal liability for events that are out of
the control of the application.

Printer Portability

A document with printer portability is formatted identically on all output devices under Windows--all
monitors and all printers. Although TrueType allows the same font to be used on all output devices, this
does not guarantee that line breaks will be the same on all devices. For line breaks to match, applications
must take advantage of TrueType design metrics. These design metrics allow an application to compute
the fractional portion of the spacing at the ends of lines and make up the difference in the interword
spacing. This computation reduces the round-off error from a half-pixel per character to a half-pixel per
line, preserving line breaks in all cases.

Line Breaks and Justification

Applications must cooperate in order to guarantee the printer portability enabled by TrueType
technology, because different devices may have different resolutions. Even when fonts are portable
across printers, glyphs designed or rasterized for different resolutions must have different pixel widths.
For applications that use the TextOut function, for example, different character widths can lead to
accumulated round-off errors that change line breaks and paragraph placement.

Applications that lay out a document at the highest printer resolution attempt to distribute any difference
in character resolutions in white spaces. This method is not always successful; for example, it fails when
all glyphs are one pixel larger at 600 dots per inch (DPI) than at 300 DPI. In this case, fonts with a width
of 45 at 600 DPI would have a width of 23 at 300 DPI, a width of 11 at 150 DPI, and so on. There could
easily be insufficient white space to absorb the glyphs at the lower resolutions if line breaks were being
preserved, because the glyphs become larger in relation to the resolution of the device. In this case, the
characters would have to overlap to preserve the line breaks. Even if all the character widths exactly
doubled when changing from a resolution of 300 DPI to 600 DPI, the line breaks might not be the same
if an application justified text--that is, aligned it on both the left and right. It is possible that another half-
pixel of white space at the lower resolution would allow one more word on the line. At the higher
resolution, the half-pixel would become a full pixel and the line breaks would change. (Similar device-
resolution problems occur in the vertical direction.) TrueType exposes the design width of characters to
help applications maintain line breaks.

Different printers, or even different production runs of the same printer, can have different limits for
their printable areas. If a document has been laid out up to the margins of one printer, it may not format
identically on a different printer. If glyphs are in contact with the margins on the first printer, parts of the
glyph may be beyond the printable area on the second printer. Depending on the printer, the glyph will
either be clipped or dropped completely.

Prior to the introduction of TrueType, sophisticated desktop-publishing and word-processing
applications were forced to "reflow" the entire document whenever a user selected a different printer.
Applications can now use TrueType font metrics to solve this problem.

Performance and Printer Portability

Printer portability can potentially downgrade font performance, quality, or both, depending on such
factors as the type of connection between the computer and printer, the speed of the computer, the
memory in the printer and the computer, the number of fonts being used, differing resolutions between
the screen and printer, and the number of characters used in each font. Documents that are fully portable
between printers necessarily cannot take advantage of the specialized features of a particular printer.

GDI cannot perform text operations to printer-compatible memory device contexts. This means that it is
not possible to build a bitmap describing a page to be printed and then send the completed bitmap to the
printer.

Document Portability

A portable document appears the same on different operating systems. In the case of TrueType,
documents can be portable between Windows and the Apple Macintosh computer; this could also be
called platform portability. If a document appears the same on the Macintosh and with Windows, it can
also look the same imported into different applications on either platform.

Since the same TrueType fonts work on the Macintosh, in Windows, and on all devices supported by
both systems, the same characters and metrics could be exposed for all applications. Currently, however,
fully portable documents are not possible. Windows and the Macintosh computer have slightly different
character sets. Even though TrueType fonts contain the default Macintosh and PostScript character sets,
Windows does not give applications access to the Macintosh characters. Likewise, a Macintosh
application cannot gain access to the Windows characters present in TrueType fonts. Document
portability is also a problem with international document exchange. Localized versions of TrueType
fonts will still be in use for both the Apple System 7 and Windows version 3.1, leading to further
character-set incompatibilities when documents that use these fonts are transmitted to a system that does
not have them.

Disk Space, Memory Usage, and Speed

An application's overall font performance could decrease if a large font cache forced the paging of more
segments to the disk. With previous font technologies, this could occur even in situations that were not
"low memory." Because fonts are cached glyph by glyph as they are used, however, less memory is used
for the cache than would be required to keep the corresponding raster fonts in memory; this leads to a
net performance gain. The only time the font cache uses more memory than fonts required in earlier
versions of Windows is when multiple logical fonts would have been mapped to the same raster font.
Typically, however, any additional swapping to disk caused by these larger caches is still faster overall
than discarding and subsequently re-rendering bitmaps.

Hard-disk space is not a large problem for TrueType fonts, although more disk space is required for
fonts with the introduction of TrueType. The two reasons for this increased space requirement are that
raster fonts are shipped with TrueType fonts, for backward-compatibility reasons, and that users may
have preexisting soft fonts on their hard disks.

Hard-disk space is not the only limitation imposed on TrueType fonts. GDI imposes an internal limit to
the number of TrueType fonts that can exist simultaneously on a system. The maximum number of
physical fonts is 1170. (The maximum number of logical fonts that can exist simultaneously on a system
is 253.)

Font Design and Scaling

Raster fonts are designed to be attractive and readable at a particular aspect ratio. (The aspect ratio is the
ratio of the width and height of a pixel.) The digitized aspect of a font is the ideal x-aspect and y-aspect
of that font. Windows provides an aspect-ratio filter to select fonts designed for a particular aspect ratio
from all of the available fonts. The GetAspectRatioFilter function retrieves the setting for the current
aspect-ratio filter. An application can use the SetMapperFlags function to change the algorithm the font
mapper uses when it maps physical fonts to logical fonts.

The aspect ratio of the screen is not as critical for scalable fonts as it is for raster fonts. The dimensions
of the em square for a TrueType font are used when scaling the font to a specified point size. (An em
square is a square whose width is approximately equal to the width of the uppercase M.) Because the
height of the em square is given in pixels, it can be thought of as the point size in device units. For
example, a font could be referred to as a 50-ppem (pixels per em square) font. The pixel size determines
the physical point size. For example, a 75-ppem font on a 300-DPI device is an 18-point font, while on a
150-DPI device it would be a 36-point font. The number of pixels required for the desired point size is
computed by using the resolution of the output device and the em square size, according to the following
formula:

ppem = (PointSize/72) * DeviceResolution

According to this formula, a 12-point font on a 72-DPI screen is at 12 ppem, while on a 300-DPI device it
is at 50 ppem.

TrueType fonts can be scaled linearly, nonlinearly, or optically, depending on their design. Linear scaling
means that the character width is scaled and rounded to the appropriate ppem. Nonlinear scaling means
that hinted character widths can be larger or smaller than the scaled widths. Optical scaling is a superset of
nonlinear scaling; it includes the preservation of the color and contrast of a font across point sizes. Optical
scaling can involve changing the proportions of the stroke widths to preserve their perceived width and
color.

The TrueType fonts shipped with Windows 3.1 scale nonlinearly. Windows applications can also support
linearly and optically scaled TrueType fonts.

Designing Portable Fonts

Most application developers need not be concerned with font-portability issues. This discussion is
included here with other portability issues for those developers who need to create fonts that are portable
between systems. Microsoft currently publishes a TrueType Font Files Specification, which teaches font
vendors how to create a single TrueType font that will work in Windows, on the Macintosh computer,
and in TrueImage.

Microsoft uses the same byte ordering in TrueType font files as Apple uses in its font files, to help make
the fonts portable between the systems. As a result, Windows fonts can be moved directly to the
Macintosh computer, where they can quickly be converted into font suitcases for installation. (The
format of TrueType font files precisely follows the format of the Apple "sfnt" resource. To convert an
MS-DOS binary TrueType font into an sfnt resource requires editing the file information, setting Type
to sfnt and Creator to bass. The sfnt resource can then be integrated into a standard Macintosh font
suitcase. To move a font suitcase to Windows, an application need only extract the sfnt portion from the
data fork and move the suitcase, unaltered, to Windows. After the suitcase has been moved to Windows,
it can be installed by using Control Panel or the CreateScalableFontResource and AddFontResource
functions.

If a Macintosh font is installed that does not contain the Windows "cmap" mapping table, the system
maps text fonts (for example, Times or ITC Zapf Chancery®)from the Macintosh character set onto the
Windows character set. Novelty fonts (like ITC Zapf Dingbats®), which have no formal character set,
are not mapped; these fonts are taken along with the Macintosh character encodings. The decision
whether to remap is based on a test that looks at the "post" table (which contains PostScript names).
Whenever necessary, Windows compensates for missing metric tables based on other metric data in the
font; anything that cannot be computed in a reasonable manner is given a default value.

The creation of portable fonts requires more than just the right characters and the right character-
mapping tables. All the metrics needed by all systems must be included and must yield the same results.
Matching metrics for the individual characters is not a problem; since the characters and their hints and
metrics appear only once in the TrueType font, the same metrics are available across platforms. The
more difficult problems in the creation of portable fonts have to do with line-spacing metrics, the
determination of font styles, and making these factors match across systems.

The Apple System 7 core TrueType fonts ship with metrics designed to be compatible with the raster
fonts in System 6. The "hdmx" table will be used to force widths onto TrueType fonts that match those
for the bitmaps at bitmap sizes. The "name" table (and its ability to group fonts by separating the family
and subfamily names) is not used. (The name used comes from the FOND Macintosh font resource.)
Only the macStyle bits (from the "head" table) denoting regular, bold, italic, or bold italic are used.

Apple's line spacing recommendations are less robust than the line-spacing used by Microsoft. The
following formula defines the default recommended line spacing for a Macintosh font:

line spacing = ascent - descent + leading

The values for ascent, descent and leading come directly from TrueType values:

Macintosh TrueType
ascent otmMacAscent
descent otmMacDescent
leading otmMacLineGap

For its TrueType fonts, Apple recommends that Ascender - Descender = unitsPerEm, and LineGap = 0.
This recommendation is based on the definition of point size for Macintosh raster fonts. Macintosh
documentation defines the point size of a font as being equal to the line spacing (ascent - descent +
leading). Although this definition is compatible with previous Apple font metrics, it ties line spacing to the
size of the em square. Because some fonts (for example, Palatino) have ascenders and descenders that
extend beyond the em square, the line-spacing definition is inconsistent for these fonts.

Windows and the Macintosh have the same default line spacing for a font only if the following formula is
true:

otmMacLineGap >= (tmAscent + tmDescent) -
(otmMacAscent - otmMacDescent)

Microsoft TrueType fonts follow this formula to ensure that default line spacing is preserved between the

Macintosh and Windows. The core fonts and all fonts from vendors that follow the Microsoft specification
will have the same character widths, the same default line spacing, and the same character forms.

Unless the Windows and Macintosh font heights are equal, a font with a line gap of zero will yield
different default line spacings in Windows and on the Macintosh.

Despite some incompatibilities, TrueType and GDI accept Macintosh-only fonts. Metrics that are not
present in Macintosh-only fonts are set to default values. Although these default values are imperfect,
using them allows Macintosh-only fonts to work in Windows.

Using Fonts in Applications
The remainder of this topic discusses the implementation of font functions in Windows applications.

Using Stock Fonts

GDI offers a variety of stock fonts that an application can retrieve and use. For many applications, the
stock fonts provide all the functionality required for basic text output. To use stock fonts, an application
specifies the type of font in the GetStockObject function. GetStockObject creates a handle to a logical
font. When the application selects that handle into a device context, the font mapper uses the logical font
to create a physical font. The application can select and use this physical font for text output.

GDI offers the following stock fonts:

Font Description
ANSI_FIXED_FONT Specifies a fixed-pitch font based on the Windows character set. A

Courier font is typically used.
ANSI_VAR_FONT Specifies a variable-pitch font based on the Windows character set.

MS Sans Serif is typically used.
DEVICE_DEFAULT_FONT Specifies a font preferred by the given device. Because this font

depends on how the GDI font mapper interprets font requests, the
font may vary widely from device to device.

OEM_FIXED_FONT Specifies a fixed-pitch font based on an OEM character set. OEM
character sets vary from system to system. For IBM computers and
compatibles, the OEM font is based on the IBM PC character set.

SYSTEM_FONT Specifies the System font. This is a variable-pitch font based on the
Windows character set, and is used by the system to display window
titles, menu names, and text in dialog boxes. The System font is
always available. Other fonts are available only if they have been
installed.

The following example retrieves a handle of the Windows variable stock font, selects it into a device
context, and then writes a string using that font:

HFONT hfnt, hOldFont;
hfnt = GetStockObject(ANSI_VAR_FONT);
if (hOldFont = SelectObject(hdc, hfnt)) {
TextOut(hdc, 10, 50, "Sample ANSI_VAR_FONT text.", 26);
SelectObject(hdc, hOldFont);
}

If no other stock fonts are available, GetStockObject returns a handle to the System font
(SYSTEM_FONT).

Applications that use the GetStockObject function to retrieve the handle of a logical font should work in
MM_TEXT units. The logical font identified by the handle returned by GetStockObject may specify a
height that does not match the height of the requested logical font when the application works in mapping
modes other than MM_TEXT.

Enumerating Fonts

An application can discover which fonts are available for a given device by using the EnumFonts or
EnumFontFamilies function. These functions send information about the available fonts to a callback
function that the application supplies. The callback function receives information in LOGFONT and
NEWTEXTMETRIC structures. (The NEWTEXTMETRIC structure contains information about a
TrueType font. When the callback function receives information about a non-TrueType font, the
information is contained in a TEXTMETRIC structure.) By using this information, an application can
allow the user to choose among only those fonts that are available.

The EnumFontFamilies function is similar to the EnumFonts function but includes some extra
functionality. New and upgrading applications should use EnumFontFamilies instead of EnumFonts.
EnumFontFamilies allows an application to take advantage of the style name that is available with
TrueType fonts.

In previous versions of Windows, the only style attributes were weight and italic; any other styles were
specified in the family name for the font. If an application used the EnumFonts function to query the
available Courier fonts, for example, EnumFonts might return information for Courier, Courier Bold,

Courier Bold Italic, and Courier Italic, but it would not return information about any other Courier fonts
that might be installed, because any other Courier fonts would typically have a different family name.

TrueType fonts are organized around a family name (for example, Courier New) and style names (for
example, italic, bold, and extra-bold). The EnumFontFamilies function enumerates all the styles
associated with a given family name, not simply the bold and italic attributes; if the system included a
TrueType font called Courier New Extra-Bold, EnumFontFamilies would list it with the other Courier
New fonts. The capabilities of EnumFontFamilies are helpful for fonts with many or unusual styles and
for fonts that cross international borders. (Because a style name often changes with the language spoken
in a country, an application that depends on the EnumFonts function could enumerate fonts whose
names would change from country to country, while EnumFontFamilies would continue to enumerate
the font families correctly.)

If an application does not supply a typeface name, the EnumFonts and EnumFontFamilies functions
supply information about one font in each available family. To enumerate all the fonts in a device
context, an application can specify NULL for the typeface name, compile a list of the available
typefaces, and then enumerate each font in each typeface.

The following example uses the EnumFontFamilies function to retrieve the number of available raster,
vector, and TrueType fonts:

FONTENUMPROC lpEnumFamCallBack;
UINT uAlignPrev;
int aFontCount[] = { 0, 0, 0 };
char szCount[8];
lpEnumFamCallBack = (FONTENUMPROC) MakeProcInstance(
(FARPROC) EnumFamCallBack, hinstApp);
EnumFontFamilies(hdc, NULL, lpEnumFamCallBack,
(LPARAM) aFontCount);
FreeProcInstance((FARPROC) lpEnumFamCallBack);
uAlignPrev = SetTextAlign(hdc, TA_UPDATECP);
MoveTo(hdc, 10, 50);
TextOut(hdc, 0, 0, "Number of raster fonts: ", 24);
itoa(aFontCount[0], szCount, 10);
TextOut(hdc, 0, 0, szCount, strlen(szCount));
MoveTo(hdc, 10, 75);
TextOut(hdc, 0, 0, "Number of vector fonts: ", 24);
itoa(aFontCount[1], szCount, 10);
TextOut(hdc, 0, 0, szCount, strlen(szCount));
MoveTo(hdc, 10, 100);
TextOut(hdc, 0, 0, "Number of TrueType fonts: ", 26);
itoa(aFontCount[2], szCount, 10);
TextOut(hdc, 0, 0, szCount, strlen(szCount));
SetTextAlign(hdc, uAlignPrev);
.
.
.

BOOL FAR PASCAL EnumFamCallBack(lplf, lpntm, FontType, aFontCount)
LPLOGFONT lplf;
LPNEWTEXTMETRIC lpntm;
short FontType;
LPSTR aFontCount;
{

int far * aiFontCount = (int far *) aFontCount;
if (FontType & RASTER_FONTTYPE)
aiFontCount[0]++;
else if (FontType & TRUETYPE_FONTTYPE)
aiFontCount[2]++;

else
aiFontCount[1]++;
if (aiFontCount[0] || aiFontCount[1] || aiFontCount[2])
return TRUE;
else
return FALSE;

}
This example uses two masks, RASTER_FONTTYPE and TRUETYPE_FONTTYPE, to determine the
type of font being enumerated. If the RASTER_FONTTYPE bit is set, the font is a raster font. If the
TRUETYPE_FONTTYPE bit is set, the font is a TrueType font. If neither bit is set, the font is a vector
font. A third mask, DEVICE_FONTTYPE, is set when a device (for example, a laser printer) supports
downloading TrueType fonts; it is zero if the device is a display adapter, dot-matrix printer, or other raster
device. An application can also use the DEVICE_FONTTYPE mask to distinguish GDI-supplied raster
fonts from device-supplied fonts. GDI can simulate bold, italic, underline, and strikeout attributes for GDI-
supplied raster fonts, but not for device-supplied fonts.

An application can also check bit 1 and 2 in the tmPitchandFamily member of the NEWTEXTMETRIC
structure to identify a TrueType font. If bit 1 is zero and bit 2 is 1, the font is a TrueType font.

Vector fonts are categorized as OEM_CHARSET instead of ANSI_CHARSET. Some applications
identify vector fonts by using this information, checking the tmCharSet member of the
NEWTEXTMETRIC structure. This categorization usually prevents the font mapper from choosing vector
fonts unless they are specifically requested. (Most applications do not use vector fonts, because they are
slow and generally unattractive, and because TrueType fonts offer many of the same scaling and rotation
features that required the use of vector fonts in earlier versions of Windows.)

Checking a Device's Text Capabilities

Applications can use the EnumFonts and EnumFontFamilies functions to enumerate the fonts in a
printer-compatible memory device context. An application can also use the GetDeviceCaps function to
retrieve information about the text capabilities of a device. By calling the GetDeviceCaps function with
the NUMFONTS index, an application can determine the minimum number of fonts supported by a
printer. (An individual printer may support more fonts than specified in the return value from
GetDeviceCaps with the NUMFONTS index.) By using the TEXTCAPS index, an application can
identify many of the text capabilities of the specified device.

The following example uses the GetDeviceCaps function to determine whether a device supports text
rotation:

int result;
result = GetDeviceCaps(hdc, TEXTCAPS);
if (result & TC_CR_90)

TextOut(hdc, 10, 100, "Device can rotate text 90 degrees",
33);

if (result & TC_CR_ANY)
TextOut(hdc, 10, 120, "Device can rotate text at any angle",
35);

else if ((result & TC_CR_90) == 0 && (result & TC_CR_ANY) == 0)
TextOut(hdc, 10, 100, "Device cannot rotate text", 25);

Creating a Logical Font

A logical font is a list of font attributes, such as height, width, character set, and typeface. An
application creates a logical font to describe the font that is best suited for a given task; the font mapper
uses this logical font to choose the available physical font that best matches the specified characteristics.

An application can use either the CreateFont or the CreateFontIndirect function to create a logical font.
Most applications use CreateFontIndirect, assigning values to a LOGFONT structure. These functions
return a handle of a logical font, which can then be selected into a device context and used.

The following example is a function that takes a handle of a device context, the name of a font, and a
nominal point size as input. It creates a logical font of the requested size and face name and selects that
font into the specified device context.

BOOL FAR PASCAL CreateLogFont(hdc, pszFace, PointSize)
HDC hdc;

PSTR pszFace;
int PointSize;
{

HFONT hfnt, hfntOld;
PLOGFONT plf = (PLOGFONT) LocalAlloc(GPTR, sizeof(LOGFONT));
if (GetMapMode(hdc) != MM_TEXT) {
TextOut(hdc, 100, -200, "Mapping mode must be MM_TEXT",
28);
return FALSE;
}
plf->lfHeight = -MulDiv(PointSize,
GetDeviceCaps(hdc, LOGPIXELSY), 72);
lstrcpy(plf->lfFaceName, pszFace);
hfnt = CreateFontIndirect(plf);
hfntOld = SelectObject(hdc, hfnt);
.
. /* Use font for text output. */
.
LocalFree((LOCALHANDLE) plf);
SelectObject(hdc, hfntOld);
if (DeleteObject(hfnt))
return TRUE;
else
return FALSE;

}
Memory for the logical font in this example is allocated and initialized to zero (by using the LocalAlloc
function with the GPTR constant); this means the logical font created by the CreateFontIndirect function
uses default values for all members except lfHeight and lfFaceName. (Applications should always specify
values for at least these two members.) For a description of all of the members of the LOGFONT
structure, see the Microsoft Windows Programmer's Reference, Volume 3.

The function in this example uses the Windows MulDiv function to convert the specified point size into a
different negative value and then assigns that value to the lfHeight member. This conversion is required
because logical inches are larger than physical inches. The MulDiv function multiplies the requested point
size by the result of dividing the number of pixels per logical inch by the number of points in a physical
inch (72). A negative value is specified for lfHeight to indicate that the system should interpret this value
as the height of the character glyphs in the font; when a positive value is specified, GDI interprets it as the
height of a font's character cells, including internal leading.

An application would use a positive value for the lfHeight member to choose a font that fits within a
specific height. For example, to display a page in "print preview" mode, an application would retrieve the
height of the printer font from the tmHeight member of the NEWTEXTMETRIC structure, scale that
height to the screen resolution, and use this value for the lfHeight member. The formula in this case would
look like this:

tmHeight * DPI of screen
lfHeight = ------------------------
DPI of printer

The results of this calculation should always be rounded down to the nearest whole number.

When an application specifies the handle of a logical font in a call to the SelectObject function, the font
mapper returns a handle of the physical font that is the best match for the requested attributes.

An application that requires a raster font can identify the available raster fonts by calling the
EnumFontFamilies function and checking the RASTER_FONTTYPE bit. The application can then specify
the typeface name in a LOGFONT structure. Similarly, vector fonts can be selected by checking the
RASTER_FONTTYPE and TRUETYPE_FONTTYPE bits. An application can also specify a vector font
by specifying OEM_CHARSET in the lfCharSet member of the LOGFONT structure, as discussed in
Section 18.4.2, "Enumerating Fonts."

An application can use TrueType fonts exclusively by specifying OUT_TT_ONLY_PRECIS in the
lfOutPrecision member of the LOGFONT structure. This is important for applications that use object
linking and embedding (OLE), because metafiles can be scaled much better when they use only TrueType
fonts.

Retrieving Information About the Selected Font

Applications can retrieve font information from a device context by using the GetTextMetrics,
GetTextFace, and GetOutlineTextMetrics functions.

The GetTextMetrics function copies a TEXTMETRIC structure into a buffer. The TEXTMETRIC
structure contains a description of the physical font, including the average dimensions of the character
cells within the font, the spacing between lines of text, the number of characters in the font, and the
character set on which the font is based. An application working with TrueType fonts can call the
GetOutlineTextMetrics function to retrieve information in an OUTLINETEXTMETRIC structure.

Applications often use the TEXTMETRIC structure to determine how much space to specify between
lines of text. For example, to compute an appropriate value for single-line spacing, an application could
add the values of the tmHeight and tmExternalLeading members. The tmHeight member specifies the
height of each character cell, and tmExternalLeading specifies the font designer's recommended spacing
between the bottom of one character cell and the top of the next. (More accurate information can be
retrieved for TrueType fonts from the OUTLINETEXTMETRIC structure; in this case, applications can
add the values of the otmAscent, otmDescent, and otmLineGap members.) The following example
writes several lines of single-spaced text:

TEXTMETRIC tm;
int LineSpacing, i, YIncrement;
GetTextMetrics(hdc, &tm);
LineSpacing = tm.tmHeight + tm.tmExternalLeading;
YIncrement = 50;
for (i = 0; i < 4; i++) {

TextOut(hdc, 10, YIncrement, "Single-line spacing", 19);
YIncrement += LineSpacing;

}
The GetTextFace function copies a name identifying the typeface of the selected font into a buffer. An
application can use this information in dialog boxes and menus.

Retrieving Information About a Logical Font

An application can retrieve information about a font by specifying the font handle in a call to the
GetObject function. The GetObject function copies logical-font information to a LOGFONT structure.

The following example uses the GetObject function to retrieve logical-font information for a font and
then checks whether the font is italic:

LOGFONT lf;
GetObject(hfnt, sizeof(LOGFONT), &lf);
if (lf.lfItalic)

return TRUE;
else

return FALSE;
Drawing Text

An application can use the following functions to draw text:

Function Description
DrawText Draws formatted text in a rectangle. DrawText formats text by expanding tabs

into appropriate spaces, aligning text to the left, right, or center of the given
rectangle, and breaking text into lines that fit within the given rectangle. This is
not a GDI function; it is in USER.EXE.

ExtTextOut Writes a character string within a rectangular region. The rectangular region can
be opaque (filled with the current background color), and it can be a clipping
region.

GrayString Draws gray text by writing the text in a memory bitmap, graying the bitmap, and
then copying the bitmap to the device. GrayString grays the text regardless of the
selected brush and background. This is not a GDI function; it is in USER.EXE.

TabbedTextOut Writes a character string, expanding tabs to the values specified in an array of tab-
stop positions.

TextOut Writes a character string at a specified location.

The ExtTextOut function is the fastest Windows text-output function. The DrawText function is the
slowest (although it offers the richest formatting options).

Instead of using the GrayString function, an application could simply set the text color to gray, as follows:

dwColorPrevious = SetTextColor(hdc, GetSysColor(COLOR_GRAYTEXT));
Setting the Text Alignment

An application can query and set the text alignment for a device context by using the GetTextAlign and
SetTextAlign functions. The text-alignment settings determine how text is positioned relative to a given
location. Text can be aligned to the right or left of the position or centered over it; it can also be aligned
above or below the point. In addition, an application can use the SetTextAlign function to update the
current position when a text-output function is called.

For example, the following example uses the SetTextAlign function to update the current position when
the TextOut function is called. In this example, cArial is an integer that specifies the number of Arial
fonts:

UINT uAlignPrev;
char szCount[8];
uAlignPrev = SetTextAlign(hdc, TA_UPDATECP);
MoveTo(hdc, 10, 50);
TextOut(hdc, 0, 0, "Number of Arial fonts: ", 23);
itoa(cArial, szCount, 10);
TextOut(hdc, 0, 0, (LPSTR) szCount, strlen(szCount));
SetTextAlign(hdc, uAlignPrev);
Using Color

When an application first creates a device context, the text color is black and the background color is
white. An application can add color to text by setting the text and background colors of the device
context. The text color determines the color of the character to be written; the background color
determines the color of everything in the character cell except the character.

An application can set the text and background colors by using the SetTextColor and SetBkColor
functions. The following example sets the text color to red and the background color to green:

SetTextColor(hdc, RGB(255,0,0));
SetBkColor(hdc, RGB(0,255,0));
The background color applies only when the background mode is opaque. The background mode
determines whether the background color in the character cell has any effect on what is already on the
screen. If the mode is opaque, the background color overwrites anything already on the screen; if the mode
is transparent, anything on the screen that would otherwise be overwritten by the background is preserved.
The background color for an italic string that GDI has synthesized is sheared along with the characters;
this can lead to unexpected results when the text background color is different from the window
background color. An application can set and retrieve the background mode by using the SetBkMode
function and GetBkMode functions. Similarly, an application can retrieve the current text and background
color by using the GetTextColor and GetBkColor functions.

Using Multiple Fonts in a Line

Different type styles within a font family can have different widths. For example, bold and italic styles
of a family are always wider than the roman style for a given point size. An application that can display
or print several type styles on a single line must keep track of the width of the line to avoid having
characters print on top of one another.

An application can use the following functions to retrieve the width (or extent) of text in the current
font:

Function Description

GetTabbedTextExtent Computes the width and height of a character string. If the string contains
one or more tab characters, the width of the string is based upon a
specified array of tab-stop positions.

GetTextExtent Computes the width and height of a line of text.

When necessary, GDI synthesizes a font by changing the character bitmaps. To synthesize a character in a
bold font, GDI draws the character twice: once at the starting point, and again one pixel to the right of the
starting point. To synthesize a character in an italic font, GDI draws the two rows of pixels at the bottom
of the character cell, moves the starting point one pixel to the right, draws the next two rows, and
continues until the character has been drawn. The base line of a synthesized italic character is shifted to the
right by an amount determined by the height of the character cell. To determine the amount a base line is
shifted to the right, an application can perform the following calculation, using values retrieved by a call to
the GetTextMetrics function:

units base line shifted right = (tmDescent * tmOverhang) / tmAscent

One way to write a line of text that contains multiple fonts is to use the GetTextExtent function after each
call to TextOut and add the length to a current position. The following example writes the line "This is a
sample string.", using bold characters for the words "This is a", italic characters for the word "sample",
and system default characters for "string.":

int XIncrement;
TEXTMETRIC tm;
HFONT hfntDefault, hfntItalic, hfntBold;
XIncrement = 10;
hfntDefault = SelectObject(hdc, hfntBold);
TextOut(hdc, XIncrement, 50, "This is a ", 10);
XIncrement += LOWORD(GetTextExtent(hdc, "This is a ", 10));
GetTextMetrics(hdc, &tm);
XIncrement -= tm.tmOverhang;
SelectObject(hdc, hfntItalic);
GetTextMetrics(hdc, &tm);
XIncrement -= tm.tmOverhang;
TextOut(hdc, XIncrement, 50, "sample ", 7);
XIncrement += LOWORD(GetTextExtent(hdc, "sample ", 7));
SelectObject(hdc, hfntDefault);
TextOut(hdc, XIncrement - tm.tmOverhang, 50, "string.", 7);
In this example, the GetTextExtent function returns a 32-bit value (of type DWORD) containing both the
length and height of the specified string. The LOWORD macro then retrieves the length of the string,
which is added to the current position. The GetTextMetrics function retrieves the overhang for the current
font. Because the overhang is zero if the font is a TrueType font, the overhang value does not change the
string placement in that case. For raster fonts, however, it is important to use the overhang value. The
overhang is subtracted from the bold string once, to bring subsequent characters closer to the end of the
string if the font is a raster font. Because overhang affects both the beginning and end of the italic string in
a raster font, the glyphs begin to the right of the specified location and end to the left of the endpoint of the
last character cell. (The GetTextExtent function retrieves the extent of the character cells, not the extent of
the glyphs.) To account for the overhang for the raster italic string, this example subtracts the overhang
before placing the string and subtracts it again before placing subsequent characters.

An application that must place characters with greater precision can use the GetCharWidth or
GetCharABCWidths function to retrieve the widths of individual characters in a font. The
GetCharABCWidths function is more accurate than the GetCharWidth function, but only when it is used
with TrueType fonts; when GetCharABCWidths is used with non-TrueType fonts, it retrieves the same
information as GetCharWidth.

The SetTextJustification function adds extra space to the break characters in a line of text. An application
can use the GetTextExtent function to determine the extent of a string, subtract the extent from the total
amount of space the line should occupy, and use the SetTextJustification function to distribute the extra
space among the break characters in the string. The SetTextCharacterExtra function adds extra space to
every character cell in the selected font, including the break character. (An application can use the
GetTextCharacterExtra function to determine the current amount of extra space being added to the
character cells; the default setting is zero.)

ABC spacing also allows an application to perform very accurate text alignment. For example, when an
application right aligns a raster roman font without using ABC spacing, the advance width is calculated as
the character width. This means the white space to the right of the glyph in the bitmap is aligned, not the
glyph itself. By using ABC widths, applications have more flexibility in the placement and removal of
white space when aligning text, because they have information that allows them to finely control
intercharacter spacing.

Rotating Text

Applications can rotate TrueType fonts at any angle. This is useful for labeling charts and other
illustrations. The following example rotates a string in 10-degree increments around the center of the
client area by changing the value of the lfEscapement member of the LOGFONT structure used to create
the font:

RECT rc;
int angle;
HFONT hfnt, hfntPrev;
LPSTR lpszRotate = "String to be rotated.";
PLOGFONT plf = (PLOGFONT) LocalAlloc(LPTR, sizeof(LOGFONT));
lstrcpy(plf->lfFaceName, "Arial");
plf->lfWeight = 700;
GetClientRect(hwnd, &rc);
SetBkMode(hdc, TRANSPARENT);
for (angle = 0; angle < 3600; angle += 100) {

plf->lfEscapement = angle;
hfnt = CreateFontIndirect(plf);
hfntPrev = SelectObject(hdc, hfnt);
TextOut(hdc, rc.right / 2, rc.bottom / 2,
lpszRotate, lstrlen(lpszRotate));
SelectObject(hdc, hfntPrev);
DeleteObject(hfnt);

}
SetBkMode(hdc, OPAQUE);
LocalFree((LOCALHANDLE) plf);
This example produces the following pattern:

The lfOrientation member of the LOGFONT structure is ignored by GDI, which currently, assumes that the
values for lfEscapement and lfOrientation are identical.

TrueType Font Functions and Structures

Some of the functions and structures that allow an application to take advantage of the extra
functionality of TrueType are discussed elsewhere in this topic. This section describes some of the
TrueType functions that are useful for applications that must take full advantage of the new font
technology.

Retrieving Character Outlines

Applications can use the GetGlyphOutline function to retrieve the outline of a glyph from a TrueType
font. GetGlyphOutline returns the outline as a bitmap or as a series of polylines and splines.

When an application retrieves a glyph outline as a series of polylines and splines, the information is
returned in a TTPOLYGONHEADER structure followed by as many TTPOLYCURVE structures as are
required to describe the glyph. All points are returned as POINTFX structures and represent absolute
positions, not relative moves. The starting point given by the pfxStart member of the
TTPOLYGONHEADER structure is the point at which the outline for a contour begins. The
TTPOLYCURVE structures that follow can be either polyline records or spline records. Polyline
records are a series of points; lines drawn between the points describe the outline of the character. Spline
records represent the quadratic curves used by TrueType (that is, quadratic b-splines).

Each polyline and spline record contains as many sequential points as possible, to minimize the number
of records returned.

The starting point given in the TTPOLYGONHEADER structure is always on the outline of the glyph.
The specified point is both the starting point and the ending point for the contour.

A polyline record begins with the last point in the previous record (or with the starting point, for the first
record in the contour). Each point in the record is on the glyph outline and can be connected simply by
using straight lines.

A spline record begins with the last point in the previous record (or with the starting point, for the first
record in the contour). For the first spline record, the starting point and the last point in the record are on
the glyph outline. For all other spline records, only the last point is on the glyph outline. All other points
in the spline records are off the glyph outline and must be rendered as the control points of b-splines.

The last spline or polyline record in a contour always ends with the contour's starting point. This
ensures that every contour is closed.

Because b-splines require three points (one point that is off the glyph outline between two that are on the
outline), applications must perform some calculations when a spline record contains more than one off-
curve point.

For example, if a spline record contains three points (A, B, and C) and it is not the first record, points A
and B are off the glyph outline. To interpret point A, an application can use the current position (which
is always on the glyph outline) and the point on the glyph outline between points A and B. To find this
point between A and B, the application can perform the following calculation:

M = A + (B - A)/2

The midpoint between consecutive off-outline points in a spline record is a point that is on the glyph
outline, according to the definition of the spline format used in TrueType fonts. In preceding formula, M is
the midpoint on the line between points A and B.

If the current position is designated by P, the two quadratic splines defined by this spline record are (P, A,
M) and (M, B, C).

To render a TrueType character outline in GDI, an application must use both the polyline and the spline
records. GDI can render polylines easily, but it does not support any spline formats. To use the spline
records, an application must convert them into a series of polylines that approximate the spline.

The glyph outline returned by the GetGlyphOutline function is for a grid-fitted glyph. (A grid-fitted glyph
has been modified so that its bitmap image conforms as closely as possible to the original design of the
glyph.) If an application requires an unmodified glyph outline, it should request the glyph outline for a
character in a font whose size is equal to the font's em units. (To create a font with this size, an application
can set the lfHeight member of the LOGFONT structure to the negative of the value of the ntmSizeEM
member of the NEWTEXTMETRIC structure.)

Using Portable TrueType Metrics

Applications that use the TrueType font metrics can achieve a high degree of printer and document
portability. Applications that must maintain compatibility with earlier versions of Windows can use the
TrueType metrics, as can applications that are written specifically for Windows version 3.1.

Design Widths

Design widths overcome most of the problems of device-dependent text introduced by physical devices.
Design widths are a kind of logical width. Independent of any rasterization problems or scaling
transformations, each glyph has a logical width and height. Composed to a logical page, each character
in a string has a place independent of the physical device widths. Although a logical width implies that
widths can be scaled linearly at all point sizes, this is not necessarily true for either nonportable or most
TrueType fonts. At smaller point sizes, some glyphs are made wider relative to their height for better
readability.

The characters in TrueType core fonts are designed against a 2048-by-2048 grid. The design width is the
width of a character in these grid units. (TrueType supports any integer grid size up to 16,384 by 16,
384; grid sizes that are integer powers of 2 scale faster than other grid sizes.)

The outline of a font is designed in notional units. The em square is the notional grid against which the
font outline is fitted. (The otmEMSquare member of OUTLINETEXTMETRIC and the ntmSizeEM
member of NEWTEXTMETRIC give the size of the em square in notional units.) When a font is created
that has a point size (in device units) equal to the size of its em square, the ABC widths for this font are
the desired design widths. For example, if the size of an em square is 1000 and the ABC widths of a
character in the font are 150, 400, and 150, a character in this font that has a height of 10 in device units
would have ABC widths of 1.5, 4, and 1.5, respectively. Since the MM_TEXT mapping mode is most
commonly used with fonts (and MM_TEXT is equivalent to device units), this is a simple calculation.

Because of the high resolution of TrueType design widths, applications that use them must take into
account the large numeric values that can be created.

Device vs. Design Units

Portable metrics in fonts are known as design units. To apply to a given device, design units must be
converted to device units. An application can use the following formula to convert design units to device
units:

DeviceUnits = (DesignUnits/unitsPerEm) * (PointSize/72) * DeviceResolution

The variables in this formula have the following meanings:

Variable Description
DeviceUnits Specifies the DesignUnits font metric converted to device units. This value is in

the same units as the value given for DeviceResolution.
DesignUnits Specifies the font metric to be converted to device units. This value could be any

font metric, including the width of a character or the ascender value for an entire
font.

unitsPerEm Specifies the em square size for the font.
PointSize Specifies size of the font in points. (One point equals 1/72 of an inch.)
DeviceResolution Specifies number of device units (pixels) per inch. Typical values might be 300

for a laser printer or 96 for a VGA screen.

Note: This formula should not be used to convert device units back to design units. Device units are
always rounded to the nearest pixel. The propagated round-off error can become very large,
especially when an application is working with screen sizes.

Requesting Design-Unit Metrics

Font metrics for a physical font can be retrieved only after a font has been selected into a device context.
When a font is selected into a device context, it is scaled for the device, which makes the font metrics
specific to the device. To request design units, an application should create a logical font whose height is
specified as -unitsPerEm. Applications can retrieve the value for unitsPerEm by calling the
EnumFontFamilies function and checking the ntmSizeEM member of the NEWTEXTMETRIC
structure.

Metrics for Portable Documents

The following table specifies the most important font metrics for applications that require portable
documents and the functions that allow an application to retrieve them:

Function Metric Use
EnumFontFamilies ntmSizeEM Retrieving design metrics; conversion to

device metrics
GetCharABCWidths ABCWidths Accurate placement of characters at the start

and end of margins, picture boundaries, and
other text breaks

GetCharWidth AdvanceWidths Placement of characters on a line. (This
function is not new for Windows 3.1.)

GetOutlineTextMetrics otmfsType Font-embedding bits
otmsCharSlopeRise Y-component for slope of cursor for italic

fonts
otmsCharSlopeRun X-component for slope of cursor for italic

fonts
otmAscent Line spacing
otmDescent Line spacing
otmLineGap Line spacing
otmpFamilyName Font identification
otmpStyleName Font identification
otmpFullName Font identification (typically, family and

style name)

The otmsCharSlopeRise, otmsCharSlopeRun, otmAscent, otmDescent, and otmLineGap members of the

OUTLINETEXTMETRIC structure are scaled or transformed to correspond to the current device mode
and physical height (as given in the tmHeight member of the NEWTEXTMETRIC structure).

Font identification is important if the same font must be selected when a document is reopened or moved
to a different system. The font mapper always selects the correct font when it is asked for by full name.
The family and style names are needed in order to provide input to the standard font dialog box for proper
placement of the selection bars.

The otmsCharSlopeRise and otmsCharSlopeRun values are used to produce a close approximation of the
main italic angle of the font. For typical roman fonts, otmsCharSlopeRise is 1 and otmsCharSlopeRun is 0.
For italic fonts, the values attempt to approximate the sine and cosine of the main italic angle of the font
(in counterclockwise degrees past vertical); note that the italic angle for upright fonts is 0. Because these
values are not expressed in design units, they should not be converted into device units.

The character placement and line spacing metrics allow an application to compute device-independent line
breaks that are portable across screens, printers, typesetters, and even platforms. If all applications adopt
these techniques, documents moved from one application to another will not reflow.

Device-independent page layout requires seven basic steps:
1 Normalize all design metrics to a common ultra-high resolution (UHR) value (for example, 65,536

DPI); this prevents round-off errors.

2 Compute line breaks based on UHR metrics and physical page width; this yields a starting point and
an ending point of a line within the text stream.

3 Compute the device page width in device units (for example, pixels).

4 Fit each line of text into the device page width, using the line breaks computed in step 2.
5 Compute page breaks by using UHR metrics and the physical page length; this yields the number of

lines per page.

6 Compute the line heights in device units.
7 Fit the lines of text onto the page, using the lines per page from step 5 and the line heights from step

6.

Panose Numbers

TrueType font files include Panose numbers, which applications can use to choose a font that closely
matches their specifications. The Panose system classifies faces by 10 different attributes. These
attributes are each rated on a scale. The resulting values are concatenated to produce a number. Given
this number for a font and a mathematical metric to measure distances in the Panose space, an
application can determine nearest neighbors. A PANOSE structure is part of the
OUTLINETEXTMETRIC structure (whose values are filled in by calling the GetOutlineTextMetrics
function).

Creating Customized Fonts

GDI keeps a system font table containing all the fonts that applications can use. GDI chooses a font
from this table when an application calls the CreateFont or CreateFontIndirect function. There can be up
to 253 entries in the system font table.

A font resource is a group of individual fonts representing characters in a given character set that have
various combinations of heights, widths, and pitches. Applications can load font resources and add the
fonts in the resource to the system font table by using the AddFontResource function. After a font
resource has been added, the application can use the individual fonts in the resource. In other words, the
CreateFont function takes the fonts into account when it tries to match a physical font with the specified
logical font. (Fonts in the system font table are never directly accessible to an application. They are
available only through the CreateFontIndirect and CreateFont functions, which return handles of the
fonts, not memory addresses.)

An application can add a font resource to the system font table by using the AddFontResource function.
To remove a font resource, an application can use the RemoveFontResource function.

Whenever an application adds or removes a font resource, it should inform all other applications of the
change by sending a WM_FONTCHANGE message to them. An application can use the following call
to the SendMessage function to send the message to all windows:

SendMessage(HWND_BROADCAST, WM_FONTCHANGE, 0, 0);
An application can use the GetProfileString function to retrieve a list of any fonts the user has used
Control Panel to install. The application would use GetProfileString to search the [Fonts] section of the
WIN.INI file.

An application can create font resources by creating font files and adding them as resources to a font
resource file. To create a font resource file, an application should follow these steps:
1 Create the font files.

2 Create a resource-definition file for the font.
3 Create a dummy code module.

4 Create a module-definition file that describes the fonts and the devices that use the fonts.
5 Compile and link the sources.

A font resource file is an empty Windows dynamic-link library; it contains no code or data, but does
contain resources. An application can add a font file to an empty library, along with such resources as
icons, cursors, and menus, by using Microsoft Windows Resource Compiler (RC).

Creating Font Files

An application can create raster font files by using Microsoft Windows Font Editor (FONTEDIT.EXE),
as described in Microsoft Windows Programming Tools. (Font Editor cannot be used to generate vector
or TrueType fonts.) The application can use any number, size, and type of font files in a font resource.
In most cases, enough fonts should be included to reasonably satisfy most logical-font requests for the
target device.

GDI can scale device-independent raster fonts by 1 to 8 times vertically and 1 to 5 times horizontally.
GDI can also simulate bold, underlined, strikeout, and italic fonts. Font designers may choose to allow
GDI to synthesize some sizes and properties of a font, rather than providing separate font files.

Font Editor modifies existing .FNT files; it cannot create font files from scratch. The Microsoft
Windows 3.1 Software Development Kit (SDK) includes two .FNT files that font designers can load
into Font Editor, modify, and save as customized fonts. The file named ATRM1111.FNT is a fixed-
width font. The file named VGASYS.FNT is a variable-width font.

The Save As dialog box in Font Editor includes two File Format radio buttons. Font files saved in Font
Editor 3.0 format can be used only in 386 enhanced mode. Font files saved in Font Editor 2.0 format can
be used in all modes.

Creating the Resource-Definition File for a Font

An application can add resources to a font file by adding one or more FONT statements to the resource-
definition file. The resource-definition file can add .FNT files to a Windows library, a device driver, or a
resource-only file that contains only icons, cursor, fonts, and other resources. Because font resources are
available to all applications, they should not be added to application modules.

The FONT statement has the following form:

number FONT filename

One statement is required for each font file to be placed in the resource. The number must be unique,
because it is used to identify the font later. The following is a typical resource-definition file for a font
resource:

1 FONT FNTFIL01.FNT
2 FONT FNTFIL02.FNT
3 FONT FNTFIL03.FNT
4 FONT FNTFIL04.FNT
5 FONT FNTFIL05.FNT
6 FONT FNTFIL06.FNT
You can add fonts to modules that contain other resources by adding them to the existing resource-
definition file. An application can have icon, menu, cursor, and dialog box definitions in the resource-
definition file, as well as FONT statements.

Creating a Dummy Code Module

A dummy code module provides the object file from which the font resource file is made. A developer
can create the dummy code module by using the assembler and the Cmacros. The module's source file
could look like this:

TITLE FONTRES - Stub file to build a .FON resource file
.xlist
include cmacros.inc

.list
sBegin CODE
db 0
sEnd CODE
end

Microsoft Segmented Executable Linker LINK version 4 allows empty code segments, but LINK versions
5.12 and later does not. The inclusion of "db 0" between sBegin and sEnd in the preceding example
prevents an empty code segment.

The developer can assemble this source file by using the masm command. The object file that will be
created will contain no code and no data, but it can be linked to an empty Windows library to which the
font resources can be added.

Developers who build font files using version 6.0 of Microsoft Macro Assembler (ML) should use version
5.3 of the CMACROS.INC file (included with ML) instead of version 5.2 of the file, which is included
with the SDK.

Creating a Module-Definition File

The module-definition file for the font resource must contain a LIBRARY statement that defines the
resource name, a DESCRIPTION statement that describes the font resource characteristics, and a DATA
statement. The module-definition file for a font resource should look like this:

LIBRARY FONTRES
DESCRIPTION 'FONTRES 133,96,72 : System, Terminal (Set #3)'
EXETYPE WINDOWS
STUB 'WINSTUB.EXE'
DATA NONE
The DESCRIPTION statement provides device-specific information about the font that is used to match a
font with a given screen or printer. The following are the three possible formats for the DESCRIPTION
statement in a font resource. In each case, the first characters in the description must be a single quote and
the name of the library module (FONTRES):

DESCRIPTION 'FONTRES Aspect, LogPixelsX, LogPixelsY: Cmt' DESCRIPTION 'FONTRES
CONTINUOUSSCALING: Cmt' DESCRIPTION 'FONTRES DEVICESPECIFIC DeviceTypeGroup:
Cmt'

The first format specifies a font that was designed for a specific aspect ratio and logical pixel width and
height, and can be used with any device having the same aspect and logical pixel dimensions. Aspect is the
value (100*AspectY)/AspectX rounded to an integer. The AspectX, AspectY, LogPixelsX, and
LogPixelsY values are the same as the values given in the corresponding device's GDIINFO structure
(values that are accessible by using the GetDeviceCaps function). You can specify more than one set of
Aspect, LogPixelsX, and LogPixelsY values. The Cmt value is a comment. The following statements are
examples:

DESCRIPTION 'FONTRES 133,96,72: System, Terminal (Set #3)'
DESCRIPTION 'FONTRES 200,96,48; 133,96,72; 83,60,72; 167,120,72: \

MS Sans Serif'
The second format specifies a continuous scaling font. This typically corresponds to vector fonts that can
be drawn to any size and that do not depend on the aspect or logical pixel width of the output device. The
following statement is an example:

DESCRIPTION 'FONTRES CONTINUOUSSCALING : Modern, Roman, Script'
The third format specifies a font that is specific to a particular device or group of devices. The
DeviceTypeGroup can be DISPLAY or a list of device-type names--the same names an application might
specify as the second parameter in a call to the CreateDC function. Following is an example of the third
format:

DESCRIPTION 'FONTRES DISPLAY: HP 7470 plotters'
DESCRIPTION 'FONTRES DEVICESPECIFIC HP 7470A, HP 7475A: \

HP 7470 plotters'

Note: The maximum length of a DESCRIPTION line is 127 characters. Because GDI is capable of
synthesizing attributes, such as bold, italic, and underline, the font designer need not create separate
.FNT files for fonts with these attributes. Windows may use other fonts that do not correspond to
the user's screen aspect ratio. These are generic raster fonts that are intended for output devices
such as bitmap printers, which rely on the display driver to draw text.

Compiling and Linking a Font Resource File

The following makefile lists the commands required to compile and link a font resource file:

fontres.obj: fontres.asm
masm fontres;

fontres.exe: fontres.def fontres.obj fontres.rc fontres.exe \
fntfil01.fnt fntfil02.fnt fntfil03.fnt \
fntfil04.fnt fntfil05.fnt fntfil06.fnt

link fontres.obj, fontres.exe, NUL, /nod, fontres.def
rc fontres.rc
rename fontres.exe custom.fon

By convention, all raster font resource files have the .FON filename extension. The last line in the
makefile renames the executable file to CUSTOM.FON.

Adding TrueType Fonts

Because Windows cannot directly interpret the native TrueType font file format, a file that mimics the
standard .FON file (called a .FOT file) is required to make internal bookkeeping and enumeration easier.
The CreateScalableFontResource function produces a .FOT file that points to the TrueType font file.
Once this .FOT file is produced, Windows applications can use TrueType fonts transparently by using
the AddFontResource and RemoveFontResource functions. Applications could also use the
CreateScalableFontResource function to install special fonts for logos, icons, and other graphics.

Related Topics

Window Management (3.1)
The following topics describe the functions in the Microsoft Windows operating system that process
messages; create, move, or alter a window; or create system output. These functions constitute the window
manager interface.

Caret functions
Cursor functions
Dialog box procedures
Hook functions
Message functions
Painting functions
Property functions
Rectangle functions
Scrolling functions
Window-creation functions

Messages
Messages are the input to an application. They represent events that the application may need to respond
to. A message is a structure that contains a message identifier and message parameters. The content of the
parameters varies with the message type.

Generating and Processing Messages

Windows generates an input message for each input event, such as when the user moves the mouse or
presses a key. Windows collects input messages in a systemwide message queue and then places the
messages, as well as timer and paint messages, in an application message queue. An application message
queue is a first in, first out queue. Timer and paint messages are exceptions to the first in, first out rule;
these messages are held in an application's message queue until the application has processed all other
messages. Windows places messages that belong to a specific application in that application's message
queue. The application then reads the messages by using the GetMessage function and dispatches them
to the appropriate window procedure by using the DispatchMessage function.

Windows sends some messages directly to the window procedure in the appropriate application instead
of placing the messages in the application's message queue. Such messages are called unqueued
messages. Typically, an unqueued message is any message that affects the window only. The
SendMessage function sends messages directly to a window procedure. For more information about
window procedures, see Window Procedures.

For example, the CreateWindow function directs Windows to send a WM_CREATE message to a
window procedure of an application and to wait until the window procedure has processed the message.
Windows sends this message directly to the window procedure and does not place it in the application's
message queue.

Although Windows generates most messages, an application can create its own messages and place
them in its own message queue or that of another application.

An application typically uses the GetMessage function in a loop within its WinMain function to remove
messages from the application's message queue. This loop is called the main message loop. The
GetMessage function searches an application's message queue and, if any messages exist, returns the top
message in the queue. If the message queue is empty, GetMessage waits for a message to be placed in
the queue. While waiting, GetMessage relinquishes control to Windows, allowing other applications to
take control and process their own messages.

Once an application's WinMain function has retrieved a message from the application's message queue,
it can dispatch the message to a window procedure by using the DispatchMessage function. This
function directs Windows to call the window procedure of the window associated with the message, and
then passes the content of the message as function arguments. The window procedure can then process
the message and carry out any requested changes to the window. When the window procedure returns,
Windows returns control to the main message loop in the WinMain function. The main message loop
can then retrieve the next message from the queue.

Note: Unless noted otherwise, Windows can send messages in any sequence. An application should not
rely on receiving messages in a particular order.

Windows generates a message each time the user presses a key. The message contains a virtual-key code
that defines which key was pressed, but does not define the character value of that key. To retrieve the
character value, the main message loop in the WinMain function must translate the virtual-key message by
using the TranslateMessage function. This function puts another message with an appropriate character
value in the application's message queue. The message can then be dispatched to a window procedure.

Translating Messages

In general, a WinMain function should use the TranslateMessage function to translate every message,
not just virtual-key messages. Although TranslateMessage has no effect on other types of messages, it
guarantees that keyboard input is translated correctly.

The following example illustrates the typical main message loop that a WinMain function uses to
retrieve messages from the application's message queue and dispatch them to the application's window
procedures:

int PASCAL WinMain(HINSTANCE hinstCurrent, HINSTANCE hinstPrevious,
LPSTR lpszCmdLine, int nCmdShow)

{
MSG msg;

.

.

.
while (GetMessage(&msg, NULL, 0, 0)) {
TranslateMessage(&msg); /* translates virtual key codes */
DispatchMessage(&msg); /* dispatches message to window */
}
return (int) msg.wParam; /* return value of PostQuitMessage */

}
An application that uses accelerator keys must load an accelerator table from the resource-definition file
by using the LoadAccelerators function and then translate keyboard messages into accelerator-key
messages by using the TranslateAccelerator function.

The main message loop for an application that uses accelerator keys should have the following form:

while (GetMessage(&msg, NULL, 0, 0)) {
if (TranslateAccelerator(hwnd, haccel, &msg) == 0) {
TranslateMessage(&msg);
DispatchMessage(&msg);

}
}
return (int) msg.wParam;
The TranslateAccelerator function must appear before the standard TranslateMessage and
DispatchMessage functions. Furthermore, because TranslateAccelerator automatically dispatches the
accelerator-key message to the appropriate window procedure, the TranslateMessage and
DispatchMessage functions should not be called if TranslateAccelerator returns a nonzero value.

Examining Messages

An application can use the PeekMessage function to examine its message queue for specific messages
without removing them from the queue. The function returns a nonzero value if a message exists in the
queue and lets the application retrieve the message and process it without going through the
application's main message loop.

Typically, an application uses PeekMessage to check periodically for messages when the application is
carrying out a lengthy operation, such as processing input and output. For example, this function can be
used to check for messages that end the operation. PeekMessage also gives the application a chance to
yield control if no messages are present, because PeekMessage can yield if no messages are in the
message queue.

Sending Messages

The SendMessage and PostMessage functions let applications pass messages to their windows or to the
windows of other applications. The PostAppMessage function is a variation on PostMessage that posts a
message using the application's module handle rather than a window handle.

The PostMessage function directs Windows to post a message--that is, place the message in an
application's message queue. The PostMessage function immediately returns control to the calling
application, and any action to be carried out as a result of the message does not occur until the message
is read from the queue.

The SendMessage function directs Windows to send a message directly to the given window procedure,
bypassing the application's message queue. Windows does not return control to the calling application
until the window procedure that receives the message processes the message or returns control as a
result of a call to the ReplyMessage function.

When an application transmits a message, it must do so by calling SendMessage if the application relies
on the return value of a message. The return value of SendMessage is the same as the value returned by
the window procedure that processed the message. PostMessage returns immediately after sending the
message, so its return value is only a Boolean value indicating whether the message was successfully
placed in the queue and does not indicate how the message was processed.

Avoiding Message Deadlocks

An application can create a deadlock condition in Windows if it yields control while processing a
message sent from another application (or by Windows on behalf of another application) by using the
SendMessage function.

Typically, a task that calls SendMessage to send a message to another task does not continue running
until the window procedure that receives the message returns. When the task that receives the message
yields control, the sending task cannot continue to run and to process messages because it is waiting for
SendMessage to return, resulting in a message deadlock.

The application processing the message does not have to yield explicitly to cause the problem. Calling
any one of the following functions can result in the application yielding control:

DialogBox
DialogBoxIndirect
DialogBoxIndirectParam
DialogBoxParam
GetMessage
MessageBox
PeekMessage
Yield

Before calling any of these functions while processing a message, a window procedure should first call the
InSendMessage function to find out whether the message was sent by the SendMessage function from
another application. If InSendMessage returns a nonzero value, the window procedure must call the
ReplyMessage function before calling any function that yields control.

Creating and Managing Windows
This section describes how to create, destroy, modify, and obtain information about windows.

Window Classes

A window class is a set of attributes that defines how a window looks and behaves. Before an
application can create and use a window, a window class must have been created and registered for that
window. An application registers a class by filling a WNDCLASS structure and passing a pointer to the
structure to the RegisterClass function. Any number of window classes can be registered. Once a class
has been registered, Windows lets the application create any number of windows belonging to that class.
The registered class remains available until it is deleted or the application closes.

Although the complete window class consists of many elements, Windows requires only that an
application supply a class name, the address of the window procedure that will process all messages sent
to windows belonging to this class, and an instance handle identifying the application that registered the
class. The other elements of the window class define default attributes for windows of the class, such as
the shape of the cursor and the content of the menu for the window.

There are three types of window classes: system global classes, application global classes, and
application local classes. These types differ in scope and in when and how they are created and
destroyed.

System Global Classes

Windows creates system global classes when it starts. These classes are available for use by all
applications at all times. Because Windows creates system global classes on behalf of all applications,
an application cannot create or destroy any of these classes. System global classes include edit-control
and list-box control classes.

Application Global Classes

An application or (more likely) a dynamic-link library (DLL) creates an application global class by
specifying the CS_GLOBALCLASS style for the class. Once created, it is globally available to all
applications within the system. Typically, a DLL creates an application global class so that applications
that call the DLL can use the class. Windows destroys an application global class when the application
that created it closes or the DLL that created it is unloaded. For this reason, it is essential that all
applications destroy all windows using that class before the application that created the class closes or
the DLL that created the class is unloaded. Use the UnregisterClass function to remove an application
global class and free the storage associated with it.

Application Local Classes

An application local class is any window class created by an application for its exclusive use. This is the
more common type of class created by an application. Use the UnregisterClass function to remove an
application local class and free the storage associated with it.

How Windows Locates a Class

When an application creates a window with a specified class, Windows uses the following procedure to
find the class:
1 Windows searches for a local class of the specified name.

2 If Windows does not find a local class with the name, it searches the application global class list.
3 If Windows does not find the name in the application global class list, it searches the system global

class list.

This procedure is used for all windows created by the application, including windows created by Windows
on the application's behalf, such as dialog boxes. It is possible, then, to override system global classes
without affecting other applications.

Class Ownership

Windows determines class ownership from the hInstance member of the WNDCLASS structure passed
to the RegisterClass function when the application or DLL registers the class. For Windows DLLs, the
hInstance member must be the instance handle of the DLL. When the application that registered the
class closes or the DLL that registered the class is unloaded, the class is destroyed. For this reason, all
windows using the class must be destroyed before the application closes or the DLL is unloaded.

Registering a Window Class

When Windows registers a window class, it copies the attributes into its own memory area. Windows
uses these internally stored attributes when an application refers to the window class by name; it is not
necessary for the application that originally registers the class to keep the structure available.

Shared Window Classes

An application must not share its registered classes with other applications. Some information in a
window class, such as the address of the window procedure, is specific to a given application and cannot
be used by other applications. However, applications can share an application global class. For more
information, see Application Global Classes.

Although an application must not share one of its registered classes with other applications, different
instances of the same application can share a registered class. Once a window class has been registered
by an application, it is available to all subsequent instances of that application. This means that new
instances of an application do not need to, and should not, register window classes that have been
registered by previous instances.

Predefined Window Classes

Windows provides several predefined system-global window classes. These classes define special
control windows that carry out common input tasks, such as letting the user direct scrolling, type text,
and select from a list of names. The predefined window classes are available to all applications and can
be used any number of times to create any number of control windows.

Elements of a Window Class

The elements of a window class define the default behavior of windows created from that class. The
application that registers a window class assigns elements to the class by setting appropriate members in
a WNDCLASS structure and passing the structure to the RegisterClass function. An application can
retrieve information about a given window class with the GetClassInfo function. The window class
elements are as follows:

Element Purpose
Class name Distinguishes the class from other registered classes.
Window-procedure address Points to the function that processes all messages that are sent to

windows in the class, and defines the behavior of the window.
Instance handle Identifies the application or DLL that registered the class.
Class cursor Defines the shape of the cursor when the cursor is in a window of the

class.
Class icon Defines the shape of the icon Windows displays when a window

belonging to the class is minimized.
Class background brush Defines the color and pattern Windows uses to fill the client area when

the window is opened or painted. If this parameter is set to NULL, the
window must paint its own background whenever it receives the
WM_ERASEBKGND message.

Class menu Specifies the default menu used for any window belonging to the class
that does not explicitly define a menu.

Class styles Defines how to update the window after moving or resizing, how to
process double-clicks of the mouse, how to allocate space for the
display context, and other aspects of the window.

Class extra Specifies the amount of extra memory, in bytes, that Windows should
reserve at the end of the WNDCLASS structure. Windows initializes
this memory to zero.

Window extra Specifies the amount of extra memory, in bytes, that Windows should
reserve at the end of any window structure an application creates that
has this class. Windows initializes this memory to zero.

The following sections describe the elements of a window class and explain the default values for these
elements if no explicit value is given when the class is registered.

Class Name

Every window class needs a class name. The class name distinguishes one class from another. An
application assigns a class name to the class by setting the lpszClassName member of the WNDCLASS
structure to the address of a null-terminated string that specifies the name.

In the case of an application global class, the class name must be unique to distinguish it from other
application global classes. If an application registers another application global class with the name of an
existing application global class, the RegisterClass function returns zero, indicating failure. The
conventional method for ensuring this uniqueness is to include the application name in the name of the
application global class.

The class name must be unique among all the classes registered by an application. An application cannot
register an application local class and an application global class with the same class name.

Window-Procedure Address

Every class needs a window-procedure address. The address defines the entry point of the window
procedure that is used to process all messages for windows in the class. Windows passes messages to the
procedure when it requires the window to carry out tasks, such as painting its client area or responding
to input from the user. An application assigns a window-procedure to a class by copying its address to
the lpfnWndProc member of the WNDCLASS structure. The window procedure must be exported in the
module-definition (.DEF) file. For more information about exporting functions, see the EXPORTS topic.

Instance Handle

Every window class needs an instance handle to identify the application or DLL that registered the class.
As a multitasking system, Windows lets several applications or DLLs run at the same time, so it needs
instance handles to keep track of all applications and DLLs. Windows assigns a unique handle to each
copy of a running application or DLL.

Multiple instances of the same application or DLL all use the same code segment, but each has its own
data segment. Windows uses an instance handle to identify the data segment that corresponds to a
particular instance of an application or DLL.

Windows passes an instance handle to an application or DLL when the application first begins
operation. The application or DLL assigns this instance handle to the class by copying it to the hInstance
member of the WNDCLASS structure.

Class Cursor

The class cursor defines the shape of the cursor when the cursor is in the client area of a window in the
class. Windows automatically sets the cursor to the given shape as soon as the cursor enters the
window's client area, and ensures that the cursor keeps that shape while it remains in the client area. To
assign a cursor shape to a window class, an application typically loads a predefined cursor shape by
using the LoadCursor function, and then assigns the returned cursor handle to the hCursor member of
the WNDCLASS structure. Alternatively, you can use Microsoft Image Editor (IMAGEDIT.EXE) to
create your own custom cursor, and use Microsoft Windows Resource Compiler (RC) to add the cursor
as a resource to your application's executable file. The application can then use the LoadCursor function
to load the custom cursor from the application's resources.

Windows does not require a class cursor. If an application sets the hCursor member of the WNDCLASS
structure to NULL, a class cursor is not defined. Windows assumes that the window will set the cursor
shape each time the cursor moves into the window. A window can set the cursor shape by calling the
SetCursor function whenever the window receives the WM_MOUSEMOVE message.

Class Icon

The class icon defines the shape of the icon used when the window of the given class is minimized. To
assign an icon to a window class, an application typically loads the icon from the application's resources
by using the LoadIcon function, and then assigns the returned icon handle to the hIcon member of the
WNDCLASS structure.

Windows does not require that a window class have a class icon. If an application sets the hIcon member
of the WNDCLASS structure to NULL, a class icon is not defined. In this case, Windows sends the
WM_ICONERASEBKGND message to a window of the class whenever the window must paint the
background of the icon. If the window does not process the WM_ICONERASEBKGND message,
Windows draws an image of the contents of the window's client area onto the icon when it is
minimized.

Class Background Brush

A class background brush is the brush used to prepare the client area of a window for subsequent
drawing by the application. Windows uses the brush to fill the client area with a solid color or pattern,
thereby removing all previous images from that location whether they belonged to the window or not.
Windows notifies a window that its background needs to be painted by sending the
WM_ERASEBKGND message to the window.

To assign a background brush to a class, an application can create a brush by using the appropriate
functions from the graphics device interface (GDI) and then assign the returned brush handle to the
hbrBackground member of the WNDCLASS structure.

Instead of creating a brush, an application can use a standard system color by setting the hbrBackground
member to one of the standard system color values.

To use a standard system color, the application must increase the background-color value by one. For
example, COLOR_BACKGROUND + 1 is the system background color.

Class Menu

A class menu defines the default menu to be used by the windows in the class if no explicit menu is
given when the windows are created. A menu is a list of commands from which a user can select actions
for the application to carry out. To assign a menu to a class, an application sets the lpszMenuName
member of the WNDCLASS structure to the address of a null-terminated string that specifies the
resource name of the menu. The menu is assumed to be a resource in the given application. Windows
automatically loads the menu when it is needed. Note that if the menu resource is identified by an
integer and not by a name, the application can set the lpszMenuName member to that integer value by
applying the MAKEINTRESOURCE macro before assigning the value.

Windows does not require a class menu. If an application sets the lpszMenuName member of the
WNDCLASS structure to NULL, Windows assumes that the windows in the class have no menu bars.
Even if no class menu is given, an application can still define a menu bar for a window when it creates
the window.

Windows does not allow menu bars with child windows. If a menu is given for a class and a child
window of that class is created, the menu is ignored. For more information about menus, see Menus.

Class Styles

The class styles define additional elements of the window class. Two or more styles can be combined by
using the bitwise OR (|) operator. The class styles are as follows:

Style Description
CS_BYTEALIGNCLIENT Aligns the window's client area on a byte boundary (in the x

direction).
CS_BYTEALIGNWINDOW Aligns the window on a byte boundary (in the x direction).
CS_CLASSDC Allocates one display context to be shared by all windows in the

class. For more information about device contexts, see Class and
Private Display Contexts, and Display Context Types.

CS_DBLCLKS Sends double-click messages to the window procedure.
CS_GLOBALCLASS Specifies that the window class is an application global class. An

application global class is created by an application or DLL and is
available to all applications. The class is destroyed when the
application or DLL that created the class closes; it is essential,
therefore, that all windows created with the application global class
be closed before the application or DLL closes.

CS_HREDRAW Requests that the entire client area be redrawn if a movement or size
adjustment changes the width of the client area.

CS_NOCLOSE Inhibits the Close command on the System menu (sometimes referred
to as the Control menu).

CS_OWNDC Allocates a unique display context for each window in the class. For
more information about device contexts, see Class and Private
Display Contexts, and Display Context Types.

CS_PARENTDC Gives the parent window's display context to the child windows. For
more information about device contexts, see Class and Private
Display Contexts, and Display Context Types.

CS_SAVEBITS Saves, as a bitmap, the portion of the screen image that is obscured by
a window; Windows uses the saved bitmap to re-create the screen
image when the window is removed. Windows displays the bitmap at
its original location and does not send WM_PAINT messages to
windows that had been obscured by the window if the memory used
by the bitmap has not been discarded and if other screen actions have
not invalidated the stored image.

CS_VREDRAW Requests that the entire client area be redrawn if a movement or size
adjustment changes the height of the client area.

To assign a style to a window class, an application assigns the style value to the style member of the
WNDCLASS structure.

Internal Data Structures

Windows maintains internal data structures for each window class and window. These structures are not
directly accessible to applications but can be examined and modified by using the following functions:

GetClassInfo
GetClassLong
GetClassName
GetClassWord
GetWindowLong
GetWindowWord
SetClassLong
SetClassWord
SetWindowLong
SetWindowWord

Window Subclassing

A subclass is a window or set of windows that belong to the same window class, and whose messages
are intercepted and processed by another window procedure (or procedures) before being passed to the
class window procedure.

To create the subclass, the SetWindowLong function is used to change which window procedure is
associated with a particular window, causing Windows to call the new window procedure instead of the
previous one. An application must call the CallWindowProc function to pass to the previous window
procedure any messages not processed by the new window procedure. This allows Windows to create a
chain of window procedures. The application can retrieve the address of the previous window procedure
by using the GetWindowLong function before using the SetWindowLong function.

Similarly, the SetClassLong function changes which window procedure is associated with a window
class. Any window that is subsequently created with that class will be associated with the replacement
window procedure for that class, as will the window whose handle is passed to SetClassLong. Other
existing windows that were previously created with the class are not affected, however.

When an application subclasses a window or class of windows, it must export the replacement window
procedure in its module-definition file, call the MakeProcInstance function to create the address of the
procedure, and pass the address to the SetWindowLong or SetClassLong function.

Redrawing the Client Area

When a window is moved, Windows automatically copies the contents of the client area to the new
location. This saves time because a window does not have to recalculate and redraw the contents of the
client area as part of the move. If the window moves and changes size, Windows copies only as much of
the previous client area as is needed to fill the new location. If the window increases in size, Windows
copies the entire client area and sends a WM_PAINT message to the window to fill in the newly
exposed areas.

When a window is moved, Windows assumes the contents of the client area remain valid and can be
copied without modification to the new location. For some windows, however, the contents of the client
area are not valid after a move, especially if the move includes a change in size. For example, a clock
application whose window must always contain the complete image of the clock has to redraw the
window anytime the window changes size, and has to update the time after the move. To redraw the
entire client area instead of copying the previous contents each time a window changes size, a window
should specify the CS_VREDRAW and CS_HREDRAW styles in the window class.

Class and Private Display Contexts

A display context is a special set of values that applications use for drawing in the client area of their
windows. Windows requires a display context for each window on the system display but allows some
flexibility in how that display context is stored and treated by the system.

If no display-context style is explicitly given, Windows assumes that each window will use a display
context retrieved from a pool of contexts maintained by Windows. In such cases, each window must
retrieve and initialize the display context before painting, and then free it after painting.

To avoid retrieving a display context each time it needs to paint inside a window, an application can
specify the CS_OWNDC style for the window class. This class style directs Windows to create a private
display context--that is, to allocate a unique display context for each window in the class. The
application need only retrieve the context once, and then use it for all subsequent painting. Although the
CS_OWNDC style is convenient, it must be used carefully because each display context uses a
significant amount of system resources.

By specifying the CS_CLASSDC style, an application can have some of the convenience of a private
display context without allocating a separate display context for each window. The CS_CLASSDC style
directs Windows to create a single class display context--that is, one display context to be shared by all
windows in the class. An application need only retrieve the display context for a window; as long as no
other window in the class retrieves that display context, the window can continue to use the context.

Similarly, by specifying the CS_PARENTDC style, an application can create child windows that inherit
the device context of their parent.

Window Procedures

A window procedure processes all messages sent to all windows in a given class. Windows sends
messages to a window procedure when it receives input from the user that is intended for the given
window, or when it needs the procedure to carry out some action on its window, such as painting inside
the client area.

A window procedure receives the following types of messages:
Input messages from the keyboard, mouse or other pointing device, and timer
Requests for information, such as a request for the window title
Reports of changes made to the system by other windows, such as a change to the WIN.INI file
Messages that give the window procedure an opportunity to modify the standard system response

to certain actions, such as an opportunity to adjust a menu before it is displayed
Requests to carry out some action on its window or client area, such as a request to update the

client area
Information about its status in relation to other windows, such as its losing access to the keyboard

or becoming the active window

Most of the messages a window procedure receives are from Windows, but it can also receive messages
from other windows, including windows it owns. These messages can be requests for information or
notification that a given event has occurred within another window.

A window procedure continues to receive messages from the system and possibly other windows in the
system until the window procedure, the window procedure of a parent window, or the system destroys the
window. Even while the window is in the process of being destroyed, the window procedure receives
additional messages that give it the opportunity to carry out any cleanup tasks before terminating. These
messages include WM_CLOSE, WM_DESTROY, WM_QUERYENDSESSION, and
WM_ENDSESSION. But once the window is destroyed, no more messages are passed to the procedure
for that particular window. If there is more than one window of the class, however, the window procedure
continues to receive messages for the other windows until they, too, are destroyed.

A window procedure defines how all windows of a given window actually behave; that is, it defines what
response the windows make to commands from the user or system. The window procedure must examine
messages it receives from the system and determine what action, if any, to take. For example, if the user
clicks the scroll bar, the window procedure may scroll the contents of the client area. Windows passes
information that affects a window and provides some tools to carry out tasks, such as drawing and
scrolling, but the window procedure must carry out each actual task.

A window procedure can also choose not to respond to a given message. If it does not respond, the
procedure must pass the message to the DefWindowProc function to give the system the opportunity to
respond. This function carries out default actions based on the given message and its parameters. Many
messages, especially nonclient-area messages, must be processed, so the DefWindowProc function is
required in all window procedures.

A window procedure also receives messages that are really intended to be processed by the system. These
messages, called nonclient-area messages, inform the procedure either that the user has carried out some
action in a nonclient area of the window, such as clicking the title bar, or that some information about the
window is required by the system to carry out an action, such as to move or adjust the size of the window.
Although Windows passes these messages to the window procedure, the procedure should pass them to the
DefWindowProc function and not attempt to process them. In any case, the window procedure must not
ignore the message or return without passing it to DefWindowProc.

Window Messages

A window message is a set of values that Windows sends to a window procedure to provide input to the
window or request the window to carry out some action. Windows includes a wide variety of messages
that it or applications can send to a window procedure. Most messages are sent to a window as a result
of a given function being executed or as a result of input from the user.

Every message consists of four values: a handle that identifies the window, a message identifier, a 16-
bit message-specific value, and a 32-bit message-specific value. These values are passed as individual
parameters to the window procedure. The window procedure then examines the message identifier to
determine what response to make and how to interpret the 16- and 32-bit values.

A window procedure must use the Pascal calling convention. The following illustrates the window
procedure syntax:

LONG FAR PASCAL WndProc(hwnd, wMsg, wParam, lParam)
HWND hwnd;
WORD wMsg;
WORD wParam;
DWORD lParam;

The hwnd parameter identifies the window receiving the message; the wMsg parameter is the message
identifier; the wParam parameter is 16 bits of additional message-specific information; and lParam is 32
bits of additional message-specific information. The window procedure must return a 32-bit value that
indicates the result of message processing. The possible return values depend on the actual message sent.

Windows expects to make an intersegment call to the window procedure, so the procedure must be
declared with the FAR attribute. The window-procedure name must be exported by including it in an
EXPORTS statement in the application's module-definition file.

Default Window Procedure

The DefWindowProc function is the default message processor for window procedures that do not or
cannot process some of the messages sent to them. For most window procedures, the DefWindowProc
function carries out most, if not all, processing of nonclient-area messages. These are the messages that
signify actions to be carried out on parts of the window other than the client area. The messages that
DefWindowProc processes and the default actions for each are as follows:

Message Default action
WM_ACTIVATE Activates or deactivates a window.
WM_CANCELMODE Cancels internal processing of standard scroll bar input, cancels

internal menu processing, and releases mouse capture.
WM_CHARTOITEM Returns -1.
WM_CLOSE Calls the DestroyWindow function.
WM_CTLCOLOR Sets the background and text color and returns a handle of the

brush used to fill the control background.
WM_DRAWITEM Draws the focus rectangle for an owner-drawn list box item.
WM_ERASEBKGND Fills the client area with the color and pattern specified by the

class brush, if any.
WM_GETTEXT Copies the window title into a specified buffer.
WM_GETTEXTLENGTH Returns the length, in bytes, of the window title.
WM_ICONERASEBKGND Fills the icon's client area with the window's background brush.
WM_KEYUP Sends a WM_SYSCOMMAND message to the top-level window

if the F10 key or the ALT key was released. The wParam parameter
of the message is set to SC_KEYMENU.

WM_MOUSEACTIVATE Sends the WM_MOUSEACTIVATE response to the parent
window. The parent determines whether to activate the child
window.

WM_NCACTIVATE Activates or deactivates the window and draws the icon or title
bar to show the new state.

WM_NCCALCSIZE Computes the size of the client area.
WM_NCCREATE Initializes standard scroll bars, if any, and sets the default title for

the window.
WM_NCDESTROY Frees any space internally allocated for the window title.
WM_NCHITTEST Finds out what part of the window the mouse is in.

WM_NCLBUTTONDBLCLK Tests the given point to find out the location of the mouse and, if
necessary, generates additional messages.

WM_NCLBUTTONDOWN Finds out whether the left mouse button was pressed while the
mouse was in the nonclient area of a window.

WM_NCLBUTTONUP Tests the given point to find out the location of the mouse and, if
necessary, generates additional messages.

WM_NCMOUSEMOVE Tests the given point to find out the location of the mouse and, if
necessary, generates additional messages.

WM_NCPAINT Paints the nonclient areas of the window.
WM_PAINT Validates the current update region, but does not paint the region.
WM_QUERYENDSESSION Returns TRUE.
WM_QUERYOPEN Returns TRUE.
WM_SETCURSOR Displays the appropriate mouse cursor, based on the position of

the cursor.
WM_SETREDRAW Forces an immediate update of information about the clipping

region of the complete window.
WM_SETTEXT Sets and displays the window title.
WM_SHOWWINDOW Opens or closes a window.
WM_SYSCHAR Generates a WM_SYSCOMMAND message for menu input.
WM_SYSCOMMAND Carries out the requested system command.
WM_SYSKEYDOWN Examines the given key and generates a WM_SYSCOMMAND

message if the key is either TAB or ENTER.
WM_SYSKEYUP Sends a WM_SYSCOMMAND message to the top-level window

if the F10 key or the ALT key was released. The wParam parameter
of the message is set to SC_KEYMENU.

WM_VKEYTOITEM Returns -1.
WM_WINDOWPOSCHANGED Sends the WM_SIZE and WM_MOVE messages to the window.
WM_WINDOWPOSCHANGING Sends the WM_GETMINMAXINFO message to the window if

the window has the WS_OVERLAPPED or WS_THICKFRAME
style.

Window Styles

Windows provides several different window styles that can be combined to form different kinds of
windows. The styles are used in the CreateWindow function when the window is created.

Overlapped Windows

An overlapped window is always a top-level window. In other words, an overlapped window never has a
parent window. It has a client area, a border, and a title bar. It can also have a System menu, Minimize
and Maximize buttons, scroll bars, and a menu, if these items are specified when the window is created.
For a window used as a main interface, the System menu and Minimize and Maximize buttons are
strongly recommended.

Every overlapped window can have a corresponding icon that Windows displays when the window is
minimized. A minimized window is not destroyed. It can be restored to its previous size and position.
An application minimizes a window to save screen space when several windows are open at the same
time.

An application creates an overlapped window by using the WS_OVERLAPPED or
WS_OVERLAPPEDWINDOW style with the CreateWindow function. An overlapped window created
with the WS_OVERLAPPED style always has a title bar and a border. The
WS_OVERLAPPEDWINDOW style creates an overlapped window with a title bar, a thick-frame
border, a System menu, and Minimize and Maximize buttons.

Owned Windows

An owned window is a special type of overlapped window. Every owned window must be owned by an
overlapped window. Being owned forces several constraints on a window:

An owned window is always in front of its owner when the windows are in z-order. Attempting to
move the owner--that is, on an imaginary z-axis extending in front of the owned window from the screen
toward the user--causes the owned window also to change position to ensure that it will always be in front
of its owner.

Windows automatically destroys an owned window when it destroys the window's owner.

An owned window is hidden when its owner is minimized.

An application creates an owned window by specifying the owner's window handle as the hWndParent
parameter of the CreateWindow function when creating a window that has the WS_OVERLAPPED style.

Dialog boxes are owned windows by default. The function that creates the dialog box receives the handle
of the owner window as its hWndParent parameter.

Pop-up Windows

Pop-up windows are another special type of overlapped window. The main difference between a pop-up
window and other overlapped windows is that an overlapped window always has a title bar, whereas the
title bar is optional for a pop-up window. Like other overlapped windows, pop-up windows can be
owned.

You create a pop-up window by using the WS_POPUP window style with the CreateWindow function.
An application can use the ShowWindow function to open or close a pop-up window.

Child Windows

A child window is a window that is confined to the client area of a parent window. Child windows are
typically used to divide the client area of a parent window into different functional areas.

You create a child window by using the WS_CHILD window style with the CreateWindow function. An
application can use the ShowWindow function to show or hide a child window.

Every child window must have a parent window. The parent window can be an overlapped window, a
pop-up window, or even another child window. The parent window relinquishes a portion of its client
area to the child window, and the child window receives all input from this area. The window class does
not have to be the same for each of the child windows of the parent window. This means an application
can fill a parent window with child windows that look different and carry out different tasks.

A child window has a client area, but it does not have any other features unless these are explicitly
requested. An application can request a border, title bar, Minimize and Maximize buttons, and scroll
bars for a child window. In most cases, the application designs its own features for the child window.

Although it is not required, every child window should have a unique integer identifier. The identifier,
given in the hmenu parameter of the CreateWindow function in place of a menu, helps identify the child
window when its parent window has other child windows. The child window should use this identifier in
any messages it sends to the parent window. This is the way a parent window with multiple child
windows can identify which child window is sending the message. Child windows that share the same
parent window are sibling windows.

Windows always positions the child window relative to the upper-left corner of the parent window's
client area. The coordinates are always client coordinates. (For information about mapping, see Graphics
Device Interface Overview.) If all or part of a child window is moved outside the visible portion of the
parent window's client area, the child window is clipped; that is, the portion outside the parent window's
client area is not displayed.

A child window is an independent window that receives its own input and other messages. Input
intended for a child window goes directly to the child window and is not passed through the parent
window. The only exception is if input to the child window has been disabled by the EnableWindow
function. In this case, Windows passes any input that would have gone to the child window to the parent
window instead. This gives the parent window an opportunity to examine the input and enable the child
window, if necessary.

Actions that affect the parent window can also affect the child window, as follows:

Parent window Child window
Shown Shown after the parent window is shown.
Hidden Hidden before the parent window is hidden. A child window can

be visible only when the parent window is visible.
Destroyed Destroyed before the parent window is destroyed.
Moved Moved with the parent window's client area. The child window is

responsible for painting after the move.
Increased in size or maximized Paints any portions of the parent window that have been exposed

as a result of the increased size of the client area.

Windows does not automatically clip a child window from the parent window's client area. This means the
parent window draws over the child window if it carries out any drawing in the same location as the child

window. Windows does clip the child window from the parent window's client area if the parent window
has a WS_CLIPCHILDREN style. If the child window is clipped, the parent window cannot draw over it.

A child window can overlap other child windows in the same client area. Sibling windows can draw in
each other's client area unless one child window has a WS_CLIPSIBLINGS style. If the application
specifies this style for a child window, any portion of that child's sibling window that lies within this
window is clipped.

If a window has either the WS_CLIPCHILDREN or WS_CLIPSIBLINGS style, a slight loss in
performance occurs.

Each window takes up system resources, so an application should not use child windows indiscriminately.
For optimum performance, an application that needs to logically divide its main window should do so in
the window procedure of the main window rather than by using child windows.

Multiple Document Interface Windows

Windows MDI provides applications with a standard interface for displaying multiple documents within
the same instance of an application. An MDI application creates a frame window that contains a client
window in place of its client area. An application creates an MDI client window by calling
CreateWindow with the class MDICLIENT and passing a CLIENTCREATESTRUCT structure as the
function's lpParam parameter. This client window in turn can own multiple child windows, each of
which displays a separate document. An MDI application controls these child windows by sending
messages to its client window.

Title Bar

The title bar, a rectangle at the top of the window, provides space for the window title or name. An
application defines the window title when it creates the window. It can also change this name anytime
by using the SetWindowText function. A title bar makes it possible for the user to move the window by
using a mouse or other pointing device.

System Menu

The System menu, identified by a box at the left end of the title bar, is a pop-up menu that contains the
system commands. (The System menu is sometimes referred to as the Control menu.) The system
commands are commands that can be selected by the user to direct Windows to carry out actions that
affect the window, such as moving and closing it.

To create a window with a System menu or Close box, the application must specify both the
WS_SYSMENU and WS_CAPTION window styles when the window is created.

Scroll Bars

The horizontal and vertical scroll bars are bars on the lower and right sides of a window, respectively,
making it possible for a user to scroll the contents of the client area. Windows sends scroll requests to a
window as WM_HSCROLL and WM_VSCROLL messages. If the window permits scrolling, the
window procedure must process these messages.

A window can have one or both scroll bars. To create a window with a scroll bar, the application must
specify the WS_HSCROLL or WS_VSCROLL window style when the window is created. An
application can use the ShowScrollBar function to show or hide a scroll bar of a window with the
WS_HSCROLL or WS_VSCROLL style.

Menus

A menu is a list of commands from which the user can select using the mouse or other pointing device
or the keyboard. When the user selects an item, Windows sends a corresponding message to the window
procedure to indicate which command was selected. Windows provides two types of menus: menu bars
(sometimes called static menus) and pop-up menus.

A menu bar is a horizontal menu that appears at the top of a window and below the title bar, if one
exists. Any window except a child window can have a menu bar. If an application does not specify a
menu when it creates a window, the window receives the default menu bar (if any) defined by the
window class.

A pop-up menu contains a vertical list of items and is often displayed when a user selects a menu-bar
item. In turn, a pop-up menu item can display another pop-up menu. A pop-up menu can float--that is, it
can appear anywhere on the screen designated by the application. An application creates an empty pop-
up menu by calling the CreatePopupMenu function, and then fills in the menu using the AppendMenu
and InsertMenu functions. It displays the pop-up menu by calling TrackPopupMenu.

An application can create or modify an individual menu item with the MF_OWNERDRAW style,
indicating that the item is an owner-drawn item. In this case, the owner of the menu is responsible for
drawing all visual aspects of the menu item, including checked, grayed, and highlighted states. When the
menu is displayed for the first time, the window that owns the menu receives a WM_MEASUREITEM
message. The lParam parameter of this message points to a MEASUREITEMSTRUCT structure. The
owner then fills in this structure with the dimensions of the item and returns. Windows uses the
information in the structure to determine the size of the item so that Windows can appropriately detect
the user's interaction with the item. Windows sends the WM_DRAWITEM message whenever the
owner of the menu must update the visual appearance of an owner-drawn menu item. A top-level menu
item cannot be an owner-drawn item.

An application can call the AppendMenu, InsertMenu, or ModifyMenu function to add an owner-drawn
menu item to a menu or to change an existing menu item to be an owner-drawn menu item. To maintain
additional data associated with the item, the application can supply a 32-bit value for the lpNewItem
parameter of the function. This value is available to the application as the itemData member of the
structures pointed to by the lParam parameter of the WM_MEASUREITEM and WM_DRAWITEM
messages. For example, if an application were to draw the text in a menu item by using a specific color,
the 32-bit value could contain a pointer to a string. The application could then set the text color before
drawing the item when it received the WM_DRAWITEM message.

Window State

The window state can be open (minimized, maximized, or restored), hidden or visible, and enabled or
disabled. The initial state of a window depends on whether the following window styles are used:

WS_DISABLED
WS_MINIMIZE
WS_MAXIMIZE
WS_VISIBLE

By default, Windows creates windows that are initially enabled--that is, windows that can start receiving
input messages immediately. An application can disable input to a new window by specifying the
WS_DISABLED window style.

A new window is not displayed until an application opens it by using the ShowWindow function or
specifies the WS_VISIBLE window style when it creates the window. For overlapped windows, the
WS_ICONIC window style creates a window that is minimized initially.

Life Cycle of a Window

Because the purpose of any window is to make it possible for the user to specify data or for the
application to display information, a window starts its life cycle when the application has a need for
input or output. A window continues its life cycle until there is no longer a need for it or the application
is closed. Some windows, such as the window used for the application's main user interface, last the life
of the application. Other windows, such as a window used as a dialog box, may last only a few seconds.

The first step in a window's life cycle is creation. Given a registered window class with a corresponding
window procedure, the application uses the CreateWindow function to create the window. This function
directs Windows to prepare internal structures for the window and to return a unique integer value,
called a window handle, that the application can use to identify the window in subsequent function calls.

The first message most windows process is WM_CREATE, the window-creation message. The
CreateWindow function sends this message to inform the window procedure that it can now perform any
initialization, such as allocating memory and preparing data files. The wParam parameter is not used,
but the lParam parameter contains a long pointer to a CREATESTRUCT structure, whose members
correspond to the parameters passed to CreateWindow.

The WM_CREATE message is sent directly to the window procedure, bypassing the application's
message queue. This means an application creates a window and processes the WM_CREATE message
before it enters the main message loop.

After a window has been created, it must be opened (displayed) before it can be used. An application
can open the window in one of two ways: It can specify the WS_VISIBLE window style in the
CreateWindow function to open the window immediately after creation, or it can wait until later and call
the ShowWindow function to open the window. When creating a main window, an application should
not specify WS_VISIBLE, but should call ShowWindow from the WinMain function with the
nCmdShow parameter set to specify the window state.

When the window is no longer needed or the application is terminated, the window must be destroyed.
This is done by using the DestroyWindow function. DestroyWindow removes the window from the
system display and invalidates the window handle. It also sends WM_DESTROY and

WM_NCDESTROY messages to the window procedure. The DestroyWindow function also destroys all
of the window's child and owned windows.

The window procedure also receives a WM_DESTROY message when the WM_CLOSE message is
processed by the DefWindowProc function. When a window procedure receives a WM_DESTROY
message, it should free any allocated memory and close any open data files.

The window used as the application's main user interface should always be the last window destroyed
and should always cause the application to terminate. When this window receives a WM_DESTROY
message, it should call the PostQuitMessage function. This function copies a WM_QUIT message to the
application's message queue as a signal for the application to close when the message is read from the
queue.

Painting
This section describes the system display and the preparation of windows for painting and other general-
purpose graphics operations.

How Windows Manages the Display

The system display is the principal display device for all applications running with Windows. All
applications are free to display some form of output on the system display; but because many
applications can run at one time, the complete system display must be shared. Windows shares the
system display by carefully managing the access that applications have to it. Windows ensures that each
application has space to display output but does not draw in the space reserved for other applications.

Windows manages the system display by using display contexts. The display context is a special device
context that treats each window as a separate display surface. An application that retrieves a display
context for a specific window has complete control of the system display within that window, but cannot
access or paint over any part of the display outside the window.

Display Context Types

There are four types of display contexts: common, class, private, and window. The common, class, and
private display contexts permit drawing in the client area of a given window. The window display
context permits drawing anywhere in the window. When a window is created, Windows assigns a
common, class, or private display context to it, based on the type of display context specified in that
window's class style. A window display context can be used for painting within a window's nonclient
area.

Common Display Context

A common display context is the default context for all windows. Windows assigns a common display
context to the window if a display-context type is not explicitly specified in the window's class style.

A common display context permits drawing in a window's client area, but it is not immediately
available for use by a window. A common display context must be retrieved from a cache of display
contexts before a window can carry out any drawing in its client area. The GetDC or BeginPaint
function retrieves the display context and returns a handle of the context. The handle can be used with
GDI functions to draw in the client area of the given window. After drawing is complete, an application
must use the ReleaseDC or EndPaint function to return the context to the cache. After the context is
released, drawing cannot occur until another display context is retrieved.

When a common display context is retrieved, Windows gives it default selections for the tools currently
available to carry out the actual drawing. The default selections for a common display context are as
follows:

Attribute Default
Background color Background color setting from Windows Control Panel (typically, white).
Background mode OPAQUE.
Bitmap No default.
Brush WHITE_BRUSH.
Brush origin (0,0).
Clipping region Entire client area with the update region clipped as appropriate. Child and

pop-up windows in the client area may also be clipped.
Color palette DEFAULT_PALETTE.
Current pen position (0,0).
Device origin Upper-left corner of client area.
Drawing mode R2_COPYPEN.
Font SYSTEM_FONT (SYSTEM_FIXED_FONT for applications written to run

with Windows versions 3.0 or earlier).
Intercharacter spacing 0.
Mapping mode MM_TEXT.
Pen BLACK_PEN.
Polygon-filling mode ALTERNATE.
Relative-absolute flag ABSOLUTE.
Stretching mode BLACKONWHITE.

Text color Text color setting from Control Panel (typically, black).
Viewport extent (1,1).
Viewport origin (0,0).
Window extent (1,1).
Window origin (0,0).

An application can modify the attributes of the display context by using the selection functions and
display-context attribute functions. For example, applications typically change the selected pen, brush, and
font.

When a common display context is released, the current selections, such as mapping mode and clipping
region, are lost. Windows does not preserve the previous selections of a common display context.
Applications that modify the attributes of a common display context must do so each time another context
is retrieved.

Class Display Context

A window has a class display context if the window class specifies the CS_CLASSDC style. A class
display context is shared by all windows in a given class. A class display context is not part of the
display context cache. Instead, Windows specifically allocates a class context for exclusive use by the
window class.

A class display context must be retrieved before it can be used, but it does not have to be released after
use. As long as only one window from the class uses the context, the class display context can be kept
and reused. If another window in the class needs to use the context, that window must retrieve it before
any drawing occurs. Retrieving the context sets the correct device origin and clipping region for the new
window and ensures that the context is applied to the correct window. An application can use the GetDC
or BeginPaint function to retrieve a handle of the class display context. The ReleaseDC and EndPaint
functions have no effect on a class display context.

A class display context is given the same default selections as a common display context when the first
window of the class is created. These selections can be modified at any time. Windows preserves all
new selections made for the class display context, except for the clipping region and device origin,
which are adjusted for the current window when the context is retrieved. This means a change made by
one window applies to all windows that subsequently use the context.

Note: Changing the mapping mode of a class display context may have an undesirable effect on how a
window's background is erased. For more information, see Window Background, and Graphics
Device Interface Overview.

Private Display Context

A window has a private display context if the window class specifies the CS_OWNDC style. A private
display context is used exclusively by a given window. A private display context is not part of the
display context cache. Instead, Windows specifically allocates the context for exclusive use by the
window. Although using private display contexts is convenient, they are expensive in terms of system
resources, so an application should use them sparingly.

A private display context needs to be retrieved only once. Thereafter, it can be kept and used any
number of times by the window. Windows automatically updates the context to reflect changes to the
window, such as moving or sizing. An application can use the GetDC or BeginPaint function to retrieve
a handle of a private display context. The ReleaseDC and EndPaint functions have no effect on a private
display context.

A private display context is given the same default selections as a common display context when the
window is created. These selections can be modified at any time. Windows preserves any new selections
made for the context. New selections, such as of a clipping region or brush, remain selected until the
window specifically makes a change.

Note: Changing the mapping mode of a private display context may have an undesirable effect on how
the window's background is erased. For more information, see Window Background, and
Graphics Device Interface Overview.

Window Display Context

A window display context permits painting anywhere in a window, including the title bar, menus, and
scroll bars. Its origin is the upper-left corner of the window instead of the upper-left corner of the client
area.

The GetWindowDC function retrieves a window display context from the same cache as it does
common display contexts. Therefore, a window that uses a window display context must release it with
the ReleaseDC function immediately after drawing.

Windows always sets the current selections of a window display context to the same default selections
as a common display context and does not preserve any change the window may have made to these
selections. The CS_OWNDC and CS_CLASSDC class styles have no effect on the window display
context.

A window display context is intended to be used for special painting within a window's nonclient area.
Because painting in nonclient areas of overlapped windows is not recommended, most applications
reserve a display context for designing custom child windows. For example, an application can use the
display context to draw a custom border around the window. In such cases, the window usually
processes the WM_NCPAINT message instead of passing it to the DefWindowProc function. For
applications that do not process WM_NCPAINT messages but still need to paint within the nonclient
area, the GetSystemMetrics function can be used to retrieve the dimensions of various parts of the
nonclient area, such as the title bar, menu bar, and scroll bars.

Display-Context Cache

Windows maintains a cache of display contexts that it uses for common display contexts and window
display contexts. This cache contains five display contexts, which means only five common display
contexts can be active at any one time. To prevent more than five from being retrieved, a window that
uses a common or window display context must release that context immediately after drawing.

If a window fails to release a common display context, all five display contexts may eventually be active
and unavailable for any other window. In such a case, Windows ignores all subsequent requests for a
common display context. In the retail version of Windows, the system appears to be deadlocked, while
the debugging version of Windows undergoes a fatal exit, alerting you of a problem.

The ReleaseDC function releases a display context and returns it to the cache. Class and private display
contexts are individually allocated for each class or window; they do not belong to the cache, so they do
not need to be released after use.

Painting Sequence

To manage the system display, Windows carries out many operations that affect the contents of the
client area. If Windows moves, sizes, or alters the appearance of the screen, the change may affect a
given window. If so, Windows marks the area changed by the operation as ready for updating and, at the
next opportunity, sends a WM_PAINT message to the window so that it can update the window in the
update region. If a window paints in its client area, it must call the BeginPaint function to retrieve a
handle of a display context, must update the changed area as defined by the update region, and finally,
must call the EndPaint function to complete the operation.

A window can paint within its client area at any time--that is, at times other than in response to a
WM_PAINT message. The only requirement is that it retrieve a display context for the client area before
carrying out any operations.

WM_PAINT Message

The WM_PAINT message is a request from Windows to a given window to update its display.
Windows sends a WM_PAINT message to a window whenever it is necessary to repaint a portion of the
window. When a window receives a WM_PAINT message, it should retrieve the update region by using
the BeginPaint function, and it should carry out whatever operations are necessary to update that part of
the client area.

The InvalidateRect and InvalidateRgn functions do not actually generate WM_PAINT messages.
Instead, Windows accumulates the changes made by these functions and its own changes while a
window processes other messages in its message queue. Postponing the WM_PAINT message lets a
window process all changes at once instead of updating bits and pieces in time-consuming individual
steps.

To direct Windows to send a WM_PAINT message, an application can use the UpdateWindow function.
The UpdateWindow function sends the message directly to the window, regardless of the number of
other messages in the application's message queue. UpdateWindow is typically used when a window
needs to update its client area immediately, such as just after the window is created.

Once a window receives a WM_PAINT message, it must call the BeginPaint function to retrieve the
display context for the client area and to retrieve other information such as the update region and
whether the background has been erased.

Windows automatically selects the update region as the clipping region of the display context. Since
GDI discards (clips) drawing that extends outside the clipping region, only drawing that is in the update
region is actually visible. For more information about the clipping region, see Graphics Device Interface
Overview.

The BeginPaint function clears the update region to prevent the same region from generating subsequent
WM_PAINT messages.

After completing the painting operation, the window must call the EndPaint function to release the
display context.

Update Region

An update region defines the part of the client area that is marked for painting on the next WM_PAINT
message. The purpose of the update region is to save applications the time it takes to paint the entire
contents of the client area. If only the part that needs painting is added to the update region, only that
part is painted. For example, if a word changes in the client area of a word-processing application, only
the word needs to be painted, not the entire line of text. This saves the time it takes the application to
draw the text, especially if there are many different sizes and fonts.

The InvalidateRect and InvalidateRgn functions add a given rectangle or region to the update region.
The rectangle or region must be given in client coordinates. The update region itself is defined in client
coordinates. Windows adds its own rectangles and regions to a window's update region after operations
such as moving, sizing, and scrolling the window.

The ValidateRect and ValidateRgn functions remove a given rectangle or region from the update region.
These functions are typically used when the window has updated a specific part of the display in the
update region before receiving the WM_PAINT message.

The GetUpdateRect function retrieves the smallest rectangle that encloses the entire update region. The
GetUpdateRgn function retrieves the update region itself. These functions can be used to compute the
current size of the update region to determine if painting is required.

Window Background

The window background is the color or pattern the client area is filled with before a window begins
painting in the client area. Windows paints the background for a window or gives the window the
opportunity to do so by sending a WM_ERASEBKGND message to the window when the application
calls the BeginPaint function.

The background is important because if it is not erased, the client area will contain whatever was
originally on the screen before the window was moved there. Windows erases the background by filling
it with the background brush specified by the window's class.

Windows applications that use class or private display contexts should be careful about erasing the
background. Windows assumes the background is to be computed by using the MM_TEXT mapping
mode. If the display context has any other mapping mode, the area erased may not be within the visible
part of the client area.

Brush Alignment

Brush alignment is particularly important on the system display where scrolling and moving are
commonplace. A brush is a pattern of bits with a minimum size of 8-by-8 bits. GDI paints with a brush
by repeating the pattern again and again within a given rectangle or region. If the region is moved by an
arbitrary amount--for example, if the window is scrolled--and the brush is used again to fill empty areas
around the original area, there is no guarantee that the original pattern and the new pattern will be
aligned. For example, if the scroll moves the original filled area up one pixel, the intersection of the
original area and any new painting will be out of alignment by one pixel, or bit. Depending on the
pattern, this may have an undesirable visual effect. For more information about brushes, see Graphics
Device Interface Overview.

To ensure that a brush is aligned after a window is moved, an application must take the following steps:
1 Call the SelectObject function to select a different brush to be the current brush.

2 Call the SetBrushOrg function to realign the current brush.
3 Call the UnrealizeObject function to realign the origin of the original brush when it is selected next.

(UnrealizeObject should not be used on stock objects, only on brushes created by the application.)

4 Call the SelectObject function to select the original brush.

Painting Rectangular Areas

The FillRect, FrameRect, and InvertRect functions provide an easy way to carry out painting operations
on rectangles in the client area.

The FillRect function fills a rectangle with the color and pattern of a given brush. This function fills all
parts of the rectangle, including the edges or borders.

The FrameRect function uses a brush to draw a border around a rectangle. The border width and height
is one unit.

The InvertRect function inverts the contents of the given rectangle. On monochrome displays, white
pixels become black, and vice versa. On color displays, the results depend on the method used by the
display to generate color. In either case, calling InvertRect twice with the same rectangle restores the
screen to its original colors.

Drawing Icons

The DrawIcon function draws an icon at a given location in the client area. An icon is a bitmap that a
window uses as a symbol to represent an item, such as an application or a warning.

You can use the Image Editor to create an icon and then use Microsoft Windows Resource Compiler
(RC) to add the icon to your application's resources. Your application can then call the LoadIcon
function to load the icon into memory.

Applications can also call the CreateIcon function to create an icon and can modify a previously loaded
or created icon at any time. An icon resource is in global memory, and the icon's handle is the handle of
that memory. An application can free memory used to store an icon created by CreateIcon by calling the
DeleteIcon function.

Drawing Formatted Text

The DrawText function formats and draws text within a given rectangle in the client area. This function
provides simple text processing that most applications can use to display text. DrawText output is
similar to the output generated by a terminal, except it uses the selected font and can clip the text if it
extends outside a given rectangle. DrawText provides many different formatting styles.

The DrawText function uses the currently selected font, so applications can draw formatted text in a font
other than the system font.

DrawText does not hyphenate, and although it can left align, right align, or center text, it cannot
combine alignment styles. In other words, it cannot align to both the left and right.

DrawText recognizes a number of control characters and carries out special actions when it encounters
them. The control characters and their respective actions are as follows:

Windows character Action
Carriage return (13) Interpreted as a line-break character. The text is immediately broken and

continued on the next line down in the rectangle.
Linefeed (10) Interpreted as a line-break character. The text is immediately broken and

continued on the next line down in the rectangle.
A carriage return–linefeed character combination is interpreted as a single
line-break character.

Space (32) Interpreted as a wordwrap character if the DT_WORDBREAK style is given.
If the text is too long to fit on the current line in the formatting rectangle, the
line is broken at the wordwrap character that is closest to the end of the line.

Tab (9) Expanded into a given number of spaces if the DT_EXPANDTABS style is
given. The number of spaces depends on which tab-stop value is given with
the DT_TABSTOP style. The default value is eight.

Drawing Gray Text

An application can draw gray text by calling the SetTextColor function to set the current text color to
COLOR_GRAYTEXT, the solid gray system color used to draw disabled text. However, if the current
display driver does not support a solid gray color, this value is set to zero.

The GrayString function is a multiple-purpose function that gives applications another way to gray text
or carry out other customized operations on text or bitmaps before drawing the result in a client area. To
gray text, the function creates a memory bitmap, draws the string in the bitmap, and then grays the string
by combining it with a gray brush. The GrayString function finally copies the gray text to the display.
However, an application can intercept or modify each step of this process to carry out custom effects,
such as changing the gray brush to a patterned brush or drawing an icon instead of a string.

If GrayString is used to draw gray text only, GrayString uses the selected font of the given display
context. First, GrayString sets text color to black. It then creates a bitmap and uses the TextOut function
to write a given string to the bitmap. It then uses the PatBlt function and a gray brush to gray the text,
and uses the BitBlt function to copy the bitmap to the client area.

GrayString assumes that the display context for the client area has MM_TEXT mapping mode. Other
mapping modes cause undesirable results.

GrayString lets an application modify this graying procedure in three ways: by defining an additional
brush to be combined with the text before the text is displayed, by replacing the call to the TextOut
function with a call to an application-supplied function, and by disabling the call to the PatBlt function.

If an additional brush is combined with text, it is defined for the hbr parameter of GrayString. The brush
is combined with the text as the text is copied to the client area by the BitBlt function. The additional
brush is intended to be used to give the text a desired color, because the bitmap used to draw the text is a
monochrome bitmap.

If an application-supplied function replaces TextOut, it is defined for the gsprc parameter of GrayString.
When gsprc is not NULL, GrayString automatically calls the application-supplied function instead of the
TextOut function and passes it a handle of the display context for the memory bitmap and the long
pointer and count passed to GrayString. The function can carry out any operation and interpret the long
pointer and count in any way. For example, a negative count could be used to indicate that the long
pointer points to an icon handle that signals the application-supplied function to draw the icon and let
GrayString gray and display it. No matter what type of drawing the function carries out, GrayString
assumes it is successful if the application-supplied function returns a nonzero value.

GrayString suppresses graying if it receives a cch parameter equal to -1 and the application-supplied
function returns zero. This provides a way to combine custom patterns with the text without interference
from the gray brush.

Nonclient-Area Painting

Windows sends a WM_NCPAINT message to the window whenever a part of the nonclient area of the
window, such as the title bar, menu bar, or window frame, needs painting. Processing this message is not
recommended because a window that does so must be able to paint all the required parts of the nonclient
area for the window. Unless the Windows application is creating a custom nonclient area for a child
window, a window should pass this message to the DefWindowProc function for default processing.

Dialog Boxes
A dialog box is a temporary window that Windows creates for special-purpose input and then destroys
immediately after use. An application typically uses a dialog box to prompt the user for additional
information about a current command selection.

Uses for Dialog Boxes

For convenience and to keep from introducing device-dependent values into the application code,
applications use dialog boxes instead of creating their own windows. This device independence is
maintained by using logical coordinates in the dialog box template. A dialog box is convenient to use
because all aspects of the dialog box, except how to carry out its tasks, are predefined. A dialog box
supplies a window class and procedure; the window for the dialog box is created automatically. The
application supplies a dialog box procedure to carry out tasks and a dialog box template that describes
the dialog box style and content.

Modeless Dialog Box

A modeless dialog box allows the user to supply information to the dialog box and return to the previous
task without canceling or removing the dialog box. A modeless dialog box makes it possible for a user
to supply more than one piece of information about the current task without having to select a command
from a menu each time. For example, a modeless dialog box is often used with a text-search command
in word-processing applications. The dialog box remains displayed while the search is carried out. The
user can then return to the dialog box and search for the same word again, or change the entry in the
dialog box and search for a new word.

An application with a modeless dialog box processes messages for that box by using the
IsDialogMessage function inside the main message loop. The dialog box procedure of a modeless dialog
box must send a message to the parent window when it has input for the parent window. The dialog box
procedure must also destroy the dialog box when it is no longer needed. An application can call the
DestroyWindow function to destroy a modeless dialog box. The application must not call the EndDialog
function to destroy a modeless dialog box.

Modal Dialog Box

A modal dialog box requires the user to respond to a request before the application continues. Typically,
a modal dialog box is used when a chosen command needs additional information before it can proceed.

A modal dialog box disables its parent window, and it creates its own message loop, temporarily taking
control of the application's message queue from the application's main message loop.

By default, a modal dialog box cannot be moved by the user. An application can create a movable modal
dialog box by specifying the WS_CAPTION window style.

The dialog box is displayed until the dialog box procedure calls the EndDialog function, or until
Windows is closed. The parent window remains disabled unless the dialog box enables it. Note that
enabling the parent window is not recommended because it defeats the purpose of the modal dialog box.

System-Modal Dialog Box

A system-modal dialog box is identical to a modal dialog box except that all windows, not just the
parent window, are disabled. System-modal dialog boxes must be used with care because they
effectively shut down the system until the user supplies the required information.

Creating a Dialog Box

A dialog box is typically created by using either the CreateDialog or DialogBox function. These
functions load a dialog box template from the application's executable file and then create a pop-up
window that matches the template's specifications. The dialog box belongs to the predefined dialog box
class unless another class is explicitly defined. The DialogBox function creates a modal dialog box; the
CreateDialog function creates a modeless dialog box.

Use the WS_VISIBLE style for the dialog box template if you want the dialog box to appear upon
creation.

Dialog Box Template

The dialog box template is a description of the dialog box: its height and width, the controls it contains,
its style, the type of border it uses, and so on. A template is an application's resource. You use the
Resource Compiler to convert the text description of the template to the required binary form and to add
that binary form to the application's executable file.

Because a dialog box is system-independent, you can easily modify the template without changing the
source code.

The CreateDialog or DialogBox function loads the resource into memory when it creates the dialog box
and then uses the information in the dialog box template to create the dialog box, position it, and create
and position the controls for the dialog box.

Dialog Box Measurements

Dialog box and control dimensions and coordinates are device-independent. Because a dialog box may
be displayed on system displays that have widely varying pixel resolutions, dialog box dimensions are
specified in system-character widths and heights instead of pixels. This ensures the best possible
appearance of characters. One unit in the x-direction is equal to one-fourth of the dialog box base width
unit. One unit in the y-direction is equal to one-eighth of the dialog box base height unit. The dialog box
base units are computed from the height and width of the system font; the GetDialogBaseUnits function
returns the dialog box base units for the current display. Applications can convert these measurements to
pixels by using the MapDialogRect function.

Windows does not allow the height of a dialog box to exceed the height of a full-screen window, and it
does not allow the width of a dialog box to be greater than the width of the screen.

Return Values from a Dialog Box

The DialogBox function that creates a modal dialog box does not return until the dialog box procedure
has called the EndDialog function to signal the destruction of the dialog box. When control finally
returns from the DialogBox function, the return value is equal to the value specified in the EndDialog
function. This means a modal dialog box can return a value through the EndDialog function.

Modeless dialog boxes cannot return values in this way because they do not use the EndDialog function
to close and do not return control in the same way a modal dialog box does. Instead, a modeless dialog
box returns values to its parent window by using the SendMessage function to send a notification
message to the parent window. Although Windows does not explicitly define the content of a
notification message, most applications use a WM_COMMAND message with an integer value that
identifies the dialog box in the wParam parameter and the return value in the lParam parameter. A modal
dialog box can also use this technique to return values to its parent window before closing.

Controls in a Dialog Box

A control is a child window that belongs to a predefined or application-defined window class and that
gives the user a method of supplying input to the application. A dialog box can contain any number and
any types of controls. Examples of controls are push buttons and edit controls. Most dialog boxes
contain one or more controls of the predefined class. The number of controls, the order in which they
should be created, and the location of each in the dialog box are defined by the control statements given
in the dialog box template.

Control Identifiers

Every control in a dialog box needs a unique control identifier, or ID, to distinguish it from other
controls. Because all controls send information to the dialog box procedure through WM_COMMAND
messages, the control identifiers are essential for the dialog box to determine which control sent a given
message.

Each control in the dialog box must have a unique identifier. If a dialog box has a menu bar, there must
be no conflict between menu-item identifiers and control identifiers. Because Windows sends menu
input to a dialog box procedure as WM_COMMAND messages, conflicts with menu and control
identifiers can cause errors. Menus in dialog boxes are not recommended.

The dialog box procedure usually identifies each dialog box control by using its control identifier.
Occasionally the dialog box procedure requires the window handle that was given to the control when it
was created. The dialog box procedure can retrieve this window handle by using the GetDlgItem
function.

The WS_TABSTOP and WS_GROUP Control Styles

The WS_TABSTOP style specifies that the user can move the input focus to the given control by
pressing the TAB key or SHIFT+TAB keys. Typically, every control in the dialog box has this style, so the
user can move the input focus from one control to the other. If two or more controls are in the dialog
box, the TAB key moves the input focus to the controls in the order in which they have been created. The
SHIFT+TAB keys move the input focus in reverse order. For modal dialog boxes, the TAB and SHIFT+TAB
keys are automatically enabled for moving the input focus. For modeless dialog boxes, the

IsDialogMessage function must be used to filter messages for the dialog box and to process these
keystrokes. Otherwise, the keys have no special meaning and the WS_TABSTOP style is ignored.

The WS_GROUP style specifies that the user can move the input focus within a group of controls by
using the arrow keys. The first control in a group of controls must have the WS_GROUP style. The next
control that has the WS_GROUP style marks the bottom boundary of the group; the input focus cannot
be moved to this control by using the arrow keys. The DOWN ARROW and RIGHT ARROW keys move the
input focus to controls in the order in which they have been created. The UP ARROW and LEFT ARROW
keys move the input focus in reverse order. For modal dialog boxes, the arrow keys are automatically
enabled for moving the input focus. For modeless dialog boxes, the IsDialogMessage function must be
used to filter messages for the dialog box and to process these keystrokes. Otherwise, the keys have no
special meaning and the WS_GROUP style is ignored.

Buttons

Buttons are the principal interface of a dialog box. Almost all dialog boxes have at least one push button,
and most have one default push button (a push button having the BS_DEFPUSHBUTTON style) and
one or more other push buttons. Many dialog boxes have collections of radio buttons enclosed in group
boxes or have lists of check boxes.

Most modal or modeless dialog boxes that use the special keyboard interface have a default push button
whose control identifier is set to IDOK so that the action the dialog box procedure takes when the button
is chosen is identical to the action taken when the ENTER key is pressed. There can be only one button
with the default style; however, an application can assign the default style to any button at any time.
Most dialog boxes that use the special keyboard interface can also set the control identifier of another
push button to IDCANCEL so that the action of the ESC key is duplicated by choosing that button.

When a dialog box first starts, the dialog box procedure can set the initial state of each button by using
the CheckDlgButton function, which sets or clears the button state. This function is most useful when
used to set the state of radio buttons or check boxes. If the dialog box contains a group of radio buttons
in which only one button should be set at any given time, the dialog box procedure can use the
CheckRadioButton function to set the appropriate radio button and automatically clear any other radio
button.

Before a dialog box terminates, the dialog box procedure can check the state of each button control by
using the IsDlgButtonChecked function, which returns the current state of the button. A dialog box
typically saves this information to initialize the buttons the next time the dialog box is created.

Edit Controls

Many dialog boxes have edit controls that let the user supply text as input. Most dialog box procedures
initialize an edit control when the dialog box first starts. For example, the dialog box procedure may
place a proposed filename in the control that the user can select, modify, or replace. The dialog box
procedure can set the text in an edit control by using the SetDlgItemText function, which copies text
from a given buffer to the edit control. When the edit control receives the input focus, the complete text
is automatically selected for editing.

Because edit controls do not automatically return their text to the dialog box, the dialog box procedure
must retrieve the text before terminating. It can retrieve the text by using the GetDlgItemText function,
which copies the edit-control text to a buffer. The dialog box procedure typically saves this text to
initialize the edit control later or passes it on to the parent window for processing.

Some dialog boxes use edit controls that let the user enter numbers. The dialog box procedure can
retrieve a number from an edit control by using the GetDlgItemInt function, which retrieves the text
from the edit control and converts the text to a decimal value. The user enters the number in decimal
digits. It can be either signed or unsigned. The dialog box procedure can display an integer by using the
SetDlgItemInt function. SetDlgItemInt converts a signed or unsigned integer to a string of decimal
digits.

List Boxes and Directory Listings

Some dialog boxes display lists, such as a list of filenames, from which the user can select one or more
items. To display a list of filenames, a dialog box typically uses a list box and the DlgDirList and
DlgDirSelect functions. The DlgDirList function automatically fills a list box with the filenames in the
current directory. The DlgDirSelect function retrieves the selected filename from the list box. Together,
these two functions provide a convenient way for a dialog box to display a directory listing that makes it
possible for the user to select a file without having to type the location and name of the file.

Combo Boxes

Another method for providing a list of items to a user is by using a combo box. A combo box consists of
either a static control or edit control combined with a list box. The list box can be displayed at all times
or pulled down by the user. If the combo box contains a static control, that control always displays the
current selection (if any) from the list box portion of the combo box. If the combo box uses an edit
control, the user can type a selection; the list box highlights the first item (if any) that matches what the
user has entered in the edit control. The user can choose the OK button or press ENTER to complete the
choice.

Owner-Drawn Dialog Box Controls

List boxes, combo boxes, and buttons can be designated as owner-drawn controls by creating them with
the appropriate style. Following are available styles:

Style Meaning
LBS_OWNERDRAWFIXED Creates an owner-drawn list box with items that have the

same, fixed height.
LBS_OWNERDRAWVARIABLE Creates an owner-drawn list box with items that have different

heights.
CBS_OWNERDRAWFIXED Creates an owner-drawn combo box with items that have the

same, fixed height.
CBS_OWNERDRAWVARIABLE Creates an owner-drawn combo box with items that have

different heights.
BS_OWNERDRAW Creates an owner-drawn button.

When a control has the owner-drawn style, Windows handles the user's interaction with the control as
usual, performing such tasks as detecting when a user has chosen a button and notifying the button's
owner of the event. However, because the control is owner-drawn, the owner of the control is completely
responsible for the visual appearance of the control. Owner-drawn list boxes and combo boxes can control
the display of only the individual elements within a list box or combo box, not the entire list box or combo
box.

When Windows first creates a dialog box containing owner-drawn controls, it sends the owner a
WM_MEASUREITEM message for each owner-drawn control. The lParam parameter of this message
contains a pointer to a MEASUREITEMSTRUCT structure. When the owner receives the message for a
control, the owner fills in the appropriate members of the structure and returns. This informs Windows of
the dimensions of the control or of its items so that Windows can appropriately detect the user's
interaction with the control. If a list box or combo box is created with the
LBS_OWNERDRAWVARIABLE or CBS_OWNERDRAWVARIABLE style, the
WM_MEASUREITEM message is sent to the owner for each item in the control, because each item can
differ in height. Otherwise, this message is sent once for the entire owner-drawn control.

Whenever an owner-drawn control needs to be redrawn, Windows sends the WM_DRAWITEM message
to the owner of the control. The lParam parameter of this message contains a pointer to a
DRAWITEMSTRUCT structure that contains information about the drawing required for the control.
Similarly, if an item is deleted from a list box or combo box, Windows sends the WM_DELETEITEM
message containing a pointer to a DELETEITEMSTRUCT structure that describes the deleted item.

Messages for Dialog Box Controls

Many controls recognize predefined messages that, when sent to the control, cause it to carry out some
action. A dialog box procedure can send a message to a control by supplying the control identifier and
using the SendDlgItemMessage function, which is identical to the SendMessage function except that it
uses a control identifier instead of a window handle to identify the control that is to receive the message.

Keyboard Interface for Dialog Boxes

Windows provides a special keyboard interface for modal dialog boxes and modeless dialog boxes that
use the IsDialogMessage function to filter messages. This keyboard interface carries out special
processing for several keys and generates messages that correspond to certain buttons in the dialog box
or change the input focus from one control to another. The keys used in this interface and the respective
actions are as follows:

Key Action
DOWN ARROW Moves the input focus to the next control in the group.
ENTER Sends a WM_COMMAND message to the dialog box procedure. The wParam

parameter is set to 1 or the default button.

ESC Sends a WM_COMMAND message to the dialog box procedure. The wParam
parameter is set to 2.

LEFT ARROW Moves the input focus to the previous control in the group.
RIGHT ARROW Moves the input focus to the next control in the group.
SHIFT+TAB Moves the input focus to the previous control that has the WS_TABSTOP style.
TAB Moves the input focus to the next control that has the WS_TABSTOP style.
UP ARROW Moves the input focus to the previous control in the group.

The TAB key and the arrow keys have no effect if the controls in the dialog box do not have the
WS_TABSTOP or WS_GROUP style. The keys have no effect in a modeless dialog box if the
IsDialogMessage function is not used to filter messages for the dialog box.

Note: For applications that use accelerator keys and have modeless dialog boxes, the IsDialogMessage
function must be called before the TranslateAccelerator function. Otherwise, the keyboard interface
for the dialog box may not be processed correctly.

Applications that have modeless dialog boxes and need those boxes to have the special keyboard interface
must filter all messages retrieved from the application's message queue through the IsDialogMessage
function before carrying out any other processing. This means that the application must pass the message
to IsDialogMessage immediately after retrieving the message by using the GetMessage or PeekMessage
function. Most applications that have modeless dialog boxes incorporate the IsDialogMessage function as
part of the main message loop in the WinMain function. The IsDialogMessage function automatically
processes any messages for the dialog box. This means that if the function returns a nonzero value, the
message does not require additional processing and must not be passed to the TranslateMessage or
DispatchMessage function.

The IsDialogMessage function also processes ALT+application-defined mnemonic key sequences.

In modal dialog boxes, the arrow keys have specific functions that depend on the controls in the box. For
example, the keys move the input focus from control to control in group boxes, move the cursor in edit
controls, and scroll the contents of list boxes. The arrow keys cannot be used to scroll the contents of any
dialog box that has its own scroll bars. If a dialog box has scroll bars, the application must provide an
appropriate keyboard interface for the scroll bars. Note that the mouse interface for scrolling is available if
the system has a mouse.

Scrolling
Scrolling is the movement of data in and out of the client area at the request of the user. It is a way for the
user to see a document or graphic in parts if Windows cannot fit the entire document or graphic inside the
client area. A scroll bar allows the user to control scrolling.

Standard Scroll Bars and Scroll-Bar Controls

A standard scroll bar is a part of the nonclient area of a window. It is created with the window and
displayed when the window is displayed. The sole purpose of a standard scroll bar is to let users
generate scrolling requests for the window's client area. A window has standard scroll bars if it is
created with the WS_VSCROLL or WS_HSCROLL style. A standard scroll bar is either vertical or
horizontal. A vertical scroll bar, if used, always appears at the right of the client area; a horizontal scroll
bar, if used, always appears at the bottom. A standard scroll bar always has the standard scroll-bar height
and width as defined by the SM_CXVSCROLL and SM_CYHSCROLL system metric values.

A scroll-bar control is a control window that looks and acts like a standard scroll bar. But unlike a
standard scroll bar, a scroll-bar control is not part of any window. As a separate window, a scroll-bar
control can receive the input focus and indicates that it has the focus by displaying a flashing caret in the
scroll box (also called the thumb). When a scroll-bar control has the input focus, the user can use the
keyboard to direct the scrolling. Unlike standard scroll bars, a scroll-bar control provides a built-in
keyboard interface. Scroll-bar controls also can be used for other purposes. For example, a scroll-bar
control can be used to select values from a range of values, such as a color from a spectrum of colors.

Scroll Box

The scroll box is the small rectangle in a scroll bar. It shows the approximate location within the current
document or file of the data currently displayed in the client area. For example, the scroll box is in the
middle of the scroll bar when page three of a five-page document is in the client area.

The SetScrollPos function sets the scroll box position in a scroll bar. Because Windows does not
automatically update the scroll box position when an application scrolls, SetScrollPos must be used to
update the position. The GetScrollPos function retrieves the current position.

A scroll box position is represented as an integer. The position is relative to the left or upper end of the
scroll bar, depending on whether the scroll bar is horizontal or vertical. The position must be within the
scroll-bar range, which is defined by minimum and maximum values. The positions are distributed
equally along the scroll bar. For example, if the range is 0 through 100, there are 101 positions along the
scroll bar, each equally spaced so that position 50 is in the middle of the scroll bar. The initial range
depends on the scroll bar. Standard scroll bars have an initial range of 0 through 100; scroll-bar controls
have an empty range (both minimum and maximum values are 0) if no explicit range is given when the
control is created. An application can change the range by using the SetScrollRange function to set new
minimum and maximum values so that applications can change the range at any time. The
GetScrollRange function retrieves the current minimum and maximum values. The minimum and
maximum values can be any integers. For example, a spreadsheet program with 255 rows can set the
vertical scroll range to 1 through 255.

If SetScrollPos specifies a position value that is less than the minimum or more than the maximum, the
minimum or maximum value is used instead. SetScrollPos moves the scroll box along the scroll bar.

Scrolling Requests

A user makes a scrolling request by clicking in a scroll bar. Windows sends the request to the given
window in the form of WM_HSCROLL and WM_VSCROLL messages. The messages' lParam
parameter contains a position value and the handle of the scroll-bar control that generated the message
(lParam is zero if a standard scroll bar generated the message). The wParam parameter specifies the type
of scrolling; for example, the user may scroll up one line, scroll down a page, or scroll to the bottom.
The type of scrolling is determined by which area of the scroll bar the user clicks.

The user can also make a scrolling request by using the scroll box, the small rectangle inside the scroll
bar. The user moves the scroll box by moving the mouse while holding the left mouse button down
when the cursor is positioned on the scroll box. The scroll bar sends SB_THUMBTRACK and
SB_THUMBPOSITION flags with a WM_HSCROLL or WM_VSCROLL message to an application as
the user moves the scroll box. Each message specifies the current position of the scroll box.

Processing Scroll Messages

A window that permits scrolling needs a standard scroll bar or a scroll-bar control to let the user
generate scrolling requests, and it needs a window procedure to process the WM_HSCROLL and
WM_VSCROLL messages that represent the scrolling requests. Although the result of a scrolling

request depends entirely on how the window processes it, a window typically carries out a scroll
operation by moving through the application's displayed information in some direction from the current
location or to a known beginning or end and by displaying the data at the new location. For example, a
word-processing application can scroll to the next line, the next page, or to the end of the document.

Scrolling the Client Area

The simplest way to scroll is to erase the current contents of the client area, and then paint the new
information. This is the method an application is likely to use with SB_PAGEUP, SB_PAGEDOWN,
SB_TOP, and SB_END requests, which require completely new contents.

For some requests, such as SB_LINEUP and SB_LINEDOWN, not all the contents need to be erased,
since some are still visible after the scroll. The ScrollWindow function preserves a portion of the client
area's contents, moves the preserved portion the specified amount, and prepares the rest of the client
area for painting new information. ScrollWindow uses the BitBlt function to move a specific part of the
client area to a new location within the client area. Any part of the client area that is uncovered (not in
the part to be preserved) is invalidated and is erased and painted over at the next WM_PAINT message.

ScrollWindow also lets an application clip a part of the client area from the scroll. This keeps items that
have fixed positions in the client area, such as child windows, from moving. This action automatically
invalidates the part of the client area that is to receive the new information so that the application does
not have to compute its own clipping regions.

Hiding a Standard Scroll Bar

For standard scroll bars, if the minimum and maximum values are equal, the scroll bar is hidden and, in
effect, disabled. Using this technique, you can temporarily hide a scroll bar when it is not needed for the
current contents of the client area.

The SetScrollRange function hides and disables a standard scroll bar when equal minimum and
maximum values are specified. No scrolling requests can be made through the scroll bar when it is
hidden. SetScrollRange enables the scroll bar and shows it again when it sets the minimum and
maximum values to unequal values. The ShowScrollBar function can also be used to hide or show a
scroll bar. It does not affect the scroll bar's range or scroll box's position.

The Caret
The Windows caret is a flashing line, block, or bitmap that marks a location in a window's client area. The
caret is especially useful in word-processing applications to mark a location in text for keyboard editing.

Creating and Displaying a Caret

Windows forms a caret by inverting the pixel color within the rectangle given by the caret's position,
width, and height. Windows flashes the caret by alternately inverting the display and restoring it to its
previous appearance. The caret's flash rate, in milliseconds, defines the elapsed time between inverting
and restoring the display. A complete flash (on-off-on) takes twice the blink time.

The CreateCaret function creates the caret shape and assigns ownership of the caret to the given
window. The caret can vary in color and shape; a bitmap caret can be given any pattern.

Windows displays a solid caret by inverting everything in the rectangle defined by the caret's width and
height. For a gray caret, Windows inverts every other pixel. For a pattern, Windows inverts only the
white bits of the bitmap that defines the pattern. The width and height of a caret are given in logical
units, which means they are subject to the window's mapping mode.

Sharing the Caret

There is only one caret, so only one caret shape can be active at a time. All applications must
cooperatively share the caret. Because Windows does not inform an application when a caret is created
or destroyed, each window should create, move, show, or hide a caret only when it has the input focus or
is active. A window should destroy the caret before losing the input focus or becoming inactive.

Your application can use the CreateBitmap function to create a bitmap for the caret; or, after you have
used the Image Editor to create a bitmap and have used the Resource Compiler to add it to your
application's resources, your application can use the LoadBitmap function to load the bitmap from the
application's resources.

The Cursor
The cursor is a bitmap, displayed on the screen. The user can use a mouse or other pointing device to
move this bitmap to an item on the screen, such as a window or an icon. (In the remainder of section, the
term mouse is used for any pointing device.)

The Mouse and the Cursor

When a system has a mouse, the cursor shows the current location of the mouse. Windows automatically
displays and moves the cursor when the mouse is moved. If a system does not have a mouse, Windows
does not automatically display or move the cursor. Applications can use the cursor functions to display
or move the cursor when a system does not have a mouse.

Displaying and Hiding the Cursor

In a system without a mouse, Windows does not display or move the cursor unless the user chooses
certain system commands, such as commands for sizing and moving. This means that after a call to the
SetCursor function, the cursor remains on the screen until a subsequent call to SetCursor with the
parameter set to NULL removes the cursor, or until a system command is carried out. Applications that
need to use the cursor without a mouse usually simulate mouse input by using keys, such as the arrow
keys, and display and move the cursor by using the cursor functions.

The ShowCursor function shows or hides the cursor. It is used to temporarily hide the cursor, and then
restore it without changing the current cursor shape. This function actually sets an internal counter that
determines whether the cursor should be drawn. Showing the cursor increments the counter; hiding the
cursor decrements the counter. The cursor is only visible when the count is not a negative value.

Positioning the Cursor

The SetCursorPos and GetCursorPos functions set and retrieve the current screen coordinates of the
cursor. Although the cursor can be set at a location other than the current mouse location, if the system
has a mouse any mouse movement causes the cursor to be redrawn at the mouse location. The
SetCursorPos and GetCursorPos functions are most often used in applications that use the keyboard and
specified keystrokes to move the cursor. Note that screen coordinates are not affected by the mapping
mode in a window's client area.

The Cursor Hot Spot and Confining the Cursor

The hot spot of the cursor is the location in the cursor bitmap that is tracked and recognized as the
position of the mouse or keyboard arrow key. For example, the hot spot on the pointer is the point at the
tip of the arrow.

The ClipCursor function confines the cursor to a given rectangle on the screen. The cursor can move to
the edge of the rectangle but cannot move out of it. ClipCursor is typically used to restrict the cursor to a
given window, such as a dialog box that contains a warning about a serious error. The rectangle is
always given in screen coordinates and does not have to be within the window of the active application.

Creating a Custom Cursor

The SetCursor function sets the cursor shape and draws the cursor. When a system has a mouse,
Windows automatically changes the shape of the cursor when it crosses a window border or enters a
different part of a window, such as a title or menu bar. Windows uses standard cursor shapes for the
different parts of the screen, such as a pointer in a title bar. The SetCursor function lets an application
delete the standard cursor and draw its own custom cursor. The cursor keeps its new shape until the
mouse moves or a system command is carried out.

Cursor Functions

Cursor functions set, move, show, hide, and confine the cursor. Following are the cursor functions:

Function Description
ClipCursor Restricts the cursor to a given rectangle.
CopyCursor Copies a cursor.
CreateCursor Creates a cursor from two bit masks.
DestroyCursor Destroys a cursor created by the CreateCursor function.
GetClipCursor Retrieves the screen coordinates of the rectangle to which the cursor has been

restricted.
GetCursor Retrieves the handle of the current cursor.
GetCursorPos Stores the cursor position (in screen coordinates).

LoadCursor Loads a cursor from the resource file.
SetCursor Sets the cursor shape.
SetCursorPos Sets the position of the cursor.
ShowCursor Increases or decreases the cursor display count.

Hooks
A hook is a point in the Windows message-handling mechanism that an application can use to gain access
to the message stream. Windows provides many types of hooks; each type provides access to a particular
type or range of messages. To take advantage of a particular hook, an application can install a filter
function that processes the messages associated with the hook. A filter function processes the messages
before they reach the destination window procedure.

Filter-Function Chain

A filter-function chain is a series of connected filter functions for a particular system hook. For example,
all keyboard filter functions are installed by WH_KEYBOARD and all journaling-record filter functions
are installed by WH_JOURNALRECORD. An application passes a filter function to a system hook with
a call to the SetWindowsHook function. Each call adds a new filter function to the beginning of the
chain. Whenever an application passes the address of a filter function to a system hook, it must reserve
space for the address of the next filter function in the chain. SetWindowsHook installs a hook function
into a hook chain and returns a handle of the hook.

Once each filter function completes its task, it must call the DefHookProc function. DefHookProc uses
the address stored in the location reserved by the application to access the next filter function in the
chain.

To remove a filter function from a filter chain, an application must call the UnhookWindowsHook
function with the type of hook and a pointer to the function.

The standard window hooks and debugging hooks are as follows:

Type Purpose
WH_CALLWNDPROC Installs a window filter.
WH_CBT Installs a computer-based training (CBT) filter.
WH_DEBUG Installs a debugging filter.
WH_GETMESSAGE Installs a message filter (on debugging versions only).
WH_HARDWARE Installs a nonstandard hardware-message filter.
WH_JOURNALPLAYBACK Installs a journaling playback filter.
WH_JOURNALRECORD Installs a journaling record filter.
WH_KEYBOARD Installs a keyboard filter.
WH_MOUSE Installs a mouse-message filter.
WH_MSGFILTER Installs a message filter.
WH_SYSMSGFILTER Installs a systemwide message filter.

Note: The WH_CALLWNDPROC and WH_GETMESSAGE hooks will affect system performance.
They are supplied for debugging purposes only.

Installing a Filter Function

To install a filter function, an application must do the following:
1 Export the function in its module-definition (.DEF) file.

2 Obtain the function's address by using the GetProcAddress function. (The MakeProcInstance
function is used only when the filter function is not in a DLL.)

3 Call the SetWindowsHook function, specifying the type of hook function and the address of the
function (returned by GetProcAddress).

4 Store the return value from SetWindowsHook in a reserved location. This value is the handle of the
previous filter function.

Note: Filter functions for system-wide hooks must reside in a dynamic-link library (DLL). Application-
specific filter functions can reside in a DLL or the application.

Property Lists
A property list is a storage area that contains handles for data that the application needs to associate with a
window.

Using Property Lists

Once a data handle is in a window's property list, any application that can access the window can also
access the handle. Using the property list is a convenient way to make data (for example, an alternate
title or menu for a window) available when the application needs to modify a window.

Every window has its own property list. When a window is created, the list is empty. The SetProp
function adds entries to the list. Each entry contains a unique Windows character string and a data
handle.

The data handle can identify any object that the application needs to associate with the window. The
GetProp function retrieves the data handle of an entry from the list without removing the entry. The
handle can then be used to retrieve or use the data. The RemoveProp function removes an entry from the
list when it is no longer needed.

Although the purpose of the property list is to associate data with a window for use by the application
that owns the window, the handles in a property list are accessible to any application that has access to
the window. This means an application can retrieve and use a data handle from the property list of a
window created by another application. But using another application's data handles must be done with
care. Only shared, global memory objects, such as GDI drawing objects, can be used by other
applications. If a property list contains local or global memory handles or resource handles, only the
application that has created the window can use them. An application can use the Windows clipboard to
share global memory handles with other applications. Local memory handles cannot be shared.

The contents of a property list can be enumerated by using the EnumProps function. The function passes
the string and data handle of each entry in the list to an application-supplied function. The application-
supplied function can then carry out the necessary task.

The data handles in a property list always belong to the application that created them. The property list
itself, like other window-related data, belongs to Windows. A window's property list is allocated in the
USER heap, the local heap of the USER library. Although there is no defined limit to the number of
entries in a property list, the number of entries depends on how much space is available in the USER
heap. The available space depends on how many windows, window classes, and other window-related
objects have been created.

The application creates the entries in a property list. Before a window is destroyed or the application that
owns the window closes, all entries in the property list must be removed by using the RemoveProp
function. Failure to remove the entries leaves the property list in the USER heap and makes the space it
occupies unusable for subsequent applications. This can ultimately cause an overflow of the USER heap.

An application can use the RemoveProp function at any time to remove entries from the property list. If
there are entries in the property list when the WM_DESTROY message is received for the window, the
entries must be removed at that time. To ensure that all entries are removed, use the EnumProps function
to enumerate all entries in the property list. An application should remove only those properties that it
added to the property list. Windows adds properties for its own use and disposes of them automatically.
An application must not remove properties that Windows has added to the list.

Rectangles
In Windows, a rectangle is defined by a RECT structure. The structure specifies two points: the upper-left
and lower-right corners of the rectangle. The sides of a rectangle extend from these two points and are
parallel to the x- and y-axes.

Using Rectangles in a Windows Application

Rectangles are used to specify rectangular areas on the screen or in a window, such as the cursor
clipping region, the client repaint area, a formatting area for formatted text, and the scroll area.
Rectangles are also used to fill, frame, or invert an area in the client area with a given brush, and to
retrieve the coordinates of a window or a window's client area.

Because rectangles are used for many different purposes, the rectangle functions do not use an explicit
unit of measure. Instead, all rectangle coordinates and dimensions are given in signed, logical values.
The units of measure are determined by the function in which the rectangle is used.

Rectangle Coordinates

Valid coordinate values for a rectangle are in the range -32,768 through 32,767. Valid widths and
heights, which must be positive, are in the range 0 through 32,767. This means that a rectangle whose
left and right sides or whose top and bottom are further apart than 32,768 units is not valid.

Creating and Manipulating Rectangles

The SetRect function creates a rectangle, the CopyRect function makes a copy of a given rectangle, and
the SetRectEmpty function creates an empty rectangle. An empty rectangle is any rectangle that has zero
width, zero height, or both.

The InflateRect function increases or decreases the width or height of a rectangle, or both. It can add or
remove width from both ends of the rectangle; it can add or remove height from both the top and bottom
of the rectangle.

The OffsetRect function moves the rectangle by a given amount. It moves the rectangle by adding the
given x-amount, y-amount, or x- and y-amounts to the corner coordinates.

The PtInRect function finds out whether a given point lies within a given rectangle. The point is in the
rectangle if it lies on the left or top side or is completely within the rectangle.

The IsRectEmpty function finds out whether the given rectangle is empty.

The IntersectRect function creates a new rectangle that is the intersection of two existing rectangles. The
intersection is the largest rectangle contained in both existing rectangles.

The UnionRect function creates a new rectangle that is the union of two existing rectangles. The union is
the smallest rectangle that contains both existing rectangles.

For information about functions that draw ellipses and polygons, see Graphics Device Interface
Overview.

Graphics Device Interface Overview
The following topics describe the functions that perform device-independent graphics operations in an
application for the Microsoft Windows operating system. These operations include the creation of line,
text, and bitmap output on different output devices. The functions performing those operations constitute
the Windows graphics device interface (GDI).

Device Contexts
Specifying Colors
Color-palette functions
Drawing-attribute functions
Mapping functions
Coordinate functions
Line-output functions
Ellipse and polygon functions
Metafile functions

Some Windows functions in the USER application programming interface (API) are closely related to
these GDI function groups.

Device Contexts
A device context (DC) is a link between a Windows application, a device driver, and an output device,
such as a printer or plotter. Windows maintains a cache of five special device contexts for the system
display. Applications must release these device contexts after using them.

The following illustration shows the flow of information from a Windows application through a device
context and a device driver to an output device.

Accessing Output Devices

Any Windows application can use GDI functions to access an output device. GDI passes calls, which are
device independent, from the application to the device driver. The device driver then translates the calls
into device-dependent operations.

Saving and Restoring a Device Context

The SaveDC and RestoreDC functions save and restore device contexts. The former saves the original
attributes, and the latter makes them available at a later time. For example, a Windows application may
need to save its original clipping region so that it can restore the original state of the client area after a
series of alterations occur.

Deleting a Device Context

The DeleteDC function deletes a device context and ensures that shared resources are not removed until
the last context is deleted. The device driver is a shared resource. DeleteDC should be used to delete
device contexts created by the application. If the application uses the GetDC function to retrieve a
device context, it should use the ReleaseDC function, not DeleteDC.

Creating a Compatible Device Context

The CreateCompatibleDC function causes Windows to treat a portion of memory as a virtual device.
Then Windows prepares a device context that has the same attributes as the device for which the virtual
device was created, but the device context has no connected output device.

To use the compatible device context, the application creates a compatible bitmap and selects it into the
device context. Any output the application sends to the device is drawn in the selected bitmap. Because
the device context is compatible with an actual device, the context of the bitmap can be copied directly
to the actual device, or vice versa. This also means that the application can send output to memory (prior
to sending it to the device).

Note: The CreateCompatibleDC function works only for devices that support raster operations. To
discover whether a device supports raster operations, an application can call the GetDeviceCaps
function with the RC_BITBLT index.

Creating an Information Context

The CreateIC function creates an information context for a device. An information context is a device
context with limited capabilities; it cannot be used to write to the device. An application uses an
information context to gather information about the selected device. Information contexts are useful in
large applications that require memory conservation.

By using an information context and the GetDeviceCaps function, you can obtain the following device
information:

Device technology
Physical display size
Color capabilities of the device
Color-palette capabilities of the device
Drawing objects available on the device
Clipping capabilities of the device
Raster capabilities of the device
Curve-drawing capabilities of the device
Line-drawing capabilities of the device
Polygon-drawing capabilities of the device
Text capabilities of the device

Device-Context Attributes

Device-context attributes describe selected drawing objects (pens and brushes), the selected font and its
color, the way in which objects are drawn (or mapped) to the device, the area on the device available for
output (clipping region), and other important information. The structure that contains the device-context
attributes is called the device-context data block. The default attributes and the GDI functions that affect
or use them are as follows.

Attribute Default GDI functions
Background color White SetBkColor
Background mode OPAQUE SetBkMode
Bitmap No default CreateBitmap CreateBitmapIndirect

CreateCompatibleBitmap SelectObject
Brush WHITE_BRUSH CreateBrushIndirect

CreateDIBPatternBrush CreateHatchBrush
CreatePatternBrush CreateSolidBrush
SelectObject

Brush origin (0,0) SetBrushOrg UnrealizeObject
Clipping region Display surface CreateEllipticRgn CreateEllipticRgnIndirect

CreatePolygonRgn CreatePolyPolygonRgn
CreateRectRgn CreateRoundRectRgn
ExcludeClipRect IntersectClipRect
OffsetClipRgn
SelectClipRgn

Color palette DEFAULT_PALETTE CreatePalette
RealizePalette SelectPalette
UnrealizeObject

Current pen position (0,0) LineTo
MoveTo

Drawing mode R2_COPYPEN SetROP2
Font SYSTEM_FONT CreateFont CreateFontIndirect SelectObject
Intercharacter spacing 0 SetTextCharacterExtra
Mapping mode MM_TEXT SetMapMode
Pen BLACK_PEN CreatePen

CreatePenIndirect SelectObject
Polygon-filling mode ALTERNATE SetPolyFillMode
Stretching mode BLACKONWHITE SetStretchBltMode
Text color Black SetTextColor
Viewport extent (1,1) SetViewportExt
Viewport origin (0,0) SetViewportOrg
Window extent (1,1) SetWindowExt
Window origin (0,0) SetWindowOrg

Specifying Colors
Many of the GDI functions that create pens and brushes require that the calling application specify a color
in the form of a doubleword. The color can be specified as:

An explicit RGB value
An index to a logical-palette entry
A palette-relative RGB value

The second and third methods of specifying color require the application to create a logical palette.

An explicit RGB doubleword value is a long integer that contains a red, a green, and a blue color field.
The first (low-order) byte contains the red field, the second byte contains the green field, the third byte
contains the blue field, and the fourth (high-order) byte must be zero. Each field specifies the intensity of
the color; zero indicates the lowest intensity, and 255 indicates the highest. For example, 0x00FF0000
specifies pure blue, and 0x0000FF00 specifies pure green. The RGB macro accepts values for the relative
intensities of the three colors and returns an explicit RGB doubleword value.

When GDI receives the RGB value as a function parameter, it passes the RGB color value directly to the
output device driver, which selects the closest available color on the device. The GetNearestColor function
returns the logical color closest to a specified logical color that a given device can represent.

If the device is a plotter, the driver converts the RGB value to a single color that matches one of the pens
on the device.

If the device uses color raster technology and the RGB value specifies a color for a pen, the driver selects a
solid color. If the device uses color raster technology and the RGB value specifies a color for a brush, the
driver selects from a variety of available color combinations. Because many color devices can display only
a few colors, the actual color is simulated by dithering (that is, mixing pixels of colors that the device can
actually render).

If the device is monochrome (black-and-white), the driver selects black, white, or a shade of gray,
depending on the RGB value. If the sum of the RGB values is zero, the driver selects a black brush. If the
sum of the RGB values is 765, the driver selects a white brush. If the sum of the RGB values is between
zero and 765, the driver selects one of the gray patterns available.

The GetRValue, GetGValue, and GetBValue macros extract the values for red, green, and blue from an
explicit RGB doubleword value.

Color Palettes
Many color graphics displays are capable of displaying a wide range of colors. In most cases, however, the
actual number of colors that the display can render at any given time is more limited. For example, a
display that is potentially able to produce over 262,000 different colors may be able to show only 256 of
those colors at a time because of hardware limitations.

To render colors, a display device often maintains a palette of colors. When an application requests a color
that is not currently displayed, the display device adds the requested color to the palette. However, when
the number of requested colors exceeds the maximum number for the device, it must replace an existing
color with the requested color. As a result, if the total number of colors requested by one or more windows
exceeds the number available on the display, many of the actual colors displayed will be incorrect.

Windows color palettes act as a buffer between color-intensive applications and the system. When a
window has the input focus, Windows ensures that the window displays all the colors it requests, up to the
maximum number simultaneously available on the display, and displays additional colors by matching
them to available colors. In addition, Windows matches the colors requested by inactive windows as
closely as possible to the available colors. This process significantly reduces undesirable changes in the
colors displayed in inactive windows.

Understanding Color Palettes

Color palettes provide a device-independent method for accessing the color capabilities of a display
device by managing the physical, or system, palette of the device, if one is available. Typically, devices
that can display at least 256 colors use a system palette.

An application employs the system palette by creating and using one or more logical palettes. Each entry
in the system palette contains a specific color. Then, instead of specifying an explicit value for a color
when performing graphics operations, the application indicates which color is to be displayed by
supplying an index into the logical palette.

Because more than one application can use logical palettes, it is possible that the total number of colors
requested for display can exceed the capacity of the display device. Windows acts as a mediator among
the applications.

When a window requests that its logical palette be given its requested colors (a process known as
realizing its palette), Windows first matches entries in the logical palette to current entries in the system
palette. If an exact match for a given logical palette entry is not possible, Windows sets the entry in the
logical palette into an unused entry in the system palette.

When all entries in the system palette have been used, Windows takes the logical palette entries that do
not exactly match and matches them as closely as possible to entries already in the system palette. To
further aid color matching, Windows sets aside 20 static colors in the system palette (the default palette)
to which it can match entries in a background palette.

Windows always satisfies the color requests of the foreground window first; this procedure ensures that
the active window has the best color display possible. For the remaining windows, Windows satisfies
the color requests of the window that most recently received the input focus, the window that was active
before that one, and so on.

The following illustration shows this process. In this illustration, a hypothetical display has a system
palette capable of containing 12 colors. The application that created Logical Palette 1 owns the active
window and was the first to realize its logical palette, which consists of 8 colors. Because the active
window was active when it realized its palette, Windows mapped all of the colors in Logical Palette 1
directly to the system palette.

Logical Palette 2 is owned by a window that realized its logical palette while it was inactive. Three of
the colors (1, 3, and 5) in Logical Palette 2 were identical to colors in the system palette. To save space
in the palette, Windows simply matched those colors to existing system colors when the second
application realized its palette. Colors 0, 2, 4, and 6 were not already in the system palette, however, so
Windows mapped those colors into the system palette. Because the system palette became full,
Windows was not able to map the remaining two colors (which did not exactly match existing colors in
the system palette) into the system palette. Instead, it matched them to the closest colors in the system
palette.

Using a Color Palette

Before drawing to the display device with a color palette, an application must first create a logical
palette by calling the CreatePalette function and then use the SelectPalette function to select the palette
for the device context of the output device for which it will be used. An application cannot select a
palette into a device context by using the SelectObject function.

All functions with a color parameter accept an index to an entry in the logical palette. The palette index
specifier is a long integer value with the first bit in its high-order byte set to 1 and the palette index in
the two low-order bytes. For example, 0x01000005 specifies the palette entry with an index of 5. The
PALETTEINDEX macro accepts an integer value representing the index of a logical palette entry and
returns a palette index value, which an application can use as a parameter for GDI functions that require
a color.

An application can also specify a palette index indirectly by using a palette-relative RGB value. If the
target display device supports logical palettes, Windows matches the palette-relative RGB value to the
closest palette entry. If the target device does not support palettes, the RGB value is used as though it
were an explicit RGB value. The palette-relative RGB value is identical to an explicit RGB value except
that the second bit of the high-order byte is set to 1. For example, 0x02FF0000 specifies a palette-
relative RGB value for pure blue. The PALETTERGB macro accepts values for red, green, and blue and
returns a palette-relative RGB value, which an application can use as a parameter for GDI functions that
require a color.

If an application specifies an RGB value instead of a palette entry, Windows uses the closest matching
color in the default palette of 20 static colors.

If the source and destination device contexts have selected and realized different palettes, the BitBlt
function does not properly move bitmap bits to or from a memory device context. In this case, you must
call the GetDIBits function with the DIB_RGB_COLORS flag to retrieve the bitmap bits from the
source bitmap in a device-independent format. Then you use the SetDIBits function to set the retrieved
bits in the destination bitmap. This ensures that Windows properly matches colors between the two
device contexts.

Note: The BitBlt function successfully moves bitmap bits between two screen display contexts, even if
they have selected and realized different palettes. The StretchBlt function properly moves bitmap
bits between device contexts whether or not they use different palettes.

Color-Palette Functions

Windows color palettes allow an application to use as many colors as needed without interfering with its
own color display or colors displayed by other windows. Following are the functions an application calls
to use color palettes:

Function Description
AnimatePalette Replaces entries in a logical palette; Windows maps the new entries

into the system palette immediately.
CreatePalette Creates a logical palette.
GetNearestColor Retrieves the solid color closest to a specified logical color that a

given device can represent.
GetNearestPaletteIndex Retrieves the index of a logical palette entry most nearly matching a

specified RGB value.
GetPaletteEntries Retrieves entries from a logical palette.
GetSystemPaletteEntries Retrieves a range of palette entries from the system palette.
GetSystemPaletteUse Determines whether an application has access to the full system

palette.
ResizePalette Changes the size of the specified logical palette.
SetPaletteEntries Sets new palette entries in a logical palette; Windows does not map

the new entries to the system palette until the application realizes the
logical palette.

SetSystemPaletteUse Allows an application to use the full system palette.
UpdateColors Performs a pixel-by-pixel translation of each pixel's current color to

the system palette. This process allows an inactive window to correct
its colors without redrawing its client area.

The USER API also provides two palette-management functions:

Function Description
RealizePalette Maps entries in a logical palette to the system palette.
SelectPalette Selects a logical palette into a device context.

For more information about these USER functions, Window Management.

Drawing Attributes
A drawing attribute can take one of the following forms: line, brush, text, or bitmap output.

Setting Colors

Line output can be solid or broken (dashed, dotted, or a combination of the two). If it is broken, the
space between the breaks can be filled by setting the background mode to OPAQUE and selecting a
color. By setting the background mode to TRANSPARENT, the space between breaks is left in its
original state. The SetBkMode and SetBkColor functions set the background mode and color.

Brush output is solid, patterned, or hatched. The space between hatch marks can be filled by setting the
background mode to OPAQUE and selecting a color. When Windows creates brush output on a display,
it combines the existing color on the display surface with the brush color to yield a new and final color;
this is a binary raster operation. If the default raster operation is not appropriate, a new one is chosen by
using the SetROP2 function.

The appearance of text output is limited only by the number of available fonts and the color capabilities
of the output device. The SetBkColor function sets the color of the text background (the unused portion
of each character cell), and the SetTextColor function sets the color of the character itself.

Controlling Stretch

The appearance of bitmap output can be affected by the stretch mode, which determines how lines
eliminated from the bitmap are combined. If an application copies a bitmap to a device and it is
necessary to shrink or expand the bitmap before drawing, the effects of the StretchBlt and StretchDIBits
functions can be controlled by calling the SetStretchBltMode function to set the current stretch mode for
a device context.

Mapping Modes
To maintain device independence, GDI creates output in a logical space and maps it to the display. The
mapping mode defines the relationship between units in the logical space and pixels on a device.

There are eight different GDI mapping modes, each of which has a specific use in a Windows application.
Following are these mapping modes:

Mapping mode Description
MM_ANISOTROPIC Maps one logical unit to an arbitrary physical unit. The x-axis and y-axis are

arbitrarily scaled.
MM_HIENGLISH Maps one logical unit to 0.001 inch. The positive y-axis extends upward.
MM_HIMETRIC Maps one logical unit to 0.01 millimeter. The positive y-axis extends

upward.
MM_ISOTROPIC Maps one logical unit to an arbitrary physical unit. One unit along the x-axis

is always equal to one unit along the y-axis.
MM_LOENGLISH Maps one logical unit to 0.01 inch. The positive y-axis extends upward.
MM_LOMETRIC Maps one logical unit to 0.1 millimeter. The positive y-axis extends upward.
MM_TEXT Maps one logical unit to one pixel. The positive y-axis extends downward.
MM_TWIPS Maps one logical unit to 1/1440 inch (1/20 of a point; a point is 1/72 inch).

The positive y-axis extends upward.

Constrained Mapping Modes

GDI classifies six of the mapping modes as constrained mapping modes. These mapping modes are
constrained because the scaling factor is fixed, so an application cannot change the number of logical
units that Windows maps to a physical unit. The relationship of logical units to physical units for each
constrained mapping mode follows:

Mapping mode Logical units Physical unit
MM_HIENGLISH 1000 1 inch
MM_HIMETRIC 100 1 millimeter
MM_LOENGLISH 100 1 inch
MM_LOMETRIC 10 1 millimeter
MM_TEXT 1 Device pixel
MM_TWIPS 1440 1 inch

Note: The MM_HIENGLISH, MM_HIMETRIC, MM_LOENGLISH, MM_LOMETRIC, and
MM_TWIPS mapping modes sometimes map logical units to device units in ways that do not
correspond exactly to the preceding table. This typically occurs on displays; for example, on an
VGA display there is a 33 percent increase in the dimensions of the device units. The increase in
the dimensions of device units occurs so that the same output looks equally crisp and readable
whatever the device resolution and the display technology for the device. An application can use
the GetDeviceCaps function with the LOGPIXELSX and LOGPIXELSY indices to discover the
scaling factor.

In each of the six constrained modes, one logical unit is mapped to a predefined physical unit. For
instance, the MM_TEXT mapping mode maps one logical unit to one device pixel, and the
MM_LOENGLISH mapping mode maps one logical unit to 0.01 inch on the device. Examples for these
two modes follow.

MM_TEXT Mapping Mode

The default mapping mode is MM_TEXT. In this mapping mode, one logical unit is mapped to one
pixel on the device or display.

The following illustration shows three rectangles created by a Windows application by using the
MM_TEXT mapping mode. The drawing on the left illustrates the logical coordinate space, and the one
on the right illustrates the device, or physical, coordinate space. The rectangles appear vertically
elongated in the physical space because pixels on the chosen display are longer than they are wide. The
rectangles appear to be upside-down because the positive y-axis extends downward in the physical-
coordinate system.MM_LOENGLISH Mapping Mode

The following illustration shows three rectangles created by a Windows application by using the
MM_LOENGLISH mapping mode. The drawing on the left illustrates how the rectangles appear in
relation to the x-axis and y-axis in the logical coordinate system. The one on the right illustrates how the
rectangles appear in relation to the x-axis and y-axis in the physical coordinate system.Other Mapping Modes

The MM_ISOTROPIC and MM_ANISOTROPIC mapping modes, which are not constrained, use two
rectangular regions to derive a scaling factor and an orientation: the window and the viewport. The
window lies within the logical-coordinate space, and the viewport lies within the physical-coordinate
space. Both possess an origin, an x-extent, and a y-extent. The origin may be any one of the four
corners. The x-extent is the horizontal distance from the origin to its opposing corner. The y-extent is the
vertical distance from the origin to its opposing corner.

Windows creates a horizontal scaling factor by dividing the viewport's x-extent by the window's x-
extent and creates a vertical scaling factor by dividing the viewport's y-extent by the window's y-
extent. These scaling factors determine the number of logical units that Windows maps to a number of
pixels. In addition to determining scaling factors, the window and viewport determine the orientation of
an object. Windows always maps the window origin to the viewport origin, the window x-extent to the
viewport x-extent, and the window y-extent to the viewport y-extent.

Partially Constrained Mapping Mode

An application creates output with equally scaled axes by using the MM_ISOTROPIC mapping mode.
As the term isotropic implies, Windows maps a symmetrical object (for example, a square or a circle) in
the logical space as a symmetrical object in the physical space. In order to maintain this symmetry, GDI
shrinks one of the viewport extents. The amount of shrinkage depends on the requested extents and the
aspect ratio of the device. This mapping mode is called partially constrained because the application
does not have complete control in altering the scaling factor.

Unconstrained Mapping Mode

An application can completely alter the horizontal and vertical scaling factors by using the
MM_ANISOTROPIC mapping mode and setting the window and viewport extents to any value after
selecting this mapping mode. Windows does not alter either scaling factor in this mode.

Coordinate Functions
Coordinate functions convert client coordinates to screen coordinates (or vice versa). These functions are
useful in graphics-intensive applications. Following are the coordinate functions:

Function Description
DPtoLP Converts device points (that is, points relative to the window origin) into

logical points.
GetCurrentPosition Retrieves the current position, in logical coordinates.
GetCurrentPositionEx Retrieves position in logical units.
LPtoDP Converts logical points into device points.

GDI uses the following equations to transform logical points to device points and device points to logical
points:

Transforming logical points to device points:

Dx = (Lx - xWO) * xVE/xWE + xVO
Dy = (Ly - yWO) * yVE/yWE + yVO
Transforming device points to logical points:

Lx = (Dx - xVO) * xWE/xVE + xWO
Ly = (Dy - yVO) * yWE/yVE + yWO

Following are descriptions of the variables used in these transformation equations:

Variable Description
xWO Window origin x-coordinate
yWO Window origin y-coordinate
xWE Window extent x-coordinate
yWE Window extent y-coordinate
xVO Viewport origin x-coordinate
yVO Viewport origin y-coordinate
xVE Viewport extent x-coordinate
yVE Viewport extent y-coordinate
Lx Logical-coordinate system x-coordinate
Ly Logical-coordinate system y-coordinate
Dx Device x-coordinate
Dy Device y-coordinate

The following four ratios are scaling factors used to determine the necessary stretching or compressing of
logical units: xVE/xWE, yVE/yWE, xWE/xVE, and yWE/yVE.

The subtraction and addition of viewport and window origins is referred to as the translational component
of the equation.

In addition, applications can use the following functions from the USER API to convert coordinates from
one system to another:

Function Description
ChildWindowFromPoint Determines which, if any, of the child windows belonging to a given

parent window contains a specified point.
ClientToScreen Converts the client coordinates of a given point on the display to screen

coordinates.
ScreenToClient Converts the screen coordinates of a given point on the display to client

coordinates.
WindowFromPoint Retrieves the handle of the window that contains a given point.

Line Output
Line output functions require coordinates in logical units, which GDI uses to draw a line in logical space.
(The use of logical units ensures device independence in Windows.) GDI maps this line from the logical
space to pixels on the device. The number of logical units that GDI maps to a pixel depends on the current
mapping mode. When GDI draws a line, it excludes the last specified point.

If an application draws lines and does not create a new pen, GDI uses the default pen. This pen is black
and is one pixel wide when the mapping mode is MM_TEXT. An application can create a new pen of a
different width, style, and color by using the CreatePen function. The new color is dependent on the color
capabilities of the output device. The new style can be solid, dotted, dashed, or combined (dotted and
dashed). Once an application creates a new pen, it can select the pen into a display context by using the
SelectObject function.

Ellipses and Polygons
Ellipse and polygon functions require coordinates in logical units, which GDI uses to determine the
location and size of an object in logical space. (The use of logical units ensures device independence in
Windows.) GDI maps the object from logical space to pixels on the device. The number of logical units
that Windows maps to a pixel depends on the current mapping mode. The default mapping mode,
MM_TEXT, maps one logical unit to one pixel.

Rectangles

The Rectangle function draws a rectangle, using the current pen. The RoundRect function also draws a
rectangle, but with rounded rather than square corners.

When GDI draws a rectangle, it uses four arguments. The first two arguments specify the upper-left
corner of the rectangle. The last two arguments do not actually specify part of the rectangle; they specify
the point adjacent to the lower-right corner. For example, if the first point is specified by (x1, y1) and
the second point is specified by (x2, y2), the rectangle's upper-left corner will be (x1, y1) and the lower-
right corner will be (x2 - 1, y2 - 1).

Bounding Rectangles

The Chord, Ellipse, and Pie functions use a bounding rectangle, instead of a radius or circumference
measurement, to define the size of the object they create. The bounding rectangle is hidden; GDI uses it
only to describe the location and size of the object.

Ellipse and Polygon Functions

Ellipse and polygon functions, which draw ellipses and polygons, are particularly useful in drawing and
charting applications. GDI draws the perimeter of each object with the selected pen and fills the interior
by using the selected brush. Following are the ellipse and polygon functions:

Function Description
Chord Draws a chord.
Ellipse Draws an ellipse.
Pie Draws a pie.
Polygon Draws a polygon.
PolyPolygon Draws a series of closed polygons that are filled as though they were a single

polygon.
Rectangle Draws a rectangle.
RoundRect Draws a rounded rectangle.

Metafiles
A metafile is a collection of GDI commands that creates desired text or images. Metafiles provide a
convenient method of storing graphics commands that create text or images. Metafiles are especially
useful in applications that use specific text or a particular image repeatedly. They are also device-
independent; by creating text or images with GDI commands and then placing the commands in a metafile,
an application can re-create the text or images repeatedly on a variety of devices. Metafiles are also useful
in applications that need to pass graphics information to other applications.

Creating a Metafile

A Windows application must create a metafile in a special device context. It cannot use the device
contexts that the CreateDC or GetDC function returns; instead, it must use the device context that the
CreateMetaFile function returns.

Windows allows an application to use a subset of the GDI functions to create a metafile. This subset
consists of all GDI functions that create output (rather than functions that provide state information, such
as the GetDeviceCaps function). The following list shows GDI functions that an application can use in a
metafile:

AnimatePalette OffsetViewportOrg SetBkMode
Arc OffsetWindowOrg SetDIBitsToDevice
BitBlt PatBlt SetMapMode
Chord Pie SetMapperFlags
CreateBrushIndirect Polygon SetPixel
CreateDIBPatternBrush Polyline SetPolyFillMode
CreateFontIndirect PolyPolygon SetROP2
CreatePatternBrush RealizePalette SetStretchBltMode
Ellipse RestoreDC SetTextColor
Escape RoundRect SetTextJustification
ExcludeClipRect SaveDC SetViewportExt
ExtTextOut ScaleViewportExt SetViewportOrg
FloodFill ScaleWindowExt SetWindowExt
IntersectClipRect SelectClipRgn SetWindowOrg
LineTo SelectObject StretchBlt
MoveTo SelectPalette StretchDIBits
OffsetClipRgn SetBkColor TextOut

To create output in a metafile, an application must follow four steps:
1 Create a special device context by using the CreateMetaFile function.

2 Send GDI commands to the metafile by using the special device context.
3 Close the metafile by calling the CloseMetaFile function. This function returns a metafile handle.

4 Display the image or text on a device by using the PlayMetaFile function and passing to the function
the metafile handle obtained from CloseMetaFile and a device-context handle for the device on
which the metafile is to be played.

The device context that the CreateMetaFile function creates does not have default attributes of its own.
Whatever device-context attributes are in effect for the output device when an application plays a metafile
will be the defaults for the metafile. The metafile can change these attributes while it is playing. If the
application needs to retain the same device-context attributes after the metafile has finished playing, it
should save the output device context by calling the SaveDC function before calling the PlayMetaFile
function. Then, when PlayMetaFile returns, the application can call the RestoreDC function to restore the
original device-context attributes.

Although the maximum size of a metafile is 2^32 bytes or records, the actual size of a metafile is limited
by the amount of memory or disk space available.

Storing a Metafile

An application can store a metafile in system memory or in a disk file.

To store the metafile in memory, an application calls the CreateMetaFile function and passes NULL as
the function parameter. The application can free the memory that Windows uses to store the metafile by
calling the DeleteMetaFile function. This function removes a metafile from memory and invalidates its
handle. DeleteMetaFile has no effect on disk files.

There are two ways of storing a metafile in a disk file:
When the application calls the CreateMetaFile function to open a metafile, it passes a filename as

the function parameter; the metafile is then recorded in a disk file.
After the application has created a metafile in memory, it calls the CopyMetaFile function. This

function accepts the handle of a memory metafile and the name of the disk file to which the metafile will be
saved.

The GetMetaFile function opens a metafile stored in a disk file and makes it available for replay or
modification. This function accepts the filename of a metafile stored on disk and returns a metafile handle.

Changing How Windows Plays a Metafile

A metafile does not have to be played back in its entirety or exactly in the form in which it was
recorded. An application can use the EnumMetaFile function to locate a specific metafile record.
EnumMetaFile calls a callback function supplied by the application and passes it the following
information:

The metafile device context
A pointer to the metafile handle table
A pointer to a metafile record
The number of associated objects with handles in the handle table
A pointer to application-supplied data

The callback function can then use this information to play a single record, to query the record, to copy it,
or to modify it.

The PlayMetaFileRecord function plays a metafile record by executing the GDI function contained in the
record.

When Windows plays or enumerates the records in a metafile, it identifies each object with an index into a
handle table. Functions that select objects (such as SelectObject and SelectPalette) identify the object by
means of the object handle that the application passes to the function.

Objects are added to the table in the order in which they are created. For example, if a brush is the first
object created in a metafile, the brush is given index 0. If the second object is a pen, it is given index 1,
and so on. For information about the format of the handle table, see the description of the
HANDLETABLE structure in the Microsoft Windows Programmer's Reference, Volume 3.

Common Dialog Box Overview (3.1)
Common dialog boxes make it easier for you to develop applications for the Microsoft Windows operating
system. A common dialog box is a dialog box that an application displays by calling a single function
rather than by creating a dialog box procedure and a resource file containing a dialog box template. The
dynamic-link library COMMDLG.DLL provides a default procedure and template for each type of
common dialog box. Each default dialog box procedure processes messages and notifications for a
common dialog box and its controls. A default dialog box template defines the appearance of a common
dialog box and its controls.

In addition to simplifying the development of Windows applications, a common dialog box assists users
by providing a standard set of controls for performing certain operations. As Windows developers begin
using the common dialog boxes in their applications, users will find that after they master using a common
dialog box in one application, they can easily perform the same operations in other applications.

This topic describes the various common dialog boxes and includes sample code to help you use common
dialog boxes in your Windows applications.

Following are the types of common dialog boxes in the order in which they are presented in this topic:

Name Description
Color Displays available colors, from which the user can select one; displays controls that let

the user define a custom color.
Font Displays lists of fonts, point sizes, and colors that correspond to available fonts; after

the user selects a font, the dialog box displays sample text rendered with that font.
Open Displays a list of filenames matching any specified extensions, directories, and drives.

By selecting one of the listed filenames, the user indicates which file an application
should open.

Save As Displays a list of filenames matching any specified extensions, directories, and drives.
By selecting one of the listed filenames, the user indicates which file an application
should save.

Print Displays information about the installed printer and its configuration. By altering and
selecting controls in this dialog box, the user specifies how output should be printed and
starts the printing process.

Print Setup Displays the current list of available printers. The user can select a printer from this list.
This common dialog box also provides options for setting the paper orientation, size,
and source (when the printer driver supports these options). In addition to being called
directly, the Print Setup dialog can be opened from within the Print dialog.

Find Displays an edit control in which the user can type a string for which the application
should search. The user can specify the direction of the search, whether the application
should match the case of the specified string, and whether the string to match is an
entire word.

Replace Displays two edit controls in which the user can type strings: the first string identifies a
word or value that the application should replace, and the second string identifies the
replacement word or value.

Applications that use the common dialog boxes should specify at least 8K for the stack size, as shown in
the following example:

NAME cd
EXETYPE WINDOWS
STUB 'WINSTUB.EXE'
CODE PRELOAD MOVEABLE DISCARDABLE
DATA PRELOAD MOVEABLE MULTIPLE
HEAPSIZE 1024
STACKSIZE 8192
EXPORTS
FILEOPENHOOKPROC @1

See Also
Customizing Common Dialog Boxes

Color Dialog Box (3.1)

Using Color Dialog Boxes

The Color dialog box contains controls that make it possible for a user to select and create colors.

Following is a Color dialog box.

The Basic Colors control displays up to 48 colors. The actual number of colors displayed is determined by
the display driver. For example, a VGA driver displays 48 colors, and a monochrome display driver
displays only 16. With the Basic Colors control, the user can select a displayed color.

To display the Custom Colors control, the user clicks the Define Custom Colors button. The Custom
Colors control displays custom colors. The user can select one of the 16 rectangles in this control and then
create a new color by using one of the following methods:

Specifying red, green, and blue (RGB) values by using the Red, Green, and Blue edit controls, and
then choosing the Add to Custom Colors button to display the new color in the selected rectangle.

Moving the cursor in the color spectrum control (at the upper-right of the dialog box) to select hue
and saturation values; moving the cursor in the luminosity control (the rectangle to the right of the spectrum
control); and then choosing the Add to Custom Colors button to display the new color in the selected
rectangle.

Specifying hue, saturation, and luminosity (HSL) values by using the Hue, Sat, and Lum edit
controls and then choosing the Add to Custom Colors button to display the new color in the selected
rectangle.

The Color|Solid control displays the dithered and solid colors that correspond to the user's selection. (A
dithered color is a color created by combining one or more pure or solid colors.) The Flags member of the
CHOOSECOLOR structure contains a flag bit that, when set, displays a Help button.

An application can display the Color dialog box in one of two ways: fully open or partially open. When
the Color dialog box is displayed partially open, the user cannot change the custom colors.

Color Models Used by the Color Dialog Box

The Color dialog box uses two models for specifying colors: the RGB model and the HSL model.
Regardless of the model used, internal storage is accomplished by use of the RGB model.

RGB Color Model

The RGB model is used to designate colors for displays and other devices that emit light. Valid red,
green, and blue values are in the range 0 through 255, with 0 indicating the minimum intensity and 255
indicating the maximum intensity. The following illustration shows how the primary colors red, green,
and blue can be combined to produce four additional colors. (With display devices, the color black
results when the red, green, and blue values are set to 0--that is, with display technology, black is the
absence of all colors.)

Following are eight colors and their associated RGB values:

Color RGB values
Red 255, 0, 0
Green 0, 255, 0
Blue 0, 0, 255
Cyan 0, 255, 255
Magenta 255, 0, 255
Yellow 255, 255, 0
White 255, 255, 255
Black 0, 0, 0

Windows stores internal colors as 32-bit RGB values. The high-order byte of the high-order word is
reserved; the low-order byte of the high-order word specifies the intensity of the blue component; the high-
order byte of the low-order word specifies the intensity of the green component; and the low-order byte of
the low-order word specifies the intensity of the red component.

HSL Color Model

The Color dialog box provides controls for specifying HSL values. The following illustration shows the
color spectrum control and the vertical luminosity control that appear in the Color dialog box and shows
the ranges of values the user can specify with these controls.

In the Color dialog box, the saturation and luminosity values must be in the range 0 through 240 and the
hue value must be in the range 0 through 239.

Converting HSL Values to RGB Values

The dialog box procedure provided in COMMDLG.DLL for the Color dialog box contains code that
converts HSL values to the corresponding RGB values. Following are several colors with their
associated HSL and RGB values:

Color HSL values RGB values
Red (0, 240, 120) (255, 0, 0)
Yellow (40, 240, 120) (255, 255, 0)
Green (80, 240, 120) (0, 255, 0)
Cyan (120, 240, 120) (0, 255, 255)
Blue (160, 240, 120) (0, 0, 255)
Magenta (200, 240, 120) (255, 0, 255)
White (0, 0, 240) (255, 255, 255)
Black (0, 0, 0) (0, 0, 0)

Using the Color Dialog Box to Display Basic Colors

An application can display the Color dialog box so that a user can select one color from a list of basic
screen colors. This section describes how you can provide code and structures in your application that
make this possible.

Initializing the CHOOSECOLOR Structure

Before you display the Color dialog box you need to initialize a CHOOSECOLOR structure. This
structure should be global or declared as a static variable. The members of this structure contain
information about such items as the following:

Structure size
Which window owns the dialog box
Whether the application is customizing the common dialog box
The hook function and custom dialog box template to use for a customized version of the Color

dialog box
RGB values for the selected basic color

If your application does not customize the dialog box and you want the user to be able to select a single
color from the basic colors, you should initialize the CHOOSECOLOR structure in the following manner:

/* Color variables */
CHOOSECOLOR cc;
COLORREF clr;
COLORREF aclrCust[16];
int i;
/* Set the custom color controls to white. */
for (i = 0; i < 16; i++)

aclrCust[i] = RGB(255, 255, 255);
/* Initialize clr to black. */

clr = RGB(0, 0, 0);
/* Set all structure fields to zero. */
memset(&cc, 0, sizeof(CHOOSECOLOR));
/* Initialize the necessary CHOOSECOLOR members. */
cc.lStructSize = sizeof(CHOOSECOLOR);
cc.hwndOwner = hwnd;
cc.rgbResult = clr;
cc.lpCustColors = aclrCust;
cc.Flags = CC_PREVENTFULLOPEN;
if (ChooseColor(&cc))

.

. /* Use cc.rgbResult to select the user-requested color. */

.
In the previous example, the array to which the lpCustColors member points contains 16 doubleword RGB
values that specify the color white, and the CC_PREVENTFULLOPEN flag is set in the Flags member to
disable the Define Custom Colors button and prevent the user from selecting a custom color.

Calling the ChooseColor Function

After you initialize the structure, you should call the ChooseColor function. If the function is successful
and the user chooses the OK button to close the dialog box, the rgbResult member contains the RGB
values for the basic color that the user selected.

Using the Color Dialog Box to Display Custom Colors

An application can display the Color dialog box so that the user can create and select a custom color.
This section describes how you can provide code and structures in your application that make this
possible.

Initializing the CHOOSECOLOR Structure

Before you display the Color dialog box, you need to initialize a CHOOSECOLOR structure. This
structure should be global or declared as a static variable. The members of this structure contain
information about such items as the following:

Structure size
Which window owns the dialog box
Whether the application is customizing the common dialog box
The hook function and custom dialog box template to use for a customized version of the Color

dialog box
RGB values for the custom color control

If your application does not customize the dialog box and you want the user to be able to create and select
custom colors, you should initialize the CHOOSECOLOR structure in the following manner:

/* Color Variables */
CHOOSECOLOR chsclr;
DWORD dwCustClrs[16] = { RGB(255, 255, 255), RGB(239, 239, 239),
RGB(223, 223, 223), RGB(207, 207, 207),
RGB(191, 191, 191), RGB(175, 175, 175),
RGB(159, 159, 159), RGB(143, 143, 143),
RGB(127, 127, 127), RGB(111, 111, 111),
RGB(95, 95, 95), RGB(79, 79, 79),
RGB(63, 63, 63), RGB(47, 47, 47),
RGB(31, 31, 31), RGB(15, 15, 15)

};
BOOL fSetColor = FALSE;
int i;
chsclr.lStructSize = sizeof (CHOOSECOLOR);
chsclr.hwndOwner = hwnd;
chsclr.hInstance = NULL;

chsclr.rgbResult = 0L;
chsclr.lpCustColors = (LPDWORD) dwCustClrs;
chsclr.Flags = CC_FULLOPEN;
chsclr.lCustData = 0L;
chsclr.lpfnHook = (FARPROC) NULL;
chsclr.lpTemplateName = (LPSTR)NULL;
In the previous example, the array to which lpCustColors points contains sixteen 32-bit RGB values that
specify 16 scales of gray, and the CC_FULLOPEN flag is set in the Flags member to display the complete
Color dialog box.

Calling the ChooseColor Function

After you initialize the structure, you should call the ChooseColor function as shown in the following
code fragment:

if (fSetColor = ChooseColor(&chsclr))
.
. /* Use chsclr.lpCustColors to select user specified colors*/
.
If the function is successful and the user chooses the OK button to close the dialog box, the lpCustColors
member points to an array that contains the RGB values for the custom colors requested by the
application's user.

Applications can exercise more control over custom colors by creating a new message identifier for the
string defined by the COLOROKSTRING constant. The application creates the new message identifier by
calling the RegisterWindowMessage function and passing this constant as the single parameter. After
calling RegisterWindowMessage, the application receives a message immediately prior to the dismissal of
the dialog box. The lParam parameter of this message contains a pointer to the CHOOSECOLOR
structure. The application can use the lpCustColors member of this structure to check the current color. If
the application returns a nonzero value when it processes this message, the dialog box is not dismissed.

Similarly, applications can create a new message identifier for the string defined by the SETRGBSTRING
constant. The application's hook function can use the message identifier returned by calling
RegisterWindowMessage with the SETRGBSTRING constant to set a color in the dialog box. For
example, the following line of code sets the color selection to blue:

SendMessage(hwhndDlg, wSetRGBMsg, 0, (LPARAM) RGB(0, 0, 255));
In this example, wSetRGBMsg is the message identifier returned by the RegisterWindowMessage
function. The lParam parameter of the SendMessage function is set to the RGB values of the desired color.
The wParam parameter is not used.

The application can specify any valid RGB values in this call to SendMessage. If the RGB values match
one of the basic colors, the system selects the basic color and updates the spectrum and luminosity
controls. If the RGB values do not match one of the basic colors, the system updates the spectrum and
luminosity controls, but the basic color selection remains unchanged.

Note that if the Color dialog box is not fully open and the application sends RGB values that do not match
one of the basic colors, the system does not update the dialog box. Updates are unnecessary because the
spectrum and luminosity controls are not visible when the dialog box is only partially open.

For more information about processing registered window messages, see Using Find and Replace Dialog
Boxes.

Font Dialog Box (3.1)

Using Font Dialog Boxes

The Font dialog box contains controls that make it possible for a user to select a font, a font style (such
as bold, italic, or regular), a point size, and an effect (such as underline, strikeout, or a text color).

Following is a Font dialog box.

Displaying the Font Dialog Box in Your Application

The Font dialog box appears after you initialize the members in a CHOOSEFONT structure and call the
ChooseFont function. This structure should be global or declared as a static variable. The members of
the CHOOSEFONT structure contain information about such items as the following:

The attributes of the font that initially is to appear in the dialog box.
The attributes of the font that the user selected.
The point size of the font that the user selected.
Whether the list of fonts corresponds to a printer, a screen, or both.
Whether the available fonts listed are TrueType only.
Whether the Effects box should appear in the dialog box.
Whether dialog box messages should be processed by an application-supplied hook function.
Whether the point sizes of the selectable fonts should be limited to a specified range.
Whether the dialog box should display only what-you-see-is-what-you-get (WYSIWIG) fonts.

(These fonts are resident on both the screen and the printer.)
The color that the ChooseFont function should use to render text in the Sample box the first time

the application displays the dialog box.
The color that the user selected for text output.

To display the Font dialog box, an application should perform the following steps:
1 If the application requires printer fonts, retrieve a device-context handle for the printer and use this

handle to set the hDC member of the CHOOSEFONT structure. (If the Font dialog box displays only
screen fonts, this member should be set to NULL.)

2 Set the appropriate flags in the Flags member of the CHOOSEFONT structure. This setting must
include CF_SCREENFONTS, CF_PRINTERFONTS, or CF_BOTH.

3 Set the rgbColors member of the CHOOSEFONT structure if the default color (black) is not
appropriate.

4 Set the nFontType member of the CHOOSEFONT structure using the appropriate constant.
5 Set the nSizeMin and nSizeMax members of the CHOOSEFONT structure if the CF_LIMITSIZE

value is specified in the Flags member.

6 Call the ChooseFont function.

The following example initializes the CHOOSEFONT structure and calls the ChooseFont function:

LOGFONT lf;
CHOOSEFONT cf;
/* Set all structure fields to zero. */
memset(&cf, 0, sizeof(CHOOSEFONT));
cf.lStructSize = sizeof(CHOOSEFONT);
cf.hwndOwner = hwnd;
cf.lpLogFont = &lf;
cf.Flags = CF_SCREENFONTS | CF_EFFECTS;
cf.rgbColors = RGB(0, 255, 255); /* light blue */
cf.nFontType = SCREEN_FONTTYPE;
ChooseFont(&cf);
When the user closes the Font dialog box by choosing the OK button, the ChooseFont function returns
information about the selected font in the LOGFONT structure to which the lpLogFont member points. An
application can use this LOGFONT structure to select the font that will be used to render text. The
following example selects a font by using the LOGFONT structure and renders a string of text:

hdc = GetDC(hwnd);

hFont = CreateFontIndirect(cf.lpLogFont);
hFontOld = SelectObject(hdc, hFont);
TextOut(hdc, 50, 150,

"AaBbCcDdEeFfGgHhIiJjKkLlMmNnOoPpQqRrSsTtUuVvWwXxYyZz", 52);
SelectObject(hdc, hFontOld);
DeleteObject(hFont);
ReleaseDC(hwnd, hdc);
An application can also use the WM_CHOOSEFONT_GETLOGFONT message to retrieve the current
LOGFONT structure for the Font dialog box before the user closes the dialog box.

Filename Dialog Boxes (3.1)

Using Open and Save As Dialog Boxes

The Open dialog box and the Save As dialog box are similar in appearance. Each contains controls that
make it possible for the user to specify the location and name of a file or set of files. In the case of the
Open dialog box, the user selects the file or files to be opened; in the case of the Save As dialog box, the
user selects the file or files to be saved.

Displaying the Open Dialog Box in Your Application

The Open dialog box appears after you initialize the members of an OPENFILENAME structure and
call the GetOpenFileName function.

Following is an Open dialog box.

Before the call to GetOpenFileName, structure members contain such data as the name of the directory
and the filter that are to appear in the dialog box. (A filter is a filename extension. The common dialog box
code uses the extension to filter appropriate filenames from a directory.) After the call, structure members
contain such data as the name of the selected file and the number of characters in that filename.

To display an Open dialog box, an application should perform the following steps:
1 Store the valid filters in a character array.

2 Set the lpstrFilter member to point to this array.
3 Set the nFilterIndex member to the value of the index that identifies the default filter.

4 Set the lpstrFile member to point to an array that contains the initial filename and receives the
selected filename.

5 Set the nMaxFile member to the value that specifies the length of the filename array.

6 Set the lpstrFileTitle member to point to a buffer that receives the title of the selected file.
7 Set the nMaxFileTitle member to specify the length of the buffer.

8 Set the lpstrInitialDir member to point to a string that specifies the initial directory. (If this member
does not point to a valid string, it must be set to 0 or point to a string that is set to NULL.)

9 Set the lpstrTitle member to point to a string specifying the name that should appear in the title bar
of the dialog box. (If this pointer is NULL, the title will be Open.)

10 Initialize the lpstrDefExt member to point to the default extension. (This extension can be 0, 1, 2,
or 3 characters long.)

11 Call the GetOpenFileName function.

The following example initializes an OPENFILENAME structure, calls the GetOpenFileName function,
and opens the file by using the lpstrFile member of the structure. The OPENFILENAME structure should
be global or declared as a static variable.

OPENFILENAME ofn;
char szDirName[256];
char szFile[256], szFileTitle[256];
UINT i, cbString;
char chReplace; /* string separator for szFilter */
char szFilter[256];
HFILE hf;
/* Get the system directory name, and store in szDirName */
GetSystemDirectory(szDirName, sizeof(szDirName));
szFile[0] = '\0';
if ((cbString = LoadString(hinst, IDS_FILTERSTRING,

szFilter, sizeof(szFilter))) == 0) {
ErrorHandler();
return 0L;

}
chReplace = szFilter[cbString - 1]; /* retrieve wildcard */
for (i = 0; szFilter[i] != '\0'; i++) {

if (szFilter[i] == chReplace)
szFilter[i] = '\0';

}
/* Set all structure members to zero. */
memset(&ofn, 0, sizeof(OPENFILENAME));
ofn.lStructSize = sizeof(OPENFILENAME);
ofn.hwndOwner = hwnd;
ofn.lpstrFilter = szFilter;
ofn.nFilterIndex = 1;
ofn.lpstrFile= szFile;
ofn.nMaxFile = sizeof(szFile);
ofn.lpstrFileTitle = szFileTitle;
ofn.nMaxFileTitle = sizeof(szFileTitle);
ofn.lpstrInitialDir = szDirName;
ofn.Flags = OFN_SHOWHELP | OFN_PATHMUSTEXIST | OFN_FILEMUSTEXIST;
if (GetOpenFileName(&ofn)) {

hf = _lopen(ofn.lpstrFile, OF_READ);
.
. /* Perform file operations. */
.

}
else

ErrorHandler();
The string referred to by the IDS_FILTERSTRING constant in the preceding example is defined as
follows in the resource-definition file:

STRINGTABLE
BEGIN
IDS_FILTERSTRING "Write Files(*.WRI)|*.wri|Word Files(*.DOC)|*.doc|"
END
The vertical bars in this string are used as wildcards. After using the LoadString function to retrieve the
string, the wildcards are replaced with NULL. The wildcard can be any unique character and must be
included as the last character in the string. Initializing strings in this manner guarantees that the parts of the
string are contiguous in memory and that the string is terminated with two null characters.

Applications that can open files over a network can create a new message identifier for the string defined
by the SHAREVISTRING constant. The application creates the new message identifier by calling the
RegisterWindowMessage function and passing this constant as the single parameter. After calling
RegisterWindowMessage, the application is notified whenever a sharing violation occurs during a call to
the OpenFile function. For more information about processing registered window messages, see Using
Find and Replace Dialog Boxes.

Displaying the Save As Dialog Box in Your Application

The Save As dialog box appears after you initialize the members of an OPENFILENAME structure and
call the GetSaveFileName function.

Following is a Save As dialog box.

Before the call to GetSaveFileName, structure members contain such data as the name of the initial
directory and a filter string. After the call, structure members contain such data as the name of the file to
be saved and the number of characters in that filename.

The following example initializes an OPENFILENAME structure, calls GetSaveFileName function, and
saves the file. The OPENFILENAME structure should be global or declared as a static variable.

OPENFILENAME ofn;
char szDirName[256];
char szFile[256], szFileTitle[256];
UINT i, cbString;
char chReplace; /* string separator for szFilter */

char szFilter[256];
HFILE hf;
/*
* Retrieve the system directory name, and store it in
* szDirName.
*/
GetSystemDirectory(szDirName, sizeof(szDirName));
if ((cbString = LoadString(hinst, IDS_FILTERSTRING,

szFilter, sizeof(szFilter))) == 0) {
ErrorHandler();
return 0;

}
chReplace = szFilter[cbString - 1]; /* retrieve wildcard */
for (i = 0; szFilter[i] != '\0'; i++) {

if (szFilter[i] == chReplace)
szFilter[i] = '\0';

}
/* Set all structure members to zero. */
memset(&ofn, 0, sizeof(OPENFILENAME));
/* Initialize the OPENFILENAME members. */
szFile[0] = '\0';
ofn.lStructSize = sizeof(OPENFILENAME);
ofn.hwndOwner = hwnd;
ofn.lpstrFilter = szFilter;
ofn.lpstrFile= szFile;
ofn.nMaxFile = sizeof(szFile);
ofn.lpstrFileTitle = szFileTitle;
ofn.nMaxFileTitle = sizeof(szFileTitle);
ofn.lpstrInitialDir = szDirName;
ofn.Flags = OFN_SHOWHELP | OFN_OVERWRITEPROMPT;
if (GetSaveFileName(&ofn)) {

.

. /* Perform file operations. */

.
}
else

ErrorHandler();
The string referred to by the IDS_FILTERSTRING constant in the preceding example is defined in the
resource-definition file. It is used in exactly the same way as the IDS_FILTERSTRING constant discussed
in Displaying the Open Dialog Box in Your Application.

Monitoring List Box Controls in an Open or Save As Dialog Box

An application can monitor list box selections in order to process and display data in custom controls.
For example, an application can use a custom control to display the total length, in bytes, of all of the
files selected in the File Name box. One method the application can use to obtain this value is to
recompute the total count of bytes each time the user selects a file or cancels the selection of a file. A
faster method is for the application to use the LBSELCHSTRING message to identify a new selection
and add the corresponding file length to the value that appears in the custom control. (Note that in this
example, the custom control is a standard Windows control that you identify in a resource file template
for one of the common dialog boxes.)

An application registers the selection-change message with the RegisterWindowMessage function. Once
the application registers the message, it uses this function's return value to identify messages from the

dialog box. The message is processed in the application-supplied hook function for the common dialog
box. The wParam parameter of each message identifies the list box in which the selection occurred. The
low-order word of the lParam parameter identifies the list box item. The high-order word of the lParam
parameter is one of the following values:

Value Meaning
CD_LBSELCHANGE Specifies that the item identified by the low-order word of lParam was the

item in a single-selection list box.
CD_LBSELSUB Specifies that the item identified by the low-order word of lParam is no

longer selected in a multiple-selection list box.
CD_LBSELADD Specifies that the item identified by the low-order word of lParam was

selected from a multiple-selection list box.
CD_LBSELNOITEMS Specifies that no items exist in a multiple-selection list box.

For an example that registers a common dialog box message, see Find and Replace Dialogs.

Monitoring Filenames in an Open or Save As Dialog Box

Applications can alter the normal processing of an Open or Save As dialog box by monitoring which
filename the user types and by performing other, unique operations. For example, one application could
prevent the user from closing the dialog box if the selected filename is prohibited; another application
could make it possible for the user to select multiple filenames.

To monitor filenames, an application should register the FILEOKSTRING message. An application
registers this message by calling the RegisterWindowMessage function and passing the message name
as its single parameter. After the message is registered, the dialog box procedure in COMMDLG.DLL
uses it to signal that the user has selected a filename and chosen the OK button and that the dialog box
has checked the filename and is ready to return. The dialog box procedure signals these actions by
sending the message to the application's hook function. After receiving the message, the hook function
should return a value to the dialog box procedure that called it. If the hook function did not process the
message, it should return 0; if the hook function did process the message and the dialog box should
close, the hook function should return 0; if the hook function did process the message but the dialog box
should not close, the hook function should return 1. (All other return values are reserved.)

Print Dialog Box (3.1)

Using Print and Print Setup Dialog Boxes

A Print dialog box contains controls that let a user configure a printer for a particular print job. The user
can make such selections as print quality, page range, and number of copies (if the printer supports
multiple copies).

Following is a Print dialog box.

Choosing the Setup button in the Print dialog box displays the following Print Setup dialog box for a
PostScript printer.

The Print Setup dialog box provides controls that make it possible for the user to reconfigure the selected
printer.

Device Drivers and the Print Dialog Box

The Print dialog box differs from other common dialog boxes in that part of its dialog box procedure
resides in COMMDLG.DLL and part in a printer driver. A printer driver is a program that configures a
printer, converts graphics device interface (GDI) commands to low-level printer commands, and stores
commands for a particular print job in a printer's queue.

A printer driver exports a function called ExtDeviceMode, which displays a dialog box and its controls.
In previous versions of Windows, an application called the LoadLibrary function to load a device driver
and the GetProcAddress function to obtain the address of the ExtDeviceMode function. This is no longer
necessary with the Windows common dialog box interface. Instead of calling LoadLibrary and
GetProcAddress, a Windows application can call a single function, PrintDlg, to display the Print dialog
box and begin a print job. The code for PrintDlg resides in COMMDLG.DLL. The dialog box that
appears when an application calls PrintDlg differs slightly from the dialog box that appears when the
application calls directly into the device driver. The functionality is very similar in spite of the different
appearance.

Displaying a Print Dialog Box for the Default Printer

To display a Print dialog box for the default printer, an application must initialize a PRINTDLG
structure and then call the PrintDlg function.

The members of the PRINTDLG structure can contain information about such items as the following:
The printer device context
Values that should appear in the dialog box controls
The hook function and custom dialog box template to use for a customized version of the Print

dialog box or Print Setup dialog box

An application can display a Print dialog box for the currently installed printer by performing the
following steps:
1 Setting the PD_RETURNDC flag in the Flags member of the PRINTDLG structure. (This flag

should only be set if the application requires a device-context handle.)

2 Initializing the lStructSize, hDevMode, and hDevNames members.
3 Calling the PrintDlg function and passing a pointer to the PRINTDLG structure just initialized.

Setting the PD_RETURNDC flag causes PrintDlg to display the Print dialog box and return a handle
identifying a printer device context in the hDC member of the PRINTDLG structure. (The application
passes the device-context handle as the first parameter to the GDI functions that render output on the
printer.)

The following example initializes the members of the PRINTDLG structure and calls the PrintDlg
function prior to printing output. This structure should be global or declared as a static variable.

PRINTDLG pd;
/* Set all structure members to zero. */

memset(&pd, 0, sizeof(PRINTDLG));
/* Initialize the necessary PRINTDLG structure members. */
pd.lStructSize = sizeof(PRINTDLG);
pd.hwndOwner = hwnd;
pd.Flags = PD_RETURNDC;
/* Print a test page if successful */
if (PrintDlg(&pd) != 0) {

Escape(pd.hDC, STARTDOC, 8, "Test-Doc", NULL);
/* Print text and rectangle */
TextOut(pd.hDC, 50, 50, "Common Dialog Test Page", 23);
Rectangle(pd.hDC, 50, 90, 625, 105);
Escape(pd.hDC, NEWFRAME, 0, NULL, NULL);
Escape(pd.hDC, ENDDOC, 0, NULL, NULL);
DeleteDC(pd.hDC);
if (pd.hDevMode != NULL)

GlobalFree(pd.hDevMode);
if (pd.hDevNames != NULL)

GlobalFree(pd.hDevNames);
}
else {

if (pd.hDevMode != NULL)
GlobalFree(pd.hDevMode);
if (pd.hDevNames != NULL)

GlobalFree(pd.hDevNames);
ErrorHandler();

}

Find and Replace Dialog Boxes (3.1)

Using Find and Replace Dialog Boxes

The Find dialog box and the Replace dialog box are similar in appearance. You can use the Find dialog
box to add string-search capabilities to your application and use the Replace dialog box to add both
string-search and string-substitution capabilities.

Displaying the Find Dialog Box

The Find dialog box contains controls that make it possible for a user to specify the following:
The string that the application should find
Whether the string specifies a complete word or part of a word
Whether the application should match the case of the specified string
The direction in which the application should search (preceding or following the current cursor

location)
Whether the application should resume the search, searching for the next occurrence of the string

Following is a Find dialog box.

To display the Find dialog box, you need to initialize a FINDREPLACE structure and call the FindText
function. Members of the FINDREPLACE structure contain information about such items as the
following:

Which window owns the dialog box
How the application should perform the search
A character buffer that is to receive the string

To initialize the FINDREPLACE structure, you need to perform the following tasks:
1 Set the lStructSize member by using the sizeof operator.

2 Set the hwndOwner member by using the handle that identifies the owner window of the dialog
box.

3 If you are customizing the Find dialog box, set the hInstance member to identify the instance of the
module that contains your custom dialog box template.

4 Set the Flags member to indicate the selection state of the dialog box options. (For example, setting
the FR_NOUPDOWN flag disables the Up and Down buttons, setting the FR_NOWHOLEWORD
flag disables the Match Whole Word Only check box, and setting the FR_NOMATCHCASE flag
disables the Match Case check box).

5 If you are supplying a custom dialog box template or hook function, set additional flags in the Flags
member.

6 Set the lpstrFindWhat member to point to the buffer that will receive the string to be found.
7 Set the wFindWhatLen member to specify the size, in bytes, of the buffer to which lpstrFindWhat

points.

8 Set the lCustData member with any custom data your application may need to access.
9 If your application customizes the Find dialog box, set the lpfnHook member to point to your hook

function.

10 If your application uses a custom dialog box template, set the lpTemplateName member to point to
the string that identifies the template.

The following example initializes the FINDREPLACE structure and then calls the FindText function. This
structure should be global or declared as a static variable.

static FINDREPLACE fr;
/* Set all structure fields to zero. */
memset(&fr, 0, sizeof(FINDREPLACE));
fr.lStructSize = sizeof(FINDREPLACE);
fr.hwndOwner = hwnd;
fr.lpstrFindWhat = szFindWhat;
fr.wFindWhatLen = sizeof(szFindWhat);
hDlg = FindText(&fr);

break;
Displaying the Replace Dialog Box

The Replace dialog box is similar to the Find dialog box. However, the Replace dialog box has no
Direction box and has three additional controls that make it possible for the user to specify the
following:

The replacement string
Whether the application should replace the occurrence of the string that is currently highlighted
Whether the application should replace all occurrences of the string

Following is a Replace dialog box.

To display the Replace dialog box, you need to initialize a FINDREPLACE structure and call the
ReplaceText function.

Processing Dialog Box Messages for a Find or Replace Dialog Box

The Find and Replace dialog boxes differ from the other common dialogs in two respects: First, they are
modeless; and second, their respective dialog box procedures send messages to the application that calls
the FindText or ReplaceText function. These messages contain data specified by the user in the dialog
box controls, such as the direction in which the application should search for a string, whether the
application should match the case of the specified string, and whether the application should match the
entire string.

To process messages from a Find or Replace dialog box, an application must register the dialog box's
unique message, FINDMSGSTRING.

The application registers this message with the RegisterWindowMessage function. Once the application
registers the message, it uses the function's return value to identify messages from the Find or Replace
dialog box. The following example registers the message with the RegisterWindowMessage function:

UINT uFindReplaceMsg;
/* Register the FindReplace message. */
uFindReplaceMsg = RegisterWindowMessage(FINDMSGSTRING);
After the application registers this message, it can process messages for the Find or Replace dialog box by
using the RegisterWindowMessage return value. The following example processes messages for the Find
dialog box and then calls its own SearchFile function to locate the string of text. If the user is closing the
dialog box (that is, if the Flags member of the FINDREPLACE structure is FR_DIALOGTERM), the
handle is invalidated and the procedure returns zero.

LRESULT CALLBACK MainWndProc(HWND hwnd, UINT msg, WPARAM wParam,
LPARAM lParam)

{
static FINDREPLACE FAR* lpfr;
if (msg == uFindReplaceMsg) {
lpfr = (FINDREPLACE FAR*) lParam;
if (lpfr->Flags & FR_DIALOGTERM) {
hDlg = NULL;
return 0;
}
SearchFile((BOOL) (lpfr->Flags & FR_DOWN),
(BOOL) (lpfr->Flags & FR_MATCHCASE));
return 0;
}

Customizing Common Dialog Boxes (3.1)
A custom common dialog box is a common dialog box that has been altered to suit a particular Windows
application. The customization may be complex and include the hiding of original controls, the addition of
new controls, or a change in the size of the original dialog box; or it may be simple, such as the alteration
of a single existing control.

Developers who need to customize a common dialog box must provide a special hook function and, in
most cases, a custom dialog box template. Customizations of this kind require a significant amount of
additional code--displaying a customized common dialog box is not as simple as initializing the members
of a structure and calling a single function.

Applications that subclass controls in any of the common dialog boxes must do so while processing the
WM_INITDIALOG message in the application's hook function. This allows the application to receive the
control-specific messages first, because it will have subclassed the control after the common dialog box
has installed its subclassing procedures. (The previous hook function should be called for all messages that
are not handled by the application's subclass function, as is standard for subclassing.)

An application cannot subclass a control by defining a local class to override a specific control type. The
reason is that the data segment would not be correctly initialized when the class was called--the data
segment would be the common dialog box's data segment, not the application's data segment.

Appropriate and Inappropriate Customizations

From the user's perspective, the chief benefit of the common dialog box is its consistent appearance and
functionality from application to application. Therefore, it becomes important that a developer only
customize a common dialog box when it is absolutely necessary for an application. Otherwise, the
consistent appearance and simple coding interface are lost. Appropriate customizations leave intact as
many of the original controls as possible. Increasing the size of the dialog box or adding new controls in
available space that already appears in the dialog box would be an appropriate customization. Hiding
original controls or otherwise changing the intended functionality of the original controls would be an
inappropriate customization.

Hook Functions and Custom Dialog Box Templates

Each common dialog box uses the dialog box procedure and dialog box template provided for it in
COMMDLG.DLL. The dialog box procedure processes messages and notifications for the common
dialog box and its controls. The dialog box template defines the appearance of the dialog box--its
dimensions, its location, and the dimensions and locations of controls that appear within it.

In addition to the provided dialog box procedure and dialog box template, a custom dialog box requires
a hook function that you provide and, usually, a custom version of the dialog box template.

The Hook Function

The dialog box procedure provided in COMMDLG.DLL for a common dialog box calls the
application's hook function if the application sets the appropriate flag and pointer in the structure for
that common dialog box. The structure for each common dialog box contains a Flags member that
specifies whether the application supplies a hook function and contains an lpfnHook member that points
to the hook function if one exists. If the application sets the Flags member to indicate that a hook
function exists, it must also set the lpfnHook member. The following example sets the Flags and
lpfnHook members of an OPENFILENAME structure to support an application's hook function:

#define STRICT
#include <windows.h> /* required for all Windows applications */
#include <commdlg.h>
#include <string.h>
#include "header.h"/* specific to this program */
OPENFILENAME ofn;

/* Get the system directory name, and store in szDirName. */
GetSystemDirectory((LPSTR)szDirName, 255);
/* Initialize the OPENFILENAME members. */

szFile[0] = '\0';
ofn.lStructSize = sizeof(OPENFILENAME);
ofn.hwndOwner = hwnd;
ofn.hInstance = hInst;
ofn.lpstrFilter = szFilter[0];
ofn.lpstrCustomFilter = NULL;
ofn.nMaxCustFilter = 0L;
ofn.nFilterIndex = 1L;
ofn.lpstrFile= szFile;
ofn.nMaxFile = sizeof(szFile);
ofn.lpstrFileTitle = szFileTitle;
ofn.nMaxFileTitle = sizeof(szFileTitle);
ofn.lpstrInitialDir = szDirName;
ofn.lpstrTitle = NULL;
ofn.Flags = OFN_ENABLEHOOK | OFN_ENABLETEMPLATE;
ofn.nFileOffset = 0;
ofn.nFileExtension = 0;
ofn.lpstrDefExt = NULL;
ofn.lpfnHook = MakeProcInstance((FARPROC) FileOpenHookProc, hInst)

;
ofn.lpTemplateName = "FileOpen";

In the previous example, the MakeProcInstance function is called to create a procedure-instance address
for the hook function. This address is assigned to the lpfnHook member of the OPENFILENAME
structure. If the hook function is part of a dynamic-link library (rather than an application), the procedure
address is obtained by calling the GetProcAddress function (instead of MakeProcInstance).

The hook function processes any messages or notifications that the custom dialog box requires. With the
exception of one message (WM_INITDIALOG), the hook function receives messages and notifications
before the dialog box procedure provided in COMMDLG.DLL receives them. In the case of
WM_INITDIALOG, the hook function receives the message after the dialog box procedure. When the
hook function finishes processing a message, it returns a value that indicates whether the dialog box
procedure provided in COMMDLG.DLL should also process the message. If the dialog box procedure
should process the message, the return value is FALSE; if the dialog box procedure should ignore the
message, the return value is TRUE.

To process the message from the OK button after the dialog box procedure processes it, an application
must post a message to itself when the OK message is received. When the application receives the
message it has posted, the common dialog box procedure will have finished processing messages for the
dialog box. This technique is particularly useful when working with the Find and Replace dialog boxes,
because the Flags member of the FINDREPLACE structure does not reflect changes to the dialog box
until after the messages have been processed by COMMDLG.DLL.

The following example shows a hook function for a custom Open dialog box:

UINT CALLBACK FileOpenHookProc(HWND hdlg, UINT msg, WPARAM wParam,
LPARAM lParam)

{
switch(msg) {
case WM_INITDIALOG:
return TRUE;
case WM_COMMAND:
/* Use IsDlgButtonChecked to set lCustData. */
if (wParam == IDOK) {
/* Set backup flag. */
ofn.lCustData =
(DWORD) IsDlgButtonChecked(hdlg, ID_CUSTCHX);
}
return FALSE; /* Allow standard processing. */
}

/* Allow standard processing. */
return FALSE;

}
This hook function tests a custom check box when the user chooses the OK button. If the check box was
selected, the hook function sets the lCustData member of the OPENFILENAME structure to 1; otherwise,
it sets the lCustData member to 0.

A hook function should never call the EndDialog function. Instead, if a hook function contains code that
abnormally terminates a common dialog box, this code should pass the IDABORT value to the dialog box
procedure by using the PostMessage function as shown in the following example:

PostMessage(hDlg, WM_COMMAND, IDABORT, (LONG) FALSE);
When a hook function posts the IDABORT value, the common dialog box function returns the value
contained in the low word of the lParam parameter. For example, if the hook function for
GetOpenFileName called the PostMessage function with (LONG) 100 as the last parameter,
GetOpenFileName would return 100.

A hook function must be exported in an application's module-definition (.DEF) file as shown in the
following example:

NAME cd
EXETYPE WINDOWS
STUB 'WINSTUB.EXE'
CODE PRELOAD MOVEABLE DISCARDABLE
DATA PRELOAD MOVEABLE MULTIPLE
HEAPSIZE 1024
STACKSIZE 8192
EXPORTS
FILEOPENHOOKPROC @1

Customizing a Dialog Box Template

The dialog box template provided in COMMDLG.DLL for each common dialog box contains the data
that the dialog box procedure uses to display that common dialog box. Most applications that customize
a common dialog box also need to create a custom dialog box template to use instead of the dialog box
template in COMMDLG.DLL. (A custom dialog box template is not required for all custom dialog
boxes. For instance, a template would not be necessary if an application changed a dialog box in a
relatively minor way and only in an unusual situation.)

A developer should create a custom dialog box template by modifying the appropriate dialog box
template in COMMDLG.DLL. Following are the template filenames and the names of their
corresponding common dialog boxes:

Template filename Corresponding dialog box
COLOR.DLG Color
FILEOPEN.DLG Open (single selection)
FILEOPEN.DLG Open (multiple selection)
FINDTEXT.DLG Find
FINDTEXT.DLG Replace
FONT.DLG Font
PRNSETUP.DLG Print
PRNSETUP.DLG Print Setup

The following excerpt is from a custom dialog box template created for an Open dialog box:

CONTROL "&Backup File", ID_CUSTCHX, "button",

BS_AUTOCHECKBOX | WS_CHILD | WS_TABSTOP | WS_GROUP,
208, 86, 50, 12

END
This entry supports the addition of a new Backup File check box immediately below the existing Read
Only check box.

The custom template should be added to the application's resource file. You must use all of the unique
control identifiers (that is, all identifiers whose values are other than -1) in the template, even if the dialog
box does not use those controls. If you do not want to display all of the controls, you can specify
coordinates for them that are outside the dialog box. You should also disable the unwanted buttons and
remove unnecessary tab stops.

Displaying the Custom Dialog Box

After your application creates the hook function and the dialog box template, it should set the members
of the structure for the common dialog box being customized and call the appropriate function to display
the custom dialog box.

The following example calls the GetOpenFileName function and creates a backup file if the user
selected the custom Backup File check box in the custom Open dialog box:

/* Open the file and create a backup. */
if (GetOpenFileName(&ofn)) {

hf = _lopen(ofn.lpstrFile, OF_READWRITE);
/* Create the backup file. */
if (ofn.lCustData) {
/* Process files with extension. */
if (ofn.nFileExtension){

for (i=0; i<(int)ofn.nFileExtension; i++)
szChar[i] = *ofn.lpstrFile++;
}/*endif */
/* Process files without extension. */
else {

i=0;
while (*ofn.lpstrFile!='\0')
szChar[i++] = *ofn.lpstrFile++;
szChar[i]='.';
}/*end else*/
pszNewPAFN = lstrcat(szChar, "BAK");
/* Create the backup file. */
hfBackup = _lcreat(pszNewPAFN, 0);
/* Copy contents of original file to the backup file. */
while ((cBufLngth=_lread(hf, cBuf1, 256)) == 256)
_lwrite(hfBackup, cBuf1, cBufLngth);
_lwrite(hfBackup, cBuf1, cBufLngth);
_lclose(hfBackup);
} /*endif GetOpenFileName*/

/* File operations begin here. */
} /* endif (GetOpenFileName) */
The following is the custom Open dialog box. The new Backup File check box appears in the lower-right
corner.

Supporting and Processing Help for the Common Dialog Boxes

An application can display a Help button in any of the common dialog boxes by setting the appropriate
flag in the Flags member of the structure for that common dialog box. Following are the structures for
the common dialog boxes and the Help flag that corresponds to each structure:

Structure Flag value
OPENFILENAME OFN_SHOWHELP
CHOOSECOLOR CC_SHOWHELP
FINDREPLACE FR_SHOWHELP
CHOOSEFONT CF_SHOWHELP
PRINTDLG PD_SHOWHELP

If an application displays the Help button, it must process the user's request for Help. This can be done
either in one of the application's window procedures or in a hook function.

If the application processes the request for Help in one of the application's window procedures, it must
first create a new message identifier for the string defined by the HELPMSGSTRING constant. The
application creates the new message identifier by calling the RegisterWindowMessage function and
passing this constant as the single parameter. (For more information about processing registered window
messages, see Using Find and Replace Dialog Boxes.) In addition to creating a new message identifier, the
application must set the hwndOwner member of the appropriate structure for the common dialog box so
that this member contains the handle of the dialog box's owner window. After the message identifier is
created and the hwndOwner member is set, the dialog box procedure notifies the window procedure of the
owner window whenever the user chooses the Help button.

The following example processes a user's request for Help in the window procedure of its owner window.
The if statement should be in the default: section of the switch statement that processes messages.

MyHelpMsg = RegisterWindowMessage(HELPMSGSTRING);
.
.
.
if (message == MyHelpMsg)

WinHelp(hWnd, "appfile.hlp", HELP_CONTEXT, ID_MY_CONTEXT);
If the application processes the request for Help in a hook function, it should test for the following
condition in the WM_COMMAND message:

wParam == pshHelp
When this condition is true, the hook function should call the WinHelp function as shown in the preceding
example. (To process Help in a hook function, you must include the header file DLGS.H in the source file
that contains the hook-function code.)

Error Detection

Whenever a common dialog box function fails, an application can call the CommDlgExtendedError
function to find out the cause of the failure. The CommDlgExtendedError function returns an error value
that identifies the cause of the most recent error.

Six constants are defined in the CDERR.H header file that identify the ranges of error values for

categories of errors returned by CommDlgExtendedError. Following are these constants in ascending
order by value range:

Constant Meaning
CDERR_GENERALCODES General error codes for common dialog boxes. These errors

are in the range 0x0000 through 0x0FFF.
PDERR_PRINTERCODES Error codes for the Print common dialog box. These errors are

in the range 0x1000 through 0x1FFF.
CFERR_CHOOSEFONTCODES Error codes for the Font common dialog box. These errors are

in the range 0x2000 through 0x2FFF.
FNERR_FILENAMECODES Error codes for the Open and Save As common dialog boxes.

These errors are in the range 0x3000 through 0x3FFF.
FRERR_FINDREPLACECODES Error codes for the Find and Replace common dialog boxes.

These errors are in the range 0x4000 through 0x4FFF.
CCERR_CHOOSECOLORCODES Error codes for the Color common dialog box. These errors

are in the range 0x5000 through 0x5FFF.

Dynamic Data Exchange Management Library (3.1)
This topic describes how to use the Dynamic Data Exchange Management Library (DDEML). The
DDEML is a dynamic-link library (DLL) that applications running with the Microsoft Windows operating
system can use to share data.

The following topics discuss the concepts of DDE and describe how to use the DDE Management Library
to add DDE functionality to an application:

DDEML Concepts
DDEML Initialization
Callback Function
String Management
Conversation Management
Data Management
Transaction Management
Server-Name Service
Error Detection
DDEML Monitor Applications

Dynamic data exchange (DDE) is a form of interprocess communication that uses shared memory to
exchange data between applications. Applications can use DDE for one-time data transfers and for
ongoing exchanges in which the applications send updates to one another as new data becomes available.

Dynamic data exchange differs from the clipboard data-transfer mechanism that is also part of the
Windows operating system. One difference is that the clipboard is almost always used as a one-time
response to a specific action by the user--such as choosing the Paste command from a menu. Although
DDE may also be initiated by a user, it typically continues without the user's further involvement.

The DDEML provides an application programming interface (API) that simplifies the task of adding DDE
capability to a Windows application. Instead of sending, posting, and processing DDE messages directly,
an application uses the functions provided by the DDEML to manage DDE conversations. (A DDE
conversation is the interaction between client and server applications.) The DDEML also provides a
facility for managing the strings and data that are shared among DDE applications. Instead of using atoms
and pointers to shared memory objects, DDE applications create and exchange string handles, which
identify strings, and data handles, which identify global memory objects. DDEML provides a service that
makes it possible for a server application to register the service names that it supports. The names are
broadcast to other applications in the system, which can then use the names to connect to the server. The
DDEML also ensures compatibility among DDE applications by forcing them to implement the DDE
protocol in a consistent manner.

Existing applications that use the message-based DDE protocol are fully compatible with those that use the
DDEML. That is, an application that uses message-based DDE can establish conversations and perform
transactions with applications that use the DDEML. Because of the many advantages of the DDEML, new
applications should use it rather than the DDE messages.

The DDEML can run on systems that have Microsoft Windows version 3.0 or later installed. The DDEML
does not support real mode. To use the API elements of the DDE management library, you must include
the DDEML.H header file in your source files, link with DDEML.LIB, and ensure that DDEML.DLL
resides in the system's path.

DDEML Concepts

Basic Concepts

The concepts in this section are key to understanding DDE and the DDEML.

Client and Server Interaction

Dynamic data exchange always takes place between a client application and a server application. The
client initiates the exchange by establishing a conversation with the server so that it can send
transactions to the server. (A transaction is a request for data or services.) The server responds to these
transactions by providing data or services to the client. A server can have many clients at the same time,
and a client can request data from multiple servers. Also, an application can be both a client and a
server. A client terminates a conversation when it no longer needs a server's data or services.

For example, a graphics application might contain a bar graph that represents a corporation's quarterly
profits, and the data for the bar graph might be contained in a spreadsheet application. To obtain the
latest profit figures, the graphics application (the client) establishes a conversation with the spreadsheet
application (the server). The graphics application then sends a transaction to the spreadsheet application,
requesting the latest profit figures.

Transactions and the DDE Callback Function

The DDEML notifies an application of DDE activity that affects the application by sending transactions
to the application's DDE callback function. A transaction is similar to a message--it is a named constant
accompanied by other parameters that contain additional information about the transaction.

The DDEML passes a transaction to an application-defined DDE callback function, which carries out
the appropriate action depending on the type of the transaction. For example, when a client application
attempts to establish a conversation with a server application, the client calls the DdeConnect function.
This causes the DDEML to send an XTYP_CONNECT transaction to the server's DDE callback
function. The callback function can allow the conversation by returning TRUE to the DDEML, or it can
deny the conversation by returning FALSE.

For a detailed discussion of transactions, see Transaction Management.

Service Names, Topic Names, and Item Names

A DDE server uses a three-level hierarchy--service name (called "application name" in previous DDE
documentation), topic name, and item name--to uniquely identify a unit of data that the server can
exchange during a conversation. A service name is a string that a server application responds to when a
client attempts to establish a conversation with the server. A client must specify this service name to be
able to establish a conversation with the server. Although a server can respond to many service names,
most servers respond to only one name.

A topic name is a string that identifies a logical data context. For servers that operate on file-based
documents, topic names are typically filenames; for other servers, they are other application-specific
strings. A client must specify a topic name along with a server's service name when it attempts to
establish a conversation with a server.

An item name is a string that identifies a unit of data that a server can pass to a client during a
transaction. For example, an item name might identify an integer, a string, several paragraphs of text, or
a bitmap.

To a client, these names are the keys that make it possible for the client to establish a conversation with
a server and to receive data from the server.

System Topic

The System topic provides a context for information that may be of general interest to any DDE client.
Server applications are encouraged to support the System topic at all times. (The System topic is defined
in the DDEML header file as SZDDESYS_TOPIC.)

To find out which servers are present and the kinds of information they can provide, a client can request
a conversation on the System topic with the service name set to NULL when the client application starts.
Such wildcard conversations should be kept to a minimum, because they are costly in terms of system
performance.

For more information about initiating DDE conversations, see Conversation Management.

A server should support the following item names within the System topic and any other item names
that may be useful to a client:

Item Description
SZDDE_ITEM_ITEMLIST A list of the items that are supported under a non-System topic.

(This list may vary from moment to moment and from topic to
topic.)

SZDDESYS_ITEM_FORMATS A list of clipboard format numbers that the server can render.
This list should be ordered with the most descriptive formats
first. A server may not be able to render all items in all formats
within this list. At a minimum, a server should support the
CF_TEXT clipboard format for item names associated with the
System topic.

SZDDESYS_ITEM_HELP General help information.
SZDDESYS_ITEM_RTNMSG Supporting detail for the most recently used WM_DDE_ACK

message. This is useful when more than 8 bits of application-
specific return data are required.

SZDDESYS_ITEM_STATUS An indication of the current status of the server. Typically, this
item supports only the CF_TEXT format and contains the Ready
or Busy string.

SZDDESYS_ITEM_SYSITEMS A list of the items supported under the System topic by this
server.

SZDDESYS_ITEM_TOPICS A list of the topics supported by the server at the current time.
(This list may vary from moment to moment.)

These item names are string constants defined in the DDEML header files. To obtain string handles for
these strings, an application must use the DDEML string-management functions, just as it would for any
other string in a DDEML application. For more information about managing strings, see String
Management.

DDEML Initialization
The DDEML requires that Windows be running; otherwise, the system cannot load the DDEML dynamic-
link library. Before calling any DDEML function, an application should call the GetWinFlags function,
checking the return value for the WF_PMODE flag. If this flag is returned, the application can call
DDEML functions.

Before calling any other DDEML function, an application must call the DdeInitialize function. The
DdeInitialize function obtains an instance identifier for the application, registers the application's DDE
callback function with the DDEML, and specifies the transaction filter flags for the callback function.

The DDEML uses instance identifiers so that it can support applications that allow multiple DDEML
instances. Each instance of an application must pass its instance identifier as the idInst parameter to any
other DDEML function that requires it. An application that uses multiple DDEML instances should assign
a different DDE callback function to each instance. This makes it possible for the application to identify
each instance within its callback function.

The purpose for multiple DDEML instances is to support DLLs using the DDEML. It is not recommended
that an application have multiple DDE instances.

Transaction filters optimize system performance by preventing the DDEML from passing unwanted
transactions to the application's DDE callback function. An application sets the transaction filters when it
calls the DdeInitialize function. An application should specify a transaction filter flag for each type of
transaction that it does not process in its callback function. An application can change its transaction filters
with a subsequent call to the DdeInitialize function. For a complete list of transaction filter flags, see the
description of the DdeInitialize function in the Microsoft Windows Programmer's Reference, Volume 2.

For more information about transactions, see Transaction Management.

The following example shows how to initialize an application to use the DDEML:

DWORD idInst = 0L; /* instance identifier */
HANDLE hInst; /* instance handle */
FARPROC lpDdeProc; /* procedure instance address */
lpDdeProc = MakeProcInstance((FARPROC) DdeCallback, hInst);
if (DdeInitialize(&idInst, /* receives instance identifier*/

(PFNCALLBACK) lpDdeProc, /* address of callback function*/
CBF_FAIL_EXECUTES | /* filter XTYP_EXECUTE transactions */
CBF_FAIL_POKES, 0L);/* filter XTYP_POKE transactions */
return FALSE;

This example obtains a procedure-instance address for the callback function named DdeCallback and then
passes the address to the DDEML. The CBF_FAIL_EXECUTES and CBF_FAIL_POKES filters prevent
the DDEML from passing XTYP_EXECUTE or XTYP_POKE transactions to the callback function.

An application should call the DdeUninitialize function when it no longer needs to use the DDEML. This
function terminates any conversations currently open for the application and frees the DDEML resources
that the system allocated for the application.

The DDEML may have difficulty terminating a conversation. This occurs when the other partner in a
conversation fails to terminate its end of the conversation. In this case, the system enters a modal loop
while it waits for any conversations to be terminated. A system-defined timeout period is associated with
this loop. If the timeout period expires before the conversations have been terminated, a message box
appears that gives the user the choice of waiting for another timeout period (Retry), waiting indefinitely
(Ignore), or exiting the modal loop (Abort). An application should call DdeUninitialize after it has become
invisible to the user and after its message loop has terminated.

DDEML Callback Function
An application that uses the DDEML must provide a callback function that processes the DDE events that
affect the application. The DDEML notifies an application of such events by sending transactions to the
application's DDE callback function. The transactions that a callback function receives depend on the
callback-filter flags that the application specified in the DdeInitialize function and on whether the
application is a client, a server, or both. The following example shows the general structure of a callback
function for a typical client application:

HDDEDATA CALLBACK DdeCallback(<type>, <fmt>, <hconv>, <hsz1>,
<hsz2>, <hData>, <dwData1>, <dwData2>)

UINT <type>, /* transaction type */
UINT <fmt>, /* clipboard data format */
HCONV <hconv>, /* handle of conversation */
HSZ <hsz1>, /* handle of string */
HSZ <hsz2>, /* handle of string */
HDDEDATA <hData>, /* handle of global memory object */
DWORD <dwData1>, /* transaction-specific data */
DWORD <dwData2>, /* transaction-specific data */
{

switch (type) {
case XTYP_REGISTER:
case XTYP_UNREGISTER:
.
.
.
return (HDDEDATA) NULL;
case XTYP_ADVDATA:
.
.
.
return (HDDEDATA) DDE_FACK;
case XTYP_XACT_COMPLETE:
.
.
.
return (HDDEDATA) NULL;
case XTYP_DISCONNECT:
.
.
.
return (HDDEDATA) NULL;
default:
return (HDDEDATA) NULL;
}

}
The type parameter specifies the transaction type sent to the callback function by the DDEML. The values
of the remaining parameters depend on the transaction type. The transaction types and the events that
generate them are described in the following sections of this topic. For detailed information about each
transaction type, see Transaction Management.

DDEML String Management
Many DDEML functions require access to strings in order to carry out a DDE task. For example, a client
must specify a service name and a topic name when it calls the DdeConnect function to request a
conversation with a server. An application specifies a string by passing a string handle rather than a
pointer in a DDEML function. A string handle is a doubleword value, assigned by the system, that
identifies a string.

An application can obtain a string handle for a particular string by calling the DdeCreateStringHandle
function. This function registers the string with the system and returns a string handle to the application.
The application can pass the handle to DDEML functions that need to access the string. The following
example obtains string handles for the System topic string and the service-name string:

HSZ hszServName;
HSZ hszSysTopic;
hszServName = DdeCreateStringHandle(

idInst, /* instance identifier */
"MyServer",/* string to register */
CP_WINANSI); /* code page */

hszSysTopic = DdeCreateStringHandle(
idInst, /* instance identifier */
SZDDESYS_TOPIC, /* System topic */
CP_WINANSI); /* code page */

The idInst parameter in the preceding example specifies the instance identifier obtained by the
DdeInitialize function.

An application's DDE callback function receives one or more string handles during most DDE
transactions. For example, a server receives two string handles during the XTYP_REQUEST transaction:
One identifies a string specifying a topic name; the other identifies a string specifying an item name. An
application can obtain the length of the string that corresponds to a string handle and copy the string to an
application-defined buffer by calling the DdeQueryString function, as the following example
demonstrates:

DWORD idInst;
DWORD cb;
HSZ hszServ;
PSTR pszServName;
cb = DdeQueryString(idInst, hszServ, (LPSTR) NULL, 0L, CP_WINANSI) + 1;
pszServName = (PSTR) LocalAlloc(LPTR, (WORD) cb);
DdeQueryString(idInst, hszServ, pszServName, cb, CP_WINANSI);
An instance-specific string handle is not mappable from string handle to string to string handle again. For
instance, in the following example, the DdeQueryString function creates a string from a string handle and
then DdeCreateStringHandle creates a string handle from that string, but the two handles are not the same:

DWORD cb;
HSZ hszInst, hszNew;
PSZ pszInst;
DdeQueryString(idInst, hszInst, pszInst, cb, CP_WINANSI);
hszNew = DdeCreateStringHandle(idInst, pszInst, CP_WINANSI);
/* hszNew != hszInst ! */
A string handle that is passed to an application's DDE callback function becomes invalid when the
callback function returns. An application can save a string handle for use after the callback function
returns by using the DdeKeepStringHandle function.

When an application calls DdeCreateStringHandle, the system enters the specified string into a
systemwide string table and generates a handle that it uses to access the string. The system also maintains
a usage count for each string in the string table.

When an application calls the DdeCreateStringHandle function and specifies a string that already exists in
the table, the system increments the usage count rather than adding another occurrence of the string. (An

application can also increment the usage count by using the DdeKeepStringHandle function.) When an
application calls the DdeFreeStringHandle function, the system decrements the usage count.

A string is removed from the table when its usage count equals zero. Because more than one application
can obtain the handle of a particular string, an application should not free a string handle more times than
it has created or kept the handle. Otherwise, the application could cause the string to be removed from the
table, denying other applications access to the string.

The DDEML string-management functions are based on the Windows atom manager and are subject to the
same size restrictions as atoms.

DDEML Server Name Service
The DDEML makes it possible for a server application to register the service names that it supports and to
prevent the DDEML from sending XTYP_CONNECT transactions for unsupported service names to the
server's DDE callback function. The remaining topics in this section describe this service.

Service-Name Registration

By registering its service names with the DDEML, a server informs other DDE applications in the
system that a new server is available. A server registers a service name by calling the DdeNameService
function, specifying a string handle that identifies the name. As a result, the DDEML sends an
XTYP_REGISTER transaction to the callback function of each DDEML application in the system
(except those that specified the CBF_SKIP_REGISTRATIONS filter flag in the DdeInitialize function).
The XTYP_REGISTER transaction passes two string handles to a callback function: The first identifies
the string specifying the base service name; the second identifies the string specifying the instance-
specific service. A client typically uses the base service name in a list of available servers, so that the
user can select a server from the list. The client uses the instance-specific service name to establish a
conversation with a specific instance of a server application if more than one instance is running.

A server can use the DdeNameService function to unregister a service name. This causes the DDEML to
send XTYP_UNREGISTER transactions to the other DDE applications in the system, informing them
that they can no longer use the name to establish conversations.

A server should call the DdeNameService function to register its service names soon after calling the
DdeInitialize function. A server should unregister its service names just before calling the
DdeUninitialize function.

Service-Name Filter

Besides registering service names, the DdeNameService function makes it possible for a server to turn
its service-name filter on or off. When a server turns off its service-name filter, the DDEML sends the
XTYP_CONNECT transaction to the server's DDE callback function whenever any client calls the
DdeConnect function, regardless of the service name specified in the function. When a server turns on
its service-name filter, the DDEML sends the XTYP_CONNECT transaction to the server only when
the DdeConnect function specifies a service name that the server has specified in a call to the
DdeNameService function.

By default, the service-name filter is on when an application calls the DdeInitialize function. This
prevents the DDEML from sending the XTYP_CONNECT transaction to a server before the server has
created the string handles that it needs. A server can turn off its service-name filter by specifying the
DNS_FILTEROFF flag in a call to the DdeNameService function. The DNS_FILTERON flag turns on
the filter.

DDEML Conversation Management
A conversation between a client and a server is always established at the request of the client. When a
conversation is established, each partner receives a handle that identifies the conversation. The partners
use this handle in other DDEML functions to send transactions and manage the conversation.

A client can request a conversation with a single server, or it can request multiple conversations with one
or more servers. The remaining topics in this section describe how an application establishes conversations
and explain how an application can obtain information about conversations that are already established.

Single Conversations

A client application requests a single conversation with a server by calling the DdeConnect function,
specifying string handles that identify the strings specifying the service name of the server and the topic
name of interest. The DDEML responds by sending the XTYP_CONNECT transaction to the DDE
callback function of each server application that either has registered a service name that matches the
one specified in the DdeConnect function or has turned service-name filtering off by calling the
DdeNameService function. A server can also filter the XTYP_CONNECT transactions by specifying the
CBF_FAIL_CONNECTIONS filter flag in the DdeInitialize function. During the XTYP_CONNECT
transaction, the DDEML passes the service name and the topic name to the server. The server should
examine the names and return TRUE if it supports the service/topic name pair or FALSE if it does not.

If no server returns TRUE from the XTYP_CONNECT transaction, the client receives NULL from the
DdeConnect function and no conversation is established. If a server does return TRUE, a conversation is
established and the client receives a conversation handle--a doubleword value that identifies the
conversation. The client uses the handle in subsequent DDEML calls to obtain data from the server. The
server receives the XTYP_CONNECT_CONFIRM transaction (unless the server specified the
CBF_FAIL_CONFIRMS filter flag). This transaction passes the conversation handle to the server.

The following example requests a conversation on the System topic with a server that recognizes the
service name MyServer. The hszServName and hszSysTopic parameters are previously created string
handles.

HCONV hConv;
HWND hwndParent;
HSZ hszServName;
HSZ hszSysTopic;
hConv = DdeConnect(

idInst, /* instance identifier */
hszServName, /* service-name string handle */
hszSysTopic, /* System-topic string handle */
(PCONVCONTEXT) NULL); /* reserved--must be NULL*/

if (hConv == NULL) {
MessageBox(hwndParent, "MyServer is unavailable.",
(LPSTR) NULL, MB_OK);
return FALSE;

}
The DdeConnect function in the preceding example causes the DDE callback function of the MyServer
application to receive an XTYP_CONNECT transaction.

In the following example, the server responds to the XTYP_CONNECT transaction by comparing the
topic-name string handle that the DDEML passed to the server with each element in the array of topic-
name string handles that the server supports. If the server finds a match, it establishes the conversation.

#define CTOPICS 5
HSZ hsz1; /* string handle passed by DDEML */
HSZ ahszTopics[CTOPICS]; /* array of supported topics */
int i; /* loop counter */
.
. /* Use switch statement to examine transaction types. */
.

case XTYP_CONNECT:
for (i = 0; i < CTOPICS; i++) {
if (hsz1 == ahszTopics[i])
return TRUE; /* establish a conversation */
}
return FALSE; /* topic not supported; deny conversation */

.

. /* Process other transaction types. */

.
If the server returns TRUE in response to the XTYP_CONNECT transaction, the DDEML sends an
XTYP_CONNECT_CONFIRM transaction to the server's DDE callback function. The server can obtain
the handle for the conversation by processing this transaction.

A client can establish a wildcard conversation by specifying NULL for the service-name string handle, the
topic-name string handle, or both in a call to the DdeConnect function. When at least one of the string
handles is NULL, the DDEML sends the XTYP_WILDCONNECT transaction to the callback functions of
all DDE applications (except those that filter the XTYP_WILDCONNECT transaction). Each server
application should respond by returning a data handle that identifies a null-terminated array of HSZPAIR
structures. If the server application has not called the DdeNameService function to register its service
names and filtering is on, the server does not receive XTYP_WILDCONNECT transactions. For more
information about data handles, see Data Management.

The array should contain one structure for each service/topic name pair that matches the pair specified by
the client. The DDEML selects one of the pairs to establish a conversation and returns to the client a
handle that identifies the conversation. The DDEML sends the XTYP_CONNECT_CONFIRM transaction
to the server (unless the server filters this transaction). The following example shows a typical server
response to the XTYP_WILDCONNECT transaction:

#define CTOPICS 2
UINT type;
UINT fmt;
HSZPAIR ahp[(CTOPICS + 1)];
HSZ ahszTopicList[CTOPICS];
HSZ hszServ, hszTopic;
WORD i, j;
if (type == XTYP_WILDCONNECT) {
/*
* Scan the topic list, and create array of HSZPAIR
* structures.
*/

j = 0;
for (i = 0; i < CTOPICS; i++) {
if (hszTopic == (HSZ) NULL ||

hszTopic == ahszTopicList[i]) {
ahp[j].hszSvc = hszServ;
ahp[j++].hszTopic = ahszTopicList[i];
}
}
/*

* End the list with an HSZPAIR structure that contains NULL
* string handles as its members.
*/

ahp[j].hszSvc = NULL;
ahp[j++].hszTopic = NULL;
/*

* Return a handle to a global memory object containing the

* HSZPAIR structures.
*/

return DdeCreateDataHandle(
idInst,/* instance identifier*/
&ahp, /* points to HSZPAIR array */
sizeof(HSZ) * j, /* length of the array*/
0,/* start at the beginning */
NULL, /* no item-name string*/
fmt, /* return the same format */
0); /* let the system own it */

}
Either the client or the server can terminate a conversation at any time by calling the DdeDisconnect
function. This causes the callback function of the partner in the conversation to receive the
XTYP_DISCONNECT transaction (unless the partner specified the CBF_SKIP_DISCONNECTS filter
flag). Typically, an application responds to the XTYP_DISCONNECT transaction by using the
DdeQueryConvInfo function to obtain information about the conversation that terminated. After the
callback function returns from processing the XTYP_DISCONNECT transaction, the conversation handle
is no longer valid.

A client application that receives an XTYP_DISCONNECT transaction in its DDE callback function can
attempt to reestablish the conversation by calling the DdeReconnect function. The client must call
DdeReconnect from within its DDE callback function.

Multiple Conversations

A client application can use the DdeConnectList function to determine whether any servers of interest
are available in the system. A client specifies a service name and topic name when it calls the
DdeConnectList function, causing the DDEML to broadcast the XTYP_WILDCONNECT transaction to
the DDE callback functions of all servers that match the service name (except those that filter the
transaction). A server's callback function should return a data handle that identifies a null-terminated
array of HSZPAIR structures. The array should contain one structure for each service/topic name pair
that matches the pair specified by the client. The DDEML establishes a conversation for each HSZPAIR
structure filled by the server and returns a conversation-list handle to the client. The server receives the
conversation handle by way of the XTYP_CONNECT_CONFIRM transaction (unless the server filters
this transaction).

A client can specify NULL for the service name, topic name, or both when it calls the DdeConnectList
function. If the service name is NULL, all servers in the system that support the specified topic name
respond. A conversation is established with each responding server, including multiple instances of the
same server. If the topic name is NULL, a conversation is established on each topic recognized by each
server that matches the service name.

A client can use the DdeQueryNextServer and DdeQueryConvInfo functions to identify the servers that
respond to the DdeConnectList function. The DdeQueryNextServer function returns the next
conversation handle in a conversation list; the DdeQueryConvInfo function fills a CONVINFO structure
with information about the conversation. The client can keep the conversation handles that it needs and
discard the rest from the conversation list.

The following example uses the DdeConnectList function to establish conversations with all servers that
support the System topic and then uses the DdeQueryNextServer and DdeQueryConvInfo functions to
obtain the servers' service-name string handles and store them in a buffer:

HCONVLIST hconvList; /* conversation list */
DWORD idInst; /* instance identifier*/
HSZ hszSystem; /* System topic */
HCONV hconv = NULL; /* conversation handle*/
CONVINFO ci; /* holds conversation data */
UINT cConv = 0; /* count of conv. handles */
HSZ *pHsz, *aHsz; /* point to string handles */
/* Connect to all servers that support the System topic. */
hconvList = DdeConnectList(idInst, NULL, hszSystem, NULL, NULL);
/* Count the number of handles in the conversation list. */

while ((hconv = DdeQueryNextServer(hconvList, hconv)) != NULL) cConv++
;
/* Allocate a buffer for the string handles. */
hconv = NULL;
aHsz = (HSZ *) LocalAlloc(LMEM_FIXED, cConv * sizeof(HSZ));
/* Copy the string handles to the buffer. */
pHsz = aHsz;
while ((hconv = DdeQueryNextServer(hconvList, hconv)) != NULL) {

DdeQueryConvInfo(hconv, QID_SYNC, (PCONVINFO) &ci);
DdeKeepStringHandle(idInst, ci.hszSvcPartner);
*pHsz++ = ci.hszSvcPartner;

}
.
. /* Use the handles; converse with servers. */
.
/* Free the memory, and terminate conversations. */
LocalFree((HANDLE) aHsz);
DdeDisconnectList(hconvList);
An application can terminate an individual conversation in a conversation list by calling the
DdeDisconnect function. An application can terminate all conversations in a conversation list by calling
the DdeDisconnectList function. Both functions cause the DDEML to send XTYP_DISCONNECT
transactions to each partner's DDE callback function. The DdeDisconnectList function sends a
XTYP_DISCONNECT transaction for each conversation handle in the list.

A client can use the DdeConnectList function to enumerate the conversation handles in a conversation list
by passing an existing conversation-list handle to the DdeConnectList function. The enumeration process
removes the handles of terminated conversations from the list.

If the DdeConnectList function specifies an existing conversation-list handle and a service name or topic
name that is different from those used to create the existing conversation list, the function creates a new
conversation list that contains the handles of any new conversations and the handles from the existing list.

The DdeConnectList function attempts to prevent duplicate conversations in a conversation list. A
duplicate conversation is a second conversation with the same server on the same service name and topic
name. Two such conversations would have different handles, yet they would be duplicate conversations.

DDEML Data Management
Because DDE uses global memory to pass data from one application to another, the DDEML provides a
set of functions that DDE applications can use to create and manage global memory objects.

All transactions that involve the exchange of data require the application supplying the data to create a
local buffer containing the data and then to call the DdeCreateDataHandle function. This function allocates
a global memory object, copies the data from the buffer to the memory object, and returns a data handle of
the application. A data handle is a doubleword value that the DDEML uses to provide access to data in the
global memory object. To share the data in a global memory object, an application passes the data handle
to the DDEML, and the DDEML passes the handle to the DDE callback function of the application that is
receiving the data transaction.

The following example shows how to create a global memory object and obtain a handle of the object.
During the XTYP_ADVREQ transaction, the callback function converts the current time to an ASCII
string, copies the string to a local buffer, then creates a global memory object that contains the string. The
callback function returns the handle of the global memory object to the DDEML, which passes the handle
to the client application.

typedef struct { /* tm */
int hour;
int minute;
int second;

} TIME;
TIME tmTime;
HSZ hszTime;
HSZ hszNow;
HDDEDATA EXPENTRY DdeProc(wType, wFmt, hConv, hsz1, hsz2,

hData, dwData1, dwData2)
WORD wType;
WORD wFmt;
HCONV hConv;
HSZ hsz1;
HSZ hsz2;
HDDEDATA hData;
DWORD dwData1;
DWORD dwData2;
{

char szBuf[32];
switch (wType) {
case XTYP_ADVREQ:
if ((hsz1 == hszTime && hsz2 == hszNow)

&& (wFmt == CF_TEXT)) {
/* Copy formatted time string to buffer. */
itoa(tmTime.hour, szBuf, 10);
strcat(szBuf, ":");
if (tmTime.minute < 10)
strcat(szBuf, "0");
itoa(tmTime.minute, &szBuf[strlen(szBuf)], 10);
strcat(szBuf, ":");
if (tmTime.second < 10)
strcat(szBuf, "0");
itoa(tmTime.second, &szBuf[strlen(szBuf)], 10);
szBuf[strlen(szBuf)] = '\0';
/* Create global object, and return data handle. */
return (DdeCreateDataHandle(
idInst, /* instance identifier */
(LPBYTE) szBuf, /* source buffer */

strlen(szBuf) + 1, /* size of global object */
0L, /* offset from beginning */
hszNow, /* item-name string */
CF_TEXT, /* clipboard format */
0));/* no creation flags*/
} else
return (HDDEDATA) NULL;
.
. /* Process other transaction types. */
.
}

}
The receiving application obtains a pointer to the global memory object by passing the data handle to the
DdeAccessData function. The pointer returned by DdeAccessData provides read-only access. The
application should use the pointer to review the data and then call the DdeUnaccessData function to
invalidate the pointer. The application can copy the data to a local buffer by using the DdeGetData
function.

The following example obtains a pointer to the global memory object identified by the hData parameter,
copies the contents to a local buffer, and then invalidates the pointer:

HDDEDATA hData;
LPBYTE lpszAdviseData;
DWORD cbDataLen;
DWORD i;
char szData[32];
case XTYP_ADVDATA:

lpszAdviseData = DdeAccessData(hData, &cbDataLen);
for (i = 0; i < cbDataLen; i++)
szData[i] = *lpszAdviseData++;
DdeUnaccessData(hData);
return (HDDEDATA) TRUE;

Usually, when an application that created a data handle passes that handle to the DDEML, the handle
becomes invalid in the creating application. This is fine if the application needs to share data with just a
single application. If an application needs to share the same data with multiple applications, however, the
creating application should specify the HDATA_APPOWNED flag in DdeCreateDataHandle. Doing so
gives ownership of the memory object to the creating application and prevents the DDEML from
invalidating the data handle. When the creating application finishes using a memory object it owns, it
should free the object by calling the DdeFreeDataHandle function.

If an application has not yet passed the handle of a global memory object to the DDEML, the application
can add data to the object or overwrite data in the object by using the DdeAddData function. Typically, an
application uses DdeAddData to fill an uninitialized global memory object. After an application passes a
data handle to the DDEML, the global memory object identified by the handle cannot be changed; it can
only be freed.

The DDEML data-management functions can handle huge memory objects. A DDEML application should
check the size of a global memory object and allocate a huge buffer of the appropriate size before copying
the object.

DDEML Transaction Management
After a client has established a conversation with a server, the client can send transactions to obtain data
and services from the server. The remaining topics in this section describe the types of transactions that
clients can use to interact with a server.

Request Transaction

A client application can use the XTYP_REQUEST transaction to request a data item from a server
application. The client calls the DdeClientTransaction function, specifying XTYP_REQUEST as the
transaction type and specifying the data item the application needs.

The DDEML passes the XTYP_REQUEST transaction to the server, specifying the topic name, item
name, and data format requested by the client. If the server supports the requested topic, item, and data
format, the server should return a data handle that identifies the current value of the item. The DDEML
passes this handle to the client as the return value from the DdeClientTransaction function. The server
should return NULL if it does not support the topic, item, or format requested.

The DdeClientTransaction function uses the lpdwResult parameter to return a transaction status flag to
the client. If the server does not process the XTYP_REQUEST transaction, DdeClientTransaction
returns NULL, and lpdwResult points to the DDE_FNOTPROCESSED or DDE_FBUSY flag. If the
DDE_FNOTPROCESSED flag is returned, the client has no way to determine why the server did not
process the transaction.

If a server does not support the XTYP_REQUEST transaction, it should specify the
CBF_FAIL_REQUESTS filter flag in the DdeInitialize function. This prevents the DDEML from
sending this transaction to the server.

Poke Transaction

A client can send unsolicited data to a server by using the DdeClientTransaction function to send an
XTYP_POKE transaction to a server's callback function.

The client application first creates a buffer that contains the data to send to the server and then passes a
pointer to the buffer as a parameter to the DdeClientTransaction function. Alternatively, the client can
use the DdeCreateDataHandle function to obtain a data handle that identifies the data and then pass the
handle to DdeClientTransaction. In either case, the client also specifies the topic name, item name, and
data format when it calls DdeClientTransaction.

The DDEML passes the XTYP_POKE transaction to the server, specifying the topic name, item name,
and data format that the client requested. To accept the data item and format, the server should return
DDE_FACK. To reject the data, the server should return DDE_FNOTPROCESSED. If the server is too
busy to accept the data, the server should return DDE_FBUSY.

When the DdeClientTransaction function returns, the client can use the lpdwResult parameter to access
the transaction status flag. If the flag is DDE_FBUSY, the client should send the transaction again later.

If a server does not support the XTYP_POKE transaction, it should specify the CBF_FAIL_POKES
filter flag in the DdeInitialize function. This prevents the DDEML from sending this transaction to the
server.

Advise Transaction

A client application can use the DDEML to establish one or more links to items in a server application.
When such a link is established, the server sends periodic updates about the linked item to the client
(typically, whenever the value of the item associated with the server application changes). This
establishes an advise loop between the two applications that remains in place until the client ends it.

There are two kinds of advise loops: "hot" and "warm." In a hot advise loop, the server immediately
sends a data handle that identifies the changed value. In a warm advise loop, the server notifies the client
that the value of the item has changed but does not send the data handle until the client requests it.

A client can request a hot advise loop with a server by specifying the XTYP_ADVSTART transaction
type in a call to the DdeClientTransaction function. To request a warm advise loop, the client must
combine the XTYPF_NODATA flag with the XTYP_ADVSTART transaction type. In either event, the
DDEML passes the XTYP_ADVSTART transaction to the server's DDE callback function. The
server's DDE callback function should examine the parameters that accompany the
XTYP_ADVSTART transaction (including the requested format, topic name, and item name) and then
return TRUE to allow the advise loop or FALSE to deny it.

After an advise loop is established, the server application should call the DdePostAdvise function
whenever the value of the item associated with the requested item name changes. This results in an

XTYP_ADVREQ transaction being sent to the server's own DDE callback function. The server's DDE
callback function should return a data handle that identifies the new value of the data item. The DDEML
then notifies the client that the specified item has changed by sending the XTYP_ADVDATA
transaction to the client's DDE callback function.

If the client requested a hot advise loop, the DDEML passes the data handle for the changed item to the
client during the XTYP_ADVDATA transaction. Otherwise, the client can send an XTYP_REQUEST
transaction to obtain the data handle.

It is possible for a server to send updates faster than a client can process the new data. This can be a
problem for a client that must perform long processing operations on the data. In this case, the client
should specify the XTYPF_ACKREQ flag when it requests an advise loop. This causes the server to
wait for the client to acknowledge that it has received and processed a data item before the server sends
the next data item. Advise loops that are established with the XTYPF_ACKREQ flag are more robust
with fast servers but may occasionally miss updates. Advise loops established without the
XTYPF_ACKREQ flag are guaranteed not to miss updates as long as the client keeps up with the server.

A client can end an advise loop by specifying the XTYP_ADVSTOP transaction type in a call to the
DdeClientTransaction function.

If a server does not support advise loops, it should specify the CBF_FAIL_ADVISES filter flag in the
DdeInitialize function. This prevents the DDEML from sending the XTYP_ADVSTART and
XTYP_ADVSTOP transactions to the server.

Execute Transaction

A client can use the XTYP_EXECUTE transaction to cause a server to execute a command or series of
commands.

To execute a server command, the client first creates a buffer that contains a command string for the
server to execute and then passes either a pointer to the buffer or a data handle identifying the buffer
when it calls the DdeClientTransaction function. Other required parameters include the conversation
handle, the item-name string handle, the format specification, and the XTYP_EXECUTE transaction
type. When an application creates a data handle for passing execute data, the application must specify
NULL for the hszItem parameter of the DdeCreateDataHandle function.

The DDEML passes the XTYP_EXECUTE transaction to the server's DDE callback function specifying
the format name, conversation handle, topic name, and data handle identifying the command string. If
the server supports the command, it should use the DdeAccessData function to obtain a pointer to the
command string, execute the command, and then return DDE_FACK. If the server does not support the
command or cannot complete the transaction, it should return DDE_FNOTPROCESSED. The server
should return DDE_FBUSY if it is too busy to complete the transaction.

When the DdeClientTransaction function returns, the client can use the lpdwResult parameter to access
the transaction status flag. If the flag is DDE_FBUSY, the client should send the transaction again later.

If a server does not support the XTYP_EXECUTE transaction, it should specify the
CBF_FAIL_EXECUTES filter flag in the DdeInitialize function. Doing so prevents the DDEML from
sending this transaction to the server.

Synchronous and Asynchronous Transactions

A client can send either synchronous or asynchronous transactions. In a synchronous transaction, the
client specifies a timeout value that indicates the maximum amount of time to wait for the server to
process the transaction. The DdeClientTransaction function does not return until the server processes the
transaction, the transaction fails, or the timeout value expires. The client specifies the timeout value
when it calls DdeClientTransaction.

During a synchronous transaction, the client enters a modal loop while waiting for the transaction to be
processed. The client can still process user input but cannot send another synchronous transaction until
the DdeClientTransaction function returns.

A client sends an asynchronous transaction by specifying the TIMEOUT_ASYNC flag in the
DdeClientTransaction function. The function returns after the transaction is begun, passing a transaction
identifier to the client. When the server finishes processing the asynchronous transaction, the DDEML
sends an XTYP_XACT_COMPLETE transaction to the client. One of the parameters that the DDEML
passes to the client during the XTYP_XACT_COMPLETE transaction is the transaction identifier. By
comparing this transaction identifier with the identifier returned by the DdeClientTransaction function,
the client identifies which asynchronous transaction the server has finished processing.

A client can use the DdeSetUserHandle function as an aid to processing an asynchronous transaction.
This function makes it possible for a client to associate an application-defined doubleword value with a

conversation handle and transaction identifier. The client can use the DdeQueryConvInfo function
during the XTYP_XACT_COMPLETE transaction to obtain the application-defined doubleword value.
This saves an application from having to maintain a list of active transaction identifiers.

If a server does not process an asynchronous transaction in a timely manner, the client can abandon the
transaction by calling the DdeAbandonTransaction function. The DDEML releases all resources
associated with the transaction and discards the results of the transaction when the server finishes
processing it.

The asynchronous transaction method is provided for applications that must send a high volume of DDE
transactions while simultaneously performing a substantial amount of processing, such as calculations.
The asynchronous method is also useful in applications that need to stop processing DDE transactions
temporarily so they can complete other tasks without interruption. In most other situations, an
application should use the synchronous method.

Synchronous transactions are simpler to maintain and faster than asynchronous transactions. However,
only one synchronous transaction can be performed at a time, whereas many asynchronous transactions
can be performed simultaneously. With synchronous transactions, a slow server can cause a client to
remain idle while waiting for a response. Also, synchronous transactions cause the client to enter a
modal loop that could bypass message filtering in the application's own message loop.

Transaction Control

An application can suspend transactions to its DDE callback function--either those transactions
associated with a specific conversation handle or all transactions regardless of the conversation handle.
This is useful when an application receives a transaction that requires lengthy processing. In this case, an
application can return CBR_BLOCK to suspend future transactions associated with that transaction's
conversation handle, leaving the application free to process other conversations.

When processing is complete, the application calls the DdeEnableCallback function to resume
transactions associated with the suspended conversation. Calling DdeEnableCallback causes the
DDEML to resend the transaction that resulted in the application suspending the conversation.
Therefore, the application should store the result of the transaction in such a way that it can obtain and
return the result without reprocessing the transaction.

An application can suspend all transactions associated with a specific conversation handle by specifying
the handle and the EC_DISABLE flag in a call to the DdeEnableCallback function. By specifying a
NULL handle, an application can suspend all transactions for all conversations.

When a conversation is suspended, the DDEML saves transactions for the conversation in a transaction
queue. When the application reenables the conversation, the DDEML removes the saved transactions
from the queue, passing each transaction to the appropriate callback function. Even though the capacity
of the transaction queue is large, an application should reenable a suspended conversation as soon as
possible to avoid losing transactions.

An application can resume usual transaction processing by specifying the EC_ENABLEALL flag in the
DdeEnableCallback function. For a more controlled resumption of transaction processing, the
application can specify the EC_ENABLEONE flag. This removes one transaction from the transaction
queue and passes it to the appropriate callback function; after the single transaction is processed, any
conversations are again disabled.

Transaction Classes

The DDEML has four classes of transactions. Each class is identified by a constant that begins with the
XCLASS_ prefix. The classes are defined in the DDEML header file. The class constant is combined
with the transaction-type constant and is passed to the DDE callback function of the receiving
application.

A transaction's class determines the return value that a callback function is expected to return if it
processes the transaction. The following table shows the return values and transaction types associated
with each of the four transaction classes:

Class Return value Transaction
XCLASS_BOOL TRUE or FALSE XTYP_ADVSTART

XTYP_CONNECT
XCLASS_DATA A data handle, CBR_BLOCK, or

NULL
XTYP_ADVREQ XTYP_REQUEST
XTYP_WILDCONNECT

XCLASS_FLAGS A transaction flag: DDE_FACK,
DDE_FBUSY, or
DDE_FNOTPROCESSED

XTYP_ADVDATA
XTYP_EXECUTE XTYP_POKE

XCLASS_NOTIFICATION None XTYP_ADVSTOP
XTYP_CONNECT_CONFIRM
XTYP_DISCONNECT
XTYP_ERROR XTYP_REGISTER
XTYP_UNREGISTER
XTYP_XACT_COMPLETE

Transaction Summary

The following list shows each DDE transaction type, the receiver of each type, and a description of the
activity that causes the DDEML to generate each type:

Transaction type Receiver Cause
XTYP_ADVDATA Client A server responded to an

XTYP_ADVREQ transaction
by returning a data handle.

XTYP_ADVREQ Server A server called the
DdePostAdvise function,
indicating that the value of a
data item in an advise loop had
changed.

XTYP_ADVSTART Server A client specified the
XTYP_ADVSTART
transaction type in a call to the
DdeClientTransaction function.

XTYP_ADVSTOP Server A client specified the
XTYP_ADVSTOP transaction
type in a call to the
DdeClientTransaction function.

XTYP_CONNECT Server A client called the DdeConnect
function, specifying a service
name and topic name supported
by the server.

XTYP_CONNECT_CONFIRM Server The server returned TRUE in
response to an
XTYP_CONNECT or
XTYP_WILDCONNECT
transaction.

XTYP_DISCONNECT Client/Server A partner in a conversation
called the DdeDisconnect
function, causing both partners
to receive this transaction.

XTYP_ERROR Client/Server A critical error has occurred.
The DDEML may not have
sufficient resources to continue.

XTYP_EXECUTE Server A client specified the
XTYP_EXECUTE transaction
type in a call to the
DdeClientTransaction function.

XTYP_MONITOR DDE monitoring application A DDE event occurred in the
system.

XTYP_POKE Server A client specified the
XTYP_POKE transaction type
in a call to the
DdeClientTransaction function.

XTYP_REGISTER Client/Server A server application used the
DdeNameService function to
register a service name.

XTYP_REQUEST Server A client specified the
XTYP_REQUEST transaction
type in a call to the
DdeClientTransaction function.

XTYP_UNREGISTER Client/Server A server application used the
DdeNameService function to
unregister a service name.

XTYP_WILDCONNECT Server A client called the DdeConnect
or DdeConnectList function,
specifying NULL for the
service name, the topic name,
or both.

XTYP_XACT_COMPLETE Client An asynchronous transaction,
sent when the client specified
the TIMEOUT_ASYNC flag in
a call to the
DdeClientTransaction function,
has concluded.

DDEML Error Detection
Whenever a DDEML function fails, an application can call the DdeGetLastError function to determine the
cause of the failure. The DdeGetLastError function returns an error value that specifies the cause of the
most recent error.

Monitoring Applications
Microsoft Windows DDESpy (DDESPY.EXE) monitors DDE activity in the system. You can use
DDESpy as a tool for debugging your DDE applications.

You can use the API elements of the DDEML to create your own DDE monitoring applications. Like any
DDEML application, a DDE monitoring application contains a DDE callback function. The DDEML
notifies a monitoring application's DDE callback function whenever a DDE event occurs, passing
information about the event to the callback function. The application typically displays the information in
a window or writes it to a file.

To receive notifications from the DDEML, an application must have registered itself as a DDE monitor by
specifying the APPCLASS_MONITOR flag in a call to the DdeInitialize function. In this same call, the
application can specify one or more monitor flags to indicate the types of events of which the DDEML is
to notify the application's callback function. The following table describes each of the monitor flags an
application can specify:

Flag Meaning
MF_CALLBACKS Notifies the callback function whenever a transaction is sent to any DDE callback

function in the system.
MF_CONV Notifies the callback function whenever a conversation is established or

terminated.
MF_ERRORS Notifies the callback function whenever a DDEML error occurs.
MF_HSZ_INFO Notifies the callback function whenever a DDEML application creates, frees, or

increments the use count of a string handle or whenever a string handle is freed
as a result of a call to the DdeUninitialize function.

MF_LINKS Notifies the callback function whenever an advise loop is started or ended.
MF_POSTMSGS Notifies the callback function whenever the system or an application posts a

DDE message.
MF_SENDMSGS Notifies the callback function whenever the system or an application sends a

DDE message.

The following example shows how to register a DDE monitoring application so that its DDE callback
function receives notifications of all DDE events:

DWORD idInst;
PFNCALLBACK lpDdeProc;
hInst = hInstance;
lpDdeProc = (PFNCALLBACK) MakeProcInstance(

(FARPROC) DDECallback, /* points to callback function */
hInstance); /* instance handle */

if (DdeInitialize(
(LPDWORD) &idInst, /* instance identifier */
lpDdeProc,/* points to callback function */
APPCLASS_MONITOR | /* this is a monitoring application */
MF_CALLBACKS| /* monitor callback functions */
MF_CONV| /* monitor conversation data */
MF_ERRORS | /* monitor DDEML errors */
MF_HSZ_INFO | /* monitor data-handle activity*/
MF_LINKS | /* monitor advise loops */
MF_POSTMSGS | /* monitor posted DDE messages */
MF_SENDMSGS, /* monitor sent DDE messages */
0L)) /* reserved*/
return FALSE;

The DDEML informs a monitoring application of a DDE event by sending an XTYP_MONITOR
transaction to the application's DDE callback function. During this transaction, the DDEML passes a
monitor flag that specifies the type of DDE event that has occurred and a handle of a global memory
object that contains detailed information about the event. The DDEML provides a set of structures that the
application can use to extract the information from the memory object. There is a corresponding structure
for each type of DDE event. The following table describes each of these structures:

Structure Description

MONCBSTRUCT Contains information about a transaction.
MONCONVSTRUCT Contains information about a conversation.
MONERRSTRUCT Contains information about the latest DDE error.
MONLINKSTRUCT Contains information about an advise loop.
MONHSZSTRUCT Contains information about a string handle.
MONMSGSTRUCT Contains information about a DDE message that was sent or posted.

The following example shows the DDE callback function of a DDE monitoring application that formats
information about each string handle event and then displays the information in a window. The function
uses the MONHSZSTRUCT structure to extract the information from the global memory object.

HDDEDATA CALLBACK DDECallback(wType, wFmt, hConv, hsz1, hsz2,
hData, dwData1, dwData2)

WORD wType;
WORD wFmt;
HCONV hConv;
HSZ hsz1;
HSZ hsz2;
HDDEDATA hData;
DWORD dwData1;
DWORD dwData2;
{

LPVOID lpData;
char *szAction;
char buf[256];
DWORD cb;
switch (wType) {
case XTYP_MONITOR:
/* Obtain a pointer of the global memory object. */
if (lpData = DdeAccessData(hData, &cb)) {
/* Examine the monitor flag. */
switch (dwData2) {
case MF_HSZ_INFO:
#define PHSZS ((MONHSZSTRUCT FAR *)lpData)

/*
* The global memory object contains
* string-handle data. Use the MONHSZSTRUCT
* structure to access the data.
*/

switch (PHSZS->fsAction) {
/*
* Examine the action flags to determine
* the action performed on the handle.
*/
case MH_CREATE:
szAction = "Created";
break;
case MH_KEEP:
szAction = "Incremented";
break;
case MH_DELETE:

szAction = "Deleted";
break;
case MH_CLEANUP:
szAction = "Cleaned up";
break;
default:
DdeUnaccessData(hData);
return ((HDDEDATA) 0);
}
/* Write formatted output to a buffer. */
wsprintf(buf,
"Handle %s, Task: %x, Hsz: %lx(%s)",
(LPSTR) szAction, PHSZS->hTask, PHSZS->hsz,
(LPSTR) PHSZS->str);
.
. /* Display text in window or write to file. */
.
break;

#undef PHSZS
.
. /* Process other MF_* flags. */
.
default:

break;
}
}
/* Free the global memory object. */
DdeUnaccessData(hData);
break;
default:
break;
}
return ((HDDEDATA) 0);

}

Object Linking and Embedding Overview (3.1)
This topic describes the implementation of object linking and embedding (OLE) for applications that run
with the Microsoft Windows operating system. The topic also describes how an application can use linked
and embedded objects to create compound documents. The following topics discuss the behavior and
implementation of object linking and embedding:

Compound Documents
Data Transfer in OLE
Client Applications
Server Applications
Object Handlers
Direct Use of Dynamic Data Exchange

This topic does not go into detail about the recommended user interface for applications that use linked
and embedded objects.

Compound Documents
Compound Documents

An application that uses OLE can cooperate with other OLE applications to produce a document
containing different kinds of data, all of which can be easily manipulated by the user. The user editing
such a document is able to improve the document by using the best features of many different applications.
An application that implements OLE gives its users the ability to move away from an application-centered
view of computing and toward a document-centered view. In application-centered computing, the tool
used to complete a task is often a single application; whereas, in document-centered computing, a user can
combine the advantages of many tools to complete a job.

A document that uses linked and embedded objects can contain many kinds of data in many different
formats; such a document is called a compound document. A compound document uses the facilities of
different OLE applications to manipulate the different kinds of data it displays. Any kind of data format
can be incorporated into a compound document; with little or no extra code, OLE applications can even
support data formats that have not yet been invented. The user working with a compound document does
not need to know which data formats are compatible with one another or how to find and start any
applications that created the data. Whenever a user chooses to work with part of a compound document,
the application responsible for that part of the document starts automatically.

For example, a compound document could be a brochure that included text, charts, ranges of cells in a
spreadsheet, and illustrations. The information could be embedded in the document, or the document could
contain links to certain information instead of containing the information itself. The user working with the
brochure could automatically switch between the applications that produced its components.

The following illustration shows the relationships between a compound document and its linked and
embedded objects.

Linked and Embedded Objects

An object is any data that can be presented in a compound document and manipulated by a user.
Anything from a single cell in a spreadsheet to an entire document can be an object. When an object is
incorporated into a document, it maintains an association with the application that produced it. That
association can be a link, or the object can be embedded in the file.

If the object is linked, the document provides only minimal storage for the data to which the object is
linked, and the object can be updated automatically whenever the data in the original application
changes. For example, if a range of spreadsheet cells were linked to information in a text file, the data
would be stored in some other file and only a link to the data would be saved with the text file.

If an object is embedded, all the data associated with it is saved as part of the file in which it is
embedded. If a range of spreadsheet cells were embedded in a text file, the data in the cells would be
saved with the text file, including any necessary formulas; the name of the server for the spreadsheet
cells would be saved along with this data. The user could select this embedded object while working
with the text file, and the spreadsheet application would be started automatically for editing those cells.
The presentation and the behavior of the data is the same for a linked and an embedded object.

Packages

A package is a type of OLE object that encapsulates another object, a file, or a command line inside a
graphic representation (such as an icon or bitmap). When the user double-clicks the graphic object, the
OLE libraries activate the object inside the package. The package itself is always an embedded object,
not a link. The contents of a package can be an embedded object, a link, or even a file dropped from
Windows File Manager.

Packages are useful for presenting compact token views of large files or OLE objects. An application
could also use a package as it would use a hyperlink--that is, to connect information in different
documents.

Windows version 3.1 includes the application Microsoft Windows Object Packager (PACKAGER.
EXE). With Packager, a user can associate a file or data selection with an icon or graphic.

Verbs

The types of actions a user can perform on an object are called verbs. Two typical verbs for an object are
Play and Edit.

The nature of an object determines its behavior when a user works with it. The most typical use for some
objects, such as voice annotations and animated scripts, is to play them. For example, a user could play
an animated script by double-clicking it. In this case, Play is the primary verb for the object.

For other objects, the most typical use is to edit them. In the case of text produced by a word processor,
for example, the primary verb could be Edit.

The client application typically specifies the primary verb when the user double-clicks an object.
However, the server application determines the meaning of that verb. A user can invoke an object's
subsidiary verbs by using the Class Name Object command or the Links dialog box. For more
information about these topics, see Client User Interface.

The action taken when a user double-clicks a package is that of the primary verb of the object inside the
package. The secondary verb for a packaged object is Edit Package; when the user chooses this verb,
Packager starts. The user can use Packager to gain access to the secondary verb for the object inside the
package.

Many objects support only one verb--for example, an object created by a text editor might support only
Edit. If an object supports only one verb, that verb is used no matter what the client application
specifies.

For more information about verbs, see Registration.

Benefits of Object Linking and Embedding

OLE offers the following benefits:
An application can specialize in performing one job very well. For example, a drawing application

that implements OLE does not need any text-editing tools; a user could put text into the drawing and edit
that text by using any text editor that supports OLE.

An application is automatically extensible for future data formats, because the content of an object
does not matter to the containing document.

A user can concentrate on the task instead of on any software required to complete the task.
A file can be more compact, because linking to objects allows a file to use an object without

having to store that object's data.
A document can be printed or transmitted without using the application that originally produced

the document.
Linked objects in a file can be updated dynamically.

Future implementations of this protocol could take advantage of a wide variety of object types. For
example, the user of a voice-recorder application could dictate a comment, package the comment as an
object with a visual representation, and embed the graphic as an object in a text file. When a user double-
clicked the graphic for this object (a pair of lips, perhaps), the voice-recorder application would play the
recorded comment. Linked and embedded objects also lend themselves to implementations such as
animated drawings, executable macro scripts, hypertext, and annotations.

Choosing Between OLE and the DDEML

Applications can exchange data by using either OLE or the DDEML. Unless an application has a strong
requirement for managing multiple items in a single conversation with another application, the
application should use OLE instead of the DDEML.

Both OLE and the DDEML are message-based systems supported by dynamic-link libraries. Developers
are encouraged to use these libraries rather than using the underlying message-based protocols. For more
information about the message-based OLE protocol, see Direct Use of Dynamic Data Exchange.

Unlike OLE, the DDEML supports multiple items per conversation. With OLE, a client needing links to
several objects in a document must establish a separate conversation for each object.

OLE offers the following advantages that the DDEML does not:

Advantage Description
Extensibility to future enhancements The OLE libraries may be updated in future releases

to support new data formats, link tracking, editing
without exiting the client application, and other
enhancements that will not be immediately available
to applications that use the DDEML.

Persistent embedding and linking of objects The OLE libraries do most of the work of activating
objects when an embedded document is reopened,

by reestablishing the conversation between a client
and server. In contrast, establishing a DDE link
(DDE advise loop) is the responsibility of either the
user (if the link is not persistent) or of the
application (if the link is persistent).

Rendering of common data formats The OLE libraries assume the burden of rendering
common data formats on a display context. DDE
applications, however, must do this work
themselves.

Server rendering of specialized data formats The OLE libraries facilitate the rendering of
specialized data formats in the client's display
context. (The server application or object handler
actually performs the rendering.) The client
application has to do very little work to render the
embedded or linked data in its display context. Such
rendering of embedded or linked data is beyond the
scope of the DDEML alone.

Activating embedded and linked objects The OLE libraries support activating a server to edit
a linked or embedded object or to render data.
Activating servers for data rendering and editing is
beyond the scope of the DDEML.

Creating objects and links from the clipboard The OLE libraries do most of the work when an
application is using the clipboard to copy and paste
links or exchange objects. In contrast, DDE
applications must call the Windows clipboard
functions directly to perform such operations.

Creating objects and links from files The OLE libraries provide direct support for using
files to exchange data. No DDE protocol is defined
for this purpose.

The OLE libraries use DDE messages instead of the DDEML, because the libraries were written before the
DDEML was available.

Using OLE for Standard DDE Operations

Although most of the OLE application programming interface (API) was designed for linked and
embedded objects, it can also be applied to standard DDE items. In particular, an application can use the
OLE API to perform the following DDE tasks:

Initializing conversations based on application and topic names or wildcards.
Requesting data for named items in negotiated formats from a server.
Establishing an advise loop--that is, requesting that a DDE server notify the client of changes to the

values of specified items and, optionally, that the server send the data when the change occurs.
Sending data from a server to a client.
Poking data from a client to a server.
Sending a DDE command. (This is supported by the OleExecute function.)

An OLE client application receives a pointer to an OLEOBJECT structure; this structure includes class
name, document name, and item name information. These names correspond exactly to DDE counterparts,
as follows:

OLE name DDE name
Class name Service name (formerly called "application name")
Document name Topic name
Item name Item name

The client can use the OleCreateFromFile function to make an object and specify all three names. If the
client application needs multiple items from the same topic, it must have an OLEOBJECT structure for
each item, which causes a DDE conversation to be created for each item.

The client library maps OLE functions that work on the OLEOBJECT structure to DDE messages as
follows:

OLE function DDE message
OleExecute WM_DDE_EXECUTE
OleRequestData WM_DDE_REQUEST
OleSetData WM_DDE_POKE

Some functions (such as OleActivate) are too complicated for this one-to-one mapping of function to DDE
message. For these functions, the DDE message depends on the circumstance.

If a client application needs to duplicate the functionality of WM_DDE_ADVISE with OLE, the client
must create the link with olerender_format for the renderopt parameter, specify the required format, and
use the OleGetData function to retrieve the value when the callback function receives the
OLE_CHANGED notification. If more than one item or format is required, the client must create an
OLEOBJECT structure for each item/format pair. Although this method creates a conversation for each
advise transaction, it may be inefficient if the client needs to create many such conversations.

A server application can make itself accessible to DDE by calling the OleRegisterServer function to make
the System topic available and the OleRegisterServerDoc function to make other topics available. When a
client connects and asks for an item, the server library calls the GetObject function in the server's
OLESERVERDOCVTBL structure, followed by other server-implemented functions that are appropriate
to the client's request. (Usually, the library calls the GetData function in the server's OLEOBJECTVTBL
structure.) As long as the object allocated by the call to GetObject has not been released, the server should
send a notification when the item has changed, so that the OLE libraries can send data to clients that have
sent WM_DDE_ADVISE.

Using Both OLE and the DDEML

Some applications may need features supported only by OLE and may also need to use the DDEML to
support simultaneous links for many items that are updated frequently. Client applications of this kind
can use the OLE libraries to initiate conversations with OLE servers and the DDEML to initiate
conversations with DDE servers.

Server applications that need to support both OLE and the DDEML must use different service names
(DDE application names) for OLE and DDE conversations; otherwise, the OLE and DDEML libraries
cannot determine which library should respond when an initiation request is received. Typically, the
application changes the service name for the OLE conversation in this case, because other applications
and the user must use the service name for the DDE conversation, but the OLE service name is hidden.

Data Transfer
Data Transfer in OLE

This section gives a brief overview of how applications share information under OLE. Details of the
implementation are given in later sections of this topic.

Applications use three dynamic-link libraries (DLLs), OLECLI.DLL, OLESVR.DLL, and SHELL.DLL,
to implement object linking and embedding. Object linking and embedding is supported by OLECLI.DLL
and OLESVR.DLL. The registration database is supported by SHELL.DLL.

Client Applications

An OLE client application can accept, display, and store OLE objects. The objects themselves can
contain any kind of data. A client application typically identifies an object by using a distinctive border
or other visual cue, as described in Microsoft Windows User Interface Guidelines.

Server Applications

An OLE server is any application that can edit an object when the OLE libraries inform it that the user
of a client application has selected the object. (Some servers can perform operations on an object other
than editing.) When the user double-clicks an object in a client application, the server associated with
that object starts and the user works with the object inside the server application. When the server starts,
its window is typically sized so that only the object is visible. If the user double-clicks a linked object,
the entire linked file is loaded and the linked portion of the file is selected. For embedded objects, the
user chooses the Update command from the File menu to save changes to the object and chooses Exit
when finished.

Many applications are capable of acting as both clients and servers for linked and embedded objects.

Object Handlers

Some OLE server applications implement an additional kind of OLE library called an object handler.
Object handlers are dynamic-link libraries that act as intermediaries between client and server
applications. Typically, an object handler is supplied by the developers of a server application as a way
of improving performance. For example, an object handler could be used to redraw a changed object if
the presentation data for that object could not be rendered by the client library.

Communication Between OLE Libraries

Client applications use functions from the OLE API to inform the client library, OLECLI.DLL, that a
user wants to perform an operation on an object. The client library uses DDE messages to communicate
with the server library, OLESVR.DLL. The server library is responsible for starting and stopping the
server application, directing the interaction with the server's callback functions, and maintaining
communication with the client library.

When a server application modifies an embedded object, the server notifies the server library of
changes. The server library then notifies the client library, and the client library calls back to the client
application, informing it that the changes have occurred. Typically, the client application then forces a
repaint of the embedded object in the document file. If the server changes a linked object, the server
library notifies the client library that the object has changed and should be redrawn.

Clipboard Conventions

When first embedding or linking an object, OLE client and server applications typically exchange data
by using the clipboard. When a server application puts an object on the clipboard, it represents the object
with data formats, such as Native data, OwnerLink data, ObjectLink data, and a presentation format. The
order in which these formats are put on the clipboard is very important, because the order determines the
type of object. For example, if the first format is Native and the second is OwnerLink, client applications
can use the data to create an embedded object. If the first format is OwnerLink, however, the data
describes a linked object.

Native data completely defines an object for a particular server. The data can be meaningful only to the
server application. The client application provides storage for Native data, in the case of embedded
objects.

OwnerLink data identifies the owner of a linked or embedded object.

Presentation formats allow the client library to display the object in a document. CF_METAFILEPICT,
CF_DIB, and CF_BITMAP are typical presentation formats. Native data can be used as a presentation
format, typically when an object handler has been defined for that class of data. Native data cannot be

used twice in the definition of an object, however; if the server puts Native and OwnerLink data on the
clipboard to describe an embedded object, it cannot use Native data as a presentation format for that
object. The ability of object handlers to use Native data as the presentation data accounts for the
significance of the order of the formats: the order is the only way to distinguish between an embedded
object and a link that uses Native data for its presentation.

ObjectLink data identifies a linked object's class and document and the item that is the source for the
linked object. (If the item name specified in the ObjectLink format is NULL, the link refers to the entire
server document.)

The following table describes the contents of the ObjectLink, OwnerLink, and Native clipboard formats:

Format name Contents
ObjectLink Null-terminated string for class name, null-terminated string for document name,

string for item name with two terminating null characters.
OwnerLink Null-terminated string for class name, null-terminated string for document name,

string for item name with two terminating null characters.
Native Stream of bytes interpreted only by the server application or object-handler library.

This format can be unique to the server application and must allow the server to load
and work with the object.

Although the ObjectLink and OwnerLink formats contain the same information, the OLE libraries use
them differently. The libraries use OwnerLink format to identify the owner of an object (which can be
different from the source of the object) and ObjectLink format to identify the source of the data for an
object.

The class name in the ObjectLink or OwnerLink format is a unique name for a class of objects that a
server supports. Server applications register the class name or names they support in the registration
database. (For example, the class name used by Windows Paintbrush ä is PBrush.) An application can use
the class name to look up information about a server in the registration database. (For more information
about registration, see Registration.) The document name is typically a fully qualified path that identifies
the file containing a document. The item name uniquely identifies the part of a document that is defined as
an object. Item names are assigned by server applications; an item name can be any string that the server
uses to identify part of a document. Items names cannot contain the forward-slash (/) character.

Data in OwnerLink or ObjectLink format could look like the following example:

Microsoft Excel Worksheet\0c:\directry\docname.xls\0R1C1:R5C3\0\0
The order in which various data formats are put on the clipboard depends on the type of data being copied
to the clipboard and the capabilities of the server application. The following table shows the order of
clipboard data formats for four different types of data selections. An object does not necessarily use all of
the formats listed for it.

Source selection Clipboard contents, in order
Embedded object Native& OwnerLink& Picture or other presentation format (optional)&

ObjectLink (included only if the server also supports links)
Linked object OwnerLink& Picture or other presentation format (optional; for linked objects,

this can be Native data)& ObjectLink
Pictorial data Application-specific formats& Native& OwnerLink& Picture& ObjectLink
Structured data Structured data formats (if selection is structured data only)& Native&

OwnerLink& Picture, text, and so on& ObjectLink

Before copying data for an embedded or linked object to the clipboard, a server puts descriptions of the
data formats on the clipboard. These data formats are listed in order of their level of description, from
most descriptive to least. (For example, Microsoft Word would put rich-text format (RTF) onto the
clipboard first, then the CF_TEXT clipboard format.)

When a user chooses the Paste command, the client application queries the formats on the clipboard and
uses the first format that is compatible with the destination for the object. Because server applications put
data onto the clipboard in order of their fidelity of description, the first acceptable format found by a client
application is the best format for it to use. If the client application finds an acceptable format prior to the
Native format, it incorporates the data into the target document without making it an embedded object.
(For example, a Microsoft Word document would not make an embedded object from clipboard data that
was in RTF format. Similarly, structured data or a structured document would be embedded into a drawing
application but would be converted into the destination document's native data type if the destination were
a worksheet or structured document.) If the client application cannot accept any of the data formats prior
to Native and OwnerLink, it uses the Native and OwnerLink formats to make an embedded object and

then finds an appropriate presentation format. The destination application may require different formats
depending on where the selection is to be placed in the destination document; for example, pasting into a
picture frame and pasting into a stream of text could require different formats.

When a user chooses the Paste Link command from the Edit menu, the client application looks for the
ObjectLink format on the clipboard and ignores the Native and OwnerLink formats. The ObjectLink
format identifies the source class, document, and object. If the application finds the ObjectLink format and
a useful presentation format, it uses them to make an OLE link to the source document for the object. If
the ObjectLink format is not available, the client application may look for the Link format and create a
DDE link. This type of link does not support the OLE protocol.

When an application that does not support OLE copies from an OLE item on the clipboard, it ignores the
Native, OwnerLink and ObjectLink formats; the behavior of the copying application does not change.

Registration

The registration database supports linked and embedded objects by providing a systemwide source of
information about whether server applications support the OLE protocol, the names of the executable
files for these applications, the verbs for classes of objects, and whether an object-handler library exists
for a given class of object. For more information about this database, see The Windows Shell Overview.

When a server application is installed, it registers itself as an OLE server with the registration database.
(This database is supported by the dynamic-link library SHELL.DLL.) To register itself as an OLE
server, a server application records in the database that it supports one or more OLE protocols. The only
protocols supported by version 1.x of the Microsoft OLE libraries are StdFileEditing and StdExecute.
StdFileEditing is the current protocol for linked and embedded objects. StdExecute is used only by
applications that support the OleExecute function. (A third name, Static, describes a picture than cannot
be edited by using standard OLE techniques.)

When a client activates a linked or embedded object, the client library finds the command line for the
server in the database, appends the /Embedding or /Embedding filename command-line option, and uses
the new command line to start the server. Starting the server with either of these options differs from the
user starting it directly. Either a slash (/) or a hyphen (-) can precede the word Embedding. For details
about how a server reacts when it is started with these options, see Opening and Closing Objects.

The entries in the registration database are used whenever an application or library needs information
about an OLE server. For example, client applications that support the Insert Object command refer to
the database in order to list the OLE server applications that could provide a new object. The client
application also uses the registration database to retrieve the name of the server application for the Paste
Special dialog box.

Registration Database

Applications typically add key and value pairs to the registration database by using Microsoft Windows
Registration Editor (REGEDIT.EXE). Applications could also use the registration functions to add this
information to the database.

The registration database stores keys and values as null-terminated strings. Keys are hierarchically
structured, with the names of the components of the keys separated by backslash characters (\) . The
class name and server path should be registered for every class the server supports. (This class name
must be the same string as the server uses when it calls the OleRegisterServer function.) If a class has an
object-handler library, it should be registered using the handler keyword. An application should also
register all the verbs its class or classes support. (An application's verbs must be sequential; for
example, if an object supports three verbs, the primary verb is 0 and the other verbs must be 1 and 2.)

To be available for OLE transactions, a server should register the key and value pairs shown in the
following example when it is installed. This example shows the form of key and value pairs as they
would be added to a database with Registration Editor. Although the text string sometimes wraps to the
next line in this example, the lines should not include newline characters when they are added to the
database.

HKEY_CLASSES_ROOT\class name = readable version of class name
HKEY_CLASSES_ROOT\.ext = class name
HKEY_CLASSES_ROOT\class name\protocol\StdFileEditing\server =

executable file name
HKEY_CLASSES_ROOT\class name\protocol\StdFileEditing\handler =

dll name
HKEY_CLASSES_ROOT\class name\protocol\StdFileEditing\verb\0 =

primary verb
HKEY_CLASSES_ROOT\class name\protocol\StdFileEditing\verb\1 =

secondary verb

Servers that support the OleExecute function also add the following line to the database:

HKEY_CLASSES_ROOT\class name\protocol\StdExecute\server =
executable file name

An ampersand (&) can be used in the verb specification to indicate that the following character is an
accelerator key. For example, if a verb is specified as &Edit, the E key is an accelerator key.

A server can register the entire path for its executable file, rather than registering only the filename and
arguments. Registering only the filename fails if the application is installed in a directory that is not
mentioned in the PATH environment variable. Usually, registering the path and filename is less
ambiguous than registering only the filename.

Servers can register data formats that they accept on calls to the OleSetData function or that they can
return when a client calls the OleRequestData function. Clients can use this information to initialize newly
created objects (for example, from data selected in the client) or when using the server as an engine (for
example, when sending data to a chart and getting a new picture back). Client applications should not
depend on the requested data format, because the calls can be rejected by the server.

In the following example, format is the string name of the format as passed to the
RegisterClipboardFormat function or is one of the system-defined clipboard formats (for example,
CF_METAFILEPICT):

HKEY_CLASSES_ROOT\class name\protocol\StdFileEditing
\SetDataFormats = format[,format]

HKEY_CLASSES_ROOT\class name\protocol\StdFileEditing
\RequestDataFormats = format[,format]

For compatibility with earlier applications, the system registration service also reads and writes
registration information in the [embedding] section of the WIN.INI initialization file.

In the following example, the keyword picture indicates that the server can produce metafiles for use when
rendering objects:

[embedding]
classname=comment,textual class name,path/arguments,picture

Version Control for Servers

Server applications should store version numbers in their Native data formats. New versions of servers
that are intended to replace old versions should be capable of dealing with data in Native format that was
created by older versions. It is sometimes important to give the user the option of saving the data in the
old format, to support an environment with a mixture of new and old versions, or to permit data to be
read by other applications that can interpret only the old format.

There can be only one application at a time (on one workstation) registered as a server for a given class
name. The class name (which is stored with the Native data for objects) and the server application are
associated in the registration database when the server application registers during installation.

If a new version of a server application allows the user to keep the old version available, a new class
name should be allocated for the new server. A good way to do this is to append a version number to the
class name. This allows the user to easily differentiate between the two versions when necessary. (The
OLE libraries do not check these numbers.)

When the new version of the server is installed, the user should be given the option of either mapping
the old objects to the new server (registering the new server as the server for both class names) or
keeping them separate. When the user keeps them separate, the user will be aware of two kinds of object
(for example, Graph1 and Graph2).

The user should be able to discard the old server version at a later time by remapping the registration
database, typically with the help of the server setup program. To remap the database, the old and new
objects are given the same value for readable version of class name (although their class names remain
distinct). The OLE client library removes duplicate names when it produces the list in the Insert Object
dialog box. When a client application produces a list by enumerating the registration database, the
application must do this filtering itself.

Client User Interface

When a user opens a document that contains a linked or embedded object, the client application uses the
OLE functions to communicate with OLECLI.DLL. This library assists the client application with such

tasks as loading and drawing objects, updating objects (when necessary), and interacting with server
applications.

New and Changed Commands

An OLE client application typically implements the following new or changed commands as part of its
Edit menu. (Although this user interface is not mandatory, it is recommended for consistency with
existing OLE applications.)

Command Description
Copy Copies an object from a document to the clipboard.
Cut Removes an object from a document and places it on the clipboard.
Paste Copies an object from the clipboard to a document.
Paste Link Inserts a link between a document and the file that contains an object.
Class Name Object Makes it possible for the user to activate the verbs for a linked or embedded

object. The actual text used instead of the Class Name placeholder depends
upon the selected object.

Links Makes it possible for the user to change link updating options, update linked
objects, cancel links, repair broken links, and activate the verbs associated with
linked objects.

Insert Object Starts the server application chosen by the user from a dialog box and embeds in
a document the object produced by the server. This command is optional.

Paste Special Transfers an object from the clipboard to a document or inserts a link to the
object, using the data format chosen by the user from a dialog box. This
command is optional.

In addition to the listed menu changes, client applications must also implement changes to their Copy and
Cut commands. When a linked or embedded object is selected in the client application, the application can
use the OleCopyToClipboard function to implement the Cut and Copy commands.

When the user chooses the Paste command, a client application should insert the contents of the clipboard
at the current position in a document. If the clipboard contains an object, choosing this command typically
embeds the object in the document.

When the user chooses the Paste Link command, the client library typically inserts a linked object at the
current position in a document. The object is displayed in the document, but the Native data that defines
that object is stored elsewhere.

If a user copies a linked object to the clipboard, other documents can use this object to produce a link to
the original data.

The Class Name Object command allows the user to choose one of an object's verbs. If the selection in the
document is an embedded object, the Class Name placeholder is typically replaced by the class and name
of the object; for example, if a user selects an object that is a range of spreadsheet cells for Microsoft
Excel, the text of the command might be "Microsoft Excel Worksheet Object." If an object supports only
one verb, the name of the verb should precede the class name in the menu item; for example, if the only
verb for a text object is Edit, the text of the command might be "Edit WPDocument Object." When an
object supports more than one verb, choosing the Class Name Object command brings up a cascading
menu listing each of the verbs.

For more information about verbs, see Verbs.

Choosing the Links command brings up a Links dialog box, which lists the selected links and their source
documents and gives the user the opportunity to change how the links are updated, cancel the link, change
the link, or activate the verbs for the link. A user can use this dialog box to repair links to objects that have
been moved or renamed.

When the user chooses the Paste Special command, a client application should bring up a dialog box
listing the data formats the client supports that are presently on the clipboard. The Paste Special dialog box
makes if possible for the user to override the default behaviors of the Paste and Paste Link commands. For
example, if the first format on the clipboard can be edited by the client application, the default behavior is
for the client to copy the data into the document without making it into an object. The user could override
this default behavior and create an object from such data by using the Paste Special command.

When the user chooses the Insert Object command, a client application should allow the user to insert an
object of a specified class at the current position in a document. For example, to insert a range of
spreadsheet cells in a text document, a user could choose the Insert Object command and select "Microsoft
Excel Worksheet" from the dialog box. Selecting this item would start Microsoft Excel. The user would

use Microsoft Excel to create the object to be embedded in the text document. When finished, the user
would quit Microsoft Excel; the range of spreadsheet cells would automatically be embedded in the text
document.

The Insert Object command is optional because a user could achieve the same results without it, although
the procedure is less convenient. To use the same example as that shown in the preceding paragraph, the
user could leave the client application, start Microsoft Excel, and use the Microsoft Excel Cut or Copy
command to transfer data to the clipboard. After returning to the client application, the user could choose
the Paste command to move the data from the clipboard into the text document.

If the user chooses the Undo command after activating an object, all of the changes made since the object
was last updated (or since the object was activated, if it has not been updated) are discarded and the object
returns to its state prior to the update. The Undo command closes the connection to the server.

For more information about these commands, including illustrations of the dialog boxes, see Microsoft
Windows User Interface Guidelines.

Using Packages

A package is an embedded graphical object that contains another object, which can be linked or
embedded. For example, a user can package a file in an icon and embed the icon in an OLE document.
Most of the packaging capabilities are provided by the dynamic-link library SHELL.DLL.

A user can put a package into an OLE document in a number of different ways:
Copy a file from File Manager to the clipboard, and then choose the Paste or Paste Link command

from the Edit menu in the client application.
Drag a file from File Manager and drop it in the open window for a document in a client

application.
Select Package from the list of objects in the Insert Object dialog box. This starts Object Packager,

with which the user can associate a file or data selection with an icon or graphic. Choosing Update and then
Exit from Object Packager's File menu puts the package in the client document.

Run Packager directly, following the steps outlined in the previous list item.

For information about how a client application should react when a user drops a file from File Manager in
the client's window, see the description of the OleCreateFromFile function.

A user whose system does not include the Windows version 3.1 File Manager can follow these steps to
create a package by using Object Packager:

Copy to the clipboard the data to be packaged.
Open Object Packager and paste the data into it. (At this point, the user could modify the default

icon, the default label identifying the icon, or both.)
Choose Copy Package from the Object Packager Edit menu to copy the package to the clipboard.
Choose the Paste command from the Edit menu in the client application to embed the package.

For more information about Object Packager, see Packages, or Microsoft Windows User Interface
Guidelines.

Server User Interface

A server for linked and embedded objects is any application that can be used to edit an object when the
OLE libraries inform it that the user of a client application has activated the object. (Some servers can
use verbs other than Edit to work with an object.) Although client applications implement many changes
to the user interface to support OLE, the user interface does not change significantly for server
applications.

OLE servers typically implement changes to the following commands in the Edit menu. (Although this
user interface is not mandatory, it is recommended for consistency with existing OLE applications.)

Command Description
Cut Transfers data from the application to the clipboard, deleting the data from the source

document. A client application can use this data to create an embedded object.
Copy Transfers a copy of the data from the application to the clipboard. A client application

can use this data to create an embedded object and may be able to establish a link to the
source document.

Some menu items change names or behave differently when a server is started as part of activating an
object from within a compound document. The exact behavior of the server depends on whether the server
supports the multiple document interface (MDI).

Updating Objects from Multiple-Instance Servers

When an embedded object is edited or played by a multiple-instance server--that is, a server that does
not support the multiple document interface (MDI), the Save command on the File menu should change
to Update. (This change does not occur when a server starts for a linked object.) When the user chooses
the Update command, the object in the client is updated but the focus remains with the server window.
To close the server window, the user chooses the Exit command.

When the user chooses the Save As, New, or Open command, the application should display a warning
message asking the user whether to update the object in the compound document before performing the
action. The New and Open commands break the link between the client and server applications. The
Save As command also breaks the link between the client and server if the server was editing an
embedded object.

Updating Objects from Single-Instance Servers

The same rules for updating objects from multiple-instance servers apply to single-instance (MDI)
servers, with the following differences:

When the focus in an MDI server changes from a window in which an embedded object was
activated to a window in which a document that does not contain an embedded object is being edited, the
Update command should change back to Save.

When the user chooses the New or Open command, the window containing the embedded object
remains open. (This eliminates the need to prompt the user to update the object.)

Object Storage Formats

The presentation data in linked or embedded objects can be thought of as a presentation object. A
presentation objects can be standard, generic, or NULL. A standard presentation object is used when the
format is metafile, bitmap, or device-independent bitmap (DIB). The client library supports the
presentation objects, including drawing them. Neither client applications nor object handlers can use the
presentation objects; they are solely for the use of the client library.

The following list gives the storage format for strings in OLE. The items appear in the order listed.

Type Description
LONG Length of string, including terminating null character.
Variable Null-terminated stream of bytes.

The following list gives the storage format for the standard presentation object used for linked and
embedded objects. The items appear in the order listed.

Type Description
LONG OLE version number.
LONG Format identifier. This value is 5.
Variable Class string. For standard presentation objects, this string is METAFILEPICT, BITMAP, or

DIB.
LONG Width of object, in MM_HIMETRIC units.
LONG Height of object, in MM_HIMETRIC units.
LONG Size of presentation data, in bytes.
Variable Presentation data.

The following list gives the storage format for the generic presentation object used for linked and
embedded objects. Generic objects are used when the clipboard format is other than metafile, bitmap, or
DIB. The items appear in the order listed.

Type Description
LONG OLE version number.
LONG Format identifier. This value is 5.
Variable Class string.
LONG Clipboard format value. If this value exists, the next item in storage is the size of the

presentation data.
LONG Clipboard format name. This value exists only if the clipboard format value is NULL.
LONG Size of presentation data, in bytes.
Variable Presentation data.

The following list gives the storage format for embedded objects. The items appear in the order listed.

Type Description
LONG OLE version number.

LONG Format identifier. This value is 2.
Variable Class string.
Variable Topic string.
Variable Item string.
LONG Size of Native data, in bytes.
Variable Native data.
Variable Presentation object (standard, generic, or NULL).

The following list gives the storage format for linked objects. The items appear in the order listed.

Type Description
LONG OLE version number.
LONG Format identifier. This value is 1.
Variable Class string.
Variable Topic string.
Variable Item string.
Variable Network name string.
short Network type.
short Network driver version number.
LONG Link update options.
Variable Presentation object (standard, generic, or NULL).

The following list gives the storage format for static objects. The only difference between the format for
static objects and the format for standard presentation objects is the value of the format identifier. The
items appear in the order listed.

Type Description
LONG OLE version number.
LONG Format identifier. This value is 3.
Variable Class string. For static objects, this string is METAFILEPICT, BITMAP, or DIB.
LONG Width of object, in MM_HIMETRIC units.
LONG Height of object, in MM_HIMETRIC units.
LONG Size of presentation data, in bytes.
Variable Presentation data.

Client Applications
Client Applications

A client application uses a server application to activate and render an object contained by a compound
document. A client application provides storage for embedded objects, such contextual information as the
target printer and page position, and a means for the user to activate the object and the server application
associated with that object. Client applications also provide ways of putting embedded and linked objects
into a document and taking them out again.

Client applications must provide permanent storage for objects in the compound document's file. When an
item being saved is an embedded object, the client library stores the object's Native data, the presentation
data for the object (for example, a metafile), and the OwnerLink information. When the item being saved
is a link to another document, the client library stores the presentation data and the ObjectLink format.

Client applications accommodate asynchronous operations by defining a callback function to which the
library sends notifications about current operations. As long as the client continues to dispatch messages, it
can react to the notifications being sent to the callback function and to input from the user. For more
information about asynchronous operations, see Asynchronous Operations.

Starting a Client Application

When a client application starts, it should follow these steps:
1 Register the clipboard formats that it requires.

2 Allocate and initialize as many OLECLIENT structures as required.
3 Allocate and initialize an OLESTREAM structure.

A client application can register the clipboard formats by calling the RegisterClipboardFormat function for
each format, specifying such formats as Native, OwnerLink, ObjectLink, and any other formats it requires.

A client application uses two structures to receive information from the client library: OLECLIENT and
OLESTREAM.

The OLECLIENT structure points to an OLECLIENTVTBL structure, which in turn points to a callback
function supplied by the client application. The OLE libraries use this callback function to notify the client
of any changes to an object. The parameters for the callback function are a pointer to the client structure, a
pointer to the relevant object, and a value giving the reason for the notification. Typically, an application
creates one OLECLIENT structure for each OLEOBJECT structure. Having a separate OLECLIENT
structure for each object allows an application to take object-specific action in response to the
OLE_QUERY_PAINT callback notification.

The OLECLIENT structure can also point to data that describes the state of an object. This data, when
present, is supplied and used only by the client application. The client application allocates a separate
OLECLIENT structure for each object and stores state information about that object in the structure.
Because one argument to the callback function is a pointer to the OLECLIENT structure, this is an
efficient method of retrieving the object's state information when the callback function is called.

The OLESTREAM structure points to an OLESTREAMVTBL structure, which is a table of pointers to
client-supplied functions for stream input and output. The client libraries use these functions when loading
and saving objects. A client can customize functions for particular situations, and a client can make such
changes as varying the permanent storage for an object; for example, a client could store an object in a
database, instead of in a file with the rest of the document.

The client application should create a pointer to the callback function in the OLECLIENTVTBL structure
and pointers to the functions in the OLESTREAMVTBL structure by using the MakeProcInstance
function. Callback functions should be exported in the module-definition file.

Opening a Compound Document

To open a compound document, a client application should take the following steps:
1 Register the document with the client library.

2 Load the document data from a file.
3 For each object in the document, call the OleLoadFromStream function.

4 List any objects with manual links so that the user can update them. Automatically update any
automatic links.

The OleRegisterClientDoc function registers a document with the client library and returns a handle that is
used in object-creation functions and document-management functions. (This registration does not involve
the registration database.)

A client application should call the OleLoadFromStream function for each object in the document that will
be shown on the screen or otherwise activated. (It is often not necessary to load every object in a document
immediately when the document is opened.) Parameters for this function include a pointer to the
OLECLIENT structure, which is used to locate the client's callback function (and which is sometimes
used by the client to store private state information for the object), and a pointer to the OLESTREAM
structure. The library calls the Get function in the OLESTREAMVTBL structure to load the object.

Document Management

A client application should notify the library when it opens, closes, saves, or renames a document, or
causes a document to revert to a previously saved state. A client application can use the following
functions to accomplish these tasks:

Function Description
OleRegisterClientDoc Registers an opened document with the library.
OleRenameClientDoc Informs the library that a document has been renamed.
OleRevertClientDoc Informs the library that a document has reverted to a previously saved

state.
OleRevokeClientDoc Informs the library that a document should be closed or no longer exists.
OleSavedClientDoc Informs the library that a document has been saved.

A client application should also maintain a persistent name for each object. This name should be unique
within the scope of the client document and should be stored with the document. This name is specified
when the object is created and should persist when the document is saved and reopened. When a client
uses the OleRename function to change the name of an object, the new name must also be unique and must
be stored with the document.

Saving a Document

A client application should follow these steps to save a document:
1 Save the data for the document in the document's file.

2 For each object in the document, call the OleSaveToStream function.
3 When the library confirms that all objects have been saved, call the OleSavedClientDoc function.

A client application can call the OleQuerySize function to determine the size of the buffer required to store
an object before calling OleSaveToStream.

Closing a Document

A client application should follow these steps to close a document:
1 For each object in the document, call the OleRelease function.

2 Use either the OleRevertClientDoc or the OleSavedClientDoc function to register the current state of
the document with the library.

3 When the library confirms that all objects have been closed, call the OleRevokeClientDoc function.

Asynchronous Operations

When a client application calls a function that invokes a server application, actions taken by the client
and server can be asynchronous. For example, the actions of updating a document and closing a server
are asynchronous. Whenever an asynchronous operation begins, the client library returns
OLE_WAIT_FOR_RELEASE. When a client application receives this notification, it must wait for the
OLE_RELEASE notification before it quits. If the client cannot take further action until the
asynchronous operation finishes, it should enter a message-dispatch loop and wait for OLE_RELEASE.
Otherwise, it should allow the main message loop to continue dispatching messages so that processing
can continue.

An application can run only one asynchronous operation at a time for an object; each asynchronous
operation must end with the OLE_RELEASE notification before the next one begins. The client's
callback function must receive OLE_RELEASE for all pending asynchronous operations before calling
the OleRevokeClientDoc function.

Some of the object-creation functions return OLE_WAIT_FOR_RELEASE. The client application can
continue to work with the document while waiting for OLE_RELEASE, but some functions (for
example, OleActivate) cannot be called until the asynchronous operation has been completed.

If an application calls a function for an object before receiving OLE_RELEASE for that object, the
function may return OLE_BUSY. The server also returns OLE_BUSY when processing a new request
would interfere with the processing of a current request from a client application or user. When a
function returns OLE_BUSY, the client application can display a message reporting the busy condition
at this point or it can enter a loop to wait for the function to return OLE_OK. (The
OLE_QUERY_RETRY notification is also sent to the client's callback function when the server is busy;
when the callback function returns FALSE, the transaction with the server is ended.) Note that if the
server uses the OleBlockServer function to postpone OLE activities, the OLE_QUERY_RETRY
notification is not sent to the client.

The following example shows a message-dispatch loop that allows a client application to transact
messages while waiting for the OLE_RELEASE notification:

while ((olestat = OleQueryReleaseStatus(lpObject)) == OLE_BUSY) {
if (GetMessage(&msg, NULL, NULL, NULL)) {
TranslateMessage(&msg);
DispatchMessage(&msg);
}

}
if (olestat == OLE_ERROR_OBJECT) {

.

. /* The lpObject parameter is invalid. */

.
}
else { /* if olestat == OLE_OK */

.

. /* The object is released, or the server has terminated. */

.
}
A server application could end unexpectedly while a client is waiting for OLE_RELEASE. In this case, the
client library recovers properly only if the client uses the OleQueryReleaseStatus function, as shown in the
preceding example.

The following table shows which OLE functions can return the OLE_WAIT_FOR_RELEASE or
OLE_BUSY value to a client application:

Function OLE_BUSY OLE_WAIT_FOR_RELEASE
OleActivate Yes Yes
OleClose Yes Yes
OleCopyFromLink Yes Yes
OleCreate No Yes
OleCreateFromClip No Yes
OleCreateFromFile No Yes
OleCreateFromTemplate No Yes
OleCreateLinkFromClip No Yes
OleCreateLinkFromFile No Yes
OleDelete Yes Yes
OleExecute Yes Yes
OleLoadFromStream No Yes
OleObjectConvert Yes No
OleReconnect Yes Yes
OleRelease Yes Yes
OleRequestData Yes Yes
OleSetBounds Yes Yes
OleSetColorScheme Yes Yes
OleSetData Yes Yes
OleSetHostNames Yes Yes
OleSetLinkUpdateOptions Yes Yes
OleSetTargetDevice Yes Yes
OleUnlockServer No Yes

OleUpdate Yes Yes

Displaying and Printing Objects

When an object has been loaded and, if necessary, brought up to date, the object can be displayed or
printed with the container document. To display an object, the client application should set up the device
context and bounding rectangle (ensuring that they use the same mapping mode) and then call the
OleDraw function. The client application can use the OleQueryBounds function to retrieve the size of
the bounding rectangle on the target device.

An object handler can be used to draw an object. If an object handler exists for an object, the call to the
OleDraw function is received and processed by the object handler. If there is no object handler, the
client library uses the object's presentation data to display or print the object.

If the presentation data for an object is a metafile, the library periodically sends an
OLE_QUERY_PAINT notification to the client's callback function while drawing the object. If the
callback function returns FALSE, the OleDraw function returns immediately and the drawing is ended.
A client could also use the OLE_QUERY_PAINT notification to take some actions within the callback
function and then return TRUE to indicate that drawing should continue. Any actions the client takes at
this time should not interfere with the drawing operation; for example, the client should not scroll the
window.

If the target device for an object changes (for example, when the user changes printers), the client
application should call the OleSetTargetDevice function. The client should also call OleSetTargetDevice
whenever an object is created or loaded.

If the size of the presentation rectangle for the object changes (for example, through action by the user)
the client application should call the OleSetBounds function. After calling OleSetBounds, the client
should call the OleUpdate function to update the object and then OleDraw to redisplay it.

Opening and Closing Objects

When the user requests the client application to activate an object, the client should check whether the
object is busy by calling the OleQueryReleaseStatus function. If the object is busy, the client should
either refuse the request to open the object or enter a message-dispatch loop, waiting for the
OLE_RELEASE notification.

If the object to be activated is not busy, the client should call the OleActivate function. The library
notifies the client when the server is open or when an error occurs.

The OleActivate function allows the client application to specify whether to display the activated object
in a window of the server application. A client might hide the server window if an object is updated
automatically.

A client application can use the OleQueryOpen function to determine whether a specified object is open.
The OleClose function allows the client to close an open object. Closing an object terminates the
connection with the server. To reestablish a terminated connection between a linked object and an open
server, the client can use the OleReconnect function. To close an open object and release it from
memory, a client application can call the OleRelease function.

The first time a client application activates a particular embedded object, the client should call the
OleSetHostNames function, specifying the string the server window should display in its title bar. This
string should be the name of the client document containing the object. The client does not need to call
OleSetHostNames every time an embedded object is activated, because the library maintains a record of
the specified names.

Deleting Objects

To permanently delete an object from a document, the client should call the OleDelete function.
OleDelete closes the specified object, if necessary, before deleting it.

Client Cut and Copy Commands

A client application can copy an object to the clipboard by simply opening the clipboard, calling the
OleCopyToClipboard function, and closing the clipboard again. If the client supports delayed rendering,
however, it should follow these steps to cut or copy an object to the clipboard:
1 Open and empty the clipboard.

2 Put the preferred data formats on the clipboard.
3 Call the OleEnumFormats function to retrieve the formats for the object.

4 Call the SetClipboardData function to put the formats on the clipboard, specifying NULL for the
handle of the data.

If the call to the OleEnumFormats function retrieves the ObjectLink format, the client should call
SetClipboardData with OwnerLink instead of ObjectLink format. (For more information, see the
following description of the OleCopyToClipboard function.)

5 Put any additional presentation data formats on the clipboard.
6 Close the clipboard.

To support the Cut command on the Edit menu, an application can call OleCopyToClipboard and then
delete the object by using the OleDelete function. (The client can put only one of the selected objects on
the clipboard, even when the user has selected and cut or copied multiple objects. In this case, the client
typically puts the first object in the selection onto the clipboard.)

The OleCopyToClipboard function always copies OwnerLink format, not ObjectLink format, to the
clipboard. For embedded objects, Native data always precedes the OwnerLink format. If a linked object
uses Native data, OwnerLink format always precedes the Native data. If an application uses the
OleGetData function to retrieve data from a linked object that has been copied by using
OleCopyToClipboard, it should specify ObjectLink format, not OwnerLink format, even if OwnerLink
format was put on the clipboard.

When an application that can act as both a client and server copies a selection to the clipboard that
contains one or more objects, it should first allocate enough memory for the selection. To discover how
much memory is required for each object, the application can call the OleQuerySize function. When
memory has been allocated, the application should call the OleRegisterClientDoc function, specifying
Clipboard for the document name. (In this case, the handle returned by the call to OleRegisterClientDoc
identifies a document that is used only during the copy operation.) To save each object to memory, the
application calls the OleClone function, calls the OleSaveToStream function for the cloned object, and
then calls the OleRelease function to free the memory for the cloned object. When the selection has been
saved to the stream, the application can call the SetClipboardData function. If SetClipboardData is
successful, the application should call the OleSavedClientDoc function. The application then calls the
OleRevokeClientDoc function, specifying the handle retrieved by the call to OleRegisterClientDoc.

For more information about the Cut and Copy commands, see Server Cut and Copy Commands.

Creating Objects

A client application can put linked and embedded objects in a document by pasting them from the
clipboard, creating them from a file, copying them from other objects, or by starting a server application
to create them directly.

Object-Creation Functions

Each of the following functions creates an embedded or linked object in a specified document:

Function Description
OleClone Creates an exact copy of an object.
OleCopyFromLink Creates an embedded object that is a copy of a linked object.
OleCreate Creates an embedded object of a specified class.
OleCreateFromClip Creates an object from the clipboard. This function typically creates

an embedded object.
OleCreateFromFile Creates an object by using the contents of a file. This function

typically creates an embedded object.
OleCreateFromTemplate Creates an embedded object by using another object as a template.
OleCreateInvisible Creates an object without displaying the server application to the

user.
OleCreateLinkFromClip Creates an object by using information on the clipboard. This

function typically creates a linked object.
OleCreateLinkFromFile Creates an object by using the contents of a file. This function

typically creates a linked object.
OleObjectConvert Creates an object that supports a specified protocol by converting an

existing object.

Each of these functions requires a parameter that points to an OLEOBJECT structure when the function
returns. Server applications often create an OLEOBJECT structure whenever an object is created;
OLEOBJECT points to functions that describe how the server interacts with the object. Before the client
library gives the client application a pointer to this structure, the library includes with the structure some

internal information corresponding to the OwnerLink or ObjectLink data. This internal information allows
the client library to identify the correct server when an OLE function such as OleActivate passes it a
pointer to an OLEOBJECT structure. For more information about the OLEOBJECT structure, see Starting
a Server Application.

Each new object must have a name that is unique to the client document. Although meaningful object
names can be helpful, some applications assign unique object names simply by incrementing a counter for
each new object. For more information about object names, see Document Management.

If a client application implements the Insert Object command, it should use the registration database to
find out what OLE servers are available and then list those servers for the user. When the user selects one
of the servers and chooses the OK button, the client can use the OleCreate function to create an object at
the current position.

The OleCopyFromLink, OleCreate, and OleCreateFromTemplate functions always create an embedded
object. The other object-creation functions can create either an embedded object or a linked object,
depending on the order and type of available data.

If a client application's callback function receives the OLE_RELEASE notification after the client calls
the OleCreate or OleCreateFromFile function, the client should respond by calling the
OleQueryReleaseError function. If OleQueryReleaseError shows that there was an error when the object
was created, the client application should delete the object.

Whenever an object-creation function returns OLE_WAIT_FOR_RELEASE, the calling application
should either wait for the OLE_RELEASE notification or notify the user that the object cannot be created.
For more information, see Asynchronous Operations.

If a client application accepts files dropped from File Manager, it should respond to the WM_DROPFILES
message by calling the OleCreateFromFile function and specifying Packager for the lpszClass parameter.

Paste and Paste Link Commands

A client application should follow these steps to create an embedded or linked object by pasting from
the clipboard:
1 Call the OleQueryCreateFromClip function to determine whether to enable the Paste command. If

this function fails when StdFileEditing is specified for the lpszProtocol parameter, call it again,
specifying Static.

2 Call the OleQueryLinkFromClip function to determine whether to enable the Paste Link command.
If the user chooses the Paste command, open the clipboard and call the OleCreateFromClip

function.
If the user chooses Paste Link, open the clipboard and call the OleCreateLinkFromClip function.

3 Close the clipboard.

4 Call the OleQueryType function to determine the kind of object created by the creation function.
(Depending on the order of clipboard data, OleCreateFromClip can sometimes create a linked object
and OleCreateLinkFromClip can sometimes create an embedded object.)

The client application should put the pasted data or object into the document at the current position. The
client should select the object so that the user can work with it immediately. If both the
OleQueryCreateFromClip and OleQueryLinkFromClip functions fail but there is data on the clipboard that
the client can interpret, the client should enable the Paste command.

If the information on the clipboard is incomplete--for example, if Native data is not accompanied by the
OwnerLink format--the Paste command should insert a static object into the document. (A static object
consists of the presentation data for an object; it cannot be edited by using standard OLE techniques.
Attempts to open static objects fail and generate no notifications.)

If the client application implements the Paste Special command, it should use the EnumClipboardFormats
function to produce a list of data formats on the clipboard. The client should also check the registration
database to find the full name of the server application. The Paste Link button in the Paste Special dialog
box works in exactly the same way as the Paste Link command on the Edit menu.

If the DDE Link format is available on the clipboard instead of ObjectLink format, the client application
should perform the same link operation that it supported prior to the implementation of OLE.

Undo Command

A client application can use the OleClone function to support the Undo command. A cloned object is
identical to the original except for connections to the server application; the cloned object is not
automatically connected to the server. When the server is closed and the object is updated, the saved

copy of the object gives the user the opportunity to undo all of the changes made in the server. Support
for the Undo command is provided by the client application, because the server cannot maintain a record
of the prior states of objects.

The Undo command restores an object to its condition prior to the last update from the server. To
support this behavior, the client application must clone the object when it is first activated and then
clone the updated object when an update occurs; the client must maintain two clones of the object. The
clone of the original object must be maintained so that an updated object can be restored if the user
chooses the Undo command. The clone of the updated object must be maintained to support the Undo
command if the updated object is updated again. Because the data changes when the update occurs, the
clone for supporting the Undo command must be made before any updates occur.

Because the client application cannot distinguish between different types of object activation, the client
must clone an object for verbs that do not edit the object, even though no updates can occur in those
cases.

Class Name Object Command

A client application can implement the Class Name Object command by using the OleActivate function.
OleActivate includes a parameter that allows the client to specify the verb chosen by the user.

Links Command

When a user chooses the Links command, a dialog box appears listing every linked object in the
document. The selected links are highlighted in the dialog box. The dialog box makes it possible for the
user to invoke the verbs for an object, select whether link updating should be automatic or manual,
update a link immediately, cancel a link, and repair broken links. For more information about this dialog
box, see Microsoft Windows User Interface Guidelines.

The Links dialog box includes buttons that allow the user to activate the primary and secondary verbs
for an object. A client application can implement these buttons by using the OleActivate function.

A client application can use the OleGetLinkUpdateOptions and OleSetLinkUpdateOptions functions to
support the link-update radio buttons in the Links dialog box. The following are the three possible
update options:

Option Description
oleupdate_always Update the linked object whenever possible. This option supports the

Automatic link-update radio button in the Links dialog box.
oleupdate_onsave Update the linked object when the source document is saved by the server.
oleupdate_oncall Update the linked object only on request from the client application. This

option supports the Manual link-update radio button in the Links dialog box.

These update options control when updates to the presentation of an object occur. The contents of the
source document are used to update the presentation whenever the link is activated.

To support the Update Now button in the Links dialog box, an application can call the OleUpdate function.
When a user chooses Update Now, the client application should update the links the user selected.

A user's choosing the Cancel Link button in the Links dialog box changes an object into a picture that an
application cannot edit by using standard OLE techniques. An application can implement the Cancel Link
button by using the OleObjectConvert function.

A client application should activate the Change Link button in the Links dialog box only if all the selected
links are to the same source document. When the client has the correct information, it can repair the link
by using the OleGetData and OleSetData functions. To retrieve the link information for an object, a client
can call the OleGetData function, specifying the ObjectLink format. (The call to OleGetData fails if
ObjectLink is specified and the object is not a link.) A client can retrieve class information by using
OleGetData and specifying either the OwnerLink format (for embedded objects) or the ObjectLink format
(for linked objects). The client can make it possible for the user to edit the link information and store it in
the object by using the OleSetData function, specifying the ObjectLink format.

Closing a Client Application

A client application should use the OleRelease function to remove all objects from memory when it
shuts down. If the library returns the OLE_WAIT_FOR_RELEASE value instead of OLE_OK, the
client should not quit. The client can perform many cleanup tasks while waiting for the OLE_RELEASE
notification--for example, it can close files, free memory, and hide windows.

The OLE_RELEASE notification to the client's callback function indicates that an operation has
finished in a server application, but it does not identify the operation or indicate whether the operation

was successful. A client application can call the OleQueryReleaseStatus function to determine whether
an operation has been completed for a specified object. The OleQueryReleaseMethod function indicates
the nature of the operation that has finished for a specified object. To discover the error value for the
operation, the client can call the OleQueryReleaseError function.

If a client owns the clipboard when it quits, it should make sure that the data on the clipboard is
complete and in the correct order.

Server Applications
Server Applications

An OLE server supplies functions that the server library calls when a user works with an object. The
server library, OLESVR.DLL, uses DDE commands to communicate with the client library. When the
client application calls one of the functions in the OLE API, the client library informs the server library
and the server library routes the request to the appropriate function in the server-supplied list of function
pointers.

In addition to the specialized functions that the server creates and which are called by the server library,
there are ten OLE functions that allow a server to control the library's ability to gain access to the server
and the documents and objects it controls:

Function Description
OleBlockServer Queues requests to the server until the server calls the

OleUnblockServer function.
OleRegisterServer Registers the specified server with the library. Information registered

includes the class name and instance and whether the server supports
single or multiple instances.

OleRegisterServerDoc Registers a document with the server library.
OleRenameServerDoc Renames the specified document.
OleRevertServerDoc Restores a document to a previously saved state, without closing the

document.
OleRevokeObject Revokes access to the specified object.
OleRevokeServer Revokes access to the specified server, closing any documents and

ending communication with client applications.
OleRevokeServerDoc Revokes access to the specified document.
OleSavedServerDoc Informs the library that a document has been saved. Calling this function

is equivalent to sending the OLE_SAVED notification.
OleUnblockServer Processes a request from a queue created when the server application

called the OleBlockServer function.

The OleRevokeServer and OleRevokeServerDoc functions can return OLE_WAIT_FOR_RELEASE.
When a server application receives this error value, it should take the same action as a client application,
dispatching messages until the server library calls the corresponding Release function.

Starting a Server Application

When a server application starts, it should follow these steps:
1 Register window classes and window procedures for the main window, documents, and objects.

2 Initialize the function tables for the OLESERVERVTBL, OLESERVERDOCVTBL, and
OLEOBJECTVTBL structures.

3 Register the clipboard formats.

4 Allocate memory for the OLESERVER structure.
5 Register the server with the library by calling the OleRegisterServer function.

6 Check for the /Embedding and /Embedding filename options on the command line and act according
to the following guidelines. (Applications should also check for -Embedding whenever they check
for these options.)

If neither /Embedding nor /Embedding filename is present, call the OleRegisterServerDoc
function, specifying an untitled document.

If the /Embedding option is present, do not register a document or display a window. (In this case,
the server takes actions only in response to calls from the server library.)

If the /Embedding filename option is present, do not display a window. Process the filename string
and call the OleRegisterServerDoc function.

The OLESERVERVTBL, OLESERVERDOCVTBL, and OLEOBJECTVTBL structures are tables of
function pointers. The server library uses these structures to route requests from the client application to
the server. The server application should create the function pointers in these structures by using the
MakeProcInstance function. The functions should also be exported in the application's module-definition
file.

The OLESERVER structure contains a pointer to an OLESERVERVTBL structure. The
OLESERVERVTBL structure contains pointers to functions that control such fundamental server tasks as
opening files, creating objects, and terminating after an editing session. Several of the functions pointed to
by the OLESERVERVTBL structure cause the server to allocate and initialize an OLESERVERDOC
structure.

The OLESERVERDOC structure contains a pointer to an OLESERVERDOCVTBL structure. The
OLESERVERDOCVTBL structure contains pointers to functions that control such tasks as saving or
closing documents or setting document dimensions. The OLESERVERDOCVTBL structure also contains
a function that causes the server to allocate and initialize an OLEOBJECT structure.

The OLEOBJECT structure contains a pointer to an OLEOBJECTVTBL structure. The
OLEOBJECTVTBL structure contains pointers to functions that operate on objects. After the server
application creates an OLEOBJECT structure, the server library gives information about the structure to
the client library. The client library then creates a parallel OLEOBJECT structure (including internal
information identifying the server application, the document, and the item for the object) and passes a
pointer to that structure to the client application.

This hierarchy of structures--OLESERVER, OLESERVERDOC, and OLEOBJECT--makes it possible for
a server to open as many documents as the library requests and for each document to contain as many
objects as necessary.

A server application can register the clipboard formats by calling the RegisterClipboardFormat function
for each format, specifying Native, OwnerLink, ObjectLink, and any other formats it requires.

When the server application starts, it creates an OLESERVER structure and then registers it with the
library by calling the OleRegisterServer function. When this function returns, one of its parameters points
to a server handle. The library uses this handle of refer to the server, and the server uses it in calls to the
server-specific OLE functions.

If an OLE server application is also a DDE server, the class name specified in the call to the
OleRegisterServer function cannot be the same as the name of the executable file for the application.

When a client working with a compound document opens a linked or embedded object for editing, the
client library starts the server using the /Embedding command-line option. The server uses this option to
determine whether the object has been opened directly by a user or as part of an editing session for linked
and embedded objects. (If the object is a linked object, the /Embedding option is followed by a filename.)
When a server is started for an embedded object with the /Embedding option, the server should not create
a document or show a window. Instead, it should call the OleRegisterServer function and then enter a
message-dispatch loop. (If the server is started with the /Embedding filename option, it should also call the
OleRegisterServerDoc function.) The server then takes actions in response to calls from the library. The
server should not make itself visible until the library calls the Show or DoVerb function in the
OLEOBJECTVTBL structure. (Server applications should check for both -Embedding and /Embedding.)

By calling the OleBlockServer function, a server application can cause requests from the client library to
be saved in a queue. When the server is ready for the server library to process the requests, it can call the
OleUnblockServer function. It is best to use the OleUnblockServer function prior to the GetMessage
function in a message loop, so that all blocked requests are unblocked before getting the next message.
(Often a server returns OLE_BUSY instead of calling OleBlockServer. Returning OLE_BUSY has two
advantages: It allows the client to decide whether to retry the message or discontinue the operation, and it
allows the server to choose which requests to process.)

When an error occurs in a server-supplied function, the server should return the OLESTATUS error value
that best describes the error. The OLE libraries use these error values to help determine the appropriate
behavior in error situations. However, the client application does not necessarily receive the error values
the server returns; the OLE libraries may change error values before passing them to the client application.

Opening a Document or Object

Whenever the server library calls the Open, Create, CreateFromTemplate, or Edit function in the
OLESERVERVTBL structure, the server creates an OLESERVERDOC structure. If the document is
opened by a call from the server library, the server application returns the OLESERVERDOC structure
to the library. If the document is opened directly by a user, however, the server should call the
OleRegisterServerDoc function to register the document with the library. The library then uses the
GetObject function in the OLESERVERDOCVTBL structure to request the server to create an
OLEOBJECT structure for each object requested by the client application.

A new instance of the server application is typically started when the client activates a linked or
embedded object. This new instance is unnecessary if the object is already open in an instance of the
server or if the server is a single-instance (MDI) server that is already open. For more information about

the rules for starting new instances of server applications, see Microsoft Windows User Interface
Guidelines.

Whether the server library starts a new instance of a server to edit an embedded or linked object depends
upon the value specified when the server calls the OleRegisterServer function.

Server Cut and Copy Commands

A server application should follow these steps to cut or copy onto the clipboard data that a client can
then use to create an embedded or linked object:
1 Open and empty the clipboard.

2 Put the data formats that describe the selection on the clipboard, using the SetClipboardData
function.

3 Close the clipboard.

If the server cuts data onto the clipboard, rather than copying it, the server typically does not offer
ObjectLink or Link formats, because the source for the data has been removed from the document.

The server should put data on the clipboard in the order given in Clipboard Conventions.

Typically, the server puts server-specific formats, Native format, OwnerLink format, and presentation
formats on the clipboard. If it can support links, the server also puts ObjectLink format and, when
appropriate, Link format on the clipboard. The server must provide a presentation format
(CF_METAFILE, CF_BITMAP, or CF_DIB) if the server does not have an object handler. Native data
can be used as a presentation format only if the server has an object handler that can use the Native data.

If a user copies onto the clipboard a selection that includes an embedded object or a link, the data formats
the server should copy depend upon whether the container document modifies the object or link. If the
document does not modify the object or link, the best formats are the Native and OwnerLink formats from
the original source of the object. If the document modifies the object or link--for example, by recoloring it-
-the best formats are the Native and OwnerLink formats from the container document.

If a server uses a metafile as the presentation format for an object, the mapping mode for that metafile
must be MM_ANISOTROPIC. When a server application uses fonts in these metafiles, it can improve
performance by using TrueType fonts. (Metafiles scale better when they use TrueType fonts.) To use
TrueType fonts exclusively, the server should set bit 2 (04h) of the lpPitchandFamily member of the
LOGFONT structure.

The OLE libraries express the size of every object in MM_HIMETRIC units. Neither the width nor height
of an object should exceed 32,767 in MM_HIMETRIC units.

Update, Save As, and New Commands

When a server is started as part of editing an object from within a compound document, the server
application should change the Save command on the File menu to Update. When the user chooses the
Update command, the server should call the OleSavedServerDoc function.

When the user chooses the Save As, New, or Open command in a single-document server, the
application should display a message asking the user whether to update the object in the compound
document before performing the action. When the user chooses the Save As command, the server should
call the OleRenameServerDoc function. If the user responds to the message by choosing to save changes
in the object before renaming the document, the server should call the OleSavedServerDoc function
before calling OleRenameServerDoc. For embedded objects, choosing the Save As command causes the
connection with the client to be broken, because this command reassociates a document in memory with
the specified new file. For linked objects, calling OleRenameServerDoc when the user chooses Save As
makes it possible for the client to associate the link with the new file.

Most server applications maintain a "dirty" flag that records whether changes have been made to each
open document in an instance. The following table shows the rules that apply to this flag when the
server edits an embedded object. By following these rules, a server can ensure that this flag is TRUE
when the document being edited in the server matches the embedded object in the client and that,
otherwise, this flag is FALSE.

Flag Condition
TRUE Library calls the Create function in the OLESERVERVTBL structure.
TRUE Library calls the CreateFromTemplate function in OLESERVERVTBL.
TRUE Document is changed in server.
FALSE Library calls the Edit function in OLESERVERVTBL.

FALSE Library calls the GetData function in OLEOBJECTVTBL with the Native data format. (The
flag should not change for any other formats.)

A server following these rules displays the message asking whether to update the object whenever it
destroys a document that was editing an embedded object and the "dirty" flag is TRUE.

In an MDI server application, the New and Open commands on the File menu simply open a new window,
and the connection with the client application remains unchanged. The user can continue to work with the
server application after choosing one of these commands, but when the user exits the server application,
the focus does not necessarily return to the client application.

Typically, a server can call the OleSavedServerDoc function whenever an object needs to be updated in
the client document, including when the server closes the document. When the server closes the document
and the object should be updated, the server sends the OLE_CLOSED notification. Client applications
receive the OLE_CLOSED notification for embedded objects but not for linked objects, because the server
library intercepts the notification for linked objects.

Closing a Server Application

The server library calls the Exit function in the OLESERVERVTBL structure when the server must quit.
The server library calls the Release function to inform the server that it is safe to quit; the server does
not necessarily stop when the library calls Release.

The server must exit when it is invisible and the library calls Release. (The only exception is when an
application supports multiple servers; in this case, an invisible server is sometimes not revocable when
the library calls Release.) If the server has no open documents and it was started with the /Embedding
option (indicating that it was started by a client application), the server should exit when the library calls
the Release function. If the user explicitly loads a document into a single-instance (MDI) server,
however, the server should not exit when the library calls Release.

When the user closes a server that has edited an embedded object without updating changes to the client
application, the server should display a message asking whether to save the changes. If the user chooses
to save the changes, the server should send the OLE_CLOSED notification and call the
OleRevokeServerDoc function. (Because sending OLE_CLOSED prompts the server library to send
data to the client library, it is not necessary to send OLE_CHANGED or OLE_SAVED. If the user
chooses not to save the changes, the server should simply call the OleRevokeServerDoc function
(without sending OLE_CLOSED).

A server can use the OleRevokeObject function to revoke a client's access to an object--for example, if
the user destroys the object. Similarly, the OleRevokeServerDoc function revokes a client's access to a
document. (Because OleRevokeServerDoc revokes a client's access to all objects in a document, an
application that uses OleRevokeServerDoc does not need to call the OleRevokeObject function for
objects in that document.) To terminate all conversations with client applications, the server can call the
OleRevokeServer function. These functions inform the server library that the specified items are no
longer available.

A server application can receive OLE_WAIT_FOR_RELEASE--for example, the OleRevokeServerDoc
function can return this value. Although a server can enter a message-dispatch loop and wait for the
library to call the server's Release function, servers should never enter message-dispatch loops inside
any of the server-supplied functions that are called by the server library.

The client application should not instruct the server to close the document or exit when the server is
editing a linked object, unless the server is updating the link without displaying the object to the user.
Because a linked object exists independently of the client, the user controls saving and closing the
document by using the server application.

If a server application owns the clipboard when it closes, it should make sure that the data on the
clipboard is complete and in the correct order. For example, any Native data should be accompanied by
the OwnerLink format.

Object Handlers
Object Handlers

An application developer can use object handlers to introduce customized features into implementations of
linked and embedded objects. When an object handler exists for a class of object, the object handler
supplants some or all of the functionality that is usually provided by the client library and the server
application. The object handler can take specialized action for any of the functions it intercepts. The object
handler passes functions that it does not take action on to the client library, which then implements the
default processing for that class.

An application might use an object handler to render Native data as the presentation data for an object,
instead of using metafiles or bitmaps. Object handlers could also be used to implement special behavior
when an object is opened.

Implementing Object Handlers

A server installing an object handler registers the handler with the registration database, using the
keyword handler. Whenever a client application calls one of the object-creation functions, the client
library uses the class name specified for the object and the handler keyword to search the registration
database. If the library finds an object handler, the client library loads the handler and calls it to create
the object. The handler can create an object for which all of the creation functions and methods are
defined by the handler, or it can call default object-creation functions in the client library.

The client library exports the object-creation OLE functions with new names; in each case, the prefix
"Ole" is changed to "Def" (for "default"). Object handlers can import any of these functions and use
them when creating objects.

Object handlers must import the following functions:

OLE function Name exported by client library
OleCreate DefCreate
OleCreateFromClip DefCreateFromClip
OleCreateFromFile DefCreateFromFile
OleCreateFromTemplate DefCreateFromTemplate
OleCreateLinkFromClip DefCreateLinkFromClip
OleCreateLinkFromFile DefCreateLinkFromFile
OleLoadFromStream DefLoadFromStream

When an object handler defines a function that is to be called by the client application, it should use the
same name as the corresponding OLE function the client calls, with the prefix "Ole" replaced by "Dll". For
example, when an object handler uses the DefCreate function exported by the client library, the handler
should use it inside a function named DllCreate. When the client library finds an object handler for a class
of object, it calls handler-specific object-creation functions by specifying this "Dll" prefix.

When the handler calls one of the default object-creation functions, it receives a handle of an
OLEOBJECT structure, which in turn points to the OLEOBJECTVTBL structure containing the current
object-management functions. The object handler should copy this OLEOBJECTVTBL structure and
customize the structure by replacing any function pointers in the structure with pointers to functions of its
own. (If the object handler saves the pointers to the default functions, any of the replacement functions can
also call the default functions in the table of function pointers.) When the object handler has finished
customizing the structure, it should replace the pointer to the old OLEOBJECTVTBL structure with a
pointer to the modified OLEOBJECTVTBL structure.

When the client makes a call to a function in the client library, the call is dispatched through the object
handler's OLEOBJECTVTBL structure. If the object handler has replaced the function pointer, the call is
routed to the function supplied by the handler. Otherwise, the call is routed to the client library.

Each OLECLIENT, OLEOBJECT, OLESERVER, OLESERVERDOC, or OLESTREAM structure
contains a pointer to a structure that contains a table of function pointers. (Structures containing tables of
function pointers are identified with the "VTBL" suffix.) Each of the structures containing a pointer to a
"VTBL" structure can also contain extra instance-specific information. This information is meaningful
only to the application that supplies it and should not be used by other applications; for example, an object
handler should not attempt to use any instance-specific information in an OLECLIENT structure.

The object handler should use the "Def" and "Dll" renaming conventions when it defines specialized
functions. For example, if an object handler modifies the Draw function from an object's

OLEOBJECTVTBL structure, it should copy that Draw function to a function named DefDraw and
replace the Draw function with a specialized function named DllDraw. Inside the DllDraw function, the
object handler can call DefDraw if the default drawing operation is appropriate in a particular case.

The following example demonstrates this process of copying and replacing pointers to functions.
Functions with the "Dll" prefix should be exported in the module-definition file.

/* Declare the DllDraw and DefDraw functions. */
OLESTATUS FAR PASCAL DllDraw(LPOLEOBJECT, HDC, LPRECT, LPRECT, HDC);
OLESTATUS (FAR PASCAL *DefDraw)(LPOLEOBJECT, HDC, LPRECT, LPRECT, HDC)
;
/* Copy the Draw function from OLEOBJECTVTBL to DefDraw. */

DefDraw = lpobj->lpvtbl->Draw;
/* Copy DllDraw to OLEOBJECTVTBL. */

*lpobj->lpvtbl->Draw = DllDraw;

OLESTATUS FAR PASCAL DllDraw(lpObject, hdc, lpBounds, lpWBounds,
hdcFormat)

LPOLEOBJECTlpObject;
HDC hdc;
LPRECTlpBounds;
LPRECTlpWBounds;
HDC hdcFormat;
{

/* Return DefDraw if Native data is not available. */
if ((*lpobj->lpvtbl->GetData) (lpobj, cfNative, &hData) != OLE_OK)
return (*DefDraw) (lpobj, hdc, lpBounds, lpWBounds, hdcFormat);
.
.
.

}
Creating Objects in an Object Handler

Most of the object-creation functions in the OLE API work in exactly the same way when they are
renamed and used by object-handler DLLs. Two functions are somewhat different, however:
OleCreateFromClip and OleLoadFromStream.

DefCreateFromClip and DllCreateFromClip

When the client library calls the DllCreateFromClip function, the library includes a parameter that is not
specified in the original call to the OleCreateFromClip function. This parameter, objtype, specifies
whether the object being created is an embedded object or a link; its value can be either OT_LINK or
OT_EMBEDDED.

The following syntax block shows the objtype parameter when an object handler uses the
DefCreateFromClip function. The DllCreateFromClip function has exactly the same syntax as
DefCreateFromClip. For a full description of all the parameters, see the description of the
OleCreateFromClip function.

OLESTATUS DefCreateFromClip(lpszProtocol, lpclient, lhclientdoc, lpszObjname, lplpobject,
renderopt, cfFormat, objtype);

LPSTR lpszProtocol; /* address of string for protocol name */
LPOLECLIENT lpclient; /
* address of client structure *
/
LHCLIENTDOC lhclientdoc; /
* long handle of client document *
/

LPSTR lpszObjname; /
* string for object name *
/
LPOLEOBJECT FAR * lplpobject; /
* address of pointer to object *
/
OLEOPT_RENDER renderopt; /
* rendering options *
/
OLECLIPFORMAT cfFormat; /
* clipboard format *
/
LONG objtype; /
* OT_LINKED or OT_EMBEDDED *
/

If DllCreateFromClip calls DefCreateFromClip, DllCreateFromClip should pass it the objtype parameter
along with the other parameters from the version of DefCreateFromClip that was exported by the client
library. DllCreateFromClip can modify some of these parameters before passing them back to
DefCreateFromClip. For example, the object handler could specify a different value for the renderopt
parameter when it calls DefCreateFromClip. If the client calls this function with olerender_draw for
renderopt and the handler performs the drawing with Native data, the handler could change
olerender_draw to olerender_none. If the client calls this function with olerender_draw for renderopt and
the handler calls the GetData function and performs the drawing based on a class-specific format, the
handler could change olerender_draw to olerender_format. If the handler needed a different rendering
format than the format specified by the client application, the object handler could also change the value of
the cfFormat parameter in the call to DefCreateFromClip.

If an object handler uses Native data to render an embedded object, the handler can call the library and
specify olerender_none. If a handler uses Native data to render a linked object, it can use olerender_format
and specify Native data. When the handler's Draw function is called, the handler calls the GetData
function, specifying Native data, to do the rendering. If a handler uses a private data format, the procedure
is the same--except that the private format is specified with the olerender_format option and with the
GetData function.

DefLoadFromStream and DllLoadFromStream

When the client library calls the DllLoadFromStream function, the library includes three parameters that
are not specified in the original call to the OleLoadFromStream function. One of the additional
parameters is objtype, as described for DefCreateFromClip and DllCreateFromClip. The other two
parameters are aClass, which is an atom containing the class name for the object, and cfFormat, which
specifies a private clipboard format that the object handler can use for rendering the object.

The following syntax block shows the objtype, aClass, and cfFormat parameters when an object handler
uses the DefLoadFromStream function. The DllLoadFromStream function has exactly the same syntax
as DefLoadFromStream. For a full description of all the parameters, see the description of the
OleLoadFromStream function in the Microsoft Windows Programmer's Reference, Volume 2.

OLESTATUS DefLoadFromStream(lpstream, lpszProtocol, lpclient,
lhclientdoc, lpszObjname, lplpobject, objtype, aClass, cfFormat);

LPOLESTREAM lpstream; /* address of stream for object */
LPSTR lpszProtocol; /* address of string for protocol name */
LPOLECLIENT lpclient; /* address of client structure */
LHCLIENTDOC lhclientdoc; /* long handle of client document */
LPSTR lpszObjname; /* string for object name */
LPOLEOBJECT FAR * lplpobject; /* address of pointer to object */
LONG objtype; /* OT_LINKED or OT_EMBEDDED */
ATOM aClass; /* atom containing object's class name */
OLECLIPFORMAT cfFormat; /* private data format for rendering */
If DllLoadFromStream calls DefLoadFromStream, DllLoadFromStream should pass it the three additional
parameters along with the other parameters from the version of DefLoadFromStream that was exported by
the client library. DllLoadFromStream can modify some of these parameters before passing them back to
DefLoadFromStream. For example, the object handler could modify the value of the cfFormat parameter
to specify a private data format it would use to render the object.

When the client calls the object handler with DefLoadFromStream, the handler uses the Get function from
the OLESTREAMVTBL structure to obtain the data for the object.

Direct Use of Dynamic Data Exchange
The OLE libraries, OLECLI.DLL and OLESVR.DLL, use DDE messages to communicate with each
other. Although client and server applications can use DDE directly, without employing OLECLI.DLL or
OLESVR.DLL, this method of implementing OLE is not recommended. Future enhancements to the OLE
libraries will benefit applications that use the libraries but will not benefit applications that use DDE
directly.

The following information about the DDE-based OLE protocol is provided for applications that must
implement DDE directly, despite losing the ability to take advantage of future enhancements to the system.

Implementation of the OLE protocol requires implementation of the underlying DDE protocol. All the
standard DDE rules and facilities apply. Applications that conform to this protocol must also conform to
the DDE specification. Conforming to this specification implies supporting the System topic and the
standard items in that topic.

Client Applications and Direct Use of Dynamic Data Exchange

When opening a link or an embedded document, the client application should look up the class name in
the registration database, as described in Registration.

The following pseudocode illustrates the chain of events for a client implementing OLE through DDE.
Whenever a client that attempts to establish a conversation with a server receives responses from more
than one server, the client should accept the first server and reject the others.

Linked object:

WM_DDE_INITIATE class name, document name
if not found {

WM_DDE_INITIATE class name, OLESystem
if not found {

WM_DDE_INITIATE class name, System
if not found {

launch application name, /Embedding
fLaunched = true
WM_DDE_INITIATE class name, OLESystem
if not found {

WM_DDE_INITIATE class name, System
if not found

return error
}
}

}

/*
* Now there is a conversation with the server on the System or
* OLESystem topic.
*/

WM_DDE_EXECUTE StdOpenDocument(DocumentName)
WM_DDE_INITIATE class name, document name
if not found {

if(fLaunched) WM_DDE_EXECUTE StdExit /* clean up */
return error
}
}

/*
* Now there is a conversation with the correct document.
*/

Embedded object:

WM_DDE_INITIATE class name, OLESystem
if not found {

WM_DDE_INITIATE class name, System

if not found {
launch application name, /Embedding
fLaunched = true
WM_DDE_INITIATE class name, OLESystem
if not found {

WM_DDE_INITIATE class name, System
if not found

return error
}

}
}

/*
* Now there is a conversation with the server on the system or
* OLESystem topic.
*/

DDE_EXECUTE StdEditDocument(DocumentName)

/*
* Or StdCreateDoc if this is an Insert Object command
*/

WM_DDE_INITIATE class name, document name
if not found {

if(fLaunched) DDE_EXECUTE StdExit/* clean up */
return error
}

/* Now there is a conversation with the correct document. */

Server Applications and Direct Use of Dynamic Data Exchange

When a server receives the /Embedding command-line argument, it should not create a new default
document. Instead, it should wait until the client sends either the StdOpenDocument command or the
StdEditDocument command followed by the Native data and then instructs the server to show the
window. The server can use the StdHostNames item to display the client's name in the window title.

The following pseudocode illustrates the chain of events for a server implementing OLE through DDE.
The example shows two cases: one in which the server reuses a single instance for editing all objects (in
MDI child windows), and another in which a new instance is used for each object. Applications that use
a new instance for each object should reject requests to open or create a new document when they
already have a document open.

MDI application:

case WM_DDE_INITIATE:
if class name == this class {
if (DocumentName == OLESystem || DocumentName == System)

WM_DDE_ACK
else if DocumentName == name of some open document

WM_DDE_ACK
}

Multiple-instance application:

case WM_DDE_INITIATE:
if class name == this class {
if (DocumentName == OLESystem || DocumentName == System) {

if no documents are open
WM_DDE_ACK
}
else if DocumentName == name of some open document

WM_DDE_ACK
}

Conversations

Document operations are performed during conversations with an application's OLESystem or System
topic. The document's class name is used to establish the conversation.

Data transfer and negotiation operations are performed during conversations with the document (that is,
the topic). The document name is used to establish the conversation.

Note that the topic name is used only in initiating conversations and is not fixed throughout the
conversation; permitting the document to be renamed does not mean that there will be two names.
Therefore, it is reasonable to tie the topic name to the document name.

Items for the System Topic

An application using DDE-based OLE can use three new items for the System topic: the Topics item,
the Protocols item, and the Status item.

The Topics item returns a list of DDE topic names that the server application has open. Where topics
correspond to documents, the topic name is the document name.

The Protocols item returns a list of protocol names supported by the application. The list is returned in
tab-separated text format. A protocol is a defined set of DDE execute strings and item and format
conventions that the application understands. The protocol currently defined for linked and embedded
objects is the following:

Protocol: StdFileEditing commands/items/formats

For compatibility with client applications that were written before the implementation of the OLE
protocol, server applications that use the DDE protocol directly should also include the string Embedding
in the list of protocols.

The Status item is a text item that returns Ready if the server is prepared to respond to DDE requests;
otherwise, it returns Busy. This item can be queried to determine if the client should offer such functions
as one that gives the user an opportunity to update the object. Because it is possible that a server could
reject or defer a request even if Status returns Ready, client applications should not depend solely on the
Ready item.

Standard Item Names and Notification Control

Applications supporting OLE with direct DDE use four clipboard formats in addition to the regular data
and picture formats. These are ObjectLink, OwnerLink, Native, and Binary. Binary format is a stream of
bytes whose interpretation is implicit in the item; for example, the EditEnvItems, StdTargetDevice, and
StdHostNames items are in Binary format. The ObjectLink, OwnerLink, and Native formats are
described in Clipboard Conventions.

New items available on each topic other than the System topic are defined for this protocol. These items
are the following:

Item Description
StdDocumentName Contains the permanent document name associated with the topic. If no

permanent storage is associated with the topic, this item is empty. This item
supports both request and advise transactions and can be used to detect the
renaming of open documents.

EditEnvItems Returns a list in tab-separated text format of the items that contain
environmental information supported by the server for its documents.
Currently defined items are StdHostNames, StdDocDimensions, and
StdTargetDevice. Applications can declare other items (and define their
interpretations if Binary format is used) to permit clients that are informed of
these items to provide more detailed information. Servers that cannot use
particular items should omit their names from the EditEnvItems item. Clients
should use the WM_DDE_REQUEST message with this item to find out
which items the server can use and should supply the data through a
WM_DDE_POKE message.

StdHostNames Accepts information about the client application, in Binary format
interpreted as the following structure:

struct {
WORD clientNameOffset;
WORD documentNameOffset;
BYTE data[];

} StdHostNames;
The offsets are relative to the start of the data array. They indicate the
starting point for the appropriate information in the array.

StdTargetDevice Accepts information about the target device that the client is using. This
information is in Binary format, interpreted as the following structure.
Offsets are relative to the start of the data array.

typedef struct _OLETARGETDEVICE {
WORD otdDeviceNameOffset;
WORD otdDriverNameOffset;
WORD otdPortNameOffset;
WORD otdExtDevmodeOffset;
WORD otdExtDevmodeSize;
WORD otdEnvironmentOffset;
WORD otdEnvironmentSize;
BYTE otdData[];

} OLETARGETDEVICE;
StdDocDimensions Accepts information about the size of a document. This information is in

Binary format, interpreted as the following structure. These values are
specified in MM_HIMETRIC units.

struct {
int iXContainer;
int iYContainer;

} StdDocDimensions;
StdColorScheme Returns the colors that the server is currently using and accepts information

about the colors that the client requests the server to use. This information is
in Binary format, interpreted as a LOGPALETTE structure.

null Specifies a request or advise transaction on all data contained in the topic.
This item is a zero-length item name.

The update method used for advise transactions on items follows a convention in which an update
specifier is appended to the actual item name. The item is encoded as follows:

itemname/update type

For backward compatibility, omitting the update type has the same result as specifying /Change. The
update type placeholder may be filled with one of the following values:

Value Meaning
/Change Notify for each change.
/Close Notify when document is closed.
/Save Notify when document is saved.

DDE server applications are required to save each occurrence of a WM_DDE_ADVISE message that
specifies a unique combination of itemname, update type, format, and conversation. A notification is
disabled by a WM_DDE_UNADVISE message with corresponding parameters. If the
WM_DDE_UNADVISE message does not specify a format, it disables the oldest notification in first in,
first out (FIFO) rotation.

Standard Commands in DDE Execute Strings

The syntax for standard commands sent in execute strings is the same as for other DDE commands:

command(argument1,argument2,...)[command2(argument1,argument2,...)]

Commands without arguments do not require parentheses. String arguments must be enclosed in double
quotes.

International Execute Commands

DDE execute strings are typically sent from a macro language in an external application and are
typically localized. OLE execute commands, however, are sent by application programs for their own
purposes, need not be localized, and must be commonly recognized.

The OLE standard execute commands should not be localized; the U.S. spelling and separator characters
are used. Therefore, the following rules apply:

Client applications and the client library send standard execute commands in U.S. form.
The server library must receive the U.S. form for these commands.
Servers written directly to the DDE-level protocol should parse the U.S. form, if they have no

additional commands.
Servers that support both OLE and localized DDE execute commands should first parse the string

by using localized separators. If this fails, they should parse it again using the U.S. form and, if successful,
should execute the command. Optionally, if the command is received in the U.S. form, the server can check
that the command is one of the valid standard commands.

Required Commands

This section lists commands that must be supported by server applications.

The StdNewDocument, StdNewFromTemplate, StdEditDocument, and StdOpenDocument commands
all make the document available for DDE conversations with the name DocumentName. They do not
show any window associated with the document; the client must send the StdShowItem and
StdDoVerbItem commands, or the StdDoVerbItem command alone to make the window visible. This
enables the client to negotiate additional parameters with the server (for example, the StdTargetDevice
item) without causing unnecessary repaints.
StdNewDocument(ClassName, DocumentName)

Creates a new, empty document of the given class, with the given name, but does not save it. The
server should return an error value if the document name is already in use. When the client receives
this error, it should generate another name and try again.

The server should not show the window until it receives a StdShowItem command. Waiting for the
client to send the StdShowItem and StdDoVerbItem commands makes it possible for the client to
negotiate additional parameters (for example, by using StdTargetDevice) without forcing the
window to repaint.

StdNewFromTemplate(ClassName, DocumentName, TemplateName)
Creates a new document of the given class with the given document name, using the template with
the given permanent name (that is, filename).

The server should not show the window until it receives a StdShowItem command. Waiting for the
client to send a StdShowItem command makes it possible for the client to negotiate additional
parameters (for example, by using StdTargetDevice) without forcing the window to repaint.

StdEditDocument(DocumentName)
Creates a document with the given name and prepares to accept data that is poked into it with
WM_DDE_POKE. The server should return an error if the document name is already in use. When
the client receives this error, it should generate another name and try again.

The server should not show the window until it receives a StdShowItem command. Waiting for the
client to send a StdShowItem command makes it possible for the client to negotiate additional
parameters (for example, by using StdTargetDevice) without forcing the window to repaint.

StdOpenDocument(DocumentName)
Sent to the System topic. This command opens an existing document with the given name.

The server should not show the window until it receives a StdShowItem command. Waiting for the
client to send a StdShowItem command makes it possible for the client to negotiate additional
parameters (for example, by using StdTargetDevice) without forcing the window to repaint.

StdCloseDocument(DocumentName)
Sent to the System topic. This command closes the window associated with the document.
Following acknowledgment, the server terminates any conversations associated with the document.
The server should not activate the window while closing it.

StdShowItem(DocumentName, ItemName [, fDoNotTakeFocus])
Sent to the System topic. This command makes the window containing the named document visible
and scrolls to show the named item (if any). The optional third argument indicates whether the
server should take the focus and bring itself to the front. This argument should be TRUE if the server
should not take the focus; otherwise, it should be FALSE. The default value is FALSE.

StdExit
Shuts down the server application. This command should be used only by the client application that
launched the server. This command is available in the System topic only.

StdExit is sent to shut down an application if an error occurs during the startup phase or if the client
started the server for an invisible update. If servers have unsaved data opened by the user, they
should ignore this command.

Variants on Required Commands

The following variants of the above commands may be sent to the document topic rather than the
System topic. This allows a client that already has a conversation with the document to avoid opening an
additional conversation with the system. The document name is omitted from these commands because
it is implied by the conversation topic and because it may have been changed by the server. This kind of
name change does not invalidate the conversation. The client should not be forced to keep track of the
name change unnecessarily. However, the server must be able to use the conversation information to
identify the document on which to operate.
StdCloseDocument

Sent to the document conversation. This command closes the document associated with the
conversation without activating it. This command causes a WM_DDE_TERMINATE message to be
posted by the server window following the acknowledgment.

StdDoVerbItem(ItemName, iVerb, fShow, fDoNotTakeFocus)
Sent to the document conversation. This command is similar to the StdShowItem command, except
that it includes an integer indicating which of the registered operations to perform and a flag
indicating whether to show the window. The server can ignore the fShow flag, if necessary.

StdShowItem(ItemName [, fDoNotTakeFocus])
Sent to the document conversation. This command shows the document window, scrolling if
necessary to bring the item into view. If the item name is NULL, scrolling does not occur. The
optional second argument indicates whether the server should take the focus and bring itself to the
front. This argument should be TRUE if the server should not take the focus; otherwise, it should be
FALSE. The default value is FALSE.

The Windows Shell Overview (3.1)
This topic describes features of the shell for the Microsoft Windows operating system. The following
features are supported by the dynamic-link library SHELL.DLL:

Association Functions
Drag-Drop
Icon Extraction
Registration Database

Registration Database
The registration database is a systemwide source of information about applications. This information is
used to support the integration of applications with Windows File Manager and is used by applications that
support object linking and embedding (OLE).

An application can use the registration database to store the following information:
The name of the executable file that is associated with a given filename extension
The command line to execute--or dynamic data exchange (DDE) messages to send--when the user

opens a file from Windows shell applications (File Manager or Program Manager)
The command line to execute--or DDE messages to send--when the user prints a file from File

Manager
Details about the implementation of OLE if the application is an OLE server

The registration database is a standard part of Windows version 3.1. Any Windows version 3.0 application
that supports OLE also uses the registration database. The registration database is not meant as a place for
applications to store private data. Applications should use private initialization files for data that is not
defined or that is not needed either by the Windows 3.1 shell applications or by OLE applications.

For most applications, the developer uses Microsoft Windows Registration Editor (REGEDIT.EXE) to
edit the registration database and produce a registration (.REG) file that contains readable text strings
corresponding to database entries. This .REG file can be merged into the user's registration database when
the application is installed. For more information about merging text files with the database, see Format of
Registration Files.

Structure of the Database

The registration database is stored in binary format in a file named REG.DAT. This file is saved in the
user's Windows directory.

Data in the registration database is in the form of a hierarchically structured tree. Each node in the tree is
identified by a key name. Each key name is a string from the set of printable ASCII characters (values
32 through 127). Key names cannot include a space, a backslash (\), or a wildcard (* or ?). Key names
beginning with a period (.) are reserved.

Any key name can also be associated with a text string that provides further information about that key.
The text string can contain any character from the set of printable ASCII characters. These text strings
are also called values.

Each key name is unique with respect to the key that is immediately above it in the hierarchy. For
example, the open and print keys are often subkeys of the key named shell. Both open and print might
have subkeys named command, but open could not have two subkeys named command.

The system defines a standard entry for the root level of the database: HKEY_CLASSES_ROOT. Root-
level key names that begin with a period are reserved by the system. Database entries that are
subordinate to the HKEY_CLASSES_ROOT key define types (or classes) of documents and the
properties that are associated with these classes. Information stored under HKEY_CLASSES_ROOT is
used by Windows shell applications and by OLE applications.

The following table shows the structure of a typical REG.DAT file. In this table, bold characters
designate reserved words and italic characters designate words or phrases that vary with the registering
application.
HKEY_CLASSES_ROOT

.ext class name
ClassName class description
shell
open
command command line for opening application
ddeexec DDE command used when opening document

application DDE app name for starting conversation
topic topic of the DDE conversation
ifexec DDE command if initiate fails

print
command command line for opening application
ddeexec DDE command used when printing document

application DDE app name for starting conversation
topic topic of the DDE conversation
ifexec DDE command if initiate fails

protocol

StdFileEditing
server command line for opening application
handler path and filename for handler DLL
verb play or edit
Future versions of the database will include more reserved words. To avoid conflict with future versions,

applications should record information that is not used by the Windows shell or OLE in private
initialization files.

Standardized keys help an application navigate in the database. When an application has found the key for
a feature, it typically uses the text string associated with that key. (As shown in the preceding list,
however, not all keys have text strings.) For example, if an application needs to display the name of an
application in a dialog box, the application might use the ClassName key to find the class description
text string. The class name is often an abbreviated string, for application use only, whereas the class
description is the full name of the application and is presented in the user interface.

Some standard entries to the database that are occasionally used by OLE server applications are not noted
in the preceding list. For more information about these standard entries, see Object Linking and
Embedding Overview.

The following illustration shows how Windows Paintbrush is registered in REG.DAT (as displayed when
REGEDIT.EXE is started with the /v option).

Format of Registration Files
For most applications, the developer creates a registration (.REG) file that contains the database entries.

Registration Editor (REGEDIT.EXE) can then be used to merge the .REG file into the user's REG.
DAT file when the application is installed on the user's system.

The following example shows the format of a .REG file that would set up Microsoft Paintbrush with the
entries shown in Figure 7.1:

REGEDIT
This is a comment line.
HKEY_CLASSES_ROOT\PBrush = Paintbrush Picture
HKEY_CLASSES_ROOT\.bmp = PBrush
HKEY_CLASSES_ROOT\.msp = PBrush
HKEY_CLASSES_ROOT\.pcx = PBrush
HKEY_CLASSES_ROOT\PBrush\shell\print\command = pbrush.exe /p %1
HKEY_CLASSES_ROOT\PBrush\shell\open\command = pbrush.exe %1
HKEY_CLASSES_ROOT\PBrush\protocol\StdFileEditing\verb\0 = Edit
HKEY_CLASSES_ROOT\PBrush\protocol\StdFileEditing\server = pbrush.exe
The first line of the file must be REGEDIT, as shown. Any subsequent lines that do not begin with
HKEY_CLASSES_ROOT are currently treated as comments by REGEDIT.EXE. For compatibility with
future versions of the database, however, a comment should not begin with a backslash (\) character or
with the string HKEY. Each line to be added to the database must begin with a full key name. To create a
key with an associated text string, the key name must be followed by at least one space, an equal sign (=),
another space, and the string. Characters following the equal sign and single space are treated as the value
of the key.

When SHELL.DLL encounters the string %1 in a command, it replaces that string with the name of the
document being opened or printed.

A .REG file cannot be larger than 64K.

The setup procedure for the registering application typically merges this file with the user's REG.DAT file
by running REGEDIT.EXE with the /s option. (Applications that must update the database with Windows
3.0 can use REGLOAD.EXE instead of REGEDIT.EXE to merge the files. REGLOAD.EXE is smaller
than REGEDIT.EXE and does not require the common dialog box dynamic-link library COMMDLG.
DLL.)

Class Registration

Database entries that are one level below the HKEY_CLASSES_ROOT root-level entry are defined as
classes of documents. The exception to this definition is the .ext class.

Database entries that are subordinate to the class-definition entries describe the properties of a class. The
database can describe two kinds of document properties for each class of document: shell properties and
protocol properties.

Registering Filename Extensions

The .ext key name defines all files with that extension as members of a specified class. The registering
application specifies the document class for an extension in the text string associated with the .ext key
name.

Unlike other second-level key names, the .ext key name is not a class definition. Instead, it helps
associate a class with a specific filename extension. For example, a word processor application can
define a .DOC filename extension with the text string wpdoc. Then, when the word processor uses
wpdoc as the class name for its documents, the .DOC extension is associated with that class.

The class name is the same name used by an OLE server application when it registers itself. For
example, if a voice-annotation application named TALK.EXE registered as an OLE server, the
information would look like this:

HKEY_CLASSES_ROOT\.tlk = Talk
HKEY_CLASSES_ROOT\Talk = Talk Voice Annotation

Filename extensions are recorded both in the database and in the [extensions] section of WIN.INI when
the user records a filename association in the Associate dialog box. The Associate dialog box is displayed
when the user chooses the Associate command from the File menu in File Manager. (Although File
Manager automatically records the information in both places, SHELL.DLL does not. Applications that
register filename extensions in the registration database should also record the information in WIN.INI, to
provide compatibility with applications written before Windows 3.1.)

File Manager uses the filename associations recorded in WIN.INI if the information is not found in the
registration database. If information is duplicated in the database and WIN.INI, File Manager uses the
information in the database.

Shell Properties

Shell properties describe how a document of a given class interacts with Windows shell applications.
There are two key names for shell properties: open and print. The open properties describe how the class
responds to a request from a Windows shell application to open a document. The print properties
describe how the class responds to a request from Print Manager to print a document.

Both the open and print key names must have the command subkey. The value assigned to command
specifies the command line used to run the application. If appropriate, this value can include command-
line options.

If an application supports DDE, it can also define the ddeexec subkey for either or both of the open and
print key names. The text string given with the ddeexec key name is treated as a DDE command.
Defining ddeexec is particularly useful if an application already supports DDE open and print
commands. Using DDE messages can add flexibility, particularly for applications that support the
multiple document interface (MDI), because a DDE message string can include more than one
command.

The ddeexec key has three predefined subkeys: application, topic, and ifexec.

The text string given with the application key name specifies the application name to use in establishing
the DDE conversation. If the registering application does not specify an application key, the shell uses
the application name specified in the command key.

The text string given with the topic key name specifies the topic name of the DDE conversation. If the
application does not register a topic key, the shell uses the System topic as the default topic name.

The text string given with the ifexec key name defines the DDE command to use when initiation of the
DDE conversation fails (for example, if the application is not running). When the initiation fails, the
command specified by the command key is carried out and then the string specified with the ifexec key
is sent. (If an application does not specify a value for the ifexec key, the command specified by the
command key is executed when initiation fails and the string specified with the ddeexec key is sent
again.)

Opening Files

An application should open a file in a new instance of the associated application, even if the application
supports MDI. If the user has already opened the file, applications typically give the focus to the
window with the file instead of obtaining a new copy of the file.

If an MDI application does not use memory efficiently when multiple instances of the application are
running, the application can open the file in the existing instance, as a new MDI window.

Printing Files

After opening the file as described in the preceding section, the application should carry out the print
command. Whenever possible, applications should display the Print dialog box to give the user the
opportunity to customize the print job. If this is not possible, the file should be printed immediately.
Once the file is printed or the user chooses to cancel the print job, the application should close. (If the
file was opened as a new MDI window, the application typically closes the window, rather than the
entire application, when the print job has finished.)

Protocol Properties

A protocol is a convention for manipulating a document or some other collection of data. Database
entries that are subordinate to the protocol key name describe the properties of a protocol. Although a
class can support any number of protocols, currently only one is defined. This protocol, StdFileEditing,
is used by documents that support OLE.

The StdFileEditing protocol has three subkeys: server, handler, and verb.

The text string given with the server key name is a command line that an OLE client application uses to
start the server application for a linked or embedded object.

The text string given with the handler key name is the name of a dynamic-link library that acts as an
object handler for OLE objects. For more information about object handlers, see Object Linking and
Embedding.

The verb key name has subkeys that identify the kind of action a server should take when it opens an
object. These subkeys are consecutive numbers, beginning with zero. The 0 subkey corresponds to the
primary verb for the objects supported by the server. For example, 0 often means Edit and 1 often means
Play. For more information about verbs, see Object Linking and Embedding.

For example, if an application named NewApp could not use REGEDIT.EXE to set up its protocol
properties, it could set them up by using the following example:

HKEY hkProtocol;
if (RegCreateKey(HKEY_CLASSES_ROOT, /* root*/

"NewAppDocument\\protocol\\StdFileEditing", /* protocol string *
/

&hkProtocol) != ERROR_SUCCESS) /* protocol key handle */
return FALSE;

RegSetValue(hkProtocol,/* handle to protocol key */
"server",/* name of subkey*/
REG_SZ, /* required */
"newapp.exe", /* command to activate server */
10);/* text string size */

RegSetValue(hkProtocol,/* handle to protocol key */
"handler", /* name of subkey*/
REG_SZ, /* required */
"nwappobj.dll", /* name of object handler */
12);/* text string size */

RegSetValue(hkProtocol,/* handle to protocol key */
"verb\\0", /* name of subkey*/
REG_SZ, /* required */
"Edit", /* server should edit object */
4); /* text string size */

RegCloseKey(hkProtocol); /* close protocol key and subkeys */
Server Registration in WIN.INI

When an application creates a server protocol property and saves this key in REG.DAT, SHELL.DLL
also puts this information into the WIN.INI initialization file. Some applications that use linked and
embedded objects were developed before the implementation of the registration database. The
information in WIN.INI allows such an application to find the command line that starts the server for an
object. Server registration entries in WIN.INI are also written to the registration database whenever the
user starts Windows.

The server registration entries in WIN.INI are in a section headed [embedding]. If an [embedding]
section does not already exist when a registering application calls the RegCloseKey function for a key,
SHELL.DLL creates it. When an application calls RegCloseKey, every class-definition key in REG.
DAT that is not already in the [embedding] section is added to WIN.INI, not simply the key for which
RegCloseKey was called.

The server information in WIN.INI is recorded in the following form:

[embedding]
ClassName=comment,textual class name,path/arguments,Picture

The keyword Picture indicates that the server can produce metafiles for use when rendering objects.
Because commas are used as field separators, none of the fields can contain a comma.

A server can register only the name and arguments for its executable file, rather than the entire path, if the
application is always installed in a directory that is mentioned in the PATH environment variable. Usually,
registering the path and filename is less ambiguous than registering only the filename.

When the database is opened, the shell library reads the [embedding] section of WIN.INI and updates the
registration database with any new information it contains. If the [embedding] section contains
information that conflicts with REG.DAT, the information in REG.DAT is overwritten. When the database
is closed, the shell library writes the information in REG.DAT back into the [embedding] section of WIN.
INI. This ensures that applications that depend on WIN.INI for information about linked and embedded
objects retrieve current information and that new OLE applications can simply read from and write to
REG.DAT.

Querying and Deleting Database Entries

An application can use the RegCreateKey and RegSetValue functions to add keys to the registration
database and the RegCloseKey function to indicate that a key is no longer needed by the application.
Other registration functions allow an application to query the contents of the database and delete keys.

An application can use the RegEnumKey function to determine the subkeys of a specified key. Because
the first parameter of RegEnumKey must be the handle of an open key, this function is typically
preceded by a call to the RegOpenKey function and followed by a call to RegCloseKey. (Because the
HKEY_CLASSES_ROOT key is always open, bracketing RegEnumKey with RegOpenKey and
RegCloseKey is not strictly necessary when HKEY_CLASSES_ROOT is specified as the first
parameter of RegEnumKey. Using RegOpenKey and RegCloseKey is a time optimization in this case,
however.) The RegQueryValue function retrieves the text string that has been associated with a key
name.

The following example uses the RegEnumKey function to put the values associated with top-level keys
into a list box:

HKEY hkRoot;
char szBuff[80], szValue[80];
static DWORD dwIndex;
LONG cb;
if (RegOpenKey(HKEY_CLASSES_ROOT, NULL, &hkRoot) == ERROR_SUCCESS) {

for (dwIndex = 0; RegEnumKey(hkRoot, dwIndex, szBuff,
sizeof(szBuff)) == ERROR_SUCCESS; ++dwIndex) {
if (*szBuff == '.')
continue;
cb = sizeof(szValue);
if (RegQueryValue(hkRoot, (LPSTR) szBuff, szValue,

&cb) == ERROR_SUCCESS)
SendDlgItemMessage(hDlg, ID_ENUMLIST, LB_ADDSTRING, 0,
(LONG) (LPSTR) szValue);

}
RegCloseKey(hkRoot);

}
The following example uses the RegQueryValue function to retrieve the name of an object handler and
then calls the RegDeleteKey function to delete the key if its value is nwappobj.dll:

char szBuff[80];
LONG cb;
HKEY hkStdFileEditing;

if (RegOpenKey(HKEY_CLASSES_ROOT,
"NewAppDocument\\protocol\\StdFileEditing",
&hkStdFileEditing) == ERROR_SUCCESS) {
cb = sizeof(szBuff);
if (RegQueryValue(hkStdFileEditing,

"handler",
szBuff,
&cb) == ERROR_SUCCESS
&& lstrcmpi("nwappobj.dll", szBuff) == 0)
RegDeleteKey(hkStdFileEditing, "handler");
RegCloseKey(hkStdFileEditing);

}

Drag-Drop Feature
When an application implements the drag-drop feature, a user can select one or more files in File Manager,
drag them to an open application, and drop them there. The application in which the files were dropped
receives a message it can use to retrieve the filenames and the coordinates of the point at which the files
were dropped.

The drag-drop feature depends upon SHELL.DLL. The drag-drop feature does not depend in any way on
the registration database, however.

An application that can accept dropped files from File Manager calls the DragAcceptFiles function for one
or more of its windows. Then, when the user releases the mouse button to drop a file or files in the window
specified in the call to DragAcceptFiles, File Manager sends the application a WM_DROPFILES message.
(File Manager does not send the WM_DROPFILES message to an application unless the application calls
DragAcceptFiles.) WM_DROPFILES contains a handle of an internal data structure the application can
query to retrieve the name of the dropped file and the coordinates of the position at which the cursor was
located when the file was dropped. The application can use the DragQueryFile function to retrieve the
number of files that were dropped and their names. The DragQueryPoint function returns the window
coordinates of the cursor when the user released the mouse button.

To free the memory allocated by the system for the WM_DROPFILES message, an application should call
the DragFinish function when it is finished.

For example, an application can call the DragAcceptFiles function when it starts and call a drag-drop
function when it receives a WM_DROPFILES message, as shown in the following example:

case WM_CREATE:
DragAcceptFiles(hwnd, TRUE);
break;

case WM_DROPFILES:
DragFunc(hwnd, wParam);
break;

case WM_DESTROY:
DragAcceptFiles(hwnd, FALSE);
break;

The following example uses the DragQueryPoint function to determine where to begin to write text. The
first call to the DragQueryFile function determines the number of dropped files. The loop writes the name
of each file, beginning at the point returned by DragQueryPoint.

POINT pt;
WORD cFiles, a;
char szFile[80];
DragQueryPoint((HANDLE) wParam, &pt);
cFiles = DragQueryFile((HANDLE) wParam, 0xFFFF, (LPSTR) NULL, 0);
for(a = 0; a < cFiles; pt.y += 20, a++) {

DragQueryFile((HANDLE) wParam, a, szFile, sizeof(szFile));
TextOut(hdc, pt.x, pt.y, szFile, strlen(szFile));

}
DragFinish((HANDLE) wParam);

Association Functions
File Manager includes an Associate dialog box that makes it possible for users to associate a filename
extension with a specific application. File Manager stores these associations in the registration database
and the WIN.INI initialization file. If a file has a filename extension that has been associated with an
application, that application starts automatically whenever a user double-clicks that file in File Manager.

Using the FindExecutable and ShellExecute functions, applications can take advantage of such
associations to find and start applications or open and print files.

An application can use the FindExecutable function to retrieve the name and handle of the executable file
that is associated with a specified filename. The ShellExecute function either opens or prints a specified
file, depending on the value of its lpszOp parameter. To open a document file, the function relies on the
association of the filename extension.

Extracting Icons from Executable Files
An application can use the ExtractIcon function to retrieve the handle of an icon from a specified
executable file, dynamic-link library, or icon file. The following example uses the DragQueryPoint
function to retrieve the coordinates of the point where a file was dropped, the DragQueryFile function to
retrieve the filename of a dropped file, and the ExtractIcon function to retrieve the handle of the first icon
in the file, if any:

HDC hdc;
HANDLE hCurrentInst, hicon;
POINT pt;
char szFile[80];
hCurrentInst = (HANDLE) GetWindowWord(hwnd, GWW_HINSTANCE);
DragQueryPoint((HANDLE) wParam, &pt);
DragQueryFile((HANDLE) wParam, 0, szFile, sizeof(szFile));
hicon = ExtractIcon(hCurrentInst, szFile, 0);
if (hicon == NULL)

TextOut(hdc, pt.x, pt.y, "No icons found.", 15);
else if (hicon = (HICON) 1)

TextOut(hdc, pt.x, pt.y,
"File must be .EXE, .ICO, or .DLL.", 33);

else
DrawIcon(hdc, pt.x, pt.y, hicon);

Tool Helper Library Overview (3.1)
The tool helper library (TOOLHELP.DLL) makes it easier for developers who work with the Microsoft
Windows 3.1 operating system to obtain system information and control system activity. This dynamic-
link library was designed to streamline the creation of Windows-hosted tools, specifically Windows-
hosted debugging applications. TOOLHELP.DLL is available to applications running with Windows
versions 3.0 and later.

To use the elements of TOOLHELP.DLL in an application, you must include the TOOLHELP.H header
file in the application source files, link the application with TOOLHELP.LIB, and ensure that
TOOLHELP.DLL is in the system path.

The following topics are related to the information in this topic:
Debugging
Memory management
Windows classes
Task management
Interrupts

Calling Tool Helper Functions

Most of the functions in TOOLHELP.DLL use structures to return information. The first member in
each of these structures is a doubleword value named dwSize. This value must be initialized before an
application calls the function that uses the structure; otherwise, the function fails.

The dwSize member enables new versions of TOOLHELP.DLL to include additional features without
breaking code written for structures in Windows versions earlier than 3.1.

The THSAMPLE.C sample program demonstrates how to use some of the functions in TOOLHELP.
DLL.

Accessing Internal Windows Lists

TOOLHELP.DLL includes functions that enable you to retrieve information from the internal Windows
lists. These lists include the class list, module list, and task queue.

Walking the Windows Class List

The ClassFirst function fills a CLASSENTRY structure with information about the first class on the
Windows class list. This information includes the name of the class and the instance handle of the task
that owns the class.

You use ClassFirst to begin a walk through the Windows class list. The ClassNext function continues
the walk by filling a CLASSENTRY structure with information about the next class on the Windows
class list.

You use the GetClassInfo function to obtain more specific class information. GetClassInfo requires the
instance handle provided by ClassFirst or ClassNext in the CLASSENTRY structure.

Walking the Windows Module List

The ModuleFirst function fills a MODULEENTRY structure with information about the first module on
the list of all currently loaded modules. This information includes the module name, handle, reference
count, path to the executable file, and so on.

You use ModuleFirst to begin a walk through the Windows module list. The ModuleNext function
continues the walk by filling a MODULEENTRY structure with information about the next module on
the list.

The ModuleFindHandle function fills a MODULEENTRY structure with information about a module
whose handle is known. The ModuleFindName function fills a MODULEENTRY structure with
information about a module whose name is known. You use ModuleFindHandle or ModuleFindName,
rather than ModuleFirst, to begin a walk through the Windows module list at a specific module, rather
than at the first module on the list.

Walking the Windows Task Queue

The TaskFirst function fills a TASKENTRY structure with information about the first task in the
Windows task queue. This information includes the task handle, SS register value, SP register value,
stack dimensions, number of pending events, PSP offset, and so on.

You use TaskFirst to begin a walk through the Windows task queue. The TaskNext function continues
the walk by filling a TASKENTRY structure with information about the next task in the task queue.

The TaskFindHandle function fills a TASKENTRY structure with information about a task whose
handle is known. You use TaskFindHandle, rather than TaskFirst, to begin a walk through the Windows
task queue at a specific task, rather than at the first task in the queue.

Obtaining Advisory Information

To simplify system analysis, TOOLHELP.DLL includes functions that retrieve general information
about the USER heap, GDI heap, memory manager, and virtual timer.

The SystemHeapInfo function fills a SYSHEAPINFO structure with information about the USER and
GDI heaps. This information includes the percentage of free space and the segment handle for each
heap.

The MemManInfo function fills a MEMMANINFO structure with status and performance information
about the memory manager. This information includes the size of the largest free memory object, the
maximum number of pages available, the maximum number of lockable pages, total linear space, total
unlocked pages, number of pages in the system swap file, and so on.

The TimerCount function fills a TIMERINFO structure with the execution times of the current task and
virtual machine (VM).

Walking the Global and Local Heaps

TOOLHELP.DLL includes functions that enable a developer to examine objects on the global and local
heaps.

Walking the Global Heap

The GlobalInfo function fills a GLOBALINFO structure with information about the global heap. This
information includes the total number of items, the number of free items, and the number of "least
recently used" (LRU) items on the global heap. The information enables the application to determine
how much memory to allocate for a global-heap walk. The application must allocate the memory before
starting the walk. If the application allocates any memory after starting the walk, the results of the heap
walk will be corrupt.

The GlobalFirst function fills a GLOBALENTRY structure with information about the first object on
the global heap. This information includes the structure size, the size and address of the object, the lock
count, and so on.

You use GlobalFirst to begin a walk through the global heap. The GlobalNext function continues the
walk by filling a GLOBALENTRY structure with information about the next object on the global heap.

The GlobalEntryHandle function fills a GLOBALENTRY structure with information about a global
object whose handle or selector is known. The GlobalEntryModule function fills a GLOBALENTRY
structure with information about a specific segment in a module. You use GlobalEntryHandle or
GlobalEntryModule, rather than GlobalFirst, to begin a walk through the global heap at a specific object,
rather than at the first object on the global heap.

Walking the Local Heap

The LocalInfo function fills a LOCALINFO structure with the total number of items on the local heap.
This information enables the application to determine how much memory to allocate for a local-heap
walk. The application must allocate the memory before starting the walk. If the application allocates any
memory after starting the walk, the results of the heap walk will be corrupt.

The LocalFirst function fills a LOCALENTRY structure with information about the first object on the
local heap. This information includes the structure size; the handle, address, and size of the object; the
lock count; and so on.

You can use LocalFirst to begin a walk through the local heap. The LocalNext function continues the
walk by filling a LOCALENTRY structure with information about the next object on the local heap.

Tracing the Windows Stack

The StackTraceFirst function fills a STACKTRACEENTRY structure with information about the first
stack frame for an inactive task. This information includes the stack-frame module handle, segment
number, register contents, frame type, and so on.

You use StackTraceFirst to begin a stack trace of an inactive task. The StackTraceNext function
continues the stack trace by filling a STACKTRACEENTRY structure with information about the task's
next stack frame.

The StackTraceCSIPFirst function fills a STACKTRACEENTRY structure with information about a
stack frame whose SS:BP and CS:IP values are known. You should use StackTraceCSIPFirst, rather
than StackTraceFirst, to begin a stack trace of an active task.

Examining and Modifying Memory Contents

TOOLHELP.DLL includes functions that enable you to examine and modify global memory contents
without consideration for selector tiling and aliasing or read-write attributes.

The MemoryRead function reads global memory at a specific selector and offset. The MemoryWrite
function writes to global memory at a specific selector and offset.

The GlobalHandleToSel function converts a global memory handle to a selector.

Installing Callback Functions

TOOLHELP.DLL includes functions that enable you to trap an application's interrupts and notifications.

The InterruptRegister function installs a callback function that handles all system interrupts. The
callback function must be reentrant and must explicitly preserve all register values. The
InterruptUnRegister function restores the default processing.

The NotifyRegister function installs a notification callback function for a specific task. Typically, the
notification callback function cannot use any Windows functions except the TOOLHELP.DLL functions
and the PostMessage function. The NotifyUnRegister function restores the default processing.

The exit code returned by a non-Windows application may reflect an error encountered by Windows
when it attempted to start the application, rather than a value returned by the application itself. These
error values are as follows:

Error value Cause
0x81 Could not start the application because of a file-access problem. This problem

originated either in the application or its PIF file. Following are likely reasons for this
error value:

File not found
Path not found
No file handles
Invalid drive
Access denied
Sharing violation
Invalid executable format

0x82 Could not start the application, because of insufficient memory or disk space.
0x83 Abnormal termination.
0x84 Could not start the application, because of incorrect version.
0x85 Could not start the application, because MS-DOS Interrupt 21h Function 4B00h (Load

and Execute Program) failed.
0x86 Could not start the application, because the TOOLHELP.DLL task-switching functions

prevented it from starting.

Controlling Process Execution

TOOLHELP.DLL includes four functions you can use to control process execution: TaskGetCSIP,
TaskSetCSIP, TaskSwitch, and TerminateApp. These functions are designed for use exclusively in
Windows-hosted debuggers.

When an inactive task is activated, it begins execution at the location specified by its CS:IP value. The
TaskSetCSIP function sets this value, and the TaskGetCSIP function returns the value.

The TaskSwitch function activates a specific task beginning at a specified CS:IP value.

The TerminateApp function terminates an application as if a general protection (GP) fault had occurred.

LZExpand Overview (3.1)
The Microsoft Windows operating system includes the dynamic-link library LZEXPAND.DLL. Typically,
an application calls functions in LZEXPAND.DLL to decompress data previously compressed by
Microsoft File Compression Utility (COMPRESS.EXE).

A version of LZEXPAND.DLL was shipped with Windows version 3.0. That version of LZEXPAND.
DLL does not contain the full set of functions that is included with the Windows 3.1 version. Applications
that could be installed on a system running Windows 3.0 should always check the version number of the
library to ensure that the correct version is being used. For more information about checking version
numbers, see the File Installation Library.

This topic describes important concepts relating to data compression and describes the decompression
functions in LZEXPAND.DLL.

Data Compression

Data compression is an operation that reduces the size of a file by minimizing redundant data. In a file
that contains text, redundant data could be frequently occurring characters, such as the space character,
or common vowels, such as the letters e and a; it could also be frequently occurring character strings.
Data compression operations create a compressed version of a file by minimizing this redundant data.

Each of the many types of data-compression operations minimizes redundant data in a unique manner.
For example, the Huffman encoding algorithm assigns a code to characters in a file based on how
frequently those characters occur. Another compression algorithm, called run-length encoding, generates
a two-part value for repeated characters: The first part specifies the number of times the character is
repeated, and the second part identifies the character. Another compression algorithm, known as the
Lempel-Ziv algorithm, converts variable-length strings into fixed-length codes, which consume less
space than the original strings.

To compress large applications or data files, you can run COMPRESS.EXE from the Microsoft MS-
DOS®command line. COMPRESS.EXE uses the Lempel-Ziv compression algorithm.

Data Decompression

Applications can call the functions in LZEXPAND.DLL to decompress files compressed with
COMPRESS.EXE. The functions can also process uncompressed files without attempting to decompress
them. To use these functions, include the LZEXPAND.H header file. To use the static-link libraries,
define LIB before including LZEXPAND.H.

For a list of functions contained in LZEXPAND.DLL, see the Lempel-Ziv Encoding Functions topic.

Decompressing a Single File

An application can decompress a single compressed file by performing the following tasks:
1 Open the compressed file by calling the LZOpenFile function or a combination of the OpenFile and

LZInit functions.

2 Open the destination file by calling the LZOpenFile or OpenFile function.
3 Copy the source file to the destination file by calling the LZCopy function and passing the handles

returned by LZOpenFile (or LZInit).

4 Close the files by calling the LZClose function.

Decompressing Multiple Files

An application can decompress multiple files by performing the following tasks:
1 Open the source file by calling the LZOpenFile function or a combination of the OpenFile and

LZInit functions.

2 Open the destination file by calling the LZOpenFile or OpenFile function.
3 Allocate memory for the copy operation by calling the LZStart function.

4 Copy the source files to the destination files by calling the CopyLZFile function.
5 Release the allocated memory by calling the LZDone function.

6 Close the files by calling the LZClose function.

Reading Bytes from Compressed Files

In addition to decompressing a complete file at a time, an application can decompress compressed files a
portion at a time by using the LZSeek and LZRead functions. These functions are particularly useful

when it is necessary to extract parts of large files. For example, a font manufacturer may have
compressed files containing font metrics in addition to character data. To use the information in these
files, an application would need to decompress the file; however, most applications would use only part
of the file at any particular time. When the user queried the font metrics, the application would extract
data from the header. When the user rendered text output, the application would reposition the file
pointer by calling LZSeek and extract the character data.

Stress Library (3.1)
The system resources stress-testing library (STRESS.DLL) is a dynamic-link library that artificially
consumes system resources, enabling developers to observe how an application behaves in scarce-
resource conditions. This library was designed to make scarce-resource testing easier and more realistic. It
is used by the STRESS.EXE utility.

System Resources Stress-Testing Library Functions

Following are the system resources affected by STRESS.DLL, with the functions that consume and
release each resource:

Resource Allocation function Release function
Global memory AllocMem FreeAllMem
GDI heap memory AllocGDIMem FreeAllGDIMem
User heap memory AllocUserMem FreeAllUserMem
Disk space AllocDiskSpace UnAllocDiskSpace
File handles AllocFileHandles UnAllocFileHandles

File Installation Overview (3.1)
The file installation library in the Microsoft Windows version 3.1 operating system makes it easier for
applications to install files properly and enables utility programs to analyze files that are currently
installed.

This overview is divided into three parts:

File Installation Concepts
Creating an Installation Program
Adding Version Information to a File

File Installation Concepts
The file installation library includes functions that determine where a file should be installed, identify
conflicts with currently installed files, and perform the installation process. These functions enable
installation programs to avoid the following problems:

Installing older versions of components over newer versions
Changing the language in a mixed-language system without notification
Installing multiple copies of a library in different directories
Copying files to network directories shared by multiple users

The file installation library also includes functions that enable applications to query a version resource for
information about a file and present the information to the user in a clear format. This information includes
the file's purpose, author, version number, and so on. (For more information about version resources, see
Adding Version Information to a File).

The file installation library is available for Windows and non-Windows applications. Windows
applications should use the dynamic-link library VER.DLL and the header file VER.H. Non-Windows
applications should use one of the following static-link libraries: VERS.LIB, VERC.LIB, VERM.LIB, or
VERL.LIB. Applications that use the static-link libraries should use the following line before including
VER.H:

#define LIB

Creating an Installation Program
An installation program typically has the following goals:

To place files in the correct location
To notify the user if the installation program is replacing an existing file with a version that is

significantly different--for example, replacing a German file with an English file, or replacing a newer file
with an older file

When writing the installation program, you must have the following information for each file on the
installation disk(s):

The name and location of the file (referred to as the source file).
The name of the equivalent file on the user's hard disk (referred to as the destination file). This

name is usually the same as the filename on the installation disk.
The sharing status of the file--that is, whether the file is private to the application being installed or

could be shared by multiple applications.

For each file on the installation disk(s), the installation program must, at least, call the VerFindFile and
VerInstallFile functions. These functions are described briefly in the rest of this section.

You use the VerFindFile function with the destination-file name to determine where the file should be
copied to on the disk. This function also enables you to specify whether the file is private to the
application or can be shared. If a problem occurs in finding the file, VerFindFile returns an error value. For
example, if Windows is using the destination file, VerFindFile returns VFF_FILEINUSE. The installation
program must notify the user of the problem and respond to the user's decision to continue or end the
installation.

The VerInstallFile function copies the source file to a temporary file in the directory specified by
VerFindFile. If necessary, VerInstallFile expands the file by using the functions in the data decompression
library, LZEXPAND.DLL.

VerInstallFile compares the version information of the temporary file to that of the destination file. If they
differ, VerInstallFile returns one or more error values. For example, it returns VIF_SRCOLD if the
temporary file is older than the destination file and VIF_DIFFLANG if the files have different language
identifiers or code-page values. The installation program must notify the user of the problem and respond
to the user's decision to continue or end the installation.

Some VerInstallFile errors are recoverable. That is, the installation program can call VerInstallFile again,
specifying the VIFF_FORCEINSTALL option, to install the file regardless of the version conflict. If
VerInstallFile returns VIF_TEMPFILE and the user chooses not to force the installation, the installation
program should delete the temporary file.

VerInstallFile could encounter a nonrecoverable error when attempting to force installation, even though
the error did not exist previously. For example, the file could be locked by another user before the
installation program tried to force installation. If an installation program attempts to force installation after
a nonrecoverable error, VerInstallFile fails. The installation program must deal with this situation.

The recommended solution is to display a common dialog box with the buttons Install, Skip, and Install
All for all errors. The Install All button should prevent the installation program from prompting the user
about similar errors by including the VIFF_FORCEINSTALL option in all subsequent uses of
VerInstallFile. For nonrecoverable errors, the Install and Install All buttons should be disabled.

To display a useful error message to the user, the installation program usually must retrieve information
from the version resources of the conflicting files. The file installation library provides four functions the
installation program can use for this purpose: GetFileVersionInfoSize, GetFileVersionInfo,
VerQueryValue, and VerLanguageName. The GetFileVersionInfoSize function returns the size of the
version information. The GetFileVersionInfo function then uses information retrieved by
GetFileVersionInfoSize to retrieve a structure that contains the information. The VerQueryValue function
retrieves a specific member from that structure.

For example, if VerInstallFile returns the VIF_DIFFTYPE error, the installation program should use
GetFileVersionInfoSize, GetFileVersionInfo, and VerQueryValue on the temporary and destination files
to obtain the general type of each file. If the languages of the files conflict, the installation program should
also use the VerLanguageName function to translate the binary language identifier into a text
representation of the language. (For example, 0x040C translates to the string French.)

If VerInstallFile returns a file error, such as VIF_ACCESSVIOLATION, the installation program should
use MS-DOS Interrupt 21h Function 59h (Get Extended Error) to obtain the most recent error value. The
program should translate this value into an informative message to display to the user. The program must
not yield control between calling VerInstallFile and calling Get Extended Error. If it does, the MS-DOS

error value could reflect a later error. (An error could also occur while the program is making the MS-
DOS call.)

Adding Version Information to a File
Version information can be added to any Windows file that can have Windows resources, such as a
dynamic-link library, an executable file, or a font file. To add the information, you must create a version
resource and add the resource to the file by using RC.

32-Bit Memory Management Library
One of the significant features of 80386 and 80486 processors is the availability of 32-bit registers for the
manipulation of code and data. Applications written to use these registers can avoid the segmented
memory model of earlier CPUs and instead use a flat memory model in which memory is viewed as a
single, contiguous block.

Although the Microsoft Windows operating system continues to adhere to a segmented 16-bit memory
model, Windows does provide a set of functions that allow an application to make use of the 32-bit
memory-addressing capabilities of the 80386 and 80486 processors. These functions are available to an
application through a dynamic-link library (DLL) named WINMEM32.DLL.

Your application's installation program should use the file installation library (VER.DLL) to ensure that it
does not install an older version of WINMEM32.DLL over a newer version. For more information about
VER.DLL, see File Installation Overview.

This topic introduces the functions contained in WINMEM32.DLL and explains how to use these
functions in the context of a Windows application. It covers the following information:

Some of the differences between a segmented memory model and a flat memory model
Use of WINMEM32.DLL to take advantage of the 32-bit memory-addressing capabilities of 80386

and 80486 processors
Programming considerations for use of 32-bit memory in a Windows application
Use of 32-bit memory in a Windows application
A directory of WINMEM32.DLL functions
Assembly-language examples illustrating how to use WINMEM32.DLL functions

You should be thoroughly familiar with the following information about 80386 and 80486 processors that
is not covered in this topic:

Terminology and concepts relating to the architecture
Code-management features
Memory-management features

Only developers with experience writing Windows applications and assembly language code should
attempt to use these functions in an application.

Segmented and Flat Memory Models

The family of processors that includes 80286, 80386, and 80486 processors implements a segmented
memory model in which system memory is divided into 64K segments. In the real mode of these
processors, the address of any byte consists of two 16-bit values: a segment address and an offset.
(Windows version 3.1 does not support real mode.) In the protected mode of the 80286, 80386, and
80486 processors, the segment address is replaced by a selector value that the processor uses to access
the 64K segment. In either mode, a memory object larger than 64K occupies all or part of several
segments. An application cannot access such an object as though it consisted of a single contiguous
block simply by incrementing a pointer to the memory. Instead, the application can increment only the
offset portion of the address, taking care not to exceed the 64K boundary of the segment.

The 80386 processor introduced 32-bit registers that parallel the 16-bit registers of older processors.
These registers make it possible for the first time to access memory in segments larger than 64K. In fact,
the maximum segment size is potentially so large (2^32 bytes) that a flat memory model utilizing a
single segment is now feasible. In this model, an application's code, data, or both occupy a single
segment. The application can manipulate the 32-bit offset portion of the memory as though it were a
simple pointer. The application can increment and decrement the offset portion of the memory
throughout the address space without having to deal with multiple segment boundaries.

To a certain extent, the flat memory model most closely resembles the tiny memory model, in which
both code and data occupy a single segment; of course, the segment is much larger than the 64K limit
imposed by the segmented memory model. As in the tiny memory model, the beginning of the segment
of the flat memory model can appear anywhere in memory. In other words, the segment-descriptor
portion of the address can refer to virtually any location in memory. As the application moves through
memory, the segment descriptor never changes. Only the offset is incremented and decremented to point
to different locations in memory.

The flat memory model makes it possible for you to ignore segments and segment registers. The
segment registers are loaded at the start of the 32-bit code and are then left alone. The rest of the
application runs in this purely 32-bit offset mode--all pointers are near pointers.

It is not possible to implement a Windows application by using an exclusively flat memory model.
Because Windows itself relies on the 16-bit segmented memory model, any application that interacts
with Windows must implement at least one 16-bit code segment. Despite this limitation, it is possible

for a Windows application to reside largely in one or more 32-bit code segments and to use 32-bit data
segments. The WINMEM32.DLL library makes this possible in a way that ensures the application
cooperates fully with Windows and similar platforms. For more information, see Flat Memory Model
Limitations.

Using the WINMEM32.DLL Library

Although you could directly implement code for a flat memory model in your Windows application, this
implementation would necessarily be unique to your application. As a result, your application might not
run with future versions of Windows or with other compatible platforms.

WINMEM32.DLL supplies a standard method for implementing a flat memory model that is guaranteed
to run with future versions of Windows and other compatible platforms. It gives your application access
to services for allocating, reallocating, and freeing 32-bit memory objects; for translating 32-bit pointers
to 16-bit pointers that can be used by Windows and MS-DOS functions; and for aliasing a data segment
to a code segment so you can execute code loaded into a 32-bit segment.

Your application can load WINMEM32.DLL when Windows is running in standard or 386 enhanced
mode. However, because the 32-bit registers of the 80386 or 80486 processor are available only when
Windows is in 386 enhanced mode, WINMEM32.DLL is enabled only in that mode. If your application
runs in standard mode, you must design your application so that it can access 16-bit memory instead of
32-bit memory. You can find out which mode Windows is running in by calling the GetWinFlags
function.

WINMEM32.DLL contains eight functions that enable your application to access 32-bit memory. The
following table summarizes each of these functions:

Function Description
GetWinMem32Version Returns the version number of the WINMEM32.DLL application

programming interface (API).
Global16PointerAlloc Converts a 32-bit pointer to a 16-bit pointer.
Global16PointerFree Frees a pointer alias created by the Global16PointerAlloc function.
Global32Alloc Allocates a 32-bit memory object.
Global32CodeAlias Creates a code-segment alias for a 32-bit memory object, allowing

code in the object to be executed.
Global32CodeAliasFree Frees a code-segment alias created by the Global32CodeAlias

function.
Global32Free Frees a 32-bit memory object.
Global32Realloc Changes the size of a 32-bit memory object.

A directory listing of these functions appears later in this topic.

Because WINMEM32.DLL is a standard Windows DLL, your application loads it as it would any other
DLL. Your application should be linked so that the case of the DLL entry point names is ignored.

The WINMEM32.DLL functions use the same calling conventions as other Windows functions. The DLL
entry points are external FAR PASCAL procedures. They preserve the SS, BP, DS, SI, and DI registers,
and they return values in AX register or DX:AX register pair.

Considerations for Using 32-Bit Memory

As previously noted, Windows adheres to the segmented memory model. That is, all far pointers are in
the form 16:16 consisting of a 16-bit segment selector, combined with a 16-bit offset within the
segment. An application using the 32-bit registers of the 80386 or 80486 processor cannot directly call
the Windows functions, because its far pointers are in the form 16:32 and Windows cannot work with
the extra 16 bits in the offset portion of the address.

Because of this conflict, a Windows application cannot reside exclusively in a 32-bit segment. It must
contain at least one 16-bit helper code segment through which it interacts with Windows (including
WINMEM32.DLL). In other words, all calls to Windows functions must be made in the helper code
segment. The helper segment contains the code that converts the 16:32 pointers in the 32-bit segment to
the 16:16 pointers used by Windows functions. This segment also performs the same tasks for the
application when the application makes calls to MS-DOS, to other DLLs, or to any other code that uses
16:16 pointers exclusively.

An important limitation on this helper segment is that it must not be discardable (although it can be
movable). If the segment is discarded and a 32-bit segment attempts to access the segment, an indirect
call into the Windows kernel module to reload the segment results. Because the source of this indirect
call is not a 16-bit segment, the system might crash.

Another important consideration is that in writing your application you must not assume anything about
the state of the 32-bit registers around 16:16 function calls. For instance, the Windows function calls
preserve SI and DI registers, but they presently do not preserve ESI and EDI registers. If the application
needs to preserve 32-bit registers around 16:16 function calls, it must explicitly push and pop the
register values around the calls. If the 32-bit code segment that calls a Windows function (by means of
the helper segment) needs ESI and EDI registers to be preserved when the Windows function returns,
the helper segment must explicitly save the registers before making the actual Windows function call.
The helper segment must then restore the registers when the Windows function returns.

This rule also applies to return values when a 32-bit segment indirectly calls a Windows function and
the caller requires a 32-bit return value. The helper segment must explicitly set the high-order 16 bits of
the return value when it moves it into the EAX register, as shown in the following examples:

movzx eax,ax ; unsigned return
movsx eax,ax ; signed return
All these considerations apply equally to calls to Windows DLLs, MS-DOS, and other 16-bit functions.

Flat Memory Model Limitations

In the Windows environment, system memory is a shared resource that Windows manages on behalf of
all applications. For this reason, a true flat memory model is not possible in the Windows environment.
When an application allocates 32-bit memory in Windows, the memory that Windows gives the
application can be located anywhere in physical memory. The memory to which the selector refers is
specific to the application and does not include systemwide memory locations. In other words, the
selector that the application receives does not refer to linear address 0. This means that offset 400h for
the selector does not point to the MS-DOS ROM BIOS data area, for example.

Windows applications do not need to address these systemwide memory locations directly, so there is no
need to map these locations in the 32-bit memory objects.

The Application Stack

Windows cannot operate in an environment of mixed segment types (including both 16:16 and 16:32
segments). As a result, the stack selector size must match the corresponding code selector size. When
the processor is executing code in a 16:32 (USE32) code segment, the selector in the SS register must
contain a 16:32 selector. When the processor is executing code in a 16:16 (USE16) segment, the SS
register must contain a 16:16 selector.

When the 80386 or 80486 processor is executing on a USE16 stack segment, it uses the low-order 16
bits of the ESP register as the SP register. Because only the low-order 16 bits are of use when the
processor is running on a USE16 stack segment, the processor does not control how the high-order 16
bits of the ESP register are set. As a result, the high-order 16 bits are set at random. When an application
switches to a USE32 stack segment, the ESP register contains a corrupted pointer unless the high-order
16 bits of ESP are set properly.

Suppose that a Windows application has a USE32 code segment and a USE16 helper segment, but
(improperly) only a USE32 stack. When the application calls from its USE32 code into the USE16
segment, the application continues to use its USE32 stack. The USE16 code segment calls a Windows
function, which changes the selector in the SS register to a USE16 selector. Because the stack is now
USE16, the high-order 16 bits of the ESP register are set at random. The code that originally switched
stacks then restores the original selector in SS and, lacking the information that the selector referred to a
USE32 stack, restores the 16-bit SP register instead of the full 32 bits of the ESP register. As a result,
the USE32 stack now has an invalid pointer in the ESP register.

There are a number of ways to deal with this problem. One solution is for an application to maintain two
separate stacks, one USE16 and the other USE32. Maintaining separate stacks requires you to include
extra code --for example, you must copy parameters for stack-calling conventions such as that used in C.
Another solution is to maintain one stack but two stack selectors, one USE16 and the other USE32, both
of which point to the same memory. This requires the USE32 stack to be restricted to ESP values less
than or equal to FFFFh.

In either case, the USE16 code segment must switch to the USE32 stack immediately before calling into
a USE32 code segment. When control returns from the USE32 code segment to the USE16 code
segment, the USE16 segment must switch back to the USE16 stack before doing anything else.

Because the problem with stack switching is the corruption of the high 16 bits of ESP, a Windows
application with 16:32 code must make sure that it sets the high 16 bits of ESP when it is switching to

the USE32 stack selector. It sets these bits by placing the selector into the SS register, as shown in the
following example:

mov ss,word ptr [Use32StackSel]
mov esp,dword ptr [Use32StackOffset]
mov ss,word ptr [Use32StackSel]
movzx esp,word ptr [Use32StackOffset]
mov ss,word ptr [Use32StackSel]
movzx esp,sp
Interrupt-Time Code

A 32-bit code segment in a Windows application must not contain code that is executed at interrupt
time. Also, it must not contain data that is accessed at interrupt time. Any code executed at interrupt
time must be in a USE16 code segment. The code must use a USE16 stack. Data used at interrupt time
must be USE16 data. This rule also applies to processor exceptions (such as the coprocessor exception)
because they are handled as interrupts are handled. Note, however, that it is acceptable for a 32-bit code
segment to access data in a USE16 data segment.

Programming Languages

The helper segment has to perform very low-level tasks to manage transitions between USE16 and
USE32 stacks and between USE16 and USE32 code. For this reason, it is difficult to use a high-level
language such as C to write the helper segment code. Even if you write the helper segment in C, you
must add assembly-language support for the more difficult tasks. In most cases, it is easier and more
efficient to write the entire helper segment in assembly language.

Using 32-Bit Memory in a Windows Application

There are three common uses for 32-bit memory in a Windows application. In increasing order of
complexity, they are:

Using 32-bit data objects in 16-bit code
Using 32-bit code and data in a subroutine library
Using 32-bit code and data for the main program

The remaining topics in this section briefly describe these uses.

Using 32-Bit Data Objects

The simplest use of 32-bit memory is to store data that is used exclusively by USE16 code segments. In
this case, the application does not require a dedicated helper segment because it contains no USE32 code
segments. Instead, each of its code segments performs the necessary tasks of allocating, reallocating, and
freeing the 32-bit memory. If data from the 32-bit memory is to be passed to Windows functions or
other 16-bit functions, the application calls the Global16PointerAlloc function so that the application's
USE16 code segment can perform the aliasing of 32-bit pointers to the 16-bit pointers.

Using 32-Bit Code and Data in a Subroutine Library

Using 32-bit segments for code and data can simplify porting an application from a 32-bit platform to
the Windows environment when portions of the application can be isolated as a subroutine library. This
subroutine library serves as a low-level engine but does not call Windows or MS-DOS functions.

As when the 32-bit memory is used exclusively for data storage, the USE16 code segment retains
control of the program. Typically, the USE16 segment allocates the 32-bit memory, creating one or
more objects for code and data. In addition to the data-management tasks described in Considerations
for Using 32-Bit Memory, the USE16 segment also loads the subroutine code into one of the 32-bit
segments, fixes up the pointers in the code as required, and creates a code-segment alias to permit the
code to be executed. The USE16 code segment is responsible for maintaining control of the program
flow, calling into the USE32 code segment when it requires the low-level services of the subroutine
library.

Using 32-Bit Code and Data for the Main Program

The most complex use of 32-bit memory involves placing the primary control of the program in a 32-bit
code segment. In this type of application, the USE16 segment is reduced to helper status exclusively.
During initialization, the USE16 segment allocates the 32-bit memory for code and data, loads the code
into the USE32 segment, creates a code-segment alias for the USE32 segment, and then calls the main
entry point in the USE32 segment.

From then on, the USE32 segment takes control of the program, calling into the USE16 helper segment
only when the application needs to call Windows or MS-DOS functions. The USE32 segment continues
to control the flow of the program until the application is ready to close. Only then does it return control
to the USE16 segment so the USE16 segment can free the 32-bit memory and perform other cleanup
tasks before the application quits.

Error Values

This section describes error values returned by the functions that applications can use for 32-bit memory
management. Most of these functions return zero to indicate success. The following table describes each
error value:

Value Meaning
WM32_Insufficient_Mem Insufficient memory. There is not enough memory to satisfy the requested

allocation or reallocation.
WM32_Insufficient_Sels Selector not available. There is not enough room in the descriptor table(s) to

allocate the required selector(s). It may be necessary to advise the user to
close other Windows applications.

WM32_Invalid_Arg Invalid parameter. One of the parameters was invalid. For example, a size
parameter might be out of range.

WM32_Invalid_Flags Invalid flag. The wFlags parameter contained at least one invalid bit setting.
The wFlags parameter currently is not used and must be set to zero.

WM32_Invalid_Func Invalid function. The current Windows mode does not support this function.
Windows supports the 32-bit memory functions only in 386 enhanced
mode.

WM32_Insufficient_Mem

Insufficient memory. There is not enough memory to satisfy the requested allocation or reallocation.

WM32_Insufficient_Sels

Selector not available. There is not enough room in the descriptor table(s) to allocate the required selector
(s). It may be necessary to advise the user to close other Windows applications.

WM32_Invalid_Arg

Invalid parameter. One of the parameters was invalid. For example, a size parameter might be out of
range.

WM32_Invalid_Flags

Invalid flag. The wFlags parameter contained at least one invalid bit setting. The wFlags parameter
currently is not used and must be set to zero.

WM32_Invalid_Func

Invalid function. The current Windows mode does not support this function. Windows supports the 32-bit
memory functions only in 386 enhanced mode.

Screen Saver Library
The Microsoft Windows operating system provides special applications called screen savers that start
when the mouse and keyboard have been idle for a period of time. Screen savers exist for two main
reasons:

To avoid phosphor burn caused by static images on a screen
To conceal sensitive information left on a screen

Clearing a screen addresses both goals, but screen savers are not restricted to this simple use. They can
also display animated sequences such as a fish tank or fireworks. Animated sequences avoid phosphor
burn by continually changing the image.

Windows provides a screen saver application that monitors the mouse and keyboard and starts the screen
saver after a period of inactivity. The Desktop section of Windows Control Panel makes it possible for
users to select from a series of screen savers, specify how much time should elapse before the screen saver
is started, configure screen savers, and preview screen savers.

This topic describes how to create a custom screen saver and add it to the library of screen savers users can
select by using Control Panel.

About Screen Savers

Screen savers are Windows applications that contain specific variable declarations, exported functions,
and resource definitions. The static-link library SCRNSAVE.LIB contains the WinMain function and
other startup code required for a screen saver. To create a screen saver, you create a source module
containing specific function and variable definitions and link it with SCRNSAVE.LIB. Your screen
saver module is responsible only for configuring itself and for providing visual effects.

Screen savers are loaded automatically when Windows starts or when a user activates the screen saver
feature by using Control Panel. Windows monitors keystrokes and mouse movements and starts the
screen saver after a period of inactivity specified by the user.

Windows does not start the screen saver if any of the following conditions exists:
The active application is not a Windows application.
A computer-based training (CBT) window is present.
The active application returns a nonzero value in response to the WM_SYSCOMMAND message

sent with the SC_SCREENSAVE identifier.

When your screen saver starts, the startup code in SCRNSAVE.LIB creates a full-screen window. The
window class for the screen saver window is declared as follows:

WNDCLASS cls;
cls.hCursor = NULL;
cls.hIcon= LoadIcon(hInst, MAKEINTATOM(ID_APP));
cls.lpszMenuName = NULL;
cls.lpszClassName = "WindowsScreenSaverClass";
cls.hbrBackground = GetStockObject(BLACK_BRUSH);
cls.hInstance = hInst;
cls.style= CS_VREDRAW | CS_HREDRAW
| CS_SAVEBITS | CS_DBLCLKS;
cls.lpfnWndProc = ScreenSaverProc;
cls.cbWndExtra= 0;
cls.cbClsExtra= 0;
Your source module provides the ScreenSaverProc window procedure. Your resource-definition file
supplies the icon identified by ID_APP. This icon is visible only when your screen saver is run as a stand-
alone application. (To be run by Control Panel, a screen saver must have the .SCR filename extension; to
be run as a stand-alone application, it must have the .EXE filename extension.)

Creating a Screen Saver

The SCRNSAVE.H header file defines the function prototypes for the screen saver functions in
SCRNSAVE.LIB. You must include this header file in your source module.

You must also define the idsAppName string. The idsAppName string should contain a screen saver
name of the form Screen Saver.Name, where Name is a unique name for your screen saver. For
example, a screen saver named Bouncer would include the following line in the STRINGTABLE
statement in its resource-definition file:

STRINGTABLE PRELOAD
BEGIN

idsAppName"Screen Saver.Bouncer"
.
. /* other strings */
.

END
If your screen saver stores configuration information, it should use the idsAppName string as the
application heading for the configuration block in the CONTROL.INI file. For more information about
storing screen saver configuration information, see Providing a Configuration Routine.

Your application should declare the following global variables, which are defined in SCRNSAVE.LIB:

extern HINSTANCE hMainInstance;
extern HWND hMainWindow;
The hMainInstance variable contains the instance handle of your application. The hMainWindow variable
contains the window handle of the screen saver window.

Processing Screen Saver Messages

Your screen saver module must include a ScreenSaverProc window procedure to receive and process
messages for the screen saver window. The ScreenSaverProc window procedure must pass unprocessed
messages to the DefScreenSaverProc function rather than to the DefWindowProc function.

Your ScreenSaverProc window procedure can substitute its own actions for the message handling
performed by DefScreenSaverProc.

The ScreenSaverProc window procedure must be exported by including it in the EXPORTS section of
your module-definition (.DEF) file.

Providing a Configuration Routine

When the user chooses the Setup button, Windows uses the /c or -c command-line option to start the
screen saver. To start the screen saver without displaying the configuration dialog box, Windows uses
the /s or -s command-line option. When no command-line option is used, Windows displays the
configuration dialog box, just as if /c had been specified.

If your screen saver supports configuration by the user, your source module must provide the following
functions and dialog box resource to handle configuration:

Name Description
ScreenSaverConfigureDialog Dialog box procedure for a configuration dialog box.
RegisterDialogClasses Function that registers any special or nonstandard window

classes needed for a configuration dialog box.
DLG_SCRNSAVECONFIGURE Dialog box template for a configuration dialog box.

When Windows starts your screen saver with the configuration option (/c), the WinMain function in
SCRNSAVE.LIB calls the RegisterDialogClasses function and then displays the configuration dialog box.

Define the ScreenSaverConfigureDialog function as you would any dialog box procedure.

Your screen saver should save its configuration settings in the CONTROL.INI file. SCRNSAVE.LIB uses
the application name stored in the idsAppName STRINGTABLE statement as the CONTROL.INI
application heading. Your application can use the LoadString function to retrieve the name of the heading
from CONTROL.INI and then use the WritePrivateProfileString and WritePrivateProfileInt functions to
store the configuration information.

The hInst parameter of the RegisterDialogClasses function contains the instance handle for the screen
saver. This is the same value contained in the hMainInstance global variable. If your configuration routine
does not require any special window classes, your RegisterDialogClasses function can simply return
TRUE.

Creating Module-Definition and Resource-Definition Files

Be sure to export the ScreenSaverProc function and, if it is present, the ScreenSaverConfigureDialog
function. The RegisterDialogClasses function should not be exported.

The DESCRIPTION statement in your module-definition file must use the following format:

DESCRIPTION 'SCRNSAVE : description'

If your screen saver includes a configuration routine, you should include a dialog box template with the
DLG_SCRNSAVECONFIGURE identifier.

Installing New Screen Savers

Control Panel searches the Windows startup directory for files with the .SCR extension when compiling
the list of available screen savers. (Screen saver applications are standard Windows executable files.
Simply rename the compiled screen saver so that its extension is .SCR.)

A Sample Screen Saver

The remainder of this topic discusses the implementation of a screen saver application.

General-Purpose Declarations

Screen savers must use the string identifier idsAppName to identify themselves for other routines in
SCRNSAVE.LIB:

STRINGTABLE PRELOAD
BEGIN

idsAppName"Screen Saver.ScreenSaverName"
.
. /* other strings */
.

END
The idsAppName string contains the name of the screen saver. The name to the right of the period is a
unique name for the screen saver. The screen saver application can retrieve this string by calling the
LoadString function.

Screen savers must also declare the following external variables:

HINSTANCE hMainInstance;
HWND hMainWindow;
These external variables are defined in SCRNSAVE.LIB. They contain handles to the application instance
and main window.

Message Handling

The following ScreenSaverProc function processes the WM_CREATE, WM_TIMER,
WM_DESTROY, and WM_ERASEBKGND messages before calling the DefScreenSaverProc function:

LONG CALLBACK ScreenSaverProc(HWND hwnd, UINT msg, WPARAM wParam,
LPARAM lParam)

{
RECT rc;
static UINT cBottom;
switch (msg) {
case WM_CREATE:
GetIniEntries(); /* load strings from STRINGTABLE */
GetIniSettings(); /* load initialization settings */
/* Load DIB image. */
hbmImage = LoadBitmap(hMainInstance, szDIBName);
/* Create a timer to move the image. */
idTimer = SetTimer(hwnd, ID_TIMER, wElapse, NULL);
xPos = xPosInit;
yPos = yPosInit;
break;
case WM_TIMER:

if (fPause && fBottom) {
if (++cBottom == 10) {
cBottom = 0;
fBottom = FALSE;
}
break;
}
MoveImage(hwnd); /* move the image slightly */
break;
case WM_DESTROY:
if (hbmImage)
DeleteObject(hbmImage);
if (idTimer == 0)
KillTimer(hwnd, ID_TIMER);
break;
case WM_ERASEBKGND:
GetClientRect(hwnd, &rc);
FillRect((HDC) wParam, &rc,
(HBRUSH) GetStockObject(BLACK_BRUSH));
return 0;
default:
break;
}
return DefScreenSaverProc(hwnd, msg, wParam, lParam);

}
If your window procedure traps the WM_DESTROY message, it must use one of the following methods to
properly end the screen saver:

After processing the message, pass it to the DefScreenSaverProc function.
In the WM_DESTROY case of the message handler, call the PostQuitMessage function.

Configuration Dialog Box

A screen saver uses the ScreenSaverConfigureDialog function to process messages sent to the
configuration dialog box. (A screen saver's resource-definition file includes the dialog box template.)
The configuration dialog box is displayed when the user selects the Setup button from Desktop section
of Control Panel.

The ScreenSaverConfigureDialog function saves its configuration information in the CONTROL.INI
file. This configuration information is largely specific to the screen saver and may include such settings
as speed, color, number of objects, and position.

The configuration information may also include password protection. When a screen saver is password
protected, the user cannot deactivate it and return to the Windows session without typing the password
in a dialog box. Adding password protection to a screen saver requires three dialog boxes: one for
setting or changing the password, one for typing the password after the screen saver has been activated,
and one for informing the user when the password is incorrect. These dialog boxes can be defined as
follows:

#define ID_OLDTEXT 100
#define ID_NEWTEXT 101
#define ID_AGAIN 102
#define ID_PASSWORD103
#define ID_ETOLD 104
#define ID_ETNEW 105
#define ID_ETAGAIN 106
#define ID_ETPASSWORD 107
#define ID_ICON 108
#define ID_PASSWORDHELP 109

<>#ifdef RC_INVOKED
DLG_CHANGEPASSWORD DIALOG 8,16,174,79
FONT 8, "MS Sans Serif"
STYLE WS_POPUP | DS_MODALFRAME | WS_CAPTION | WS_SYSMENU
CAPTION "Change Password"
BEGIN
LTEXT "&Old Password:", ID_OLDTEXT, 4, 3,80,14
EDITTEXT ID_ETOLD, 84, 3,80,14, ES_PASSWORD
LTEXT "&New Password:", ID_NEWTEXT, 4,21,80,14
EDITTEXT ID_ETNEW, 84,21,80,14, ES_PASSWORD
LTEXT "&Retype New Password:", ID_AGAIN, 4,39,80,14
EDITTEXT ID_ETAGAIN, 84,39,80,14, ES_PASSWORD
DEFPUSHBUTTON "OK", IDOK, 4,59,40,14
PUSHBUTTON "&Help", ID_PASSWORDHELP, 64,59,40,14
PUSHBUTTON "Cancel", IDCANCEL, 124,59,40,14
END

DLG_ENTERPASSWORDDIALOG 250,175,170,96
FONT 8, "MS Sans Serif"
STYLE WS_POPUP | DS_MODALFRAME | WS_CAPTION | WS_SYSMENU
CAPTION "<name of screen saver>"
BEGIN
LTEXT "The screen saver you are using is password protected.
You must type the screen saver password
to turn off the screen saver.", -1, 31,3,140,40
LTEXT "Password:", ID_PASSWORD, 31,45,40,14
EDITTEXT ID_ETPASSWORD, 71,45,80,14, ES_PASSWORD
DEFPUSHBUTTON "OK", IDOK,31,66,40,14
PUSHBUTTON "Cancel", IDCANCEL,111,66,40,14
ICON "", ID_ICON, 3, 3,32,32
END
DLG_INVALIDPASSWORD DIALOG 8,16,174, 79
FONT 8, "MS Sans Serif"
STYLE WS_POPUP | DS_MODALFRAME | WS_CAPTION | WS_SYSMENU
CAPTION "<name of screen saver>"
BEGIN
ICON "", ID_ICON,3, 3, 0, 0
LTEXT "Incorrect password;\n\nCheck your screen saver password,
and try again.", -1, 40,3,130,40
DEFPUSHBUTTON "OK", IDOK, 70,50,40,14
END
<>#endif
The preceding example wraps several long lines in the DLG_ENTERPASSWORD and
DLG_INVALIDPASSWORD dialog boxes. These lines should not wrap in your resource-definition file.

The ScreenSaverConfigureDialog function typically processes a message from a check box that specifies
whether the screen saver is password protected and a message specifying that the user has chosen the
button to set the password, as shown in the following example:

case ID_SETPASSWORD: {
DLGPROC fpDialog;
if ((fpDialog = (DLGPROC) MakeProcInstance((FARPROC)

DlgChangePassword,
hMainInstance)) == NULL)
return FALSE;
DialogBox(hMainInstance, MAKEINTRESOURCE(DLG_CHANGEPASSWORD),

hwndDlg, fpDialog);
FreeProcInstance((FARPROC) fpDialog);
SendMessage(hwndDlg, WM_NEXTDLGCTL, (WPARAM) hwndOK, 1l);

break;
}
case ID_PASSWORDPROTECTED:

bPassword ^= 1;
CheckDlgButton(hwndDlg, wParam, bPassword);
EnableWindow(hwndSetPassword, bPassword);
break;

The DlgChangePassword function displays the DLG_CHANGEPASSWORD dialog box.

Adding Help

The configuration and password dialog boxes for screen savers typically include a Help button. Screen
saver applications can check for the Help-button identifier and call the WinHelp function in the same
way Help is provided in other Windows applications. In addition, SCRNSAVE.LIB includes
HelpMessageFilterHookFunction, which posts the MyHelpMessage message whenever the user presses
the F1 key while using a screen saver dialog box. A screen saver can check for this message in the
ScreenSaverConfigureDialog function, as follows:

switch (msg) {
.
. /* process messages */
.
default:
if (msg==MyHelpMessage)
DoLocalHelpFunc();

}
Exporting Functions

A typical module-definition file for a screen saver application might look like this:

NAME BOUNCER
DESCRIPTION 'SCRNSAVE : Bounce a bitmap'
STUB 'WINSTUB.EXE'
EXETYPEWINDOWS
CODE MOVEABLE DISCARDABLE PRELOAD
DATA MOVEABLE MULTIPLE PRELOAD
HEAPSIZE 1024
STACKSIZE 4096
EXPORTS

ScreenSaverProc @1
ScreenSaverConfigureDialog @2
DlgChangePassword@3
DlgGetPassword @4
DlgInvalidPassword @5
HelpMessageFilterHookFunction @6

The ScreenSaverProc, ScreenSaverConfigureDialog, DlgChangePassword, and
HelpMessageFilterHookFunction functions have been discussed earlier in this topic. The screen saver
module typically does not make explicit calls to the HelpMessageFilterHookFunction, DlgGetPassword, or
DlgInvalidPassword function.

Functions

This section describes the functions that applications can use to create a screen saver.

Windows Debugging Version
The debugging version of the Microsoft Windows operating system generates diagnostic messages
whenever it encounters an error that would otherwise cause the system to fail. You use the debugging
version by itself or in conjunction with a debugger to debug Windows applications and dynamic-link
libraries (DLLs). The debugging functions described in this appendix are not available in the retail version
of the system: The API elements exist, but they have no effect. However, the retail version of Windows
version 3.1 contains parameter-validation capabilities that an application can use with the Tool Helper
library (TOOLHELP.DLL) to retrieve system errors and information about invalid parameters. For more
information about the Tool Helper library, see Tool Helper Library.

The following topics discuss the use of the debugging version of the Windows:

Introduction
Debugging Programs
Debugging API Elements
Error Values
Debugging Messages
Common Programming Errors

Debugging Introduction
The debugging version of Windows consists of the executable and symbol files for the GDI, KERNEL,
and USER modules. These modules are identical to those provided with standard Windows except that
they contain extra code that checks for errors and then reports them.

The best way to use the debugging version of Windows is to install it on a computer you use for testing
and debugging and use a second computer for development. Output from the debugging system and
debugger can be directed to a debugging terminal.

Developers who write and debug applications on a single computer often place copies of the standard and
debugging versions of Windows in separate directories. When they need to switch from one system to the
other, they use batch files to copy the appropriate files to the Windows system directory. (Switching
between systems is a good idea because the standard Windows system is faster that the debugging version-
-it is a better environment for compilers and editors.) You can use the installation program supplied for the
Microsoft Windows Software Development Kit (SDK) to set up this two-directory system and then use the
batch files D2N.BAT and N2D.BAT to switch between the debugging and standard versions of Windows.

Introduction
The Microsoft Windows System Debugging Log Application (DBWIN.EXE) allows you to see messages
produced by the debugging version of Windows even if you are not using a debugging terminal or
debugging application. DBWIN.EXE allows you to control the kinds of messages that are displayed and to
save your preferences in the WIN.INI file. DBWIN.EXE also provides a feature that allows you to test the
performance of your application during out-of-memory failures.

The Microsoft Windows Dr. Watson application detects system and application failures and can store
information in a disk file. This program can help you find and fix problems in your applications. For more
information about it, see Object Linking and Embedding Overview.

Logging Debugging Messages

You can log messages to the DBWIN window, to a debugging monitor, or to the device attached to the
COM1 port. The Options menu allows you to change the destination of debugging messages.

Settings Command

Choosing the Settings command from the Options menu produces a dialog box that allows you to
control the display of debugging messages produced by the debugging system. This dialog box contains
the following check boxes:

Check box Description
Break Controls whether and how a message causes a break to the debugger with a stack trace.
Trace Controls whether certain kinds of informational messages are produced.
Debugging Controls the kind of debugging features enabled in the system.

Following is a selected list of debugging options:
Option Meaning
Validate Heap Check the consistency of global and local heaps before every

call to a memory-management function. This option affects the
global heap only when it is one of the default start-up settings
(that is, when it is saved by choosing the Save Settings
command from the File menu). This option affects local heaps
only if it is set before the application is started.

Check Free Blocks Ensure that freed local blocks are not written into. The value
0xFB is written into free blocks and when the heap is
validated, a check is performed to ensure that the blocks are
still filled with this value. This option works only with local
heaps. It must be used with the Validate Heap option.

Buffer Fill Fill buffers that are passed to Windows functions with the
value 0xF9. This option ensures that all of the supplied buffer
is writable and helps detect overwrite problems that can occur
when the buffer is too small.

Break with INT 3 Break to the debugger with an int 3 instruction, instead of a
fatal exit. This option does not display a stack back-trace.

Note: Some applications will not run when the Buffer Fill option is turned on. If the supplied buffer is
smaller than the size specified in the count parameter of the calling function, the application data is
overwritten.

Alloc Break Command

The Alloc Break command on the Options menu ensures that an application deals properly with out-of-
memory conditions. This command displays a dialog box into which you can enter the module name of
your application and the number of memory allocations you want to succeed before subsequent
allocations fail.

The system counts each global or local memory allocation performed by your application. When the
number of allocations reaches the allocation break count, that allocation and all subsequent allocations
fail. Because memory allocations made by the system fail once the break count is reached, calls to
certain functions (such as CreateWindow, CreateBrush, and SelectObject) will fail as well. Only
allocations made within the context of the application you specify are affected by the allocation break
count.

The module name is limited to 8 characters. In some cases the module name may be different from the

filename. (The module name is specified in the module-definition file for the application.) You cannot
specify the module name of a DLL.

If you set the break count to zero, no allocation break is set, but the system counts allocations made by
the specified application. You can choose the Show Count button to display the current allocation count.

You can set an allocation break before the named application is run. The allocation count is then set to
zero and allocations are counted as soon as the application starts. If you run more than one instance of an
application, the allocation break applies only to the most recent instance.

The allocation count is also reset to zero when you choose the Set command or the Inc & Set command.
You can set an allocation break before performing an operation, to ensure that your application handles
the problem effectively, and then choose Inc & Set and repeat the operation, to ensure that the next
allocation failure is also handled properly.

Interpreting Debugging Messages

Windows debugging messages are the primary feature of the debugging version of Windows. These
messages identify errors caused by applications and report the type of each error and the information
you need to locate the error in your application.

Windows debugging messages have the following form:

FatalExit Code = fatalexit-code

Stack trace:
module-name!segment-name:[function-name+]address

.

.

.

Abort, Break or Ignore?

The fatalexit-code parameter identifies the type of error. For a complete set of possible error codes, see
Error Values.

The stack trace consists of one or more addresses representing a chain of return addresses from the
function that detected the error to the application that made the original function call.

Windows displays the "Abort, Break or Ignore?" prompt at the end of each debugging message.

The following variables are found in Windows debugging messages:

Variable Description
fatalexit-code Identifies the type of error (a hexadecimal value).
module-name Specifies the name of the application or of a Windows module (such as USER, GDI,

or KERNEL).
segment-name Specifies the name of a segment in the application or module.
function-name Specifies the name of a function in the segment.

Note: The segment and function names are available only if a symbol file (.SYM extension) exists for the
given module. Otherwise, Windows displays addresses instead of names.

The following example shows a typical debugging message:

FatalExit Code = 0x6040
Stack trace:
USER!_FFFE:SHOWCURSOR+0389
USER!_MSGBOX:08D7
USER!_FFFE:922D
MYAPP!_TEXT:WINMAIN+001B
MYAPP!_TEXT:__astart+0060
Abort, Break or Ignore?
In this example, the stack trace shows that the ShowCursor function in the USER module (USER.EXE)
detected the error. The error type is 0x6040. This value is associated with the ERR_BAD_HWND
constant; it means that the window handle passed to the function is not valid. The MYAPP application

initially called the USER module at the address WINMAIN+001B in its _TEXT segment. A check of the
application code at that location will probably reveal the error.

The "Abort, Break or Ignore?" prompt gives you the opportunity to terminate Windows, pass control to the
debugger, or ignore the error. When you receive this prompt, you must type one of the following
responses:

Response Action
A Terminates Windows, returning control to the MS-DOS prompt or to the debugger

(if one was running).
B Generates a breakpoint interrupt. If no debugger is running, this response

terminates Windows as if you had typed A. If a debugger is running, control passes
to the debugger as if you had set a breakpoint in the application. In this case, the
CS:IP registers point to an int 3 instruction. To continue execution or to enable
single-stepping, you must change the IP register to the address of the next
instruction.

I Ignores the error and continues running the application that caused the error.
SPACE or NEWLINE Directs Windows to redisplay the debugging message. This is helpful if the stack

trace for the message is exceptionally long.

Note: Not all debuggers support the same type of stack trace that Windows displays. If you use the B
response to enter a debugger that does not support stack tracing, there is no way to regenerate the
trace.

Debugging API Elements
Applications can use the DebugOutput function to display information on either the debugging terminal or
the current debugging computer. The function is especially useful for displaying the full details of calls to
functions that generate debugging messages.

DebugOutput includes formatting and message-filtering features that are not available with the
OutputDebugString function.

Debugging-system options and filters are provided in the WINDEBUGINFO structure. The
WINDEBUGINFO structure has the following form:

typedef struct tagWINDEBUGINFO {
UINT flags; /* valid WINDEBUGINFO members */
DWORD dwOptions; /* debugging options*/
DWORD dwFilter;/* filter for trace messages */
char achAllocModule[8]; /* module for alloc break*/
DWORD dwAllocBreak; /* allocs to succeed before break */
DWORD dwAllocCount; /* number of successful allocs*/

} WINDEBUGINFO;
The values in WINDEBUGINFO can be set and retrieved by using the SetWinDebugInfo and
GetWinDebugInfo functions.

You can generate your own debugging messages by using the FatalExit function. This function displays a
message that has the same form as a debugging message generated by Windows, using the error value
supplied as its only parameter. This function is especially useful for debugging DLLs.

In general, you should remove calls to debugging functions when compiling the final version of your
application or library.

WIN.INI Debugging Options

Applications use the GetWinDebugInfo and SetWinDebugInfo functions to retrieve or set debugging
options or filter values at run time. To control the same options and filter values in a system-wide,
persistent manner, you can use two entries in the [WINDOWS] section of the WIN.INI file. These
entries are DebugOptions and DebugFilter. They have the following form:

[WINDOWS]
DebugOptions = hexadecimal value
DebugFilter = hexadecimal value

The setting for the DebugOptions entry corresponds to the values for the dwOptions member of the
WINDEBUGINFO structure. The setting for the DebugFilter entry corresponds to the values for the
dwFilter member of WINDEBUGINFO. To determine the proper hexadecimal value for a setting, add the
values of the options to be set. For example, to specify DBO_CHECKHEAP and DBO_FREEFILL, the
setting for the DebugOptions entry would be 0x0021 (0x0001 + 0x0020). For information about the
possible values for these options and a full description of the WINDEBUGINFO structure, see the
Microsoft Windows Programmer's Reference, Volume 3.

Error Values
The following table gives the possible error values in a Windows debugging message:

Value Constant Meaning
0x0001 ERR_GALLOC GlobalAlloc failed. This error value is sent by

KERNEL.
0x0002 ERR_GREALLOC GlobalReAlloc failed. This error value is sent by

KERNEL.
0x0003 ERR_GLOCK GlobalLock failed. This error value is sent by

KERNEL.
0x0004 ERR_LALLOC LocalAlloc failed. This error value is sent by

KERNEL.
0x0005 ERR_LREALLOC LocalReAlloc failed. This error value is sent by

KERNEL.
0x0006 ERR_LLOCK LocalLock failed. This error value is sent by

KERNEL.
0x0007 ERR_ALLOCRES AllocResource failed. This error value is sent by

KERNEL.
0x0008 ERR_LOCKRES LockResource failed. This error value is sent by

KERNEL.
0x0009 ERR_LOADMODULE LoadModule failed. This error value is sent by

KERNEL.
0x0040 ERR_CREATEDLG Dialog box could not be created because LoadMenu

failed. This error value is sent by USER.
0x0041 ERR_CREATEDLG2 Dialog box could not be created because

CreateWindow failed. This error value is sent by
USER.

0x0042 ERR_REGISTERCLASS RegisterClass failed because the class is already
registered. This error value is sent by USER.

0x0043 ERR_DCBUSY Device-context cache is full. This error value is sent
by USER.

0x0044 ERR_CREATEWND Window could not be created because the class was
not found. This error value is sent by USER.

0x0045 ERR_STRUCEXTRA Program is using unallocated space. This error value
is sent by USER.

0x0046 ERR_LOADSTR LoadString failed. This error value is sent by USER.
0x0047 ERR_LOADMENU LoadMenu failed. This error value is sent by USER.
0x0048 ERR_NESTEDBEGINPAINT Program contains nested BeginPaint functions. This

error value is sent by USER.
0x0049 ERR_BADINDEX Index to GetClassLong, GetClassWord,

GetWindowLong, GetWindowWord, SetClassLong,
SetClassWord, SetWindowLong, or
SetWindowWord is invalid. This error value is sent
by USER.

0x004A ERR_CREATEMENU Menu could not be created. This error value is sent
by USER.

0x0080 ERR_CREATEDC CreateCompatibleDC, CreateDC, or CreateIC
failed. This error value is sent by GDI.

0x0081 ERR_CREATEMETA CreateMetaFile failed. This error value is sent by
GDI.

0x0082 ERR_DELOBJSELECTED Program is trying to delete a bitmap that is selected
into the device context. This error value is sent by
GDI.

0x0083 ERR_SELBITMAP Program is trying to select a bitmap that is already
selected. This error value is sent by GDI.

0x6001 ERR_BAD_VALUE A 16-bit signed or unsigned value is invalid.
0x6002 ERR_BAD_FLAGS One or more bit flags are invalid.

0x6003 ERR_BAD_INDEX Index is invalid or out of range.
0x6009 ERR_BAD_SELECTOR Selector is invalid.
0x600B ERR_BAD_HANDLE Generic handle is invalid.
0x6020 ERR_BAD_HINSTANCE Instance handle is invalid. This error value is sent by

KERNEL.
0x6021 ERR_BAD_HMODULE Module handle is invalid. This error value is sent by

KERNEL.
0x6022 ERR_BAD_GLOBAL_HANDLE Global handle is invalid. This error value is sent by

KERNEL.
0x6023 ERR_BAD_LOCAL_HANDLE Local handle is invalid. This error value is sent by

KERNEL.
0x6024 ERR_BAD_ATOM Atom is invalid. This error value is sent by

KERNEL.
0x6025 ERR_BAD_HFILE File handle is invalid. This error value is sent by

KERNEL.
0x6040 ERR_BAD_HWND Window handle is invalid. This error value is sent

by USER.
0x6041 ERR_BAD_HMENU Menu handle is invalid. This error value is sent by

USER.
0x6042 ERR_BAD_HCURSOR Cursor handle is invalid. This error value is sent by

USER.
0x6043 ERR_BAD_HICON Icon handle is invalid. This error value is sent by

USER.
0x6044 ERR_BAD_HDWP Handle to a window-position structure is invalid.

This error value is sent by USER.
0x6045 ERR_BAD_CID Communications identifier (CID) is invalid. This

error value is sent by USER.
0x6046 ERR_BAD_HDRVR Installable-driver handle is invalid. This error value

is sent by USER.
0x6061 ERR_BAD_GDI_OBJECT GDI object is invalid. This error value is sent by

GDI.
0x6062 ERR_BAD_HDC Device-context handle is invalid. This error value is

sent by GDI.
0x6063 ERR_BAD_HPEN Pen handle is invalid. This error value is sent by

GDI.
0x6064 ERR_BAD_HFONT Font handle is invalid. This error value is sent by

GDI.
0x6065 ERR_BAD_HBRUSH Brush handle is invalid. This error value is sent by

GDI.
0x6066 ERR_BAD_HBITMAP Bitmap handle is invalid. This error value is sent by

GDI.
0x6067 ERR_BAD_HRGN Region handle is invalid. This error value is sent by

GDI.
0x6068 ERR_BAD_HPALETTE Palette handle is invalid. This error value is sent by

GDI.
0x6069 ERR_BAD_HMETAFILE Metafile handle is invalid. This error value is sent

by GDI.
0x7004 ERR_BAD_DVALUE A 32-bit signed or unsigned value is invalid.
0x7005 ERR_BAD_DFLAGS One or more 32-bit flags are invalid.
0x7006 ERR_BAD_DINDEX A 32-bit index is invalid or out of range.
0x7007 ERR_BAD_PTR Pointer is invalid.
0x7008 ERR_BAD_FUNC_PTR Function pointer is invalid.
0x700A ERR_BAD_STRING_PTR Zero-terminated string pointer is invalid.
0x7060 ERR_BAD_COORDS X- and y-coordinates are invalid. This error value is

sent by GDI.

The following error values may have been combined with other values in the preceding table to identify
the type of error:

Value Constant Meaning
0x4000 ERR_PARAM Parameter is invalid. This flag is always set for parameter-validation

error messages.
0x8000 ERR_WARNING Nonfatal error occurred. An invalid parameter was detected, but the

error was not serious enough to cause the function to fail. The invalid
parameter is reported, but the function executes as usual.

To determine the size of an invalid parameter, you can combine ERR_SIZE_MASK (0x3000) with other
error values by using the AND operator. The following table gives the possible results of this operation:

Value Constant Meaning
0x1000 ERR_BYTE An 8-bit parameter is invalid.
0x2000 ERR_WORD A 16-bit parameter is invalid.
0x3000 ERR_DWORD A 32-bit parameter is invalid.

Debugging Messages
The following table gives the strings that are displayed as Windows debugging messages:
Activation failed: system modal window is present

Windows may not be activated by another application while a system modal window is present. This
warning message is sent by the USER module.

Alloc break: Failing allocation
All further memory allocations will fail; this supports the Alloc Break debugging setting. This error
message is sent by the KERNEL module.

AllocResource failed
The AllocResource function failed, probably due to insufficient memory. This warning message is
sent by the KERNEL module.

App not initialized
A function was called before the application was properly initialized. This error message is sent by
the USER module.

application-name Automatic Data Segment larger than 64K.
The application's automatic data segment, combined with the heap and stack, must be less than 64K.
This error message is sent by the KERNEL module.

application-name Compacting heap, discarding segments
An application has specified a negative value in a call to the GlobalCompact function, forcing the
system to free all of the code segments that have been loaded from disk. Instead, applications should
simply allocate any needed memory and allow the system to compact memory as required. This
trace message is sent by the KERNEL module to help applications optimize memory management.

application-name failed implicit link to module-name
When an application calls the address specified by this warning, the system forces a call to the
FatalAppExit function. This warning occurs when the application starts. An application will
sometimes call the specified address after verifying that all entry points are valid. (For example, an
application might verify the Windows version before calling functions that exist only in Windows 3.
1.) This warning message is sent by the KERNEL module.

application-name: reading resource value1 value2
The system is reading resources from disk. This trace message is sent by the KERNEL module to
help applications optimize loading and execution.

Attempt to activate destroyed window
A window was activated during processing of the WM_DESTROY or WM_NCDESTROY
message. No active window is produced. This error message is sent by the USER module.

Attempt to delete object still selected in SaveDC stack
An application attempted to delete an object that was still in use because of an earlier call to the
SaveDC function. Deleting an object that is still saved can cause the system to crash. Applications
must call the RestoreDC function and select the object out of the device context before deleting the
object. This error message is sent by the GDI module.

Bad GWW_/GWL_/GCW_ index value
An invalid negative index was used in a call to the GetWindowWord, SetWindowWord,
GetClassWord, or SetClassWord function. This warning can occur in the retail version of Windows.
The LogError constant is ERR_BADINDEX. This warning message is sent by the USER module.

Beginning app termination cleanup...
The system application-termination routine has begun. This trace message is sent by the USER
module.

BOOT: unable to load filename
A startup error occurred. This error message is sent by the KERNEL module.

BS_USERBUTTON no longer supported
The BS_USERBUTTON style is no longer supported in Windows 3.1. Use BS_OWNERDRAW
instead. This warning message is sent by the USER module.

Can't change WS_EX_TOPMOST with SetWindowLong
An attempt was made to change the WS_EX_TOPMOST style by using the SetWindowLong
function. The style bit is not changed. Use the SetWindowPos function's HWND_TOPMOST or
HWND_NOTOPMOST values to change this flag. This error message is sent by the USER module.

Can't find filename
A startup error occurred. This error message is sent by the KERNEL module.

Can't load segment.
A disk or link error occurred. This error message is sent by the KERNEL module.

Can't post system error dialog: app not initialized
A system error occurred before an application was initialized. This sometimes happens because of an
error during the initialization of a DLL. This warning message is sent by the USER module.

Clipboard already open
The OpenClipboard function was called when the clipboard was already open. This error message is
sent by the USER module.

CreateDialog() failed: couldn't create control
The creation of a dialog box from a dialog-box template failed because a control could not be
created. This warning can occur in the retail version of Windows. The LogError constant is
ERR_CREATEDLG. This warning message is sent by the USER module.

CreateDialog() failed: couldn't create window
The creation of a dialog box from a dialog-box template failed because the dialog box could not be
created. This warning can occur in the retail version of Windows. The LogError constant is
ERR_CREATEDLG2. This warning message is sent by the USER module.

CreateDialog() failed: couldn't load menu
The creation of a dialog box from a dialog-box template failed because the menu resource in the
template could not be created. This warning can occur in the retail version of Windows. The
LogError constant is ERR_CREATEDLG. This warning message is sent by the USER module.

CreateMenu failed
The CreateMenu function failed because of a memory shortage. This warning can occur in the retail
version of Windows. The LogError constant is ERR_CREATEMENU. This warning message is sent
by the USER module.

CreateWindow failed: Out of memory
The CreateWindow function failed because of a memory shortage. This warning can occur in the
retail version of Windows. The LogError constant is ERR_CREATEWND. This warning message is
sent by the USER module.

CreateWindow failed: Window class not found
The CreateWindow function was called with a nonexistent window class name. This error can occur
in the retail version of Windows. The LogError constant is ERR_CREATEWND. This error
message is sent by the USER module.

CreateWindow(): Invalid parent hwnd
A child window was created without a valid parent window handle. This error can occur in the retail
version of Windows. The LogError constant is ERR_CREATEWND. This error message is sent by
the USER module.

CreateWindow(): NULL instance handle
The CreateWindow function was called with a NULL instance handle. This error can occur in the
retail version of Windows. The LogError constant is ERR_CREATEWND. This error message is
sent by the USER module.

CreateWindow: Out of memory
The WM_NCCREATE message returned FALSE, preventing the window from being destroyed.
This warning message is sent by the USER module.

Data Segment N of module-name can't be discardable
Certain segments of an application or DLL must be preloaded. If an application sets the switch
incorrectly, the system corrects the setting. However, the application will load faster if it sets the
switch properly. The following segments must be preloaded: DATA segments, FIXED CODE
segments, and CODE segments that are MOVEABLE but not DISCARDABLE. This warning
message is sent by the KERNEL module.

DC Cache full: Too many GetDC() calls
More than five nested calls to the GetDC function were made without subsequent calls to the
ReleaseDC function. This situation can cause system deadlock; device contexts must be released
before further calls to GetDC. This error can occur in the retail version of Windows. The LogError
constant is ERR_DCBUSY. This error message is sent by the USER module.

DecExeUsage(application-name) not DLL
A low-memory situation can cause this error. This error message is sent by the KERNEL module.

Default Data Segment of module-name must be preload
Certain segments of an application or DLL must be preloaded. If an application sets the switch
incorrectly, the system corrects the setting. However, the application will load faster if it sets the
switch properly. The following segments must be preloaded: DATA segments, FIXED CODE
segments, and CODE segments that are MOVEABLE but not DISCARDABLE. This warning
message is sent by the KERNEL module.

DeferWindowPos: All windows must share same parent

All windows positioned by using the DeferWindowPos function must be siblings. This error
message is sent by the USER module.

DefMDIChildProc called on a non-MDIChild window
The DefMDIChildProc function was called with a window that is not a proper MDI child window.
This error message is sent by the USER module.

Demand load module-name(N) on application-name
The system is demand-loading the specified segment of the specified module. If an application loads
many segments when starting, the application should probably add these segments to the FastLoad
block. (To add a segment to the FastLoad block, give the segment the PRELOAD attribute.) This
change does not affect total memory requirements. If there is not enough memory to load all the
PRELOAD segments, they won't be preloaded. This trace message is sent by the KERNEL module
to help applications optimize loading and execution.

DestroyCursor: Destroying current cursor
The DestroyCursor function was called with the currently-selected cursor. The arrow cursor was
selected in its place. This error message is sent by the USER module.

DestroyWindow: hwnd not created by the current task
The DestroyWindow function was called with a window created by another application. An
application cannot destroy windows created by other applications. This error message is sent by the
USER module.

DestroyWindow: System menu handle no longer valid
A window's system menu window was destroyed. Normally, applications should never destroy the
system menu handle; this handle is automatically destroyed when the window is destroyed. This
warning message is sent by the USER module.

DestroyWindow: Unremoved window property
A window was destroyed without removing all of its properties. Properties should be removed
before the window is destroyed or during the processing of the WM_DESTROY message. This
warning message is sent by the USER module.

DestroyWindow: Window menu no longer valid
A window menu was destroyed without clearing the handle by calling the SetMenu function with
NULL as the second parameter. The menu associated with a window is destroyed when the window
is destroyed. If you destroy the menu separately, always use SetMenu to clear the handle. This
warning message is sent by the USER module.

Dialog class registered with cbWndExtra < DLGWINDOWEXTRA
The DefDlgProc function was called with a window whose class was not registered with the proper
value for the cbWndExtra member of the WNDCLASS structure. Windows, when used with the
dialog manager, must use the DLGWINDOWEXTRA constant for this member. This error message
is sent by the USER module.

Dialog control id not found
An invalid dialog-control identifier was passed to one of the dialog-box functions that take a dialog-
box handle and control identifier (for example, the SetDlgItemText function). This warning message
is sent by the USER module.

Dialog should be dismissed with EndDialog, not DestroyWindow
The dialog window was destroyed during the processing loop for dialog messages. The EndDialog
function should be used instead. This error message is sent by the USER module.

Dialog window destroyed in dialog callback
The dialog window was destroyed by the dialog function. The EndDialog function should be used to
destroy a dialog window. This error message is sent by the USER module.

Dialog window owner destroyed while dialog still valid
The owner of a dialog box window was destroyed before the dialog box was destroyed. This can be
avoided by calling the SetWindowWord function with GWW_HWNDPARENT set to NULL. This
warning message is sent by the USER module.

Discardable temp buffer busy
An internal error has corrupted the internal state of GDI. (This error should never occur.) This error
message is sent by the GDI module.

Divide by zero or divide overflow error: break and trace till IRET
A divide-by-zero or divide-overflow fault has occurred. To find the fault, trace with your debugger
to the IRET instruction: one more trace will take you to the instruction that caused the error. This
fatal error message is sent by the USER module.

DlgDirList: id not a list box or combo box
The DlgDirList function was called with a control identifier specifying a control other than a list-
box or combo-box class window. This error message is sent by the USER module.

DlgDirList: list box or combo box id not found
The DlgDirList function was called with a control identifier specifying a nonexistent control. This
error message is sent by the USER module.

Edit SetText: 3.0 compat AnsiUpper being done on source text
The application is using the AnsiUpper function unnecessarily. For single-line edit controls with the
ES_UPPERCASE style, the string that is passed to WM_SETTEXT and other messages is not
typically modified by edit control code, but is converted to uppercase internally. This corresponds to
the WIN.INI [Compatibility] section, value 0x0080. This error message is sent by the USER
module.

End of app termination cleanup
The system-application termination routine has finished. This trace message is sent by the USER
module.

Error reading relocation records from module-name
I/O error loading a segment. This error message is sent by the KERNEL module.

Error value loading filename
The LoadModule function failed. The message displays the LoadModule return value and the name
of the file being loaded. This warning message is sent by the KERNEL module.

ES_READONLY not supported in 3.0 edit ctls: use EM_SETREADONLY
The ES_READONLY edit control style was specified by a 3.0 application. Use
EM_SETREADONLY instead. This error message is sent by the USER module.

Exiting menu mode: another window activated
A menu was canceled because another window in the system was being activated. This warning can
occur if a dialog box or message box is brought up while a menu is displayed. This warning message
is sent by the USER module.

FastLoad area ignored due to incorrect segment flags
If the system must change the PRELOAD flag of a segment, it invalidates the FastLoad block and
the application is loaded relatively slowly. This warning message is sent by the KERNEL module.

Fault detected - handled by module-name segment:offset
A general-protection fault occurred in a WEP (Windows exit procedure). The system continues
operations with the next step. This error message is sent by the KERNEL module.

Fault in SegReloc value1 value2
A disk or link error occurred. This error message is sent by the KERNEL module.

GDI: %s not deleted: %04X
An application has neglected to delete certain GDI objects upon termination. These objects are not
deleted by GDI; in order to avoid using up system resources, an application must delete all GDI
objects that it creates. This message can also occur with certain objects that an application uses that
were created by a DLL. When a DLL creates an object to share among multiple applications, this
message may result when the first application that uses the DLL terminates, even though the object
should not be deleted at that time. This warning message is sent by the GDI module.

GDI: Attempt to delete object owned by system
An application attempted to delete an object that is owned by the system. For example, this error
occurs when a window class brush is deleted by the application after the class has been registered.
This error also occurs when an application reuses a deleted object handle. This error message is sent
by the GDI module.

GDI: DeleteObject:%s(%04X) selection count incorrect
The internal state of GDI has been corrupted and the system may be in an unstable state. This
warning can occur because of writing through uninitialized pointers or other programming errors and
is usually a symptom of a more serious problem elsewhere. This warning message is sent by the GDI
module.

GDI: DeleteObject:%s(%04X) still selected in DC(s)
An application attempted to delete an object that was still selected in a device context. Applications
must always deselect objects before deleting them. If an application deletes an object that is selected
into a device context and then attempts to draw in the device context, the system may be left in an
indeterminate state. This warning message is sent by the GDI module.

GDI: Unable to deselect %04X
The internal state of GDI has been corrupted and the system may be in an unstable state. This
warning can occur because of writing through uninitialized pointers or other programming errors and
is usually a symptom of a more serious problem elsewhere. This warning message is sent by the GDI
module.

Get file offset failed
A disk or link error occurred. This error message is sent by the KERNEL module.

GetAtomName(0xNNNN,...) Can't find atom
An atom was not found in a call to the GetAtomName function. This warning message is sent by the
KERNEL module.

GetDC without ReleaseDC
A window was destroyed before calling the ReleaseDC function. This error message is sent by the
USER module.

GetDCEx: Can't find permanent DC
The GetDCEx function was called for a window that does not have the CS_OWNDC or
CS_CLASSDC style without setting the DCX_CACHE flag. This warning message is sent by the
USER module.

GetMenu: Window menu no longer valid
A window's menu was previously destroyed, and the menu returned by the GetMenu function is no
longer valid. If a window menu is destroyed, the SetMenu function should be called with the second
parameter set to NULL to clear the handle stored in the window. This warning message is sent by
the USER module.

GetNextDriver: Invalid starting driver handle
The GetNextDriver function was called with an invalid driver handle. This error message is sent by
the USER module.

Global class freed with existent class windows!
A global class registered by a DLL is being freed while windows of that class still exist. This serious
error is usually caused by the incorrect termination of an application's DLL. This error message is
sent by the USER module.

GlobalAlloc failed
The GlobalAlloc function failed, probably due to insufficient memory. This warning message is sent
by the KERNEL module.

GlobalAlloc(0xNNNNNNN) failed for application-name
A call to the GlobalAlloc function failed. This typically happens because the requested memory is
too large. This trace message is sent by the KERNEL module to help applications optimize memory
management.

GlobalReAlloc failed
The GlobalReAlloc function failed, probably due to insufficient memory. This warning message is
sent by the KERNEL module.

GlobalWire(N of module-name) (try GlobalLock)
Applications should generally use the GlobalLock function to lock memory instead of the
GlobalWire function. GlobalWire should not be used in Windows 3.1. This warning message is sent
by the KERNEL module.

GP fault in _hread/_hwrite at value1 value2
A general-protection fault occurred while reading or writing a huge file. This is a user error. This
error message is sent by the KERNEL module.

GP fault in LStrNCpy
A general-protection fault occurred when copying a string. This error message is sent by the
KERNEL module.

greserve doesn't fit
Memory is low. This error message is sent by the KERNEL module.

greserve: 0xNNNNNN bytes
Memory has been reserved by the system for discardable segments. This trace message is sent by the
KERNEL module to help applications optimize memory management.

GrowHeap: 0xNNNNNN allocated
Memory has been allocated from a DPMI server (Win386 or DOSX). This trace message is sent by
the KERNEL module to help applications optimize memory management.

hMemCopy: Copy past end of segment
A general-protection fault occurred while copying a huge memory block. This is a user error. This
error message is sent by the KERNEL module.

Hook Not Allowed
An application attempted to install a task-specific hook when only a system hook was allowed, such
as WH_JOURNALRECORD, WH_JOURNALPLAYBACK, or WH_SYSMSGFILTER. This error
message is sent by the USER module.

IncExeUsage(application-name) not DLL
A low-memory situation can cause this error. This error message is sent by the KERNEL module.

IncExeUsage: ne_usage overflow

An internal error occurred. This fatal error message is sent by the KERNEL module.
Intertask SendMessage() during app termination

An inter-application call to the SendMessage function occurred during application termination.
Usually this means that an application failed to destroy all of its windows before terminating. This
warning message is sent by the USER module.

Intertask SendMessage() not allowed: Tasks locked
An inter-application call to the SendMessage function was attempted while a system modal dialog
box was displayed, or the system has locked all but the current task. Using SendMessage to send
messages to other applications is not allowed while a system modal dialog box is displayed. This
error message is sent by the USER module.

Intertask SendMessage: Sleeping since unreplied SendMessage pending
An application attempted to send a message to another application before the second application
processed an earlier inter-application call to the SendMessage function. This warning indicates that
there may be a hung application in the system. This warning message is sent by the USER module.

Invalid button style
An invalid button class style was supplied. This error message is sent by the USER module.

Invalid clipboard metafile
An invalid metafile handle was placed in the clipboard by using the SetClipboardData function. This
error message is sent by the USER module.

Invalid color index.
An invalid color index was specified in a call to the SetSysColors function. This error message is
sent by the USER module.

Invalid driver entry proc address
An installable driver entry procedure was not declared with the PASCAL keyword or was otherwise
improperly implemented. The driver will not be installed. This error message is sent by the USER
module.

Invalid EXE file filename
A startup error occurred. This error message is sent by the KERNEL module.

Invalid function called: System state potentially trashed
The edit control window procedure is being called by an application. Applications should always use
the CallWindowProc function and the previous window procedure address returned either from a
call to the GetClassInfo function or a call to the GetWindowLong function using the
GWL_WNDPROC constant. This error message is sent by the USER module.

Invalid HBRUSH returned by WM_CTLCOLOR message
An invalid brush handle was returned by the WM_CTLCOLOR message. This error message is sent
by the USER module.

Invalid Hook Code
An invalid negative hook code value was passed to the DefHookProc or DefHookProcEx function.
This error message is sent by the USER module.

Invalid Hook Handle
An invalid hook handle was passed to the DefHookProcEx or UnhookWindowsHookEx function.
This error message is sent by the USER module.

Invalid Hook ID
An invalid hook identifier was passed to the SetWindowsHook or SetWindowsHookEx function.
This error message is sent by the USER module.

Invalid Hook Instance
An invalid hook instance handle was passed to the SetWindowsHookEx function. This error
message is sent by the USER module.

Invalid Hook Proc Addr
The hook function address specified in a call to the SetWindowsHook function is invalid. This error
message is sent by the USER module.

Invalid ordinal reference (#NNN) to application-name
When an application calls the address specified by this warning, the system forces a call to the
FatalAppExit function. This warning occurs when the application starts. An application will
sometimes call the specified address after verifying that all entry points are valid. (For example, an
application might verify the Windows version before calling functions that exist only in Windows 3.
1.) This warning message is sent by the KERNEL module.

Invalid protect mode EXE file filename
A startup error occurred. This error message is sent by the KERNEL module.

Invalid segment in fixup.

A disk or link error occurred. This error message is sent by the KERNEL module.
Invalid ShowWindow command

An invalid command was specified in a call to the ShowWindow function. This error message is sent
by the USER module.

Invalid size for DRIVERINFOSTRUCT
The length member of the DRIVERINFOSTRUCT structure was not properly initialized when the
structure was passed to the GetDriverInfo function. This member should be set to the size of the
DRIVERINFOSTRUCT structure. This error message is sent by the USER module.

Invalid SPI_* parameter
The SystemParametersInfo function was called with an invalid uAction parameter. This error
message is sent by the USER module.

Invalid task handle
An invalid task handle was passed to the SetWindowsHookEx function. This error message is sent
by the USER module.

Invalidation with fErase==FALSE prevents WM_ERASEBKGND
In Windows 3.1, a call to the InvalidateRect function does not prevent pending
WM_ERASEBKGND messages from being sent. In Windows 3.0, if InvalidateRect was called with
the lprc parameter equal to NULL and the fErase parameter equal to FALSE, any pending
WM_ERASEBKGND messages were validated and were not sent. This warning message is sent by
the USER module.

KReboot: Trying to look up application-name
The system disables the local reboot capability for known modules. This informational trace
message is sent by the KERNEL module.

Loading filename
The name of the application, DLL, or driver is now being loaded. This informational trace message
is sent by the KERNEL module.

Loading module-name Nonresident name table
The system loads the nonresident-name table when an application specifies a name in a call to the
GetProcAddress function and the DLL does not have the name in the resident-name table. When a
name is not in the resident-name table, it is either in the nonresident-name table or the name does not
exist. This message demonstrates the performance decrease that occurs whenever the nonresident-
name table is loaded. This trace message is sent by the KERNEL module to help applications
optimize loading and execution.

LoadString() failed
The LoadString function failed because a resource could not be found. This warning can occur in the
retail version of Windows. The LogError constant is ERR_LOADSTR. This warning message is sent
by the USER module.

Local free memory overwritten at segment:offset
The local heap has been corrupted. This fatal error message is sent by the KERNEL module.

LocalAlloc failed
The LocalAlloc function failed, probably due to insufficient memory. This warning message is sent
by the KERNEL module.

LocalLock failed
The LocalLock function failed, probably due to an invalid handle or a corrupted heap. This warning
message is sent by the KERNEL module.

LocalReAlloc failed
The LocalReAlloc function failed, probably due to insufficient memory. This warning message is
sent by the KERNEL module.

LockInput called with input already unlocked
The LockInput function was called to unlock input when the input was already unlocked. This error
message is sent by the USER module.

LockInput() called when already locked
The LockInput function was called when the input was already locked by a previous call to
LockInput. This error message is sent by the USER module.

LockResource failed
The LockResource function failed, probably due to an invalid resource handle or insufficient
memory. This warning message is sent by the KERNEL module.

looking for entry-name
The system loads the nonresident-name table when an application specifies a name in a call to the
GetProcAddress function and the DLL does not have the name in the resident-name table. When a

name is not in the resident-name table, it is either in the nonresident-name table or the name does not
exist. This message demonstrates the performance decrease that occurs whenever the nonresident-
name table is loaded. This trace message is sent by the KERNEL module to help applications
optimize loading and execution.

MakeProcInstance failed. Did you check return values?
A call to the MakeProcInstance function failed. This error message is sent by the KERNEL module.

Menu destroyed unexpectedly by WM_INITMENU
The DestroyMenu function was called unexpectedly during processing of the WM_INITMENU
message. This error message is sent by the USER module.

Menu destroyed unexpectedly by WM_INITMENUPOPUP
The DestroyMenu function was called unexpectedly during processing of the
WM_INITMENUPOPUP message. This error message is sent by the USER module.

MessageBox failed: app not initialized
The MessageBox function was called (or an error occurred) before an application was properly
initialized. This error sometimes happens during the initialization of a DLL. This error message is
sent by the USER module.

Metafile has incorrect size
The data contained in a metafile is invalid. This warning message is sent by the GDI module.

Metafile is not terminated properly
The data contained in a metafile is invalid. This warning message is sent by the GDI module.

Missing BeginPaint() or GetUpdateRect/Rgn(fErase == TRUE) in WM_PAINT
A WM_PAINT message was handled incorrectly. In order to ensure that all necessary
WM_NCPAINT messages are sent properly, a window that processes a WM_PAINT message must
call the BeginPaint function or call either the GetUpdateRect or GetUpdateRgn function with the
fErase parameter equal to TRUE. This warning message is sent by the USER module.

Module Name module-name (application-name) too long
The names of application modules are limited to 8 bytes. This warning message is sent by the
KERNEL module.

Module unloaded with windows still subclassed
A DLL was terminated or unloaded while a window in the system was subclassed with a function
defined in that DLL. This is a serious error. In general, DLLs that contain subclassed functions must
not be freed unless all windows that may have been subclassed with that function are destroyed. This
error message is sent by the USER module.

module-name has invalid relocation record
A disk or link error occurred. This error message is sent by the KERNEL module.

module-name I/O error reading segment
An I/O error in loading a segment occurred. This error message is sent by the KERNEL module.

module-name MakeProcInstance only for current instance.
An application is calling the MakeProcInstance function incorrectly. This fatal error message is sent
by the KERNEL module.

module-name segment:offset called undefined dynalink
The specified module attempted to link to a function exported by a DLL, but the system could not
find the function. The application attempted to call the entry point even though the function was not
found. This fatal error message is sent by the KERNEL module.

Multiple properties removed during enumerate
More than one window property was removed during a property-enumeration callback function;
there may be improper property enumeration. Generally, only the enumerated window property may
be removed during the enumeration callback function. This warning message is sent by the USER
module.

MyOpenFile not reentrant
An internal error occurred. This error message is sent by the KERNEL module.

Nested BeginPaint() calls
The BeginPaint function was called a second time for a window before the EndPaint function was
called. This warning usually occurs when an application calls a function such as UpdateWindow
during the processing of a WM_PAINT message. This should be avoided because it may cause
incorrect clipping regions in the device context after a call to EndPaint. This warning can occur in
the retail version of Windows. The LogError constant is ERR_NESTEDBEGINPAINT. This
warning message is sent by the USER module.

not enough stack space for DX array. String truncated.

An application has called the TextOut or ExtTextOut function with a very long string (> 2048
characters); there was not enough stack space for temporary storage. This problem is typically
solved by breaking the string up into shorter strings, although an application with insufficient stack
space may encounter this warning with smaller strings. This warning message is sent by the GDI
module.

NULL handle.
A disk or link error occurred. This error message is sent by the KERNEL module.

NULL segment in fixup.
A disk or link error occurred. This error message is sent by the KERNEL module.

Obsolete function ControlPanelInfo() called
The obsolete ControlPanelInfo function was called. Use the SystemParametersInfo function instead.
This error message is sent by the USER module.

Obsolete function GetInternalWindowPos() called
The obsolete GetInternalWindowPos function was called. Use the GetWindowPlacement function
instead. This error message is sent by the USER module.

Obsolete function SetDeskPattern called: use SystemParametersInfo
The obsolete SetDeskPattern function was called. Use the SystemParametersInfo function instead.
This error message is sent by the USER module.

Obsolete function SetDeskWallPaper() called
The obsolete SetDeskWallPaper function was called. Use the SystemParametersInfo function
instead. This error message is sent by the USER module.

Obsolete function SetInternalWindowPos() called
The obsolete SetInternalWindowPos function was called. Use the SetWindowPlacement function
instead. This error message is sent by the USER module.

Out of files (set FILES=30 in CONFIG.SYS) filename
A startup error occurred. This error message is sent by the KERNEL module.

Out of mem loading seg module-name
This internal error should never occur. This error message is sent by the KERNEL module.

Popup menu incorrectly activated by application
The ActivateWindow function was called with the handle of a pop-up menu. The system will
activate the owner of the pop-up window instead. This error message is sent by the USER module.

Read record failed
A disk or link error occurred. This error message is sent by the KERNEL module.

Read value bytes, expecting value.
A disk or link error occurred. This error message is sent by the KERNEL module.

Reentrant application termination
The system application-termination routine was reentered; that is, two applications were terminating
at the same time. This situation can occur if an application is terminated by another when it is
processing activation messages, during DLL WEP function processing or installable driver
DRV_EXITAPPLICATION message processing. This reentrancy situation can result in timing
errors that are difficult to debug. This warning message is sent by the USER module.

RegisterClass failed: class already exists
A window class was registered with a name that has already been registered. This warning can occur
in the retail version of Windows. The LogError constant is ERR_REGISTERCLASS. This warning
message is sent by the USER module.

RegisterClass failed: global class already exists
A global window class was registered with a name that already has been registered. This error
message is sent by the USER module.

RegisterClass failed: out of memory
The RegisterClass function failed because of a memory shortage. This error message is sent by the
USER module.

RegisterClass: HACK! Fixing up bogus cbWndExtra and cbClsExtra
An extra 4 bytes of window and class word space is added to all window classes created by this
application. This addition fixes a serious problem in some applications using unallocated window
words. This corresponds to the WIN.INI [Compatibility] section, value 0x0100. This error message
is sent by the USER module.

RegisterClass: Invalid class brush
The hbrBackground member of the WNDCLASS structure is invalid. This error message is sent by
the USER module.

RegisterClass: Invalid class style

The style member of the WNDCLASS structure is invalid. This error message is sent by the USER
module.

RegisterClass: Invalid HINSTANCE
The hInstance member of the WNDCLASS structure was NULL or otherwise invalid. This error
message is sent by the USER module.

RegisterClass: Negative cbClsExtra
The cbClsExtra member of the WNDCLASS structure contains a negative number. This error
message is sent by the USER module.

RegisterClass: Negative cbWndExtra
The cbWndExtra member of the WNDCLASS structure contains a negative number. This error
message is sent by the USER module.

RegisterClass: NULL window proc
The lpfnWndProc member of the WNDCLASS structure does not contain a valid function pointer.
This error message is sent by the USER module.

RegisterClass: Unusually large cbClsExtra (> 40)
The cbClsExtra member of the WNDCLASS structure contains a number that is too large. This
value should be less than 40. This is an error message if the application is running with Windows 3.
1; otherwise, it is a warning message. It is sent by the USER module.

RegisterClass: Unusually large cbWndExtra (> 40)
The cbWndExtra member of the WNDCLASS structure contains a number that is too large. In order
to avoid using system resources, applications should limit the number of extra window words to less
than 40 bytes, and preferably to less than 10 bytes. It is usually best to store a single pointer to a
private data structure that is allocated elsewhere. This is an error message if the application is
running with Windows 3.1; otherwise, it is a warning message. It is sent by the USER module.

RegisterClass: Window proc not exported
The lpfnWndProc member of the WNDCLASS structure contains a pointer a function that is not
properly exported. This error message is sent by the USER module.

ReleaseDC: DC already released
A redundant call to the ReleaseDC function was detected. This error may be caused by incorrect
window or device-context parameters. This error message is sent by the USER module.

ReleaseDC: hwnd not same as for GetDC
The device context or window parameter to the ReleaseDC function is incorrect. The window or
device context is not the same as was passed to (or returned from) the GetDC function. This error
message is sent by the USER module.

ReleaseDC: Passed DC not a window DC
The device context supplied to the ReleaseDC function was not obtained by using the GetDC
function. This error is often caused by attempting to release printer or memory device contexts. This
error message is sent by the USER module.

Resources N% - this tests your error handling code
The debugging kernel allows applications to load even with very low system resources. This allows
the application developer to test how their code handles allocation failure. This warning
demonstrates the different behaviour of the debugging kernel and retail kernel. This warning
message is sent by the KERNEL module.

Seek failed.
A disk or link error occurred. This error message is sent by the KERNEL module.

Segment N of module-name must be preload
Certain segments of an application or DLL must be preloaded. If an application sets the switch
incorrectly, the system corrects the setting. However, the application will load faster if it sets the
switch properly. The following segments must be preloaded: DATA segments, FIXED CODE
segments, and CODE segments that are MOVEABLE but not DISCARDABLE. This warning
message is sent by the KERNEL module.

Segment N of module-name was discardable under Win 3.0
In Windows 3.1, the DISCARDABLE bit is not necessarily set for DLL segments that are marked
MOVEABLE. In Windows 3.0, DLL segments marked MOVEABLE were also made
DISCARDABLE. In general, if a DLL segment is MOVEABLE, it can also be DISCARDABLE.
This warning message is sent by the KERNEL module.

SetClassWord: Invalid class brush
The SetClassWord function was called with an invalid brush handle. This error message is sent by
the USER module.

SetSysModalWindow failed: another app's window already sys modal

The SetSysModalWindow function failed because another application was already displaying a
system modal window. This warning message is sent by the USER module.

SetWindowLong/SetClassLong of NULL window procedure
An attempt was made to subclass a window by using a NULL or invalid window procedure address.
This warning message is sent by the USER module.

SetWindowPos: Invalid hwndInsertAfter
The hwndInsertAfter parameter to the SetWindowPos or DeferWindowPos function is invalid. This
error may occur because a window was destroyed between the call to the DeferWindowPos function
and the call to the EndDeferWindowPos function. This error message is sent by the USER module.

SetWindowPos: Invalid window handle
An invalid window handle was passed to the SetWindowPos or DeferWindowPos function. This
error may occur because a window was destroyed between the call to the DeferWindowPos function
and the call to the EndDeferWindowPos function. This error message is sent by the USER module.

SetWindowPos: WS_EX_TOPMOST window positioned incorrectly
The WS_EX_TOPMOST windows have been corrupted. This internal error message is sent by the
USER module.

SetWindowsHook called to unhook: use UnhookWindowsHook
The SetWindowsHook function was called with the window hook address returned from a previous
call to SetWindowsHook. This can result in unhooking more than one hook from the hook chain.
The UnhookWindowsHook function should always be used to unhook hooks. This warning message
is sent by the USER module.

SetWindowsHook: HookProc must be in a DLL
Hook functions with system scope that are installed by using the SetWindowsHookEx function or
hook functions installed by using the SetWindowsHook function (other than WH_MSGFILTER
hooks) must be defined in a DLL. Task hooks and WH_MSGFILTER hooks can be defined in a
standard executable file. This warning message is sent by the USER module.

Starting Code Segment of module-name must be preload
Certain segments of an application or DLL must be preloaded. If an application sets the switch
incorrectly, the system corrects the setting. However, the application will load faster if it sets the
switch properly. The following segments must be preloaded: DATA segments, FIXED CODE
segments, and CODE segments that are MOVEABLE but not DISCARDABLE. This warning
message is sent by the KERNEL module.

System message box already up
An internal error occurred that caused a system modal message box to be displayed when there was
already one displayed. This error message is sent by the USER module.

Too many windows positioned with tasks locked
An internal buffer has overflowed. This internal fatal error message is sent by the USER module.

TrueType font width mismatch
There is a possible error in the selected TrueType font. This warning message is sent by the GDI
module.

Unable to load filename (number)
A startup error occurred. This error message is sent by the KERNEL module.

Unallocated extra window/class word index used
An invalid index was used in a call to the GetWindowWord, SetWindowWord, GetClassWord, or
SetClassWord function. This warning can occur when these functions are called with windows
created by other applications or other parts of the application. An application should not call these
functions unless it is guaranteed that the window class supports the extra window words. This
warning also can occur if insufficient window or class words are allocated when the window class is
registered. This warning can occur in the retail version of Windows. The LogError constant is
ERR_STRUCEXTRA. This warning message is sent by the USER module.

Unknown fixup N
A disk or link error occurred. This error message is sent by the KERNEL module.

UnlinkWin386Block: releasing 0xNNNNNN bytes
Memory is being returned to a DPMI server (Win386 or DOSX). This trace message is sent by the
KERNEL module to help applications optimize memory management.

UnregisterClass failed: called from wrong app
The UnregisterClass function must be called from same application that called the RegisterClass
function. This error message is sent by the USER module.

UnregisterClass failed: class doesn't exist
The UnregisterClass function failed because the specified class does not exist. This error message is
sent by the USER module.

UnregisterClass failed: class windows still exist
The UnregisterClass function failed because windows for the specified window class have not been
destroyed. This error message is sent by the USER module.

Use of DC after ReleaseDC or EndPaint
Drawing occurred in a device context after it was released with the ReleaseDC or EndPaint function.
This is a serious error; it can cause drawing to occur in other application windows. This error is often
caused by an application neglecting to set global HDC variables to NULL after releasing the device
context. This error message is sent by the USER module.

USER: Menu not destroyed: 0x1234
The specified menu handle was not destroyed by an application before terminating. This warning
message is sent by the USER module.

USER: Window not destroyed: 0x1234
The specified window handle was not destroyed by an application before terminating. This warning
message is sent by the USER module.

Warning: Yield() during application termination
An application yielded during application termination. This message can help track down timing
problems that occur while the application is terminating and are otherwise difficult to debug. This
warning message is sent by the USER module.

Window class freed with existent class windows!
An internal error occurred when the system was destroying the windows created by an application
while terminating the application. This error message is sent by the USER module.

Window class reference count overflow
The internal system data structures may have been damaged. This error could be caused by writing
through an uninitialized pointer or performing other kinds of incorrect memory handling. This error
message is sent by the USER module.

Window class reference count underflow
The internal system data structures may have been damaged. This error could be caused by writing
through an uninitialized pointer or performing other kinds of incorrect memory handling. This error
message is sent by the USER module.

Window destroyed itself during WM_DESTROY processing
The DestroyWindow function was called a second time while the window was processing the
WM_DESTROY message. This error message is sent by the USER module.

Window destroyed unexpectedly by callback
A window was destroyed unexpectedly while it was processing a message. This warning message is
sent by the USER module.

Windows will delete class brushes
A class brush is invalid when the application exits. When an application is terminating, all classes it
registered are destroyed. The class brush handles are also deleted. If an application deletes its class
brush before terminating, this message will be generated. This warning message is sent by the USER
module.

WM_NCACTIVATE FALSE return ignored during WM_MDIACTIVATE
In Windows version 3.0, the return value of the WM_NCACTIVATE message is ignored when the
message is sent to a MDI child window. In Windows 3.1, the activation is prevented (just as with
top-level windows) if FALSE is returned. This error message is provided for applications that
depend on compatibility with Windows 3.0 to indicate that a FALSE return value is ignored in an
application for Windows 3.0. This error message is sent by the USER module.

WM_NCACTIVATE FALSE return ignored: activating sys modal window
Returning FALSE after processing the WM_NCACTIVATE message does not prevent a window
from being deactivated if a system modal window is activated. This warning message is sent by the
USER module.

WS_CLIPCHILDREN overridden by CS_PARENTDC
In Windows 3.1, the WS_CLIPCHILDREN style works correctly when a window is created with the
CS_PARENTDC style. In Windows 3.0, the WS_CLIPCHILDREN style has no effect in this
situation. This warning message is sent by the USER module.

WS_CLIPSIBLINGS overridden by CS_PARENTDC
In Windows 3.1, the WS_CLIPSIBLINGS style works correctly when a window is created with the
CS_PARENTDC style. In Windows 3.0, the WS_CLIPSIBLINGS style has no effect in this
situation. This warning message is sent by the USER module.

wsprintf: Invalid char sequence follows '%'
An improper format string was passed to the wsprintf function. This warning message is sent by the
USER module.

Zero import module.
A disk or link error occurred. This error message is sent by the KERNEL module.

Common Programming Errors
The following list describes programming errors that sometimes appear in Windows applications:

Passing invalid parameters.
Accessing nonexistent window words. (In Windows 3.0, a call to the SetWindowWord or

SetWindowLong function past the end of the allocated window words, as defined by the RegisterClass
function, would damage internal window-management structures.)

Using handles after they have been deleted or destroyed.
Using a device context after it has been released.
Deleting GDI objects before they are selected out of a device context.
Neglecting to delete GDI or USER objects when an application terminates.
Writing past the end of an allocated memory block.
Reading or writing using a memory pointer after it has been freed.
Neglecting to export window procedures and other callback functions.
Neglecting to use the MakeProcInstance function with dialog procedures and other callback

functions.

Many of these programming errors can cause unrecoverable application errors in Windows version 3.0.
The debugging system can help you locate these types of problems.

Compatibility Issues
Although every effort has been made to ensure that the many enhancements and improvements to the
Windows operating system, version 3.1, are compatible with Windows 3.0 applications, some
enhancements may affect application operation. This is especially true if an application uses features in an
undocumented fashion or relies on invalid assumptions about the behavior of Windows.

The following Help topics discuss categories of compatibility issues:

Window Management
TrueType
Undocumented Windows 3.0 Features

Window Management Compatibility Issues
The window management (USER module) enhancements may affect Windows 3.0 applications. To test
this, you need to perform as many operations as possible that cause your application windows to be
moved, sized, scrolled, and repainted. The following sections identify a few basic methods to try, but you
should try as many other methods as possible.

In some cases, Windows 3.1 ensures compatibility with existing Windows 3.0 applications by supporting
both the Windows 3.0 and the new Windows 3.1 implementations. If an application's Windows version as
set by Microsoft Windows Resource Compiler (RC) is 3.0, Windows 3.1 carries out the Windows 3.0
implementation, meaning that the Windows 3.1 enhancement has no impact on an existing Windows 3.0
application. However, if a Windows 3.0 application's Windows version is changed to 3.1 without
corresponding changes to the application code, the application may encounter problems whenever
Windows 3.1 carries out the 3.1 implementation.

Moving and Sizing
MoveWindow

A call to the MoveWindow function is equivalent to a call to SetWindowPos with the
SWP_NOZORDER and SWP_NOACTIVATE flags set. If the MoveWindow fRedraw parameter is
FALSE, the SWP_NOREDRAW flag is also set. For Windows 3.0 applications, when
MoveWindow is called for a top-level window with fRedraw set to FALSE, Windows calls
SetWindowPos without setting the SWP_NOREDRAW flag and then calls the ValidateRect
function to prevent the client area from being repainted. However, WM_NCPAINT and
WM_ERASEBKGND messages will have been sent, even though fRedraw was FALSE. For
Windows 3.1 applications, MoveWindow no longer sends these messages in this special case.

For Windows 3.0 applications, Windows always completely redraws a window's frame when the
window is moved or sized. For Windows 3.1 applications, Windows no longer completely redraws a
window's frame in all cases. For example, the following code sequence does not redraw the window
border:

MoveWindow(hwnd, ..., FALSE);
.
.
.

InvalidateRect(hwnd, NULL, TRUE);
SetWindowPos

For Windows 3.0 applications, the SetWindowPos function assumes that SWP_NOMOVE and
SWP_NOSIZE are set if SWP_HIDEWINDOW or SWP_SHOWWINDOW is set. This means it is
not possible in an atomic operation both to hide or show a window and to change its size or position.
For Windows 3.1 applications, this limitation does not exist.

For Windows 3.0 applications, when the window is already visible, a call to SetWindowPos with the
SWP_SHOWWINDOW flag set always causes the entire window to be redrawn. This also affects
the operation of the ShowWindow function. For Windows 3.1 applications, when the window is
already visible, a call to SetWindowPos with SWP_SHOWWINDOW sets does not cause the
window to be redrawn (unless another area must be updated as a result of a size, move, or z-order
operation specified in addition to SWP_SHOWWINDOW).

WM_NCCALCSIZE
In Windows 3.0, the WM_NCCALCSIZE message is always sent to a window whenever the
window is moved or sized. For Windows 3.1, the WM_NCCALCSIZE message is sent only if the
size of the window actually changes.

Painting

Window management has been substantially optimized to avoid unnecessary redrawing and flashing.
Applications that depend in subtle ways on when (and if) WM_NCPAINT, WM_ERASEBKGND, and
WM_PAINT messages are sent may have incompatibilities. Windows 3.0 frequently sent these
messages redundantly to windows and sometimes sent them to windows that were not visible. One of
the visual results of the Windows 3.1 optimizations is that a window's nonclient area is not always
completely repainted when a window is sized or moved. Some attempt has been made to ensure
compatibility, but there are some differences that cannot be backward-compatible and still achieve the
significant performance and visual advantages.
BeginPaint and GetDC

For Windows 3.0 applications, if the BeginPaint function is called on a window that has a class icon,
the function returns a window device context (DC); in contrast, the GetDC function returns a client
DC with no visible region. For Windows 3.1 applications, BeginPaint and GetDC both return a
client DC with no visible region.

BS_USERBUTTON Style
The BS_USERBUTTON style is not valid for Windows 3.1.

CS_PARENTDC Class Style
For Windows 3.0, a window with the CS_PARENTDC class style whose parent window does not
have the WS_CLIPCHILDREN style receives the device context of the parent window, even when
the child window has the WS_CLIPSIBLINGS or WS_CLIPCHILDREN style. For Windows 3.1, a
window with the CS_PARENTDC class style does not receive the parent device context if the
window style is either WS_CLIPSIBLINGS or WS_CLIPCHILDREN. Windows 3.1 consistently
favors the window-style specifications over the class style.

GetUpdateRect
For Windows 3.0 applications, calling the GetUpdateRect function for a window that has the
CS_OWNDC class style and a mapping mode other than MM_TEXT sometimes retrieves the update
rectangle in device coordinates instead of logical coordinates. For Windows 3.1 applications, the
result is always in logical coordinates for this class style and mapping mode.

InvalidateRect and InvalidateRgn
For Windows 3.0 applications, when the InvalidateRect or InvalidateRgn function is called with the
lprc parameter set to NULL to invalidate the entire window, all child windows are also completely
invalidated--regardless of whether the child window is outside the parent's client area (that is,
invisible). This results in WM_PAINT messages being sent to windows that don't require them. For
Windows 3.1 applications, only windows that are actually visible within a parent's client area
receive update regions and therefore receive WM_PAINT messages.

InvalidateRect and RedrawWindow
A minimized Windows 3.0 application could call the InvalidateRect function to invalidate its icon.
For a Windows 3.1 application to invalidate its icon, it must call the RedrawWindow function and
specify RDW_FRAME for the fuRedraw parameter.

Multicolumn List Boxes
A multicolumn list box in Windows 3.0 always received two paint messages when being created.
For Windows 3.1, a multicolumn list box receives only one paint message.

UpdateWindow
In Windows 3.0, the various controls call the UpdateWindow function at inappropriate times, such
as when receiving a WM_SETFOCUS message and at other times when changing the internal state.
Some controls may not be redrawn properly if they are moved or hidden before they are able to
process a WM_PAINT message. In Windows 3.1, the controls do not call UpdateWindow as often,
resulting in faster window repainting and improved appearance.

WM_DRAWITEM
For list boxes in Windows 3.0, the wParam parameter of the WM_DRAWITEM message is always
zero. In Windows 3.1, the wParam parameter specifies the identifier of the control that sent the
message.

WM_ERASEBKGND
For Windows 3.0 applications, if an application responds with FALSE to a WM_ERASEBKGND
message sent during any operation other than BeginPaint (such as SetWindowPos), another
WM_ERASEBKGND message is sent when the application calls BeginPaint. For Windows 3.1
applications, if an application responds with FALSE, no second WM_ERASEBKGND message is
sent but BeginPaint sets the fErase member of the PAINTSTRUCT structure to TRUE.

For Windows 3.0 applications, calls to the InvalidateRect function with the fErase parameter equal
to FALSE always prevented the window from receiving a WM_ERASEBKGND message, even if
the message was already pending before the call to InvalidateRect was made. For Windows 3.1,
pending WM_ERASEBKGND messages are received by the application.

WM_SETREDRAW
For Windows 3.0 applications, sending the WM_SETREDRAW message with the wParam
parameter set to FALSE to a window that has an update area does not validate the window. The
update area is still present after a WM_SETREDRAW message with wParam set to TRUE. For
Windows 3.1 applications, sending WM_SETREDRAW with wParam set to FALSE does validate
the window completely to ensure that the window does not receive any WM_PAINT messages while
it is invisible. This does not apply to edit controls, list boxes, and combo boxes, because their
WM_SETREDRAW messages are handled differently.

WM_SETVISIBLE

For Windows 3.0 applications, Windows sends a WM_SETVISIBLE message immediately after
sending the WM_SHOWWINDOW message. For Windows 3.1 applications, Windows does not
send the WM_SETVISIBLE message-- WM_SETVISIBLE is obsolete for Windows 3.1.

Scrolling

For Windows 3.0 applications, the ScrollWindow function has a number of bugs associated with
scrolling a window that had any invalid area. Frequently, the update region resulting from the scrolling
operation is not properly calculated. For Windows 3.1 applications, ScrollWindow calculates the update
region correctly.

Multiple Document Interface (MDI)

Multiple document interface (MDI) is completely compatible with Windows 3.0 applications. For
Windows 3.1 applications, MDI has been enhanced. In particular, specifying the low-order style bit
(MDIS_ALLCHILDSTYLES) when creating an MDICLIENT window enables the new Windows 3.1
MDI capabilities for that window. This gives applications control over all MDI child window styles and
allows for hidden windows.

Windows Hooks
Hook Chain

In Windows 3.0, an application or dynamic-link library (DLL) that installs a hook is responsible for
maintaining the hook chain. In Windows 3.1, Windows maintains the hook chain. Consequently,
there are subtle changes in the interface that may affect Windows 3.0 applications. Furthermore,
Windows 3.1 no longer allows applications and DLLs to enumerate all the functions in a hook chain.
In particular, Windows 3.1 no longer supports the HC_GETLPLPFN, HC_LPLPFNNEXT, and
HC_LPFNNEXT values for the DefHookProc function.

Negative Hook Values
In Windows 3.0, Windows passes a negative hook value to a hook function when unhooking a hook.
This negative value is for Windows internal use only. In Windows 3.1, Windows does not pass a
negative hook value to a hook function; it uses another method to unhook a hook.

SetWindowsHook
In Windows 3.0, the SetWindowsHook function returns a pointer to the next hook function. In
Windows 3.1, SetWindowsHook does not return a pointer; instead, it returns a 32-bit value that
identifies the next hook function. An application that attempts to call the hook function by using the
return value from SetWindowsHook as a function address causes a general protection (GP) fault.

In Windows 3.0, an application can unhook a hook function by passing the address of the next hook
function to the SetWindowsHook function. In Windows 3.1, passing the address of the next hook
function causes a system debugging error (RIP) in the Windows 3.1 debugging version.

SetWindowsHookEx, UnhookWindowsHookEx, and CallNextHookEx
In Windows 3.0, three hook functions are available: SetWindowsHook, UnhookWindowsHook, and
DefHookProc. In Windows 3.1, these functions are replaced with three more powerful functions:
SetWindowsHookEx, UnhookWindowsHookEx, and CallNextHookEx. Windows 3.1 applications
should use the new functions. The old functions are still supported for backward compatibility.

Parameter Validation

Windows strictly checks parameters passed to its functions before using them. For Windows 3.0
applications, there are many validation errors that Windows works around and lets the function or
application continue to function. For Windows 3.1 applications, many of these errors cause the functions
to fail and it is up to you to ensure that structures and parameters are passed correctly.

For example, in Windows 3.0, if an application passes NULL as the hInstance parameter to
CreateWindowEx, Windows maps the handle to the stack segment. In Windows 3.1, the function returns
an error value.

Undeleted Object Notifications

In Windows 3.1, any GDI or USER object left allocated when an application terminates results in a
warning to the debug terminal. Windows 3.1 does not automatically free these objects--your application
must free them. These warnings usually imply a memory leakage, in which case running and terminating
an offending application eventually uses all available memory.

Sometimes an object is intended to last longer than the application or DLL that created it. This occurs
frequently in shared DLLs that share GDI objects such as bitmaps and brushes among its many clients.
In such cases, the warnings at the debug terminal can be ignored.

Menu Implementation
SendMessage and PostMessage

For Windows 3.0 applications, Windows uses the SendMessage function to send a
WM_COMMAND message. For Windows 3.1 applications, Windows uses the PostMessage
function to send the message, preventing stack overflow when the application is working with pop-
up menus.

TrackPopupMenu
Menu management has been enhanced for Windows 3.1. In particular, the TrackPopupMenu
function now allows additional parameters, and Windows now stores application menu data in a
separate heap, expanding the number of windows that can exist.

RegisterClass

In Windows 3.0, Windows fails to properly free the window-class background brush when deleting the
class. In Windows 3.1, Windows frees the brush when either a Windows 3.0 or 3.1 application
terminates.

Topmost Window

A new window attribute allows a window to be placed on top of all other windows, even when the
owning application is not active. If multiple applications have topmost windows, the topmost windows
will have the same order as their owning applications.

Also, a topmost window, its owners, and all the windows it owns will stay together as windows are
moved around. This means that if you bring an owned dialog window to the top, its owner will also be
brought forward so that it stays immediately below the dialog box.

An application that depends on being able to have a window of another application between its main
window and a dialog box may encounter problems. For example, a setup program that starts Windows
Notepad and then brings up a dialog box causes Notepad to be positioned behind the dialog box owner.
The solution in this case is to create the dialog box without an owner (a window cannot be owned by a
window of another application).

Any application that relies on having an unobstructed client area when the application is active may
encounter problems, because it is not possible to guarantee that the active window is on top. This means
the active window may not have a rectangular clipping region, because a topmost window may be on top
of it. Calling the BitBlt function with a window or screen DC as the source (which is not recommended
in any case) may copy bits belonging to the topmost window.

TrueType Compatibility Issues

TrueType Compatibility Issues

Although Windows 3.1 includes support that seamlessly integrates TrueType fonts into existing
applications, problems with fonts can occur for Windows 3.0 applications that assume bitmap fonts are
always available, that Helv and Tms Rmn font are always available, and that font sizes are limited. Be
sure to thoroughly check fonts in your application, including files and dialog boxes. Also, because
TrueType provides more fonts in more styles, Windows 3.1 may consume both printer and global
memory faster than Windows 3.0. You should check your applications with systems and printers that
have limited memory.

Helv and Tms Rmn Fonts

Helv and Tms Rmn fonts are no longer available. The fonts that replace these are MS Sans Serif and MS
Serif, respectively. To support Windows 3.0 applications that use the Helv and Tms Rmn fonts, the
[FontSubstitutes] section in the WIN.INI file maps Helv to MS Sans Serif and Tms Rmn to MS Serif by
default. It also maps Times®to the Times New Roman TrueType font and Helvetica®to the Arial
TrueType font.

Applications that search explicitly for "Helv" or "Tms Rmn" may encounter difficulties when these fonts
are not found.

Font Enumeration

Applications should test to ensure that TrueType fonts are enumerated correctly. Applications should
also ensure that they encounter no unexpected font mapping. (When a TrueType font substitutes for
another font, line spacing, paragraph breaks, or page breaks could change.)

Windows 3.0 applications sometimes create multiple instances of a single font or font family. In
particular, some applications use different handling for fonts that are enumerated by a nonraster printer
than they use for fonts enumerated for the screen, even if these fonts have the same names. With
TrueType fonts, fonts with the same name are identical, regardless of the output device. Some Windows
3.0 applications assume that scalable fonts can not be available on nonscaling devices. In such cases, the
applications intentionally enumerate a single size for every TrueType font even though other sizes are
available. Furthermore, some applications assume that bold, italic, and bold italic are always simulated
from regular fonts. This is not true with TrueType fonts.

An application can create multiple instances of the same font.

Windows continues to support and is fully backward-compatible with Adobe Type Manager (ATM),
Facelift, and Intellifont for Windows. Applications using these font technologies should encounter no
problems.

TrueType Only

Windows 3.0 applications may behave unexpectedly if the user has used Control Panel to check the
Show Only TrueType Fonts in Applications check box. An application may fail to locate any fonts if
only TrueType fonts are present.

Font Sizes

TrueType supports a wide variety of sizes for all TrueType fonts. In Windows 3.1, if an application
requests a very small or very large font, it usually gets the requested size.

An application that checks for the smallest or largest font by setting the nHeight parameter in the
CreateFont function to an extreme value will not get the expected results.

Font Substitutions

The [FontSubstitutes] section may cause the GetTextFace function to return a typeface name that is not
enumerated by the EnumFontFamilies function. This ensures that an application gets the typeface name
it requests. For example, an application that requests Helv (and expects Helv) gets a typeface named
Helv.

An application that expects matching facenames from EnumFontFamilies and GetTextFace may
encounter mismatches.

ABC Spacing

ABC-spaced fonts can lead to misplaced cursors, highlights that do not encompass all the text on a line,

pieces of characters left behind after screen updates, and unexpected clipping of fonts on printers (when
a character goes outside the printable area).

Third-Party Font Manager Problems

Be sure to try your application with ATM, Facelift, or Intellifont for Windows fonts installed. Do not
install more that one of these font managers at a time. Skip this test if your application does not work
with these font managers under Windows 3.0.

Mixing Device, Bitmap, and TrueType Fonts

In Windows 3.1, some fonts, such as the Symbol font, may be supported by a TrueType font, a GDI
bitmap font, and a device-specific font. Applications can get unexpected results if they specify the name
of the font without specifying the font technology; for example, the Symbol bitmap font could be mixed
with the Symbol TrueType font in a print job.

Printing may mix device, bitmap, and TrueType fonts, causing unacceptable output.

Desktop Publishing and International Characters

Windows 3.1 includes 22 new international and desktop publishing characters. Unfortunately, these new
characters appear only in TrueType fonts; the bitmap fonts do not have them.

Changing to a bitmap font causes the new characters to be displayed as the default character for the
current font. Some applications may perform their own remapping in the ASCII character range 128
through 159.

Note: The desktop publishing characters are not be available to dialog boxes that use bitmap fonts
exclusively (such as the Find and Replace dialog boxes).

Text Rotation

Although Windows 3.0 can rotate vector and device fonts, under certain mapping modes it rotates these
fonts differently. For compatibility, Windows 3.1 also rotates fonts differently. However, an application
can override this default behavior and direct Windows 3.1 to use the same convention to rotate all fonts
by setting the CLIP_LH_ANGLES bit in the lfClipPrecision member of the LOGFONT structure. When
this bit is set, Windows 3.1 rotates all fonts using the same rules used by Windows 3.0 to rotate device
fonts.

Other TrueType Considerations

Some applications do not request point sizes correctly. For bitmap fonts, the results are acceptable
because only these fonts have a limited range of sizes available. For TrueType fonts, output can be
unacceptable because any size requested is available.

Windows 3.0 applications sometimes set the tmAveCharWidth member of the TEXTMETRIC structure
to request a specific font. With Windows 3.1, the widths of TrueType characters are changed to match
the requested width.

With TrueType, Windows now adds at least 13 fonts to the default list. Some applications may fail
because they do not have test cases that account for the additional fonts.

Printing

You can evaluate the effects of most of the printing changes by printing documents from your
application in Windows 3.0 and Windows 3.1 and comparing the output. Although you should test as
many printers as possible, you must test the following four printer types:

PostScript
LaserJet II
LaserJet III
Dot matrix

Some printers have been renamed. This could cause problems in your application if your application or
documents make specific references to a certain printer. Note that renaming the printer does not affect soft
fonts.

Other TrueType Enhancements

The font enhancements implemented by TrueType do not cause problems for applications unless the
applications depend upon internal structures or internal operations. TrueType enhancements can cause
problems in the following situations:

When an application depends upon internal data structures, which may have changed.
When an application relies on real mode, which is no longer supported.

When an application builds its own selectors. KERNEL now runs at ring 3 (instead of ring 1, as in
Windows 3.0) to prevent ill-behaved applications from relying on the relationship between handles and
selectors.

Undocumented Windows 3.0 Features

Undocumented Windows 3.0 Features

Windows 3.0 applications that call undocumented Windows 3.0 functions or structures may fail when
run with Windows 3.1. Most of the undocumented functions are internal USER, GDI, and KERNEL
functions that Windows 3.0 must export to support movable data segments in real mode. Windows 3.1
supports only protected mode. Therefore, Windows 3.1 does not export these internal functions, and
applications that attempt to link with them will fail.

The undocumented structures are internal structures used by Windows to store information about
Windows objects, such as windows and device contexts. To support parameter validation, Windows 3.1
has changed the number and meaning of the members in these structures. Windows 3.0 applications that
directly access these structures will eventually fail.

To determine whether your application will fail, run it with the debugging version of Windows 3.1. The
debugging version displays an error message if the application contains undocumented functions that are
no longer supported. Windows closes the application when the unsupported function is actually called.

Creating Windows Applications
This topic explains what elements are needed to build applications for the Microsoft Windows operating
system versions 3.0 and 3.1. It also provides guidelines for writing robust applications and for debugging
applications.

Writing Compatible Windows Applications

The Microsoft Windows 3.1 Software Development Kit (SDK) allows you to create applications for
either Windows 3.0 or 3.1. If you write your application carefully, you can create a single application
that is compatible with Windows 3.0 but also takes advantage of newer features when running with
Windows 3.1.

Windows 3.1 Applications

The Windows 3.1 SDK tools, header files, and libraries create Windows 3.1 applications by default. No
special procedures are required to create executable files that run with Windows 3.1. If you create
Windows Help files for your applications, use Microsoft Help Compiler version 3.1 (HC31.EXE) to
compile your files so that they have access to the latest features of Windows Help.

Applications that call Windows 3.1 functions depend on Windows 3.1 and cannot be run with Windows
3.0.

Windows 3.0 Applications

You can use the Windows 3.1 SDK to create a Windows 3.0 application by following these steps:
1 Set the WINVER define variable to 0x300 to enable the WINDOWS.H file for Windows 3.0

compilation. Place the following statement immediately before the include statement for the header
file:

#define WINVER 0x300
2 Link your application object files with the LIBW.LIB library provided with the Windows 3.1 SDK.

Except for the functions that are new to Windows 3.1, all functions defined in this import library are
compatible with Windows 3.0.

3 Mark your application as a Windows 3.0-only executable by using the /30 option with Windows
Resource Compiler (RC). The /30 option cannot be used with the /r option.

4 If you create Windows Help files for your application, use Help Compiler version 3.0 (HC30.EXE)
to compile your files.

By default, Resource Compiler marks applications for 3.1, so it is important to use the /30 option
mentioned in the preceding steps.

All Windows 3.0 applications can use Windows extensions, such as common dialog boxes and object
linking and embedding. If you use these features, you must ship the corresponding dynamic-link libraries
(DLLs) and related files with your application. They should be installed along with the application.

Combined Windows 3.0 and 3.1 Applications

You can create Windows applications that run with Windows 3.0 but also take advantage of newer
features when running with Windows 3.1. Such applications consist primarily of Windows 3.0 function
calls but conditionally link to and use Windows 3.1 functions.

To build a combined application, mark your application as a Windows 3.0 only executable by using the /
30 option with Resource Compiler, but do not set the WINVER define variable to 0x300. You must use
the GetVersion function to determine the version of Windows that is running before using any Windows
3.1 functions.

The following example demonstrates how to set a flag if the current system is Windows 3.1:

extern BOOL fWin31;
UINT version;
fWin31 = FALSE;
version = LOWORD(GetVersion());
if (((LOBYTE(version) << 8) | HIBYTE(version)) >= 0x030a) {

fWin31 = TRUE;

}
For information about interpreting the return value of the GetVersion function, see the Microsoft Windows
Programmer's Reference, Volume 2.

Your application can call Windows 3.1 functions directly as long as you link it with the 3.1 version of
LIBW.LIB. (It is not necessary to call the GetProcAddress function.) However, you must ensure that
Windows 3.1 functions are not called when your application is running with Windows 3.0. The following
example demonstrates how this can be done, using the fWin31 flag that was set in the preceding example:

extern BOOL fWin31;
if (fWin31) {

ScrollWindowEx(hwnd, ...); /* new for Windows 3.1 */
}
else {

ScrollWindow(hwnd, ...); /* Windows 3.0 function */
}
If you create Windows Help files for your application, either use Help Compiler version 3.0 (HC30.EXE)
to compile your files, or create a help file for Windows 3.1 and release your help file with the
redistributable Windows 3.1 versions of the WINHELP.EXE and WINHELP.HLP files.

If you run a combined application using the debugging version of Windows 3.0, a call to an undefined
function causes a warning. The application, however, continues to load and run successfully, as long as the
function is not actually called.

Creating Robust Applications

Windows 3.1 includes a number of features and enhancements designed to make running Windows
applications much more reliable. Efforts to make Windows 3.1 more reliable have focused primarily on
three areas:

Improving how the system handles errors if and when they occur.
Avoiding errors in system code by ensuring the validity of all handles, pointers, structures, indices,

and flags passed to the system.
Providing better diagnostics, tools, and header files for finding and fixing bugs more efficiently

during development.

The two key components improving reliability are the parameter validation built into the Windows
operating system and the STRICT type-checking of the WINDOWS.H file. Also useful are the new
features of WINDOWSX.H, which include macros, message crackers, and control functions.

Parameter Validation

Windows 3.1 contains code to validate parameters passed to Windows functions and messages. These
features are included in both the retail and debugging versions of the system. The debugging version of
the system includes some additional features and parameter checking that is not included in the retail
product.

Invalid Parameter Error Messages

The system validates handles, pointers, structures, indices, and flags. In most cases, an invalid parameter
causes a function to return an error value. In other cases, such as when a flag is invalid, the function
executes as usual, but an appropriate warning message is displayed.

When Windows encounters an invalid parameter error, it displays the message on your debugging
terminal or window. The message has the following form:

err AppName function:address: message:parameter-value

Following are the message parameters:
AppName Identifies the application or DLL that caused the error.
function Identifies the number of the function that was passed the invalid parameter.
address Identifies the address of the function that was passed the invalid parameter.
message Specifies the string identifying the error.
parameter-value Specifies the value of the invalid parameter.

For example, a message could have the following form:

err FONTSAMP 011F:056A: Invalid local handle: 1D50

If the address is not near the address of a Windows function you recognize, the window message
parameter is probably invalid. Functions that take messages, such as SendMessage, DispatchMessage and
SendDlgItemMessage, show an address within the message validation code. Parameter values for invalid
parameters begin with the PV prefix (for example, PV_WM_COMMAND).

By default, invalid parameter messages display a stack trace and an "Abort, Break, or Ignore?" prompt.
You can change the default by setting options in the System Debug Options box of the Systems
Debugging Log Application (DBWIN.EXE). This dialog box is displayed when you choose the Settings
command on the Options menu.

You can also log invalid parameter errors by using Dr. Watson, just as you would log general-protection
(GP) faults by using Dr. Watson. By default, this feature is turned off.

Buffer Overflow Errors

A common application error is to allocate too little space for a buffer that is passed to and filled by
Windows. These errors are especially difficult to track if the buffers are allocated on the stack. Windows
can help you find these errors by filling buffers before information is copied into them. If the operation
overflows the buffer, Windows detects and reports the error.

By default, this feature is disabled. You can enable the feature by choosing the Settings command on the
Options menu of DBWIN.EXE and then selecting the Fill Buffers check box. When you select this
check box, Windows displays a stack trace and an "Abort, Break, or Ignore?" prompt with some
warning messages.

This feature is available in the Windows debugging version only.

Interpreting Invalid Parameters

Possible reasons for getting invalid parameter errors follow.

Invalid Handles

A handle is invalid under the following circumstances:
Using NULL or -1 when it is not allowed
Reusing a destroyed or deleted handle
Using an uninitialized stack variable
Using a device context handle created by the CreateIC or CreateMetaFile function in a function

that does not allow the handle
Passing one type of handle in place of another, such as passing a device-context handle in place of

an window handle

Invalid Pointers

A pointer is invalid under the following circumstances:
Using a NULL pointer when it is not allowed
Pointing to a buffer that is too small
Using a function pointer without properly exporting it or properly creating a procedure-instance

address
Pointing to a string that does not have a null-terminating character
Pointing to a structure that contains an invalid member (for example, if you call the RegisterClass

function with a invalid window procedure in the CREATESTRUCT structure, Windows reports an invalid
pointer)

Using an uninitialized stack variable
Passing a read-only pointer when a read-write pointer is required

Invalid Flags or Value

A flag or value is invalid under the following circumstances:
Passing meaningless flags
Passing an out-of-range index
Using a value that is otherwise illegal

You can use pointer-validation functions (such as IsBadCodePtr) to help you check for and debug your
application's use of pointers.

Strict Type-Checking

The Windows 3.1 header file (WINDOWS.H) includes various features for detecting problems when
compiling an application. These features, which are provided by the STRICT option, make application
development faster and easier.

You define STRICT before the include statement for the header file. STRICT causes the various types
and function prototypes in WINDOWS.H to be declared with very strict type-checking. For example,
once STRICT is defined, it is impossible to pass a window handle to a function that requires a device-
context handle without generating a compiler error.

Features of the STRICT Option

Specific features provided by the STRICT option include:
Strict handle type-checking
Proper declaration of certain parameter and return value types
Fully prototyped type definitions for callback function types
Proper declaration of polymorphic parameters and return values (for example, wParam and lParam

message parameters)
Proper use of the const keyword for pointer parameters and structure members when the pointer is

read-only

Type declarations for many of the Windows functions and callback functions have changed. Nonetheless,
unless you define STRICT, the new declarations for Windows 3.1 are fully compatible with the old
declarations for Windows 3.0. WINDOWS.H for Windows 3.1 can, therefore, be used to compile
Windows 3.0 applications without modifications.

Compiling with the STRICT Option

In general, the STRICT option is most useful with newly developed code or with code that is being
maintained or changed regularly. Code that has already been written and tested, and is not changing very
much over time, will generally not benefit as much from STRICT. If you find that stable code generates
lots of run-time parameter validation errors when run with Windows 3.1, you will find STRICT very
valuable as you go through the code to clean up those errors.

The following procedures will ensure that your application conforms to STRICT type-checking:
Use new handle and parameter types. In particular, replace HANDLE with appropriate handle

types and use WPARAM and LPARAM with all message parameters.
Use new return type and parameter types for windows and dialog box procedures and callback

functions.
Declare all your functions with full prototypes. Place these prototypes in a include file and include

it with each source file.
Cast function pointers to the proper type rather than to FARPROC type. This is especially

important with the MakeProcInstance function.
Take special care with HMODULE and HINSTANCE types. There are a few Windows functions

that return or accept only HMODULE types.
Use the MAKELPARAM macro instead of the MAKELONG macro when building LPARAM

parameters out of two words. Also, use the MAKELRESULT macro instead of MAKELONG when
building LRESULT return values.

Cast the handle or near pointer to a WORD type in order to prevent getting the data segment value
in the high word of the value when casting a handle or near pointer value to LRESULT or LPARAM.

Cast a far pointer, LPARAM or LRESULT, to a DWORD type and then to the desired type when
you cast the far pointer to a handle or near pointer. This prevents "segment lost in conversion" warnings.

Make sure you have the following lines, in the given order, in each source file:

#define STRICT
#include <windows.h>

Compile your source to use the highest level of error checking. Treat any warnings as errors and
correct your sources to eliminate the warning messages.

Link and run the application to ensure that it executes without errors.

Testing and Debugging Your Application in Windows

One of the advantages of an operating system such as Windows is its ability to run more than one
application at a time. However, this advantage can also create hazards when you are testing and
debugging an application.

Windows is a robust operating system. When Windows is running in protected (standard or 386
enhanced) mode, it can usually terminate an application that encounters a fatal error (such as an invalid
handle) without affecting other applications. A fatal error or even a GP fault in an application very rarely
causes the entire system to crash. However, it is possible to cause system failure in other ways when you
are testing and debugging an application.

Because of the risk of system failure, you should always save all file buffers to disk before testing and

debugging your application. You should also avoid running other applications while testing and
debugging your application if a general system failure would cause problems for the other applications.

Using Different Windows Versions

The Windows 3.1 SDK provides two environments for debugging or testing your Windows applications:
a debugging version of the retail Windows product and a nondebugging version of the retail Windows
product.

The SDK installation program creates two directories to contain the debugging and nondebugging
versions of the core DLLs. Unless you specify different paths, Install places the debugging versions of
the Windows core libraries in the \WINDEV\DEBUG directory and the nondebugging versions in the \
WINDEV\NODEBUG directory. Install copies the nondebugging version of the Windows core libraries
from your Windows system directory to the \WINDEV\NODEBUG directory.

You can conveniently switch between the debugging and nondebugging versions of Windows by
running one of two batch files that Install places in the Windows development directory (named \
WINDEV by default). The N2D.BAT file switches from the nondebugging to the debugging version,
and D2N.BAT switches from the debugging to the nondebugging version.

These batch files either copy files from your \WINDEV\DEBUG and \WINDEV\NODEBUG directories
or rename files in your Windows system directory. When you install the SDK files, Install asks if you
want to keep a duplicate set of the libraries and symbol files in your Windows system directory. If you
answer Yes, N2D.BAT and D2N.BAT quickly rename the duplicate files. Otherwise, the batch files
copy the DLLs to your Windows system directory from the appropriate directory.

If you choose to retain a duplicate set of files, the DLLs and symbol files for the two versions of
Windows appear in your Windows system directory with the same names as the core libraries and
symbol files, but with the letter N (nondebugging) or D (debugging) appended to the name. For
example, in addition to the GDI.EXE file, your system directory will contain the GDID.EXE and GDIN.
EXE files.

Debugging Version

The debugging version of Windows consists of a set of DLLs that replace the Windows core DLLs of
the retail product. The replaced DLLs are KRNL286.EXE, KRNL386.EXE, USER.EXE, GDI.EXE, and
MMSYSTEM.DLL. Accompanying these DLLs is a set of symbol (.SYM) files.

The debugging versions of the core DLLs provide error checking and diagnostic messages that help you
debug a Windows application. The symbol-file information helps you track calls into Windows when
using the Microsoft Windows 80386 Debugger (WDEB386.EXE). In addition, the debugging versions
of these DLLs contain Microsoft®CodeView®symbol information for tracking calls into Windows
when using Microsoft®CodeView®for Windows ä (CVW).

A special setting is available in the [386Enh] section of SYSTEM.INI for the debugging version of
Windows. The form of this setting follows:

DebugPhysAddrs = {TRUE|FALSE}
By default, Windows makes the entire base physical linear memory region available when a debugger is
loaded. Setting the DebugPhysAddrs option to FALSE overrides this default when the debugger is loaded.
Although the FALSE setting prevents you from being able to examine all memory, it creates a memory
environment more like the nondebugging version of Windows, which can help you spot problems with
pointers more quickly. The default value for DebugPhysAddrs is TRUE.

Nondebugging Version

During application development, you should use the debugging version of Windows. However, use the
nondebugging version of Windows whenever you want to do the following:

Test the final version of your application
Test the performance of your application without the performance disadvantages of the debugging

version of Windows

Use the nondebugging version of Windows with the core DLLs supplied by the retail version of Windows.
The Windows 3.1 SDK also provides symbol files for the nondebugging version of Windows. The retail
Windows core libraries do not contain CodeView symbol information, however.

Using the System Debugging Log Application

The System Debugging Log Application (DBWIN.EXE) allows you to display messages produced by
the debugging version of Windows even if you are not running a debugger and do not have a debugging

terminal. DBWIN.EXE allows you to control the output of specific types of messages. It also includes a
feature that forces memory-allocation errors when testing the robustness of an application.

Note: DBWIN.EXE can provide useful debugging messages with the retail version of Windows as
well. When you run DBWIN.EXE with the retail version of Windows, the Settings and Alloc
Break commands are disabled in the Options menu, and you will only see a limited subset of
debugging messages.

System Debugging Output

The default system debugging output goes to AUX. DBWIN.EXE can also send debugging messages to
COM1 or COM2. Sending debugging output to COM1 or COM2 improves the performance of your
debugging system when you have redirected system debugging output to NUL, or if DBWIN.EXE is not
running.

To disable AUX as the default, add the following setting to the [Debug] section of SYSTEM.INI:

OutputTo=NUL
To disable the default kernel output and to send output to COM1 or COM2, set the MS-DOS COM port
baud rates to match the baud rates of your debugging terminal by using the MS-DOS mode command. To
ensure that the settings are always correct, use the mode command in your AUTOEXEC.BAT file.

You can log messages to the system debugging window, to a monochrome screen, or to the COM1 or
COM2 devices. The default destination for messages is to a window.

You can choose different destinations for debugging messages from the Options menu. These settings stay
in effect the next time you run DBWIN.EXE.

System Debug Options Dialog Box

When you choose the Settings command on the Options menu, a System Debug Options dialog box
appears. This dialog box allows you to control the output of debugging messages produced by the
debugging version of Windows.

The System Debug Options dialog box works only when you are running the debugging version of
Windows. There are three groups of check boxes, described as follows:
Break Options Control whether and how a message will cause a break and stack trace to the

debugger.
Debug Options Control the kind of debugging features that are enabled in the system.
Trace Options Control whether or not certain kinds of informational messages are produced.

The check boxes for Break Options and Trace Options are self-explanatory. The following list explains the
check boxes for the Debug Options:

Option Description
Validate Heap Checks the consistency of global and local heaps before every call to a memory-

management function. This option affects the global heap only when it is one of
the default startup settings (that is, when it is saved by choosing the Save
Settings command on the File menu). This option affects local heaps only if it is
set before the application is started.

Check Free Blocks Ensures that freed local blocks are not written into. The value 0xFB is written
into free blocks, and when the heap is validated, a check is performed to ensure
that the blocks are still filled with this value. This option works only with local
heaps. This option must be used with the Validate Heap option.

Buffer Fill Fills buffers that are passed to Windows functions with the value 0xF9. This
option ensures that all of the supplied buffer is writable and helps detect
overwrite problems that can occur when the buffer is too small.

Break with INT 3 Breaks to the debugger with an int 3 instruction, instead of a fatal exit. This
option does not display a stack trace.

Don't trap faults Prevents the system from hooking GP and stack overflow faults. (Many faults
that result from choosing this option would normally be handled by the system.
Choosing this option results in faults that would not occur otherwise.)

Alloc Break Command

The Alloc Break command on the Options menu ensures that an application deals properly with out-of-
memory conditions. This command displays a dialog box into which you can enter the module name of

your application and the number of memory allocations you want to succeed before subsequent
allocations fail.

The system counts each global or local memory allocation performed by your application. When the
number of allocations reaches the allocation break count, that allocation and all subsequent allocations
fail. Because memory allocations made by the system fail once the break count is reached, calls to
certain functions (such as CreateWindow and SelectObject) fail as well. Only allocations made within
the context of the application you specify are affected by the allocation break count.

The module name is limited to 8 characters. In some cases the module name may be different from the
filename; the module name is specified in the module-definition (.DEF) file for the application. You
cannot specify the module name of a DLL.

If you set the break count to zero, no allocation break is set, but the system counts allocations made by
the specified application. You can choose the Show Count button to display the current allocation count.

You can set an allocation break before an application is run. The allocation count is then set to zero and
allocations are counted as soon as the application starts. If you run more than one instance of an
application, the allocation break applies only to the most recent instance.

The allocation count is also reset to zero when you choose the Set or the Inc & Set button. You can set
an allocation break before performing an operation to ensure that your application handles the problem
effectively. Then you can choose Inc & Set and repeat the operation to ensure that the next allocation
failure is also handled properly.

Control Panel Applications
This topic describes Control Panel (CONTROL.EXE) for the Microsoft Windows operating system. It
explains how to create a Control Panel application and then add the application to Control Panel.

Control Panel provides a window for running applications. These applications are used to configure the
Windows environment. A number of standard applications are included with Windows. However,
additional ones can be created and added to Control Panel. This capability is useful for modifying
environmental factors unique to specific hardware and software.

An application is contained in a dynamic-link library (DLL). A DLL can support more than one Control
Panel application.

Control Panel loads Control Panel application libraries in this order:
1 The library containing the standard Control Panel applications

2 Libraries specified in the [MMCPL] section of the CONTROL.INI file
3 Libraries with the .CPL filename extension residing in the same directory as the CONTROL.EXE

file

4 Libraries with the .CPL filename extension residing in the Windows SYSTEM directory

Starting a Control Panel Application

There are three ways to start a Control Panel application:
The user can open Control Panel and start an application by double-clicking the application icon.
The user or an application can open Control Panel by using a command-line argument that

specifies the name of the application to start. When the Control Panel application closes, Control Panel
automatically closes.

An application can send a WM_CPL_LAUNCH message to Control Panel while Control Panel is
running. When the Control Panel application closes, Control Panel sends back a WM_CPL_LAUNCHED
confirmation message.

The following example shows how an application can start Control Panel and the Printers application from
the command line by using the WinExec function:

WinExec("control.exe printers", SW_SHOWNORMAL)
When Control Panel starts, it immediately displays the Printers application. After the Printers application
finishes, Control Panel ends.

The following example shows a function that starts a Control Panel application by using the
WM_CPL_LAUNCH message:

BOOL StartApplet(LPSTR lpszName, HWND hwndMine)
{

HGLOBAL hglbAppletName; /* global-object handle for app name *
/

HWND hwndCPL; /* handle of Control Panel window */
LPSTR lpszAppletName; /* name of the application */
BOOL fStartedCPL = FALSE; /* application started by CONTROL.EXE? *

/
/*

* Allocate a global, shareable memory block to hold the
* application-name string.
*/

hglbAppletName = GlobalAlloc(GMEM_MOVEABLE, lstrlen(lpszName) + 1)
;

if(hglbAppletName == NULL)
return FALSE;
lpszAppletName = GlobalLock(hglbAppletName);
lstrcpy(lpszAppletName, lpszName);
GlobalUnlock(hglbAppletName);
/*

* Get the Control Panel window handle and start Control Panel, if
* necessary.

*/
if((hwndCPL = FindWindow("CtlPanelClass",

"Control Panel")) == NULL) {
WinExec("control.exe", SW_SHOWNA);
hwndCPL = FindWindow("CtlPanelClass", "Control Panel");
if(hwndCPL == NULL) {
GlobalFree(hglbAppletName);
return FALSE;
}
fStartedCPL = TRUE;
}
/* Start the application and end Control Panel, if started. */
SendMessage(hwndCPL, WM_CPL_LAUNCH, (WPARAM) hwndMine,
(LPARAM) lpszAppletName);
if (fStartedCPL)
SendMessage(hwndCPL, WM_CLOSE, 0, 0);
GlobalFree(hglbAppletName);
return TRUE;

}
Creating a Control Panel Application

A Control Panel application must reside in a DLL that includes a standard entry-point function named
CPlApplet. The application must include the CPL.H header file for the definition of the Control Panel
messages. Control Panel communicates with the DLL by sending the following CPL messages to the
CPlApplet function:

Message Description
CPL_DBLCLK Sent when the user double-clicks an application icon. In response to this

message, the DLL should start its configuration process, usually displaying a
dialog box.

CPL_EXIT Sent after the last CPL_STOP message and immediately before Control
Panel calls the FreeLibrary function for the DLL. In response to this
message, the DLL should free any remaining memory and prepare to exit.

CPL_GETCOUNT Sent after the CPL_INIT message, to prompt the DLL to return a number
indicating how many applications it services.

CPL_INIT Sent immediately after the DLL is loaded, to prompt the DLL to perform
initialization procedures, including memory allocation.

CPL_INQUIRE Sent after the CPL_GETCOUNT message, to prompt the DLL to provide
information about each application. The handler for this message is a good
place to include any initialization required by individual applications.

CPL_NEWINQUIRE Sent to a Control Panel DLL to request information about an application that
the DLL supports. The CPL_NEWINQUIRE message is the same as the
CPL_INQUIRE message except that its second parameter (lParam2) is a
pointer to a NEWCPLINFO structure instead of a CPLINFO structure. New
applications should use CPL_NEWINQUIRE instead of CPL_INQUIRE.

CPL_SELECT Sent when the user selects an application icon.
CPL_STOP Sent once for each application before Control Panel ends. In response to this

message, the DLL should free any memory associated with the individual
application for which the message is sent.

Creating the Entry-Point Function

Control Panel communicates with an application DLL through the CPlApplet function. Be sure to export
this function by listing it in the EXPORTS statement of your module-definition (.DEF) file. The
CPlApplet function handles the messages listed previously, performing three main tasks:

Task Result
Initializing the application (CPL_INIT, CPL_INQUIRE)

Allocates any memory needed and gives Control Panel the information needed to display the
application icon.

Running the application (CPL_DBLCLK)

Passes control to a dialog box and its associated message processor.
Closing the application (CPL_STOP, CPL_EXIT)

Frees any memory allocated and prepares to exit.

The CPlApplet function has the following format:

LONG CALLBACK* CPlApplet(hwndCPL, msg, lParam1, lParam2)

The hwndCPL parameter contains the handle of the Control Panel window. The msg parameter contains
one of the CPL messages listed previously. The lParam1 and lParam2 parameters contain message-
dependent values.

Initializing the Application

To initialize a Control Panel application, Control Panel sends the CPL_INIT message first to the
CPlApplet function, which prompts the application DLL to perform initialization procedures. If
initialization succeeds, CPlApplet returns nonzero.

If CPlApplet returns zero in response to the CPL_INIT message, Control Panel calls the FreeLibrary
function and ends communication with the application DLL. This is the only way an application can
notify Control Panel of initialization problems and prevent the application from being loaded.

If initialization is successful, Control Panel sends the CPL_GETCOUNT message. The CPlApplet
function responds by returning the number of applications serviced by the application DLL. This
number determines how many icons Control Panel displays for the DLL.

Once Control Panel finds out the number of applications serviced by the DLL, it sends the
CPL_NEWINQUIRE message once for each application. The lParam1 parameter specifies the
application number, which is zero for the first application and CPL_GETCOUNT minus 1 for the last
application.

Control Panel passes a far pointer to a NEWCPLINFO structure in the lParam2 parameter. The
NEWCPLINFO structure has the following form:

typedef struct tagNEWCPLINFO /* ncpli */
{

DWORD dwSize;/* length of structure, in bytes*/
DWORD dwFlags; /* setup flags */
DWORD dwHelpContext; /* help-context number*/
LONG lData; /* application-defined data*/
HICON hIcon; /* handle of icon (owned by CPL.EXE) */
char szName[32]; /* short-name string */
char szInfo[64]; /* description string (status line) */
char szHelpFile[128]; /* path to help file */

} NEWCPLINFO;
The CPlApplet function must fill in the NEWCPLINFO structure. The function must assign values for the
dwSize, hIcon, szName, and szInfo members for the structure size, application icon, short name, and
description. To add an accelerator key for the application, precede the selected accelerator character in the
szName string with an ampersand. If the application DLL supports context-sensitive Help, the CPlApplet
function should also assign the values for the dwHelpContext and szHelpFile members. The lData member
can be used for application-defined data.

Note: The CPL_NEWINQUIRE message and NEWCPLINFO structure replace the CPL_INQUIRE
message and CPLINFO structure. The latter have been kept for backward compatibility with
Windows version 3.0. If the application DLL does not respond to the CPL_NEWINQUIRE
message, Control Panel sends it the CPL_INQUIRE message. Then the lParam2 parameter points
to a CPLINFO structure rather than to a NEWCPLINFO structure.

Responding to User Actions

Control Panel sends the CPL_SELECT and CPL_DBLCLK messages when the user selects (single-
clicks) or double-clicks an application icon. For each message, Control Panel passes the application
number in lParam1 and the lData value in lParam2.

Typically, an application DLL responds to the CPL_SELECT message by doing nothing. When it
receives the CPL_DBLCLK message, it transfers control to the appropriate dialog box.

Exiting the Application and the DLL

Before exiting, Control Panel sends the CPL_STOP message once for each application in the DLL. The
lParam1 and lParam2 parameters sent with the CPL_STOP message correspond to the application
number and the lData value. After Control Panel sends the last CPL_STOP message, it sends a
CPL_EXIT message and then calls the FreeLibrary function to free the DLL.

When the CPL_STOP and CPL_EXIT cases in the switch statement are executed, the DLL frees
memory that it allocated. Typically, the DLL frees memory associated with individual applications when
the CPL_STOP case is executed and frees any other allocated memory when the CPL_EXIT case is
executed.

Example of a Control Panel Application

The following example shows the CPlApplet function for a DLL containing three Control Panel
applications that set preferences for a component stereo system attached to the computer.

The example uses a programmer-defined StereoApplets array that contains three structures, each
corresponding to one of the Control Panel applications. Each structure contains all the information
required by the CPL_INQUIRE message, as well as the dialog box template and dialog box procedure
required by the CPL_DBLCLK message. The following example fills the structures in the StereoApplets
array:

#define NUM_APPLETS 3
typedef struct tagApplets
{

int icon; /* icon-resource identifier */
int namestring; /* name-string resource identifier */
int descstring; /* description-string resource identifier */
int dlgtemplate; /* dialog box template resource identifier */
DLGPROC dlgfn; /* dialog box procedure*/

} APPLETS;
APPLETS StereoApplets[NUM_APPLETS] =
{

AMP_ICON, AMP_NAME, AMP_DESC, AMP_DLG, AmpDlgProc,
TUNER_ICON, TUNER_NAME, TUNER_DESC, TUNER_DLG, TunerDlgProc,
TAPE_ICON, TAPE_NAME, TAPE_DESC, TAPE_DLG, TapeDlgProc,

};
This code defines the CPlApplet function for the preceding example:

LONG CALLBACK CPlApplet(hwndCPL, msg, lParam1, lParam2)
HWND hwndCPL; /* handle of Control Panel window */
UINT msg;/* message */
LPARAM lParam1; /* first message parameter */
LPARAM lParam2; /* second message parameter */
{

int i;
LPCPLINFO lpCPlInfo;
i = (int) lParam1;
switch (msg) {
case CPL_INIT: /* first message, sent once */
return TRUE;
case CPL_GETCOUNT: /* second message, sent once */
return NUM_APPLETS;
break;
case CPL_INQUIRE: /* third message, sent once per app */
lpCPlInfo = (LPCPLINFO) lParam2;
lpCPlInfo->idIcon = StereoApplets[i].icon;
lpCPlInfo->idName = StereoApplets[i].namestring;
lpCPlInfo->idInfo = StereoApplets[i].descstring;
lpCPlInfo->lData = 0;

break;
case CPL_SELECT: /* application selected */
break;
case CPL_DBLCLK: /* application double-clicked */
DialogBox(hinst,
MAKEINTRESOURCE(StereoApplets[i].dlgtemplate),
hwndCPL, StereoApplets[i].dlgfn);
break;
case CPL_STOP: /* sent once per app before CPL_EXIT */
break;
case CPL_EXIT: /* sent once before FreeLibrary called */
break;
default:
break;
}
return 0;

}
Installing a New Application

There are three ways to register an application DLL with Control Panel:
List the DLL in the [MMCPL] section of the CONTROL.INI file. Use this method when the DLL

is part of a system library and handles more than just messages from Control Panel. The following is a
sample CONTROL.INI entry:

[MMCPL]
myapplets=mydll.dll

Assign the DLL a .CPL filename extension and install it in the directory that contains the
CONTROL.INI file.

Assign the DLL a .CPL filename extension and install it in the Windows SYSTEM directory.

See Also
CPlApplet

File Manager Extensions (3.1)
This topic describes how to create and install extensions for File Manager in the Microsoft Windows
operating system. A File Manager extension is a dynamic-link library (DLL) that adds a menu to File
Manager.

File Manager maintains a list of extensions in an initialization file and loads the extentsions when starting.
An extension DLL contains an entry point that processes menu commands and notification messages sent
by File Manager. Up to five extension DLLs can be installed at any one time.

Creating a File Manager Extension

A File Manager extension must reside in a DLL that includes a standard entry point, the
FMExtensionProc function. It must include the WFEXT.H header file that defines File Manager
messages and structures. File Manager communicates with the extension DLL by sending the following
messages to the DLL's FMExtensionProc function:

Message Meaning
1 through 99 User has selected an item from the extension-supplied menu. The

value is the identifier of the selected menu item.
FMEVENT_INITMENU User has selected the extension's menu. The extension should

initialize items in the menu.
FMEVENT_LOAD File Manager is loading the extension DLL and prompts the DLL

for information about the menu that the DLL supplies.
FMEVENT_SELCHANGE Selection in the File Manager directory window or Search Results

window has changed.
FMEVENT_UNLOAD Extension DLL is being unloaded.
FMEVENT_USER_REFRESH User has chosen the Refresh command from the Window menu.

The extension should update items in the menu, if necessary.

Creating the Entry-Point Function

File Manager communicates with an extension DLL through the FMExtensionProc function. Be sure to
export this function by listing it in an EXPORTS statement of your module-definition (.DEF) file. The
FMExtensionProc function handles the messages listed in the previous section, performing the following
tasks:

Task Action
Initializing the extension (FMEVENT_LOAD)

Provides File Manager with the name and handle of the menu and saves the menu-item delta value.
Initializing the menu (FMEVENT_INITMENU)

Initializes all top-level menu items and the items in any submenus.
Processing menu selections

Carries out commands that the user chooses from the extension's menu.
Processing file selections (FMEVENT_SELCHANGE)

Queries File Manager for information about the file that the user has selected from the directory
window or Search Results window.

Updating items in the menu (FMEVENT_USER_REFRESH)
Modifies the menu as appropriate when the user chooses File Manager's Refresh command from the
Window menu.

Quitting the extension DLL (FMEVENT_UNLOAD)
Frees any memory allocated and prepares to exit.

The FMExtensionProc function is defined as follows:

HMENU CALLBACK FMExtensionProc(hwnd, msg, lParam)
HWND hwnd;
UINT msg;
LPARAM lParam;
The hwnd parameter identifies the File Manager window. An extension should use this window handle to
specify the parent window for any dialog boxes or message boxes it needs to display. It should also use
this handle to send query messages to File Manager. The msg parameter contains one of the File Manager
messages listed previously. The lParam parameter contains a message-dependent value. The return value
from the FMExtensionProc function depends on the value of the msg parameter.

The menu added to File Manager may be a hierarchical (cascaded) menu and may contain grayed,
disabled, or checked menu items in addition to command items. Menu items should be text only; owner-
drawn menus and bitmap menus are not supported. Changing the check-mark bitmap is not supported.

Whenever File Manager calls the FMExtensionProc function, it waits to refresh its directory windows (for
changes in the file system) until after the function returns. This allows the extension to perform large
numbers of file operations without excessive repainting on the part of File Manager. The extension does
not need to send the FM_REFRESH_WINDOWS message to notify File Manager to repaint its directory
windows.

Loading the Extension

File Manager sends, first, the FMEVENT_LOAD message to the FMExtensionProc function. The
lParam parameter that accompanies the FMEVENT_LOAD message points to an FMS_LOAD structure
that File Manager uses to obtain information about the extension-supplied menu, including the menu
name and menu handle.

File Manager also uses the FMS_LOAD structure to pass the menu-item delta value to the extension. To
avoid conflicts with its own menu-item identifiers, File Manager renumbers the menu-item identifiers in
an extension-supplied menu by adding the delta value to each identifier. If an extension DLL needs to
modify its menu after File Manager has loaded it, it must use the delta value. For example, to delete a
menu item, the extension DLL finds the sum of the delta value and the menu item's identifier and then
passes the sum as the idItem parameter to the DeleteMenu function.

Processing Menu Selections

The menu resource that you define for your extension's menu must use menu-item identifiers in the
range 1 through 99. When the user selects an item, the extension receives a command notification,
which is the actual identifier of the selected item as defined in the resource-definition file (which has the
.RC filename extension). The command notification is not the sum of the delta value and the identifier.
An extension DLL's FMExtensionProc function carries out commands by processing command
notifications.

Initializing the Extension Menu

Whenever the user selects the extension's main menu item from File Manager's menu bar, File Manager
sends the FMEVENT_INITMENU message to the extension DLL. An extension can use this message to
initialize its menu items. For example, an extension can add check marks, disable items, or gray items
during this message.

When the user selects submenus within the extension's menu, File Manager does not send the
FMEVENT_INITMENU message. An extension DLL must initialize all items at the same time,
including those in submenus.

Updating the Extension Menu

When the user chooses the Refresh command from the Window menu, File Manager sends an
FMEVENT_USER_REFRESH message to an extension DLL. An extension can use this opportunity to
update its menu items.

Processing File Selections

When the user selects a filename in the directory window or in the Search Results window, File
Manager sends the FMEVENT_SELCHANGE message to an extension DLL. An extension can use this
opportunity to send a query message to File Manager to obtain more information about the user's
selection. For more information, see Extension Messages.

Because the user can change the selection often, the extension should return promptly after processing
the FMEVENT_SELCHANGE message to avoid slowing the user's selection process.

Quitting the Extension DLL

When File Manager quits, it sends the FMEVENT_UNLOAD message to each extension DLL and then
calls the FreeLibrary function to free the DLLs. Each DLL should free any memory that it has allocated.

Installing Extensions

File Manager installs extensions that have settings in the [AddOns] section of the WINFILE.INI
initialization file. Each setting contains an entry and a value. An entry consists of a string that represents
the name of an extension. The value assigned to the entry consists of a string that specifies the path to
the extension DLL. An application can use the WritePrivateProfileString function to add a setting to
WINFILE.INI. The following example shows a setting in WINFILE.INI:

[AddOns]
My File Manager Extension=c:\win\system\rfmine.dll
File Manager does not display an error message if it cannot find an extension DLL, so an extension DLL
can be deleted in order to uninstall it. Even so, an application that installs an extension DLL should
provide an uninstall option to remove the extension's setting from the WINFILE.INI file.

Extension Messages

An extension can send the following window messages to retrieve relevant information from File
Manager. File Manager is only guaranteed to respond correctly to messages sent from the
FMExtensionProc function.

Message Description
FM_GETDRIVEINFO File Manager returns drive information from the active window.

An extension provides a pointer to an FMS_GETDRIVEINFO
structure; File Manager fills the structure with drive information.

FM_GETFILESEL File Manager returns information about a selected file from the
active File Manager window (either the directory window or the
Search Results window). An extension provides a pointer to an
FMS_GETFILESEL structure; File Manager fills the structure
with file information.

FM_GETFILESELLFN Same as the FM_GETFILESEL message except that the selected
file may have a long filename.

FM_GETFOCUS File Manager returns a value that identifies the type of window
with input focus.

FM_GETSELCOUNT File Manager returns the count of selected files in the directory
and Search Results windows.

FM_GETSELCOUNTLFN Same as the FM_GETSELCOUNT message except that the count
includes files with long filenames.

FM_REFRESH_WINDOWS File Manager repaints either its active window or all of its
windows. This message is similar to File Manager's Refresh
command on the Window menu.

FM_RELOAD_EXTENSIONS File Manager reloads all extensions. First File Manager unloads
all extensions, sending an FMEVENT_UNLOAD message to
each extension. Then it reloads the extensions, sending an
FMEVENT_LOAD message to each extension. The
FM_RELOAD_EXTENSIONS message allows an extension to
uninstall itself by removing its setting from the WINFILE.INI
file; this action causes File Manager to reload the remaining
extensions. Other applications (for example, installation
programs) can also post this message by calling the PostMessage
function.

File Manager Extension Example

The following example shows the FMExtensionProc function for a sample extension DLL. It
demonstrates how an extension processes the menu commands and notification messages sent by File
Manager.

HINSTANCE hinst;
HMENU hmenu;
WORD wMenuDelta;
BOOL fMultiple = FALSE;
BOOL fLFN = FALSE;
DWORD FAR PASCAL FMExtensionProc(hwnd, wMsg, lParam)
HWND hwnd;
WORD wMsg;
LONG lParam;
{

char szBuf[200];
int count;

switch (wMsg) {
case FMEVENT_LOAD:
#define lpload ((LPFMS_LOAD)lParam)
/* Save the menu-item delta value. */
wMenuDelta = lpload->wMenuDelta;
/* Fill the FMS_LOAD structure. */
lpload->dwSize = sizeof(FMS_LOAD);
lstrcpy(lpload->szMenuName, "&Extension");
/* Return the handle of the menu. */
return (DWORD) (lpload->hMenu = LoadMenu(hinst,
MAKEINTRESOURCE(MYMENU)));
break;
case FMEVENT_UNLOAD:
/* Perform any cleanup procedures here. */
break;
case FMEVENT_INITMENU:
/* Copy the menu-item delta value and menu handle. */
wMenuDelta = LOWORD(lParam);
hmenu = (HMENU) HIWORD(lParam);
/*
* Add check marks to menu items as appropriate. Add menu-
* item delta values to menu-item identifiers to specify the
* menu items to check.
*/
CheckMenuItem(hmenu, wMenuDelta + MULTIPLE,
fMultiple ? MF_BYCOMMAND | MF_CHECKED :
MF_BYCOMMAND | MF_UNCHECKED);
CheckMenuItem(hmenu, wMenuDelta + LFN,
fLFN ? MF_BYCOMMAND | MF_CHECKED :
MF_BYCOMMAND | MF_UNCHECKED);
break;
case FMEVENT_USER_REFRESH:
MessageBox(hwnd, "User refresh event", "Hey!", MB_OK);
break;
case FMEVENT_SELCHANGE:
OutputDebugString("Sel change\r\n");
break;
/*
* The following messages are generated when the user chooses
* items from the extension menu.
*/
case GETFOCUS:
wsprintf(szBuf, "Focus %d", (int)SendMessage(hwnd,
FM_GETFOCUS, 0, 0L));
MessageBox(hwnd, szBuf, "Focus", MB_OK);

break;
case GETCOUNT:
count = (int)SendMessage(hwnd,
fLFN ? FM_GETSELCOUNTLFN : FM_GETSELCOUNT, 0, 0L);
wsprintf(szBuf, "%d files selected", count);
MessageBox(hwnd, szBuf, "Selection Count", MB_OK);
break;
case GETFILE:
{
FMS_GETFILESEL file;
count = (int) SendMessage(hwnd,
fLFN ? FM_GETSELCOUNTLFN : FM_GETSELCOUNT,
FMFOCUS_DIR, 0L);
while (count >= 1) {
/* Selection indices are zero-based (0 is first). */
count--;
SendMessage(hwnd, FM_GETFILESEL, count,
(LONG) (LPFMS_GETFILESEL)&file);
OemToAnsi(file.szName, file.szName);
wsprintf(szBuf, "file %s\nSize %ld",
(LPSTR)file.szName, file.dwSize);
MessageBox(hwnd, szBuf, "File Information", MB_OK);
if (!fMultiple)

break;
}
break;
}
case GETDRIVE:
{
FMS_GETDRIVEINFO drive;
SendMessage(hwnd, FM_GETDRIVEINFO, 0,
(LONG) (LPFMS_GETDRIVEINFO)&drive);
OemToAnsi(drive.szVolume, drive.szVolume);
OemToAnsi(drive.szShare, drive.szShare);
wsprintf(szBuf,
"%s\nFree Space %ld\nTotal Space %ld\nVolume %s\nShare %s",

(LPSTR) drive.szPath, drive.dwFreeSpace,
drive.dwTotalSpace, (LPSTR) drive.szVolume,
(LPSTR) drive.szShare);
MessageBox(hwnd, szBuf, "Drive Info", MB_OK);
break;
}
case LFN:
fLFN = !fLFN;
break;
case MULTIPLE:
fMultiple = !fMultiple;
break;
case REFRESH:

case REFRESHALL:
SendMessage(hwnd, FM_REFRESH_WINDOWS,
wMsg == REFRESHALL, 0L);
break;
case RELOAD:
PostMessage(hwnd, FM_RELOAD_EXTENSIONS, 0, 0L);
break;
}
return NULL;

}
Adding the Undelete Command

File Manager supports a hook for adding an Undelete command to the File menu (below the Delete
command). If an undelete dynamic-link library is specified in the WINFILE.INI file, File Manager adds
the Undelete command to the File menu when it starts. When the user chooses the Undelete command,
File Manager calls the DLL.

The [settings] section of the WINFILE.INI file should include a reference to the undelete DLL, as
follows:

[settings]
UNDELETE.DLL=C:\MYDIR\OTHER.DLL
An undelete DLL must include a standard entry point, the UndeleteFile function. This function must be
exported by specifying the name of the function in the EXPORTS statement of the DLL's module-
definition (.DEF) file.

The UndeleteFile function is defined as follows:

int CALLBACK UndeleteFile(hwndParent, lpszDir)
HWND hwndParent;
LPSTR lpszDir;
The hwndParent parameter identifies the parent window for any dialog boxes that the DLL creates. The
lpszDir parameter specifies the initial directory to be used (for example, C:\TEMP).

See Also
File Manager Extension Functions, File Manager Extension Messages, File Manager Extension Structures

Shell Dynamic-Data Exchange Interface Overview (3.1)
This topic describes the dynamic data exchange (DDE) interface of Windows Program Manager
(PROGMAN.EXE). Program Manager is an application that lets users group, start, and otherwise control
other applications for the Microsoft Windows operating system. Program Manager starts automatically
when the user starts Windows and continues to run as long as Windows is in use. Upon starting, Program
Manager displays one or more windows within its main window. Each window contains icons that
correspond to logically related Windows applications. For example, the Main window contains an icon for
the File Manager, Control Panel, Print Manager, Clipboard, MS-DOS Prompt, and Windows Setup
applications.

The following topics are related to the information in this topic:
Atoms
Dynamic data exchange (DDE)
Registration database

PROGMAN.INI File

When Program Manager starts, it searches its initialization file for a list of group files. The windows that
appear in Program Manager's main window correspond to group files. From the user's perspective, a
group file is a collection of icons that represent logically related applications, but from the programmer's
perspective, a group file is actually a collection of data. This data includes the color information for the
icons (their AND and XOR masks), an offset to the resource header for each icon, the ideal resolution
for displaying each icon, the name of the executable file that contains the application, and so on.

Group files are identified in the Program Manager initialization file (PROGMAN.INI). This
initialization file has the following form:

[Settings]
Window=64 48 576 384 1
Order= 3 4 5 6 8 7 2 1 9
AutoArrange=1
SaveSettings=1
MinOnRun=1
Startup=
display.drv=v776816.drv
[Groups]
Group1=C:\WINDOWS\MAIN.GRP
Group2=C:\WINDOWS\ACCESSOR.GRP
Group3=C:\WINDOWS\GAMES.GRP
Group4=C:\WINDOWS\STARTUP.GRP
Group5=C:\WINDOWS\LZEXPAND.GRP
Group6=C:\WINDOWS\COMDLG.GRP
Group7=C:\WINDOWS\GDI.GRP
Group8=C:\WINDOWS\WINPROJ.GRP
Group9=C:\WINDOWS\MICROSOF.GRP
[Restrictions]
NoRun=1
NoClose=1
NoSaveSettings=0
NoFileMenu=0
EditLevel=3
The following three sections describe the contents of the PROGMAN.INI file.

Settings Section

The first section of the initialization file, [Settings], controls attributes of the Program Manager
environment. The following entries appear in the [Settings] section:

Entry Meaning
Window= Specifies the location and dimensions of Program Manager's main window.
Order= Specifies the order in which the groups listed in the [Groups] section appear in

Program Manager's main window.

AutoArrange= Specifies whether Program Manager should automatically arrange icons within
groups.

SaveSettings= Specifies whether to save the position of Program Manager's main window when
exiting Program Manager.

MinOnRun= Specifies whether to minimize Program Manager when an application is started.
Startup= Specifies the name of the startup group. Program Manager automatically starts the

applications in the startup group whenever it starts. If the startup group has a name
other than "Startup", that name must be specified by the Startup= entry.

display.drv= Specifies the display driver that was in use when Program Manager last ended.
When Program Manager starts, it compares this value to the string in the SYSTEM.
INI file. If they are different, Program Manager reextracts the application icons.

Groups Section

The second section of the initialization file, [Groups], identifies the names of the group files for which
Program Manager should display unique windows or icons. The groups must be numbered, but they
need not be listed in any particular order. Program Manager never changes the number of an existing
group, so if an application other than Program Manager constructs a PROGMAN.INI file, it can assign
meaningful numbers to groups, if necessary.

Restrictions Section

The third section of the initialization file, [Restrictions], disables some capabilities of the Program
Manager environment. The following entries can appear in the [Restrictions] section:

Entry Meaning
NoRun= Specifies whether to disable the Run command on the File menu. If this entry is

set to 1, the command is disabled. If this entry is set to 0, the Run command is
enabled. The default is 0 (enabled) if no value is specified.

NoClose= Specifies whether to prevent the user from exiting Program Manager through the
File menu, the System menu, the ALT+F4 accelerator, or the Task List. If this entry
is set to 1, exiting is prevented. If this entry is set to 0, exiting is allowed. The
default is 0 (allowing exiting) if no value is specified.

NoSaveSettings= Specifies whether to disable the Save Settings on Exit command on the Options
menu. If this entry is set to 1, the Save Settings on Exit command is disabled. If
this entry is set to 0, the command is enabled. The default is 0 (enabled) if no
value is specified.

NoFileMenu= Specifies whether to disable the File menu and all of its commands. If this entry is
set to 1, the File menu is disabled. If this entry is set to 0, the menu is enabled.
The default setting is 0 (enabled) if no value is specified.

EditLevel= Controls the extent to which the user can modify read-write groups. (Shared,
read-only groups cannot be modified.) This entry may be set to one of the
following values:
Value Meaning
0 Allows any modifications to the group. This is the default.
1 Prevents the user from creating, deleting, or renaming groups.
2 Prevents the user from creating, deleting, or renaming groups and

from creating or deleting items in a group.
3 Prevents the user from creating, deleting, or renaming groups; from

creating or deleting items in a group; and from changing command
lines for items in a group.

4 Prevents the user from changing any property of an item in a group;
from creating, deleting, or renaming groups; from creating or deleting
items in a group; and from changing command lines for items in a
group.

Setting NoRun to 1 and EditLevel to 3 prevents a user from using Program Manager to run any
applications that are not already in a program group.

Command-String Interface

Program Manager has a DDE command-string interface that allows other applications to create, display,
delete and reload groups; add items to groups; replace items in groups; delete items from groups; and to
close Program Manager. The following commands perform these actions:

AddItem ExitProgman
CreateGroup Reload (Windows 3.1 only)
DeleteGroup ReplaceItem (Windows 3.1 only)
DeleteItem (Windows version 3.1 only) ShowGroup

The setup program for an application can use these commands, for example, to instruct Program Manager
to install the application's icon in a group.

Multiple commands may be concatenated; each command must be contained in square brackets, and
parameters must be contained in parentheses and separated by commas. Quotation marks must be used to
delimit arguments that contain spaces, brackets, or parentheses. For example, the following set of
commands adds WINAPP.EXE to the Windows Applications group:

[CreateGroup("Windows Applications")]
[ShowGroup("MYGROUP.GRP",1)]
[AddItem(winapp.exe,Win App,winapp.exe,2)]
To use these commands, an application must first initiate a conversation with Program Manager. The
application and topic names for the conversation are both PROGMAN. Then the application sends the
WM_DDE_EXECUTE message, specifying the appropriate command and its parameters.

Note: The user can configure Windows to use a shell other than Program Manager as the default. As a
result, you should not design an application assuming that Program Manager will be available for a
DDE conversation.

The following sections describe Program Manager DDE command strings in detail. In the syntax blocks in
the following sections, brackets enclose optional arguments.

CreateGroup

The syntax for the CreateGroup command has this form:

CreateGroup(GroupName[,GroupPath])

The CreateGroup command instructs Program Manager to create a new group or activate the window of
an existing group.

Following are the parameters for this command:
GroupName Identifies the group to be created. This parameter is a string. If a group already exists

with the name specified by GroupName, CreateGroup activates the group window.
GroupPath Specifies the path of the group file. If your application does not supply this parameter,

Windows uses a default filename for the group in the Windows directory.

ShowGroup

The syntax for the ShowGroup command has this form:

ShowGroup(GroupName,ShowCommand)

The ShowGroup command instructs Program Manager to minimize, maximize, or restore the window of
an existing group.

Following are the parameters for this command:
GroupName Identifies the group window to be minimized, maximized, or restored.
ShowCommand Specifies the action that Program Manager is to perform on the group window. This

parameter is an integer. It must have one of the following values:
Value Meaning
1 Activates and displays the group window. If the window is minimized

or maximized, Windows restores it to its original size and position.
2 Activates the group window and displays it as an icon.
3 Activates the group window and displays it as a maximized window.
4 Displays the group window in its most recent size and position. The

window that is currently active remains active.
5 Activates the group window and displays it in its current size and

position.
6 Minimizes the group window.
7 Displays the group window as an icon. The window that is currently

active remains active.

8 Displays the group window in its current state. The window that is
currently active remains active.

DeleteGroup

The syntax for the DeleteGroup command has this form:

DeleteGroup(GroupName)

The DeleteGroup command instructs Program Manager to delete an existing group.

Following is the parameter for this command:
GroupName Identifies the group to be deleted.

Reload

The syntax for the Reload command has this form:

Reload(GroupName)

The ReloadGroup command instructs Program Manager to remove and reload an existing group. An
application that modifies group files can use this command to cause Program Manager to update the
groups when it has finished making modifications.

Following is the parameter for this command:
GroupName Identifies the group to be removed and reloaded. If the GroupName parameter is not

specified, Program Manager unloads all groups and reloads the [Group] section of
PROGMAN.INI. The [Settings] and [Restrictions] sections are not reread.

AddItem

The syntax for the AddItem command has this form:

AddItem(CmdLine[,
Name[,IconPath[,IconIndex[,xPos, yPos[,DefDir[,
HotKey,[,fMinimize]]]]]]])

The AddItem command instructs Program Manager to add an icon to an existing group.

Following are the parameters for this command:
CmdLine Specifies the full command line required to execute the application. This parameter is a

string. At a minimum, this string is the name of the executable file for the application. It
can also include the full path of the application and any parameters required by the
application.

Name Specifies the title that is displayed below the icon in the group window.
IconPath Identifies the filename for the icon to be displayed in the group window. This parameter

is a string. This file can be either a Windows executable file or an icon file. If the
IconPath parameter is not specified, Program Manager uses the first icon in the file
specified by the CmdLine parameter if that file is an executable file. If CmdLine
specifies an associated file, Program Manager uses the first icon of the associated
executable file. The association is taken from the registration database. (For more
information about the registration database, see The Windows Shell Overview.) If
CmdLine specifies neither an executable file nor an associated executable file, Program
Manager uses a default icon.

IconIndex Specifies the index of the icon in the file identified by the IconPath parameter. The
IconIndex parameter is an integer. PROGMAN.EXE contains five built-in icons that can
be used for non-Windows programs.

xPos Specifies the horizontal position of the icon in the group window. This parameter is an
integer. You must use both the xPos and yPos parameters to specify the position of the
icon. If you do not specify the position, Program Manager places the icon in the next
available space.

yPos Specifies the vertical position of the icon in the group window. This parameter is an
integer. You must use both the xPos and yPos parameters to specify the position of the
icon. If you do not specify the position, Program Manager places the icon in the next
available space.

DefDir Specifies the name of the default (or working) directory. This parameter is a string.
HotKey Identifies a hot (or shortcut) key that is specified by the user.
fMinimize Specifies whether an application window should be minimized when it is first displayed.

ReplaceItem

The syntax for the ReplaceItem command has this form:

ReplaceItem(ItemName)

The ReplaceItem command instructs Program Manager to delete an item and record the position of the
deleted item. Program Manager will add a new item (specified by the next AddItem command) at this
recorded position.

Following is the parameter for this command:
ItemName Specifies the item to be deleted. Its position is recorded by Program Manager.

DeleteItem

The syntax for the DeleteItem command has this form:

DeleteItem(ItemName)

The DeleteItem command instructs Program Manager to delete an item from the currently active group.

Following is the parameter for this command:
ItemName Specifies the item to be deleted from the currently active group.

ExitProgman

The syntax for the ExitProgman command has this form:

ExitProgman(bSaveGroups)

If Program Manager was started by another application, the ExitProgman command instructs Program
Manager to exit and, optionally, save its group information.

Following is the parameter for this command:
bSaveGroups Specifies a Boolean value that, if nonzero, causes Program Manager to save its group

information before closing. If bSaveGroups is zero, Program Manager does not save
its group information.

Requesting Group Information

Program Manager can provide information about its groups to an application. Applications can request
this information from Program Manager by using the PROGMAN topic.

An application can obtain a list of Program Manager groups by issuing a request for the Group item.
Program Manager provides the list in CF_TEXT format. The list consists of group-name strings
separated by carriage returns.

An application can use a group name as an item name to request information about the group. Program
Manager provides this information in CF_TEXT format. The fields of group information are separated
by commas. The first line of the information contains the group name (in quotation marks), the path of
the group file, and the number of items in the group. Each subsequent line contains information about an
item in the group, including the command line (in quotation marks), the default directory, the icon path,
the position in the group, the icon index, the shortcut key (in numeric form), and the minimize flag.

Dynamic Data Exchange Interface for Replacement Shells

You may choose to write an application that replaces the Windows shell. This replacement shell must be
able to provide property information to the application that starts non-Windows programs in an MS-
DOS window. (This application is known as WinOldApp.) This section discusses how a replacement
shell can provide property information for WinOldApp. Applications other than WinOldApp do not
need this information. The DDE protocol described in this section may not be supported in future
versions of Windows.

Properties

A replacement shell should maintain several pieces of information, called properties, for each
application that WinOldApp might start. These are the same properties that appear in the Program Item
Properties dialog box of Program Manager. These properties include:

Description (title)
Command line
Working directory
Shortcut key
Icon

The shell must provide a DDE interface that allows WinOldApp to obtain three of these properties:
description, working directory, and icon.

To obtain its properties from the shell, WinOldApp must accomplish the following tasks:
1 Establish a DDE conversation with the shell.

2 Request a property from the shell.
3 Receive a property from the shell.

4 Terminate the DDE conversation.

Establishing a DDE Conversation

WinOldApp requests property data from the shell by using the SendMessage function to broadcast the
WM_DDE_INITIATE message. The wParam parameter of the SendMessage function is the handle of
WinOldApp's DDE window. The low-order word of the lParam parameter is an atom that represents the
name of the shell application: "Shell". The high-order word is an atom that represents the name of the
properties topic: "AppProperties".

A "Shell" DDE server that supports the "AppProperties" topic responds to the WM_DDE_INITIATE
message by sending a WM_DDE_ACK message. The server should send the following parameters with
the WM_DDE_ACK message:

Parameter Description
hwnd Specifies the handle of WinOldApp's DDE window. The shell should use the

handle that WinOldApp specified as the wParam parameter in the
WM_DDE_INITIATE message.

message Specifies the WM_DDE_ACK message.
wParam Specifies the handle of the "Shell" server's DDE window.
HIWORD(lParam) Specifies an atom that represents the name of the shell application: "Shell".
LOWORD(lParam) Specifies an atom that represents the name of the properties topic:

"AppProperties".

It is not necessary to free the atoms used in a conversation with WinOldApp. It is WinOldApp's
responsibility to create and free the atoms.

Providing Property Data

After the DDE server that provides a replacement shell responds with a WM_DDE_ACK message to the
WM_DDE_INITIATE from WinOldApp, WinOldApp sends a WM_DDE_REQUEST message to
request property data. The server can respond to the WM_DDE_REQUEST message by posting a
WM_DDE_DATA message.

The Windows shell associates an item name with each of the application properties that it provides. The
item names are described in the following table:

Item name Description
"GetDescription" The shell provides an application's description (title) property.
"GetWorkingDIR" The shell provides an application's working-directory property.
"GetIcon" The shell provides an application's icon property.

WinOldApp requests properties by obtaining an atom for each of the item-name strings and passing the
atoms to the shell in a sequence of WM_DDE_REQUEST messages (one message for each property).
WinOldApp also passes the handle of the application's instance as the low-order word of the lParam
parameter in the WM_DDE_REQUEST message. The shell should use this instance handle to find the
properties associated with the application.

If a "Shell" DDE server does not recognize the application's instance handle, the server does not support
properties for the application instance. In this case, the server should respond by sending a negative
WM_DDE_ACK message. The parameters passed with the negative WM_DDE_ACK message are as
follows:

Parameter Description
hwnd Specifies the handle of WinOldApp's DDE window. The shell should use the

handle that WinOldApp specified as the wParam parameter in the
WM_DDE_REQUEST message.

message Specifies the WM_DDE_ACK message.
wParam Specifies the handle of the "Shell" server's DDE window.

LOWORD(lParam) Specifies zero. The "Shell" DDE server does not support properties for the
specified application instance.

HIWORD(lParam) Specifies an atom that represents the item name of the requested property.
Depending on the type of property requested, the atom should identify one of the
following strings: "GetDescription", "GetWorkingDIR", or "GetIcon".

When WinOldApp receives a negative WM_DDE_ACK message, it terminates the conversation with the
"Shell" DDE server.

If a "Shell" DDE server recognizes the application's instance handle and the requested property is
available, it should allocate a global memory object and copy the property data to the object. Then it
should post a WM_DDE_DATA message to WinOldApp. The WM_DDE_DATA message should contain
the handle of the global memory object.

The contents of the global memory object allocated by the shell depend on the type of property
WinOldApp requested. The following three sections describe the description, working-directory, and icon
properties.

Providing the Description Property

If the shell is responding to a request for the "GetDescription" property, the shell should pass the
following parameters with the WM_DDE_DATA message:

Parameter Description
hwnd Specifies the handle of WinOldApp's DDE window. The shell should use the

handle that WinOldApp specified as the wParam parameter in the
WM_DDE_REQUEST message.

message Specifies the WM_DDE_DATA message.
wParam Specifies the handle of the shell's DDE window.
LOWORD(lParam) Specifies a handle to a global memory object that contains a DDEDATA

structure. A description of the contents of the DDEDATA structure follows this
table. To report an error, the server should use one of the error values listed with
the WinExec function.

HIWORD(lParam) Specifies an atom that represents the string, "GetDescription".

The low-order word of the lParam parameter should be a handle to a global memory object that contains a
DDEDATA structure (defined in the DDE.H header file). The contents of the DDEDATA structure are as
follows:

#include <dde.h>
typedef struct tagDDEDATA { /* ddedat */

WORD unused:12,
fResponse:1,
fRelease:1,
reserved:1,
fAckReq:1;
short cfFormat;
BYTE Value[1];

} DDEDATA;
The Value member should contain the description property, in the form of a null-terminated string of
characters from the Windows character set. The string can be any size but typically contains fewer than 30
characters.

If the server sets the fAckReq bit, WinOldApp responds to the WM_DDE_DATA message by posting a
WM_DDE_ACK message after processing the data.

If the server sets the fRelease bit, WinOldApp frees the global memory object after copying the
description string. Otherwise, WinOldApp does not free the memory object.

Providing the Working-Directory Property

If the shell is responding to WinOldApp's request for the "GetWorkingDIR" property, the shell passes
the following parameters with the WM_DDE_DATA message:

Parameter Description
hwnd Specifies the handle of WinOldApp's DDE window. The shell should use the

handle that WinOldApp specified as the wParam parameter in the
WM_DDE_REQUEST message.

message Specifies the WM_DDE_DATA message.
wParam Specifies the handle of the shell's DDE window.
LOWORD(lParam) Specifies a handle to a global memory object that contains a DDEDATA

structure. A description of the contents of the DDEDATA structure follows this
table. To report an error, the server should use one of the error values listed with
the WinExec function.

HIWORD(lParam) Specifies an atom that represents the string, "GetWorkingDIR".

The low-order word of the lParam parameter is a handle to a global memory object that contains a
DDEDATA structure. The contents of the DDEDATA structure are as follows:

#include <dde.h>
typedef struct tagDDEDATA { /* ddedat */

WORD unused:12,
fResponse:1,
fRelease:1,
reserved:1,
fAckReq:1;
short cfFormat;
BYTE Value[1];

} DDEDATA;
The Value member should specify the location (drive and path) of the application's executable file, in the
form of a null-terminated string of characters from the Windows character set. The character string has a
maximum size of 128 characters (including the terminating null character).

If the server sets the fAckReq bit, WinOldApp responds to the WM_DDE_DATA message by posting a
WM_DDE_ACK message after processing the working-directory property.

If the server sets the fRelease bit, WinOldApp frees the global memory object after copying the working-
directory string. Otherwise, WinOldApp does not free the memory object.

Providing the Icon Property

If the shell is responding to WinOldApp's request for "GetIcon" property, the shell passes the following
parameters with the WM_DDE_DATA message:

Parameter Description
hwnd Specifies the handle of WinOldApp's DDE window. The shell should use the

handle that WinOldApp specified as the wParam parameter in the
WM_DDE_REQUEST message.

message Specifies the WM_DDE_DATA message.
wParam Specifies the handle of the shell's DDE window.
LOWORD(lParam) Specifies a handle to a global memory object that contains a DDEDATA

structure. A description of the contents of the DDEDATA structure follows this
table. To report an error, the server should use one of the error values listed with
the WinExec function.

HIWORD(lParam) Specifies an atom that represents the string, "GetIcon".

The low-order word of the lParam parameter is a handle to a global memory object that contains icon-
property data. The icon data should be in the following form:

typedef struct tagICONPROPS { /* ip */
unsigned reserved:12, /* reserved*/
fResponse:1, /* always 1*/
fRelease:1, /* 1 if app. frees object, else 0 */
reserved:1, /* reserved*/
fAckReq:1;/* 1 if app. should respond, else 0 */
int cfFormat; /* clipboard format (not used) */
int nWidth; /* width, in pixels, of the icon */
int nHeight; /* height, in pixels, of the icon */
BYTEnPlanes; /* number of planes in XOR mask*/

BYTEnBitsPixel; /* number of bits/pixel in XOR mask */
LPBYTE lpANDbits;/* points to AND mask array */
LPBYTE lpXORbits;/* points to XOR mask array */

} ICONPROPS;
If the server sets the fAckReq bit, WinOldApp responds to the WM_DDE_DATA message with a
WM_DDE_ACK message after processing the data.

If the server sets the fRelease bit, WinOldApp frees the global memory object after copying the working-
directory string. Otherwise, WinOldApp does not free the memory object.

The lpANDbits and lpXORbits pointers may be either near or far. If the pointers are near (that is, the
segment selector portion of the pointers is zero), the bits are part of the global memory object. The offset
portion of the pointers is a near offset from byte zero of the object.

Because the bits are part of the global memory object, they are freed along with the object. The combined
size of the ICONPROPS structure together with the bits pointed to by the lpANDbits and lpXORbits
members must be no more than 64K.

If the server needs to use far pointers for the lpANDbits and lpXORbits members, the bits must be part of
a separate memory object. This object is not freed automatically when the global memory object is freed.

Terminating the DDE Conversation

The shell may terminate the conversation at any time by posting a WM_DDE_TERMINATE message.
After WinOldApp has obtained its properties from the shell, it terminates the DDE conversation by
posting a WM_DDE_TERMINATE message.

International Applications
The Microsoft Windows operating system provides means for making applications country- and language-
independent. This topic describes how to design Windows applications so that they can be readily adapted
to international markets. The following topics are related to the information in this topic:

File version library
Resources and Resource Compiler (RC)
Initialization files

Creating an International Application

To reach worldwide audiences, you need to design Windows applications so that they can be marketed
in more than one country and modified for new markets. International applications must be country- and
language-independent and easy to localize.

A Windows application, regardless of the language used in its interface, should be able to handle data
from different countries and in different languages. For example, a database developed primarily for the
English-speaking market should accept French and German input. The application should also support
different currency symbols and date and time formats. Furthermore, it should permit complex
operations, such as sorting, in any language selected by the user.

A Windows application should be developed so that localization can be easily accomplished.
Localization is the process of adapting an application for a market other than the one for which it was
originally designed. Adapting an application involves translating the product, adding new features when
required, and modifying the product to meet local needs.

Achieving Country and Language Independence

Windows provides resources for writing applications that are country- and language-independent. These
resources consist of international information stored in the WIN.INI file and in certain Windows
functions. By using the resources described in this section, you can correctly produce international
applications.

International Information in WIN.INI

The [Intl] section of the WIN.INI file contains the current country settings for Windows. The user can
modify these settings through Control Panel. An application has access to the current country settings
through the GetProfileInt and GetProfileString functions and can modify them through the
WriteProfileString function. An application should read the required country settings at startup and
should monitor the WM_WININICHANGE message to update its country settings in case the country
settings in WIN.INI have changed.

Following are the country settings stored in WIN.INI:
iCountry Country code. This value is based on the telephone country code. The only exception is

Canada, which has 2 instead of 1 (1 is used by the United States). This setting controls
country-dependent features not supported by Windows.

sCountry String defining the selected country name.
sLanguage National language code selected by the user. The International dialog box in Control

Panel changes the language of the installed language-dependent module. Following are
some of the language codes that Windows currently supports:
Code Language
DAN Danish
DEU German
ENG U.K. English
ENU U.S. English
ESN Modern Spanish
ESP Castilian Spanish
FIN Finnish
FRA French
FRC Canadian French
ISL Icelandic
ITA Italian
NLD Dutch
NOR Norwegian

PTG Portuguese
SVE Swedish

sList List separator. This character separates elements in a list. The list separator must be
different from the decimal separator to avoid conflicts with lists of numbers.

iMeasure Measurement system selected by the user, where 0 equals metric and 1 equals English.
This setting controls measurement-dependent features of an application.

iTime Time format. This setting defines the time format: 12 hours or 24 hours, where 0 equals
the 12-hour clock and 1 equals the 24-hour clock.

sTime Time separator. This character is displayed between hours and minutes and between
minutes and seconds.

s1159 Trailing string (A.M., for example) used in some countries for times between 00:00 and
11:59.

s2359 Trailing string (P.M., for example) for times between 12:00 and 23:59 when in 12-hour
clock format or trailing string (GMT, for example) for any time when in 24-hour clock
format.

iTLZero Value specifying whether the hours displayed should have a leading zero, where 0
equals no leading zero (9:15, for example) and 1 equals a leading zero (09:15, for
example).

iDate Date format. Kept for compatibility with Windows 2.x. The values for this setting are:
0 equals Month-Day-Year, 1 equals Day-Month-Year, and 2 equals Year-Month-Day.
The sShortDate setting should be used instead.

sDate Date separator. Kept for compatibility with Windows 2.x. The sShortDate setting
should be used instead.

sShortDate Date picture of the short date format. The sShortDate setting accepts only the values m,
mm, d, dd, yy and yyyy. For information about these values and the format of date
pictures, see the sLongDate setting.

sLongDate Date picture of the long date format, which is similar to the sShortDate setting, except
it can also contain strings. Following are formats for different month (m), day (d), and
year (y) values:
Value Format
m 1-12
mm 01-12
mmm Jan-Dec
mmmm January-December
d 1-31
dd 01-31
ddd Mon-Sun
dddd Monday-Sunday
yy 00-99
yyyy 1900-2040
Following are examples of different date pictures:
Date picture Example
d mmmm, yyyy 9 January, 1989
dddd, mmmm d, yyyy Friday, February 7, 1992
m/d/yy 3/18/89
dd-mm-yyyy 18-03-1989
d "of" mmmm, yyyy 9 of January, 1992

sCurrency Currency symbol of a given country. Use of this setting requires care. If the currency
symbol is changed through Control Panel, do not make global replacements of currency
amounts in your application. Once the user has entered an amount using a particular
currency, that currency should stay the same. This setting also requires special attention
when files are shared among users or applications.

iCurrency Currency format. The values for this setting are as follows:
Value Meaning
0 Currency symbol prefix with no separation ($1, for example)
1 Currency symbol suffix with no separation (1$, for example)
2 Currency symbol prefix with one character separation ($ 1, for example)

3 Currency symbol suffix with one character separation (1 $, for example)
iCurrDigits Number of digits used for the fractional part of a currency amount.
iNegCurr Negative currency format. The values for this setting are:

Value Negative format
0 ($1)
1 -$1
2 $-1
3 $1–
4 (1$)
5 -1$
6 1–$
7 1$–
8 -1 $
9 -$ 1
10 $ 1–

Note: The dollar symbol represents any currency symbol defined by the sCurrency
setting.

sThousand Symbol used to separate thousands in numbers with more than three digits.
sDecimal Character used to separate the integer part from the fractional part of a number.
iDigits Value defining the number of decimal digits that should be used in a number.
iLzero Value specifying whether a decimal value less than 1.0 (and greater than -1.0) should

contain a leading zero, as follows:
Value Meaning
0 Do not use a leading zero (.7, for example).
1 Use a leading zero (0.7, for example).

International Information in Windows Functions

Windows includes provisions for specifying a national language. Language, in conjunction with the
specification of a country, allows Windows to describe more precisely the characteristics of a given
geographical location (for example, Swiss-German as opposed to Swiss-French). The following
Windows functions behave differently depending on the language that is selected:
AnsiLower IsCharAlpha
AnsiLowerBuff IsCharAlphaNumeric
AnsiNext IsCharLower
AnsiPrev IsCharUpper
AnsiUpper lstrcmp
AnsiUpperBuff lstrcmpi

Comparing and Sorting Strings

The lstrcmp and lstrcmpi functions allow applications to compare and sort strings based on the language
specified by the user. These functions take into account different alphabetic orderings, diacritical marks,
and special cases that require character compression or expansion. Note that the lstrcmp and lstrcmpi
functions do not act the same way as the C run-time functions strcmp and strcmpi.

The comparison done by lstrcmp and lstrcmpi is based on a primary value and a secondary value (see
the following illustration). Each character has a primary and a secondary value.

When performing the comparison of two strings, the primary value takes precedence over the secondary
value. That is, the secondary value is ignored unless a comparison based on primary value shows the
strings as equivalent.

The following examples show the effect of primary and secondary values on string comparisons:

Comparison Result
A = A Primary values equal
A < a Primary values equal, secondary values unequal (A < a)
Ab < ab Primary values equal, secondary values unequal (A < a)
ab < Ac Primary values unequal (b < c)

The lstrcmpi function ignores the effect of case in determining secondary value. That is, when lstrcmpi is
called to compare AB and ab, the two strings are equivalent. However, lstrcmpi does not ignore diacritical
marks, so Ab precedes äb regardless of whether the comparison is performed by the lstrcmp or lstrcmpi
function.

When strings of different lengths are compared, length takes precedence over secondary values. That is,
the shorter string always precedes the longer string as long as the primary values in the shorter string equal
the primary values for equivalent characters in the longer string. For example, ab precedes ABC, but ABC
precedes AD.

Depending on the language module installed, some characters are treated differently. For example, if the
German language module is installed, the b character expands to ss. If the Spanish language module is
installed, the characters ch are treated as a single character that sorts between c and d.

Case Conversions

Use of the case conversion functions, AnsiLower, AnsiLowerBuff, AnsiUpper, and AnsiUpperBuff,
varies depending on the language module installed. The IsCharAlpha, IsCharAlphaNumeric,
IsCharLower and IsCharUpper functions are also language-dependent. Different languages treat case
conversions differently.

Note: Do not use the C-language case-conversion functions; they do not handle characters with values
greater than 128 properly.

Handling Character Sets

If you are writing international Windows applications, you will handle different character sets. It is
especially important in this case to understand the difference between the Windows and OEM character
sets.

The Windows character set is essentially equivalent to the ANSI character set.

The OEM character set is defined by the Windows operating system as the character set used by MS-
DOS. The term OEM does not refer to a specific character set; instead, it refers to any of the different
character sets (code pages) that can be installed and used by MS-DOS.

Because Windows runs on top of MS-DOS, there must be a layer between Windows and MS-DOS that
performs translations between Windows and OEM characters. When Windows is first installed, the
Windows Setup program looks at the character set that has been installed by MS-DOS and then installs
the correct translation tables and Windows OEM fonts.

Windows applications should use the Windows AnsiToOem and OemToAnsi functions when
transferring information to and from MS-DOS. Also, applications should use the correct character set
when creating filenames. For more information about handling filenames, see the following section.

There is no one-to-one mapping between the Windows and OEM character sets. Applying the
AnsiToOem function and then the OemToAnsi function to a given string does not always result in the
original string.

Because the Windows and OEM character sets are 8-bit character sets, always use unsigned char values
instead of signed char values. Bugs that result from using signed char values are very hard to track.

Handling Filenames

Applications do file handling differently depending on factors such as speed, size, and programming
style. This section describes the most common methods for handling filenames.

The easiest way of handling filenames in Windows is to use the Windows character set for all filenames
and to use the _lcreat, _lopen, and OpenFile functions to deal with differences between the MS-DOS
and the OEM character sets.

Another way to handle filenames is to use the OpenFile function to obtain a full path, by using the
szPathName member from the OFSTRUCT structure. The szPathName member contains characters
from the OEM character set and must first be converted to the Windows character set before it is used as
a parameter for the OpenFile function, for other Windows functions, or in a dialog box.

The following example shows this conversion:

if (OpenFile("myfile.txt", &of, OF_EXISTS) == -1) {
OemToAnsi(of.szPathName, szAnsiPath);
OpenFile(szAnsiPath, &of, OF_CREATE);

}

The third, and maybe most complicated, way of handling files is to call MS-DOS directly (by using the
DOS3Call function or an Interrupt 21h instruction). You must ensure that your application always passes
OEM characters to MS-DOS.

Differences between the Windows and OEM character sets complicate the handling of filenames.
Problems can occur when applications try to create filenames using the Windows character set that have
no equivalent characters in the OEM set. For example, the character Ê does not exist in code page 437
(437 is the standard U.S. extended ASCII character set). If the application tries to save the file named Ê.
TXT, Windows converts Ê.TXT into E.TXT (by using the AnsiToOem function) and then passes it to MS-
DOS.

You can prevent confusion about filenames by using the ES_OEMCONVERT and CBS_OEMCONVERT
control styles. These styles (the first for edit controls and the second for combo boxes) read the user's
input and convert the typed character to a valid character (one that exists in the OEM character set). This
way, the user sees on the screen the actual filename that will be stored at the MS-DOS level.

Handling the Keyboard

The most important keyboard issue for international applications is the use of the VK_OEM keys for
user input because the locations of these keys change depending on the keyboard layout chosen by the
user.

The VkKeyScan function is used to translate characters from the Windows character set into a virtual-
key code plus a shift state. This function can be also used when one application has to send text to
another application by simulating keyboard input.

Some other useful keyboard functions are the following:

Function Purpose
ToAscii Converts a virtual-key code plus a shift state to a character in the Windows

character set. This function is the opposite of the VkKeyScan function.
GetKeyNameText Retrieves a string that contains the name of a key (the SHIFT key or the ENTER

key, for example). The string is in the language associated with the keyboard.
For example, for a French keyboard layout the names of the keys are in French.

GetKBCodePage Returns the code page (OEM character set) that was running at the MS-DOS
level at the time Windows was installed. Note that there is no real relationship
between the keyboard and the code page installed.

To type characters that are not on your keyboard, use the ALT key and the numeric keypad. For characters
in the Windows character set, hold down ALT and then, using the numeric keypad, type 0 and the three-
digit code of the character you want. For an OEM character, type the three-digit code for the character.

Handling Initialization Files

The WIN.INI and SYSTEM.INI files use the Windows character set. Usually, however, applications do
not access SYSTEM.INI. For WIN.INI as well as for private initialization files, applications should use
the following functions:

GetPrivateProfileInt GetProfileString
GetPrivateProfileString WritePrivateProfileString
GetProfileInt WriteProfileString.

The Windows character set should always be used with these functions.

The section names and setting names in WIN.INI and in private initialization files should be independent
of the language of the application. Usually, all of these names remain in English. For example, in WIN.
INI the section name [Desktop] and the setting name Wallpaper should always remain in English so that
applications in different languages can access the same information.

International Uses of the File Version Library

If your application includes a Windows version resource, you can use the functions in the file version
library (VER.DLL) in your installation program. A Windows version resource includes the language,
code page, version number, and so on for a file. The functions in VER.DLL retrieve information from a
file's version resource and install files based on this information. For example, if an installation program
tries to replace an existing copy of an application with a new copy in a different language, the
VerInstallFile function returns an error that indicates a language conflict. Then the installation program
queries the user about whether to overwrite the old file, install the new copy in another location, or exit.

For more information about the contents of a version resource and about using version functions, see
File Installation Overview.

Achieving Easy Localization

Creating applications that are easy to localize is not difficult if you follow a few basic rules.

Isolation of Localizable Information

The most important rule for localization is to never mix functional code with strings, messages, or any
other information that has to be modified to localize your application.

Hard-coded strings (strings mixed with functional code) make localization more difficult. In most
Windows applications, all menus, strings and messages should be placed in the resource-definition (.
RC) file. All the dialog box information should be placed in the dialog box script (.DLG) file. If you do
this, you just need to run the Resource Compiler (RC) to obtain a new, localized version of the product
instead of recompiling the executable file.

Strings that are not meant to be modified (filenames, WIN.INI setting names, and so on) can be placed
in the .RC file, but the file should contain comments documenting that the names are permanent and
should not be modified. It is a good idea also to mark what should be translated (explaining limitations,
if any). The better you make the documentation, the easier the localization will be.

The .RC files and .DLG files should contain anything that can be a localization item. It is better to have
extra information in these files than to have too little. In cases where an .RC or a .DLG file cannot be
used, place all the information in a file, such as an include file, that is separate from any functional code.

Allocating Extra Space for Strings

Many languages are more verbose than English and require more space to hold strings or to display
dialog boxes. There are cases, as with menus, where the space allocation is done dynamically, but in
most cases the application has to provide the space. The following table shows the percentage of
additional space that an application should allocate for non-English strings of various lengths.

Length in characters Additional space required
1-10 200%
11-20 100%
21-30 80%
31-50 60%
51-70 40%
70+ 30%

In the English version of your application avoid creating dense menus where most of the available space
(all except one line, for example) is used. Dialog boxes should be designed so that items can be moved
freely, allowing reorganization of the contents as translation demands. Do not crowd status bars with
information. Even abbreviations are often longer in other languages.

Handling Foreign Languages

Never make assumptions about language usage when dealing with foreign languages. The ordering of
words can be different, and the number of words required is often greater than in English.

Keep in mind the following grammatical points when preparing an application for localizing:
Avoid using the same word in more than one message. Some words, such as none, can have

different translations (different gender and number) depending on the context.
Do not create plurals of words by adding s. Keep two strings, one for the singular and one for the

plural.
Avoid using slang, abbreviations, or jargon, because they are difficult to translate.

Keep also these syntactical considerations in mind when localizing:
Avoid parsing text to obtain information. Parsing normally assumes specific syntax.
Do not create a long string from several short strings. The long string may not make sense in

another language, because the order of parts of speech varies in different languages.

Incorporate graphic objects such as bitmaps, cursors, and icons with these considerations in mind:
Avoid the use of embedded text in graphics. Text is difficult to modify when in graphical form. If

you cannot avoid this, leave enough space for translation and try to create tools to simplify the modification.
Look for graphic objects that represent international concepts, because graphic objects are also

language dependent.

Keep in mind the following points when planning screen elements:

Do not hard-code the position or size of any element on the screen, because an item changes
position and size as it gets translated. In cases where you need to define the size or position of certain
object, place this definition in the resource-definition (.RC) file.

Use the CreateWindow function carefully. The lpClassName parameter should be constant and
independent from localization, but the lpWindowName parameter, which is the string that appears in the
title bar, should be localized. The string used for lpWindowName should be taken from the resources.

All messages should be self-contained, not dynamically assembled. In cases where messages have
variables added to them at run time, do not make any assumptions about the position of the variable in the
message. Handle variables in messages in the following manner:
1 Place the string containing the variable in the resource-definition (.RC) file:

CannotOpen, "The application could not open the file %s"
2 Use the wsprintf function to incorporate the variable into the string:

LoadString(hInst, CannotOpen, lpFormat, MaxLen);
wsprintf(FinalString, lpFormat, FileName);

Developing Network Applications
As local area networks (LANs) become increasingly common, application developers need to ensure that
their applications run properly in a network environment. To do this, they should consider the behavior of
applications shared by multiple users and the compatibility of applications that access network software
directly with protected (standard or 386 enhanced) mode.

Sharing by Multiple Users

Many corporations choose to have their computer users share a single copy of an application that resides
on a network server. The Microsoft Windows operating system, version 3.0 and later, can be run this
way. The /n (network) option used in Windows Setup configures the user's system so that most
Windows files are used directly off the network, but the user's personal files and configuration
information are stored in a private Windows directory.

If you intend to allow shared copies of your application, you must ensure that two users running the
same application do not interfere with each other. The following sections present guidelines for
preparing an application for network support.

Sharing Directories

Many applications store configuration files in the same directory as the executable file for the
application. This method does not work for multiple users, however, because the application stores each
user's information in the same directory, overwriting the other users' information in the process.

Instead of using configuration files, an application should use the Windows profile functions to store
user-specific information in initialization (.INI) files. The profile functions create initialization files in a
user's private Windows directory, unless the application specifies a different directory.

Windows profile functions, such as WriteProfileString, usually store profile and configuration
information in .INI files. Profile functions fall into two categories: those that access WIN.INI and those
that access another .INI file specified by the program.

The functions that access WIN.INI are GetProfileString, GetProfileInt, and WriteProfileString. Because
each user has a unique copy of WIN.INI, these functions can be used safely, even when the application
is being shared by more than one user.

The functions that access other .INI files are GetPrivateProfileString, GetPrivateProfileInt, and
WritePrivateProfileString. These functions behave similarly to the functions that access WIN.INI,
except that the application specifies the name of the private initialization file. When using these
functions, you should specify the name of the file, but not a complete path (for example, MYAPP.INI
instead of C:\MYAPP\MYAPP.INI). By default, the file will be located in the user's private Windows
directory; specifying a full path could give multiple users access to the same file.

The exception to the preceding rule are initialization files that need to be shared by all users. Make sure
that those files cannot be left in an inconsistent state if multiple users update them simultaneously.

Sharing Temporary Storage

When creating temporary files, use the GetTempFileName function to determine a unique name and
location for the file. This function ensures that temporary filenames do not conflict, even if multiple
users share the same temporary storage directory.

Sharing Files

A network manages file sharing as if the SHARE utility were loaded. Each file that can be accessed on
the network should use a sharing mode to ensure data integrity. Applications should also be designed to
handle sharing violations.

A sharing violation occurs when one process (or machine) attempts to access a file after a different
process has requested the server to block access to the file. If an application opens the file in
compatibility mode, a sharing violation results in a critical error. Therefore, unless the application uses
the SetErrorMode function to set the error mode so that it always fails, Windows displays the standard
sharing violation message.

Sharing Devices

Windows 3.1 includes three functions that an application can use to manage its network connections:
WNetAddConnection, WNetCancelConnection, and WNetGetConnection. The WNetAddConnection
function redirects a local device (either a disk drive or a printer port) to a shared device on a remote
server. The WNetCancelConnection function cancels a redirection to a shared device. The

WNetGetConnection function returns the name of the network resource associated with a redirected
local device.

Calling Network Software in Protected Mode

Windows applications running in protected mode require special support whenever they make a call to
real-mode software. This includes calls to MS-DOS, the BIOS, or a network. Non-Windows
applications running with Windows do not require this special support, however, because they always
run in real or virtual-8086 mode.

Windows applications running in protected mode require application programming interface (API)
mapping. If the arguments to the calling function include pointers to data, that data should be copied into
the first 1 megabyte of address space so that the real-mode software can access it. The processor is then
switched into real or virtual-8086 mode so that the real-mode software can process the function. Finally,
when the function returns, any data it modified is copied back to the caller's protected-mode address.

Fortunately, most applications interact with the network only indirectly, by using MS-DOS functions to
manipulate files on redirected drives or by using MS-DOS or BIOS functions to print to a remote printer
using redirected printer ports. Windows applications can continue to perform these functions as usual,
because Windows automatically maps standard MS-DOS and BIOS functions.

Some applications, however, need to use functions that are specific to a particular network or
networking protocol. Some part of the software must map these functions, and, in some cases, this may
require special procedures on the part of the programmer.

The remainder of this topic describes programming considerations for designing Windows applications
that use the following networking protocols and networks: Microsoft Networks and MS-DOS network
functions, NetBIOS functions, Microsoft LAN Manager–based networks, Novell NetWare,
Ungermann-Bass Net/One, and Banyan VINES.

Microsoft Networks and MS-DOS Network Functions

Many networks on the market today are based on the Microsoft Networks standard, also known as MS-
NET. These networks support a set of standard MS-DOS functions that perform network activities, such
as redirecting drive letters.

Current versions of Windows automatically handle these MS-DOS functions. However, in order to
maintain compatibility with future Windows products, your application should not make MS-DOS calls
by using Interrupt 21h. Instead, it should set up all the registers for Interrupt 21h and then make a far call
to the Windows DOS3Call function.

NetBIOS Functions

NetBIOS is the most widely used networking API. The functions in this API are normally called by
using Interrupt 5Ch. Current versions of Windows handle most NetBIOS functions. However, in order
to maintain compatibility with future Windows products, the application should not make the NetBIOS
call by using Interrupt 5Ch. Instead, it should set up all the registers for Interrupt 5Ch and then make a
far call to the Windows NetBIOSCall function.

Windows does not support the following rarely used NetBIOS functions:

Function number Function name
71h Send.No.Ack
72h Chain.Send.No.Ack
73h Lan.Status.Alert
78h Find.Name
79h Trace

LAN Manager Networks

Networks based on Microsoft LAN Manager can be installed in either basic or enhanced versions. All
versions of LAN Manager support MS-NET and NetBIOS functions. However, if you are running the
enhanced version of LAN Manager with the API option, your applications can also use a powerful set of
networking functions.

Non-Windows applications can call networking functions by linking with DOSNET.LIB, a static-link
library provided with the network software. Windows applications, however, must use two dynamic-
link libraries (DLLs), NETAPI.DLL and PMSPL.DLL, distributed on every workstation with the
enhanced version of LAN Manager 2.0. (These DLLs do not run with LAN Manager 1.x or with the
basic version of LAN Manager 2.0.)

For more details on writing Windows applications for LAN Manager, see the Microsoft LAN Manager
Programmer's Reference.

Novell NetWare

Novell NetWare supports MS-NET and, optionally, NetBIOS functions, which are described earlier in
this topic. Novell NetWare also supports the NetWare and IPX/SPX APIs, both based on Interrupt 21h.

Windows applications cannot make NetWare calls by using Interrupt 21h directly, because this method
is not supported in all Windows operating modes. Instead, the Interrupt 21h instruction should be
replaced by a far call to the NetWareRequest function. This function is exported by name from the
NetWare DLL and should be imported to the module-definition (.DEF) file as NetWare.
NetWareRequest.

Windows applications cannot make IPX/SPX calls at this time, although Novell plans to make this
support available in a future release. For more information, contact Novell product support.

Ungermann-Bass Net/One

Ungermann-Bass Net/One is based on the Microsoft Networks standard. It supports standard MS-NET
functions and most NetBIOS functions described earlier in this topic.

Net/One also supports private extensions to the NetBIOS function set (Interrupt 5Ch Functions
72h–7Dh). These functions are supported by Windows. You can call these functions as you would
standard NetBIOS functions by making a far call to the NetBIOSCall function.

Banyan VINES

Banyan VINES supports the standard MS-NET functions and, optionally, NetBIOS functions. A toolkit
is available for applications that write directly to the VINES API.

Windows applications can call the MS-NET and NetBIOS functions as previously described.

VINES version 4.0 does not support Windows applications that call the VINES API directly, but
Banyan intends to make this support available in VINES 4.1. For more information, contact Banyan
product support.

Windows Applications with MS-DOS Functions
This topic describes the support in the Microsoft Windows operating system version 3.0 and later for
Windows and non-Windows applications using DOS Protected-Mode Interface (DPMI) version 1.0
functions, MS-DOS interrupts and functions in protected mode, and the NetBIOS in protected mode.

DPMI enables MS-DOS applications to access the extended memory of PC-architecture computers while
maintaining system protection. It also defines a new interface, through Interrupt 31h, that protected-mode
applications use for such tasks as allocating memory, modifying descriptors, and calling real-mode
software.

According to the DPMI specification, the term real-mode software refers to code that runs in the low 1-
megabyte address space and uses segment:offset addressing. With Windows 3.0 and later in protected
mode, so-called real-mode software is actually run in virtual-8086 mode. However, because virtual-8086
mode is a close approximation of real mode, both are referred to as real mode in this topic.

For more information about the DPMI specification, contact Intel Corporation product support, or submit a
service request through Microsoft OnLine.

Using DOS Protected-Mode Interface Functions

Windows 3.0 and later in 386 enhanced mode supports DPMI version 1.0. Windows 3.0 and later in
standard mode supports a subset of DPMI that enables applications to call terminate-and-stay-resident
(TSR) programs and device drivers running in real (or virtual-8086) mode. To ease the porting of an
application to other operating environments, all code that calls DPMI functions directly should reside in
a dynamic-link library (DLL).

Windows Kernel

Windows applications should not use the MS-DOS memory management functions for DPMI. The
Windows 3.0 and later kernel has two functions, GlobalDOSAlloc and GlobalDOSFree, that should be
used by Windows applications and DLLs for allocating and freeing MS-DOS addressable memory.

Because the Windows kernel provides functions for allocating memory, manipulating descriptors, and
locking memory, no DPMI functions other than the following are required for Windows applications:

Interrupt 21h function Description
0200h Get Real Mode Interrupt Vector
0201h Set Real Mode Interrupt Vector
0300h Simulate Real Mode Interrupt
0301h Call Real Mode Procedure with Far Return Frame
0302h Call Real Mode Procedure with Interrupt Return Frame
0303h Allocate Real Mode Callback Address
0304h Free Real Mode Callback Address

Non-Windows applications running in 386 enhanced mode can use all DPMI functions, because those
functions are not restricted by the kernel.

Other Application Programming Interfaces

In general, any software-interrupt function that passes parameters in the EAX, EBX, ECX, EDX, ESI,
EDI, and EBP registers works as long as none of the registers contains a selector value. In other words,
if a software-interrupt function is completely register-based without any pointers, segment registers, or
stack parameters, that function should work with Windows running in protected mode.

More complex software interrupt functions require the calling function to use the DPMI translation
functions.

Support for MS-DOS Interrupts

This section discusses support for MS-DOS interrupts and functions when Windows runs in protected
mode with MS-DOS version 3.0 and later.

All MS-DOS interrupts and functions that are not mentioned in this section should work exactly as
documented in The MS-DOS Encyclopedia (Redmond, Washington: Microsoft Press, 1988).

Unsupported MS-DOS Interrupts and Functions

The following MS-DOS interrupts are not supported in protected mode and will fail if called:

Interrupt Description

20h Terminate Program
25h Absolute Disk Read
26h Absolute Disk Write
27h Terminate and Stay Resident

The following MS-DOS Interrupt 21h functions are also not supported in protected mode:

Function Description
00h Terminate Process
0Fh Open File with FCB
10h Close File with FCB
14h Sequential Read
15h Sequential Write
16h Create File with FCB
21h Random Read
22h Random Write
23h Get File Size
24h Set Random Record Number
27h Random Block Read
28h Random Block Write

Partially Supported MS-DOS Interrupt 21h Functions

The following MS-DOS Interrupt 21h functions behave differently in protected mode than they do in
real mode. To use these functions, an application might require additional code:

Function Description
25h Set Interrupt Vector
35h Get Interrupt Vector
38h Get/Set Current Country Information
4402-4405h Send/Receive Control Data
440Ch Generic IOCTL for Character Devices
6501-6506h Get Extended Country Information

Functions 25h and 35h set and get the protected-mode interrupt vector. They can be used to hook hardware
interrupts, such as the timer or keyboard interrupt, as well as to hook software interrupts. (Except for
Interrupts 23h, 24h, and 1Ch, software interrupts that are issued in real mode are not passed to protected-
mode interrupt handlers. However, all hardware interrupts are passed to protected-mode interrupt handlers
before being passed to real mode).

Function 38h returns a 34-byte buffer containing a doubleword real-mode address. The address at offset
12h is used for case mapping. To call the case-mapping function, use the DPMI translation function to
simulate a real-mode FAR call.

Functions 4402h, 4403h, 4404h, and 4405h are used to receive data from a device or send data to a device.
Because it is not possible to break the transfers automatically into small pieces, the calling program should
assume that a transfer of greater than 4K will fail unless the address of the buffer is in the low 1 megabyte.

Only certain extensions of Function 440Ch (Minor Codes 45h and 65h) are supported for protected mode.
The extensions of Function 440Ch that are used for code-page switching (Minor Codes 4Ah, 4Ch, 4Dh,
6Ah, and 6Bh) are not supported for protected-mode programs. To use 440Ch to switch code pages, you
must use the DPMI translation functions.

Functions 6501h, 6502h, 6503h, 6504h, 6505h, and 6506h are supported for protected-mode programs.
However, all doubleword parameters returned will contain real-mode addresses (that is, the case-
conversion procedure address and all the pointers to tables will contain real-mode segment:offset
addresses). To call the case-conversion procedure in real mode, you must use the DPMI translation
functions.

NetBIOS Support

Windows supports standard NetBIOS (Interrupt 5Ch) functions in protected mode. All network control
blocks (NCBs) and buffers must reside in fixed memory that is page-locked. To ease the porting of the
application to other operating systems, all code that calls NetBIOS functions directly should reside in a
DLL.

For more information about developing applications for networks, see Developing Network
Applications.

Windows Prologs and Epilogs
This topic describes the prolog and epilog used with far functions in applications and dynamic-link
libraries (DLLs) for the Microsoft Windows operating system. Compiler vendors can use this information
to enable their compilers to generate prolog and epilog code that is suitable for Windows.

In Windows version 3.0 and earlier, the prolog and epilog for far functions must include instructions to
mark the stack frame, indicating that the frame belongs to a far function. This makes it possible for real-
mode Windows to locate segment addresses on the stack and update those addresses when it moves or
discards the corresponding segments. Marking stack frames for far functions also allows debugging
applications, such as Microsoft CodeView®for Windows (CVW) and Microsoft Windows 80386
Debugger (WDEB386.EXE), to display meaningful information about the contents of an application's
stack.

Marking stack frames for far functions is optional for Windows 3.1 applications. Old debugging
applications that do not access TOOLHELP.DLL, however, still need marking. Debugging applications
that use TOOLHELP.DLL do not require stack frames for far functions to be marked.

Data-Segment Initialization

The Windows prolog and epilog contain instructions that initialize the DS register, setting the register to
the segment address of the application or DLL. Windows requires callback functions, such as window,
dialog box, and enumeration procedures, to initialize the DS register whenever they are called by
Windows or an application. This guarantees that the function accesses its own data segment rather than
the data segment of the caller.

Exported Far Functions

The Windows prolog used with exported far functions, such as dialog box and enumeration procedures,
ensures that the DS register receives the data segment address for the application when Windows or an
application calls the exported function. In Windows version 3.0 and earlier, the prolog and epilog for
exported far functions have the following form:

push ds; put DS in AX, take 3 bytes to do it,
popax; so the code can be rewritten as
nop ; MOV AX, IMM when appropriate
incbp; push odd BP to indicate this stack
push bp; frame corresponds to a far CALL
movbp, sp ; set up BP to access arguments and
; local variables
push ds; save DS
movds, ax ; set DS to proper data segment
subsp, const ; allocate local storage (optional)
...
subbp, 2 ; restore registers
movsp, bp
popds
popbp
decbp
retf
Because Windows 3.1 does not support real mode, the inc bp and dec bp instructions are not required.
Also, a variety of other changes can be made to the prolog and epilog to improve speed and reduce the size
of the code. If a far function is part of an application (not part of a DLL), the SS register is already the
proper value for the DS register, so calling the MakeProcInstance function is not necessary. The prolog
and epilog can be modified as follows:

push bp; set up stack frame (optional)
movbp, sp
push ds; save calling function's DS

push ss; move SS to DS
popds
...
popds; restore registers
popbp
retf
An alternative form of the prolog and epilog for far functions follows:

push bp; set up stack frame (optional)
movbp, sp
push ds; save calling function's DS
movax, ss ; move SS to DS
movds, ax
subsp, const ; (optional) allocate local storage
...
movds, [bp-2] ; restore registers
leave
retf
Each of the variations of prolog and epilog code discussed previously works whether or not a far function
is exported. The code can be called by an application or DLL as well as by the system.

If an application copies the contents of the SS register to the DS register, it doesn't need to call the
MakeProcInstance function to obtain a procedure-instance address before calling an exported far function.
Similarly, if a DLL moves the DGROUP data segment to the DS register through the AX register, the
DLL doesn't need to call MakeProcInstance before calling an exported far function.

Although window procedures for an application require this same prolog, Windows loads the AX register
before calling these procedures. An application, therefore, never needs to create a procedure-instance
address for its window procedures.

Nonexported Far Functions

Although not required, nonexported far functions can also include prolog code that initializes the DS
register. In this case, it is assumed that the function is never called by Windows or an application and
that the DS register contains the correct segment address when the function is called. The prolog for a
nonexported function has the following form:

movax, ds ; copy DS to AX
nop
push bp; set up stack frame (optional)
movbp, sp
push ds; save calling function's DS
movds, ax ; move same value back to DS
...
popds; pop same value back to DS
popbp
retf
An alternative form of the prolog for a nonexported function follows:

push ds; copy DS to AX
popax
nop

push bp; set up stack frame (optional)
movbp, sp
push ds; save calling function's DS
movds, ax ; move same value back to DS
...
popds; pop same value back to DS
popbp
retf
A compiler should not generate the preceding code by default because it reloads the DS register with the
same value two times per far call. Loading segment registers is a slow operation in protected mode and
should be avoided as much as possible.

Exported Far Functions in a Dynamic-Link Library

Exported far functions in DLLs also require a prolog. The prolog code in a DLL must generate a
reference to the DGROUP data segment. The SS register cannot be used because execution occurs on
the calling function's stack. Exported far functions cannot use this method because fixups to DGROUP
are illegal for a multiple instance application.

The prolog and epilog for exported far functions in a DLL has the following form:

movax, DGROUP ; get DGROUP value
push bp ; set up stack frame (optional)
movbp, sp
push ds ; save calling function's DS
movds, ax; move DGROUP to DS
...
popds ; restore registers
popbp
retf
Following is an alternative form of the prolog for exported far functions in a DLL:

movax, DGROUP ; get DGROUP value
push bp ; set up stack frame (optional)
movbp, sp
push ds ; save calling function's DS
movds, ax; move DGROUP to DS
subsp, const ; allocate local storage (optional)
...
movds, [bp-2] ; restore registers
leave
Windows inserts the current data segment address as the second operand (DGROUP) of the initial mov
instruction.

Prologs in Real Mode

When Windows 3.0 and earlier is running in real mode, Windows must walk each application stack
whenever it moves or discards segments. In particular, it must check each stack for any segment
addresses that may have been affected by the segment operations.

To help Windows locate segment addresses associated with the stack frames of far functions, the
Windows prolog increments the old frame pointer, contained in the BP register, before saving it on the
stack. Because all stack offsets, including frame pointers, are expected to be word-aligned, incrementing
the BP register gives Windows a quick way to locate all far function stack frames.

Windows only walks the stack in real mode. In protected mode, selector values do not change even
though Windows may move and discard segments. Therefore, functions in protected mode do not need
to increment the BP register when they save it. However, some debugging programs, such as CVW and
WDEB386.EXE, use the incremented BP register to determine which stack frames correspond to far
functions and give meaningless stack backtraces if the BP register is not incremented before it is saved.

Prologs in Protected Mode

Although exported functions in protected-mode, single-instance applications need to set the DS register,
these functions do not require the exported prolog described in the previous section. Instead, they can
use code similar to that generated by the _loadds keyword of the Microsoft C Optimizing Compiler (CL)
to set the DS register.

The code generated by _loadds copies the data segment selector to the DS register whenever the
function is called. Because a selector does not change value when the corresponding segment is moved,
there is no need to set the AX register to the appropriate data segment address before calling the function
(or to mark the stack frame). The function can, therefore, be called directly rather than through a
procedure-instance address. The _loadds code has the following form:

push bp
movbp,sp
push ds
movax, CONSTANT
movds, ax
Functions that use the _loadds code can be used as callback functions. Because no prolog code is required,
the functions do not need to be exported when used in an application. Functions in DLLs can also use the
_loadds code. However, the functions must be exported to ensure that other applications can link
dynamically to them.

In multiple-instance applications, the Windows prolog is needed only for far functions called by Windows.
For these functions, procedure-instance addresses are required. The _loadds code cannot be used in
multiple-instance applications. Instead, applications should copy the SS register to the DS register.

Windows Application Startup
This topic describes the startup requirements of applications for the Microsoft Windows operating system.
It also discusses the steps needed to initialize an application before its entry-point function, WinMain, can
be called.

Startup Requirements

When Windows starts an application, it calls a startup routine supplied with the application rather than
the application's WinMain function. The startup routine is responsible for initializing the application,
calling WinMain, and exiting the application when WinMain returns control.

When Windows first calls the startup routine, the processor registers have the following values:

Register Value
AX Contains zero.
BX Specifies the size, in bytes, of the stack.
CX Specifies the size, in bytes, of the heap.
DI Contains a handle identifying the new application instance.
SI Contains a handle identifying the previous application instance.
BP Contains zero.
ES Contains the segment address of the program segment prefix (PSP).
DS Contains the segment address of the automatic data segment for the application.
SS Same as the DS register.
SP Contains the offset to the first byte of the application stack.

To initialize and exit a Windows application, the startup routine must follow these steps:
1 Initialize the task by using the InitTask function. InitTask also returns values that the startup routine

passes to the WinMain function.

2 Clear the event that started the task by calling the WaitEvent function.
3 Initialize the queue and support routines for the application by calling the InitApp function with the

instance handle returned by the InitTask function.

4 Call the entry point for the application, the WinMain function.
5 Exit the application by calling the MS-DOS End Program function (Interrupt 21h Function 4Ch)

when WinMain returns.

Although the startup routine is essentially the same for all Windows applications, a variety of startup
routines may need to be developed to accommodate the different memory models and high-level language
run-time libraries used by Windows applications. If a Windows application uses functions and variables
provided by run-time libraries, the startup routine may need to be customized to initialize the library at the
same time as the application. Customizing the startup routine for run-time library initialization is entirely
dependent on the library and is, therefore, beyond the scope of this topic.

Example of a Startup Routine

A startup routine initializes and exits a Windows application. The routine in the following example, the
__astart function, shows the code needed for startup, which includes Cmacros defined in the
CMACROS.INC header file. When assembled, this code is suitable for small-model Windows
applications that do not use run-time libraries:

.xlist
memS = 1 ; small memory model
?DF = 1; Do not generate default segment definitions.
?PLM = 1;
?WIN = 1;
include cmacros.inc
.list
STACKSLOP = 256
createSeg _TEXT,CODE,PARA,PUBLIC,CODE
createSeg NULL, NULL, PARA,PUBLIC,BEGDATA,DGROUP
createSeg _DATA,DATA, PARA,PUBLIC,DATA, DGROUP
defGrp DGROUP,DATA

assumes DS,DATA
sBegin NULL
DD 0

labelW <PUBLIC,rsrvptrs>
maxRsrvPtrs = 5
DW maxRsrvPtrs
DW maxRsrvPtrs DUP (0)

sEnd NULL
sBegin DATA
staticW hPrev,0 ; Save WinMain parameters.
staticW hInstance,0
staticD lpszCmdline,0
staticW cmdShow,0
sEnd DATA
externFP <INITTASK>
externFP <WAITEVENT>
externFP <INITAPP>
externFP <DOS3CALL>
externP <WINMAIN>
sBegin CODE
assumes CS,CODE
labelNP <PUBLIC,__astart>

xorbp,bp ; zero bp
push bp
cCall INITTASK ; Initialize the task.
or ax,ax
jz noinit
addcx,STACKSLOP ; Add in stack slop space.
jc noinit ; If overflow, return error.
movhPrev,si
movhInstance,di
movword ptr lpszCmdline,bx
movword ptr lpszCmdline+2,es
movcmdShow,dx
xorax,ax ; Clear initial event that
cCall WAITEVENT,<ax>; started this task.
cCall INITAPP,<hInstance>; Initialize the queue.
or ax,ax
jz noinit
cCall WINMAIN,<hInstance,hPrev,lpszCmdline,cmdShow>

ix:
movah,4Ch
cCall DOS3CALL ; Exit with return code from app.

noinit:
moval,0FFh ; Exit with error code.
jmp short ix

sEndCODE
end __astart; start address

Windows requires the null segment (containing the rsrvptrs array), which is defined at the beginning of
this sample. The InitTask function copies the top, minimum, and bottom address offsets of the stack into

the third, fourth, and fifth elements of the rsrvptrs array. Applications can use these offsets to check the
amount of space available on the stack. The debugging version of Windows also uses these offsets to
check the stack. Applications must, therefore, not change these offsets, since doing so can cause a system
debugging error (RIP).

Self-Loading Windows Applications Overview (3.1)
This topic describes the contents of a unique segment that is found only in self-loading applications for the
Microsoft Windows operating system. This segment contains six functions: three that the application
developer supplies and three that the Windows kernel supplies. The segment also contains a table of
pointers to these functions and loader code.

This topic contains references to the Windows (new-style) header and the data tables in a Windows
executable file.

Loader Functions

The Windows kernel provides a loader function that places applications into memory and passes
execution to a specified entry point. Some Windows applications, however, must bypass this kernel
function and load themselves in order to be executed correctly. For example, a compiler for Windows
might contain two floating-point modules: one requiring a math coprocessor and one emulating the
coprocessor. The standard loader function in the Windows kernel does not provide a method of
specifying that code in one module should be loaded in place of code in another; this means that the
compiler needs to load the appropriate code itself in order to run efficiently and correctly. Likewise, the
code for a Windows application might be compressed with a special compression algorithm in order to
fit on a certain number of disks, but the standard loader function does not provide a method for dealing
with a compressed file format. The application, therefore, must load itself in order to be executed
correctly.

To indicate that a Windows application is self-loading, the 16-bit flag value in the executable file's
Windows header must contain the value 0x0800 (that is, bit 11 must be set). Otherwise, Windows
ignores the private loader code and installs the application by using the standard loader functions in the
Windows kernel.

Loader Data Table

In addition to the loader functions, the first segment of a self-loading Windows application contains a
loader data table with far pointers to each of the loader functions. The format of this table follows:

Location Description
0x00 Specifies the version number (this value must be 0xA0).
0x02 Reserved.
0x04 Points to a startup procedure, which the application developer provides.
0x08 Points to a reloading procedure, which the application developer provides.
0x0C Reserved.
0x10 Points to a memory-allocation procedure, which the kernel provides.
0x14 Points to an entry-number procedure, which the kernel provides.
0x18 Points to an exit procedure, which the application developer provides.
0x1C Reserved.
0x1E Reserved.
0x20 Reserved.
0x22 Reserved.
0x24 Points to a set-owner procedure, which the kernel provides.

All of the pointers in this table must point to locations within the first segment. There can be no fixups
outside this segment.

After the segment table for an executable file is loaded into memory, each entry contains an additional 16-
bit value. This value is a segment selector (or handle) that the loader created.

Loader Code

The first segment of a self-loading Windows application contains loader code for the six required loader
functions. The code loads and reloads segments and resets hardware.

Loading Segments

The kernel calls the BootApp function supplied by the application developer, instead of loading the
application in the normal manner, if the 16-bit value in the information block for the Windows header
contains the value 0x0800 (that is, bit 11 is set). The BootApp function allocates memory for all
segments by calling the kernel-supplied MyAlloc function. If the segment is identified as a PRELOAD
or FIXED type, BootApp also calls the LoadAppSeg function (another function supplied by the

application developer). The BootApp function also calls SetOwner, a kernel-supplied function, to
associate the correct information block with each segment handle.

The first segment that the BootApp function should allocate is the application's automatic data segment.
This data segment contains the application's stack. The automatic data segment must be allocated before
the BootApp function calls the Windows PatchCodeHandle function. For more information about the
PatchCodeHandle function, see the Microsoft Windows Programmer's Reference, Volume 2.

Reloading Segments

In addition to loading segments, the LoadAppSeg function reloads segments that the Windows kernel
has discarded. Because the LoadAppSeg function is responsible for reloading segments, it must update
bits 1 and 2 of the 16-bit flag value in the segment table. (Only self-loading applications should alter the
Windows header or the data tables that follow it.) Bit 1 specifies whether memory is allocated for the
segment, and bit 2 specifies whether the segment is currently loaded. For a complete description of the
segment table, see Executable-File Format.

If the loader allocates memory for a segment but the segment is not loaded (that is, bit 1 is set and bit 2
is not), the LoadAppSeg function should call the Windows GlobalHandle function to determine whether
memory is allocated for the segment. If memory is not allocated, the LoadAppSeg function should call
the Windows GlobalReAlloc function to reallocate memory for the segment.

Once memory is allocated, the LoadAppSeg function should read the segment from the executable file
and call the PatchCodeHandle function to correct each function prolog that occurs in the segment. Once
the function prologs are altered, the LoadAppSeg function should resolve any far pointers that occur in
the segment. If the pointer is specified by an ordinal value, the LoadAppSeg function should call the
kernel-supplied EntryAddrProc function to resolve the address.

Resetting Hardware

When closing a self-loading application, the kernel calls the ExitProc function, supplied by the
application developer, to reset any hardware that a dynamic-link library may have accessed. However,
the ExitProc function does not need to free memory or close files.

Function Reference

This section provides information about the functions supplied by the application developer and by the
kernel for self-loading Windows applications.

See Also
BootApp, EntryAddrProc, ExitProc, MyAlloc, PatchCodeHandle, LoadAppSeg, SetOwner

Graphics File Formats
This topic describes the graphics-file formats used by the Microsoft Windows operating system. Graphics
files include bitmap files, icon-resource files, and cursor-resource files.

Bitmap-File Formats

Windows bitmap files are stored in a device-independent bitmap (DIB) format that allows Windows to
display the bitmap on any type of display device. The term "device independent" means that the bitmap
specifies pixel color in a form independent of the method used by a display to represent color. The
default filename extension of a Windows DIB file is .BMP.

Bitmap-File Structures

Each bitmap file contains a bitmap-file header, a bitmap-information header, a color table, and an array
of bytes that defines the bitmap bits. The file has the following form:

BITMAPFILEHEADER bmfh;
BITMAPINFOHEADER bmih;
RGBQUADaColors[];
BYTE aBitmapBits[];
The bitmap-file header contains information about the type, size, and layout of a device-independent
bitmap file. The header is defined as a BITMAPFILEHEADER structure.

The bitmap-information header, defined as a BITMAPINFOHEADER structure, specifies the dimensions,
compression type, and color format for the bitmap.

The color table, defined as an array of RGBQUAD structures, contains as many elements as there are
colors in the bitmap. The color table is not present for bitmaps with 24 color bits because each pixel is
represented by 24-bit red-green-blue (RGB) values in the actual bitmap data area. The colors in the table
should appear in order of importance. This helps a display driver render a bitmap on a device that cannot
display as many colors as there are in the bitmap. If the DIB is in Windows version 3.0 or later format, the
driver can use the biClrImportant member of the BITMAPINFOHEADER structure to determine which
colors are important.

The BITMAPINFO structure can be used to represent a combined bitmap-information header and color
table.

The bitmap bits, immediately following the color table, consist of an array of BYTE values representing
consecutive rows, or "scan lines," of the bitmap. Each scan line consists of consecutive bytes representing
the pixels in the scan line, in left-to-right order. The number of bytes representing a scan line depends on
the color format and the width, in pixels, of the bitmap. If necessary, a scan line must be zero-padded to
end on a 32-bit boundary. However, segment boundaries can appear anywhere in the bitmap. The scan
lines in the bitmap are stored from bottom up. This means that the first byte in the array represents the
pixels in the lower-left corner of the bitmap and the last byte represents the pixels in the upper-right
corner.

The biBitCount member of the BITMAPINFOHEADER structure determines the number of bits that
define each pixel and the maximum number of colors in the bitmap. These members can have any of the
following values:

Value Meaning
1 Bitmap is monochrome and the color table contains two entries. Each bit in the bitmap array

represents a pixel. If the bit is clear, the pixel is displayed with the color of the first entry in
the color table. If the bit is set, the pixel has the color of the second entry in the table.

4 Bitmap has a maximum of 16 colors. Each pixel in the bitmap is represented by a 4-bit index
into the color table. For example, if the first byte in the bitmap is 0x1F, the byte represents two
pixels. The first pixel contains the color in the second table entry, and the second pixel
contains the color in the sixteenth table entry.

8 Bitmap has a maximum of 256 colors. Each pixel in the bitmap is represented by a 1-byte
index into the color table. For example, if the first byte in the bitmap is 0x1F, the first pixel
has the color of the thirty-second table entry.

24 Bitmap has a maximum of 2^24 colors. The bmiColors (or bmciColors) member is NULL,
and each 3-byte sequence in the bitmap array represents the relative intensities of red, green,
and blue, respectively, for a pixel.

The biClrUsed member of the BITMAPINFOHEADER structure specifies the number of color indexes in

the color table actually used by the bitmap. If the biClrUsed member is set to zero, the bitmap uses the
maximum number of colors corresponding to the value of the biBitCount member.

An alternative form of bitmap file uses the BITMAPCOREINFO, BITMAPCOREHEADER, and
RGBTRIPLE structures.

Bitmap Compression

Windows versions 3.0 and later support run-length encoded (RLE) formats for compressing bitmaps that
use 4 bits per pixel and 8 bits per pixel. Compression reduces the disk and memory storage required for
a bitmap.

Compression of 8-Bits-per-Pixel Bitmaps

When the biCompression member of the BITMAPINFOHEADER structure is set to BI_RLE8, the DIB
is compressed using a run-length encoded format for a 256-color bitmap. This format uses two modes:
encoded mode and absolute mode. Both modes can occur anywhere throughout a single bitmap.

Encoded Mode

A unit of information in encoded mode consists of two bytes. The first byte specifies the number of
consecutive pixels to be drawn using the color index contained in the second byte.

The first byte of the pair can be set to zero to indicate an escape that denotes the end of a line, the end of
the bitmap, or a delta. The interpretation of the escape depends on the value of the second byte of the
pair, which must be in the range 0x00 through 0x02. Following are the meanings of the escape values
that can be used in the second byte:

Second byte Meaning
0 End of line.
1 End of bitmap.
2 Delta. The two bytes following the escape contain unsigned values indicating the

horizontal and vertical offsets of the next pixel from the current position.

Absolute Mode

Absolute mode is signaled by the first byte in the pair being set to zero and the second byte to a value
between 0x03 and 0xFF. The second byte represents the number of bytes that follow, each of which
contains the color index of a single pixel. Each run must be aligned on a word boundary.

Following is an example of an 8-bit RLE bitmap (the two-digit hexadecimal values in the second
column represent a color index for a single pixel):

Compressed data Expanded data
03 04 04 04 04
05 06 06 06 06 06 06
00 03 45 56 67 00 45 56 67
02 78 78 78
00 02 05 01 Move 5 right and 1 down
02 78 78 78
00 00 End of line
09 1E 1E 1E 1E 1E 1E 1E 1E 1E 1E
00 01 End of RLE bitmap

Compression of 4-Bits-per-Pixel Bitmaps

When the biCompression member of the BITMAPINFOHEADER structure is set to BI_RLE4, the DIB
is compressed using a run-length encoded format for a 16-color bitmap. This format uses two modes:
encoded mode and absolute mode.

Encoded Mode

A unit of information in encoded mode consists of two bytes. The first byte of the pair contains the
number of pixels to be drawn using the color indexes in the second byte.

The second byte contains two color indexes, one in its high-order nibble (that is, its low-order 4 bits) and
one in its low-order nibble. The first pixel is drawn using the color specified by the high-order nibble,
the second is drawn using the color in the low-order nibble, the third is drawn with the color in the high-
order nibble, and so on, until all the pixels specified by the first byte have been drawn.

The first byte of the pair can be set to zero to indicate an escape that denotes the end of a line, the end of
the bitmap, or a delta. The interpretation of the escape depends on the value of the second byte of the
pair. In encoded mode, the second byte has a value in the range 0x00 through 0x02. The meaning of
these values is the same as for a DIB with 8 bits per pixel.

Absolute Mode

In absolute mode, the first byte contains zero, the second byte contains the number of color indexes that
follow, and subsequent bytes contain color indexes in their high- and low-order nibbles, one color index
for each pixel. Each run must be aligned on a word boundary.

Following is an example of a 4-bit RLE bitmap (the one-digit hexadecimal values in the second column
represent a color index for a single pixel):

Compressed data Expanded data
03 04 0 4 0
05 06 0 6 0 6 0
00 06 45 56 67 00 4 5 5 6 6 7
04 78 7 8 7 8
00 02 05 01 Move 5 right and 1 down
04 78 7 8 7 8
00 00 End of line
09 1E 1 E 1 E 1 E 1 E 1
00 01 End of RLE bitmap

Bitmap Example

The following example is a text dump of a 16-color bitmap (4 bits per pixel):

Win3DIBFile
BitmapFileHeader
Type 19778
Size 3118
Reserved1 0
Reserved2 0
OffsetBits 118
BitmapInfoHeader
Size 40
Width 80
Height75
Planes1
BitCount 4
Compression0
SizeImage 3000
XPelsPerMeter 0
YPelsPerMeter 0
ColorsUsed 16
ColorsImportant 16
Win3ColorTable
Blue Green Red Unused

[00000000] 84 252 84 0
[00000001] 252 252 84 0
[00000002] 84 84252 0
[00000003] 252 84252 0
[00000004] 84 252 252 0
[00000005] 252 252 252 0
[00000006] 00 0 0
[00000007] 168 0 0 0
[00000008] 0168 0 0
[00000009] 168 168 0 0
[0000000A] 00 168 0
[0000000B] 168 0 168 0
[0000000C] 0168 168 0
[0000000D] 168 168 168 0
[0000000E] 84 8484 0

[0000000F] 252 8484 0
Image
.
. Bitmap data
.

Icon-Resource File Format

An icon-resource file contains image data for icons used by Windows applications. The file consists of
an icon directory identifying the number and types of icon images in the file, plus one or more icon
images. The default filename extension for an icon-resource file is .ICO.

Icon Directory

Each icon-resource file starts with an icon directory. The icon directory, defined as an ICONDIR
structure, specifies the number of icons in the resource and the dimensions and color format of each icon
image. The ICONDIR structure has the following form:

typedef struct ICONDIR {
WORDidReserved;
WORDidType;
WORDidCount;
ICONDIRENTRY idEntries[1];

} ICONHEADER;
Following are the members in the ICONDIR structure:
idReserved Reserved; must be zero.
idType Specifies the resource type. This member is set to 1.
idCount Specifies the number of entries in the directory.
idEntries Specifies an array of ICONDIRENTRY structures containing information about

individual icons. The idCount member specifies the number of structures in the array.

The ICONDIRENTRY structure specifies the dimensions and color format for an icon. The structure has
the following form:

struct IconDirectoryEntry {
BYTE bWidth;
BYTE bHeight;
BYTE bColorCount;
BYTE bReserved;
WORD wPlanes;
WORD wBitCount;
DWORD dwBytesInRes;
DWORD dwImageOffset;

};
Following are the members in the ICONDIRENTRY structure:
bWidth Specifies the width of the icon, in pixels. Acceptable values are 16, 32, and 64.
bHeight Specifies the height of the icon, in pixels. Acceptable values are 16, 32, and 64.
bColorCount Specifies the number of colors in the icon. Acceptable values are 2, 8, and 16.
bReserved Reserved; must be zero.
wPlanes Specifies the number of color planes in the icon bitmap.
wBitCount Specifies the number of bits in the icon bitmap.
dwBytesInRes Specifies the size of the resource, in bytes.
dwImageOffset Specifies the offset, in bytes, from the beginning of the file to the icon image.

Icon Image

Each icon-resource file contains one icon image for each image identified in the icon directory. An icon
image consists of an icon-image header, a color table, an XOR mask, and an AND mask. The icon
image has the following form:

BITMAPINFOHEADER icHeader;
RGBQUAD icColors[];
BYTE icXOR[];

BYTE icAND[];
The icon-image header, defined as a BITMAPINFOHEADER structure, specifies the dimensions and
color format of the icon bitmap. Only the biSize through biBitCount members and the biSizeImage
member are used. All other members (such as biCompression and biClrImportant) must be set to zero.

The color table, defined as an array of RGBQUAD structures, specifies the colors used in the XOR mask.
As with the color table in a bitmap file, the biBitCount member in the icon-image header determines the
number of elements in the array. For more information about the color table, see Section 1.1, "Bitmap-File
Formats."

The XOR mask, immediately following the color table, is an array of BYTE values representing
consecutive rows of a bitmap. The bitmap defines the basic shape and color of the icon image. As with the
bitmap bits in a bitmap file, the bitmap data in an icon-resource file is organized in scan lines, with each
byte representing one or more pixels, as defined by the color format. For more information about these
bitmap bits, see Section 1.1, "Bitmap-File Formats."

The AND mask, immediately following the XOR mask, is an array of BYTE values, representing a
monochrome bitmap with the same width and height as the XOR mask. The array is organized in scan
lines, with each byte representing 8 pixels.

When Windows draws an icon, it uses the AND and XOR masks to combine the icon image with the
pixels already on the display surface. Windows first applies the AND mask by using a bitwise AND
operation; this preserves or removes existing pixel color. Windows then applies the XOR mask by using a
bitwise XOR operation. This sets the final color for each pixel.

The following illustration shows the XOR and AND masks that create a monochrome icon (measuring 8
pixels by 8 pixels) in the form of an uppercase K:

Windows Icon Selection

Windows detects the resolution of the current display and matches it against the width and height
specified for each version of the icon image. If Windows determines that there is an exact match
between an icon image and the current device, it uses the matching image. Otherwise, it selects the
closest match and stretches the image to the proper size.

If an icon-resource file contains more than one image for a particular resolution, Windows uses the icon
image that most closely matches the color capabilities of the current display. If no image matches the
device capabilities exactly, Windows selects the image that has the greatest number of colors without
exceeding the number of display colors. If all images exceed the color capabilities of the current display,
Windows uses the icon image with the least number of colors.

Cursor-Resource File Format

A cursor-resource file contains image data for cursors used by Windows applications. The file consists
of a cursor directory identifying the number and types of cursor images in the file, plus one or more
cursor images. The default filename extension for a cursor-resource file is .CUR.

Cursor Directory

Each cursor-resource file starts with a cursor directory. The cursor directory, defined as a CURSORDIR
structure, specifies the number of cursors in the file and the dimensions and color format of each cursor
image. The CURSORDIR structure has the following form:

typedef struct _CURSORDIR {
WORD cdReserved;
WORD cdType;
WORD cdCount;
CURSORDIRENTRY cdEntries[];

} CURSORDIR;
Following are the members in the CURSORDIR structure:
cdReserved Reserved; must be zero.
cdType Specifies the resource type. This member must be set to 2.
cdCount Specifies the number of cursors in the file.
cdEntries Specifies an array of CURSORDIRENTRY structures containing information about

individual cursors. The cdCount member specifies the number of structures in the
array.

A CURSORDIRENTRY structure specifies the dimensions and color format of a cursor image. The
structure has the following form:

typedef struct _CURSORDIRENTRY {
BYTE bWidth;
BYTE bHeight;
BYTE bColorCount;
BYTE bReserved;
WORD wXHotspot;
WORD wYHotspot;
DWORD lBytesInRes;
DWORD dwImageOffset;

} CURSORDIRENTRY;
Following are the members in the CURSORDIRENTRY structure:
bWidth Specifies the width of the cursor, in pixels.
bHeight Specifies the height of the cursor, in pixels.
bColorCount Reserved; must be zero.
bReserved Reserved; must be zero.
wXHotspot Specifies the x-coordinate, in pixels, of the hot spot.
wYHotspot Specifies the y-coordinate, in pixels, of the hot spot.
lBytesInRes Specifies the size of the resource, in bytes.
dwImageOffset Specifies the offset, in bytes, from the start of the file to the cursor image.

Cursor Image

Each cursor-resource file contains one cursor image for each image identified in the cursor directory. A
cursor image consists of a cursor-image header, a color table, an XOR mask, and an AND mask. The
cursor image has the following form:

BITMAPINFOHEADER crHeader;
RGBQUAD crColors[];
BYTE crXOR[];
BYTE crAND[];
The cursor hot spot is a single pixel in the cursor bitmap that Windows uses to track the cursor. The
crXHotspot and crYHotspot members specify the x- and y-coordinates of the cursor hot spot. These
coordinates are 16-bit integers.

The cursor-image header, defined as a BITMAPINFOHEADER structure, specifies the dimensions and
color format of the cursor bitmap. Only the biSize through biBitCount members and the biSizeImage
member are used. The biHeight member specifies the combined height of the XOR and AND masks for
the cursor. This value is twice the height of the XOR mask. The biPlanes and biBitCount members must
be 1. All other members (such as biCompression and biClrImportant) must be set to zero.

The color table, defined as an array of RGBQUAD structures, specifies the colors used in the XOR mask.
For a cursor image, the table contains exactly two structures, since the biBitCount member in the cursor-
image header is always 1.

The XOR mask, immediately following the color table, is an array of BYTE values representing
consecutive rows of a bitmap. The bitmap defines the basic shape and color of the cursor image. As with
the bitmap bits in a bitmap file, the bitmap data in a cursor-resource file is organized in scan lines, with
each byte representing one or more pixels, as defined by the color format. For more information about
these bitmap bits, see Section 1.1, "Bitmap-File Formats."

The AND mask, immediately following the XOR mask, is an array of BYTE values representing a
monochrome bitmap with the same width and height as the XOR mask. The array is organized in scan
lines, with each byte representing 8 pixels.

When Windows draws a cursor, it uses the AND and XOR masks to combine the cursor image with the
pixels already on the display surface. Windows first applies the AND mask by using a bitwise AND
operation; this preserves or removes existing pixel color. Window then applies the XOR mask by using a
bitwise XOR operation. This sets the final color for each pixel.

The following illustration shows the XOR and the AND masks that create a cursor (measuring 8 pixels by
8 pixels) in the form of an arrow:

Following are the bit-mask values necessary to produce black, white, inverted, and transparent results:

Pixel result AND mask XOR mask
Black 0 0
White 0 1
Transparent 1 0
Inverted 1 1

Windows Cursor Selection

If a cursor-resource file contains more than one cursor image, Windows determines the best match for a
particular display by examining the width and height of the cursor images.

Clipboard File Format
Microsoft Windows Clipboard (CLIPBRD.EXE) saves and reads its data in files with the .CLP extension.
A .CLP file contains a value identifying it as a Clipboard data file; one or more structures defining the
format, size, and location of the data; and one or more blocks of actual data.

Clipboard-File Header

The Clipboard data file begins with a header consisting of two members. Following are the members in
this header:
FileIdentifier Identifies the file as a Clipboard data file. This member must be set to CLP_ID. This

is a 2-byte value.
FormatCount Specifies the number of clipboard formats contained in the file. This is a 2-byte

value.

Clipboard-File Structure

The header is followed by one or more structures, each of which identifies the format, size, and offset of
a block containing clipboard data. Following are the members in this structure:
FormatID Specifies the clipboard-format identifier of the clipboard data. For a description of the

various formats that are available, see the description of SetClipboardData. This is 2-
byte value.

LenData Specifies the length, in bytes, of the clipboard data. This is a 4-byte value.
OffData Specifies the offset, in bytes, of the clipboard-data block. The offset is from the

beginning of the file. This is a 4-byte value.
Name Identifies a 79-character array specifying the format name of a private clipboard format.

The first block of clipboard data follows the last of these structures. For bitmaps and metafiles, the bits
follow immediately after the bitmap header and the METAFILEPICT structures.

See Also
SetClipboardData, METAFILEPICT

Metafile Format
A metafile for the Microsoft Windows operating system consists of a collection of graphics device
interface (GDI) functions that describe an image. Because metafiles take up less space and are more
device-independent than bitmaps, they provide convenient storage for images that appear repeatedly in an
application or need to be moved from one application to another.

To generate a metafile, a Windows application creates a special device context that sends GDI commands
to a file or memory for storage. The application can later play back the metafile and display the image.

During playback, Windows breaks the metafile down into records and identifies each object with an index
to a handle table. When a META_DELETEOBJECT record is encountered during playback, the associated
object is deleted from the handle table. The entry is then reused by the next object that the metafile creates.
To ensure compatibility, an application that explicitly manipulates records or builds its own metafile
should manage the handle table in the same way. For more information on the format of the handle table,
see the HANDLETABLE structure.

In some cases, there are two variants of a metafile record, one representing the record created by Windows
versions before 3.0 and the second representing the record created by Windows versions 3.0 and later.
Windows versions 3.0 and later play all metafile versions but store only 3.0 and later versions. Windows
versions earlier than 3.0 do not play metafiles recorded by Windows versions 3.0 and later.

A metafile consists of two parts: a header and a list of records. The header and records are described in the
remainder of this topic. For a list of function-specific records, see Metafile Records.

Metafile Header

The metafile header contains a description of the size of the metafile and the number of drawing objects
it uses. The drawing objects can be pens, brushes, bitmaps, or fonts.

The metafile header has the following form:

typedef struct tagMETAHEADER {
WORD mtType;
WORD mtHeaderSize;
WORD mtVersion;
DWORD mtSize;
WORD mtNoObjects;
DWORD mtMaxRecord;
WORD mtNoParameters;

} METAHEADER;
Following are the members in the metafile header:
mtType Specifies whether the metafile is stored in memory or recorded in a file. This

member has one of the following values:
Value Meaning
0 Metafile is in memory.
1 Metafile is in a file.

mtHeaderSize Specifies the size, in words, of the metafile header.
mtVersion Specifies the Windows version number. The version number for Windows

version 3.0 and later is 0x300.
mtSize Specifies the size, in words, of the file.
mtNoObjects Specifies the maximum number of objects that can exist in the metafile at the

same time.
mtMaxRecord Specifies the size, in words, of the largest record in the metafile.
mtNoParameters Not used.

Typical Metafile Record

The graphics device interface stores most of the GDI functions that an application can use to create
metafiles in typical records.

A typical metafile record has the following form:

struct {
DWORD rdSize;
WORD rdFunction;

WORD rdParm[];
}
Following are the members in a typical metafile record:
rdSize Specifies the size, in words, of the record.
rdFunction Specifies the function number. This value may be the number of any function in the

table at the end of this section.
rdParm Identifies an array of words containing the function parameters (listed in the reverse

order in which they are passed to the function).

Following are the GDI functions found in typical records, along with their hexadecimal values:

GDI function Value
Arc 0x0817
Chord 0x0830
Ellipse 0x0418
ExcludeClipRect 0x0415
FloodFill 0x0419
IntersectClipRect 0x0416
LineTo 0x0213
MoveTo 0x0214
OffsetClipRgn 0x0220
OffsetViewportOrg 0x0211
OffsetWindowOrg 0x020F
PatBlt 0x061D
Pie 0x081A
RealizePalette (3.0 and later) 0x0035
Rectangle 0x041B
ResizePalette (3.0 and later) 0x0139
RestoreDC 0x0127
RoundRect 0x061C
SaveDC 0x001E
ScaleViewportExt 0x0412
ScaleWindowExt 0x0400
SetBkColor 0x0201
SetBkMode 0x0102
SetMapMode 0x0103
SetMapperFlags 0x0231
SetPixel 0x041F
SetPolyFillMode 0x0106
SetROP2 0x0104
SetStretchBltMode 0x0107
SetTextAlign 0x012E
SetTextCharacterExtra 0x0108
SetTextColor 0x0209
SetTextJustification 0x020A
SetViewportExt 0x020E
SetViewportOrg 0x020D
SetWindowExt 0x020C
SetWindowOrg 0x020B

Placeable Windows Metafiles

A placeable Windows metafile is a standard Windows metafile that has an additional 22-byte header.
The header contains information about the aspect ratio and original size of the metafile, permitting
applications to display the metafile in its intended form.

The header for a placeable Windows metafile has the following form:

typedef struct {
DWORD key;
HANDLE hmf;
RECT bbox;
WORD inch;
DWORD reserved;
WORD checksum;

} METAFILEHEADER;
Following are the members of a placeable metafile header:
key Specifies the binary key that uniquely identifies this file type. This member must be set

to 0x9AC6CDD7L.
hmf Unused; must be zero.
bbox Specifies the coordinates of the smallest rectangle that encloses the picture. The

coordinates are in metafile units as defined by the inch member.
inch Specifies the number of metafile units to the inch. To avoid numeric overflow, this value

should be less than 1440. Most applications use 576 or 1000.
reserved Unused; must be zero.
checksum Specifies the checksum. It is the sum (using the XOR operator) of the first 10 words of

the header.

The actual content of the Windows metafile immediately follows the header. The format for this content is
identical to that for standard Windows metafiles. For some applications, a placeable Windows metafile
must not exceed 64K.

Note: Placeable Windows metafiles are not compatible with the GetMetaFile function. Applications that
intend to use the metafile functions to read and play placeable Windows metafiles must read the file
by using an input function (such as _lread), strip the 22-byte header, and create a standard
Windows metafile by using the remaining bytes and the SetMetaFileBits function.

Guidelines for Windows Metafiles

To ensure that metafiles can be transported between different computers and applications, any
application that creates a metafile should make sure the metafile is device-independent and sizable.

The following guidelines ensure that every metafile can be accepted and manipulated by other
applications:

Set a mapping mode as one of the first records. Many applications, including OLE applications,
only accept metafiles that are in MM_ANISOTROPIC mode.

Call the SetWindowOrg and SetWindowExt functions. Do not call the SetViewportExt or
SetViewportOrg functions if the user will be able to resize or change the dimensions of the object.

Use the MFCOMMENT printer escape to add comments to the metafile.
Rely primarily on the functions listed in Typical Metafile Record. Observe the following

limitations on the functions you use:
Do not use functions that retrieve data (for example, GetActiveWindow or EnumFontFamilies).
Do not use any of the region functions (because they are device dependent).
Use StretchBlt or StretchDIB instead of BitBlt.

Sample of Metafile Program Output

This section describes a sample program and the metafile that it creates. The sample program creates a
small metafile that draws a purple rectangle with a green border and writes the words "Hello People" in
the rectangle.

MakeAMetaFile(hDC)
HDC hDC;
{

HPENhMetaGreenPen;
HBRUSH hMetaVioletBrush;
HDC hDCMeta;
HANDLE hMeta;
/* Create the metafile with output going to the disk. */
hDCMeta = CreateMetaFile((LPSTR) "sample.met");

hMetaGreenPen = CreatePen(0, 0, (DWORD) 0x0000FF00);
SelectObject(hDCMeta, hMetaGreenPen);
hMetaVioletBrush = CreateSolidBrush((DWORD) 0x00FF00FF);
SelectObject(hDCMeta, hMetaVioletBrush);
Rectangle(hDCMeta, 0, 0, 150, 70);
TextOut(hDCMeta, 10, 10, (LPSTR) "Hello People", 12);
/* We are done with the metafile. */
hMeta = CloseMetaFile(hDCMeta);
/* Play the metafile that we just created. */
PlayMetaFile(hDC, hMeta);

}
The resulting metafile, SAMPLE.MET, consists of a metafile header and six records. It has the following
binary form:

0001 mtType... disk metafile
0009 mtSize...
0300 mtVersion
0000 0036 mtSize
0002 mtNoObjects
0000 000C mtMaxRecord
0000 mtNoParameters
0000 0008 rdSize
02FA rdFunction (CreatePenIndirect function)
0000 0000 0000 0000 FF00 rdParm (LOGPEN structure defining pen)
0000 0004 rdSize
012D rdFunction (SelectObject)
0000 rdParm (index to object #0... the above pen)
0000 0007 rdSize
02FC rdFunction (CreateBrushIndirect)
0000 00FF 00FF 0000 rdParm (LOGBRUSH structure defining the brush)
0000 0004 rdSize
012D rdFunction (SelectObject)
0001 rdParm (index to object #1... the brush)
0000 0007 rdSize
041B rdFunction (Rectangle)
0046 0096 0000 0000 rdParm (parameters sent to Rectangle...
in reverse order)
0000 000C rdSize
0521 rdFunction (TextOut)
rdParm
000C count
string
48 65 6C 6C 6F 20 50 65 6F 70 6C 65 "Hello People"
000A y-value
000A x-value

Metafile Records

Function-Specific Metafile Records

The graphics-device interface stores most of the GDI functions for creating metafiles in typical records.
The remainder are stored in function-specific records that contain structures in the rdParm member. This
section contains definitions for these records.

AnimatePalette
BitBlt
CreateBrushIndirect
CreateFontIndirect
CreatePalette
CreatePatternBrush
CreatePenIndirect
CreateRegion
DeleteObject
Escape
ExtTextOut
Polygon
PolyPolygon
Polyline
SelectClipRgn
SelectObject
SelectPalette
SetDIBitsToDevice
SetPaletteEntries
StretchBlt
StretchDIBits
TextOut

AnimatePalette Metafile Record
AnimatePalette Metafile Record

struct {
DWORD rdSize;
WORD rdFunction;
WORD rdParm[];

}
Member Description
rdSize Specifies the record size, in words.
rdFunction Specifies the GDI function number 0x0436.
rdParm Contains the following elements:

Element Description
start First entry to be animated
numentries Number of entries to be animated
entries PALETTEENTRY blocks.

BitBlt Metafile Record
BitBlt Metafile Record (3.0)

struct {
DWORD rdSize;
WORD rdFunction;
WORD rdParm[];

}
The BitBlt record contains a device-independent bitmap suitable for playback on any device.

Member Description
rdSize Specifies the record size, in words.
rdFunction Specifies the GDI function number 0x0940.
rdParm Contains the following elements:

Element Description
raster op High-order word of the raster operation
SY Y-coordinate of the source origin
SX X-coordinate of the source origin
DYE Destination y-extent
DXE Destination x-extent
DY Y-coordinate of the destination origin
DX X-coordinate of the destination origin
BitmapInfo BITMAPINFO structure
bits Actual device-independent bitmap bits

BitBlt Metafile Record (2.x)

struct {
DWORD rdSize;
WORD rdFunction;
WORD rdParm[];

}
The BitBlt record stored by Windows versions earlier than 3.0 contains a device-dependent bitmap that
may not be suitable for playback on all devices.

Member Description
rdSize Specifies the record size, in words.
rdFunction Specifies the GDI function number 0x0922.
rdParm Contains the following elements:

Element Description
raster op High-order word of the raster operation
SY Y-coordinate of the source origin
SX X-coordinate of the source origin
DYE Destination y-extent
DXE Destination x-extent
DY Y-coordinate of the destination origin
DX X-coordinate of the destination origin
bmWidth Width of bitmap, in pixels
bmHeight Height of bitmap, in raster lines
bmWidthBytes Number of bytes in each raster line
bmPlanes Number of color planes in the bitmap
bmBitsPixel Number of adjacent color bits
bits Actual device-dependent bitmap bits

CreateBrushIndirect Metafile Record
CreateBrushIndirect Metafile Record

struct {
DWORD rdSize;
WORDrdFunction;
LOGBRUSH rdParm;

}
Member Description
rdSize Specifies the record size, in words.
rdFunction Specifies the GDI function number 0x02FC.
rdParm Specifies the logical brush.

CreateFontIndirect Metafile Record
CreateFontIndirect Metafile Record

struct {
DWORD rdSize;
WORD rdFunction;
LOGFONT rdParm;

}
Member Description
rdSize Specifies the record size, in words.
rdFunction Specifies the GDI function number 0x02FB.
rdParm Specifies the logical font.

CreatePalette Metafile Record
CreatePalette Metafile Record

struct {
DWORD rdSize;
WORD rdFunction;
LOGPALETTE rdParm;

}
Member Description
rdSize Specifies the record size, in words.
rdFunction Specifies the GDI function number 0x00F7.
rdParm Specifies the logical palette.

CreatePatternBrush Metafile Record
CreatePatternBrush Metafile Record (3.0)

struct {
DWORD rdSize;
WORD rdFunction;
WORD rdParm[];
}
The CreatePatternBrush record contains a device-independent bitmap suitable for playback on all devices.

Member Description
rdSize Specifies the record size, in words.
rdFunction Specifies the GDI function number 0x0142.
rdParm Contains the following elements:

Element Description
type Bitmap type. This element may be either of these two values:

BS_PATTERN--Brush is defined by a device-dependent bitmap through
a call to the CreatePatternBrush function.
BS_DIBPATTERN--Brush is defined by a device-independent bitmap
through a call to the CreateDIBPatternBrush function.

wUsage Color-table type. This element specifies whether the bmiColors member
of the BITMAPINFO structure contains explicit RGB values or indexes
to the currently realized logical palette. This element must be one of the
following values:
DIB_RGB_COLORS--The color table contains literal RGB values.
DIB_PAL_COLORS--The color table consists of an array of indexes to
the currently realized logical palette.

bmi BITMAPINFO structure
bits Actual device-independent bitmap bits.

CreatePatternBrush Metafile Record (2.x)

struct {
DWORD rdSize;
WORD rdFunction;
WORD rdParm[];

}
The CreatePatternBrush record contains a device-dependent bitmap that may not be suitable for playback
on all devices.

Member Description
rdSize Specifies the record size, in words.
rdFunction Specifies the GDI function number 0x01F9.
rdParm Contains the following elements:

Element Description
bmWidth Bitmap width
bmHeight Bitmap height
bmWidthBytes Bytes per raster line
bmPlanes Number of color planes
bmBitsPixel Number of adjacent color bits that define a pixel
bmBits Pointer to bit values
bits Actual bits of pattern

CreatePenIndirect Metafile Record
CreatePenIndirect Metafile Record

struct {
DWORD rdSize;
WORD rdFunction;
LOGPEN rdParm;

}
Member Description
rdSize Specifies the record size, in words.
rdFunction Specifies the GDI function number 0x02FA.
rdParm Specifies the logical pen.

CreateRegion Metafile Record
CreateRegion Metafile Record

struct {
DWORD rdSize;
WORD rdFunction;
WORD rdParm[];

}
Member Description
rdSize Specifies the record size, in words.
rdFunction Specifies the GDI function number 0x06FF.
rdParm Specifies the region to be created.

DeleteObject Metafile Record
DeleteObject Metafile Record

struct {
DWORD rdSize;
WORD rdFunction;
WORD rdParm;

}
Member Description
rdSize Specifies the record size, in words.
rdFunction Specifies the GDI function number 0x01F0.
rdParm Specifies the index to the handle table for the object to be deleted.

Escape Metafile Record
Escape Metafile Record

struct {
DWORD rdSize;
WORD rdFunction;
WORD rdParm[];

}
Member Description
rdSize Specifies the record size, in words.
rdFunction Specifies the GDI function number 0x0626.
rdParm Contains the following elements:

Element Description
escape number Number identifying individual escape.
count Number of bytes of information.
input data Variable-length field. The member is ((count+1) >> 1) words

long.

ExtTextOut Metafile Record
ExtTextOut Metafile Record

struct{
DWORD rdSize;
WORD rdFunction;
WORD rdParm[];

}
Member Description
rdSize Specifies the record size, in words.
rdFunction Specifies the GDI function number 0x0A32.
rdParm Contains the following elements:

Element Description
y Logical y-value of the starting point for the string.
x Logical x-value of the starting point for the string.
count Length of the string.
options Rectangle type. An application should use the AND (&) operator to

determine if this element has either the ETO_CLIPPED or
ETO_OPAQUE bits set. Using the equality operator (==) is
discouraged in this case, because some applications set additional bits
in the wOptions parameter of the rectangular region in which the
ExtTextOut function writes text.

rectangle RECT structure defining the rectangular region in which the
ExtTextOut function writes text. This element does not exist if the
options element is zero.

string Byte array containing the string. The array is ((count + 1) >> 1) words
long.

dxarray Optional word array of intercharacter distances.

Polygon Metafile Record
Polygon Metafile Record

struct {
DWORD rdSize;
WORD rdFunction;
WORD rdParm[];

}
Member Description
rdSize Specifies the record size, in words.
rdFunction Specifies the GDI function number 0x0324.
rdParm Contains the following elements:

Element Description
count Number of points
list of points List of individual points

PolyPolygon Metafile Record
PolyPolygon Metafile Record

struct {
DWORD rdSize;
WORD rdFunction;
WORD rdParm[];

}
Member Description
rdSize Specifies the record size, in words.
rdFunction Specifies the GDI function number 0x0538.
rdParm Contains the following elements:

Element Description
count Total number of polygons
list of polygon counts List of number of points for each polygon
list of points List of individual points

Polyline Metafile Record
Polyline Metafile Record

struct {
DWORD rdSize;
WORD rdFunction;
WORD rdParm[];

}
Member Description
rdSize Specifies the record size, in words.
rdFunction Specifies the GDI function number 0x0325.
rdParm Contains the following elements:

Element Description
count Number of points
list of points List of individual points

SelectClipRgn Metafile Record
SelectClipRgn Metafile Record

struct{
DWORD rdSize;
WORD rdFunction;
WORD rdParm;

}
Member Description
rdSize Specifies the record size, in words.
rdFunction Specifies the GDI function number 0x012C.
rdParm Specifies the index to the handle table for the region being selected.

SelectObject Metafile Record
SelectObject Metafile Record

struct{
DWORD rdSize;
WORD rdFunction;
WORD rdParm;

}
Member Description
rdSize Specifies the record size, in words.
rdFunction Specifies the GDI function number 0x012D.
rdParm Specifies the index to the handle table for the object being selected.

SelectPalette Metafile Record
SelectPalette Metafile Record

struct {
DWORD rdSize;
WORD rdFunction;
WORD rdParm;

}
Member Description
rdSize Specifies the record size, in words.
rdFunction Specifies the GDI function number 0x0234.
rdParm Specifies the index to the handle table for the logical palette being selected.

SetDIBitsToDevice Metafile Record
SetDIBitsToDevice Metafile Record

struct {
DWORD rdSize;
WORD rdFunction;
WORD rdParm[];

}
Member Description
rdSize Specifies the record size, in words.
rdFunction Specifies the GDI function number 0x0D33.
rdParm Contains the following elements:

Element Description
wUsage Flag indicating whether the bitmap color table contains RGB values

or indexes to the currently realized logical palette
numscans Number of scan lines in the bitmap
startscan First scan line in the bitmap
srcY Y-coordinate for the origin of the source rectangle in the bitmap
srcX X-coordinate for the origin of the source rectangle in the bitmap
extY Height of the source rectangle in the bitmap
extX Width of the source rectangle in the bitmap
destY Y-coordinate of the origin of the destination rectangle
destX X-coordinate of the origin of the destination rectangle
BitmapInfo BITMAPINFO structure
bits Actual device-independent bitmap bits

SetPaletteEntries Metafile Record
SetPaletteEntries Metafile Record

struct {
DWORD rdSize;
WORD rdFunction;
WORD rdParm[];

}
Member Description
rdSize Specifies the record size, in words.
rdFunction Specifies the GDI function number 0x0037.
rdParm Contains the following elements:

Element Description
start First entry to be set in the palette
numentries Number of entries to be set in the palette
entries PALETTEENTRY blocks

StretchBlt Metafile Record
StretchBlt Metafile Record (3.0)

struct {
DWORD rdSize;
WORD rdFunction;
WORD rdParm[];

}
The StretchBlt record contains a device-independent bitmap suitable for playback on all devices.

Member Description
rdSize Specifies the record size, in words.
rdFunction Specifies the GDI function number 0x0B41.
rdParm Contains the following elements:

Element Description
raster op Low-order word of the raster operation
raster op High-order word of the raster operation
SYE Source y-extent
SXE Source x-extent
SY Y-coordinate of the source origin
SX X-coordinate of the source origin
DYE Destination y-extent
DXE Destination x-extent
DY Y-coordinate of the destination origin
DX X-coordinate of the destination origin
BitmapInfo BITMAPINFO structure
bits Actual device-independent bitmap bits

StretchBlt Metafile Record (2.x)

struct {
DWORD rdSize;
WORD rdFunction;
WORD rdParm[];

}
The StretchBlt record contains a device-dependent bitmap that may not be suitable for playback on all
devices.

Member Description
rdSize Specifies the record size, in words.
rdFunction Specifies the GDI function number 0x0B23.
rdParm Contains the following elements:

Element Description
raster op Low-order word of the raster operation
raster op High-order word of the raster operation
SYE Source y-extent
SXE Source x-extent
SY Y-coordinate of the source origin
SX X-coordinate of the source origin
DYE Destination y-extent
DXE Destination x-extent
DY Y-coordinate of the destination origin
DX X-coordinate of the destination origin
bmWidth Width of the bitmap, in pixels
bmHeight Height of the bitmap, in raster lines
bmWidthBytes Number of bytes in each raster line

bmPlanes Number of color planes in the bitmap
bmBitsPixel Number of adjacent color bits
bits Actual bitmap bits

StretchDIBits Metafile Record
StretchDIBits Metafile Record

struct {
DWORD rdSize;
WORD rdFunction;
WORD rdParm[];

}
Member Description
rdSize Specifies the record size, in words.
rdFunction Specifies the GDI function number 0x0F43.
rdParm Contains the following elements:

Element Description
dwRop Raster operation to be performed
Usag Flag indicating whether the bitmap color table contains RGB values

or indexes to the currently realized logical palette
srcYExt Height of the source in the bitmap
srcXExt Width of the source in the bitmap
srcY Y-coordinate of the origin of the source in the bitmap
srcX X-coordinate of the origin of the source in the bitmap
dstYExt Height of the destination rectangle
dstXExt Width of the destination rectangle
dstY Y-coordinate of the origin of the destination rectangle
dstX X-coordinate of the origin of the destination rectangle
BitmapInfo BITMAPINFO structure
bits Actual device-independent bitmap bits

TextOut Metafile Record
TextOut Metafile Record

struct {
DWORD rdSize;
WORD rdFunction;
WORD rdParm[];

}
Member Description
rdSize Specifies the record size, in words.
rdFunction Specifies the GDI function number 0x0521.
rdParm Contains the following elements:

Element Description
count Length of the string
string Actual string
y-value Logical y-coordinate of the starting point for the string
x-value Logical x-coordinate of the starting point for the string

Font-File Format
This topic describes the file formats for raster and vector fonts used by the Microsoft Windows operating
system. These file formats may be used by smart text generators in some support modules for the graphics
device interface (GDI). Vector formats, however, are more frequently used by GDI than by the support
modules. TrueType font files are described in TrueType Font Files, available from Microsoft Corporation.

Organization of a Font File

Raster and vector font files begin with information that is common to both types of file and then
continue with information that differs for each type. These font files are stored with an .FNT extension.

In Windows versions 3.0 and later, the font-file header for raster and vector fonts includes six new
members: dFlags, dfAspace, dfBspace, dfCspace, dfColorPointer, and dfReserved1. All device drivers
support the fonts in Windows 2.x. However, not all drivers support those in versions 3.0 and later.

In Windows, font files for raster and vector fonts include the glyph table in the dfCharTable member,
which consists of structures describing the bits for characters in the font file.The use of 32-bit offsets to
the character glyphs in the dfCharTable member enables fonts to exceed 64K, the size limit of Windows
2.x fonts.

Because of their 32-bit offsets and potentially large size, the newer fonts are designed for use on systems
that are running Windows versions 3.0 and later in protected (standard or 386-enhanced) mode and are
using an 80386 (or higher) processor whose 32-bit registers can access the character glyphs. Typically,
newer drivers use the newer version of a font only when both of these conditions are true.

Font-File Structure

Font information is found at the beginning of both raster and vector font files.

Following are the members of the FONTINFO structure:
dfVersion Specifies the version (0x0200 or 0x0300) of the file.
dfSize Specifies the total size of the file, in bytes.
dfCopyright Specifies copyright information.
dfType Specifies the type of font file. This information is organized as follows:

Byte Description
Low-order Exclusively for GDI use. If the low-order bit of the word is

zero, it is a bitmap (raster) font file. If the low-order bit is 1, it
is a vector font file. The second bit is reserved and must be
zero. If no bits follow in the file and the bits are located in
memory at a fixed address specified by the dfBitsOffset
member, the third bit is set to 1. Otherwise, the bit is set to
zero. If the font is realized by a device, the high-order bit of
the low-order byte is set. The remaining bits in the low-order
byte are then reserved and set to zero.

High-order Reserved for device use and is always set to zero for standard
fonts realized by GDI. Physical fonts that set the high-order
bit of the low-order byte may use this byte to describe
themselves. GDI never inspects the high-order byte.

dfPoints Specifies the nominal point size (that is, the number identifying the point size)
at which this character set looks best.

dfVertRes Specifies the nominal vertical resolution (that is, the number identifying the
vertical resolution), in dots per inch, at which this character set was digitized.

dfHorizRes Specifies the nominal horizontal resolution (that is, the number identifying the
horizontal resolution), in dots per inch, at which this character set was
digitized.

dfAscent Specifies the distance from the top of a character-definition cell to the base
line of the typographical font. The dfAscent member is useful for aligning the
base lines of fonts with different heights.

dfInternalLeading Specifies the amount of leading inside the bounds set by the dfPixHeight
member. Accent marks can occur in this area. The designer can set the value
to zero.

dfExternalLeading Specifies the amount of extra leading that the designer requests the
application to add between rows. Since this area is outside the font proper, it

contains no marks and is not altered by text-output calls in either opaque or
transparent mode. The designer can set the value to zero.

dfItalic Specifies whether the character-definition data represents an italic font. If the
flag is set, the low-order bit is 1. All other bits are zero.

dfUnderline Specifies whether the character-definition data represents an underlined font.
If the flag is set, the low-order bit is 1. All other bits are zero.

dfStrikeOut Specifies whether the character-definition data represents a strikeout font. If
the flag is set, the low-order bit is 1. All other bits are zero.

dfWeight Specifies the weight of the characters in the character-definition data, on a
scale of 1 through 1000. A dfWeight value of 400 specifies a regular weight.

dfCharSet Specifies the character set defined by this font.
dfPixWidth Specifies the width of the grid on which a vector font was digitized. For raster

fonts, if the dfPixWidth member is nonzero, it represents the width for all the
characters in the bitmap. If the member is zero, the font has variable-width
characters whose widths are specified in the array for the dfCharTable
member.

dfPixHeight Specifies the height of the character bitmap for raster fonts or the height of the
grid on which a vector font was digitized.

dfPitchAndFamily Specifies the pitch and font family. If the font is variable pitch, the low bit is
set. The four high bits give the family name of the font. Font families describe
the general look of a font. They identify fonts when the exact name is not
available. The font families are described as follows:
Family Description
FF_DONTCARE Unknown.
FF_ROMAN Proportionally spaced fonts with serifs.
FF_SWISS Proportionally spaced fonts without serifs.
FF_MODERN Fixed-pitch fonts.
FF_SCRIPT Cursive or script fonts. (Both are designed to look

similar to handwriting. Script fonts have joined
letters; cursive fonts do not.)

FF_DECORATIVE Novelty fonts.
dfAvgWidth Specifies the width of characters in the font. For fixed-pitch fonts, this value

is the same as the value for the dfPixWidth member. For variable-pitch fonts,
it is the width of the character "X".

dfMaxWidth Specifies the maximum pixel width of any character in the font. For fixed-
pitch fonts, this value is the same as the value of the dfPixWidth member.

dfFirstChar Specifies the first character code defined by the font. Character definitions are
stored only for the characters actually present in the font. Use this member,
therefore, when calculating indexes for either the dfBits or dfCharOffset
member.

dfLastChar Specifies the last character code defined by the font. All characters with codes
between the values for the dfFirstChar and dfLastChar members must be
present in the character definitions for the font.

dfDefaultChar Specifies the character to substitute whenever a string contains a character
that is out of range. The character is given relative to the dfFirstChar member
so that the dfDefaultChar member is the actual value of the character less the
value of the dfFirstChar member. The dfDefaultChar member indicates a
special character that is not a space.

dfBreakChar Specifies the character that defines word breaks for word wrapping and word-
spacing justification. The character is given relative to the dfFirstChar
member so that the dfBreakChar member is the actual value of the character
less that of the dfFirstChar member. The dfBreakChar member is normally 32
minus the value of the dfFirstChar member (the ASCII space character).

dfWidthBytes Specifies the number of bytes in each row of the bitmap. This value is always
even so that the rows start on word boundaries. For vector fonts, this member
has no meaning.

dfDevice Specifies the offset in the file to the string giving the device name. For a
generic font, this value is zero.

dfFace Specifies the offset in the file to the null-terminated string that names the face.

dfBitsPointer Specifies the absolute machine address of the bitmap. This is set by GDI at
load time. The value of the dfBitsPointer member is guaranteed to be even.

dfBitsOffset Specifies the offset in the file to the beginning of the bitmap information. If
the third bit in the dfType member is set, the dfBitsOffset member is an
absolute address of the bitmap (probably in read-only memory).
For raster fonts, the dfBitsOffset member points to a sequence of bytes that
make up the bitmap of the font. The height of the bitmap is the height of the
font, and its width is the sum of the widths of the characters in the font,
rounded up to the next word boundary.
For vector fonts, the dfBitsOffset member points to a string of bytes or words
(depending on the size of the grid on which the font was digitized) that
specify the strokes for each character of the font. The value of the
dfBitsOffset member must be even.

dfReserved Not used.
dfFlags Specifies the bit flags that define the format of the glyph bitmap, as follows:

Pitch value Address
DFF_FIXED 0x0001
DFF_PROPORTIONAL 0x0002
DFF_ABCFIXED 0x0004
DFF_ABCPROPORTIONAL 0x0008
DFF_1COLOR 0x0010
DFF_16COLOR 0x0020
DFF_256COLOR 0x0040
DFF_RGBCOLOR 0x0080

dfAspace Specifies the global A space, if any. The value of the dfAspace member is the
distance from the current position to the left edge of the bitmap.

dfBspace Specifies the global B space, if any. The value of the dfBspace member is the
width of the character.

dfCspace Specifies the global C space, if any. The value of the dfCspace member is the
distance from the right edge of the bitmap to the new current position. The
increment of a character is the sum of the A, B, and C spaces. These spaces
apply to all glyphs, including DFF_ABCFIXED.

dfColorPointer Specifies the offset to the color table for color fonts, if any. The format of the
bits is like a device-independent bitmap (DIB), but without the header. (That
is, the characters are not split into disjoint bytes; instead, they are left intact.)
If no color table is needed, this entry is NULL.

dfReserved1 Not used.
dfCharTable Specifies an array of entries for raster, fixed-pitch vector, and proportionally

spaced vector fonts, as follows:
Font type Description
Raster Each entry in the array consists of two 2-

byte words for Windows 2.x and three 2-
byte words for Windows 3.0 and later.
The first word of each entry is the
character width. The second word of
each entry is the byte offset from the
beginning of the FONTINFO structure to
the character bitmap. For Windows 3.0
and later, the second and third words are
used for the offset.

Fixed-pitch vector Each 2-byte entry in the array specifies
the offset from the start of the bitmap to
the beginning of the string of stroke
specification units for the character. The
number of bytes or words to be used for
a particular character is calculated by
subtracting its entry from the next one,
so that there is a sentinel at the end of the
array of values.

Proportionally-spaced vector Each 4-byte entry in the array is divided
into two 2-byte fields. The first field
gives the starting offset from the start of
the bitmap of the character strokes. The
second field gives the pixel width of the
character.

One extra entry at the end of the character table describes an absolute-space
character, which is guaranteed to be blank. This character is not part of the
normal character set.
The number of entries in the table is calculated as follows: (dfLastChar -
dfFirstChar) + 2. This number includes a "spare," the sentinel offset.
For more information on the dfCharTable member, see Section 4.3, "Version-
Specific Glyph Tables."

facename Specifies an ASCII character string that constitutes the name of the font face.
The size of this member is the length of the string plus a null terminating
character.

devicename Specifies an ASCII character string that constitutes the name of the device if
this font file is for a specific one. The size of this member is the length of the
string plus a null terminating character.

bitmaps Specifies character bitmap definitions. Unlike the old font format, each
character is stored as a contiguous set of bytes.
The first byte contains the first 8 bits of the first scan line (that is, the top line
of the character). The second byte contains the first 8 bits of the second scan
line. This continues until the first "column" is completely defined. The
subsequent byte contains the next 8 bits of the first scan line, padded with
zeros on the right if necessary (and so on, down through the second "column")
. If the glyph is quite narrow, each scan line is covered by one byte, with bits
set to zero as necessary for padding. If the glyph is very wide, a third or even
fourth set of bytes can be present.
Character bitmaps must be stored contiguously and arranged in ascending
order. The bytes for a 12-pixel by 14-pixel "A" character, for example, are
given in two sets, because the character is less than 17 pixels wide:

00 06 09 10 20 20 20 3F 20 20 20 00 00 00
00 00 00 80 40 40 40 C0 40 40 40 00 00 00
Note that in the second set of bytes, the second digit of the byte is always
zero. The zeros correspond to the thirteenth through sixteenth pixels on the
right side of the character, which are not used by this character bitmap.

Version-Specific Glyph Tables

The dfCharTable member for Windows 2.x has a GlyphEntry structure with the following format:

GlyphEntry struc
geWidth dw ? ; width of char bitmap, pixels
geOffset dw ? ; pointer to the bits
GlyphEntry ends
The dfCharTable member in Windows 3.0 and later is dependent on the format of the glyph bitmap. The
only formats supported are DFF_FIXED and DFF_PROPORTIONAL.

DFF_FIXED
DFF_PROPORTIONAL
GlyphEntry struc
geWidth dw ? ; width of char bitmap, pixels
geOffset dd ? ; pointer to the bits
GlyphEntry ends
DFF_ABCFIXED
DFF_ABCPROPORTIONAL
GlyphEntry struc
geWidth dw ? ; width of char bitmap, pixels

geOffset dd ? ; pointer to the bits
geAspace dd ? ; A space, fract pixels (16.16)
geBspace dd ? ; B space, fract pixels (16.16)
geCspace dw ? ; C space, fract pixels (16.16)
GlyphEntry ends
Fractional pixels are expressed as 32-bit signed numbers with an implicit binary point between bits 15 and
16. This is referred to as a 16.16 ("sixteen dot sixteen") fixed-point number.

The ABC spacing in the following example is the same as defined previously. However, specific sets are
defined for each character:

DFF_1COLOR; 8 pixels per byte
DFF_16COLOR ; 2 pixels per byte
DFF_256COLOR ; 1 pixel per byte
DFF_RGBCOLOR ; RGB quads
GlyphEntry struc
geWidth dw ? ; width of char bitmap, pixels
geOffset dd ? ; pointer to the bits
geHeight dw ? ; height of char bitmap, pixels
geAspace dd ? ; A space, fract pixels (16.16)
geBspace dd ? ; B space, fract pixels (16.16)
geCspace dd ? ; C space, fract pixels (16.16)
GlyphEntry ends

Group File Format Overview (3.1)
This topic describes the format of group files used by the Microsoft Windows operating system. A group
file contains data that Microsoft Windows Program Manager (PROGMAN.EXE) uses to display the icons
of the applications in a group, start the applications in a group, and open related documents.

Organization of a Group File

The first element in a group file is the group-file header. The data in the group-file header includes an
identifier, a count of bytes, a count of items in the file, and information that the system uses to display
group icons.

The group-file header is followed by one or more entries that contain item data describing the icon of an
application. These entries include the coordinates that the system uses to display the icon; the count of
bytes in the header, AND mask, and XOR mask for the icon; and the offset to the header, AND mask,
and XOR mask for the icon.

The item data entries are followed by entries that contain the color data for the application icons. For
more information about these entries, see Graphics Device Interface Overview.

For Windows version 3.1, the icon data is followed by tag data. The tag data contains information that
Program Manager uses when it displays the Program Item Properties dialog box. This data identifies the
directory in which the application is stored and the shortcut key (if one exists). It also specifies the state
of the Run Minimized box.

Group-File Structures

This topic uses C structures to depict the organization of data within a group file. These structures were
created solely to show the organization of data in a resource; they do not appear in any of the include
files shipped with the Microsoft Windows 3.1 Software Development Kit (SDK).

Group-File Header

The group-file header contains general information about the group file. The GROUPHEADER
structure has the following form:

struct tagGROUPHEADER {
char cIdentifier[4];
WORD wCheckSum;
WORD cbGroup;
WORD nCmdShow;
RECT rcNormal;
POINT ptMin;
WORD pName;
WORD wLogPixelsX;
WORD wLogPixelsY;
WORD wBitsPerPixel;
WORD wPlanes;
WORD cItems;
WORD rgiItems[cItems];

};
Following are the members in the GROUPHEADER structure:
cIdentifier Identifies an array of 4 characters. If the file is a valid group file, this array

must contain the string "PMCC".
wCheckSum Specifies the negative sum of all words in the file (including the value

specified by the wCheckSum member).
cbGroup Specifies the size of the group file, in bytes.
nCmdShow Specifies whether Program Manager should display the group in minimized,

normal, or maximized form. This member can be one of the following values:
Value Flag
0x00 SW_HIDE
0x01 SW_SHOWNORMAL
0x02 SW_SHOWMINIMIZED
0x03 SW_SHOWMAXIMIZED
0x04 SW_SHOWNOACTIVATE

0x05 SW_SHOW
0x06 SW_MINIMIZE
0x07 SW_SHOWMINNOACTIVATE
0x08 SW_SHOWNA
0x09 SW_RESTORE

rcNormal Specifies the coordinates of the group window (the window in which the
group icons appear). It is a rectangular structure.

ptMin Specifies the coordinate of the lower-left corner of the group window with
respect to the parent window. It is a point structure.

pName Specifies an offset from the beginning of the file to a null-terminated string
that specifies the group name.

wLogPixelsX Specifies the horizontal resolution of the display for which the group icons
were created.

wLogPixelsY Specifies the vertical resolution of the display for which the group icons were
created.

wBitsPerPixel Specifies the format of the icon bitmaps, in bits per pixel.
wPlanes Specifies the count of planes in the icon bitmaps.
cItems Specifies the number of ITEMDATA structures in the rgiItems array. This is

not necessarily the number of items in the group, because there may be NULL
entries in the rgiItems array.

rgiItems[cItems] Specifies an array of ITEMDATA structures.

Item Data

The item data contains information about a particular application and its icon. The ITEMDATA
structure has the following form:

struct tagITEMDATA {
POINT pt;
WORD iIcon;
WORD cbResource;
WORD cbANDPlane;
WORD cbXORPlane;
WORD pHeader;
WORD pANDPlane;
WORD pXORPlane;
WORD pName;
WORD pCommand;
WORD pIconPath;

};
Following are the members in the ITEMDATA structure:
pt Specifies the coordinates for the lower-left corner of an icon in the group window. It

is a point structure.
iIcon Specifies the index value for an icon. This value indicates the position of the icon in

an executable file.
cbResource Specifies the count of bytes in the icon resource, which appears in the executable

file for the application.
cbANDPlane Specifies the count of bytes in the AND mask for the icon.
cbXORPlane Specifies the count of bytes in the XOR mask for the icon.
pHeader Specifies an offset from the beginning of the group file to the resource header for

the icon.
pANDPlane Specifies an offset from the beginning of the group file to the AND mask for the

icon.
pXORPlane Specifies an offset from the beginning of the group file to the XOR mask for the

icon.
pName Specifies an offset from the beginning of the group file to a string that specifies the

item name.
pCommand Specifies an offset from the beginning of the group file to a string that specifies the

name of the executable file containing the application and the icon resource(s).

pIconPath Specifies an offset from the beginning of the group file to a string that specifies the
path where the executable file is located. This path can be used to extract icon data
from an executable file.

Tag Data

The tag data contains general information used to display the Program Item Properties dialog box. The
TAGDATA structure has the following form:

struct tagTAGDATA{
WORD wID;
WORD wItem;
WORD cb;
BYTE rgb[1];

};
Following are the members in the TAGDATA structure:
wID Specifies the type of tag data. This member can have one of the following values:

Value Meaning
0x8101 Array at which the rgb member points is a null-terminated string that identifies

the path for the application.
0x8102 Array at which the rgb member points is a 16-bit word value that identifies the

shortcut key specified by the user.
0x8103 Minimized version of the item is displayed. If this value is specified, the array to

which the rgb member points is not present in the structure and the value of the
cb member is 0x06.

wItem Specifies the index to the item the tag data refers to. If the data is not specific to a particular
item, this value is 0xFFFF.

cb Specifies the size of the TAGDATA structure, in bytes.
rgb Specifies an array of byte values. The length of this array can be found by subtracting 6 from

the value of the cb member.

Executable-File Header Format (3.1)
An executable (.EXE) file for the Microsoft Windows operating system contains a combination of code
and data or a combination of code, data, and resources. The executable file also contains two headers: an
MS-DOS header and a Windows header. The next two sections describe these headers; the third section
describes the code and data contained in a Windows executable file.

MS-DOS Header

The MS-DOS (old-style) executable-file header contains four distinct parts: a collection of header
information (such as the signature word, the file size, and so on), a reserved section, a pointer to a
Windows header (if one exists), and a stub program. The following illustration shows the MS-DOS
executable-file header:

If the word value at offset 18h is 40h or greater, the word value at 3Ch is typically an offset to a
Windows header. Applications must verify this for each executable-file header being tested, because a
few applications have a different header style.

MS-DOS uses the stub program to display a message if Windows has not been loaded when the user
attempts to run a program.

For more information about the MS-DOS executable-file header, see the Microsoft MS-DOS
Programmer's Reference (Redmond, Washington: Microsoft Press, 1991).

Windows Header

The Windows (new-style) executable-file header contains information that the loader requires for
segmented executable files. This information includes the linker version number, data specified by the
linker, data specified by the resource compiler, tables of segment data, tables of resource data, and so on.
The following illustration shows the Windows executable-file header:

The following sections describe the entries in the Windows executable-file header.

Information Block

The information block in the Windows header contains the linker version number, the lengths of various
tables that further describe the executable file, the offsets from the beginning of the header to the
beginning of these tables, the heap and stack sizes, and so on. The following list summarizes the
contents of the header information block (the locations are relative to the beginning of the block):

Location Description
00h Specifies the signature word. The low byte contains "N" (4Eh) and the high byte contains

"E" (45h).
02h Specifies the linker version number.
03h Specifies the linker revision number.
04h Specifies the offset to the entry table (relative to the beginning of the header).
06h Specifies the length of the entry table, in bytes.
08h Reserved.
0Ch Specifies flags that describe the contents of the executable file. This value can be one or

more of the following bits:
Bit Meaning
0 The linker sets this bit if the executable-file format is SINGLEDATA. An

executable file with this format contains one data segment. This bit is set if the file
is a dynamic-link library (DLL).

1 The linker sets this bit if the executable-file format is MULTIPLEDATA. An
executable file with this format contains multiple data segments. This bit is set if
the file is a Windows application.
If neither bit 0 nor bit 1 is set, the executable-file format is NOAUTODATA. An
executable file with this format does not contain an automatic data segment.

2 Reserved.
3 Reserved.
8 Reserved.
9 Reserved.
11 If this bit is set, the first segment in the executable file contains code that loads the

application.

13 If this bit is set, the linker detects errors at link time but still creates an executable
file.

14 Reserved.
15 If this bit is set, the executable file is a library module.

If bit 15 is set, the CS:IP registers point to an initialization procedure called with
the value in the AX register equal to the module handle. The initialization
procedure must execute a far return to the caller. If the procedure is successful, the
value in AX is nonzero. Otherwise, the value in AX is zero.
The value in the DS register is set to the library's data segment if SINGLEDATA is
set. Otherwise, DS is set to the data segment of the application that loads the
library.

0Eh Specifies the automatic data segment number. (0Eh is zero if the SINGLEDATA and
MULTIPLEDATA bits are cleared.)

10h Specifies the initial size, in bytes, of the local heap. This value is zero if there is no local
allocation.

12h Specifies the initial size, in bytes, of the stack. This value is zero if the SS register value
does not equal the DS register value.

14h Specifies the segment:offset value of CS:IP.
18h Specifies the segment:offset value of SS:SP.

The value specified in SS is an index to the module's segment table. The first entry in the
segment table corresponds to segment number 1.
If SS addresses the automatic data segment and SP is zero, SP is set to the address
obtained by adding the size of the automatic data segment to the size of the stack.

1Ch Specifies the number of entries in the segment table.
1Eh Specifies the number of entries in the module-reference table.
20h Specifies the number of bytes in the nonresident-name table.
22h Specifies a relative offset from the beginning of the Windows header to the beginning of

the segment table.
24h Specifies a relative offset from the beginning of the Windows header to the beginning of

the resource table.
26h Specifies a relative offset from the beginning of the Windows header to the beginning of

the resident-name table.
28h Specifies a relative offset from the beginning of the Windows header to the beginning of

the module-reference table.
2Ah Specifies a relative offset from the beginning of the Windows header to the beginning of

the imported-name table.
2Ch Specifies a relative offset from the beginning of the file to the beginning of the

nonresident-name table.
30h Specifies the number of movable entry points.
32h Specifies a shift count that is used to align the logical sector. This count is log2 of the

segment sector size. It is typically 4, although the default count is 9. (This value
corresponds to the /alignment [/a] linker switch. When the linker command line contains /
a:16, the shift count is 4. When the linker command line contains /a:512, the shift count is
9.)

34h Specifies the number of resource segments.
36h Specifies the target operating system, depending on which bits are set:

Bit Meaning
0 Operating system format is unknown.
1 Reserved.
2 Operating system is Microsoft Windows.
3 Reserved.
4 Reserved.

37h Specifies additional information about the executable file. It can be one or more of the
following values:
Bit Meaning
1 If this bit is set, the executable file contains a Windows 2.x application that runs in

version 3.x protected mode.

2 If this bit is set, the executable file contains a Windows 2.x application that
supports proportional fonts.

3 If this bit is set, the executable file contains a fast-load area.
38h Specifies the offset, in sectors, to the beginning of the fast-load area. (Only Windows uses

this value.)
3Ah Specifies the length, in sectors, of the fast-load area. (Only Windows uses this value.)
3Ch Reserved.
3Eh Specifies the expected version number for Windows. (Only Windows uses this value.)

Segment Table

The segment table contains information that describes each segment in an executable file. This
information includes the segment length, segment type, and segment-relocation data. The following list
summarizes the values found in the segment table (the locations are relative to the beginning of each
entry):

Location Description
00h Specifies the offset, in sectors, to the segment data (relative to the beginning of the file). A

value of zero means no data exists.
02h Specifies the length, in bytes, of the segment, in the file. A value of zero indicates that the

segment length is 64K, unless the selector offset is also zero.
04h Specifies flags that describe the contents of the executable file. This value can be one or

more of the following:
Bit Meaning
0 If this bit is set, the segment is a data segment. Otherwise, the segment is a code

segment.
1 If this bit is set, the loader has allocated memory for the segment.
2 If this bit is set, the segment is loaded.
3 Reserved.
4 If this bit is set, the segment type is MOVABLE. Otherwise, the segment type is

FIXED.
5 If this bit is set, the segment type is PURE or SHAREABLE. Otherwise, the

segment type is IMPURE or NONSHAREABLE.
6 If this bit is set, the segment type is PRELOAD. Otherwise, the segment type is

LOADONCALL.
7 If this bit is set and the segment is a code segment, the segment type is

EXECUTEONLY. If this bit is set and the segment is a data segment, the segment
type is READONLY.

8 If this bit is set, the segment contains relocation data.
9 Reserved.
10 Reserved.
11 Reserved.
12 If this bit is set, the segment is discardable.
13 Reserved.
14 Reserved.
15 Reserved.

06h Specifies the minimum allocation size of the segment, in bytes. A value of zero indicates
that the minimum allocation size is 64K.

Resource Table

The resource table describes and identifies the location of each resource in the executable file. The table
has the following form:

WORDrscAlignShift;
TYPEINFO rscTypes[];
WORDrscEndTypes;
BYTErscResourceNames[];
BYTErscEndNames;
Following are the members in the resource table:

rscAlignShift Specifies the alignment shift count for resource data. When the shift count is
used as an exponent of 2, the resulting value specifies the factor, in bytes,
for computing the location of a resource in the executable file.

rscTypes Specifies an array of TYPEINFO structures containing information about
resource types. There must be one TYPEINFO structure for each type of
resource in the executable file.

rscEndTypes Specifies the end of the resource type definitions. This member must be
zero.

rscResourceNames Specifies the names (if any) associated with the resources in this table. Each
name is stored as consecutive bytes; the first byte specifies the number of
characters in the name.

rscEndNames Specifies the end of the resource names and the end of the resource table.
This member must be zero.

Type Information

The TYPEINFO structure has the following form:

typedef struct _TYPEINFO {
WORD rtTypeID;
WORD rtResourceCount;
DWORD rtReserved;
NAMEINFO rtNameInfo[];

} TYPEINFO;
Following are the members in the TYPEINFO structure:
rtTypeID Specifies the type identifier of the resource. This integer value is either a

resource-type value or an offset to a resource-type name. If the high bit in this
member is set (0x8000), the value is one of the following resource-type values:
Value Resource type
RT_ACCELERATOR Accelerator table
RT_BITMAP Bitmap
RT_CURSOR Cursor
RT_DIALOG Dialog box
RT_FONT Font component
RT_FONTDIR Font directory
RT_GROUP_CURSOR Cursor directory
RT_GROUP_ICON Icon directory
RT_ICON Icon
RT_MENU Menu
RT_RCDATA Resource data
RT_STRING String table
If the high bit of the value in this member is not set, the value represents an
offset, in bytes relative to the beginning of the resource table, to a name in the
rscResourceNames member.

rtResourceCount Specifies the number of resources of this type in the executable file.
rtReserved Reserved.
rtNameInfo Specifies an array of NAMEINFO structures containing information about

individual resources. The rtResourceCount member specifies the number of
structures in the array.

Name Information

The NAMEINFO structure has the following form:

typedef struct _NAMEINFO {
WORD rnOffset;
WORD rnLength;
WORD rnFlags;
WORD rnID;
WORD rnHandle;
WORD rnUsage;

} NAMEINFO;
Following are the members in the NAMEINFO structure:
rnOffset Specifies an offset to the contents of the resource data (relative to the beginning of the

file). The offset is in terms of alignment units specified by the rscAlignShift member at
the beginning of the resource table.

rnLength Specifies the resource length, in bytes.
rnFlags Specifies whether the resource is fixed, preloaded, or shareable. This member can be one

or more of the following values:
Value Meaning
0x0010 Resource is movable (MOVEABLE). Otherwise, it is fixed.
0x0020 Resource can be shared (PURE).
0x0040 Resource is preloaded (PRELOAD). Otherwise, it is loaded on demand.

rnID Specifies or points to the resource identifier. If the identifier is an integer, the high bit is
set (8000h). Otherwise, it is an offset to a resource string, relative to the beginning of the
resource table.

rnHandle Reserved.
rnUsage Reserved.

Resident-Name Table

The resident-name table contains strings that identify exported functions in the executable file. As the
name implies, these strings are resident in system memory and are never discarded. The resident-name
strings are case-sensitive and are not null-terminated. The following list summarizes the values found in
the resident-name table (the locations are relative to the beginning of each entry):

Location Description
00h Specifies the length of a string. If there are no more strings in the table, this value is zero.
01h - xxh Specifies the resident-name text. This string is case-sensitive and is not null-terminated.
xxh + 01h Specifies an ordinal number that identifies the string. This number is an index into the

entry table.

The first string in the resident-name table is the module name.

Module-Reference Table

The module-reference table contains offsets for module names stored in the imported-name table. Each
entry in this table is 2 bytes long.

Imported-Name Table

The imported-name table contains the names of modules that the executable file imports. Each entry
contains two parts: a single byte that specifies the length of the string and the string itself. The strings in
this table are not null-terminated.

Entry Table

The entry table contains bundles of entry points from the executable file (the linker generates each
bundle). The numbering system for these ordinal values is 1-based--that is, the ordinal value
corresponding to the first entry point is 1.

The linker generates the densest possible bundles under the restriction that it cannot reorder the entry
points. This restriction is necessary because other executable files may refer to entry points within a
given bundle by their ordinal values.

The entry-table data is organized by bundle, each of which begins with a 2-byte header. The first byte of
the header specifies the number of entries in the bundle (a value of 00h designates the end of the table).
The second byte specifies whether the corresponding segment is movable or fixed. If the value in this
byte is 0FFh, the segment is movable. If the value in this byte is 0FEh, the entry does not refer to a
segment but refers, instead, to a constant defined within the module. If the value in this byte is neither
0FFh nor 0FEh, it is a segment index.

For movable segments, each entry consists of 6 bytes and has the following form:

Location Description
00h Specifies a byte value. This value can be a combination of the following bits:

Bit(s) Meaning
0 If this bit is set, the entry is exported.

1 If this bit is set, the segment uses a global (shared) data segment.
3-7 If the executable file contains code that performs ring transitions, these bits

specify the number of words that compose the stack. At the time of the ring
transition, these words must be copied from one ring to the other.

01h Specifies an int 3fh instruction.
03h Specifies the segment number.
04h Specifies the segment offset.

For fixed segments, each entry consists of 3 bytes and has the following form:

Location Description
00h Specifies a byte value. This value can be a combination of the following bits:

Bit(s) Meaning
0 If this bit is set, the entry is exported.
1 If this bit is set, the entry uses a global (shared) data segment. (This may be set

only for SINGLEDATA library modules.)
3-7 If the executable file contains code that performs ring transitions, these bits

specify the number of words that compose the stack. At the time of the ring
transition, these words must be copied from one ring to the other.

01h Specifies an offset.

Nonresident-Name Table

The nonresident-name table contains strings that identify exported functions in the executable file. As
the name implies, these strings are not always resident in system memory and are discardable. The
nonresident-name strings are case-sensitive; they are not null-terminated. The following list summarizes
the values found in the nonresident-name table (the specified locations are relative to the beginning of
each entry):

Location Description
00h Specifies the length, in bytes, of a string. If this byte is 00h, there are no more strings in the

table.
01h - xxh Specifies the nonresident-name text. This string is case-sensitive and is not null-

terminated.
xx + 01h Specifies an ordinal number that is an index to the entry table.

The first name that appears in the nonresident-name table is the module description string (which was
specified in the module-definition file).

Code Segments and Relocation Data

Code and data segments follow the Windows header. Some of the code segments may contain calls to
functions in other segments and may, therefore, require relocation data to resolve those references. This
relocation data is stored in a relocation table that appears immediately after the code or data in the
segment. The first 2 bytes in this table specify the number of relocation items the table contains. A
relocation item is a collection of bytes specifying the following information:

Address type (segment only, offset only, segment and offset)
Relocation type (internal reference, imported ordinal, imported name)
Segment number or ordinal identifier (for internal references)
Reference-table index or function ordinal number (for imported ordinals)
Reference-table index or name-table offset (for imported names)

Each relocation item contains 8 bytes of data, the first byte of which specifies one of the following
relocation-address types:

Value Meaning
0 Low byte at the specified offset
2 16-bit selector
3 32-bit pointer
5 16-bit offset
11 48-bit pointer
13 32-bit offset

The second byte specifies one of the following relocation types:

Value Meaning

0 Internal reference
1 Imported ordinal
2 Imported name
3 OSFIXUP

The third and fourth bytes specify the offset of the relocation item within the segment.

If the relocation type is imported ordinal, the fifth and sixth bytes specify an index to a module's reference
table and the seventh and eighth bytes specify a function ordinal value.

If the relocation type is imported name, the fifth and sixth bytes specify an index to a module's reference
table and the seventh and eighth bytes specify an offset to an imported-name table.

If the relocation type is internal reference and the segment is fixed, the fifth byte specifies the segment
number, the sixth byte is zero, and the seventh and eighth bytes specify an offset to the segment. If the
relocation type is internal reference and the segment is movable, the fifth byte specifies 0FFh, the sixth
byte is zero; and the seventh and eighth bytes specify an ordinal value found in the segment's entry table.

Resource Format Overview (3.1)
This topic describes the format of executable-file resources used by the Microsoft Windows operating
system. A resource, or collection of binary data, can be one of two types: standard or user-defined. The
data in a standard resource describes an icon, cursor, menu, dialog box, bitmap, font, string table, or
accelerator. The data in a user-defined resource describes an application-specific object. This topic
describes standard resources.

A Windows executable file contains a resource table that describes each of the resources in the file. The
data in this table includes an offset from the beginning of the file to each resource. It also includes values
that specify the resource type, the resource length, and so on. For more information about the organization
of the resource table, see Executable-File Header Format.

This topic uses C structures to depict the organization of data in resources. In some cases, these structures
are not true C structures, because they contain members that can be variable-length strings. These
structures were created only to depict the organization of data within a resource; they do not appear in any
of the include files shipped with the Microsoft Windows 3.1 Software Development Kit (SDK).

Icon Resource
Cursor Resource
Menu Resource
Dialog Box Resource
Bitmap Resource
Font Resource
String-Table Resources
Accelerator Resource
Name-Table Resource
Version-Information Resource

Icon Resource (3.1)
An icon resource is identical in format to an icon image in an icon-resource file. The resource contains the
icon-image header, color table, and XOR and AND masks. For more information about the icon-image
format, see Graphics Device Interface Overview.

Each icon resource must have a corresponding entry in the resource table of the executable file. This
means the resource table must contain a TYPEINFO structure in which the rscTypeID member is set to the
RT_ICON value.

Icon-Directory Resource

An icon-directory resource is nearly identical in format to an icon directory in an icon-resource file. The
resource specifies the number of icon images associated with this resource, as well as the dimensions
and color formats for each icon. However, the last member of the ICONDIRENTRY structure
(dwImageOffset) is replaced with a 16-bit value that specifies the resource-table index of the
corresponding icon-image resource. The index is 1-based. If an executable file contains multiple icon
resources, the index must be unique across all directories. For more information about the icon-
directory format, see Graphics Device Interface Overview.

Each icon-directory resource must have a corresponding entry in the resource table of the executable
file. This means the resource table must contain a TYPEINFO structure in which the rscTypeID member
is set to the RT_GROUP_ICON value.

Cursor Resource (3.1)
A cursor resource is nearly identical in format to a cursor image in a cursor-resource file. The resource
contains the cursor hot spot as well as the cursor-image header, color table, and XOR and AND masks.
The x- and y-coordinates for the cursor hot spot (both 16-bit values) appear first in the resource,
immediately followed by the cursor-image header. For more information about the cursor-image format,
see Graphics Device Interface Overview.

Each cursor resource must have a corresponding entry in the resource table of the executable file. This
means the resource table must contain a TYPEINFO structure in which the rscTypeID member is set to the
RT_CURSOR value.

Cursor-Directory Resource

A cursor-directory resource is nearly identical in format to a cursor directory in a cursor-resource file.
The resource specifies the number of cursor images associated with this resource, as well as the
dimensions of the images, but it does not include the hot-spot data. Furthermore, the last member of the
ICONDIRENTRY structure (dwImageOffset) is replaced with a 16-bit value that specifies the resource-
table index of the corresponding cursor-image resource.

In an executable file, the CURSORDIRENTRY structure has the following form:

typedef struct _CURSORDIRENTRY {
WORD wWidth;
WORD wHeight;
WORD wPlanes;
WORD wBitCount;
DWORD lBytesInRes;
WORD wImageIndex;

} CURSORDIRENTRY;
Following are the members in the CURSORDIRENTRY structure:
wWidth Specifies the width of the cursor, in pixels.
wHeight Specifies the height of the cursor, in pixels.
wPlanes Specifies the number of color planes in the bitmap. This member must be set to 1.
wBitCount Specifies the number of color bits per pixel in the bitmap. This member must be

set to 1.
lBytesInRes Specifies the size of the resource, in bytes.
wImageIndex Specifies the 1-based index identifying the cursor image associated with this

cursor-directory resource. If an executable file contains multiple icon resources,
the index must be unique across all directories.

Each cursor-directory resource must have a corresponding entry in the resource table of the executable file.
This means the resource table must contain a TYPEINFO structure in which the rscTypeID member is set
to the RT_GROUP_CURSOR value.

Menu Resource (3.1)
A menu resource contains a header followed by a list of normal and pop-up menu items.

Each entry in the executable file's resource table contains a member that identifies the resource type. The
RT_MENU constant identifies a menu resource.

Menu Header

The menu header contains version information for the menu resource. The header consists of two 16-bit
values (which must be zero for Windows version 3.0 and later). A MenuHeader structure has the
following form:

struct MenuHeader {
WORD wVersion;
WORD wReserved;

};
Following are the members in the MenuHeader structure:
wVersion Specifies the version number. (For Windows 3.0 and later, this value is zero.)
wReserved Reserved; must be zero.

Pop-up Menu Item

A menu resource contains data for each pop-up item in a menu. The first 16 bits indicate whether the
item is grayed, inactive, checked, and so on. This data also includes a string that appears in the rectangle
corresponding to that item. A PopupMenuItem structure has the following form:

struct PopupMenuItem {
WORD fItemFlags;
char szItemText[];

};
Following are the members in the PopupMenuItem structure:
fItemFlags Specifies menu-item information. This member can have one or more of the following

values:
Value Meaning
MF_GRAYED Item is grayed.
MF_DISABLED Item is inactive.
MF_CHECKED Item can be checked.
MF_POPUP Item is a popup (must be specified for pop-up items).
MF_MENUBARBREAK Item is a menu-bar break.
MF_MENUBREAK Item is a menu break.
MF_END Item ends the menu.

szItemText Specifies a null-terminated string that appears in the menu and identifies the menu
item. There is no fixed limit on the size of this string.

Normal Menu Item

A normal menu item is very similar to a pop-up menu item, except that it has an additional menu
identifier. A NormalMenuItem structure has the following form:

struct NormalMenuItem {
WORD fItemFlags;
WORD wMenuID;
char szItemText[];

};
Following are the members in the NormalMenuItem structure:
fItemFlags Specifies menu-item information. This member can have one or more of the following

values:
Value Meaning
MF_GRAYED Item is grayed.
MF_DISABLED Item is inactive.
MF_CHECKED Item can be checked.

MF_MENUBARBREAK Item is a menu-bar break.
MF_MENUBREAK Item is a menu break.
MF_END Item ends the menu.

wMenuID Identifies the menu item.
szItemText Specifies a null-terminated string that appears in the menu and identifies the menu

item. There is no fixed limit on the size of this string.

A menu separator is a normal menu item for which fItemFlags is zero, wMenuID is zero, and the
szItemText array is empty.

Combined Menu Items

Pop-up and normal menu items are often combined in menus. A mixture of the two is shown in the
following example:

POPUP ITEM
NORMAL ITEM
NORMAL ITEM
.
.
.
NORMAL ITEM
NORMAL ITEM (fItemFlags contains the MF_END constant)

Note that the terminating item is a normal menu item, not a pop-up item, and that the fItemFlags member
in the last item contains the MF_END constant.

Pop-up and normal menu items can also be nested to create hierarchical blocks, as shown in the following
example:

POPUP ITEM
NORMAL ITEM
NORMAL ITEM
.
.
.
NORMAL ITEM
POPUP ITEM
NORMAL ITEM
NORMAL ITEM
NORMAL ITEM
POPUP ITEM (fItemFlags contains the MF_END constant)
NORMAL ITEM
NORMAL ITEM (fItemFlags contains the MF_END constant)
NORMAL ITEM (fItemFlags contains the MF_END constant)

Note that, although the pop-up menu item has its own terminating item, the terminating item for the entire
menu is again a normal menu item.

Dialog Box Resource (3.1)
A dialog box resource contains a dialog box header and data for each control within the dialog box.

Each entry in the executable file's resource table contains a member that identifies the resource type. The
RT_DIALOG constant identifies a dialog box resource.

Dialog Box Header

The dialog box header contains general dialog box data, such as the dialog box window style, the
number of controls in the dialog box, the coordinates of the upper-left corner of the box, the width and
height of the box, the name of the menu to be displayed, and so on. The DialogBoxHeader structure has
the following form:

struct DialogBoxHeader {
DWORD lStyle;
BYTE bNumberOfItems;
WORD x;
WORD y;
WORD cx;
WORD cy;
char szMenuName[];
char szClassName[];
char szCaption[];
WORD wPointSize; /* only if DS_SETFONT */
char szFaceName[]; /* only if DS_SETFONT */

};
Following are the members in the DialogBoxHeader structure:
lStyle Specifies the dialog-window style. This member is a combination of the

window-style and dialog-style flags that are found in the WINDOWS.H
include file.

bNumberOfItems Specifies the number of controls in the dialog box.
x Specifies the x-coordinate of the upper-left corner of the dialog box. This

coordinate is a horizontal distance from the left edge of the parent window.
This distance is specified by using a special horizontal dialog box unit
equivalent to the average character width of the font divided by 4. If the
DS_SETFONT flag is set, the average character width of the font specified in
the dialog box header is used. Otherwise, the average character width of the
system font is used.

y Specifies the y-coordinate of the lower-left corner of the dialog box. This
coordinate is a vertical distance from the top of the parent window. This
distance is specified by using a special vertical dialog box unit equivalent to
the character height of the current font divided by 8. If the DS_SETFONT flag
is set, the height of the font specified in the dialog box header is used.
Otherwise, the height of the system font is used.

cx Specifies the width of the dialog box, in horizontal dialog units. (See the
description of the x member for a definition of horizontal dialog units.)

cy Specifies the height of the dialog box, in vertical dialog units. (See the
description of the y member for a definition of vertical dialog units.)

szMenuName Identifies a menu resource associated with the dialog box. If no menu is
associated with the dialog box, this array contains a single-byte value of zero.
If the menu has an ordinal identifier, the first byte of this member contains
0xFF and the subsequent two bytes contain the ordinal value. If the menu has a
name identifier, the member contains a null-terminated string that specifies the
menu name.

szClassName Specifies the class name for the dialog box. If the dialog box uses the default
class, this member contains a single-byte value of zero. Otherwise, this
member contains a null-terminated string that specifies the name of the dialog
class.

szCaption Specifies a dialog box caption. This array must contain a null-terminated
string.

wPointSize Specifies the point size of a font that is unique to the dialog box. (This member
is present only if the DS_SETFONT flag is set by the lStyle member.)

szFaceName Specifies the typeface name of a dialog box font. This array must contain a
null-terminated string. (This member is present only if the DS_SETFONT flag
is set by the lStyle member.)

Control Data

A dialog box resource contains data for each control in a given dialog box. This data contains the
coordinates of the upper-left corner of the control, the dimensions of the control, a control identifier, and
so on. A ControlData structure has the following form:

struct ControlData {
WORD x;
WORD y;
WORD cx;
WORD cy;
WORD wID;
DWORD lStyle;
union
{
BYTE class;/* if (class & 0x80) */
char szClass[]; /* otherwise */
} ClassID;
szText;

};
Following are the members in the ControlData structure:
x Specifies the x-coordinate of the upper-left corner of the control.
y Specifies the y-coordinate of the upper-left corner of the control.
cx Specifies the width of the control, in horizontal dialog box units. For a definition of these

units, see the DialogBoxHeader structure in the preceding section.
cy Specifies the height of the control, in vertical dialog box units. For a definition of these

units, see the DialogBoxHeader structure in the preceding section.
wID Identifies the control.
lStyle Specifies the control style. This member is a combination of the window-style flags that

appear in the WINDOWS.H file.
ClassID Specifies the class type. This member is either a single-byte value or a null-terminated

string.
If this member is a byte value, it can be one of the following:
Value Class type
0x80 Button
0x81 Edit
0x82 Static
0x83 List box
0x84 Scroll bar
0x85 Combo box
If this number is not a byte value, it takes the form described in the szClass member.

szClass Identifies the class type. This member is a null-terminated string.
szText Specifies the control text. This member is a null-terminated string.

Bitmap Resource (3.1)
A bitmap resource is identical in format to a Windows bitmap file with its BITMAPFILEHEADER
structure removed. In other words, the bitmap resource contains only the bitmap header, color table, and
bitmap bits. For more information about the bitmap format, see Graphics Device Interface Overview.

Each bitmap resource must have a corresponding entry in the resource table of the executable file. This
means the resource table must contain a TYPEINFO structure in which the rscTypeID member is set to the
RT_BITMAP value.

Font Resource (3.1)
A font resource consists of two parts: a directory and its components. The font-directory data describes all
the fonts in a resource. This data includes a value specifying the number of fonts in the resource and a
table of metrics for each of these fonts. The font-component data describes a single font in the resource.
There is one component for each of the fonts in the resource. The component data is identical to the data
found in a Windows font file (.FNT).

Each entry in the executable file's resource table contains a member that identifies the resource type. The
RT_FONTDIR and RT_FONT constants identify a font directory and a font component, respectively.

Font-Directory Data

Font-directory data consists of a font count and one or more font directory entries.

Font Count

The font count is an integer that specifies the number of fonts in the resource. This value also
corresponds to the number of font directories and font components.

Font Directory

The font directory is a collection of font metrics for a particular font. These metrics specify the point
size for the font, aspect ratio, stroke width, and so on. The FontDirEntry structure has the following
form:

struct FontDirEntry {
WORD fontOrdinal;
WORD dfVersion;
DWORD dfSize;
char dfCopyright[60];
WORD dfType;
WORD dfPoints;
WORD dfVertRes;
WORD dfHorizRes;
WORD dfAscent;
WORD dfInternalLeading;
WORD dfExternalLeading;
BYTE dfItalic;
BYTE dfUnderline;
BYTE dfStrikeOut;
WORD dfWeight;
BYTE dfCharSet;
WORD dfPixWidth;
WORD dfPixHeight;
BYTE dfPitchAndFamily;
WORD dfAvgWidth;
WORD dfMaxWidth;
BYTE dfFirstChar;
BYTE dfLastChar;
BYTE dfDefaultChar;
BYTE dfBreakChar;
WORD dfWidthBytes;
DWORD dfDevice;
DWORD dfFace;
DWORD dfReserved;
char szDeviceName[];
char szFaceName[];

};
Font-Component Data

Font-component data consists of one or more font-component entries.

Font Component

Each font-component entry consists of a header, extension data, extended text metrics, kerning-pair data,
and track-kerning data.

Following are the five parts of the font component entries:

Data structure Contents
Header Font metrics, such as the aspect ratio for which the font was created;

leading values; italic, underline, strikeout, and bold descriptions; width
information; first and last character identifiers; default and break character
identifiers; and a pointer to the actual character data

Extension data Offset to the extended font metrics, offset to the extent table, offset to the
origin table, and offset to the table of kerning data

Extended text metrics Additional font metrics, such as the point size of the font, the minimum
point size to which it can be scaled, the maximum point size to which it
can be scaled, the "X" height, the lowercase ascent and descent values,
superscript metrics and offsets, subscript metrics and offsets, underline
offset and width, strikeout offset and width, and the number of kerning
pairs associated with the font

Kerning-pair data An identifier for each character in the pair of kerned characters, and a
kerning value

Track-kerning data Additional kerning data

For a complete description of Windows font files, see the Microsoft Windows Device Development Kit
documentation.

String-Table Resources (3.1)
A string table consists of one or more separate resources, each containing exactly 16 strings. The
maximum length of each string is 255 bytes. One or more strings in a block can be null or empty. The first
byte in the string specifies the number of characters in the string. (For null or empty strings, the first byte
contains the value zero.)

Windows uses a 16-bit identifier to locate a string in a string-table resource. Bits 4 through 15 specify the
block in which the string appears; bits 0 through 3 specify the location of that string relative to the
beginning of the block.

Each entry in an executable file's resource table contains a member that identifies the resource type. The
RT_STRING constant identifies a string table.

Accelerator Resource (3.1)
An accelerator resource contains one or more accelerator entries.

Each entry in an executable file's resource table contains a member that identifies the resource type. The
RT_ACCELERATOR constant identifies an accelerator resource.

The accelerator entry is a 5-byte entry with the following form:

struct AccelTableEntry {
BYTE fFlags;
WORD wEvent;
WORD wId;

};
Following are the members in the AccelTableEntry structure:
fFlags Specifies accelerator characteristics. It can be one or more of the following values:

Value Meaning
0x02 Top-level menu item is not highlighted when accelerator is used.
0x04 Accelerator is activated only if user presses the SHIFT key. This flag applies only

to virtual keys.
0x08 Accelerator is activated only if user presses the CONTROL key. This flag applies

only to virtual keys.
0x10 Accelerator is activated only if user presses the ALT key. This flag applies only

to virtual keys.
0x80 Entry is last entry in accelerator table.

wEvent Specifies an ASCII character value or a virtual-key code that identifies the accelerator key.
wID Identifies the accelerator. This is the value passed to the window procedure when the user

presses the key.

Name-Table Resource (3.1)
Name-table entries are not used in Windows 3.1. They are supported in Windows 3.0, but they can
adversely affect system performance.

The header in a Windows executable file contains a resource table. This table contains data that describes
many of the resources in the file. In Windows 3.0, the resource table does not describe named resources or
resources that use a type name as a unique identifier. Instead, a name-table structure in the resource table
maps a unique integer value to each resource name or type.

Each entry in an executable file's resource table contains a member that identifies the resource type. The
decimal value 15 identifies a name-table resource.

Version-Information Resource (3.1)
A version-information resource contains data that identifies the version, language, and distribution of the
application, dynamic-link library, driver, or device containing the resource. Installation programs use the
functions in the File Installation library (VER.DLL) to retrieve the version-information resource from a
file and to extract the version-information blocks from the resource. (For more information about the File
Installation library, see the Microsoft Windows Programmer's Reference, Volume 1.)

A version-information resource consists of one or more information blocks, each with the following form:

WORD cbBlock;
WORD cbValue;
char szKey[];
BYTE abValue[];
Following are the members in a version-information block:
cbBlock Specifies the size, in bytes, of the complete block. This value includes the size of nested

blocks, if any.
cbValue Specifies the size, in bytes, of the abValue member.
szKey Specifies the name of the block. This value is a null-terminated string. Additional zero

bytes are appended to the string to align the last byte on a 32-bit boundary.
abValue Specifies either an array of word values or a null-terminated string. The format of this

member depends on the szKey value. Additional zero bytes are appended to align the last
byte on a 32-bit boundary.

A block can contain nested blocks. In such cases, the nested block immediately follows the abValue
member and the size specified by the cbBlock member in the first block is the sum of the two sizes. If a
block contains more than one nested block, the nested blocks are stored sequentially and the cbBlock
member in the first block specifies the total size of all blocks.

A version-information resource usually contains the following predefined blocks:
Root
Variable information
String information
Language-specific

In addition, the string and variable information blocks usually contain nested blocks that define the details
about the file. This section describes the predefined information blocks.

Root Block

A root block is always the first block in the version resource. It contains such information as the file
version, product version, release status, operating system, file type, and date the file was created.

The name of the root block, as specified by the szKey member, is VS_VERSION_INFO. The value (in
abValue) is a VS_FIXEDFILEINFO structure. For a description of the VS_FIXEDFILEINFO structure,
see the Microsoft Windows Programmer's Reference, Volume 3.

The variable and string information blocks in the resource are nested within the root block.

Variable Information Block

A variable information block typically contains a single nested block that defines the languages and
character sets supported by the file.

The variable information block has the name VarFileInfo but has no corresponding value. Instead, the
block is immediately followed by a nested block that has the name Translation and has a value
consisting of an array of language and character-set identifiers. Each element in the array consists of two
16-bit values. The first value is a language identifier, the second a character-set identifier.

The language identifier can be one of the following values:

Value Language
0x0401 Arabic
0x0402 Bulgarian
0x0403 Catalan
0x0404 Traditional Chinese
0x0405 Czech
0x0406 Danish

0x0407 German
0x0408 Greek
0x0409 U.S. English
0x040A Castilian Spanish
0x040B Finnish
0x040C French
0x040D Hebrew
0x040E Hungarian
0x040F Icelandic
0x0410 Italian
0x0411 Japanese
0x0412 Korean
0x0413 Dutch
0x0414 Norwegian - Bokmål
0x0415 Polish
0x0416 Brazilian Portuguese
0x0417 Rhaeto-Romanic
0x0418 Romanian
0x0419 Russian
0x041A Croato-Serbian (Latin)
0x041B Slovak
0x041C Albanian
0x041D Swedish
0x041E Thai
0x041F Turkish
0x0420 Urdu
0x0421 Bahasa
0x0804 Simplified Chinese
0x0807 Swiss German
0x0809 U.K. English
0x080A Mexican Spanish
0x080C Belgian French
0x0810 Swiss Italian
0x0813 Belgian Dutch
0x0814 Norwegian - Nynorsk
0x0816 Portuguese
0x081A Serbo-Croatian (Cyrillic)
0x0C0C Canadian French
0x100C Swiss French

The character-set identifier can be one of the following values:

Value Character set
0 7-bit ASCII
932 Windows, Japan (Shift - JIS X-0208)
949 Windows, Korea (Shift - KSC 5601)
950 Windows, Taiwan (GB5)
1200 Unicode
1250 Windows, Latin-2 (Eastern European)
1251 Windows, Cyrillic
1252 Windows, Multilingual
1253 Windows, Greek
1254 Windows, Turkish
1255 Windows, Hebrew

1256 Windows, Arabic

Character set 1252 is typically given for files designed for the U.S. English version of Windows.

String Information Block

A string information block contains version information in the form of null-terminated strings.

The string information block has the name StringFileInfo but has no corresponding value. Instead, the
block contains one or more nested blocks. Each nested block corresponds to one pair of language and
character-set identifiers given in the variable information block.

Language-Specific Blocks

A language-specific block contains nested blocks that specify such information as the product name,
company name, copyrights, trademarks, operating system, and so on.

A language-specific block can contain any number of nested blocks. Each block corresponds to one of
the language and character-set identifier pairs given in the resource's variable information block. The
name of the language-specific block is a null-terminated string consisting of a concatenation of the
language and character-set identifiers. The block has no corresponding value.

Each nested block contains a name that identifies version-specific information and a string that
represents the value associated with the name. A nested block can have one of the following predefined
names and associated values:

Name Value
Comments Specifies additional information that should be displayed for diagnostic

purposes.
CompanyName Specifies the company that produced the file--for example, "Microsoft

Corporation" or "Standard Microsystems Corporation, Inc.". This string is
required.

FileDescription Specifies a file description to be presented to users. This string may be
displayed in a list box when the user is choosing files to install--for example,
"Keyboard Driver for AT-Style Keyboards" or "Microsoft Word for
Windows". This string is required.

FileVersion Specifies the version number of the file--for example, "3.10" or "5.00.RC2".
This string is required.

InternalName Specifies the internal name of the file, if one exists--for example, a module
name if the file is a dynamic-link library. If the file has no internal name, this
string should be the original filename, without extension. This string is
required.

LegalCopyright Specifies all copyright notices that apply to the file. This should include the
full text of all notices, legal symbols, copyright dates, and so on--for example,
"Copyright Microsoft Corporation 1990-1991". This string is optional.

LegalTrademarks Specifies all trademarks and registered trademarks that apply to the file. This
should include the full text of all notices, legal symbols, trademark numbers,
and so on--for example, "Windows(TM) is a trademark of Microsoft
Corporation". This string is optional.

OriginalFilename Specifies the original name of the file, not including a path. This information
enables an application to determine whether a file has been renamed by a user.
The format of the name depends on the file system for which the file was
created. This string is required.

PrivateBuild Specifies information about a private version of the file--for example, "Built
by TESTER1 on \TESTBED". This string should be present only if the
VS_FF_PRIVATEBUILD flag is set in the dwFileFlags member of the
VS_FIXEDFILEINFO structure of the root block.

ProductName Specifies the name of the product with which the file is distributed--for
example, "Microsoft Windows". This string is required.

ProductVersion Specifies the version of the product with which the file is distributed--for
example, "3.10" or "5.00.RC2". This string is required.

SpecialBuild Specifies how this version of the file differs from the standard version--for
example, "Private build for TESTER1 solving mouse problems on M250 and
M250E computers". This string should be present only if the
VS_FF_SPECIALBUILD flag is set in the dwFileFlags member of the
VS_FIXEDFILEINFO structure in the root block.

Symbol-File Format Overview (3.1)
This topic describes the format of symbol files created by Microsoft Symbol File Generator (MAPSYM).
Symbol files contain information that the Microsoft Windows 80386 Debugger (WDEB386.EXE) can use
to locate program modules and global data in an executable module.

The following topics describe the information in a symbol file:

Map Definitions
Segment Definitions
Symbol Definitions
Constant Definitions
Line Definitions

Map Definitions
Every symbol file contains a list that links two or more map definitions. Each map definition describes a
module in the executable file.

The first map definition in the chain starts at the beginning of the file, as follows:

/* File is loaded at pFileBuffer. */
pMapDef = (MAPDEF *)pFileBuffer;
Each map definition (except the last) contains a pointer to the next map definition in the chain. This
pointer is a 16-bit number that, when multiplied by 16, gives the byte offset of the next map definition in
the file, as follows:

pNextMapDef = (MAPDEF *)(pFileBuffer + (pMapDef->ppNextMap * 16));
The pointer in the last map definition is zero.

The MAPDEF structure for each map definition (except the last) has the following form:

typedef struct {
WORD ppNextMap;/* paragraph pointer to next map */
BYTE bFlags; /* symbol types*/
BYTE bReserved1; /* reserved */
WORD pSegEntry;/* segment entry-point value */
WORD cConsts; /* count of constants in map */
WORD pConstDef;/* pointer to constant chain */
WORD cSegs; /* count of segments in map */
WORD ppSegDef; /* paragraph pointer to first segment */
BYTE cbMaxSym; /* maximum symbol-name length */
BYTE cbModName;/* length of module name */
char achModName[1]; /* n bytes of module-name member */

} MAPDEF;
The last MAPDEF structure contains the version and release number for the version of Symbol File
Generator used to create the symbol file. It has the following form:

typedef struct {
WORD ppNextMap; /* always zero */
BYTE release; /* release number (minor version number) */
BYTE version; /* major version number */

} LAST_MAPDEF;
Following are the members of the MAPDEF structure:
ppNextMap Specifies the offset from the beginning of the file to the next MAPDEF structure in

the chain. Multiply the value of the ppNextMap member by 16 to obtain the offset.
bFlags Specifies the type of symbols in the file. The bFlags member can be one or more of

the following values:
Value Meaning
0 Contains 16-bit symbols.
1 Contains 32-bit symbols.
2 Includes alphabetic symbol table.

bReserved1 Reserved.
pSegEntry Specifies the segment of the entry point for the application.
cConsts Specifies the number of constants in this module.
pConstDef Specifies a 16-bit offset from the beginning of the file to an array of pointers to

constant definitions. This value is not multiplied by 16 to obtain the offset.
cSegs Specifies the number of segments in this module.
ppSegDef Specifies the offset from the beginning of the file to the first segment definition in

this module. Multiply the value of the ppSegDef member by 16 to obtain the offset.
cbMaxSym Specifies the length of the longest symbol name in this module.
cbModName Specifies the length of the module name.

achModName Specifies a variable-length array of characters containing the module name. The
name is not null-terminated.

Segment Definitions
Each module in the symbol file contains a linked list of segment definitions. To obtain a pointer to the first
segment definition, multiply the value of the ppSegDef member in the current MAPDEF structure by 16,
as follows:

/* File is loaded at pFileBuffer. */
pSegDef = (SEGDEF *)(pFileBuffer + (md.ppSegDef * 16));
Each segment definition contains a pointer to the next segment definition in the chain. This pointer is a 16-
bit number that, when multiplied by 16, gives the byte offset of the next segment definition in the file, as
follows:

pNextSegDef = (SEGDEF *)(pFileBuffer + (pSegDef->ppNextSeg * 16));
The pointer in the last segment definition is not zero. The linked list of segment definitions is circular--the
pointer in the last segment definition gives the offset of the first segment definition. You can use the cSegs
member in the MAPDEF structure to determine the number of segments in the module.

The SEGDEF structure for these lists has the following form:

typedef struct {
WORD ppNextSeg;/* paragraph pointer to next segment */
WORD cSymbols; /* count of symbols in list */
WORD pSymDef; /* offset of symbol chain*/
WORD wReserved1; /* reserved */
WORD wReserved2; /* reserved */
WORD wReserved3; /* reserved */
WORD wReserved4; /* reserved */
BYTE bFlags; /* symbol types*/
BYTE bReserved1; /* reserved */
WORD ppLineDef;/* offset of line-number record */
BYTE bReserved2; /* reserved */
BYTE bReserved3; /* reserved */
BYTE cbSegName;/* length of segment name*/
char achSegName[1]; /* n bytes of segment-name member */

} SEGDEF;
Following are the members of the SEGDEF structure:
ppNextSeg Specifies the offset from the beginning of the file to the next SEGDEF structure in

the chain. Multiply the value of the ppNextSeg member by 16 to obtain the offset.
cSymbols Specifies the number of symbols in this segment.
pSymDef Specifies the offset from the beginning of the segment definition to an array of

pointers to symbol definitions. This value is not multiplied by 16 to obtain the
offset. For more details, see Section 12.3, "Symbol Definitions."

wReserved1 Reserved.
wReserved2 Reserved.
wReserved3 Reserved.
wReserved4 Reserved.
bFlags Specifies the type of symbols in this segment. The bFlags member can be one or

more of the following values:
Value Meaning
0 Contains 16-bit symbols.
1 Contains 32-bit symbols.
2 Includes alphabetic symbol table.

bReserved1 Reserved.
ppLineDef Specifies the offset from the beginning of the file to the first line-number definition.

Multiply the value of the ppLineDef member by 16 to obtain the offset.
bReserved2 Reserved.
bReserved3 Reserved.
cbSegName Specifies the length of the segment name.

achSegName Specifies a variable-length array of characters containing the segment name. The
name is not null-terminated.

Symbol Definitions
Each segment definition contains a pointer to an array of pointers to symbol definitions.

All symbol files contain an array of pointers to symbols, sorted by symbol value. The bFlags member in
the SEGDEF structure indicates whether the segment has an alphabetic symbol table. To obtain a pointer
to the numerically ordered array of symbol-definition pointers, add the pSymDef pointer in the current
segment definition to the pointer to the current segment definition, as follows:

aSymPtr = (WORD *)((BYTE *)pSegDef + pSegDef->pSymDef);
In addition, symbol files created by MAPSYM versions 5.0 and later may contain an array of pointers
sorted alphabetically by symbol name. This array begins immediately after the numeric array:

aSymPtrAlpha = (WORD *)((BYTE *)pSegDef +
pSegDef->pSymDef + pSegDef->cSymbols * sizeof(WORD));

To obtain a pointer to each symbol definition, add the offset specified by each element in the array of
symbol-definition pointers to the pointer to the current segment definition, as follows:

for (n = 0; n < pSegDef->cSymbols; n++) {
pSymDef = (SYMDEF *)((BYTE *)pSegDef + aSymPtr[n]);
.
.
/* Use the symbol information here. */
.
.

}
The SYMDEF structure for these symbol definitions has the following form:

typedef struct {
WORD wSymVal; /* symbol address or constant */
BYTE cbSymName;/* length of symbol name */
char achSymName[1]; /* n bytes of symbol-name member */

} SYMDEF;
Following are the members of the SYMDEF structure:
wSymVal Specifies the address of the symbol or the value of a constant.
cbSymName Specifies the length of the symbol name.
achSymName Specifies a variable-length array of characters containing the segment name. The

name is not null-terminated.

The wSymVal member in the SYMDEF structure is a doubleword value for 32-bit symbols.

Constant Definitions
Each MAPDEF structure contains a pointer to an array of pointers to constant definitions. The format of a
constant definition is the same as that of a symbol definition (you can use the SYMDEF structure
described in Section 12.3, "Symbol Definitions").

The ppConstDef member in the current MAPDEF structure specifies the file offset of the array of
constant-definition pointers, and the offset to each constant definition can be calculated from each element
in the array, as follows:

aConstPtr = (WORD *)(pFileBuffer + md.ppConstDef);
for (n = 0; n < md.cConsts; n++) {

pConstDef = (SYMDEF *)(pFileBuffer + aConstPtr[n]);
.
.
/* Use the symbol information here. */
.
.

}

Line Definitions
Symbol files created by linking with the /LI option also contain line-number information. Each segment
definition contains a pointer to the first line definition in a circularly linked list. If the pointer in the
SEGDEF structure is zero, the segment has no line-number information.

LINEDEF Structure

To obtain a pointer to the first LINEDEF structure in the linked list, multiply the value of the ppLineDef
member in the current SEGDEF structure by 16, as follows:

pLineDef = (LINEDEF *)(pBuf + (pSegDef->ppLineDef * 16));
Each LINEDEF structure (except the last) contains a pointer to the next LINEDEF structure in the linked
list. The pointer in the last LINEDEF structure is zero.

The LINEDEF structure for each line definition has the following form:

typedef struct {
WORD ppNextLine; /* ptr to next linedef (0 if last) */
WORD wReserved1; /* reserved */
WORD pLines;/* pointer to line numbers */
WORD wReserved2; /* reserved */
int cLines;/* count of line numbers */
BYTE cbFileName; /* filename length */
char achFileName[1]; /* filename (contains lines) */

} LINEDEF;
Following are the members of the LINEDEF structure:
ppNextLine Specifies the offset from the beginning of the file to the next LINEDEF structure in

the chain. Multiply the value of the ppNextLine member by 16 to obtain the offset.
If this member is zero, there is no line-number information for this segment.

wReserved1 Reserved.
pLines Specifies the offset from the beginning of the current LINEDEF structure to the

array of line-information structures.
wReserved2 Reserved.
cLines Specifies the number of lines in the line-information array.
cbFileName Specifies the number of characters in the name of the source file. This file was

compiled and linked to produce the map file.
achFileName Specifies a variable-length array of characters containing the name of the source file.

The name is not null-terminated.

LINEINF Structure

To obtain a pointer to the first LINEINF structure in the array for the line-definition structure, add the
pLines pointer in the current LINEDEF structure to the current LINEDEF pointer, as follows:

pLines = (LINEINF *)((BYTE *)pLineDef + pLineDef->pLines);
Each element in the line-information array contains the offset into the source file for a line and the offset
into the executable file for the code resulting from the source line.

The LINEINF structure has the following form:

typedef struct {
WORD wCodeOffset; /* executable offset */
WORD dwFileOffset; /* source offset*/

} LINEINF;
Following are the members of the LINEINF structure:
wCodeOffset Specifies the offset in this segment to the code resulting from compiling this line in

the source file.
dwFileOffset Specifies the offset to this line in the source file.

Write File Format
This topic describes the binary file format used by Microsoft Write. A Write binary file contains
information about file content, text and pictures (including object-linking-and-embedding, or OLE,
objects), and formatting.

Write-File Header

The Write-file header describes the content of the file. It contains data, pointers to subdivisions of the
formatting section, and information about the length of the file. The file header has the following form:

Word Name Description
0 wIdent Must be 0137061 octal (or 0137062 octal if the file contains OLE objects)
1 dty Must be zero
2 wTool Must be 0125400 octal
3 Reserved; must be zero
4 Reserved; must be zero
5 Reserved; must be zero
6 Reserved; must be zero
7-8 fcMac Number of bytes of actual text plus 128, the bytes in one sector (low-order word

first)
9 pnPara Page number for start of paragraph information
10 pnFntb Page number of footnote table (FNTB) or pnSep, if none
11 pnSep Page number of section property (SEP) or pnSetb, if none
12 pnSetb Page number of section table (SETB) or pnPgtb, if none
13 pnPgtb Page number of page table (PGTB) or pnFfntb, if none
14 pnFfntb Page number of font face-name table (FFNTB) or pnMac, if none
15-47 szSsht Reserved for Microsoft Word compatibility
48 pnMac Count of pages in whole file (last page number plus 1)

In the preceding list, a "page number" means an offset in 128-byte blocks from the start of the file. For
example, if pnPara equals 10, the paragraph information is at offset 10*128 = 1280 in the file.

The starting page number of character information (pnChar) is not stored but is computable, as follows:

pnChar = (fcMac + 127) / 128

Examining the value of word 48 of the header is a good way to distinguish Write files from Microsoft
Word files. If pnMac equals zero, the file originated in Word. Any other value identifies a Write file.

Text and Pictures

After the header comes information about text and pictures. This information constitutes a separate
section of the file.

Text

The text of the Write file starts at word 64 (page 1). Write uses the Windows character set (except for
the pictures in the file) as well as the following special characters:

ASCII character codes 13, 10 (carriage return, linefeed) for paragraph ends. No other occurrences
of these two characters are allowed.

ASCII character code 12 for explicit page breaks.
ASCII character code 9 (normal) for tab characters.

Other line-break or wordwrap information is not stored.

Pictures

Pictures (including OLE objects) are stored as a sequence of bytes in the text stream. These bytes can be
identified as picture information by examining their paragraph formatting. One picture is exactly one
paragraph. Paragraphs that are pictures have a special bit set in their paragraph property (PAP) structure.
For more information on the PAP structure, see Section 8.3, "Formatting."

Each picture consists of a descriptive header followed by the data that makes up the picture. The header
for OLE objects is different from the one used for pictures. The picture header has the following form:

Byte Name Description

0-7 mfp Windows METAFILEPICT structure (hMF member undefined)
8-9 dxaOffset Offset of picture from left margin, in twips (1/1440 inch)
10-11 dxaSize Horizontal size, in twips
12-13 dyaSize Vertical size, in twips
14-15 cbOldSize Number of following bytes (actual metafile or bitmap bits); set to zero
16-29 bm Additional information for bitmaps only
30-31 cbHeader Number of bytes in this header
32-35 cbSize Number of following bytes (actual metafile or bitmap bits), replacing

cbOldSize for new files
36-37 mx Scaling factor (x)
38-39 my Scaling factor (y)
40–? cbHeader Picture contents, through cbHeader+cbSize–1

The mm member (bytes 0-1) of the METAFILEPICT structure specifies the mapping mode used to draw
the picture. The last set of bytes will be bitmap bits if the value of the mm member is 0xE3. This is a
special value used only in Write. Otherwise, the bytes will be metafile contents.

If the picture has never been rescaled with the Size Picture command in Write, the scaling factors in each
direction will be 1000 (decimal). If the picture has been resized, the scaling factor will be the percentage of
the original size that the picture is now, relative to 1000 (100 per cent).

For information about the METAFILEPICT structure and bitmaps, see the Microsoft Windows Guide to
Programming and the Microsoft Windows Programmer's Reference, Volumes 1 and 3.

The descriptive header for OLE objects is similar to the one used for pictures. The OLE object header has
the following form:

Byte Name Description
0-1 mm Must be 0xE4
2-5 Not used
6-7 objectType Type: 1=static, 2=embedded, 3=link
8-9 dxaOffset Offset of picture from left margin, in twips (1/1440 inch)
10-11 dxaSize Horizontal size, in twips
12-13 dyaSize Vertical size, in twips
14-15 Not used
16-19 dwDataSize Number of bytes in the object data that follows the header
20-23 Not used
24-27 dwObjNum Hexadecimal number that, when converted to an 8-digit string,

represents the object's unique name
28-29 Not used
30-31 cbHeader Number of bytes in this header
32-35 Not used
36-37 mx Scaling factor (x)
38-39 my Scaling factor (y)
40–? cbHeader Object contents, through cbHeader+dwDataSize–1

The scaling factors for OLE objects work the same way as they do with pictures.

Formatting

Write files contain both character and paragraph formatting information. There can be no gaps in either;
each must begin with the first text character (byte 128) and continue through the last. The format
descriptors (FODs) for the first and last paragraph must, therefore, have the value of fcLim equal to the
value of fcMac, as defined in the header section.

There is a difference between paragraph and character FODs. A character FOD may describe any
number of consecutive characters with the same formatting. However, there must be exactly one
paragraph FOD for each text paragraph. In either case, it is advisable to have multiple FODs point to the
same formatting properties (FPROPs) on a given page because it saves space in the file. No FOD may
point off its page.

Characters and Paragraphs

Both the character and paragraph sections are structured as a set of pages. Each page contains an array
of FODs and a group of FPROPs, both of which are described later in this section. Following is the
format of a page:

Byte Name Description
0-3 fcFirst Byte number of first character covered by this page of formatting

information; equals 128 for first character in the text (low-order byte first)
4–n rgfod Array of FODs
n+1-126 grpfprop Group of FPROPs
127 cfod Number of FODs on this page

An FOD is fixed in size. It contains the byte offset to the corresponding FPROP. Following is the structure
of an FOD:

Word Name Description
0-1 fcLim Byte number after last character covered by this FOD
2 bfprop Byte offset from beginning of FOD array to corresponding FPROP for these

characters or this paragraph

An FPROP is variable in size. It contains the prefix for a character property (CHP) or paragraph property
(PAP), both of which are described later in this section. Following is the structure of an FPROP:

Byte Name Description
0 cch Number of bytes in this FPROP
1–n rgchProp Prefix for a CHP (for characters) or a PAP (for paragraphs) sufficient to

include all bits that differ from the default CHP or PAP

Following is the format of a CHP:

Byte Bit Name Description
0 Reserved; ignored by Write
1 0 fBold Bold characters

1 fItalic Italic characters
2-7 ftc Font code (low bits); index into the FFNTB

2 hps Size of font, in half points (standard is 24)
3 0 fUline Underlined characters

1 fStrike Reserved; ignored by Write
2 fDline Reserved; ignored by Write
3 fOverset Reserved; ignored by Write
4-5 csm Reserved; ignored by Write
6 fSpecial Set for "(page)" only
7 Reserved; ignored by Write

4 0-2 ftcXtra Font code (high-order bits, concatenated with ftc)
3 fOutline Reserved; ignored by Write
4 fShadow Reserved; ignored by Write
5-7 Reserved; ignored by Write

5 hpsPos Position: 0=normal, 1-127=superscript, 128-255=subscript

If the user doesn't select any special character properties, the CHP is filled with the following default
values:

Byte Value
0 1
2 24
3-5 0

Each character FPROP must, therefore, have a count of characters (cch) greater than or equal to 1.

Each PAP can contain up to 14 tab descriptors (TBDs), which are described later in this section. Following
is the structure of a PAP:

Byte Bit Name Description
0 Reserved; must be zero
1 0-1 jc Justification: 0=left, 1=center, 2=right, 3=both

2-7 Reserved; must be zero
2 Reserved; must be zero
3 Reserved; must be zero
4-5 dxaRight Right indent, in 20ths of a point
6-7 dxaLeft Left indent, in 20ths of a point
8-9 dxaLeft1 First-line left indent (relative to dxaLeft)
10-11 dyaLine Interline spacing (standard is 240)
12-13 dyaBefore Reserved; ignored by Write (standard is zero)
14-15 dyaAfter Reserved; ignored by Write (standard is zero)
16 0 rhcPage 0=header, 1=footer

1-2 Reserved; 0=normal paragraph, nonzero=header or footer paragraph
3 rhcFirst Start of printing: 1=print on first page, 0=do not print on first page
4 fGraphics Paragraph type: 1=picture, 0=text
5-7 Reserved; must be zero

17-21 Reserved; must be zero
22-78 Tab descriptors (up to 14)

Following is the format of a TBD:

Byte Bit Name Description
0-1 dxa Indent from left margin of tab stop, in 20ths of a point
2 0-2 jcTab Tab type: 0=normal tabs, 3=decimal tabs

3-5 tlc Reserved; ignored by Write
6-7 Reserved; must be zero

3 chAlign Reserved; ignored by Write

If the user doesn't select any special paragraph properties, the PAP is filled with the following default
values:

Byte Value
0 61
2 30
10-11 240 (word)
12-78 0

Each paragraph FPROP must have a count of characters (cch) greater than or equal to 1.

Footnotes

Write documents do not have footnote tables (FNTBs), so pnFntb is always equal to pnSep. In fact, all
their header and footer paragraphs appear at the beginning of the document before any normal
paragraphs. When reading files created by Word, Write recognizes only those headers and footers that
appear at the beginning of the document; it treats all others as normal text.

Sections

A Write document has only one section. If the section properties of a Write document differ from the
defaults, the document contains a section property (SEP) section and a section table (SETB) section. If
not, then neither section is present and pnSep and pnSetb are both equal to pnPgtb.

Following is the format of an SEP:

Byte Name Description
0 cch Count of bytes used, excluding this byte (all properties at byte positions greater

than cch are set to their default values)
1-2 Reserved; must be zero
3-4 yaMac Page length, in 20ths of a point (default is 11*1440=15840)
5-6 xaMac Page width, in 20ths of a point (default is 8.5*1440=12240)
7-8 Reserved; must be 0xFFFF
9-10 yaTop Top margin, in 20ths of a point (default is 1440)
11-12 dyaText Height of text, in 20ths of a point (default is 9*1440=12960)
13-14 xaLeft Left margin, in 20ths of a point (default is 1.25*1440=1800)

15-16 dxaText Width of text area, in 20ths of a point (default is 6*1440=8640)

The page length (yaMac) is equal to yaTop+dyaText. The page width (xaMac) is equal to xaLeft+
dxaText+(right margin, not stored).

If all the above properties are set to their defaults, no SEP or SETB is needed. Otherwise, the count of
characters (cch) is greater than or equal to 1 and less than or equal to 16.

The SETB section contains an array of section descriptors (SEDs), described later in this section.
Following is the structure of an SETB:

Word Name Description
0 csed Number of sections (always 2 for Write documents)
1 csedMax Undefined
2–n rgsed Array of SEDs plus zero-padding to fill the sector

Following is the structure of an SED:

Word Name Description
0-1 cp Byte address of first character following section
2 fn Undefined
3-4 fcSep Byte address of associated SEP

A Write document always has exactly two SED entries. The cp value of the first entry indicates that it
affects all the characters in the document. The fcSep value of the first entry points to the one SEP in the
file. The second SED entry is a dummy with fcSep set to 0xFFFFFFFF.

The PGTB section (optional) is on the page immediately after the SEP section.

Note: The term "page" used in the rest of this section refers to printed pages of a Write document, not
128-byte "pages" of a disk file.

The page table (PGTB) contains an array of page descriptors (PGDs), which are described later in this
section. Following is the structure of a PGTB:

Word Name Description
0 cpgd Number of PGDs (1 or more)
1 cpgdMac Undefined
2–n rgpgd Array of PGDs plus zero padding to fill the sector

Following is the structure of a PGD:

Word Name Description
0 pgn Page number in printed Word documents
1-2 cpMin Byte address of first character on printed page

Font Table

The font face-name table (FFNTB) contains the number of font face names (FFNs) and a list of FFNs.
Following is the structure of an FFNTB:

Byte Name Description
0-1 cffn Number of FFNs
2–n grpffn List of FFNs

Following is the structure of an FFN:

Byte Name Description
0-1 cbFfn Number of bytes following in this FFN (not including these 2 bytes)
2 ffid Font family identifier (see below)
3–(cbffn+2) szFfn Font name (variable length; null-terminated)

A cbFfn value of 0xFFFF means that the next FFN entry will be found at the start of the next 128-byte
page. A cbFfn value of zero means that there are no more FFN entries in the table.

Possible values for ffid are FF_DONTCARE, FF_ROMAN, FF_SWISS, FF_MODERN, FF_SCRIPT, and
FF_DECORATIVE. These constants are defined in WINDOWS.H. Additional values may be added to the
list in future versions of Windows.

Calendar File Format
This topic describes the binary file format used by Microsoft Windows Calendar (CALENDAR.EXE). A
Calendar binary file contains information about file content, dates, days, and appointments.

Calendar-File Header

The first 8 bytes of a Calendar file are a character array identifying the file as a Calendar file. Following
are the contents of the array:

'C' + 'r' = b5
'A' + 'a' = a2
'L' + 'd' = b0
'E' + 'n' = b3
'N' + 'e' = b3
'D' + 'l' = b0
'A' + 'a' = a2
'R' + 'c' = b5
The next 2 bytes (cDateDescriptors) contain the integer count of dates described in the file.

The next 12 bytes contain six 2-byte fields of information that is global to the entire file. These variables
are normally set by the user through the Alarm Controls and Options Day dialog boxes. The header
information has the following form:

WORD MinEarlyRing
BOOL fSound
intinterval
intmininterval
BOOL f24HourFormat
intStartTime
Following are the members in the header structure:
MinEarlyRing Specifies an early ring, in minutes.
fSound Specifies whether alarms should be audible.
interval Specifies the interval between appointments: 0 = 15 minutes, 1 = 30 minutes, 2 =

60 minutes.
mininterval Specifies the interval, in minutes.
f24HourFormat Specifies the time format: nonzero=24-hour format.
StartTime Specifies the starting time in day mode--that is, the time that normally appears first

in the display, in minutes past midnight.

The rest of the first 64 bytes are reserved.

Date Descriptors

A date-descriptor array appears next. Each entry in the array describes one day. The number of entries in
the array is cDateDescriptors (described in the preceding section). Each element in the array consists of
12 bytes, in six 2-byte fields. The date-descriptor array has the following form:

unsigned Date
int fMarked
int cAlarms
unsigned FileBlockOffset
int reserved
unsigned reserved
Following are the members in the date-descriptor array:
Date Specifies the date, in days past 1/1/1980.
fMarked Specifies which mark(s) are set for the date: box = 128, parentheses = 256, circle =

512, cross = 1024, underscore = 2048.
cAlarms Specifies the number of alarms set for the day.
FileBlockOffset Specifies the file offset, in 64-byte blocks, to the day's information. Only the low

15 bits are used (the high bit will be zero). Thus, if this offset is 6, the day's
information is stored at byte 6*64 in the file.

reserved Reserved; must be 0xFFF.

reserved Reserved; must be 0xFFF.

Day-Specific Information

All day information is stored after the date-descriptor array, on even 64-byte boundaries. The day-
information structure has the following form:

unsigned reserved
unsigned Date
unsigned reserved
unsigned cbNotes
unsigned cbAppointment
char Notes[cbNotes]
BYTE ApptInfo[]
Following are the members in the day-information structure:
reserved Reserved; must be zero.
Date Specifies the date, in days past 1/1/1980.
reserved Reserved; must be 1.
cbNotes Specifies the number of bytes of note information, including null bytes. This

information appears in the note array below the appointment list.
cbAppointment Specifies the count of bytes of appointment information.
Notes Contains the text of the note.
ApptInfo Contains the block of appointments.

Appointment-Specific Information

The information in the appointment block is stored as a list of single appointments. Each appointment
consists of a structure similar to the following:

struct {
char cb;
char flags;
int time;
char szApptDesc[];

};
Following are the members in each appointment structure:
cb Specifies the size, in bytes, of the structure containing the appointment. The structure

address of the next appointment is the current appointment plus the value of the cb
member.

flags Contains various flags. This member can have one or more of the following values:
Value Meaning
1 Alarm will go off at the specified time of the appointment.
2 Appointment is a special time.

time Specifies the number of minutes past midnight.
szApptDesc Contains a null-terminated string consisting of text associated with an appointment.

Installable Drivers
This topic describes installable drivers and the installable-driver interface for the Microsoft Windows
operating system. Topics discussed in this topic include: the common entry point for installable drivers,
messages used by the common entry point, actions that an installable driver should take in response to
these messages, and functions available for the installable driver interface.

About Installable Drivers

An installable driver is a Windows dynamic-link library (DLL) that a Windows application (or another
Windows DLL) can open, enable, query, disable, and close. An application can perform these operations
by calling the following functions:

Function Description
CloseDriver Closes an installable driver.
GetDriverInfo Retrieves installable-driver data.
GetDriverModuleHandle Retrieves an installable driver's module handle.
GetNextDriver Enumerates installed drivers.
OpenDriver Opens an installable driver.
SendDriverMessage Sends a message to an installable driver.

When an application calls the OpenDriver, SendDriverMessage, or CloseDriver function, Windows
processes the call and issues one or more of the following driver messages:

Message Description
DRV_CLOSE Notifies an installable driver that Windows will decrement the use

count for the driver and send a DRV_FREE message if the use count
reaches zero.

DRV_CONFIGURE Notifies an installable driver that it should display a custom-
configuration dialog box. (This message should only be sent if the
driver returns a nonzero value when the DRV_QUERYCONFIGURE
message is processed.)

DRV_DISABLE Notifies an installable driver that the memory that it has allocated is
about to be freed.

DRV_ENABLE Notifies an installable driver that it has been loaded or reloaded or that
Windows has been enabled.

DRV_FREE Notifies an installable driver that it will be discarded.
DRV_INSTALL Notifies an installable driver that it has been successfully installed.
DRV_LOAD Notifies an installable driver that it has been successfully loaded.
DRV_OPEN Notifies an installable driver that it is about to be opened.
DRV_POWER Notifies an installable driver that the power source for the device is

about to be turned off or on.
DRV_QUERYCONFIGURE Queries an installable driver about whether it supports the

DRV_CONFIGURE message and can display a private configuration
dialog box.

DRV_REMOVE Notifies an installable driver that it is about to be removed from the
system.

These messages, which are defined in the Windows header file (WINDOWS.H), are processed by the
main routine in an installable driver. This routine is called the DriverProc function.

Some of the preceding messages should be sent by Windows only when one of the installable driver
functions is called by an application. The circumstances under which these messages are sent are described
in the following list:

Message Description
DRV_CLOSE Issued by Windows when an application calls the CloseDriver function.
DRV_DISABLE Issued prior to exiting Windows and returning to MS-DOS or when the driver is

freed.
DRV_ENABLE Issued when returning to Windows from MS-DOS or the first time the installable

driver is loaded.
DRV_FREE Issued by Windows after an application calls the CloseDriver function and the use

count is decremented to zero.

DRV_LOAD Issued by Windows after the first OpenDriver call is made for a particular
installable driver.

The remaining messages can be sent by an application to an installable driver by calling the
SendDriverMessage function.

Creating an Installable Driver

An installable driver is a Windows dynamic-link library (DLL) that supports a special entry point, the
DriverProc function. This function processes the driver messages described in the previous section. This
function may also process private driver messages. These messages can be assigned values ranging from
DRV_RESERVED to DRV_USER (two constants that appear in WINDOWS.H).

The following example shows the basic structure of the DriverProc function:

LRESULT CALLBACK* DriverProc (DWORD dwDriverIdentifier,
HDRVR hDriver,
UINT wMessage,
LPARAM lParam1,
LPARAM lParam2)
{
DWORD dwRes = 0L;
switch (wMessage)

{
case DRV_LOAD:
/* Sent when the driver is loaded. This is always */
/* the first message received by a driver.*/
dwRes = 1L;/* Return 0L to fail.*/
break;
case DRV_FREE:
/* Sent when the driver is about to be discarded. */
/* This is the last message a driver receives */
/* before it is freed.*/
dwRes = 1L;/* Return value is ignored. */
break;
case DRV_OPEN:
/* Sent when the driver is opened. */
dwRes = 1L;/* Return 0L to fail.*/
/* This value is subsequently used */
/* for dwDriverIdentifier.*/
break;
case DRV_CLOSE:
/* Sent when the driver is closed. Drivers are */
/* unloaded when the open count reaches zero. */
dwRes = 1L;/* Return 0L to fail.*/
break;
case DRV_ENABLE:
/* Sent when the driver is loaded or reloaded and */
/* when Windows is enabled. Hook or rehook*/
/* interrupts and initialize hardware. Expect the */

/* driver to be in memory only between the enable */
/* and disable messages. */
dwRes = 1L;/* Return value is ignored. */
break;
case DRV_DISABLE:
/* Sent before the driver is freed or when Windows */
/* is disabled. Unhook interrupts and place */
/* peripherals in an inactive state. */
dwRes = 1L;/* Return value is ignored. */
break;
case DRV_INSTALL:
/* Sent when the driver is installed.*/
dwRes = DRV_OK; /* Can also return DRV_CANCEL */
/* and DRV_RESTART. */
break;
case DRV_REMOVE:
/* Sent when the driver is removed. */
dwRes = 1L;/* Return value is ignored. */
break;
case DRV_QUERYCONFIGURE:
/* Sent to determine if the driver can be */
/* configured. */
dwRes = 0L;/* Zero indicates configuration*/
/* NOT supported. */
break;
case DRV_CONFIGURE:
/* Sent to display the custom-configuration */
/* dialog box for the driver. */
dwRes = DRV_OK; /* Can also return DRV_CANCEL */
/* and DRV_RESTART. */
break;
default:
/* Process any messages not explicitly trapped.*/
return DefDriverProc (dwDriverIdentifier, hDriver,
wMessage, lParam1, lParam2);
}

return dwRes;
}
Opening an Installable Driver

An application opens an installable driver by calling the OpenDriver function. When an application calls
this function, Windows adds the driver name to an internal list of installed drivers. (When the
application calls the CloseDriver function, Windows deletes the corresponding driver name from this
list.)

When an application calls the OpenDriver function to open the first instance of a driver, Windows issues
the DRV_LOAD, DRV_ENABLE, and DRV_OPEN messages, in that order. (Subsequent calls to
OpenDriver cause only DRV_OPEN to be sent.) When the driver processes the DRV_LOAD message,
it reads the configuration settings (if any exist) from the corresponding entry in the SYSTEM.INI file
and configures the driver and any associated hardware. In addition to configuring the driver and
associated hardware, the driver also allocates required memory.

After processing the DRV_LOAD message, the driver returns a nonzero value if it loads successfully. If
it returns zero, Windows immediately unloads the driver (without issuing a DRV_FREE message).

When the driver processes the DRV_ENABLE message, it hooks or chains required interrupts and
prepares associated peripherals.

When the driver processes the DRV_OPEN message, it allocates memory required by a single instance
of the driver.

Closing an Installable Driver

An application closes an installable driver by calling the CloseDriver function. When the application
calls this function, Windows deletes the corresponding driver name from an internal list.

When an application calls the CloseDriver function to close the last instance of a driver, Windows issues
the DRV_CLOSE, DRV_DISABLE, and DRV_FREE messages, in that order. (When the application is
not closing the last instance of the driver, only DRV_CLOSE is sent.) When the driver processes the
DRV_CLOSE message, it frees any resources that were allocated when the driver was opened and
returns a nonzero value. If the driver returns a value of zero, closing fails.

When the driver processes the DRV_DISABLE message, it places any associated peripherals in an
inactive state and unhooks all interrupts.

When the driver processes the DRV_FREE message, it frees any resources that are still allocated.

Configuring an Installable Driver

Many installable drivers support a private configuration dialog box that lets the user configure the driver
and associated hardware. To determine whether a driver supports such a dialog box, an application calls
the SendDriverMessage function and issues the DRV_QUERYCONFIGURE message. If the driver is
configurable, this function returns a nonzero value. If it is not configurable, this function returns zero. If
the SendDriverMessage function returns a nonzero value, the application displays the configuration
dialog box by calling the SendDriverMessage function a second time and sending the
DRV_CONFIGURE message.

If the driver supports a private configuration dialog box, it should display the dialog box and process
user input when it receives the DRV_CONFIGURE message. Typically, any configuration data
specified by the user is maintained in the [drivers] section of the Windows SYSTEM.INI file.

Enumerating Instances of an Installable Driver

An application can retrieve a handle identifying either the first instance of an installable driver or each
instance of the driver by calling the GetNextDriver function.

Updating the SYSTEM.INI File

Upon installation, the [drivers] section of the SYSTEM.INI file contains an entry for each installable
driver. This entry has the following form:

entry=driver_filename optional_information

An application can open a driver by using its filename or its entry. If a fully qualified path is not
specified with the filename, the driver file must exist on the standard Windows search path. The driver
interface searches for the driver as follows:

If an application specifies a section name, that section of SYSTEM.INI is searched instead of the
[drivers] section.

If an application specifies an entry in the search section, the driver with a filename corresponding
to the entry is opened.

If the string specified by the application does not match an entry in the search section, the system
assumes the string is a driver filename.

The optional information (optional_information) following the driver name (driver_filename) lists
information a driver needs after installation. A driver maintains configuration information here if the
information is limited or if it needs to be associated with the entry. For example, two prototype drivers
could be installed in the system. The first driver could be associated with serial port one, and the second

driver could be associated with serial port two. The [drivers] section of the SYSTEM.INI might show this
association in the following way:

[drivers]
prototype1=proto.drv com1
prototype2=proto.drv com2
If your driver uses more extensive configuration information, it can create a section in the SYSTEM.INI
file reserved for its parameters. For example, the installable driver PROTO.DRV might create the
following [proto.drv] section:

[proto.drv]
port=230
int=3
When reserving a section for your driver, use the filename of your driver to identify the section. A driver
usually configures and maintains this section of information when it displays the configuration dialog box
used for the DRV_CONFIGURE message.

If you want your installable driver loaded when Windows starts, place its filename or an alias from the
[drivers] section of the SYSTEM.INI file on the drivers= line of the [boot] section found in the SYSTEM.
INI file. Windows loads these drivers at startup and sends DRV_LOAD and DRV_ENABLE messages to
them but does not open them. This makes it possible for you to install drivers that remain resident while
Windows is enabled.

Contents of the OEMSETUP.INF Files

The OEMSETUP.INF file uses the same format as the Windows 3.0 SETUP.INF file with the exception
of a new [Installable.Drivers] section. This section identifies the names and characteristics of each driver
on the disk. Each driver entry has the following form:

entry=disk:filename, type(s), description, VxD(s), default_params

Note that the elements that compose a driver entry are separated by commas. Comments are delimited
by semicolons; all characters following a semicolon are considered part of the comment string.

Following are the elements that compose a driver entry:

Element Description
entry Identifies the driver. This string must be unique.
disk Specifies the disk number for the disk that contains the driver. This entry

corresponds to an entry in the [disks] section of SETUP.INF.
filename Specifies the name of the file that contains the driver.
type(s) Specifies the driver type.
description Describes the driver. This string appears in the dialog box displayed by the Drivers

Control Panel application.
VxDs Identifies any VxDs required by the driver. (For a description of the manner in

which multiple VxD names are parsed, see the Microsoft Windows Virtual Device
Adaptation Guide.)

default_params Specifies default parameters for the driver. Additional options are appended to the
driver entry in the [drivers] section of SYSTEM.INI.

If you create an OEMSETUP.INF file to distribute with your driver, it must include the [disks] and
[Installable.Drivers] sections. For example, the following entries could be used in an OEMSETUP.INF file
for a prototype installable driver:

[disks]
; Numeric mappings for disk titles
1 = ., "Sample Distribution Disk 1"
[Installable.Drivers]
; The installable drivers section is unique to the drivers application.
; It is parsed with comma-separated fields.
prototype=1:proto.drv,"ampl,freq","Sample scope driver","1:VXDA.386"

The Drivers Control Panel application may need to copy files that support your driver. If any of these files
are not VxDs, include a section in the SYSTEM.INI file listing them. Use the entry (that is, prototype) as
the name of this new section. For example, if the prototype driver has an additional file called
POWERSRC.DLL, include the following section:

[prototype]
; Keyname sections can be created for dependent files. All
; dependent files will be copied directly to the system directory.
1:POWERSRC.DLL
Drivers Control Panel Application

The Drivers Control Panel application installs, configures, and removes drivers. When started, the
Drivers Control Panel application displays the following dialog box.The Installed Drivers list box displays the description strings of the installed drivers. The installed drivers

are determined by examining the [drivers] and [mci] sections of the SYSTEM.INI file. The description
strings are cached in the [drivers.description] section of the CONTROL.INI file to reduce delays in finding
and loading them. If a description string does not match an installed driver, the application searches the
MMSETUP.INF file and then the header of the driver file to obtain the description string. A scroll bar
appears in the list box if there are more drivers than can be displayed.
The following buttons are found in the Control Panel dialog box:

Button Result when chosen
OK Exits the dialog box and makes any changes permanent.
Cancel Exits the dialog box. The application ignores any requests to install or remove drivers

made during the session. Any configuration changes made during the session are
retained because they are done by the driver.

Remove Removes the information about the selected driver from the SYSTEM.INI file. When
removing drivers, the Control Panel application sends the DRV_REMOVE message to
the driver if there is only one entry in the SYSTEM.INI file for it.

Setup Applies only to configurable drivers. When the user selects a driver in the list box, the
application opens the driver and sends it the DRV_QUERYCONFIGURE message. If a
driver responds that it can be configured--that is, it supports a configuration dialog box
to set such parameters as the COM port, the interrupt number, or input and output (I/O)
port address--then the application enables the Setup button. If the user chooses the
Setup button, the application sends a DRV_CONFIGURE message to the driver.

Add Drivers Installs a new driver.
Default Redisplays the list of files from the MMSETUP.INF file. Note that the Default button is

active when the OEM drivers are displayed.

Installing a Driver

When the user selects a driver from the Installed Drivers list box, the Add Driver dialog box closes. The
new driver becomes selected in the list box when the user chooses the OK button. The Drivers Control
Panel application sends the DRV_INSTALL message to the driver if there is only one entry in the
SYSTEM.INI file for it. (A driver receives the DRV_INSTALL message for its initial installation.) The
Drivers Control Panel application can install up to four wave devices, four musical instrument digital
interface (MIDI) devices, and ten media control interface (MCI) devices of the same type.

If the selected driver is not an installable driver, the Driver Control Panel applications displays a
"Cannot Install" message. If the user chooses the Cancel button, the dialog box closes with no changes
made.

Using Drivers with the Drivers Control Panel Application

During installation, the Drivers Control Panel application opens the driver and obtains the description
line, originally defined in the module-definition (.DEF) file, from the driver header. The application uses
the description line to construct the settings for the [drivers] section. The description line in the .DEF
file should have the following form:

DESCRIPTION type(s):text

Following are the parameters in the description line:

Parameter Meaning
type(s) Type of driver used for the entry in the SYSTEM.INI file. Multiple entries are separated

by commas.
text Text that describes the driver. This will be displayed in the Drivers Control Panel

application.

For example, the header file for an oscilloscope driver (OSCI.DRV) can use the following description line:

DESCRIPTION 'FREQ,AMPL:Oscilloscope frequency and amplitude drivers.'
Based on this definition, if both drivers are installed (that is, if the Drivers Control Panel application
displays a selection for both FREQ and AMPL), the Drivers Control Panel application creates the
following settings in the SYSTEM.INI file:

[drivers]
FREQ = osci.drv
AMPL = osci.drv
If you want your driver added to a named section of the SYSTEM.INI file, you can add the section name
to the type of driver. For example, the following description line specifies that a voltmeter driver be added
to the [RCC] section:

DESCRIPTION 'VOLTMETER[RCC]:RCC voltmeter driver.'
Creating a Custom Configuration Application

The Drivers Control Panel application provides a convenient interface for installing drivers. You should
use this interface for configuring features that are hardware- or driver-dependent.

If your driver configures system features--those features that are hardware- and device-independent--
you should create a custom Control Panel application.

BootApp (3.1)
void BootApp(hBlock, hFile)
HANDLE hBlock; /* handle of information block */
HANDLE hFile; /* handle of executable
file *
/

The BootApp function loads the given application.

Parameter Description
hBlock Identifies the selector for the segment that contains the information block in the

Windows (new-style) header.
hFile Identifies the executable file that contains the application. The hFile parameter must be a

valid MS-DOS file handle.

Returns
This function does not return a value.

Comments
The information block in the Windows header that is identified by the hBlock parameter specifies the
linker version number, the length of various tables of data, offsets to those tables, heap and stack sizes, and
so on.

The BootApp function is one of three functions required for self-loading Windows applications. The
application developer must provide the code for this function and store a pointer to the function at offset
0x0004 in the application's loader code and data table.

The Windows kernel calls this function after loading the application's executable header and data tables.

EntryAddrProc (3.1)
DWORD EntryAddrProc(hBlock, wEntryNo)
HANDLE hBlock; /* selector for information block */
WORD wEntryNo; /* entry-table
procedure index *
/

The EntryAddrProc function retrieves an address for the specified procedure.

Parameter Description
hBlock Specifies the selector for the segment that contains the information block in the

Windows (new-style) header.
wEntryNo Specifies the index to the entry in an entry table that identifies the procedure for which

the function should return an address.

Returns
The return value is the address of the specified procedure if the function is successful. Otherwise, the
return value is zero.

Comments
The wEntryNo parameter is also known as the procedure's ordinal number.

The EntryAddrProc function is one of three functions supplied by the Windows kernel. The kernel loads a
pointer to this function at offset 0x0014 in the loader's code and data table. The kernel loads the pointer
before calling the private startup procedure (the BootApp function).

EntryAddrProc is called from the LoadAppSeg function, which the application developer must supply.

ExitProc (3.1)
void ExitProc(hBlock)
HANDLE hBlock; /* selector of information block */

The ExitProc function closes a self-loading application.

Parameter Description
hBlock Specifies the selector for the segment that contains the information block in the

Windows (new-style) header.

Returns
This function does not return a value.

Comments
The Windows header information block identified by the hBlock parameter specifies the linker version
number, the length of various tables of data, offsets to those tables, heap and stack sizes, and so on.

The ExitProc function is one of three functions required for self-loading Windows applications. The
application developer must provide the code for this function and store a pointer to it at offset 0x0018 in
the application's loader code and data table.

ExitProc does not need to free memory owned by the application, nor is it necessary for the function to
close any open files.

MyAlloc (3.1)
DWORD MyAlloc(wFlags, wSize, wElem)
WORD wFlags; /* segment flags */
WORD wSize; /* size of element*/
WORD wElem; /
* number of elements in segment *
/

The MyAlloc function allocates memory for a segment in a self-loading application.

Parameter Description
wFlags Specifies the segment flags.
wSize Specifies the element size, in bytes.
wElem Specifies the number of elements in the segment.

Returns
The low-order word of the return value contains a segment handle if the function is successful; the high-
order word contains a selector if the function is successful. (However, if the function allocates only a
handle for the segment, the low-order word contains zero and the high-order word contains the handle.)
Otherwise, the return value is zero for both high-order and low-order words.

Comments
The flags specified by the wFlags parameter are the values that precede the segment table appearing
immediately after the information block in the Windows (new-style) header. The kernel translates wFlags
into the proper values before calling the GlobalAlloc function.

The segment size, in bytes, is obtained by shifting the value specified in the wSize parameter left by the
number of bits specified by the wElem parameter.

The MyAlloc function is one of three functions supplied by the Windows kernel. The kernel loads a
pointer to this function at offset 0x0014 in the loader's code and data table. The kernel loads the pointer
before calling the private startup procedure (the BootApp function).

See Also
BootApp

PatchCodeHandle (3.1)
void PatchCodeHandle(hSeg)
WORD hSeg; /* segment with entry points */

The PatchCodeHandle function modifies prolog code for self-loading applications.

Parameter Description
hSeg Identifies the segment containing the entry points to be modified.

Returns
This function does not return a value.

Comments
This function is one of four supplied by the Windows kernel. An application can reference this function by
including the following statement in the IMPORTS section of its module-definition file:

PatchCodeHandle = KERNEL.110
If the entry points in a segment use the DS register, the prolog is modified as follows:

Original prolog Modified prolog
push ds mov ax, dgroup
pop ax
nop

If the entry points do not use the DS register, the prolog is modified as follows:

Original prolog Modified prolog
push ds mov ax, ds
pop ax nop
nop

The loader calls the PatchCodeHandle function from the LoadAppSeg function, which reloads a segment
that has been discarded. The loader must call the SetOwner function and identify the segment's owner
before it calls the PatchCodeHandle function. In addition, the loader must set the SINGLEDATA bit in the
Windows (new-style) header's information block.

See Also
LoadAppSeg, SetOwner

LoadAppSeg (3.1)
WORD LoadAppSeg(hBlock, hFile, wSegID)
HANDLE hBlock; /* handle of module information block */
HANDLE hFile; /* handle of
executable file *
/
WORD wSegID; /
* segment identifier *
/

The LoadAppSeg function loads a segment for the first time or reloads a discarded segment. The segment
is identified by the wSegID parameter and belongs to the given application.

Parameter Description
hBlock Specifies the segment selector for the segment containing the module information block.
hFile Identifies the executable file that contains the application. This parameter is an MS-

DOS file handle. (This handle is -1 if the file is not open.)
wSegID Identifies the segment that the function should reload.

Returns
The return value is a selector for the segment if the function is successful. Otherwise, it is zero.

Comments
The information block in the Windows (new-style) header identified by the hBlock parameter specifies the
linker version number, the length of various tables of data, offsets to those tables, heap and stack sizes, and
so on.

The third parameter, wSegID, is determined by the linker at link time.

The LoadAppSeg function is one of three functions required for self-loading Windows applications. The
application developer must provide the code for this function and store a pointer to it at offset 0x0008 in
the application's loader code and data table.

SetOwner (3.1)
void SetOwner(hSel, hOwner)
WORD hSel; /* selector of segment */
HANDLE hOwner; /* handle of
information block *
/

The SetOwner function associates the given segment with an executable file or application.

Parameter Description
hSel Specifies a selector or handle identifying the segment to be associated with the

executable file or application.
hOwner Identifies the information bock in the Windows (new-style) executable-file header for

the application that contains the segment.

Returns
This function does not return a value.

Comments
The Windows header information block identified by the hOwner parameter specifies the linker version
number, the length of various tables of data, offsets to these tables, heap and stack sizes, and so on.

The SetOwner function is one of three functions required for self-loading Windows applications. The
application developer must provide the code for this function and store a pointer to it at offset 0x0004 in
the application's loader code and data table.

After the kernel allocates memory for a segment by using the MyAlloc function, it calls SetOwner.

Floating Point Emulation Library
This topic describes two methods that can be used to support floating-point emulation in Windows
applications. In particular, the topic describes in detail the Windows 80x87 floating-point emulator in the
dynamic-link library WIN87EM.DLL. This information is intended to be used by compiler vendors who
want to develop floating-point emulators that are compatible with WIN87EM.DLL.

Emulation Methods

With floating-point emulation, Windows applications that contain floating-point instructions can run on
any computer, regardless of whether the computer has floating-point hardware.

To support floating-point emulation for Windows applications, compiler vendors can use one of the
following methods:

Emulation by exception handler
Windows 80x87 floating-point emulation

Emulation by Exception Handler

With emulation by exception handler, a Windows application contains floating-point instructions for all
floating-point operations and an exception handler for occurrences of Interrupt 07h (coprocessor not
available). When the application starts, it installs the exception handler and the exception handler
processes any floating-point exceptions that occur thereafter.

When the application runs on a computer with no floating-point hardware, a floating-point exception
occurs the first time a floating-point instruction is executed. The exception handler is responsible for
patching and then restarting the instruction. To patch the floating-point instruction, the exception
handler actually replaces it with a call to emulation code. The new instruction calls the emulation code
directly (rather than generating an exception) for as long as the patched instruction remains in memory.

This method can be used only with the Microsoft Windows operating system, version 3.1, because
Windows version 3.0 standard mode does not save and restore the state of the exception handler across
task switches.

This method may be less efficient than other methods because it requires that floating-point instructions
be patched while the application is running rather than while it is loading. As long as the patched
instructions remain in memory, however, this method is as efficient as other methods. If Windows
discards the code segments that contain the patched instructions, the floating-point instructions must be
patched again because Windows always loads a fresh copy of the code when it restores the discarded
segments.

Windows 80x87 Floating-Point Emulation

With Windows 80x87 floating-point emulation, the Windows application contains calls to floating-
point instructions for all floating-point operations, but the application also includes fixup records for
each instruction. When Windows loads the application, Windows determines whether floating-point
hardware is present. If the hardware it is not present, Windows uses the fixup records to replace the
actual instructions with calls to emulation code.

To support this method, the application's startup routine must check whether WIN87EM.DLL is present.
Then the routine must initialize WIN87EM.DLL by calling the __fpmath function with the BX register
set to 0 and must set the floating-point exception handler by calling the __fpmath function with the BX
register set to 3 and the DS:AX registers pointing to the exception handler. When the application's
WinMain function returns to the startup routine, the routine must release WIN87EM.DLL by calling the
__fpmath function with the BX register set to 2. After WIN87EM.DLL has been released, the startup
routine can end the application.

For this method to work correctly, the Windows application must contain the proper fixup records--
sometimes called operating system (OS) fixups--to convert instructions to emulation calls. For
WIN87EM.DLL, each call consists of an interrupt (int) instruction followed by one or more words
defining the floating-point operation and operands. The call is actually generated by the addition of
fixup values to the first two words of the corresponding floating-point instruction. The fixup values to
use depend on the instruction--the values are defined as follows:

fINT equ0CDh
fFWAIT equ09Bh
fESCAPE equ0D8h
fFNOP equ090h
fESequ026h
fCSequ02Eh

fSSequ036h
fDSequ03Eh
BEGINT equ034h
FIARQQ equ(fINT + 256*(BEGINT + 8)) - (fFWAIT + 256*fDS)
FISRQQ equ(fINT + 256*(BEGINT + 8)) - (fFWAIT + 256*fSS)
FICRQQ equ(fINT + 256*(BEGINT + 8)) - (fFWAIT + 256*fCS)
FIERQQ equ(fINT + 256*(BEGINT + 8)) - (fFWAIT + 256*fES)
FIDRQQ equ(fINT + 256*(BEGINT + 0)) - (fFWAIT + 256*fESCAPE)
FIWRQQ equ(fINT + 256*(BEGINT + 9)) - (fFNOP + 256*fFWAIT)
FJARQQ equ256*(((0 shl 6) or (fESCAPE and 03Fh)) - fESCAPE)
FJSRQQ equ256*(((1 shl 6) or (fESCAPE and 03Fh)) - fESCAPE)
FJCRQQ equ256*(((2 shl 6) or (fESCAPE and 03Fh)) - fESCAPE)
Each of the six fixup record types consists of two one-word values, as shown in the following example:

osfixuptbl label word
DW FIARQQ, FJARQQ
DW FISRQQ, FJSRQQ
DW FICRQQ, FJCRQQ
DW FIERQQ, 0h
DW FIDRQQ, 0h
DW FIWRQQ, 0h

osfixuptbllen = $-osfixuptbl
The loader assumes that each floating-point instruction is preceded by a wait instruction. The loader adds
the first word to the combination of the wait instruction byte and the first byte in the floating-point
instruction. For fixup types 1 through 3, the loader adds the second word to the second and third bytes of
the floating-point instruction. For types 4 through 6, the loader makes no changes to these bytes (it adds
zero).

Because WIN87EM.DLL polls for exceptions by using the fwait instruction, the loader must replace each
nop and fwait instruction pair with a call to emulation code, even if a floating-point coprocessor is
available. These instructions must have a corresponding fixup record of type 6.

WIN87EM.DLL does not emulate the following floating-point instructions:

fbld fsave
fbstp fsetpm
fcos fsin
fdecstp fsincos
fincstp fstenv
finit fucom
fldenv fucomp
fnop fucompp
fprem1 fxtract
frstor

Windows 3.0 Limitations

Windows 3.0 does not correctly save and restore the emulator state for emulator functions 0x38 through
0x3E. This means that Windows applications that use a floating-point emulator other than WIN87EM.
DLL may not run successfully if another application that is using WIN87EM.DLL is also running.

Windows 3.1 does correctly save and restore the emulator state. Therefore, applications that use other
floating-point emulators should be run only under Windows 3.1.

_fpmath (2.x)

extern__fpmath:far
mov bx, Function ; floating-point function
call __fpmath ; floating-point math
The __fpmath function is the control function for Windows 80x87 floating-point emulation.

Parameter Description
Function Specifies the floating-point function to execute. The Function parameter can be one of

the following values:

Value Meaning
0 Initializes the floating-point emulator. An application calls this function

when it starts. If an error occurs, the function sets the carry flag. Otherwise,
it clears the flag.

1 Resets the floating-point emulator. The action carried out by this function is
similar to the action carried out by the finit instruction.

2 Stops the floating-point emulator. An application called this function just
before it ended.

3 Sets the handler for the coprocessor error exception (Interrupt 16). The DS:
AX registers must contain the 32-bit address of the exception handler. The
emulator calls the handler whenever an unmasked floating-point exception
occurs. The exception handler can carry out any action--it does not have to
return.

10 Retrieves a count of the elements on the floating-point stack, copying the
count to the AX register. The number of elements is equal to the number of
floating-point values on the floating-point coprocessor (if one is present)
plus any additional values stored by the emulator.

11 Indicates whether a floating-point coprocessor is present. This function
returns 1 in the AX register if a coprocessor is present. Otherwise, it returns
0.

Comments
Function values 4 through 9 are not used.

Example
The following example initializes the floating-point emulator:

xor bx, bx; bx = 0 to initialize floating point
call__fpmath

__Win87EmInfo (3.1)
int __Win87EmInfo(pWIS, cbWin87EmInfoStruct)
Win87EmInfoStruct far *pWIS; /* buffer to receive information */
int cbWin87EmInfoStruct; /
* size of buffer, in bytes *
/

The __Win87EmInfo function retrieves information about the floating-point emulator, such as whether a
floating-point coprocessor is present and the code and data segment addresses of the emulator.

Parameter Description
pWIS Points to the Win87EmInfoStruct structure that is to receive the floating-

point emulator information.
cbWin87EmInfoStruct Specifies the size, in bytes, of the structure that is to receive the information.

Returns
This function returns zero if no errors occur. Otherwise, it returns a nonzero value.

See Also
Win87EmInfoStruct

__Win87EmRestore (3.1)
int __Win87EmRestore(void far *pWin87EmSaveArea, int cbWin87EmSaveArea)
void far *pWin87EmSaveArea; /* buffer containing state */
int cbWin87EmSaveArea; /* size,
in bytes, of buffer *
/

The __Win87EmRestore function restores the states of the floating-point coprocessor (if one is present)
and the floating-point emulator to the states previously saved by the __Win87EmSave function.

Parameter Description
pWin87EmSaveArea Points to the Win87EmSaveArea structure containing the state of the

floating-point coprocessor and emulator. The __Win87EmSave function
must have been used previously to fill the structure.

cbWin87EmSaveArea Specifies the size, in bytes, of the structure containing the emulator state.

Returns
This function returns zero if the function is successful. Otherwise, it returns a nonzero value.

See Also
__Win87EmSave, Win87EmSaveArea

__Win87EmSave (3.1)
int __Win87EmSave(pWin87EmSaveArea, cbWin87EmSaveArea)
void far *pWin87EmSaveArea; /* buffer to receive state */
int cbWin87EmSaveArea; /* size,
in bytes, of buffer *
/

The __Win87EmSave function saves the current states of the floating-point coprocessor (if one is present)
and the floating-point emulator, copying the states to the buffer pointed to by pWin87EmSaveArea.

An application that calls __Win87EmSave should call the __Win87EmRestore function before carrying
out any floating-point operations.

Parameter Description
pWin87EmSaveArea Points to the Win87EmSaveArea structure that is to receive the state of the

floating-point emulator.
cbWin87EmSaveArea Specifies the size, in bytes, of the structure to receive the emulator state.

Returns
This function returns zero if the function is successful. Otherwise, it returns a nonzero value.

Comments
An application can find out the size, in bytes, of the buffer needed to save the floating-point states by using
the __Win87EmInfo function to retrieve the Win87EmInfoStruct structure. The SizeSaveArea member of
this structure specifies the size of the buffer.

See Also
__Win87EmInfo, __Win87EmRestore, Win87EmInfoStruct, Win87EmSaveArea

Win87EmStruct (3.1)

typedef struct _Win87EmInfoStruct {
unsigned Version;
unsigned SizeSaveArea;
unsigned WinDataSeg;
unsigned WinCodeSeg;
unsigned Have80x87;
unsigned Unused;

} Win87EmInfoStruct;
The Win87EmInfoStruct structure contains information about the floating-point emulator.

Member Description
Version Specifies the major and minor version numbers. The high-order byte specifies the

major version number, the low-order byte the minor version number.
SizeSaveArea Specifies the size, in bytes, of the buffer needed to save the floating-point

emulator state. An application uses the specified size to allocate sufficient space to
save the state before calling the __Win87EmSave function.

WinDataSeg Specifies the emulator's data segment address or selector.
WinCodeSeg Specifies the emulator's code segment address or selector.
Have80x87 Specifies the floating-point emulator flag. If an 80287 or 80387 floating-point

coprocessor is present, this member is 1. Otherwise, it is 0.
Unused Not used.

See Also
__Win87EmInfo, __Win87EmSave

Win87EmSaveArea (3.1)

typedef struct _Win87EmSaveArea {
unsigned char Save80x87Area[SIZE_80X87_AREA];
unsigned char SaveEmArea[];

} Win87EmSaveArea;
The Win87EmSaveArea structure contains the states of the floating-point coprocessor and floating-point
emulator.

Member Description
Save80x87Area Specifies an array of values defining the state of the floating-point coprocessor if

one is present. The array has the same format as data saved by an fsave
instruction and consists of SIZE_80X87_AREA (94) array elements.

SaveEmArea Specifies an array of values defining the state of the floating-point emulator. The
array has the following form:

Have8087 db 0 ; 1 if coprocessor is present;
;otherwise, 0
db ? ; reserved
dw ? ; reserved
dw ? ; reserved

ControlWord label word ; emulator control word
CWmask db ? ; exception masks
CWcntl db ? ; arithmetic control flags
StatusWord label word ; emulator status word
SWerr db ? ; exception flags
SWcc db ? ; condition codes
BASstk dw ? ; offset of start of emulator
;register area
CURstk dw ? ; offset of current top-of-stack
;register
LIMstk dw ? ; offset of end of emulator register
;area
dw ? dup(?) ; reserved

Comments
The BASstk, CURstk, and LIMstk fields specify the offsets from the start of the SaveEmArea member into
the emulator's register area. If BASstk and CURstk have the same value, the stack is empty. Each of the
emulator's registers is 12 bytes long and has the form shown in the following illustration.

+0 +1 +2 +3 +4 +5 +6 +7 +8 +9 +10 +11
.___.___.___.___.___.___.___.___.___.___.___.___.
ptr --> |___|___|___|___|___|___|___|___|___|___|___|___|
lsbmsb exl exh flg tag
|<--- mantissa --->|exponent

The mantissa contains the leading 1 before the decimal point in the high-order bit of the most significant
byte (msb). The exponent is not biased, that is, it is a signed integer. The following illustration shows the
flag and tag bytes.

bit: 7 6 5 4 3 2 1 0
.___.___.___.___.___.___.___.___.
Flag: |___|_X_|_X_|_X_|_X_|_X_|_X_|_X_| X = unused
^
SIGN

bit: 7 6 5 4 3 2 1 0
.___.___.___.___.___.___.___.___.
Tag: |_X_|_X_|_X_|_X_|_X_|_X_|___|___| X = unused

^ ^
| |
Special (Set for NAN or Inf) ---+ |
ZROorINF (Set for 0 or Inf) -------+

Special equ2
ZROorINF equ1
Reg87Len equ12

See Also
__Win87EmRestore, __Win87EmSave

Floating Point Functions (3.1)
__fpmath Floating Point Math
__Win87EmInfo Get Floating Point Emulator Information
__Win87EmRestore Restore Floating Point Emulator State
__Win87EmSave Save Floating Point Emulator State

Floating Point Structures (3.1)
Win87EmInfoStruct Floating Point Emulator Information
Win87EmSaveArea Floating Point Emulator Save Area

externFP InitApp
push hInstance ; instance handle
call InitApp
or ax,ax ; zero if error
jz error_handler
The InitApp function creates the application queue and installs application-support routines, such as the
signal procedure, version-specific resource loaders, and the divide-by-zero interrupt routine.

Parameter Description
hInstance Identifies the task to be initialized. This parameter must have been previously supplied

by Windows.

Returns
This function returns a nonzero value in the AX register if successful. Otherwise, it returns zero in the AX
register to indicate an error.

See Also
InitTask

externFP InitTask
call InitTask ; Initialize a task.
The InitTask function initializes the task by setting registers, setting up the command line, and initializing
the heap. This must be the first function called by the startup routine for the application.

Returns
This function returns 1 in the AX register and fills the CX, DX, ES:BX, SI, and DI registers with
information about the new task, if the function is successful. Otherwise, it returns zero in the AX register
to indicate an error.

Comments
When the function is successful, other registers contain the following values:

Register Value
CX Contains the stack limit, in bytes. The startup routines should check the limit to ensure

there is a minimum of 100 bytes in the stack.
DI Contains the instance handle for the new task. The startup routine passes this address to the

WinMain function.
DX Contains an nCmdShow parameter. The startup routine passes this parameter to the

WinMain function for use with the CreateWindow function.
ES Contains the segment address of the program segment prefix (PSP) for the new task.
ES:BX Contains the 32-bit address of the command line (MS-DOS format). The startup routine

passes this address to the WinMain function.
SI Contains the instance handle for the previous instance of the application, if any. The

startup routine passes this address to the WinMain function.

The InitTask function also copies the top, minimum, and bottom address offsets of the stack to the 16
bytes of reserved memory at the beginning of the automatic data segment for the application. The reserved
memory has the following format:

DW 0
globalW oOldSP,0
globalW hOldSS,5
globalW pLocalHeap,0
globalW pAtomTable,0
globalW pStackTop,0
globalW pStackMin,0
globalW pStackBot,0
See Also
InitApp

externFP WaitEvent
push taskID ; task identifier
call WaitEvent
or ax,ax
jnzresched; nonzero if rescheduled
The WaitEvent function checks for a posted event and, if one is found, clears the event and returns control
to the application. If no event is found, the function suspends execution of the application by calling the
Windows scheduler.

Parameter Description
taskID Identifies the task to check events for. If this parameter is zero, the function checks

events for the current task.

Returns
This function returns a nonzero value if the Windows scheduler has scheduled another application.
Otherwise, it returns zero.

Application Startup Functions
InitApp Initializes a Windows application
InitTask Initializes a Task
WaitEvent Suspends Execution Until an Event

GetWinMem32Version (3.0)
#include <winmem32.h>

WORD GetWinMem32Version(void)

The GetWinMem32Version function retrieves the application programming interface (API) version
implemented by the WINMEM32.DLL dynamic-link library. This is not the version number of the library
itself.

Returns
The return value specifies the version of the 32-bit memory API implemented by WINMEM32.DLL. The
high-order 8 bits contain the major version number, and the low-order 8 bits contain the minor version
number.

Global16PointerAlloc (3.0)
#include <winmem32.h>

WORD Global16PointerAlloc(wSelector, dwOffset, lpBuffer, dwSize, wFlags)
WORD wSelector; /* selector of object */
DWORD dwOffset; /* offset of first
byte for alias *
/
LPDWORD lpBuffer; /
* address of location for alias *
/
DWORD dwSize; /
* size of region *
/
WORD wFlags; /
* reserved, must be zero *
/

The Global16PointerAlloc function converts a 16:32 pointer into a 16:16 pointer alias that the application
can pass to a Windows function or to other 16:16 functions.

Parameter Description
wSelector Specifies the selector of the object for which an alias is to be created. This must be the

selector returned by a previous call to the Global32Alloc function.
dwOffset Specifies the offset of the first byte for which an alias is to be created. The offset is from

the first byte of the object specified by the wSelector parameter. Note that wSelector:
dwOffset forms a 16:32 address of the first byte of the region for which an alias is to be
created.

lpBuffer Points to a four-byte location in memory that receives the 16:16 pointer alias for the
specified region.

dwSize Specifies the addressable size, in bytes, of the region for which an alias is to be created.
This value must be no larger than 64K.

wFlags Reserved; must be zero.

Returns
The return value is zero if the function is successful. Otherwise, it is an error value, which can be one of
the following:

WM32_Insufficient_Mem
WM32_Insufficient_Sels
WM32_Invalid_Arg
WM32_Invalid_Flags
WM32_Invalid_Func

Comments
When this function returns successfully, the location pointed to by the lpBuffer parameter contains a 16:
16 pointer to the first byte of the region. This is the same byte to which wSelector:dwOffset points.

The returned selector identifies a descriptor for a data segment that has the following attributes: read-
write, expand up, and small (B bit clear). The descriptor privilege level (DPL) and the granularity (the G
bit) are set at the system's discretion, so you should make no assumptions regarding their settings. The
DPL and requestor privilege level (RPL) are appropriate for a Windows application.

Note: An application must not change the setting of any bits in the DPL or the RPL selector. Doing so can
result in a system crash and will prevent the application from running on compatible platforms.

Because of tiling schemes implemented by some systems, the offset portion of the returned 16:16 pointer
is not necessarily zero.

When writing your application, you should not assume the size limit of the returned selector. Instead,
assume that at least dwSize bytes can be addressed starting at the 16:16 pointer created by this function.

See Also
Global16PointerFree

Global16PointerFree (3.0)
#include <winmem32.h>

WORD Global16PointerFree(wSelector, dwAlias, wFlags)
WORD wSelector; /* selector of object */
DWORD dwAlias; /* pointer alias to free *
/
WORD wFlags; /
* reserved, must be zero *
/

The Global16PointerFree function frees the 16:16 pointer alias previously created by a call to the
Global16PointerAlloc function.

Parameter Description
wSelector Specifies the selector of the object for which the alias is to be freed. This must be the

selector returned by a previous call to the Global32Alloc function.
dwAlias Specifies the 16:16 pointer alias to be freed. This must be the alias (including the

original offset) returned by a previous call to the Global16PointerAlloc function.
wFlags Reserved; must be zero.

Returns
The return value is zero if the function is successful. Otherwise, it is an error value, which can be one of
the following:

WM32_Insufficient_Mem
WM32_Insufficient_Sels
WM32_Invalid_Arg
WM32_Invalid_Flags
WM32_Invalid_Func

Comments
An application should free a 16:16 pointer alias as soon as it is no longer needed. Freeing the alias releases
space in the descriptor table, a limited system resource.

See Also
Global16PointerAlloc

Global32Alloc (3.0)
#include <winmem32.h>

WORD Global32Alloc(dwSize, lpSelector, dwMaxSize, wFlags)
DWORD dwSize; /* size of block to allocate */
LPWORD lpSelector; /*
address of location for selector *
/
DWORD dwMaxSize; /
* maximum size of object *
/
WORD wFlags; /
* sharing flag *
/

The Global32Alloc function allocates a memory object to be used as a 16:32 (USE32) code or data
segment and retrieves the selector portion of the 16:32 address of the memory object. The first byte of the
object is at offset 0 from this selector.

Parameter Description
dwSize Specifies the initial size, in bytes, of the object to be allocated. This value must be in the

range 1 through (16 megabytes - 64K).
lpSelector Points to a 2-byte location in memory that receives the selector portion of the 16:32

address of the allocated object.
dwMaxSize Specifies the maximum size, in bytes, that the object will reach when it is reallocated by

the Global32Realloc function. This value must be in the range 1 through (16 megabytes
- 64 K). If the application will never reallocate this memory object, the dwMaxSize
parameter should be set to the same value as the dwSize parameter.

wFlags Depends on the return value of the GetWinMem32Version function. If the return value
is less than 0x0101, this parameter must be zero. If the return value is greater than or
equal to 0x0101, this parameter can be set to GMEM_DDESHARE (to make the object
sharable). Otherwise, this parameter should be zero. For more information about
GMEM_DDESHARE, see the description of the GlobalAlloc function.

Returns
The return value is zero if the function is successful. Otherwise, it is an error value, which can be one of
the following:

WM32_Insufficient_Mem
WM32_Insufficient_Sels
WM32_Invalid_Arg
WM32_Invalid_Flags
WM32_Invalid_Func

Comments
If the Global32Alloc function fails, the value to which the lpSelector parameter points is zero. If the
function succeeds, lpSelector points to the selector of the object. The valid range of offsets for the object
referenced by this selector is 0 through (but not including) dwSize.

In Windows 3.0 and later, the largest object that can be allocated is 0x00FF0000 (16 megabytes - 64K).
This is the limitation placed on WINMEM32.DLL by the current Windows kernel.

The returned selector identifies a descriptor for a data segment that has the following attributes: read-
write, expand-up, and big (B bit set). The descriptor privilege level (DPL) and the granularity (the G bit)
are set at the system's discretion, so you should make no assumptions regarding these settings. Because the
system sets the granularity, the size of the object (and the selector size limit) may be greater than the
requested size by up to 4095 bytes (4K minus 1). The DPL and requestor privilege level (RPL) will be
appropriate for a Windows application.

Note: An application must not change the setting of any bits in the DPL or the RPL selector. Doing so can
result in a system crash and will prevent the application from running on compatible platforms.

The allocated object is neither movable nor discardable but can be paged. An application should not page-
lock a 32-bit memory object. Page-locking an object is useful only if the object contains code or data that
is used at interrupt time, and 32-bit memory cannot be used at interrupt time.

See Also
Global32Free, Global32Realloc

Global32CodeAlias (3.0)
#include <winmem32.h>

WORD Global32CodeAlias(wSelector, lpAlias, wFlags)
WORD wSelector; /* selector of object for alias */
LPWORD lpAlias; /*
address of location for alias selector *
/
WORD wFlags; /
* reserved, must be zero *
/

The Global32CodeAlias function creates a 16:32 (USE32) code-segment alias selector for a 32-bit
memory object previously created by the Global32Alloc function. This allows the application to execute
code contained in the memory object.

Parameter Description
wSelector Specifies the selector of the object for which an alias is to be created. This must be the

selector returned by a previous call to the Global32Alloc function.
lpAlias Points to a 2-byte location in memory that receives the selector portion of the 16:32

code-segment alias for the specified object.
wFlags Reserved; must be zero.

Returns
The return value is zero if the function is successful. Otherwise, it is an error value, which can be one of
the following:

WM32_Insufficient_Mem
WM32_Insufficient_Sels
WM32_Invalid_Arg
WM32_Invalid_Flags
WM32_Invalid_Func

Comments
If the function fails, the value pointed to by the lpAlias parameter is zero. If the function is successful,
lpAlias points to a USE32 code-segment alias for the object specified by the wSelector parameter. The
first byte of the object is at offset 0 from the selector returned in lpAlias. Valid offsets are determined by
the size of the object as set by the most recent call to the Global32Alloc or Global32Realloc function.

The returned selector identifies a descriptor for a code segment that has the following attributes: read-
execute, nonconforming, and USE32 (D bit set). The descriptor privilege level (DPL) and the granularity
(the G bit) are set at the system's discretion, so you should make no assumptions regarding their settings.
The granularity will be consistent with the current data selector for the object. The DPL and requestor
privilege level (RPL) are appropriate for a Windows application.

Note: An application must not change the setting of any bits in the DPL or the RPL selector. Doing so can
result in a system crash and will prevent the application from running on compatible platforms.

An application should not call this function more than once for an object. Depending on the system, the
function might fail if an application calls it a second time for a given object without first calling the
Global32CodeAliasFree function for the object.

See Also
Global32Alloc, Global32CodeAliasFree

Global32CodeAliasFree (3.0)
#include <winmem32.h>

WORD Global32CodeAliasFree(wSelector, wAlias, wFlags)
WORD wSelector; /* selector of object */
WORD wAlias; /* code-segment
alias selector to free *
/
WORD wFlags; /
* reserved, must be zero *
/

The Global32CodeAliasFree function frees the 16:32 (USE32) code-segment alias selector previously
created by a call to the Global32CodeAlias function.

Parameter Description
wSelector Specifies the selector of the object for which the alias is to be freed. This must be the

selector returned by a previous call to the Global32Alloc function.
wAlias Specifies the USE32 code-segment alias selector to be freed. This must be the alias

returned by a previous call to the Global32CodeAlias function.
wFlags Reserved; must be zero.

Returns
The return value is zero if the function is successful. Otherwise, it is an error value, which can be one of
the following:

WM32_Insufficient_Mem
WM32_Insufficient_Sels
WM32_Invalid_Arg
WM32_Invalid_Flags
WM32_Invalid_Func

See Also
Global32CodeAlias

Global32Free (3.0)
#include <winmem32.h>

WORD Global32Free(wSelector, wFlags)
WORD wSelector; /* selector of object to free */
WORD wFlags; /* reserved, must be
zero *
/

The Global32Free function frees an object previously allocated by the Global32Alloc function.

Parameter Description
wSelector Specifies the selector of the object to be freed. This must be the selector returned by a

previous call to the Global32Alloc function.
wFlags Reserved; must be zero.

Returns
The return value is zero if the function is successful. Otherwise, it is an error value, which can be one of
the following:

WM32_Insufficient_Mem
WM32_Insufficient_Sels
WM32_Invalid_Arg
WM32_Invalid_Flags
WM32_Invalid_Func

Comments
The Global32Alloc function frees the object itself; it also frees all aliases created for the object by the 32-
bit memory application programming interface (API).

Note: Before terminating, an application must call this function to free each object allocated by the
Global32Alloc function to ensure that all aliases created for the object are freed.

See Also
Global32Alloc, Global32Realloc

Global32Realloc (3.0)
#include <winmem32.h>

WORD Global32Realloc(wSelector, cNew, flags)
WORD wSelector; /* selector of object to reallocate */
DWORD cNew; /* new size of
object *
/
WORD flags; /
* reserved, must be zero *
/

The Global32Realloc function changes the size of a 32-bit memory object previously allocated by the
Global32Alloc function.

Parameter Description
wSelector Specifies the selector of the object to be changed. This must be the selector returned by a

previous call to the Global32Alloc function.
cNew Specifies the new size, in bytes, of the object. This value must be greater than zero and

less than or equal to the size specified by the dwMaxSize parameter of the
Global32Alloc function call that created the object.

flags Reserved; must be zero.

Returns
The return value is zero if the function is successful. Otherwise, it is an error value, which can be one of
the following:

WM32_Insufficient_Mem
WM32_Insufficient_Sels
WM32_Invalid_Arg
WM32_Invalid_Flags
WM32_Invalid_Func

Comments
If this function fails, the previous state of the object is unchanged. If the function succeeds, it updates the
state of the object and the state of all aliases to the object created by the 32-bit memory application
programming interface (API) functions. For this reason, an application must call the Global32Realloc
function to change the size of the object. Using other Windows functions to manipulate the object results
in corrupted aliases.

This function does not change the selector specified by the wSelector parameter. If this function succeeds,
the new valid range of offsets for the selector is zero through (but not including) cNew.

The system determines the appropriate granularity of the object. As a result, the size of the object (and the
selector size limit) may be greater than the requested size by up to 4095 bytes (4K minus 1).

See Also
Global32Alloc, Global32Free

ABORTDOC
short Escape(hdc, ABORTDOC, NULL, NULL, NULL)

The ABORTDOC printer escape is maintained for backwards compatibility. Applications written for
Windows 3.1 should use the AbortDoc function.

This escape stops the current job and erases everything the application has written to the device since the
last ENDDOC escape.

The ABORTDOC escape should be used to stop:
Printing operations that do not specify an Abort function by using the SETABORTPROC escape.
Printing operations that have not yet reached their first call to the NEWFRAME or NEXTBAND

escape.

Parameter Description
hdc HDC Identifies the device context.

Returns
This escape does not return a value.

Comments
If an application encounters a printing error, it should not try to stop the operation by using the Escape
function with either the ENDDOC or ABORTDOC escape. Graphics device interface (GDI) automatically
terminates the operation before returning the error value.

If the application displays a dialog box to allow the user to cancel the print operation, it must send the
ABORTDOC escape before destroying the dialog box.

The application must send the ABORTDOC escape before freeing the procedure-instance address of the
Abort function, if any.

See Also
Escape, AbortDoc

BANDINFO
short Escape(hdc, BANDINFO, sizeof(BANDINFOSTRUCT), lpInData, lpOutData)

The BANDINFO printer escape is maintained for backwards compatibility. Applications written for
Windows 3.1 should send both text and graphics in every band.

This escape copies information about a device with banding capabilities to a structure pointed to by the
lpOutData parameter. It is implemented only for devices that use banding to send output to the printer.

Banding is the property of an output device that allows a page of output to be stored in a metafile and
divided into bands, each of which is sent to the device to create a complete page.

The information copied to the structure pointed to by the lpOutData parameter includes:
A value that indicates whether there are graphics in the next band.
A value that indicates whether there is text on the page.
A RECT structure that contains a bounding rectangle for all graphics on the page.

If no data is returned, the lpOutData parameter is NULL.

The lpInData parameter specifies information sent by the application to the printer driver. This information
is read by the driver only on the first call to the BANDINFO escape on a page.

Parameter Description
hdc HDC Identifies the device context.
lpInData BANDINFOSTRUCT FAR * Points to a BANDINFOSTRUCT structure that contains

information to be passed to the driver. For more information about this structure, see the
following Comments section.

lpOutData BANDINFOSTRUCT FAR * Points to a BANDINFOSTRUCT structure that contains
information returned by the driver. For more information about this structure, see the
following Comments section.

Returns
The return value specifies the outcome of the escape. This value is 1 if the escape is successful. It is zero if
the function fails or is not implemented by the driver.

Comments
The BANDINFOSTRUCT structure contains information about the contents of a page and supplies a
bounding rectangle for graphics on the page. This structure has the following form:

typedef struct tagBANDINFOSTRUCT {
BOOL fGraphics;
BOOL fText;
RECT rcGraphics;

} BANDINFOSTRUCT;
Following are the members in the BANDINFOSTRUCT structure:
fGraphics Specifies nonzero if graphics are or are expected to be on the page or in the band.

Otherwise, it is zero.
fText Specifies nonzero if text is or is expected to be on the page or in the band. Otherwise, it

is zero.
rcGraphics Contains a RECT structure that supplies a bounding region for all graphics on the page.

The meaning of these members depends on which parameter contains the structure, as follows.

Member When Used in lpInData When used in lpOutData
fGraphics Nonzero if the application informs the

driver that graphics are on thepage
Nonzero if the driver informs the application that it
expects graphics in this band

fText Nonzero if the application informs the
driver that text is on the page

Nonzero if the driver informs the application that it
expects text in this band

rcGraphics Bounding rectangle supplied for all
graphics on the page

No valid return data

An application should call this escape immediately after each call to the NEXTBAND escape. The
BANDINFO escape is in reference to the band that the driver returned to the NEXTBAND escape.

An application should use this escape in the following manner:

On the first band, the driver may give the application a full-page band and ask for text only (the
fGraphics member is set to zero and the fText member is set to nonzero). Then the application sends only
text to the driver.

If in the first band the application indicates that it has graphics (the fGraphics member is set to
nonzero) or the driver encounters vector fonts, the driver bands the rest of the page.

If there are no graphics or vector fonts, the next NEXTBAND escape returns an empty rectangle to
indicate that the application should move on to the next page.

If there are graphics but no vector fonts (the application sets the fGraphics member to nonzero, but
there are no graphics in the first full-page text band), the driver may optionally band only into the rectangle
the application passes for subsequent bands. This rectangle bounds all graphics on the page.

If there are vector fonts, the driver bands the entire width and depth of the page with the fText
member set to nonzero. It also sets the fGraphics flag to nonzero if the application has set it.

The driver assumes that an application using the BANDINFO escape only sends text in the first full-page
text band because that is all the driver has requested. Therefore, if the driver encounters a vector font or
graphics in the band, it assumes they were generated by a text primitive and sets the fText member to
nonzero for all subsequent graphics bands, so they can be output as graphics. If the application does not
meet this expectation, the image still generates properly, but the driver spends time sending spurious text
primitives to graphics bands.

Older drivers written before the BANDINFO escape was designed use full-page banding for text. If a
particular driver does not support the BANDINFO escape but sets the RC_BANDING raster capability,
the application can detect full-page banding for text by determining if the first band on the page covers the
entire page.

BEGIN_PATH
short Escape(hdc, BEGIN_PATH, NULL, NULL, NULL)

The BEGIN_PATH printer escape opens a path. A path is a connected sequence of primitives drawn in
succession to form a single polyline or polygon. Paths enable applications to draw complex borders, filled
shapes, and clipping regions by supplying a collection of other primitives to define the desired shape.

Printer escapes supporting paths enable applications to render images on sophisticated devices, such as
PostScript printers, without generating huge polygons to simulate the images.

To draw a path, an application first issues the BEGIN_PATH escape. Then it draws the primitives defining
the border of the desired shape and issues an END_PATH escape, which includes a parameter specifying
how the path is to be rendered.

Parameter Description
hdc HDC Identifies the device context.

Returns
The return value specifies the current path nesting level. This value is the number of calls to the
BEGIN_PATH escape without a corresponding call to the END_PATH escape if the escape is successful.
Otherwise, the return value is zero.

Comments
This escape is used only by PostScript printer drivers.

An application may begin a subpath within another path. If the subpath is closed, it is treated just like a
polygon. If it is open, it is treated just like a polyline.

An application may use the CLIP_TO_PATH escape to define a clipping region corresponding to the
interior or exterior of the currently open path.

CLIP_TO_PATH
short Escape(hdc, CLIP_TO_PATH, sizeof(int), lpClipMode, NULL)

The CLIP_TO_PATH printer escape defines a clipping region bounded by the currently open path. It
enables the application to save and restore the current clipping region and to set up an inclusive or
exclusive clipping region bounded by the currently open path. If the path defines an inclusive clipping
region, portions of primitives falling outside the interior bounded by the path are clipped. If the path
defines an exclusive clipping region, portions of primitives falling inside the interior are clipped.

Parameter Description
hdc HDC Identifies the device context.
lpClipMode LPINT Points to a short integer that specifies the clipping mode. It can be one of the

following values:

Value Meaning
CLIP_SAVE (0) Saves the current clipping region.
CLIP_RESTORE (1) Restores the previous clipping region.
CLIP_INCLUSIVE (2) Sets an inclusive clipping region.
CLIP_EXCLUSIVE (3) Sets an exclusive clipping region.

Returns
The return value specifies the outcome of the escape. This value is nonzero if the escape is successful.
Otherwise, it is zero.

Comments
This escape is used only by PostScript printer drivers.

To clip a set of primitives against a path, an application should follow these steps:
1 Save the current clipping region by using the CLIP_TO_PATH escape.

2 Begin a path with the BEGIN_PATH escape.
3 Draw the primitives bounding the clipping region.

4 Close the path with the END_PATH escape.
5 Set the clipping region by using the CLIP_TO_PATH escape.

6 Draw the primitives to be clipped.
7 Restore the original clipping region by using the CLIP_TO_PATH escape.

DEVICEDATA
short Escape(hdc, DEVICEDATA, nCount, lpInData, lpOutData)

The DEVICEDATA printer escape is identical to the PASSTHROUGH escape. For further information,
see the description of PASSTHROUGH.

DRAFTMODE
short Escape(hdc, DRAFTMODE, sizeof(int), lpDraftMode, NULL)

The DRAFTMODE printer escape turns draft mode off or on. Turning draft mode on instructs the driver to
print faster and with lower quality, if necessary. The draft mode can be changed only at page boundaries
(for example, after a NEWFRAME escape directing the driver to advance to a new page).

Parameter Description
hdc HDC Identifies the device context.
lpDraftMode LPINT Points to a short integer that specifies the draft mode. It can be one of the

following values:

Value Meaning
0 Specifies draft mode off.
1 Specifies draft mode on.

Returns
The return value specifies the outcome of the escape. This value is positive if the escape is successful.
Otherwise, it is zero or negative.

Comments
The default draft mode is off.

DRAWPATTERNRECT
short Escape(hdc, DRAWPATTERNRECT, sizeof(PRECTSTRUCT), lpInData, NULL)

The DRAWPATTERNRECT printer escape creates a pattern, gray scale, or solid black rectangle by using
the pattern and rule capabilities of Page Control Language (PCL) on Hewlett-Packard LaserJet or
LaserJet-compatible printers. A gray scale is a gray pattern that contains a specific mixture of black and
white pixels.

Parameter Description
hdc HDC Identifies the device context.
lpInData PRECT_STRUCT FAR * Points to a PRECT_STRUCT structure that describes the

rectangle. For more information on this structure, see the following Comments section.

Returns
The return value specifies the outcome of the escape. This value is 1 if the escape is successful. Otherwise,
it is zero.

Comments
The lpInData parameter points to a PRECT_STRUCT structure that defines the rectangle to be created.
This structure has the following form:

struct PRECT_STRUCT {
POINT ptPosition;
POINT ptSize;
WORD wStyle;
WORD wPattern;

};
Following are the members in the PRECT_STRUCT structure:
ptPosition Specifies the upper-left corner of the rectangle.
ptSize Specifies the lower-right corner of the rectangle.
wStyle Specifies the type of pattern. It can be one of the following values:

Value Meaning
0 Black rule
1 White rule that erases bitmap data previously written to same area (available

on the HP LaserJet IIP only)
2 Gray scale
3 HP-defined

wPattern Specifies the pattern. It is ignored for a black rule. It specifies the percentage of gray for
a gray-scale pattern. It represents one of six patterns defined by Hewlett-Packard.

Comments
The output of the DRAWPATTERNRECT escape does not go through the graphics banding bitmap; it is
sent to the printer in the text band. An application can use this escape to print line and block graphics
without using graphics banding at all. Because many applications use only horizontal and vertical lines or
blocks in graphic output, this is a significant optimization.

An application should use the QUERYESCSUPPORT escape to determine whether a device is capable of
drawing patterns and rules before using the DRAWPATTERNRECT escape. If an application uses the
BANDINFO escape, all patterns and rectangles sent by using DRAWPATTERNRECT should be treated
as text and sent on a text band.

Applications that use the DRAWPATTERNRECT escape must observe two limitations. First, rules drawn
with DRAWPATTERNRECT are not subject to clipping regions in the device context. Second,
applications should not try to erase patterns and rules created with DRAWPATTERNRECT by placing
opaque objects over them. If the printer supports white rules, these can be used to erase patterns created by
DRAWPATTERNRECT. If the printer does not support white rules, there is no method for erasing these
patterns.

If an application cannot use the DRAWPATTERNRECT escape, it should generally use the PatBlt
function instead. (If PatBlt is used to print a black rectangle, the application should use the BLACKNESS
raster operator.) If the device is a plotter, the application should use the Rectangle function.

ENABLEDUPLEX
short Escape(hdc, ENABLEDUPLEX, sizeof(WORD), lpInData, NULL)

The ENABLEDUPLEX printer escape is maintained for backwards compatibility. Applications written for
Windows 3.1 should use the ExtDeviceMode function. An application can determine whether an output
device is capable of creating duplex output by checking the DM_DUPLEX bit of the dmFields member in
the DEVMODE structure.

This escape enables the duplex printing capabilities of a printer. A device that possesses duplex printing
capabilities is able to print on both sides of the output medium.

Parameter Description
hdc HDC Identifies the device context.
lpInData LPWORD Points to an unsigned 16-bit integer that specifies whether duplex or simplex

printing is used. It can be one of the following values:

Value Meaning
0 Simplex
1 Duplex with vertical binding
2 Duplex with horizontal binding

Returns
The return value specifies the outcome of the escape. This value is 1 if the escape is successful. Otherwise,
it is zero.

Comments
An application should use the QUERYESCSUPPORT escape to determine whether an output device is
capable of creating duplex output. If QUERYESCSUPPORT returns a nonzero value, the application
should send the ENABLEDUPLEX escape even if simplex printing is desired. This procedure guarantees
replacement of any values set in the driver-specific dialog box. If duplex printing is enabled and an uneven
number of NEXTFRAME escapes are sent to the driver prior to the ENDDOC escape, the driver ejects an
additional page before ending the print job.

ENABLEPAIRKERNING
short Escape(hdc, ENABLEPAIRKERNING, sizeof(int), lpNewKernFlag, lpOldKernFlag)

The ENABLEPAIRKERNING printer escape enables or disables the ability of the driver to kern character
pairs automatically. Kerning is the process of adding or subtracting space between characters in a string of
text.

When pair kerning is enabled, the driver automatically kerns those pairs of characters that are listed in the
character-pair kerning table for the font. The driver reflects this kerning both on the printer and in the
GetTextExtent function calls.

Parameter Description
hdc HDC Identifies the device context.
lpNewKernFlag LPINT Points to a short-integer value that specifies whether automatic pair kerning

is to be enabled (1) or disabled (zero).
lpOldKernFlag LPINT Points to a short-integer value that receives the previous automatic pair-

kerning value.

Returns
The return value specifies the outcome of the escape. This value is 1 if the escape is successful. It is zero if
the escape is not successful or not implemented.

Comments
The default state of this escape is zero; automatic character-pair kerning is disabled.

A driver does not have to support the ENABLEPAIRKERNING escape just because it supplies the
character-pair kerning table to the application by using the GETPAIRKERNTABLE escape. When the
GETPAIRKERNTABLE escape is supported but the ENABLEPAIRKERNING escape is not, the
application must properly space the kerned characters on the output device by using the ExtTextOut
function.

ENABLERELATIVEWIDTHS
short Escape(hdc, ENABLERELATIVEWIDTHS, sizeof(int), lpNewWidthFlag, lpOldWidthFlag)

The ENABLERELATIVEWIDTHS printer escape enables or disables relative character widths. When
relative widths are disabled (the default), the width of each character can be expressed as a number of
device units. This method guarantees that the extent of a string will equal the sum of the extents of the
characters in the string. This allows applications to build an extent table by using one-character
GetTextExtent function calls.

When relative widths are enabled, the sum of a string may not equal the sum of the widths of the
characters. Applications that enable this feature are expected to retrieve the extent table for the font and
compute relatively scaled string widths.

Parameter Description
hdc HDC Identifies the device context.
lpNewWidthFlag LPINT Points to a short integer that specifies whether relative widths are to be

enabled (1) or disabled (zero).
lpOldWidthFlag LPINT Points to a short integer that receives the previous relative character width

value.

Returns
The return value specifies the outcome of the escape. This value is 1 if the escape is successful. It is zero if
the escape is not successful or not implemented.

Comments
The default state of this escape is zero; relative character widths are disabled.

When the ENABLERELATIVEWIDTHS escape is enabled, the values specified as font units and
accepted and returned by the escapes described in this topic are returned in the relative units of the font.

It is assumed that only linear-scaling devices are dealt with in a relative mode. Nonlinear-scaling devices
do not implement this escape.

ENDDOC
short Escape(hdc, ENDDOC, NULL, NULL, NULL)

The ENDDOC printer escape is maintained for backwards compatibility. Applications written for
Windows 3.1 should use the EndDoc function.

This escape ends a print job started by a STARTDOC escape.

Parameter Description
hdc HDC Identifies the device context.

Returns
The return value specifies the outcome of the escape. This value is positive if the escape is successful.
Otherwise, it is zero or negative.

Comments
The ENDDOC escape should not be used inside metafiles.

END_PATH
short Escape(hdc, END_PATH, sizeof(PATH_INFO), lpInData, NULL)

The END_PATH printer escape ends a path. A path is a connected sequence of primitives drawn in
succession to form a single polyline or polygon. Paths enable applications to draw complex borders, filled
shapes, and clipping regions by supplying a collection of other primitives to define the desired shape.

Printer escapes that support paths enable applications to render images on sophisticated devices, such as
PostScript printers, without generating huge polygons to simulate them.

To draw a path, an application first issues the BEGIN_PATH escape. Then it draws the primitives defining
the border of the desired shape and issues an END_PATH escape.

The END_PATH escape takes, as a parameter, a pointer to a structure specifying the manner in which the
path is to be rendered. The structure specifies whether or not the path is to be drawn and whether it is open
or closed. Open paths define polylines, and closed paths define fillable polygons.

Parameter Description
hdc HDC Identifies the device context.
lpInData PATH_INFO FAR * Points to a PATH_INFO structure that defines how the path is to

be rendered. For more information about this structure, see the following Comments
section.

Returns
The return value specifies the current path nesting level. This value is the number of BEGIN_PATH
escape calls without a corresponding END_PATH call if the escape is successful. Otherwise, it is -1.

Comments
This escape is used only by PostScript printer drivers.

An application may begin a subpath within another path. If the subpath is closed, it is treated just like a
polygon. If it is open, it is treated just like a polyline.

An application may use the CLIP_TO_PATH escape to define a clipping region corresponding to the
interior or exterior of the currently open path.

The lpInData parameter points to a PATH_INFO structure that specifies how to render the path. This
structure has the following form:

struct PATH_INFO {
short RenderMode;
BYTEFillMode;
BYTEBkMode;
LOGPEN Pen;
LOGBRUSH Brush;
DWORD BkColor;

};
Following are the members in the PATH_INFO structure:
RenderMode Specifies how the path is to be rendered. It can be one of the following values:

Value Meaning
NO_DISPLAY (0) Path is not drawn.
OPEN (1) Path is drawn as an open polygon.
CLOSED (2) Path is drawn as a closed polygon.

FillMode Specifies how the path is to be filled. It can be one of the following values:
Value Meaning
ALTERNATE (1) Fill is done using the alternate fill algorithm.
WINDING (2) Fill is done using the winding fill algorithm.

BkMode Specifies the background mode for filling the path. It can be one of the following
values:
Value Meaning
OPAQUE Background is filled with the background color before the

brush is drawn.
TRANSPARENT Background is not changed.

Pen Specifies the pen with which the path is to be drawn. If the RenderMode function is
set to the NO_DISPLAY value, the pen is ignored.

Brush Specifies the brush with which the path is to be filled. If the RenderMode function is
set to the NO_DISPLAY or OPEN value, the brush is ignored.

BkColor Specifies the color with which the path is filled if the BkMode function is set to the
OPAQUE value.

ENUMPAPERBINS
short Escape(hdc, ENUMPAPERBINS, sizeof(int), lpNumBins, lpOutData)

The ENUMPAPERBINS printer escape is maintained for backwards compatibility. Applications written
for Windows 3.1 should call the DeviceCapabilities function with the DC_BINNAMES index to retrieve
the number of available paper bins and the name of each bin.

This escape retrieves attribute information about a specified number of paper bins. The
GETSETPAPERBINS escape retrieves the number of bins available on a printer.

Parameter Description
hdc HDC Identifies the device context.
lpNumBins LPINT Points to an integer that specifies the number of bins for which information is to

be retrieved.
lpOutData LPSTR Points to a structure to which information about the paper bins is copied. The

size of the structure depends on the number of bins for which information was
requested. For a description of this structure, see the following Comments section.

Returns
The return value specifies the outcome of the escape. This value is 1 if the escape is successful. It is zero if
the escape is not successful or not implemented.

Comments
The structure to which the lpOutData parameter points consists of two arrays. The first is an array of short
integers containing the paper-bin identifier numbers in the following form:

short BinList[cBinMax]
The number of integers in the array (the cBinMax value) is equal to the value pointed to by the lpNumBins
parameter.

The second array in the structure to which lpOutData points is an array of characters in the following
form:

char PaperNames[cBinMax][cchBinName]
The cBinMax value is equal to the value pointed to by the lpNumBins parameter. The cchBinName value
is the length of each string (currently 24).

ENUMPAPERMETRICS
short Escape(hdc, ENUMPAPERMETRICS, sizeof(int), lpMode, lpOutData)

The ENUMPAPERMETRICS printer escape performs one of two functions according to the mode:
It determines the number of paper types supported and returns this value, which can then be used to

allocate an array of RECT structures.
It returns one or more RECT structures that define the areas on the page that can receive an image.

This escape is provided only for backward compatibility. An application should call the
DeviceCapabilities function with the DC_PAPERSIZE index to discover the number of available paper
sizes and the dimensions of each size.

Parameter Description
hdc HDC Identifies the device context.
lpMode LPINT Points to an integer that specifies the mode for the escape. It can be one of the

following values:

Value Meaning
0 Return value indicates how many RECT structures are required to contain

the information about the available paper types.
1 Array of RECT structures to which the lpOutData parameter points is filled

with the information.
lpOutData LPRECT Points to an array of RECT structures that return all the areas capable of

receiving an image.

Returns
The return value is positive if the escape is successful. The value is zero if the escape is not implemented
and negative if an error occurred.

EPSPRINTING
short Escape(hdc, EPSPRINTING, sizeof(BOOL), lpBool, NULL)

The EPSPRINTING printer escape suppresses the output of the Windows PostScript header control
section, which is about 7K. If an application uses this escape, no graphics device interface (GDI) calls are
allowed.

Parameter Description
hdc HDC Identifies the device context.
lpBool BOOL FAR * Points to a Boolean value that indicates whether downloading should be

enabled (nonzero) or disabled (zero).

Returns
The return value is positive if the escape is successful. This value is zero if the escape is not implemented
and negative if an error occurred.

Comments
This escape is used only by PostScript printer drivers.

EXT_DEVICE_CAPS
short Escape(hdc, EXT_DEVICE_CAPS, sizeof(int), lpIndex, lpCaps)

The EXT_DEVICE_CAPS printer escape retrieves information about device-specific capabilities. It
supplements the GetDeviceCaps function.

Parameter Description
hdc HDC Identifies the device context.
lpIndex LPINT Points to a short integer that specifies the index of the capability to be retrieved.

It can be any one of the following values:

Value Meaning
R2_CAPS (1) The lpCaps parameter indicates which of the 16

binary raster operations the device driver
supports. A bit will be set for each supported
raster operation. For further information, see
the description of the SetROP2 function.

PATTERN_CAPS (2) The lpCaps parameter returns the maximum
dimensions of a pattern brush bitmap. The low-
order word of the capability value contains the
maximum width of a pattern brush bitmap, and
the high-order word contains the maximum
height.

PATH_CAPS (3) The lpCaps parameter indicates whether the
device is capable of creating paths by using
alternate and winding interiors, and whether the
device can do exclusive or inclusive clipping to
path interiors. The path capabilities are
obtained by using the logical OR operation on
the following values:

PATH_ALTERNATE (1)
PATH_WINDING (2)
PATH_INCLUSIVE (4)
PATH_EXCLUSIVE (8)

POLYGON_CAPS (4) The lpCaps parameter returns the maximum
number of polygon points supported by the
device. The capability value is an unsigned
value specifying the maximum number of
points.

PATTERN_COLOR_CAPS (5) The lpCaps parameter indicates whether the
device can convert monochrome pattern
bitmaps to color. The capability value is 1 if the
device can do pattern bitmap color conversions
and zero if it cannot.

R2_TEXT_CAPS (6) The lpCaps parameter indicates whether the
device is capable of performing binary raster
operations on text. The low-order word of the
capability value specifies which raster
operations are supported for text. A bit is set
for each supported raster operation, as in the
R2_CAPS escape. The high-order word
specifies the type of text to which the raster
capabilities apply. It is obtained by applying
the logical OR operation to the following
values together:

RASTER_TEXT (1)
DEVICE_TEXT (2)
VECTOR_TEXT (4)

POLYMODE_CAPS (7) The lpcaps parameter indicates which poly
modes are supported by the printer driver. The
capability value is obtained by using the
bitwise OR operator to combine a bit in the
corresponding position for each supported poly
mode. For example, if the printer supports the
PM_POLYSCANLINE and PM_BEZIER poly
modes, the capability value would be:
(1 << PM_POLYSCANLINE) | (PM_BEZIER)

lpCaps LPDWORD Points to a 32-bit integer to which the capabilities will be copied.

Returns
The return value is nonzero if the specified extended capability is supported. This value is zero if the
capability is not supported.

Comments
This escape is used only by PostScript printer drivers.

EXTTEXTOUT
short Escape(hdc, EXTTEXTOUT, sizeof(EXTTEXT_STRUCT), lpInData, NULL)

The EXTTEXTOUT printer escape provides an efficient way for an application to call the graphics device
interface (GDI) TextOut function when justification, letter spacing, or kerning is involved.

This function is provided only for backward compatibility. New applications should use the GDI
ExtTextOut function instead.

Parameter Description
hdc HDC Identifies the device context.
lpInData EXTTEXT_STRUCT FAR * Points to an EXTTEXT_STRUCT structure that specifies

the initial position, characters, and character widths of the string. For more information
about this structure, see the following Comments section.

Returns
The return value specifies the outcome of the escape. This value is 1 if the escape is successful. It is zero if
the escape is not successful or not implemented.

Comments
The EXTTEXT_STRUCT structure has the following form:

struct EXTTEXT_STRUCT {
WORD x;
WORD y;
LPWORD lpText;
LPWORD lpWidths;

};
Following are the members in the EXTTEXT_STRUCT structure:
x Specifies the x-coordinate of the upper-left corner of the string's starting point.
y Specifies the y-coordinate of the upper-left corner of the string's starting point.
lpText Points to an array of cch character codes, where cch is the number of bytes in the string (cch

is also the number of words in the width array).
lpWidths Points to an array of cch character widths to use when printing the string. The first character

appears at (x,y), the second at (x + lpWidths[0],y), the third at (x + lpWidths[0] +
lpWidths[1],y), and so on. These character widths are specified in the font units of the
currently selected font. (The character widths are always equal to device units, unless the
application has enabled relative character widths.)
The units contained in the width array are specified as font units of the device.

FLUSHOUTPUT
short Escape(hdc, FLUSHOUTPUT, NULL, NULL, NULL)

The FLUSHOUTPUT printer escape clears all output from the device's buffer.

Parameter Description
hdc HDC Identifies the device context.

Returns
The return value specifies the outcome of the escape. This value is greater than zero if the escape is
successful. Otherwise, it is less than zero.

GETCOLORTABLE
short Escape(hdc, GETCOLORTABLE, sizeof(int), lpIndex, lpColor)

The GETCOLORTABLE printer escape retrieves an RGB color-table entry and copies it to the location
specified by the lpColor parameter.

Parameter Description
hdc HDC Identifies the device context.
lpIndex LPINT Points to a short integer that specifies the index of a color-table entry. Color-

table indexes start at zero for the first table entry.
lpColor LPDWORD Points to the long integer that will receive the RGB color value for the

given entry.

Returns
The return value specifies the outcome of the escape. This value is positive if the escape is successful.
Otherwise, it is negative.

GETEXTENDEDTEXTMETRICS
short Escape(hdc, GETEXTENDEDTEXTMETRICS, sizeof(WORD), lpInData, lpOutData)

The GETEXTENDEDTEXTMETRICS printer escape fills the buffer pointed to by the lpOutData
parameter with the extended text metrics for the selected font.

Parameter Description
hdc HDC Identifies the device context.
lpInData LPWORD Points to an unsigned 16-bit integer that specifies the number of bytes

pointed to by the lpOutData parameter.
lpOutData EXTTEXTMETRIC FAR * Points to an EXTTEXTMETRIC structure. For more

information about this structure, see the following Comments section.

Returns
The return value specifies the number of bytes copied to the buffer pointed to by the lpOutData parameter.
This value will never exceed that specified in the nSize member pointed to by the lpInData parameter. The
return value is zero if the selected font does not have the extended text metrics or if the escape fails or is
not implemented.

Comments
The lpOutData parameter points to an EXTTEXTMETRIC structure, which has the following form:

struct EXTTEXTMETRIC {
short etmSize;
short etmPointSize;
short etmOrientation;
short etmMasterHeight;
short etmMinScale;
short etmMaxScale;
short etmMasterUnits;
short etmCapHeight;
short etmXHeight;
short etmLowerCaseAscent;
short etmLowerCaseDescent;
short etmSlant;
short etmSuperScript;
short etmSubScript;
short etmSuperScriptSize;
short etmSubScriptSize;
short etmUnderlineOffset;
short etmUnderlineWidth;
short etmDoubleUpperUnderlineOffset;
short etmDoubleLowerUnderlineOffset;
short etmDoubleUpperUnderlineWidth;
short etmDoubleLowerUnderlineWidth;
short etmStrikeOutOffset;
short etmStrikeOutWidth;
WORD etmKernPairs;
WORD etmKernTracks;

};
Following are the members in the EXTTEXTMETRIC structure:
etmSize Specifies the size of the structure, in bytes.
etmPointSize Specifies the nominal point size of this font, in twips (1/20

of a point, or 1/1440 inch). This is the intended size of the
font; the actual size may differ slightly depending on the
resolution of the device.

etmOrientation Specifies the orientation of the font. The etmOrientation
member may be any of the following values:
Value Meaning
0 Either orientation
1 Portrait

2 Landscape
These values refer to the ability of this font to be placed on a
page with the given orientation. A portrait page has a height
that is greater than its width. A landscape page has a width
that is greater than its height.

etmMasterHeight Specifies the font size, in device units, for which the values
in this font's extent table are exact.

etmMinScale Specifies the minimum valid size for this font. The
following equation illustrates how the minimum point size is
determined:

smallest point size =
(etmMinScale * 72) / dfVertRes

The value 72 represents the number of points per inch. The
dfVertRes value is the number of dots per inch.

etmMaxScale Specifies the maximum valid size for this font. The
following equation illustrates how the maximum point size
is determined:

largest point size =
(etmMaxScale * 72) / dfVertRes

The value 72 represents the number of points per inch. The
dfVertRes value is the number of dots per inch.

etmMasterUnits Specifies the integer number of units per em where an em
equals the value of the etmMasterHeight member. (That is,
etmMasterUnits is emtMasterHeight expressed in font units
instead of device units.)

etmCapHeight Specifies the height, in font units, of uppercase characters in
the font. Typically, this is the height of capital H.

etmXHeight Specifies the height, in font units, of lowercase characters in
the font. Typically, this is the height of lowercase x.

etmLowerCaseAscent Specifies the distance, in font units, that the ascender of
lowercase letters extends above the base line. Typically, this
is the height of lowercase d.

etmLowerCaseDescent Specifies the distance, in font units, that the descender of
lowercase letters extends below the base line. Typically, this
is specified for the descender of lowercase p.

etmSlant Specifies, for an italic or slanted font, the angle of the slant
measured in tenths of a degree clockwise from the upright
version of the font.

etmSuperScript Specifies, in font units, the recommended amount to offset
superscript characters from the base line. This is typically a
negative value.

etmSubScript Specifies, in font units, the recommended amount to offset
subscript characters from the base line. This is typically a
positive value.

etmSuperScriptSize Specifies, in font units, the recommended size of superscript
characters for this font.

etmSubScriptSize Specifies, in font units, the recommended size of subscript
characters for this font.

etmUnderlineOffset Specifies, in font units, the offset downward from the base
line where the top of a single underline bar should appear.

etmUnderlineWidth Specifies, in font units, the thickness of the underline bar.
etmDoubleUpperUnderlineOffset Specifies the offset, in font units, downward from the base

line where the top of the upper double-underline bar should
appear.

etmDoubleLowerUnderlineOffset Specifies the offset, in font units, downward from the base
line where the top of the lower double-underline bar should
appear.

etmDoubleUpperUnderlineWidth Specifies, in font units, the thickness of the upper underline
bar.

etmDoubleLowerUnderlineWidth Specifies, in font units, the thickness of the lower underline
bar.

etmStrikeOutOffset Specifies, in font units, the offset upward from the base line
where the top of a strikeout bar should appear.

etmStrikeOutWidth Specifies the thickness, in font units, of the strikeout bar.
etmKernPairs Specifies the number of character kerning pairs defined for

this font. An application can use this value to calculate the
size of the pair-kern table returned by the
GETPAIRKERNTABLE escape. It will not be greater than
512 kerning pairs.

etmKernTracks Specifies the number of kerning tracks defined for this font.
An application can use this value to calculate the size of the
track-kern table returned by the GETTRACKKERNTABLE
escape. It will not be greater than 16 kerning tracks.

The values returned in many of the members of the EXTTEXTMETRIC structure are affected by whether
relative character widths are enabled or disabled. For more information, see the description of the
ENABLERELATIVEWIDTHS escape earlier in this topic.

GETEXTENTTABLE
short Escape(hdc, GETEXTENTTABLE, sizeof(CHAR_RANGE_STRUCT), lpInData, lpOutData)

The GETEXTENTTABLE printer escape retrieves the width (extent) of individual characters from a
group of consecutive characters in the character set for the selected font.

Parameter Description
hdc HDC Identifies the device context.
lpInData LPSTR Points to a CHAR_RANGE_STRUCT structure that defines the range of

characters for which the width is to be retrieved. For more information about this
structure, see the following Comments section.

lpOutData LPINT Points to an array of short integers that receives the character widths. The size of
the array must be at least (chLast - chFirst + 1).

Returns
The return value specifies the outcome of the escape. This value is 1 if the escape is successful. It is zero if
the escape is not successful. If the escape is not implemented, the return value is zero.

Comments
The lpInData parameter points to a CHAR_RANGE_STRUCT structure that defines the range of
characters for which the width is to be retrieved. This structure has the following form:

struct CHAR_RANGE_STRUCT {
CHAR chFirst;
CHAR chLast;

};
Following are the members in the CHAR_RANGE_STRUCT structure:
chFirst Specifies the character code of the first character whose width is to be retrieved.
chLast Specifies the character code of the last character whose width is to be retrieved.

How an application uses the retrieved values depends upon whether relative character widths are enabled
or disabled. For more information, see the description of the ENABLERELATIVEWIDTHS escape,
earlier in this topic.

GETFACENAME
short Escape(hdc, GETFACENAME, NULL, NULL, lpFaceName)

The GETFACENAME printer escape retrieves the face name of the current physical font.

Parameter Description
hdc HDC Identifies the device context.
lpFaceName LPSTR Points to a buffer of characters to receive the face name. This buffer must be at

least 60 bytes in length.

Returns
The return value is positive if the escape was successful. This value is zero if the escape is not
implemented or negative if an error occurred.

Comments
This escape is used only by PostScript printer drivers.

GETPAIRKERNTABLE
short Escape(hdc, GETPAIRKERNTABLE, NULL, NULL, lpOutData)

The GETPAIRKERNTABLE printer escape fills the buffer pointed to by the lpOutData parameter with
the character-pair kerning table for the selected font.

Parameter Description
hdc HDC Identifies the device context.
lpOutData KERNPAIR FAR * Points to an array of KERNPAIR structures. This array must be

large enough to accommodate the entire character-pair kerning table for the font. The
number of character-kerning pairs in the font can be obtained from the
EXTTEXTMETRIC structure returned by the GETEXTENDEDTEXTMETRICS
escape. For more information about this structure, see the following Comments section.

Returns
The return value specifies the number of KERNPAIR structures copied to the buffer. This value is zero if
the font does not have kerning pairs defined or the escape fails or is not implemented.

Comments
The KERNPAIR structure has the following form:

struct KERNPAIR {
union {

BYTE each [2]; /* 'each' and 'both' share same memory */
WORD both;

} kpPair;
short kpKernAmount;

};
Following are the members in the KERNPAIR structure:
each Specifies the character codes for the kerning pair.
both Specifies a 16-bit value in which the first character in the kerning pair is in the

low-order byte and the second character is in the high-order byte.
kpKernAmount Specifies the signed amount that this pair will be kerned if they appear side by side

in the same font and size. This value is typically negative because pair-kerning
usually results in two characters being set tighter than normal.

The array of KERNPAIR structures is sorted in increasing order by the kpPair.both member.

The values returned in KERNPAIR structures are affected by whether relative character widths are
enabled or disabled. For more information, see the description of the ENABLERELATIVEWIDTHS
escape earlier in this topic.

GETPHYSPAGESIZE
short Escape(hdc, GETPHYSPAGESIZE, NULL, NULL, lpDimensions)

The GETPHYSPAGESIZE printer escape retrieves the physical page size and copies it to the location
pointed to by the lpDimensions parameter.

Parameter Description
hdc HDC Identifies the device context.
lpDimensions LPPOINT Points to a POINT structure that will receive the physical page dimensions

(in the current orientation). The x member of the POINT structure receives the
horizontal size, in device units, and the y member receives the vertical size, in device
units.

Returns
The return value specifies the outcome of the escape. This value is positive if the escape is successful.
Otherwise, it is zero or negative.

GETPRINTINGOFFSET
short Escape(hdc, GETPRINTINGOFFSET, NULL, NULL, lpOffset)

The GETPRINTINGOFFSET printer escape retrieves the offset from the upper-left corner of the physical
page where the actual printing or drawing begins. This escape is generally not useful for devices that allow
the user to set the origin of the printable area directly.

Parameter Description
hdc HDC Identifies the device context.
lpOffset LPPOINT Points to a POINT structure that will receive the printing offset (in the current

orientation). The x member of the POINT structure receives the horizontal coordinate of
the printing offset, in device units, and the y member receives the vertical coordinate of
the printing offset, in device units.

Returns
The return value specifies the outcome of the escape. This value is positive if the escape is successful.
Otherwise, it is zero or negative.

GETSCALINGFACTOR
short Escape(hdc, GETSCALINGFACTOR, NULL, NULL, lpFactors)

The GETSCALINGFACTOR printer escape retrieves the scaling factors for the x-axis and y-axis of a
printing device. For each scaling factor, the escape copies an exponent of 2 to the location pointed to by
the lpFactors parameter. For example, the value 3 is copied to lpFactors if the scaling factor is 8.

Scaling factors are used by printing devices that support graphics at a smaller resolution than text.

Parameter Description
hdc HDC Identifies the device context.
lpFactors LPPOINT Points to the POINT structure that will receive the scaling factor. The x

member of the POINT structure receives the scaling factor for the x-axis and the y
member receives the scaling factor for the y-axis.

Returns
The return value specifies the outcome of the escape. This value is positive if the escape is successful.
Otherwise, it is zero or negative.

GETSETPAPERBINS
short Escape(hdc, GETSETPAPERBINS, nCount, lpInData, lpOutData)

The GETSETPAPERBINS printer escape is maintained for backwards compatibility. Applications written
for Windows 3.1 should call the DeviceCapabilities function with the DC_BINS index to retrieve the
number of available paper bins and use the ExtDeviceMode function to set the current paper bin.

This escape retrieves the number of paper bins available on a printer and sets the current paper bin. For
more information about actions performed by this escape, see the following Comments section.

Parameter Description
hdc HDC Identifies the device context.
nCount int Specifies the number of bytes pointed to by the lpInData parameter.
lpInData BinInfo FAR * Points to a BinInfo structure that specifies the new paper bin. It may be

set to NULL. For more information about this structure, see the following Comments
section.

lpOutData BinInfo FAR * Points to a BinInfo structure that contains information about the current
or previous paper bin and the number of bins available. For more information about this
structure, see the following comments section.

Returns
The return value is positive if the escape is successful. Otherwise, this value is zero or negative.

Comments
There are three possible actions for this escape, depending on the values passed in the lpInData and
lpOutData parameters:

lpInData lpOutData Action
NULL BinInfo Retrieves the number of bins and the number of the current bin.
BinInfo BinInfo Sets the current bin to the number specified in the BinNumber member of

the structure to which the lpInData parameter points and retrieves the
number of the previous bin.

BinInfo NULL Sets the current bin to the number specified in the BinNumber member of
the structure to which the lpInData parameter points.

The BinInfo structure has the following form:

struct BinInfo {
int BinNumber;
int cBins;
int Reserved;
int Reserved;
int Reserved;
int Reserved;

};
Following are the members of the BinInfo structure:
BinNumber Identifies the current or previous paper bin.
cBins Specifies the number of paper bins available.

Once a new bin is set, the selection takes effect immediately; the next page printed comes from the new
bin.

GETSETPAPERMETRICS
short Escape(hdc, GETSETPAPERMETRICS, sizeof(RECT), lpNewPaper, lpPrevPaper)

The GETSETPAPERMETRICS printer escape sets the paper type according to the given paper metrics
information. It also retrieves the paper metrics information for the current printer.

This escape is obsolete. Printer drivers written for Windows version 3.0 and later may not support this
escape. Applications can use the DeviceCapabilities and ExtDeviceMode functions to achieve the same
functionality.

This escape expects a RECT structure representing the imageable area of the physical page and assumes
the origin is situated in the upper-left corner.

Parameter Description
hdc HDC Identifies the device context.
lpNewPaper LPRECT Points to a RECT structure that defines the new imageable area.
lpPrevPaper LPRECT Points to a RECT structure that receives the previous imageable area.

Returns
The return value is positive if the escape is successful. The value is zero if the escape is not implemented
and negative if an error occurs.

GETSETPRINTORIENT
short Escape(hdc, GETSETPRINTORIENT, nCount, lpInData, NULL)

The GETSETPRINTORIENT printer escape returns or sets the current paper orientation. This escape is
obsolete. Printer drivers written for Windows version 3.0 and later may not support this escape. An
application should call the ExtDeviceMode function instead.

Parameter Description
hdc HDC Identifies the device context.
nCount short Specifies the number of bytes pointed to by the lpInData parameter.
lpInData ORIENT FAR * Points to an ORIENT structure that specifies the new paper orientation.

For a description of this structure, see the following Comments section. It may be set to
NULL, in which case the GETSETPRINTORIENT escape returns the current paper
orientation.

Returns
The return value specifies the current orientation if lpInData is NULL. Otherwise, this value is the
previous orientation. This value is -1 if the escape fails.

Comments
This escape is provided only for backward compatibility. New applications should use the graphics device
interface (GDI) DeviceCapabilities and ExtDeviceMode functions instead.

The ORIENT structure has the following form:

struct ORIENT {
DWORD Orientation;
DWORD Reserved;
DWORD Reserved;
DWORD Reserved;
DWORD Reserved;

};
The Orientation member can be one of these values:

Value Meaning
1 New orientation is portrait.
2 New orientation is landscape.

GETSETSCREENPARAMS
short Escape(hdc, GETSETSCREENPARAMS, sizeof(SCREENPARAMS), lpInData, lpOutData)

The GETSETSCREENPARAMS printer escape retrieves or sets the current screen information for
rendering halftones.

Parameter Description
hdc HDC Identifies the device context.
lpInData SCREENPARAMS FAR * Points to a SCREENPARAMS structure that contains the

new screen information. For more information about this structure, see the following
Comments section. This parameter may be NULL.

lpOutData SCREENPARAMS FAR * Points to a SCREENPARAMS structure that retrieves the
previous screen information. For more information about this structure, see the
following Comments section. This parameter may be NULL.

Returns
The return value specifies the outcome of the escape. This value is positive if the escape is successful.
Otherwise, it is negative.

Comments
This escape affects how device-independent bitmaps (DIBs) are rendered and how color objects are filled.

The SCREENPARAMS structure has the following form:

typedef struct tagSCREENPARAMS {
int angle;
int frequency;

} SCREENPARAMS;
Following are the members of the SCREENPARAMS structure:
angle Specifies, in degrees, the angle of the halftone screen.
frequency Specifies, in dots per inch, the screen frequency.

GETTECHNOLOGY
short Escape(hdc, GETTECHNOLOGY, NULL, NULL, lpTechnology)

The GETTECHNOLOGY printer escape retrieves the general technology type for a printer, which allows
an application to perform technology-specific actions.

Applications should avoid using this escape. Printer drivers written for Windows version 3.0 and later may
not support this escape.

Parameter Description
hdc HDC Identifies the device context.
lpTechnology LPSTR Points to a buffer to which the driver copies a null-terminated string

containing the printer technology type, such as "PostScript".

Returns
The return value specifies the outcome of the escape. This value is 1 if the escape is successful. It is zero if
the escape is not successful or is not implemented.

GETTRACKKERNTABLE
short Escape(hdc, GETTRACKKERNTABLE, NULL, NULL, lpOutData)

The GETTRACKKERNTABLE printer escape fills the buffer pointed to by the lpOutData parameter with
the track-kerning table for the currently selected font.

Parameter Description
hdc HDC Identifies the device context.
lpOutdata KERNTRACK FAR * Points to an array of KERNTRACK structures. This array must

be large enough to accommodate all the kerning tracks for the font. The number of
tracks in the font can be obtained from the EXTTEXTMETRIC structure which is
returned by the GETEXTENDEDTEXTMETRICS escape. For more information about
this structure, see the following Comments section.

Returns
The return value specifies the number of KERNTRACK structures copied to the buffer. This value is zero
if the font does not have kerning tracks defined or if the escape fails or is not implemented.

Comments
The KERNTRACK structure has the following form:

struct KERNTRACK {
short Degree;
short MinSize;
short MinAmount;
short MaxSize;
short MaxAmount;

};
Following are the members in the KERNTRACK structure:
Degree Specifies the amount of track kerning. Increasingly negative values represent tighter

track kerning, and increasingly positive values represent looser track kerning.
MinSize Specifies, in device units, the minimum font size for which linear track kerning

applies.
MinAmount Specifies, in font units, the amount of track kerning to apply to font sizes less than or

equal to the size specified by the MinSize member.
MaxSize Specifies, in device units, the maximum font size for which linear track kerning

applies.
MaxAmount Specifies, in font units, the amount of track kerning to apply to font sizes greater than

or equal to the size specified by the MaxSize member.

Between the MinSize and MaxSize font sizes, track kerning is a linear function from MinAmount to
MaxAmount. The values returned in the KERNTRACK structures are affected by whether relative
character widths are enabled or disabled. For more information, see the description of the
ENABLERELATIVEWIDTHS escape earlier in this topic.

GETVECTORBRUSHSIZE
short Escape(hdc, GETVECTORBRUSHSIZE, sizeof(LOGBRUSH), lpInData, lpOutData)

The GETVECTORBRUSHSIZE printer escape retrieves, in device units, the size of a plotter pen used to
fill closed figures. Graphics device interface (GDI) uses this information to prevent the plotter pen from
writing over the borders of the figure when filling closed figures.

Parameter Description
hdc HDC Identifies the device context.
lpInData LOGBRUSH FAR * Points to a LOGBRUSH structure that specifies the brush for

which data is to be returned.
lpOutData LPPOINT Points to a POINT structure whose y member contains the width of the pen,

in device units.

Returns
The return value specifies the outcome of the escape. This value is 1 if the escape is successful. It is zero if
the escape is not successful or is not implemented.

GETVECTORPENSIZE
short Escape(hdc, GETVECTORPENSIZE, sizeof(LOGPEN), lpInData, lpOutData)

The GETVECTORPENSIZE printer escape retrieves the size, in device units, of a plotter pen. Graphics
device interface (GDI) uses this information to prevent hatched brush patterns from overwriting the border
of a closed figure.

Parameter Description
hdc HDC Identifies the device context.
lpInData LOGPEN FAR * Points to a LOGPEN structure that specifies the pen for which the

width is to be retrieved.
lpOutData LPPOINT Points to a POINT structure that contains in its second word the width of the

pen, in device units.

Returns
The return value specifies the outcome of the escape. This value is 1 if the escape is successful and zero if
the escape is not successful or if it is not implemented.

MFCOMMENT
BOOL Escape(hdc, MFCOMMENT, nCount, lpComment, NULL)

The MFCOMMENT printer escape adds a comment to a metafile.

Parameter Description
hdc HDC Identifies the device context for the device on which the metafile appears.
nCount short Specifies the number of characters in the string pointed to by the lpComment

parameter.
lpComment LPSTR Points to a string that contains the comment that will appear in the metafile.

Returns
The return value specifies the outcome of the escape. This value is -1 if an error, such as insufficient
memory or an invalid port specification, occurs. Otherwise, it is positive.

MOUSETRAILS
short Escape(hdc, MOUSETRAILS, sizeof(WORD), lpTrailSize, NULL)

The MOUSETRAILS escape enables or disables mouse trails for display devices.

Parameter Description
hdc HDC Identifies the device context.
lpTrailSize LPINT points to a 16-bit variable containing a value specifying the action to take and

the number of mouse cursor images to display (trail size). The variable can be one of the
following values:

Value Meaning
1 through 7 Enables mouse trails and sets the trail size to the specified number. A

value of 1 requests a single mouse cursor. A value of 2 requests that one
extra mouse cursor be drawn behind the current mouse cursor, and so
on, up to a maximum of 7 total cursor images. The escape sets the
MouseTrails entry in the WIN.INI file to the given value and returns the
new trail size.

0 Disables mouse trails. The escape sets the MouseTrails entry to the
negative value of the current trail size (if positive) and returns the
negative value.

-1 Enables mouse trails. The display driver reads the MouseTrails entry
from the [windows] section of the WIN.INI file. If the value of the
entry is positive, the escape sets the trail size to the given value. If the
entry is negative, the escape sets the trail size to the entry's absolute
value and writes the positive value back to WIN.INI. If the MouseTrails
entry is not found, the escape sets the trail size to 7 and writes a new
MouseTrails entry to the WIN.INI file, setting its value to 7. The escape
then returns the new trail size.

-2 Disables mouse trails but does not cause the display driver to update the
WIN.INI file.

-3 Enables mouse trails but does not cause the display driver to update the
WIN.INI file.

Returns
The return value specifies the new trail size if the escape is successful. The return value is zero if the
escape is not supported.

NEWFRAME
short Escape(hdc, NEWFRAME, NULL, NULL, NULL)

The NEWFRAME printer escape is maintained for backwards compatibility. Applications written for
Windows 3.1 should use the StartPage and EndPage functions.

This escape informs the device that the application has finished writing to a page. It is typically used with
a printer to direct the device driver to advance to a new page.

Parameter Description
hdc HDC Identifies the device context.

Returns
The return value specifies the outcome of the escape. This value is positive if the escape is successful.
Otherwise, it is one of the following values:

Value Meaning
SP_APPABORT Job was terminated because the application's Abort function returned zero.
SP_ERROR General error.
SP_OUTOFDISK Not enough disk space is currently available for spooling, and no more space

will become available.
SP_OUTOFMEMORY Not enough memory is available for spooling.
SP_USERABORT User terminated the job through Print Manager.

Comments
Do not use the NEXTBAND escape with the NEWFRAME escape. For banding device drivers, graphics
device interface (GDI) replays a metafile to the printer, simulating a sequence of NEXTBAND escapes.

The NEWFRAME escape restores the default values of the device context. Consequently, if a font other
than the default font is selected when the application calls the NEWFRAME escape, the application must
select the font again following the NEWFRAME escape.

The NEWFRAME escape should not be used inside metafiles.

NEXTBAND
short Escape(hdc, NEXTBAND, NULL, NULL, lpBandRect)

The NEXTBAND printer escape informs the device driver that the application has finished writing to a
band, causing the device driver to send the band to Print Manager and return the coordinates of the next
band. Applications that process banding themselves use this escape.

Parameter Description
hdc HDC Identifies the device context.
lpBandRect LPRECT Points to the RECT structure that will receive the next band coordinates. The

device driver copies the device coordinates of the next band into this structure.

Returns
The return value specifies the outcome of the escape. This value is positive if the escape is successful. A
return value of zero indicates that an error occurred. In addition, the following error values are defined:

Value Meaning
SP_APPABORT Job was terminated because the application's Abort function returned zero.
SP_ERROR General error.
SP_OUTOFDISK Not enough disk space is currently available for spooling, and no more space

will become available.
SP_OUTOFMEMORY Not enough memory is available for spooling.
SP_USERABORT User terminated the job through Print Manager.

Comments
The NEXTBAND escape sets the band rectangle to the empty rectangle when printing reaches the end of a
page.

Do not use the NEWFRAME escape with the NEXTBAND escape.

The NEXTBAND escape should not be used inside metafiles.

PASSTHROUGH
short Escape(hdc, PASSTHROUGH, NULL, lpInData, NULL)

The PASSTHROUGH printer escape allows the application to send data directly to the printer, bypassing
the standard print-driver code.

Note: To use this escape, an application must have complete information about how the particular printer
operates.

Parameter Description
hdc HDC Identifies the device context.
lpInData LPSTR Points to a structure whose first word (16 bits) contains the number of bytes of

input data. The remaining bytes of the structure contain the data itself.

Returns
The return value specifies the number of bytes transferred to the printer if the escape is successful. This
value is less than or equal to zero if the escape is not successful or not implemented.

Comments
There may be restrictions on the kinds of device data an application can send to the device without
interfering with the operation of the driver. In general, applications must avoid resetting the printer or
causing the page to be printed.

It is strongly recommended that applications do not perform actions that consume printer memory, such as
downloading a font or a macro.

An application can avoid corrupting its data stream when issuing multiple, consecutive PASSTHROUGH
escapes by not accessing the printer any other way during the sequence.

An application can guarantee that the PASSTHROUGH escape will be successful if it uses a "save"
PostScript operator before sending PASSTHROUGH data and a "restore" operator after. Avoiding
graphics device interface (GDI) functions between calls to the PASSTHROUGH escape and avoiding
commands that cause a page to eject are other means to ensure that the escape will be successful.

POSTSCRIPT_DATA
The POSTSCRIPT_DATA printer escape is identical to the PASSTHROUGH escape.

POSTSCRIPT_IGNORE
short Escape(hdc, POSTSCRIPT_IGNORE, NULL, lpfOutput, NULL)

The POSTSCRIPT_IGNORE printer escape sets a flag indicating whether or not to suppress output.

Parameter Description
hdc HDC Identifies the device context.
lpfOutput BOOL FAR* Points to a flag indicating whether output should be suppressed. This

value is nonzero to suppress output and zero otherwise.

Returns
The return value specifies the previous setting of the output flag.

Comments
Applications that generate their own PostScript code can use the POSTSCRIPT_IGNORE escape to
prevent the PostScript device driver from generating output.

QUERYESCSUPPORT
short Escape(hdc, QUERYESCSUPPORT, sizeof(int), lpEscNum, NULL)

The QUERYESCSUPPORT printer escape determines whether a particular escape is implemented by the
device driver.

Parameter Description
hdc HDC Identifies the device context.
lpEscNum LPINT Points to a short integer that specifies the escape function to be checked.

Returns
The return value specifies whether a particular escape is implemented. This value is nonzero for
implemented escape functions. Otherwise, it is zero.

If the lpEscNum parameter is set to DRAWPATTERNRECT, the return value is one of the following
values:

Value Meaning
0 DRAWPATTERNRECT is not implemented.
1 DRAWPATTERNRECT is implemented for a printer other than the HP LaserJet IIP; this

printer supports white rules.
2 DRAWPATTERNRECT is implemented for the HP LaserJet IIP.

RESTORE_CTM
short Escape(hdc, RESTORE_CTM, NULL, NULL, NULL)

The RESTORE_CTM printer escape restores the previously saved current transformation matrix.

The current transformation matrix controls the manner in which coordinates are translated, rotated, and
scaled by the device. By using matrices, an application can combine these operations in any order to
produce the desired mapping for a particular picture.

Parameter Description
hdc HDC Identifies the device context.

Returns
The return value specifies the number of SAVE_CTM escape calls without a corresponding
RESTORE_CTM call. The return value is -1 if the escape is unsuccessful.

Comments
This escape is used only by PostScript printer drivers.

Applications should not make any assumptions about the initial contents of the current transformation
matrix.

SAVE_CTM
short Escape(hdc, SAVE_CTM, NULL, NULL, NULL)

The SAVE_CTM printer escape saves the current transformation matrix.

The current transformation matrix controls the manner in which coordinates are translated, rotated, and
scaled by the device. By using matrices, an application can combine these operations in any order to
produce the desired mapping for a particular picture.

An application can restore the matrix by using the RESTORE_CTM escape.

An application typically saves the current transformation matrix before changing it. This allows the
application to restore the previous state upon completion of a particular operation.

Parameter Description
hdc HDC Identifies the device context.

Returns
The return value specifies the number of SAVE_CTM escape calls without a corresponding
RESTORE_CTM call. The return value is zero if the escape is unsuccessful.

Comments
This escape is used only by PostScript printer drivers.

Applications should not make any assumptions about the initial contents of the current transformation
matrix.

Applications are expected to restore the contents of the current transformation matrix.

SELECTPAPERSOURCE
The SELECTPAPERSOURCE printer escape has been superseded by the DeviceCapabilities function
(using the DC_BINS value). SELECTPAPERSOURCE is provided only for backward compatibility.

SETABORTPROC
short Escape(hdc, SETABORTPROC, NULL, lpAbortFunc, NULL)

The SETABORTPROC printer escape is maintained for backwards compatibility. Applications written for
Windows 3.1 should use the SetAbortProc function.

This escape sets the Abort function for the print job.

To allow a print job to be canceled during spooling, an application must set the Abort function before the
print job is started with the STARTDOC escape. Print Manager calls the Abort function during spooling to
allow the application to cancel the print job or to take appropriate action for such errors as running out of
disk space. If no Abort function is set, the print job will fail if there is not enough disk space for spooling.

Parameter Description
hdc HDC Identifies the device context.
lpAbortFunc FARPROC Points to the application-supplied Abort function. For details, see the

following Comments section.

Returns
The return value specifies the outcome of the escape. This value is greater than zero if the escape is
successful. Otherwise, it is less than zero.

Comments
The address passed as the lpAbortFunc parameter must be created by using the MakeProcInstance
function.

The callback function must use the Pascal calling convention and must be declared FAR. The Abort
function must have the following form:

short FAR PASCAL AbortFunc(hPr,code)
HDC hPr;
short code;

AbortFunc is a placeholder for the application-supplied function name. The actual name must be exported
by including it in an EXPORTS statement in the module-definition (.DEF) file for the application.

Following are the parameters in the Abort function:
hPr Identifies the device context.
code Specifies whether an error has occurred. This parameter is zero if no error has occurred. It is

SP_OUTOFDISK if Print Manager is currently out of disk space and more disk space will
become available if the application waits.
If code is SP_OUTOFDISK, the application does not have to abort the print job. If it does not
abort the print job, it must yield to Print Manager by calling the PeekMessage or GetMessage
function.

Returns
The return value should be nonzero if the print job is to continue and zero if it is canceled.

SETALLJUSTVALUES
short Escape(hdc, SETALLJUSTVALUES, sizeof(EXTTEXTDATA), lpInData, NULL)

The SETALLJUSTVALUES printer escape is not recommended. Applications should use the ExtTextOut
function instead of this escape. This escape sets all of the text-justification values that are used for text
output in Windows 3.0 and earlier.

Text justification is the process of inserting extra pixels among break characters in a line of text. The space
character is normally used as a break character.

Parameter Description
hdc HDC Identifies the device context.
lpInData EXTTEXTDATA FAR * Points to an EXTTEXTDATA structure that defines the text-

justification values. For more information about this structure, see the Comments
section.

Returns
The return value specifies the outcome of the escape. This value is 1 if the escape is successful. Otherwise,
it is zero.

Comments
The lpInData parameter points to an EXTTEXTDATA structure that describes the text-justification values
used for text output. The EXTTEXTDATA structure has the following form:

typedef struct {
short nSize;
LPALLJUSTREC lpInData;
LPFONTINFO lpFont;
LPTEXTXFORM lpXForm;
LPDRAWMODE lpDrawMode;

} EXTTEXTDATA;
This structure contains a JUST_VALUE_STRUCT structure that has the following form:

typedef struct {
short nCharExtra;
WORD cch;
short nBreakExtra;
WORD nBreakCount;

} JUST_VALUE_STRUCT;
Following are the members of JUST_VALUE_STRUCT structure:
nCharExtra Specifies the total extra space, in font units, that must be distributed over cch

characters.
cch Specifies the number of characters over which the nCharExtra member is distributed.
nBreakExtra Specifies the total extra space, in font units, that is distributed over nBreakCount

characters.
nBreakCount Specifies the number of break characters over which the nBreakExtra member is

distributed.

The units used for the nCharExtra and nBreakExtra members are the font units of the device and are
dependent on whether relative character widths were enabled with the ENABLERELATIVEWIDTHS
escape.

The values set with this escape apply to subsequent calls to the TextOut function. The driver stops
distributing the extra space specified in the nCharExtra member when it has output the number of
characters specified in the nCharCount member. Likewise, it stops distributing the space specified by the
nBreakExtra member when it has output the number of characters specified by the nBreakCount member.
A call on the same string to the GetTextExtent function made immediately after the call to the TextOut
function will be processed in the same manner.

To reenable justification with the SetTextJustification and SetTextCharacterExtra functions, an application
should call the SETALLJUSTVALUES escape and set the nCharExtra and nBreakExtra members to zero.

SET_ARC_DIRECTION
short Escape(hdc, SET_ARC_DIRECTION, sizeof(int), lpDirection, NULL)

The SET_ARC_DIRECTION printer escape specifies the direction in which elliptical arcs are drawn using
the graphics device interface (GDI) Arc function.

By convention, elliptical arcs are drawn counterclockwise by GDI. This escape lets an application draw
paths containing arcs drawn clockwise.

Parameter Description
hdc HDC Identifies the device context.
lpDirection LPINT Points to a short integer specifying the arc direction. It can be one of the

following values:

COUNTERCLOCKWISE (0)
CLOCKWISE (1)

Returns
The return value is the previous arc direction.

Comments
This escape maps to PostScript language elements and is intended for PostScript line devices.

SET_BACKGROUND_COLOR
short Escape(hdc, SET_BACKGROUND_COLOR, nCount, lpNewColor, lpOldColor)

The SET_BACKGROUND_COLOR printer escape sets and retrieves the current background color for the
device.

The background color is the color of the screen surface before an application draws anything on the
device. This escape is particularly useful for color printers and film recorders.

This escape should be sent before the application draws anything on the current page.

Parameter Description
hdc HDC Identifies the device context.
nCount int Specifies the number of bytes pointed to by the lpNewColor parameter.
lpNewColor LPDWORD Points to a 32-bit integer specifying the desired background color. This

parameter can be NULL if the application is merely retrieving the current background
color.

lpOldColor LPDWORD Points to a 32-bit integer that receives the previous background color. This
parameter can be NULL if the application does not use the previous background color.

Returns
The return value is nonzero if the escape is successful. This value is zero if it is unsuccessful.

Comments
The default background color is white.

The background color is reset to the default when the device driver receives an ENDDOC or ABORTDOC
escape.

SET_BOUNDS
short Escape(hdc, SET_BOUNDS, sizeof(RECT), lpInData, NULL)

The SET_BOUNDS printer escape sets the bounding rectangle for the picture being produced by the
device driver supporting the given device context. This escape is used when creating images in a file
format such as Encapsulated PostScript (EPS) and Hewlett-Packard Graphics Language (HPGL) for which
there is a device driver.

Parameter Description
hdc HDC Identifies the device context.
lpInData LPRECT Points to a RECT structure that specifies in device coordinates a rectangle that

bounds the image to be output.

Returns
The return value is nonzero if the escape was successful. Otherwise, it is zero.

Comments
An application should issue this escape before each page in the image. For single-page images, this escape
should be issued immediately before the STARTDOC escape.

When an application uses coordinate-transformation escapes, device drivers may not perform bounding
box calculations correctly. When an application uses the SET_BOUNDS escape, the driver does not have
to calculate the bounding box.

Applications should always use this escape to ensure support for the Encapsulated PostScript (EPS)
printing capabilities.

SET_CLIP_BOX
short Escape(hdc, SET_CLIP_BOX, sizeof(RECT), lpInData, (LPSTR) NULL)

The SET_CLIP_BOX printer escape sets the clipping rectangle or restores the previous clipping rectangle.
This escape is implemented by printer drivers that use the coordinate-transformation escapes
TRANSFORM_CTM, SAVE_CTM, and RESTORE_CTM.

When an application calls a graphics device interface (GDI) output function, GDI calculates a clipping
rectangle bounding the primitive and passes both the primitive and the clipping rectangle to the printer
driver. The printer driver is expected to clip the primitive to the specified bounding rectangle. However,
when an application uses the coordinate-transformation escapes, the clipping rectangle calculated by GDI
is usually invalid. An application can use the SET_CLIP_BOX escape to specify the correct clipping
rectangle when coordinate transformations are used.

Parameter Description
hdc HDC Identifies the device context.
lpClipBox LPRECT Points to a RECT structure containing the bounding rectangle of the clipping

region. If lpClipBox is not NULL, the previous clipping rectangle is saved and the
current clipping rectangle is set to the specified bounds. If lpClipBox is NULL, the
previous clipping rectangle is restored.

Returns
The return value is nonzero if the clipping rectangle was properly set. Otherwise, it is zero.

Comments
This escape is used only by PostScript printer drivers.

SETCOLORTABLE
short Escape(hdc, SETCOLORTABLE, sizeof(COLORTABLE_STRUCT), lpInData, lpColor)

The SETCOLORTABLE printer escape sets an RGB color-table entry. If the device cannot supply the
exact color, the function sets the entry to the closest possible approximation of the color.

Parameter Description
hdc HDC Identifies the device context.
lpInData COLORTABLE_STRUCT FAR * Points to a structure that contains the index and RGB

value of the color-table entry. For more information about the
COLORTABLE_STRUCT structure, see the following Comments section.

lpColor LPDWORD Points to the long integer that is to receive the RGB color value selected by
the device driver to represent the requested color value.

Returns
The return value specifies the outcome of the escape. This value is positive if the escape is successful.
Otherwise, it is negative.

Comments
The COLORTABLE_STRUCT structure has the following form:

struct COLORTABLE_STRUCT {
WORD Index;
DWORD rgb;

};
Following are the members of the COLORTABLE_STRUCT structure:
Index Specifies the color-table index. Color-table entries start at zero for the first entry.
rgb Specifies the desired RGB color value.

The color table for a device is a shared resource; changing the system display color for one window
changes it for all windows. Only application developers who have a thorough knowledge of the display
driver should use this escape.

The SETCOLORTABLE escape has no effect on devices with fixed color tables.

This escape is intended for use by both printer and display drivers. However, the EGA and VGA color
drivers do not support it.

This escape changes the palette used by the display driver. However, because the color-mapping
algorithms for the driver will probably no longer work with a different palette, an extension has been
added to this function.

If the color index pointed to by the lpInData parameter is 0XFFFF, the driver is to leave all color-mapping
functionality to the calling application. The application must use the proper color-mapping algorithm and
take responsibility for passing the correctly mapped physical color to the driver (instead of the logical
RGB color) in such device-driver functions as RealizeObject and ColorInfo.

For example, if the device supports 256 colors with palette indexes of 0 through 255, an application
determines which index contains the color that it wants to use in a certain brush. It then passes this index
in the low-order byte of the doubleword logical color passed to the RealizeObject device-driver function.
The driver uses this color exactly as passed instead of performing its usual color-mapping algorithm. If the
application wants to reactivate the driver's color-mapping algorithm (that is, if it restores the original
palette when switching from its window context), then the color index pointed to by lpInData should be
0xFFFE.

SETCOPYCOUNT
short Escape(hdc, SETCOPYCOUNT, sizeof(int), lpNumCopies, lpActualCopies)

The SETCOPYCOUNT printer escape is maintained for backwards compatibility. Applications written for
Windows 3.1 should use the ExtDeviceMode function.

This escape specifies the number of uncollated copies of each page that the printer is to print.

Parameter Description
hdc HDC Identifies the device context.
lpNumCopies LPINT Points to a short integer that contains the number of uncollated copies to be

printed.
lpActualCopies LPINT Points to a short integer that will receive the number of copies to be printed.

This may be less than the number requested if the requested number is greater than
the maximum copy count for the device.

Returns
The return value specifies the outcome of the escape. It is 1 if the escape is successful and zero if the
escape is not successful. The return value is zero if the escape is not implemented.

SETKERNTRACK
short Escape(hdc, SETKERNTRACK, sizeof(int), lpNewTrack, lpOldTrack)

The SETKERNTRACK printer escape specifies which kerning track to use for drivers that support
automatic track kerning. A kerning track of zero disables automatic track kerning.

When track kerning is enabled, the driver will automatically kern all characters according to the specified
track. The driver will reflect this kerning both on the printer and in GetTextExtent function calls.

Parameter Description
hdc HDC Identifies the device context.
lpNewTrack LPINT Points to a short integer that specifies the kerning track to use. A value of zero

disables this feature. Values in the range 1 through the value of the etmKernTracks
member correspond to positions in the track-kerning table (using 1 as the first item in
the table). For more information, see the description of the EXTTEXTMETRIC
structure provided in the description of the GETEXTENDEDTEXTMETRICS escape
earlier in this topic.

lpOldTrack LPINT Points to a short integer that will receive the previous kerning track.

Returns
The return value specifies the outcome of the escape. It is 1 if the escape is successful and zero if the
escape is not successful or not implemented.

Comments
Automatic track kerning is disabled by default.

A driver does not have to support the SETKERNTRACK escape just because it supplies the track-kerning
table to the application by using the GETTRACKKERNTABLE escape. In a case where
GETTRACKKERNTABLE is supported but the SETKERNTRACK escape is not, the application must
properly space the characters on the output device.

SETLINECAP
short Escape(hdc, SETLINECAP, sizeof(int), lpNewCap, lpOldCap)

The SETLINECAP printer escape sets the line end cap.

A line end cap is that portion of a line segment that appears on either end of the segment. The cap may be
square or circular. It can extend past or remain flush with the specified segment endpoints.

Parameter Description
hdc HDC Identifies the device context.
lpNewCap LPINT Points to a short integer that specifies the end-cap type. Following are the

possible values and their meanings:

Value Meaning
-1 Line segments are drawn by using the default graphics device interface

(GDI) end cap.
0 Line segments are drawn with a squared end point that does not project past

the specified segment length.
1 Line segments are drawn with a rounded end point; the diameter of this

semicircular arc is equal to the line width.
2 Line segments are drawn with a squared end point that projects past the

specified segment length. The projection is equal to half the line width.
lpOldCap LPINT Points to a short integer that specifies the previous end-cap setting.

Returns
The return value specifies the outcome of the escape. It is positive if the escape is successful. Otherwise, it
is negative.

Comments
This escape is used only by PostScript printer drivers.

The interpretation of this escape varies with page-description languages (PDLs). For its exact meaning,
consult the PDL documentation.

This escape is also known as SETENDCAP.

SETLINEJOIN
short Escape(hdc, SETLINEJOIN, sizeof(int), lpNewJoin, lpOldJoin)

The SETLINEJOIN printer escape specifies how a device driver will join two intersecting line segments.
The intersection can form a rounded, squared, or mitered corner.

Parameter Description
hdc HDC Identifies the device context.
lpNewJoin LPINT Points to a short integer that specifies the type of intersection. Following are the

possible values and their meanings:

Value Meaning
-1 Line segments are joined by using the default graphics device interface

(GDI) setting.
0 Line segments are joined with a mitered corner; the outer edges of the lines

extend until they meet at an angle. This is referred to as a miter join.
1 Line segments are joined with a rounded corner; a semicircular arc with a

diameter equal to the line width is drawn around the point where the lines
meet. This is referred to as a round join.

2 Line segments are joined with a squared end point; the outer edges of the
lines are not extended. This is referred to as a bevel join.

lpOldJoin LPINT Points to a short integer that specifies the previous line join setting.

Returns
The return value specifies the outcome of the escape. It is positive if the escape is successful. Otherwise, it
is negative.

Comments
This escape is used only by PostScript printer drivers.

The interpretation of this escape varies with page-description languages (PDLs). For its exact meaning,
consult the PDL documentation.

If an application specifies a miter join but the angle of intersection is too small, the device driver ignores
the miter setting and uses a bevel join instead.

SETMITERLIMIT
short Escape(hdc, SETMITERLIMIT, sizeof(int), lpNewMiter, lpOldMiter)

The SETMITERLIMIT printer escape sets the miter limit for a device. The miter limit controls the angle at
which a device driver replaces a miter join with a bevel join.

Parameter Description
hdc HDC Identifies the device context.
lpNewMiter LPINT Points to a short integer that specifies the desired miter limit. Only values greater

than or equal to -1 are valid. If the value is -1, the driver will use the default graphics
device interface (GDI) miter limit.

lpOldMiter LPINT Points to a short integer that specifies the previous miter-limit setting.

Returns
The return value specifies the outcome of the escape. This value is positive if the escape is successful.
Otherwise, it is negative.

Comments
This escape is used only by PostScript printer drivers.

The miter limit is defined as follows:

miter length / line width = 1 / sin(x/2)

where x is the angle of the line join, in radians.

The interpretation of this escape varies with page-description languages (PDLs). For its exact meaning,
consult the PDL documentation.

SET_POLY_MODE
short Escape(hdc, SET_POLY_MODE, sizeof(int), lpMode, NULL)

The SET_POLY_MODE printer escape sets the poly mode for the device driver. The poly mode is a state
variable indicating how to interpret calls to graphics device interface (GDI) Polygon and Polyline
functions.

The SET_POLY_MODE escape enables a device driver to draw shapes (such as Bezier curves) not
directly supported by GDI. This permits applications that draw complex curves to send the curve
description directly to a device without having to simulate the curve as a polygon with a large number of
points.

Parameter Description
hdc HDC Identifies the device context.
lpMode LPINT Points to a short integer specifying the desired poly mode. The poly mode is a

state variable indicating how points in Polygon or Polyline function calls should be
interpreted. Device drivers are not required to support all possible modes. A device
driver returns zero if it does not support the specified mode. The lpMode parameter may
be one of the following values:

Value Meaning
PM_POLYLINE (1) Points define a conventional polygon or polyline.
PM_BEZIER (2) Points define a sequence of 4-point Bezier spline

curves. The first curve passes through the first
four points, with the first and fourth points as
endpoints and the second and third points as
control points. Each subsequent curve in the
sequence has the endpoint of the previous curve
as its start point, the next two points as control
points, and the third as its endpoint.
The last curve in the sequence is permitted to
have fewer than four points. If the curve has only
one point, it is considered a point. If it has two
points, it is a line segment. If it has three points, it
is a parabola defined by drawing a Bezier curve
with the first and third points as endpoints and the
two control points equal to the second point.

PM_POLYLINESEGMENT (3) Points specify a list of coordinate pairs. Line
segments are drawn connecting each successive
pair of points.

PM_POLYSCANLINE (4) Points specify a list of coordinate pairs. Line
segments are drawn connecting each successive
pair of points. Each line segment is a nominal-
width line drawn with the current brush. Each line
segment must be strictly vertical or horizontal,
and scan lines must be passed in strictly
increasing or decreasing order. This mode is only
used for polygon calls.

Returns
The return value is the previous poly mode. If the return value is zero, the device driver did not handle the
request.

Comments
This escape is used only by PostScript printer drivers.

An application should issue the SET_POLY_MODE escape before it draws a complex curve. It should
then call the Polyline or Polygon function with the desired control points defining the curve. After drawing
the curve, the application should reset the driver to its previous state by issuing the SET_POLY_MODE
escape.

Polyline calls draw using the currently selected pen.

Polygon calls draw using the currently selected pen and brush. If the start point and endpoint are not equal,
a line is drawn from the start point to the endpoint before the polygon (or curve) is filled.

GDI treats Polygon calls using PM_POLYLINESEGMENT mode exactly the same as Polyline calls.

Four points define a Bezier curve. GDI generates the curve by connecting the first and second, second and
third, and third and fourth points. GDI then connects the midpoints of these consecutive line segments.
Finally, GDI connects the midpoints of the lines connecting the midpoints, and so forth.

The line segments drawn in this way converge to a curve defined by the following parametric equations,
expressed as a function of the independent variable t.

X(t) = (1-t) ^ 3 x1 + 3(1-t) ^ 2 tx2 + 3(1-t)t ^ 2 x3 + t ^ 3 x4

Y(t) = (1-t) ^ 3 y1 + 3(1-t) ^ 2 ty2 + 3(1-t)t ^ 2 y3 + t ^ 3 y4

The points (x1, y1), (x2, y2), (x3, y3) and (x4, y4) are the control points defining the curve. The
independent variable t varies from 0 to 1.

Primitive types other than PM_BEZIER and PM_POLYLINESEGMENT may be added to this escape in
the future. Applications should check the return value from this escape to determine whether the driver
supports the specified poly mode.

SET_SCREEN_ANGLE
short Escape(hdc, SET_SCREEN_ANGLE, sizeof(int), lpAngle, NULL)

The SET_SCREEN_ANGLE printer escape sets the current screen angle to the desired angle and enables
an application to simulate the tilting of a photographic mask in producing a color separation for a
particular primary.

Parameter Description
hdc HDC Identifies the device context.
lpAngle LPINT Points to a short integer specifying the desired screen angle in tenths of a degree.

The angle is measured counterclockwise.

Returns
The return value is the previous screen angle.

Comments
Four-color process separation is the process of separating the colors comprising an image into four
component primaries: cyan, magenta, yellow, and black. The image is then reproduced by overprinting
each primary.

In traditional four-color process printing, half-tone images for each of the four primaries are photographed
against a mask tilted to a particular angle. Tilting the mask in this manner minimizes unwanted moiré
patterns caused by overprinting two or more colors.

The device driver defines the default screen angle.

SET_SPREAD
short Escape(hdc, SET_SPREAD, sizeof(int), lpSpread, NULL)

The SET_SPREAD printer escape sets the amount that nonwhite primitives are expanded for a given
device to provide a slight overlap between primitives to compensate for imperfections in the reproduction
process.

Spot color separation is the process of separating an image into each distinct color used in the image. The
image is reproduced by overprinting each successive color in the image.

When reproducing a spot-separated image, the printing equipment must be calibrated to align each page
exactly on each pass. However, differences in temperature, humidity, and so forth between passes often
cause images to align imperfectly on subsequent passes. For this reason, lines in spot separations are often
widened (spread) slightly to make up for problems in registering subsequent passes through the printer.
This process is called trapping. The SET_SPREAD escape implements this process.

Parameter Description
hdc HDC Identifies the device context.
lpSpread LPINT Points to a short integer that specifies the amount, in pixels, by which all

nonwhite primitives are to be expanded.

Returns
The return value is the previous spread value.

Comments
The default spread is zero.

The current spread applies to all bordered primitives (whether or not the border is visible) and text.

STARTDOC
short Escape(hdc, STARTDOC, nCount, lpDocName, NULL)

The STARTDOC printer escape is maintained for backwards compatibility. Applications written for
Windows 3.1 should use the StartDoc function.

This escape informs the device driver that a new print job is starting and that all subsequent NEWFRAME
escape calls should be spooled under the same job until an ENDDOC escape call occurs. This ensures that
documents longer than one page will not be interspersed with other jobs.

Parameter Description
hdc HDC Identifies the device context.
nCount short Specifies the number of characters in the string pointed to by the lpDocName

parameter.
lpDocName LPSTR Points to a null-terminated string that specifies the name of the document. The

document name is displayed in the Print Manager window. The maximum length of this
string is 31 characters plus the terminating null character.

Returns
The return value specifies the outcome of the escape. It is -1 if an error such as insufficient memory or an
invalid port specification occurs. Otherwise, it is positive.

Comments
Following is the correct sequence of events in a printing operation:
1 Create the device context.

2 Set the Abort function to keep out-of-disk-space errors from terminating a printing operation.
An Abort procedure that handles these errors must be set by using the SETABORTPROC escape.

3 Begin the printing operation with the STARTDOC escape.
4 Begin each new page with the NEWFRAME escape or each new band with the NEXTBAND escape.

5 End the printing operation with the ENDDOC escape.
6 Destroy the Cancel dialog box, if any.

7 Free the procedure-instance address of the Abort function.

If an application encounters a printing error or a canceled print operation, it must not attempt to terminate
the operation by using the Escape function with either the ENDDOC or ABORTDOC escape. Graphics
device interface (GDI) automatically terminates the operation before returning the error value.

The STARTDOC escape should not be used inside metafiles.

STRETCHBLT
The STRETCHBLT printer escape is provided for backwards compatibility. Applications should use the
StretchBlt function instead of this escape.

See Also
StretchBlt

TRANSFORM_CTM
short Escape(hdc, TRANSFORM_CTM, 36, lpMatrix, NULL)

The TRANSFORM_CTM printer escape modifies the current transformation matrix. The current
transformation matrix controls the manner in which coordinates are translated, rotated, and scaled by the
device. By using matrices, you can combine these operations in any order to produce the desired mapping
for a particular picture.

The new current transformation matrix will contain the product of the matrix referenced by the lpMatrix
parameter and the previous current transformation matrix (CTM = M * CTM).

Parameter Description
hdc HDC Identifies the device context.
lpMatrix LPSTR Points to a 3-by-3 array of 32-bit integer values specifying the new

transformation matrix. Entries in the matrix are scaled to represent fixed-point real
numbers. Each matrix entry is scaled by 65,536. The high-order word of the entry
contains the whole integer portion, and the low-order word contains the fractional
portion.

Returns
The return value is nonzero if the escape was successful and zero if it was unsuccessful.

Comments
This escape is used only by PostScript printer drivers.

When an application modifies the current transformation matrix, it must specify the clipping rectangle by
issuing the SET_CLIP_BOX escape.

Applications should not make any assumptions about the initial value of the current transformation matrix.

Printer Escapes
ABORTDOC Superseded: use AbortDoc function
BANDINFO Obsolete in Windows 3.1
BEGIN_PATH Opens a path
CLIP_TO_PATH Defines clip region bounded by path
DEVICEDATA Same as PASSTHROUGH escape
DRAFTMODE Superseded: Use DEVMODE structure
DRAWPATTERNRECT Creates pattern on PCL printers
ENABLEDUPLEX Superseded: use DEVMODE structure
ENABLEPAIRKERNING Enables or disables kerning
ENABLERELATIVEWIDTHS Enables or disables relative char widths
ENDDOC Superseded: Use EndDoc function
END_PATH Ends a path
ENUMPAPERBINS Superseded: Use DeviceCapabilities function
ENUMPAPERMETRICS Superseded: Use DeviceCapabilities function
EPSPRINTING Allows EPS printing only
EXT_DEVICE_CAPS Superseded: Use GetDeviceCaps function
EXTTEXTOUT Superseded: Use ExtTextOut function
FLUSHOUTPUT Obsolete in Windows 3.1
GETCOLORTABLE Obsolete in Windows 3.1
GETEXTENDEDTEXTMETRICS Gets extended text metrics
GETEXTENTTABLE Superseded: Use GetCharWidth function
GETFACENAME Gets face name of current font
GETPAIRKERNTABLE Gets kerning-pair structures
GETPHYSPAGESIZE Gets size of physical page
GETPRINTINGOFFSET Gets offset where printing starts
GETSCALINGFACTOR Gets scaling factors for printer
GETSETPAPERBINS Superseded: Use DeviceCapabilities function
GETSETPAPERMETRICS Superseded: Use ExtDeviceMode function
GETSETPRINTORIENT Superseded: Use ExtDeviceMode function
GETSETSCREENPARAMS Gets or sets halftoning parameters
GETTECHNOLOGY Gets technology type
GETTRACKKERNTABLE Gets track-kerning table
GETVECTORBRUSHSIZE Gets size of plotter brush
GETVECTORPENSIZE Gets size of plotter pen
MFCOMMENT Adds comment to metafile
MOUSETRAILS Enables or disables mouse trails
NEWFRAME Superseded: Use StartPage and EndPage functions
NEXTBAND Finished band, get next band
PASSTHROUGH Sends data directly to printer
POSTSCRIPT_DATA Same as PASSTHROUGH escape
POSTSCRIPT_IGNORE Flag for suppressing output
QUERYESCSUPPORT Queries whether escape is supported
RESTORE_CTM Restores current transformation matrix
SAVE_CTM Saves current transformation matrix
SELECTPAPERSOURCE Superseded: Use DeviceCapabilities function
SETABORTPROC Superseded: Use SetAbortProc function
SETALLJUSTVALUES Superseded: Use ExtTextOut function
SET_ARC_DIRECTION Sets arc-drawing direction
SET_BACKGROUND_COLOR Sets and gets background color
SET_BOUNDS Sets bounding rectangle
SET_CLIP_BOX Sets or restores clipping rectangle
SETCOLORTABLE Sets RGB color-table entry
SETCOPYCOUNT Superseded: Use ExtDeviceMode function
SETKERNTRACK Sets kerning track
SETLINECAP Sets line-end style
SETLINEJOIN Sets line-intersection style
SETMITERLIMIT Sets line-intersection bevel angle
SET_POLY_MODE Sets mode for Polygon and Polyline functions
SET_SCREEN_ANGLE Sets current screen angle
SET_SPREAD Sets trapping for spot separations
STARTDOC Superseded: Use StartDoc function
STRETCHBLT Superseded: Use StretchBlt function
TRANSFORM_CTM Modifies current transformation matrix

ACCELERATORS (2.x)
acctablename ACCELERATORS

BEGIN
event, idvalue, [type] [options]
.
.
.

END

The ACCELERATORS statement defines one or more accelerators for an application. An accelerator is a
keystroke defined by the application to give the user a quick way to perform a task. The
TranslateAccelerator function is used to translate accelerator messages from the application queue into
WM_COMMAND or WM_SYSCOMMAND messages.

Parameter Description
acctablename Specifies either a unique name or an integer value that identifies the resource.
event Specifies the keystroke to be used as an accelerator. It can be any one of the following

character types:

Type Description
"char" A single ASCII character enclosed in double quotation

marks. The character can be preceded by a caret (^),
meaning that the character is a control character.

ASCII character An integer value representing an ASCII character. The
type parameter must be ASCII.

Virtual-key character An integer value representing a virtual key. The virtual
key for alphanumeric keys can be specified by placing the
uppercase letter or number in double quotation marks (for
example, "9" or "C"). The type parameter must be
VIRTKEY.

idvalue Specifies an integer value that identifies the accelerator.
type Required only when the event parameter is an ASCII character or a virtual-key

character. The type parameter specifies either ASCII or VIRTKEY; the integer value
of event is interpreted accordingly. When VIRTKEY is specified and event contains a
string, event must be uppercase.

options Specifies the options that define the accelerator. This parameter can be one or more of
the following values:

Option Description
NOINVERT Specifies that no top-level menu item is highlighted when the

accelerator is used. This is useful when defining accelerators for
actions such as scrolling that do not correspond to a menu item.
If NOINVERT is omitted, a top-level menu item will be
highlighted (if possible) when the accelerator is used.

ALT Causes the accelerator to be activated only if the ALT key is
down.

SHIFT Causes the accelerator to be activated only if the SHIFT key is
down.

CONTROL Defines the character as a control character (the accelerator is
only activated if the CONTROL key is down). This has the same
effect as using a caret (^) before the accelerator character in the
event parameter.

The ALT, SHIFT, and CONTROL options apply only to virtual keys.

Example
The following example demonstrates the usage of accelerator keys:

1 ACCELERATORS
BEGIN
"^C", IDDCLEAR ; control C
"K", IDDCLEAR ; shift K
"k", IDDELLIPSE, ALT ; alt k

98, IDDRECT, ASCII ; b
66, IDDSTAR, ASCII ; B (shift b)
"g", IDDRECT; g
"G", IDDSTAR; G (shift G)
VK_F1, IDDCLEAR, VIRTKEY ; F1
VK_F1, IDDSTAR, CONTROL, VIRTKEY ; control F1
VK_F1, IDDELLIPSE, SHIFT, VIRTKEY ; shift F1
VK_F1, IDDRECT, ALT, VIRTKEY ; alt F1
VK_F2, IDDCLEAR, ALT, SHIFT, VIRTKEY ; alt shift F2
VK_F2, IDDSTAR, CONTROL, SHIFT, VIRTKEY ; ctrl shift F2
VK_F2, IDDRECT, ALT, CONTROL, VIRTKEY ; alt control F2

END
See Also
TranslateAccelerator

BITMAP (3.0)
nameID BITMAP [load-option] [mem-option] filename

The BITMAP resource-definition statement specifies a custom bitmap that an application uses in its screen
display or as an item in a menu.

Parameter Description
nameID Specifies either a unique name or an integer value identifying the resource.
load-option Specifies when the resource is to be loaded. The parameter must be one of the

following:

Option Description
PRELOAD Resource is loaded immediately.
LOADONCALL Resource is loaded when called. This is the default option.

mem-option Specifies whether the resource is fixed or movable and whether it is discardable. The
parameter must be one of the following:

Option Description
FIXED Resource remains at a fixed memory location.
MOVEABLE Resource can be moved if necessary in order to compact

memory.
DISCARDABLE Resource can be discarded if no longer needed.
The default for bitmap resources is MOVEABLE.

filename Specifies the name of the file that contains the resource. The name must be a valid MS-
DOS filename; it must be a full path if the file is not in the current working directory.
The path can either be a quoted or non-quoted string.

Example
The following example specifies two bitmap resources:

disk1 BITMAP disk.bmp
12 BITMAP PRELOAD diskette.bmp
See Also
LoadBitmap

CAPTION (2.x)
CAPTION captiontext

The CAPTION statement defines the title for the dialog box. The title appears in the box's caption bar (if
it has one).

The default caption is empty.

Parameter Description
captiontext Specifies an ASCII character string enclosed in double quotation marks.

Example
The following example demonstrates the usage of the CAPTION statement:

CAPTION "Error!"

CHECKBOX (2.x)
CHECKBOX text, id, x, y, width, height, [style]

The CHECKBOX statement creates a check box control. The control is a small rectangle (check box) that
has the specified text displayed next to it (typically, to the right). When the user selects the control, the
control highlights the rectangle and sends a message to its parent window. The CHECKBOX statement,
which can only be used in a DIALOG statement, defines the text, identifier, dimensions, and attributes of
the control.

Parameter Description
text Specifies text that is displayed to the right of the control. This parameter must contain

zero or more characters enclosed in double quotation marks. Character values must be in
the range 1 through 255. If a double quotation mark is required in the text, you must
include the double quotation mark twice. An ampersand (&) character in the text
indicates that the following character is used as a mnemonic character for the control.
When the control is displayed, the ampersand is not shown, but the mnemonic character
is underlined. The user can choose the control by pressing the key corresponding to the
underlined mnemonic character. To use the ampersand as a character in a string, insert
two ampersands (&&).

id Specifies the control identifier. This value must be an integer in the range 0 through 65,
535 or a simple expression that evaluates to a value in that range.

x Specifies the x-coordinate of the left side of the control relative to the left side of the
dialog box. This value must be an integer in the range 0 through 65,535 or an expression
consisting of integers and the addition (+) or subtraction (–) operator. The coordinate is
assumed to be in dialog units and is relative to the origin of the dialog box, window, or
control containing the specified control.

y Specifies the y-coordinate of the top side of the control relative to the top of the dialog
box. This value must be an integer in the range 0 through 65,535 or an expression
consisting of integers and the addition (+) or subtraction (–) operator. The coordinate is
assumed to be in dialog units and is relative to the origin of the dialog box, window, or
control containing the specified control.

width Specifies the width of the control. This value must be an integer in the range 1 through
65,535 or an expression consisting of integers and the addition (+) or subtraction (–)
operator. The width is in 1/4-character units.

height Specifies the height of the control. This value must be an integer in the range 1 through
65,535 or an expression consisting of integers and the addition (+) or subtraction (–)
operator. The height is in 1/8-character units.

style
Specifies the control styles. This value can be a combination of the button class style
BS_CHECKBOX and the WS_TABSTOP and WS_GROUP styles.
You can use the bitwise OR (|) operator to combine styles.
If you do not specify a style, the default style is BS_CHECKBOX and WS_TABSTOP.

Comments
The current dialog units are computed from the height and width of the current system font. The
GetDialogBaseUnits function returns the dialog units in pixels.

Example
This example creates a check-box control that is labeled "Italic":

CHECKBOX "Italic", 3, 10, 10, 40, 10
See Also
GetDialogBaseUnits

CLASS (2.x)
CLASS class

The CLASS statement defines the class of the dialog box. If no statement is given, the Windows standard
dialog class will be used as the default.

Parameter Description
class Specifies an integer or a string, enclosed in double quotation marks, that identifies the

class of the dialog box. If the window procedure for the class does not process a
message sent to it, it must call the DefDlgProc function to ensure that all messages are
handled properly for the dialog box. A private class can use DefDlgProc as the default
window procedure. The class must be registered with the cbWndExtra member of the
WNDCLASS structure set to DLGWINDOWEXTRA.

Comments
The CLASS statement should only be used with special cases, since it overrides the normal processing of a
dialog box. The CLASS statement converts a dialog box to a window of the specified class; depending on
the class, this could give undesirable results. Do not use the predefined control-class names with this
statement.

Example
The following example demonstrates the usage of the CLASS statement:

CLASS "myclass"
See Also
DefDlgProc, WNDCLASS

COMBOBOX (2.x)
COMBOBOX id, x, y, width, height[, style]

The COMBOBOX statement creates a combination box control (a combo box). A combo box consists of
either a static text box or an edit box combined with a list box. The list box can be displayed at all times or
pulled down by the user. If the combo box contains a static text box, the text box always displays the
selection (if any) in the list box portion of the combo box. If it uses an edit box, the user can type in the
desired selection; the list box highlights the first item (if any) that matches what the user has entered in the
edit box. The user can then select the item highlighted in the list box to complete the choice. In addition,
the combo box can be owner-drawn and of fixed or variable height.

Parameter Description
id Specifies the control identifier. This value must be an integer in the range 0 through 65,

535 or a simple expression that evaluates to a value in that range.
x Specifies the x-coordinate of the left side of the control relative to the left side of the

dialog box. This value must be an integer in the range 0 through 65,535 or an expression
consisting of integers and the addition (+) or subtraction (–) operator. The coordinate is
assumed to be in dialog units and is relative to the origin of the dialog box, window, or
control containing the specified control.

y Specifies the y-coordinate of the top side of the control relative to the top of the dialog
box. This value must be an integer in the range 0 through 65,535 or an expression
consisting of integers and the addition (+) or subtraction (–) operator. The coordinate is
assumed to be in dialog units and is relative to the origin of the dialog box, window, or
control containing the specified control.

width Specifies the width of the control. This value must be an integer in the range 1 through
65,535 or an expression consisting of integers and the addition (+) or subtraction (–)
operator. The width is in 1/4-character units.

height
Specifies the height of the control. This value must be an integer in the range 1 through
65,535 or an expression consisting of integers and the addition (+) or subtraction (–)
operator. The height is in 1/8-character units. This value specifies the entire height of the
control, regardless of whether the entire control is initially displayed.

style Specifies the control styles. This value can be a combination of the COMBOBOX class
styles (see the Combination-box styles topic) and any of the following styles:
WS_TABSTOP, WS_GROUP, WS_VSCROLL, and WS_DISABLED.
You can use the bitwise OR (|) operator to combine styles.
If you do not specify a style, the default style is CBS_SIMPLE and WS_TABSTOP.

Comments
The current dialog units are computed from the height and width of the current system font. The
GetDialogBaseUnits function returns the dialog units in pixels.

Example
This example creates a combo-box control with a vertical scroll bar:

COMBOBOX 777, 10, 10, 50, 54, CBS_SIMPLE | WS_VSCROLL | WS_TABSTOP

CONTROL (2.x)
CONTROL text, id, class, style, x, y, width, height

The CONTROL statement defines a control as belonging to the specified class. The statement defines the
position and dimensions of the control within the parent window as well as the control style. The
CONTROL statement is most often used in a DIALOG statement.

Parameter Description
text

Specifies displayed text. Its position depends on the control class. This parameter must
contain zero or more characters enclosed in double quotation marks. Character values
must be in the range 1 through 255. If a double quotation mark is required in the text,
you must include the double quotation mark twice. In the appropriate styles, an
ampersand (&) character in the text indicates that the following character is used as a
mnemonic character for the control. When the control is displayed, the ampersand is not
shown, but the mnemonic character is underlined. The user can choose the control by
pressing the key corresponding to the character.

id Specifies the control identifier. This value must be an integer in the range 0 through 65,
535 or a simple expression that evaluates to a value in that range.

class Specifies the control class. This value can be a predefined name, character string, or
integer value that defines the class. This value can be one of the classes specified in the
topic Control Classes.

style Specifies the control style. For a list of possible control styles, see the topic Control
Styles.
You can use the bitwise OR (|) operator to combine styles.

x
Specifies the x-coordinate of the upper-left corner of the control. This value must be an
integer in the range 0 through 65,535 or an expression consisting of integers and the
addition (+) or subtraction (–) operator. The coordinate is assumed to be in dialog units
and is relative to the origin of the parent window.

y
Specifies the y-coordinate of the upper-left corner of the control. This value must be an
integer in the range 0 through 65,535 or an expression consisting of integers and the
addition (+) or subtraction (–) operator. The coordinate is assumed to be in dialog units
and is relative to the origin of the parent window.

width Specifies the width of the control. This value must be an integer in the range 1 through
65,535 or an expression consisting of integers and the addition (+) or subtraction (–)
operator. The value is in 1/4-character units.

height Specifies the height of the control. This value must be an integer in the range 1 through
65,535 or an expression consisting of integers and the addition (+) or subtraction (–)
operator. The value is in 1/8-character units.

CTEXT (2.x)
CTEXT text, id, x, y, width, height[, style]

The CTEXT statement creates a centered-text control. The control is a simple rectangle displaying the
given text centered in the rectangle. The text is formatted before it is displayed. Words that would extend
past the end of a line are automatically wrapped to the beginning of the next line. The CTEXT statement,
which you can use only in a DIALOG statement, defines the text, identifier, dimensions, and attributes of
the control.

Parameter Description
text Specifies text that is centered in the rectangular area of the control. This parameter must

contain zero or more characters enclosed in double quotation marks. Character values
must be in the range 1 through 255. If a double quotation mark is required in the text,
you must include the double quotation mark twice.

id Specifies the control identifier. This value must be an integer in the range 0 through 65,
535 or a simple expression that evaluates to a value in that range.

x
Specifies the x-coordinate of the upper-left corner of the control. This value must be an
integer in the range 0 through 65,535 or an expression consisting of integers and the
addition (+) or subtraction (–) operator. The coordinate is assumed to be in dialog units
and is relative to the origin of the dialog box, window, or control containing the
specified control.

y
Specifies the y-coordinate of the upper-left corner of the control. This value must be an
integer in the range 0 through 65,535 or an expression consisting of integers and the
addition (+) or subtraction (–) operator. The coordinate is assumed to be in dialog units
and is relative to the origin of the dialog box, window, or control containing the
specified control.

width Specifies the width of the control. This value must be an integer in the range 1 through
65,535 or an expression consisting of integers and the addition (+) or subtraction (–)
operator. The width is in 1/4-character units.

height Specifies the height of the control. This value must be an integer in the range 1 through
65,535 or an expression consisting of integers and the addition (+) or subtraction (–)
operator. The height is in 1/8-character units.

style Specifies the control styles. This value can be any combination of the following styles:
SS_CENTER, WS_TABSTOP, and WS_GROUP.
You can use the bitwise OR (|) operator to combine styles.
If you do not specify a style, the default style is SS_CENTER and WS_GROUP.

Example
This example creates a centered-text control that is labeled "Filename":

CTEXT "Filename", 101, 10, 10, 100, 100
See Also
CONTROL, DIALOG, LTEXT, RTEXT

CURSOR (3.0)
nameID CURSOR [load-option] [mem-option] filename

The CURSOR statement specifies a bitmap that defines the shape of the cursor on the display screen.

Parameter Description
nameID Specifies either a unique name or an integer identifying the resource.
load-option Specifies when the resource is to be loaded. The parameter must be one of the

following:

Option Description
PRELOAD Resource is loaded immediately.
LOADONCALL Resource is loaded when called. This is the default option.

mem-option Specifies whether the resource is fixed or movable and whether it is discardable. The
parameter must be one of the following:

Option Description
FIXED Resource remains at a fixed memory location.
MOVEABLE Resource can be moved if necessary in order to compact

memory.
DISCARDABLE Resource can be discarded if no longer needed.
The default is MOVEABLE and DISCARDABLE for cursor, icon, and font resources.
The default for bitmap resources is MOVEABLE.

filename Specifies the name of the file that contains the resource. The name must be a valid MS-
DOS filename; it must be a full path if the file is not in the current working directory.
The path can either be a quoted or non-quoted string.

Comments
Icon and cursor resources can contain more than one image. If the resource is marked with the PRELOAD
option, Windows loads all images in the resource when the application executes.

Example
The following example specifies two cursor resources; one by name (cursor1) and the other by number (2)
:

cursor1 CURSOR bullseye.cur
2 CURSOR "d:\\cursor\\arrow.cur"

#define (2.x)
#define name value

The #define directive assigns the given value to the specified name. All subsequent occurrences of the
name are replaced by the value.

Parameter Description
name Specifies the name to be defined. This value is any combination of letters, digits, and

punctuation.
value Specifies any integer, character string, or line of text.

Example
This example assigns values to the names "NONZERO" and "USERCLASS":

#defineNONZERO1
#defineUSERCLASS "MyControlClass"
See Also
#ifdef, #ifndef, #undef

DEFPUSHBUTTON (2.x)
DEFPUSHBUTTON text, id, x, y, width, height[, style]

The DEFPUSHBUTTON statement creates a default push-button control. The control is a small rectangle
with a bold outline that represents the default response for the user. The given text is displayed inside the
button. The control highlights the button in the usual way when the user clicks the mouse in it and sends a
message to its parent window.

Parameter Description
text

Specifies text that is centered in the rectangular area of the control. This parameter must
contain zero or more characters enclosed in double quotation marks. Character values
must be in the range 1 through 255. If a double quotation mark is required in the text,
you must include the double quotation mark twice. An ampersand (&) character in the
text indicates that the following character is used as a mnemonic character for the
control. When the control is displayed, the ampersand is not shown but the mnemonic
character is underlined. The user can choose the control by pressing the key
corresponding to the underlined mnemonic character. To use the ampersand as a
character in a string, insert two ampersands (&&).

id Specifies the control identifier. This value must be an integer in the range 0 through 65,
535 or a simple expression that evaluates to a value in that range.

x
Specifies the x-coordinate of the upper-left corner of the control. This value must be an
integer in the range 0 through 65,535 or an expression consisting of integers and the
addition (+) or subtraction (–) operator. The coordinate is assumed to be in dialog units
and is relative to the origin of the dialog box, window, or control containing the
specified control.

y
Specifies the y-coordinate of the upper-left corner of the control. This value must be an
integer in the range 0 through 65,535 or an expression consisting of integers and the
addition (+) or subtraction (–) operator. The coordinate is assumed to be in dialog units
and is relative to the origin of the dialog box, window, or control containing the
specified control.

width Specifies the width of the control. This value must be an integer in the range 1 through
65,535 or an expression consisting of integers and the addition (+) or subtraction (–)
operator. The width is in 1/4-character units.

height Specifies the height of the control. This value must be an integer in the range 1 through
65,535 or an expression consisting of integers and the addition (+) or subtraction (–)
operator. The height is in 1/8-character units.

style Specifies the control styles. This value can be a combination of the following styles:
BS_DEFPUSHBUTTON, WS_TABSTOP, WS_GROUP, and WS_DISABLED.
You can use the bitwise OR (|) operator to combine styles.
If you do not specify a style, the default style is BS_DEFPUSHBUTTON and
WS_TABSTOP.

Example
This example creates a default push-button control that is labeled "Cancel":

DEFPUSHBUTTON "Cancel", 101, 10, 10, 24, 50
See Also
PUSHBUTTON, RADIOBUTTON

DIALOG (2.x)
nameID DIALOG [load-option] [mem-option] x, y, width, height

BEGIN
control-statements
.
.
.

END

The DIALOG statement defines a window that an application can use to create dialog boxes. The
statement defines the position and dimensions of the dialog box on the screen as well as the dialog box
style.

Parameter Description
nameID Identifies the dialog box. This is either a unique name or a unique integer value in the

range 1 to 65,535.
load-option Specifies when the resource is to be loaded. This parameter is optional. If it is specified,

it must be one of the following:

Option Description
PRELOAD Resource is loaded immediately.
LOADONCALL Resource is loaded when called. This is the default option.

mem-option Specifies whether the resource is fixed or movable and whether it is discardable. This
parameter is optional. If it is specified, it must be either FIXED or MOVEABLE. An
additional value, DISCARDABLE may also be specified. The following list describes
the options in more detail:

Option Description
FIXED Resource remains at a fixed memory location.
MOVEABLE Resource can be moved if necessary in order to compact

memory. This is the default option.
DISCARDABLE Resource can be discarded if no longer needed.

x Specifies the x-coordinate of the left side of the dialog box. This value must be an
integer in the range 0 through 65,535 or an expression consisting of integers and the
addition (+) or subtraction (–) operator. The coordinate is assumed to be in dialog units.

y Specifies the y-coordinate of the top side of the dialog box. This value must be an
integer in the range 0 through 65,535 or an expression consisting of integers and the
addition (+) or subtraction (–) operator. The coordinate is assumed to be in dialog units.

width Specifies the width of the dialog box. This value must be an integer in the range 1
through 65,535 or an expression consisting of integers and the addition (+) or
subtraction (–) operator. The width is in 1/4-character units.

height Specifies the height of the dialog box. This value must be an integer in the range 1
through 65,535 or an expression consisting of integers and the addition (+) or
subtraction (–) operator. The height is in 1/8-character units.

style
Specifies the dialog box styles. This parameter can be one of the following values:

Style Meaning
DS_LOCALEDIT Specifies that edit controls in the dialog box will use

memory in the application's data segment. By default, all
edit controls in dialog boxes use memory outside the
application's data segment. This feature may be suppressed
by adding the DS_LOCALEDIT flag to the Style command
for the dialog box. If this flag is not used,
EM_GETHANDLE and EM_SETHANDLE messages must
not be used, because the storage for the control is not in the
application's data segment. This feature does not affect edit
controls created outside of dialog boxes.

DS_MODALFRAME Creates a dialog box with a modal dialog box frame that can
be combined with a title bar and System menu by specifying
the WS_CAPTION and WS_SYSMENU styles.

DS_NOIDLEMSG Suppresses WM_ENTERIDLE messages that Windows
would otherwise send to the owner of the dialog box while
the dialog box is displayed.

DS_SYSMODAL Creates a system-modal dialog box.

Comments
The GetDialogBaseUnits function returns the dialog base units in pixels. The exact meaning of the
coordinates depends on the style defined by the STYLE option statement. For child-style dialog boxes, the
coordinates are relative to the origin of the parent window, unless the dialog box has the style
DS_ABSALIGN; in that case, the coordinates are relative to the origin of the display screen.

Do not use the WS_CHILD style with a modal dialog box. The DialogBox function always disables the
parent/owner of the newly created dialog box. When a parent window is disabled, its child windows are
implicitly disabled. Since the parent window of the child-style dialog box is disabled, the child-style dialog
box is too.

If a dialog box has the DS_ABSALIGN style, the dialog coordinates for its upper-left corner are relative to
the screen origin instead of to the upper-left corner of the parent window. You would typically use this
style when you wanted the dialog box to start in a specific part of the display no matter where the parent
window may be on the screen.

The name DIALOG can also be used as the class-name parameter to the CreateWindow function to create
a window with dialog box attributes.

Example
The following demonstrates the usage of the DIALOG statement:

#include <windows.h>
ErrorDialog DIALOG 10, 10, 300, 110
STYLE WS_POPUP|WS_BORDER
CAPTION "Error!"
BEGIN

CTEXT "Select One:", 1, 10, 10, 280, 12
PUSHBUTTON "&Retry", 2, 75, 30, 60, 12
PUSHBUTTON "&Abort", 3, 75, 50, 60, 12
PUSHBUTTON "&Ignore", 4, 75, 80, 60, 12

END
See Also
CreateDialog, CreateWindow, DialogBox, GetDialogBaseUnits

EDITTEXT (2.x)
EDITTEXT id, x, y, width, height[, style]

The EDITTEXT statement defines an EDIT control belonging to the EDIT class. It creates a rectangular
region in which the user can enter and edit text. The control displays a cursor when the user clicks the
mouse in it. The user can then use the keyboard to enter text or edit the existing text. Editing keys include
the BACKSPACE and DELETE keys. The user can also use the mouse to select characters to be deleted or to
select the place to insert new characters.

Parameter Description
id Specifies the control identifier. This value must be an integer in the range 0 through 65,

535 or a simple expression that evaluates to a value in that range.
x Specifies the x-coordinate of the left side of the control relative to the left side of the

dialog box. This value must be an integer in the range 0 through 65,535 or an expression
consisting of integers and the addition (+) or subtraction (–) operator. The coordinate is
assumed to be in dialog units and is relative to the origin of the dialog box, window, or
control containing the specified control.

y Specifies the y-coordinate of the top side of the control relative to the top of the dialog
box. This value must be an integer in the range 0 through 65,535 or an expression
consisting of integers and the addition (+) or subtraction (–) operator. The coordinate is
assumed to be in dialog units and is relative to the origin of the dialog box, window, or
control containing the specified control.

width Specifies the width of the control. This value must be an integer in the range 1 through
65,535 or an expression consisting of integers and the addition (+) or subtraction (–)
operator. The width is in 1/4-character units.

height Specifies the height of the control. This value must be an integer in the range 1 through
65,535 or an expression consisting of integers and the addition (+) or subtraction (–)
operator. The height is in 1/8-character units.

style Specifies the control styles. This value can be a combination of the edit class styles (see
the Edit-control styles topic) and the following styles: WS_TABSTOP, WS_GROUP,
WS_VSCROLL, WS_HSCROLL, and WS_DISABLED.
You can use the bitwise OR (|) operator to combine styles.
If you do not specify a style, the default style is ES_LEFT, WS_BORDER, and
WS_TABSTOP.

Example
The following example demonstrates the usage of the EDITTEXT statement:

EDITTEXT 3, 10, 10, 100, 10

#elif (2.x)
#elif constant-expression

The #elif directive marks an optional clause of a conditional-compilation block defined by a #ifdef,
#ifndef, or #if directive. The directive controls conditional compilation of the resource file by checking the
specified constant expression. If the constant expression is nonzero, #elif directs the compiler to continue
processing statements up to the next #endif, #else, or #elif directive and then skip to the statement after
#endif. If the constant expression is zero, #elif directs the compiler to skip to the next #endif, #else, or
#elif directive. You can use any number of #elif directives in a conditional block.

Parameter Description
constant-expression Specifies the expression to be checked. This value is a defined name, an integer

constant, or an expression consisting of names, integers, and arithmetic and
relational operators.

Example
In this example, #elif directs the compiler to process the second BITMAP statement only if the value
assigned to the name "Version" is less than 7. The #elif directive itself is processed only if Version is
greater than or equal to 3.

#if Version < 3
BITMAP 1 errbox.bmp
#elif Version < 7
BITMAP 1 userbox.bmp
#endif
See Also
#else, #endif, #if, #ifdef, #ifndef

#else (2.x)
#else

The #else directive marks an optional clause of a conditional-compilation block defined by a #ifdef,
#ifndef, or #if directive. The #else directive must be the last directive before the #endif directive.

This directive has no arguments.

Example
This example compiles the second BITMAP statement only if the name "DEBUG" is not defined:

#ifdef DEBUG
BITMAP 1 errbox.bmp

#else
BITMAP 1 userbox.bmp

#endif
See Also
#elif, #endif, #if, #ifdef, #ifndef

#endif (2.x)
#endif

The #endif directive marks the end of a conditional-compilation block defined by a #ifdef directive. One
#endif is required for each #if, #ifdef, or #ifndef directive.

This directive has no arguments.

See Also
#elif, #else, #if, #ifdef, #ifndef

FONT (2.x)
FONT pointsize, typeface

The FONT statement defines the font with which Windows will draw text in the dialog box. The font must
have been previously loaded, either from the WIN.INI file or by calling the LoadResource function.

Parameter Description
pointsize Specifies the size, in points, of the font.
typeface Specifies the name of the typeface. This name must be identical to the name defined in

the [fonts] section of WIN.INI. This parameter must be enclosed in double quotes.

Example
The following example demonstrates the usage of the FONT statement:

FONT 12, "MS Sans Serif"
See Also
DIALOG, LoadResource

FONT (3.0)
nameID FONT [load-option] [mem-option] filename

The FONT resource-definition statement specifies a file that contains a font.

For a font resource, nameID must be a number; it cannot be a name.

Parameter Description
nameID Specifies either a unique name or an integer value identifying the resource.
load-option Specifies when the resource is to be loaded. The parameter must be one of the following

options:

Option Description
PRELOAD Resource is loaded immediately.
LOADONCALL Resource is loaded when called. This is the default option.

mem-option Specifies whether the resource is fixed or movable and whether it is discardable. The
parameter must be one of the following options:

Option Description
FIXED Resource remains at a fixed memory location.
MOVEABLE Resource can be moved if necessary in order to compact

memory.
DISCARDABLE Resource can be discarded if no longer needed.
The default is MOVEABLE and DISCARDABLE for cursor, icon, and font resources.
The default for bitmap resources is MOVEABLE.

filename Specifies the name of the file that contains the resource. The name must be a valid MS-
DOS filename; it must be a full path if the file is not in the current working directory.
The path can either be a quoted or non-quoted string.

Example
The following example specifies a single font resource:

5 FONT CMROMAN.FNT

GROUPBOX (2.x)
GROUPBOX text, id, x, y, width, height[, style]

The GROUPBOX statement creates a group box control. The control is a rectangle that groups other
controls together. The controls are grouped by drawing a border around them and displaying the given text
in the upper-left corner. The GROUPBOX statement, which you can use only in a DIALOG statement,
defines the text, identifier, dimensions, and attributes of a control window.

Parameter Description
text Specifies text that is displayed to the right of the control. This parameter must contain

zero or more characters enclosed in double quotation marks. Character values must be in
the range 1 through 255. If a double quotation mark is required in the text, you must
include the double quotation mark twice. An ampersand (&) character in the text
indicates that the following character is used as a mnemonic character for the control.
When the control is displayed, the ampersand is not shown but the mnemonic character
is underlined. The user can choose the control by pressing the key corresponding to the
underlined mnemonic character. To use the ampersand as a character in a string, insert
two ampersands (&&).

id Specifies the control identifier. This value must be an integer in the range 0 through 65,
535 or a simple expression that evaluates to a value in that range.

x Specifies the x-coordinate of the left side of the control relative to the left side of the
dialog box. This value must be an integer in the range 0 through 65,535 or an expression
consisting of integers and the addition (+) or subtraction (–) operator. The coordinate is
assumed to be in dialog units and is relative to the origin of the dialog box, window, or
control containing the specified control.

y Specifies the y-coordinate of the top side of the control relative to the top of the dialog
box. This value must be an integer in the range 0 through 65,535 or an expression
consisting of integers and the addition (+) or subtraction (–) operator. The coordinate is
assumed to be in dialog units and is relative to the origin of the dialog box, window, or
control containing the specified control.

width Specifies the width of the control. This value must be an integer in the range 1 through
65,535 or an expression consisting of integers and the addition (+) or subtraction (–)
operator. The width is in 1/4-character units.

height Specifies the height of the control. This value must be an integer in the range 1 through
65,535 or an expression consisting of integers and the addition (+) or subtraction (–)
operator. The height is in 1/8-character units.

style
Specifies the control styles. This value can be a combination of the button class style
BS_GROUPBOX and the WS_TABSTOP and WS_DISABLED styles.
You can use the bitwise OR (|) operator to combine styles.
If you do not specify a style, the default style is BS_GROUPBOX.

Example
This example creates a group-box control that is labeled "Options":

GROUPBOX "Options", 101, 10, 10, 100, 100
See Also
DIALOG

ICON (2.x)
ICON text, id, x, y, [width, height, style]

The ICON statement creates an icon control. This control is an icon displayed in a dialog box. The ICON
statement, which you can use only in a DIALOG statement, defines the icon-resource identifier, icon-
control identifier, position, and attributes of a control.

Parameter Description
text Specifies the name of an icon (not a filename) defined elsewhere in the resource file.
id Specifies the control identifier. This value must be an integer in the range 0 through 65,

535 or a simple expression that evaluates to a value in that range.
x Specifies the x-coordinate of the left side of the control relative to the left side of the

dialog box. This value must be an integer in the range 0 through 65,535 or an expression
consisting of integers and the addition (+) or subtraction (–) operator. The coordinate is
assumed to be in dialog units and is relative to the origin of the dialog box, window, or
control containing the specified control.

y Specifies the y-coordinate of the top side of the control relative to the top of the dialog
box. This value must be an integer in the range 0 through 65,535 or an expression
consisting of integers and the addition (+) or subtraction (–) operator. The coordinate is
assumed to be in dialog units and is relative to the origin of the dialog box, window, or
control containing the specified control.

width This value is ignored and should be set to zero.
height This value is ignored and should be set to zero.
style Specifies the control style. This parameter is optional. The only value that can be

specified is the SS_ICON style. This is the default style whether this parameter is
specified or not.

Example
This example creates an icon control whose icon identifier is 901 and whose name is "myicon":

ICON "myicon" 901, 30, 30
See Also
DIALOG

ICON (3.0)
nameID ICON [load-option] [mem-option] filename

The ICON resource-definition statement specifies a bitmap that defines the shape of the icon to be used for
a given application.

Parameter Description
nameID Specifies either a unique name or an integer value identifying the resource.
load-option Specifies when the resource is to be loaded. The parameter must be one of the following

options:

Option Description
PRELOAD Resource is loaded immediately.
LOADONCALL Resource is loaded when called. This is the default option.

mem-option Specifies whether the resource is fixed or movable and whether it is discardable. The
parameter must be one of the following options:

Option Description
FIXED Resource remains at a fixed memory location.
MOVEABLE Resource can be moved if necessary in order to compact

memory.
DISCARDABLE Resource can be discarded if no longer needed.
The default is MOVEABLE and DISCARDABLE for cursor, icon, and font resources.
The default for bitmap resources is MOVEABLE.

filename Specifies the name of the file that contains the resource. The name must be a valid MS-
DOS filename; it must be a full path if the file is not in the current working directory.
The path can either be a quoted or non-quoted string.

Comments
Icon and cursor resources can contain more than one image. If the resource is marked as PRELOAD,
Windows loads all images in the resource when the application executes.

Example
The following example specifies two icon resources:

desk1 ICON desk.ico
11 ICON DISCARDABLE custom.ico

#if (2.x)
#if constant-expression

The #if directive controls conditional compilation of the resource file by checking the specified constant
expression. If the constant expression is nonzero, #if directs the compiler to continue processing
statements up to the next #endif, #else, or #elif directive and then skip to the statement after the #endif
directive. If the constant expression is zero, #if directs the compiler to skip to the next #endif, #else, or
#elif directive.

Parameter Description
constant-expression Specifies the expression to be checked. This value is a defined name, an integer

constant, or an expression consisting of names, integers, and arithmetic and
relational operators.

Example
This example compiles the BITMAP statement only if the value assigned to the name "Version" is less
than 3:

#if Version < 3
BITMAP 1 errbox.bmp
#endif
See Also
#elif, #else, #endif, #ifdef, #ifndef

#ifdef (2.x)
#ifdef name

The #ifdef directive controls conditional compilation of the resource file by checking the specified name.
If the name has been defined by using a #define directive or by using the -d command-line option with the
Resource Compiler, #ifdef directs the compiler to continue with the statement immediately after the #ifdef
directive. If the name has not been defined, #ifdef directs the compiler to skip all statements up to the next
#endif directive.

Parameter Description
name Specifies the name to be checked by the directive.

Example
This example compiles the BITMAP statement only if the name "Debug" is defined:

#ifdef Debug
BITMAP 1 errbox.bmp
#endif
See Also
#define, #endif, #if, #ifndef, #undef

#ifndef (2.x)
#ifndef name

The #ifndef directive controls conditional compilation of the resource file by checking the specified name.
If the name has not been defined or if its definition has been removed by using the #undef directive,
#ifndef directs the compiler to continue processing statements up to the next #endif, #else, or #elif
directive and then skip to the statement after the #endif directive. If the name is defined, #ifndef directs the
compiler to skip to the next #endif, #else, or #elif directive.

Parameter Description
name Specifies the name to be checked by the directive.

Example
This example compiles the BITMAP statement only if the name "Optimize" is not defined:

#ifndef Optimize
BITMAP 1 errbox.bmp
#endif
See Also
#elif, #else, #endif, #if, #ifdef, #undef

#include (2.x)
#include (filename)

The #include directive causes Resource Compiler to process the file specified in the filename parameter.
This file should be a header file that defines the constants used in the resource-definition file.

Parameter Description
filename Specifies the name of the file to be included. This value must be an ASCII string. If the

file is in the current directory, the string must be enclosed in double quotation marks; if
the file is in the directory specified by the INCLUDE environment variable, the string
must be enclosed in less-than and greater-than characters (<>). You must give a full path
enclosed in double quotation marks if the file is not in the current directory or in the
directory specified by the INCLUDE environment variable.

Example
This example processes the header files WINDOWS.H and HEADERS\MYDEFS.H while compiling the
resource-definition file:

#include <windows.h>
#include "headers\mydefs.h"
See Also
#define

LISTBOX (2.x)
LISTBOX id, x, y, width, height[, style]

The LISTBOX statement creates commonly used controls for a dialog box or window. The control is a
rectangle containing a list of strings (such as filenames) from which the user can select. The LISTBOX
statement, which can only be used in a DIALOG or WINDOW statement, defines the identifier,
dimensions, and attributes of a control window.

Parameter Description
id Specifies the control identifier. This value must be an integer in the range 0 through 65,

535 or a simple expression that evaluates to a value in that range.
x Specifies the x-coordinate of the left side of the control relative to the left side of the

dialog box. This value must be an integer in the range 0 through 65,535 or an expression
consisting of integers and the addition (+) or subtraction (–) operator. The coordinate is
assumed to be in dialog units and is relative to the origin of the dialog box, window, or
control containing the specified control.

y Specifies the y-coordinate of the top side of the control relative to the top of the dialog
box. This value must be an integer in the range 0 through 65,535 or an expression
consisting of integers and the addition (+) or subtraction (–) operator. The coordinate is
assumed to be in dialog units and is relative to the origin of the dialog box, window, or
control containing the specified control.

width Specifies the width of the control. This value must be an integer in the range 1 through
65,535 or an expression consisting of integers and the addition (+) or subtraction (–)
operator. The width is in 1/4-character units.

height Specifies the height of the control. This value must be an integer in the range 1 through
65,535 or an expression consisting of integers and the addition (+) or subtraction (–)
operator. The height is in 1/8-character units.

style Specifies the control styles. This value can be a combination of the list-box class styles
(see the List-box styles topic) and any of the following styles: WS_BORDER and
WS_VSCROLL.
You can use the bitwise OR (|) operator to combine styles.
If you do not specify a style, the default style is LBS_NOTIFY and WS_BORDER.

Example
This example creates a list-box control whose identifier is 101:

LISTBOX 101, 10, 10, 100, 100
See Also
COMBOBOX, DIALOG

LTEXT (2.x)
LTEXT text, id, x, y, width, height, [style]

The LTEXT statement creates a left-aligned text control. The control is a simple rectangle displaying the
given text left-aligned in the rectangle. The text is formatted before it is displayed. Words that would
extend past the end of a line are automatically wrapped to the beginning of the next line. The LTEXT
statement, which can be used only in a DIALOG statement, defines the text, identifier, dimensions, and
attributes of the control.

Parameter Description
text

Specifies text that is left-aligned in the rectangular area of the control. This parameter
must contain zero or more characters enclosed in double quotation marks. Character
values must be in the range 1 through 255. If a double quotation mark is required in the
text, you must include the double quotation mark twice.

id Specifies the control identifier. This value must be an integer in the range 0 through 65,
535 or a simple expression that evaluates to a value in that range.

x
Specifies the x-coordinate of the upper-left corner of the control. This value must be an
integer in the range 0 through 65,535 or an expression consisting of integers and the
addition (+) or subtraction (–) operator. The coordinate is assumed to be in dialog units
and is relative to the origin of the dialog box, window, or control containing the
specified control.

y Specifies the y-coordinate of the upper-left corner of the control. This value must be an
integer in the range 0 through 65,535 or an expression consisting of integers and the
addition (+) or subtraction (–) operator. The coordinate is assumed to be in dialog units
and is relative to the origin of the dialog box, window, or control containing the
specified control.

width Specifies the width of the control. This value must be an integer in the range 1 through
65,535 or an expression consisting of integers and the addition (+) or subtraction (–)
operator. The width is in 1/4-character units.

height Specifies the height of the control. This value must be an integer in the range 1 through
65,535 or an expression consisting of integers and the addition (+) or subtraction (–)
operator. The height is in 1/8-character units.

style
Specifies the control styles. This value can be any combination of the
BS_RADIOBUTTON style and the following styles: SS_LEFT, WS_TABSTOP, and
WS_GROUP.
You can use the bitwise OR (|) operator to combine styles.
If you do not specify a style, the default style is SS_LEFT and WS_GROUP.

Example
This example creates a left-aligned text control that is labeled "Filename":

LTEXT "Filename", 101, 10, 10, 100, 100
See Also
CONTROL, DIALOG, CTEXT, RTEXT

MENU (2.x)
MENU menuname

The MENU statement defines the dialog box's menu. If no statement is given, the dialog box has no menu.

Parameter Description
menuname Specifies the menu to use. This value is either the name of the menu or the integer

identifier of the menu.

Example
The following example demonstrates the usage of the MENU dialog statement:

MENU errmenu
See Also
MENU statement

MENU (2.x)
menuID MENU [load-option] [mem-option]

BEGIN
item-definitions
.
.
.

END

The MENU statement defines the contents of a menu resource. A menu resource is a collection of
information that defines the appearance and function of an application menu. A menu is a special input
tool that lets a user select commands from a list of command names.

Parameter Description
menuID Identifies the menu. This value is either a unique string or a unique integer value in the

range of 1 to 65,535.
load-option Specifies when the resource is to be loaded. This parameter is optional. If it is specified,

it must be one of the following:

Option Description
PRELOAD Resource is loaded immediately.
LOADONCALL Resource is loaded when called. This is the default option.

mem-option Specifies whether the resource is fixed or movable and whether it is discardable. This
parameter is optional. If it is specified, it must be either FIXED or MOVEABLE. An
additional value, DISCARDABLE, may also be specified. A description of the memory
options follows:

Option Description
FIXED Resource remains at a fixed memory location.
MOVEABLE Resource can be moved if necessary in order to compact

memory. This is the default option.
DISCARDABLE Resource can be discarded if no longer needed.
The default is MOVEABLE and DISCARDABLE.

Example
Following is an example of a complete MENU statement:

sample MENU
BEGIN
MENUITEM "&Soup", 100
MENUITEM "S&alad", 101
POPUP "&Entree"
BEGIN
MENUITEM "&Fish", 200
MENUITEM "&Chicken", 201, CHECKED
POPUP "&Beef"
BEGIN
MENUITEM "&Steak", 301
MENUITEM "&Prime Rib", 302
END
END
MENUITEM "&Dessert", 103
END
See Also
MENUITEM, POPUP, MENU dialog statement

MENUITEM (2.x)
MENUITEM text, result, [optionlist]

The MENUITEM statement, which is optional, defines a menu item.

Parameter Description
text Specifies the name of the menu item. This parameter takes an ASCII string, enclosed in

double quotation marks.
The string can contain the escape characters \t and \a. The \t character inserts a tab in the
string and is used to align text in columns. Tab characters should be used only in pop-
up menus, not in menu bars. (For information on pop-up menus, see the POPUP
statement.) The \a character aligns all text that follows it flush right to the menu bar or
pop-up menu.
To insert a double quotation mark in the string, use two double quotation marks.
To add a mnemonic to the text string, place the ampersand (&) ahead of the letter that
will be the mnemonic. This will cause the letter to appear underlined in the control and
to function as the mnemonic. To use the ampersand as a character in a string, insert two
ampersands (&&).

result Specifies the result generated when the user selects the menu item. This parameter takes
an integer value. Menu-item results are always integers; when the user clicks the menu-
item name, the result is sent to the window that owns the menu.

optionlist Specifies the appearance of the menu item. This optional parameter takes one or more
predefined menu options, separated by commas or spaces. The menu options are as
follows:

Option Description
CHECKED Item has a check mark next to it.
GRAYED Item name is initially inactive and appears on the menu in

gray or a lightened shade of the menu-text color.
HELP Identifies a help item.
INACTIVE Item name is displayed but it cannot be selected.
MENUBARBREAK Same as MF_MENUBREAK except that for pop-up menus,

it separates the new column from the old column with a
vertical line.

MENUBREAK Places the menu item on a new line for static menu-bar
items. For pop-up menus, it places the menu item in a new
column with no dividing line between the columns.

The INACTIVE and GRAYED options cannot be used together.

Example
The following example demonstrates the usage of the MENUITEM statement:

MENUITEM "&Alpha", 1, CHECKED, GRAYED
MENUITEM "&Beta", 2
See Also
MENU, POPUP

POPUP (2.x)
POPUP text, [optionlist]

BEGIN
item-definitions
.
.
.

END

The POPUP statement marks the beginning of the definition of a pop-up menu. A pop-up menu (which is
also known as a drop-down menu) is a special menu item that displays a sublist of menu items when it is
selected.

Parameter Description
text Specifies the name of the pop-up menu. This string must be enclosed in double

quotation marks.
optionlist Specifies one or more predefined menu options that specify the appearance of the menu

item. The menu options follow:

Option Description
CHECKED Item has a check mark next to it. This option is not valid for

a top-level pop-up menu.
GRAYED Item name is initially inactive and appears on the menu in

gray or a lightened shade of the menu-text color.
INACTIVE Item name is displayed but it cannot be selected.
MENUBARBREAK Same as MF_MENUBREAK except that for pop-up menus,

it separates the new column from the old column with a
vertical line.

MENUBREAK Places the menu item on a new line for static menu-bar
items. For pop-up menus, it places the menu item in a new
column with no dividing line between the columns.

The options can be combined using the bitwise OR operator. The INACTIVE and
GRAYED options cannot be used together.

Example
The following example demonstrates the usage of the POPUP statement:

chem MENU
BEGIN

POPUP "&Elements"
BEGIN
MENUITEM "&Oxygen", 200
MENUITEM "&Carbon", 201, CHECKED
MENUITEM "&Hydrogen", 202
MENUITEM "&Sulfur", 203
MENUITEM "Ch&lorine", 204
END
POPUP "&Compounds"
BEGIN
POPUP "&Sugars"
BEGIN

MENUITEM "&Glucose", 301
MENUITEM "&Sucrose", 302, CHECKED
MENUITEM "&Lactose", 303, MENUBREAK
MENUITEM "&Fructose", 304
END
POPUP "&Acids"
BEGIN
"&Hydrochloric", 401

"&Sulfuric", 402
END
END

END
See Also
MENU, MENUITEM

PUSHBUTTON (2.x)
PUSHBUTTON text, id, x, y, width, height, [style]

The PUSHBUTTON statement creates a push-button control. The control is a round-cornered rectangle
containing the given text. The control sends a message to its parent whenever the user chooses the control.

Parameter Description
text

Specifies text that is centered in the rectangular area of the control. This parameter must
contain zero or more characters enclosed in double quotation marks. Character values
must be in the range 1 through 255. If a double quotation mark is required in the text,
you must include the double quotation mark twice. An ampersand (&) character in the
text indicates that the following character is used as a mnemonic character for the
control. When the control is displayed, the ampersand is not shown but the mnemonic
character is underlined. The user can choose the control by pressing the key
corresponding to the underlined mnemonic character.

id Specifies the control identifier. This value must be an integer in the range 0 through 65,
535 or an expression consisting of integers and the additon (+) operator that evaluates to
a value in that range.

x Specifies the x-coordinate of the upper-left corner of the control. This value must be an
integer in the range 0 through 65,535 or an expression consisting of integers and the
addition (+) operator that evaluates to a value in that range. The coordinate is assumed
to be in dialog units and is relative to the origin of the dialog box containing the
pushbutton.

y Specifies the y-coordinate of the upper-left corner of the control. This value must be an
integer in the range 0 through 65,535 or an expression consisting of integers and the
addition (+) operator that evaluates to a value in that range. The coordinate is assumed
to be in dialog units and is relative to the origin of the dialog box containing the
pushbutton.

width Specifies the width of the control. This value must be an integer in the range 1 through
65,535 or an expression consisting of integers and the addition (+) operator that
evaluates to a value in that range. The width units are 1/4 of the dialog base width unit.

height Specifies the height of the control. This value must be an integer in the range 1 through
65,535 or an expression consisting of integers and the addition (+) operator that
evaluates to a value in that range. The height units are 1/8 of the dialog base height unit.

style
This optional parameter specifies styles for the pushbutton, which can be a combination
of the BS_PUSHBUTTON style and the following styles: WS_TABSTOP,
WS_DISABLED, and WS_GROUP.

Comments
The current dialog base units are computed from the height and width of the current system font. The
GetDialogBaseUnits function returns the dialog base units in pixels. The coordinates are relative to the
origin of the dialog box.

The default style for PUSHBUTTON is BS_PUSHBUTTON and WS_TABSTOP.

Example
The following example demonstrates the usage of the PUSHBUTTON statement:

PUSHBUTTON "ON", 7, 10, 10, 20, 10
See Also
GetDialogBaseUnits

RADIOBUTTON (2.x)
RADIOBUTTON text, id, x, y, width, height, [style]

The RADIOBUTTON statement creates a radio-button control. The control is a small circle that has the
given text displayed next to it, typically to its right. The control highlights the circle and sends a message
to its parent window when the user selects the button. The control removes the highlight and sends a
message when the button is next selected.

Parameter Description
text

Specifies text that is centered in the rectangular area of the control. This parameter must
contain zero or more characters enclosed in double quotation marks. Character values
must be in the range 1 through 255. If a double quotation mark is required in the text,
you must include the double quotation mark twice. An ampersand (&) character in the
text indicates that the following character is used as a mnemonic character for the
control. When the control is displayed, the ampersand is not shown, but the mnemonic
character is underlined. The user can choose the control by pressing the key
corresponding to the underlined mnemonic character.

id Specifies the control identifier. This value must be an integer in the range 0 through 65,
535 or an expression consisting of integers and the additon (+) operator that evaluates to
a value in that range.

x Specifies the x-coordinate of the upper-left corner of the control. This value must be an
integer in the range 0 through 65,535 or an expression consisting of integers and the
addition (+) operator that evaluates to a value in that range. The coordinate is assumed
to be in dialog units and is relative to the origin of the dialog box containing the radio
button.

y Specifies the y-coordinate of the upper-left corner of the control. This value must be an
integer in the range 0 through 65,535 or an expression consisting of integers and the
addition (+) operator that evaluates to a value in that range. The coordinate is assumed
to be in dialog units and is relative to the origin of the dialog box containing the radio
button.

width Specifies the width of the control. This value must be an integer in the range 1 through
65,535 or an expression consisting of integers and the addition (+) operator that
evaluates to a value in that range. The width is in dialog units.

height Specifies the height of the control. This value must be an integer in the range 1 through
65,535 or an expression consisting of integers and the addition (+) operator that
evaluates to a value in that range. The height is in dialog units.

style This optional parameter specifies styles for the radio button, which can be a combination
of BUTTON-class styles (see Button styles) and the following styles: WS_TABSTOP,
WS_DISABLED, and WS_GROUP.

Comments
Horizontal dialog units are 1/4 of the dialog base width unit. Vertical units are 1/8 of the dialog base
height unit. The current dialog base units are computed from the height and width of the current system
font. The GetDialogBaseUnits function returns the dialog base units in pixels. The coordinates are relative
to the origin of the dialog box.

The default style for RADIOBUTTON is BS_RADIOBUTTON and WS_TABSTOP.

The following example demonstrates the usage of the RADIOBUTTON statement:

RADIOBUTTON "Italic", 100, 10, 10, 40, 10
See Also
GetDialogBaseUnits

RCDATA (2.x)
nameID RCDATA [load-option] [mem-option]

BEGIN
raw-data
.
.
.

END

The RCDATA statement defines a raw data resource for an application. Raw data resources permit the
inclusion of binary data directly in the executable file.

Parameter Description
nameID Specifies either a unique name or an integer value that identifies the resource.
load-option Specifies when the resource is to be loaded. It takes one of the following keywords:

Option Description
PRELOAD Resource is loaded immediately.
LOADONCALL Resource is loaded when called. This is the default option.

mem-option Specifies whether the resource is fixed or movable and whether it is discardable. This
optional parameter takes one or more of the following keywords:

Option Description
FIXED Resource remains at a fixed memory location.
MOVEABLE Resource can be moved if necessary in order to compact

memory.
DISCARDABLE Resource can be discarded if no longer needed.
The default memory option is MOVEABLE and DISCARDABLE.

raw-data Specifies one or more integers and strings. Integers can be in decimal, octal, or
hexadecimal format.

Example
The following example demonstrates the usage of the RCDATA statement:

resname RCDATA
BEGIN

"Here is a data string\0", /* A string. Note: explicitly
null-terminated */
1024, /* int */
0x029a, /* hex int */
0o733, /* octal int */
"\07" /* octal byte */

END

RTEXT (2.x)
RTEXT text, id, x, y, width, height, [style]

The RTEXT statement creates a right-aligned text control. The control is a simple rectangle displaying the
given text right-aligned in the rectangle. The text is formatted before it is displayed. Words that would
extend past the end of a line are automatically wrapped to the beginning of the next line.

Parameter Description
text

Specifies text that is aligned on the right side of the rectangular area of the control. This
parameter must contain zero or more characters enclosed in double quotation marks.
Character values must be in the range 1 through 255. If a double quotation mark is
required in the text, you must include the double quotation mark twice. An ampersand
(&) character in the text indicates that the following character is used as a mnemonic
character for the control. When the control is displayed, the ampersand is not shown but
the mnemonic character is underlined. The user can choose the control by pressing the
key corresponding to the underlined mnemonic character.

id Specifies the control identifier. This value must be an integer in the range 0 through 65,
535 or an expression consisting of integers and the additon (+) operator that evaluates to
a value in that range.

x Specifies the x-coordinate of the upper-left corner of the control. This value must be an
integer in the range 0 through 65,535 or an expression consisting of integers and the
addition (+) operator that evaluates to a value in that range. The coordinate is assumed
to be in dialog units and is relative to the origin of the dialog box containing the text
control.

y Specifies the y-coordinate of the upper-left corner of the control. This value must be an
integer in the range 0 through 65,535 or an expression consisting of integers and the
addition (+) operator that evaluates to a value in that range. The coordinate is assumed
to be in dialog units and is relative to the origin of the dialog box containing the text
control.

width Specifies the width of the control. This value must be an integer in the range 1 through
65,535 or an expression consisting of integers and the addition (+) operator that
evaluates to a value in that range. The width is in dialog units.

height Specifies the height of the control. This value must be an integer in the range 1 through
65,535 or an expression consisting of integers and the addition (+) operator that
evaluates to a value in that range. The height is in dialog units.

style This optional parameter specifies styles for the text control, which can be any
combination of the following: WS_TABSTOP and WS_GROUP.

Comments
Horizontal dialog units are 1/4 of the dialog base width unit. Vertical units are 1/8 of the dialog base
height unit. The current dialog base units are computed from the height and width of the current system
font. The GetDialogBaseUnits function returns the dialog base units in pixels. The coordinates are relative
to the origin of the dialog box.

The default style for RTEXT is SS_RIGHT and WS_GROUP.

Example
The following example demonstrates the usage of the RTEXT statement:

RTEXT "Number of Messages", 4, 30, 50, 100, 10
See Also
CONTROL, CTEXT, DIALOG, LTEXT

SCROLLBAR (2.x)
SCROLLBAR id, x, y, width, height, [style]

The SCROLLBAR statement creates a scroll-bar control. The control is a rectangle that contains a scroll
box and has direction arrows at both ends. The scroll-bar control sends a notification message to its parent
whenever the user clicks the mouse in the control. The parent is responsible for updating the scroll-box
position. Scroll-bar controls can be positioned anywhere in a window and used whenever needed to
provide scrolling input.

Parameter Description
id Identifies the control. This parameter takes a unique integer value.
x Specifies the x-coordinate of the upper-left corner of the control in dialog units relative

to the origin of the dialog box. The horizontal units are 1/4 of the dialog base width unit.
y Specifies the y-coordinate of the upper-left corner of the control in dialog units relative

to the origin of the dialog box. The vertical units are 1/8 of the dialog base height unit.
width Specifies the width of the control. The width units are 1/4 of the dialog base width unit.
height Specifies the height of the control. The height units are 1/8 of the dialog base height

unit.
style Specifies a combination (or none) of the following styles: WS_TABSTOP,

WS_GROUP, and WS_DISABLED.
In addition to these styles, the style parameter may contain a combination (or none) of
the SCROLLBAR-class styles. Styles can be combined by using the bitwise OR
operator.

Comments
The x, y, width, and height parameters can use the addition operator (+) for relative positioning. For
example, "15 + 6" can be used for the x parameter.

The default style for SCROLLBAR is SBS_HORZ.

The current dialog base units are computed from the height and width of the current system font. The
GetDialogBaseUnits function returns the dialog base units in pixels.

Example
The following example demonstrates the usage of the SCROLLBAR statement:

SCROLLBAR 999, 25, 30, 10, 100

SEPARATOR (2.x)
MENUITEM SEPARATOR

The MENUITEM SEPARATOR form of the MENUITEM statement creates an inactive menu item that
serves as a dividing bar between two active menu items in a pop-up menu.

Example
The following example demonstrates the usage of the MENUITEM SEPARATOR statement:

MENUITEM "&Roman", 206
MENUITEM SEPARATOR
MENUITEM "&20 Point", 301

STRINGTABLE (2.x)
STRINGTABLE [load-option] [mem-option]

BEGIN
stringID string
.
.
.

END

The STRINGTABLE statement defines one or more string resources for an application. String resources
are simply null-terminated ASCII strings that can be loaded when needed from the executable file, using
the LoadString function.

Parameter Description
load-option Specifies when the resource is to be loaded. This optional parameter must be one of the

following keywords:

Option Description
PRELOAD Resource is loaded immediately.
LOADONCALL Resource is loaded when called. This is the default option.

mem-option Specifies whether the resource is fixed or movable and whether or not it is discardable.
This optional parameter can be one of the following keywords:

Option Description
FIXED Resource remains at a fixed memory location.
MOVEABLE Resource can be moved if necessary in order to compact

memory.
DISCARDABLE Resource can be discarded if no longer needed.
The default is MOVEABLE and DISCARDABLE.

stringID Specifies an integer value that identifies the resource.
string Specifies one or more ASCII strings, enclosed in double quotation marks. The string

must be no longer than 255 characters and must occupy a single line in the source file.
To add a carriage return to the string, use this character sequence: \012. For example,
"Line one\012Line two" would define a string that would be displayed as follows:

Line one
Line two

Comments
Grouping strings in separate segments allows all related strings to be read in at one time and discarded
together. When possible, an application should make the table movable and discardable. The Resource
Compiler allocates 16 strings per segment and uses the identifier value to determine which segment is to
contain the string. Strings with the same upper-12 bits in their identifiers are placed in the same segment.

Example
The following example demonstrates the usage of the STRINGTABLE statement:

#define IDS_HELLO 1
#define IDS_GOODBYE 2
STRINGTABLE
BEGIN

IDS_HELLO, "Hello"
IDS_GOODBYE, "Goodbye"

END

STYLE (2.x)
STYLE style

The STYLE statement defines the window style of the dialog box. The window style specifies whether the
box is a pop-up or a child window. The default style has the following attributes: WS_POPUP,
WS_BORDER, and WS_SYSMENU.

Parameter Description
style Specifies the window style. This parameter takes an integer value or predefined name.

The following lists the predefined styles:

Style Meaning
DS_LOCALEDIT Specifies that edit controls in the dialog box will

use memory in the application's data segment.
By default, all edit controls in dialog boxes use
memory outside the application's data segment.
This feature can be suppressed by adding the
DS_LOCALEDIT flag to the STYLE command
for the dialog box. If this flag is not used,
EM_GETHANDLE and EM_SETHANDLE
messages must not be used since the storage for
the control is not in the application's data
segment. This feature does not affect edit
controls created outside of dialog boxes.

DS_MODALFRAME Creates a dialog box with a modal dialog box
frame that can be combined with a title bar and
System menu by specifying the WS_CAPTION
and WS_SYSMENU styles.

DS_NOIDLEMSG Suppresses WM_ENTERIDLE messages that
Windows would otherwise send to the owner of
the dialog box while the dialog box is displayed.

DS_SYSMODAL Creates a system-modal dialog box.
WS_BORDER Creates a window that has a border.
WS_CAPTION Creates a window that has a title bar (implies the

WS_BORDER style).
WS_CHILD Creates a child window. It cannot be used with

the WS_POPUP style.
WS_CHILDWINDOW Creates a child window that has the WS_CHILD

style.
WS_CLIPCHILDREN Excludes the area occupied by child windows

when drawing within the parent window. Used
when creating the parent window.

WS_CLIPSIBLINGS Clips child windows relative to each other; that
is, when a particular child window receives a
WM_PAINT message, this style clips all other
top-level child windows out of the region of the
child window to be updated. (If the
WS_CLIPSIBLINGS style is not given and child
windows overlap, it is possible, when drawing in
the client area of a child window, to draw in the
client area of a neighboring child window.) For
use with the WS_CHILD style only.

WS_DISABLED Creates a window that is initially disabled.
WS_DLGFRAME Creates a window with a modal dialog box frame

but no title.
WS_GROUP Specifies the first control of a group of controls

in which the user can move from one control to
the next by using the arrow keys. All controls
defined with the WS_GROUP style after the first
control belong to the same group. The next
control with the WS_GROUP style ends the style

group and starts the next group (that is, one
group ends where the next begins). This style is
valid only for controls.

WS_HSCROLL Creates a window that has a horizontal scroll bar.
WS_ICONIC Creates a window that is initially iconic. For use

with the WS_OVERLAPPED style only.
WS_MAXIMIZE Creates a window of maximum size.
WS_MAXIMIZEBOX Creates a window that has a Maximize box.
WS_MINIMIZE Creates a window of minimum size.
WS_MINIMIZEBOX Creates a window that has a Minimize box.
WS_OVERLAPPED Creates an overlapped window. An overlapped

window has a caption and a border.
WS_OVERLAPPEDWINDOW Creates an overlapped window having the

WS_OVERLAPPED, WS_CAPTION,
WS_SYSMENU, WS_THICKFRAME,
WS_MINIMIZEBOX, and
WS_MAXIMIZEBOX styles.

WS_POPUP Creates a pop-up window. It cannot be used with
the WS_CHILD style.

WS_POPUPWINDOW Creates a pop-up window that has the
WS_POPUP, WS_BORDER, and
WS_SYSMENU styles. The WS_CAPTION
style must be combined with the
WS_POPUPWINDOW style to make the System
menu visible.

WS_SIZEBOX Creates a window that has a size box. Used only
for windows with a title bar or with vertical and
horizontal scroll bars.

WS_SYSMENU Creates a window that has a System-menu box in
its title bar. Used only for windows with title
bars. If used with a child window, this style
creates a Close box instead of a System-menu
box.

WS_TABSTOP Specifies one of any number of controls through
which the user can move by using the TAB key.
The TAB key moves the user to the next control
specified by the WS_TABSTOP style. This style
is valid only for controls.

WS_THICKFRAME Creates a window with a thick frame that can be
used to size the window.

WS_VISIBLE Creates a window that is initially visible. This
applies to overlapping and pop-up windows. For
overlapping windows, the y parameter is used as
a parameter for the ShowWindow function.

WS_VSCROLL Creates a window that has a vertical scroll bar.

Comments
If the predefined names are used, the #include directive must be used so that the WINDOWS.H file will be
included in the resource script.

DS_LOCALEDIT

Specifies that edit controls in the dialog box will use memory in the application's data segment. By
default, all edit controls in dialog boxes use memory outside the application's data segment. This feature
can be suppressed by adding the DS_LOCALEDIT flag to the STYLE command for the dialog box. If this
flag is not used, EM_GETHANDLE and EM_SETHANDLE messages must not be used since the storage
for the control is not in the application's data segment. This feature does not affect edit controls created
outside of dialog boxes.

DS_MODALFRAME

Creates a dialog box with a modal dialog box frame that can be combined with a title bar and System
menu by specifying the WS_CAPTION and WS_SYSMENU styles.

DS_NOIDLEMSG

Suppresses WM_ENTERIDLE messages that Windows would otherwise send to the owner of the dialog
box while the dialog box is displayed.

DS_SYSMODAL

Creates a system-modal dialog box.

WS_BORDER

Creates a window that has a border.

WS_CAPTION

Creates a window that has a title bar (implies the WS_BORDER style).

WS_CHILD

Creates a child window. It cannot be used with the WS_POPUP style.

WS_CHILDWINDOW

Creates a child window that has the WS_CHILD style.

WS_CLIPCHILDREN

Excludes the area occupied by child windows when drawing within the parent window. Used when
creating the parent window.

WS_CLIPSIBLINGS

Clips child windows relative to each other; that is, when a particular child window receives a WM_PAINT
message, this style clips all other top-level child windows out of the region of the child window to be
updated. (If the WS_CLIPSIBLINGS style is not given and child windows overlap, it is possible, when
drawing in the client area of a child window, to draw in the client area of a neighboring child window.)
For use with the WS_CHILD style only.

WS_DISABLED

Creates a window that is initially disabled.

WS_DLGFRAME

Creates a window with a modal dialog box frame but no title.

WS_GROUP

Specifies the first control of a group of controls in which the user can move from one control to the next
by using the arrow keys. All controls defined with the WS_GROUP style after the first control belong to
the same group. The next control with the WS_GROUP style ends the style group and starts the next group
(that is, one group ends where the next begins). This style is valid only for controls.

WS_HSCROLL

Creates a window that has a horizontal scroll bar.

WS_ICONIC

Creates a window that is initially iconic. For use with the WS_OVERLAPPED style only.

WS_MAXIMIZE

Creates a window of maximum size.

WS_MAXIMIZEBOX

Creates a window that has a Maximize box.

WS_MINIMIZE

Creates a window of minimum size.

WS_MINIMIZEBOX

Creates a window that has a Minimize box.

WS_OVERLAPPED

Creates an overlapped window. An overlapped window has a caption and a border.

WS_OVERLAPPEDWINDOW

Creates an overlapped window having the WS_OVERLAPPED, WS_CAPTION, WS_SYSMENU,
WS_THICKFRAME, WS_MINIMIZEBOX, and WS_MAXIMIZEBOX styles.

WS_POPUP

Creates a pop-up window. It cannot be used with the WS_CHILD style.

WS_POPUPWINDOW

Creates a pop-up window that has the WS_POPUP, WS_BORDER, and WS_SYSMENU styles. The
WS_CAPTION style must be combined with the WS_POPUPWINDOW style to make the System menu
visible.

WS_SIZEBOX

Creates a window that has a size box. Used only for windows with a title bar or with vertical and
horizontal scroll bars.

WS_SYSMENU

Creates a window that has a System-menu box in its title bar. Used only for windows with title bars. If
used with a child window, this style creates a Close box instead of a System-menu box.

WS_TABSTOP

Specifies one of any number of controls through which the user can move by using the TAB key. The TAB
key moves the user to the next control specified by the WS_TABSTOP style. This style is valid only for
controls.

WS_THICKFRAME

Creates a window with a thick frame that can be used to size the window.

WS_VISIBLE

Creates a window that is initially visible. This applies to overlapping and pop-up windows. For
overlapping windows, the y parameter is used as a parameter for the ShowWindow function.

WS_VSCROLL

Creates a window that has a vertical scroll bar.

#undef (2.x)
#undef name

The #undef directive removes the current definition of the specified name. All subsequent occurrences of
the name are processed without replacement.

Parameter Description
name Specifies the name to be removed. This value is any combination of letters, digits, and

punctuation.

Example
This example removes the definitions for the names "nonzero" and "USERCLASS":

#undefnonzero
#undefUSERCLASS
See Also
#define

User-Defined (3.0)
nameID typeID [load-option] [mem-option] filename

nameID typeID [load-option] [mem-option]
BEGIN

raw-data
.
.
.

END

A user-defined resource statement specifies a resource that contains application-specific data. The data can
have any format and can be defined either as the content of a given file (if the filename parameter is given)
or as a series of numbers or strings (if the raw-data parameter is given).

Parameter Description
nameID Specifies either a unique name or an integer that identifies the resource.
typeID Specifies either a unique name or an integer that identifies the resource type. If a number

is given, it must be greater than 255. The numbers 1 through 255 are reserved for
existing and future predefined resource types.

load-option Specifies when the resource is to be loaded. The parameter must be one of the following
options:

Option Description
PRELOAD Resource is loaded immediately.
LOADONCALL Resource is loaded when called. This is the default option.

mem-option Specifies whether the resource is fixed or movable and whether it is discardable. The
parameter must be one of the following options:

Option Description
FIXED Resource remains at a fixed memory location.
MOVEABLE Resource can be moved if necessary in order to compact

memory.
DISCARDABLE Resource can be discarded if no longer needed.
The default is MOVEABLE and DISCARDABLE for cursor, icon, and font resources.
The default for bitmap resources is MOVEABLE.

filename Specifies the name of the file that contains the resource data. The parameter must be a
valid MS-DOS filename; it must be a full path if the file is not in the current working
directory.

raw-data Specifies one or more integers and strings. Integers can be in decimal, octal, or
hexadecimal format.

Example
The following example shows several user-defined statements:

array MYRES data.res
14 300custom.res
18 MYRES2
BEGIN
"Here is a data string\0", /* A string. Note: explicitly
null-terminated */
1024, /* int */
0x029a, /* hex int */
0o733,/* octal int */
"\07" /* octal byte */

END

VERSIONINFO (3.1)
versionID VERSIONINFO fixed-info

BEGIN
block-statement
.
.
.

END

The VERSIONINFO statement creates a version-information resource. The resource contains such
information about the file as its version number, its intended operating system, and its original filename.
The resource is intended to be used with the File Installation library functions.

Parameter Description
versionID Specifies the version-information resource identifier. This value must be 1.
fixed-info Specifies the version information, such as the file version and the intended operating

system. This parameter consists of the following statements:

Statement Description
FILEVERSION version Specifies the binary version number

for the file. The version consists of
two 32-bit integers, defined by four
16-bit integers. For example,
"FILEVERSION 3,10,0,61" is
translated into two doublewords:
0x0003000a and 0x0000003d, in that
order. Therefore, if version is defined
by the doublewords dw1 and dw2,
they need to appear in the
FILEVERSION statement as follows:
HIWORD(dw1), LOWORD(dw1),
HIWORD(dw2), LOWORD(dw2).

PRODUCTVERSION version Specifies the binary version number
for the product with which the file is
distributed. The version parameter is
two 32-bit integers, defined by four
16-bit integers. For more information
about version, see the FILEVERSION
description.

FILEFLAGSMASK fileflagsmask Specifies which bits in the
FILEFLAGS statement are valid. If a
bit is set, the corresponding bit in
FILEFLAGS is valid.

FILEFLAGS fileflags Specifies the Boolean attributes of the
file. The fileflags parameter must be
the combination of all the file flags
that are valid at compile time. For
Windows 3.1, this value is 0x3f.

FILEOS fileos Specifies the operating system for
which this file was designed. The
fileos parameter can be one of the
operating system values given in the
Comments section.

FILETYPE filetype Specifies the general type of file. The
filetype parameter can be one of the
file type values listed in the Comments
section.

FILESUBTYPE subtype Specifies the function of the file. The
subtype parameter is zero unless the
type parameter in the FILETYPE
statement is VFT_DRV, VFT_FONT,
or VFT_VXD. For a list of file

subtype values, see the Comments
section.

block-statement Specifies one or more version-information blocks. A block can contain string
information or variable information.

Comments
To use the constants specified with the VERSIONINFO statement, the VER.H file must be included in the
resource-definition file.

The following list describes the parameters used in the VERSIONINFO statement:

Parameter Description
fileflags Specifies a combination of the following values:

Value Meaning
VS_FF_DEBUG File contains debugging information or is compiled

with debugging features enabled.
VS_FF_INFOINFERRED File contains a dynamically created version-

information resource. Some of the blocks for the
resource may be empty or incorrect. This value is
not intended to be used in version-information
resources created by using the VERSIONINFO
statement.

VS_FF_PATCHED File has been modified and is not identical to the
original shipping file of the same version number.

VS_FF_PRERELEASE File is a development version, not a commercially
released product.

VS_FF_PRIVATEBUILD File was not built using standard release
procedures. If this value is given, the StringFileInfo
block must contain a PrivateBuild string.

VS_FF_SPECIALBUILD File was built by the original company using
standard release procedures but is a variation of the
standard file of the same version number. If this
value is given, the StringFileInfo block must
contain a SpecialBuild string.

fileos Specifies one of the following values:
Value Meaning
VOS_UNKNOWN Operating system for which the file was designed is

unknown to Windows.
VOS_DOS File was designed for MS-DOS.
VOS_NT File was designed for Windows NT.
VOS_WINDOWS16 File was designed for Windows version 3.0 or later.
VOS_WINDOWS32 File was designed for 32-bit Windows.
VOS_DOS_WINDOWS16 File was designed for Windows version 3.0 or later

running with MS-DOS.
VOS_DOS_WINDOWS32 File was designed for 32-bit Windows running with

MS-DOS.
VOS_NT_WINDOWS32 File was designed for 32-bit Windows running with

Windows NT.
The values 0x00002L, 0x00003L, 0x20000L and 0x30000L are reserved.

filetype Specifies one of the following values:
Value Meaning
VFT_UNKNOWN File type is unknown to Windows.
VFT_APP File contains an application.
VFT_DLL File contains a dynamic-link library (DLL).
VFT_DRV File contains a device driver. If the dwFileType member is

VFT_DRV, the dwFileSubtype member contains a more
specific description of the driver.

VFT_FONT File contains a font. If the dwFileType member is
VFT_FONT, the dwFileSubtype member contains a more
specific description of the font.

VFT_VXD File contains a virtual device.
VFT_STATIC_LIB File contains a static-link library.
All other values are reserved for use by Microsoft.

subtype Specifies additional information about the file type.
If the FILETYPE statement specifies VFT_DRV, this parameter can be one of the
following values:
Value Meaning
VFT2_UNKNOWN Driver type is unknown to Windows.
VFT2_DRV_COMM File contains a communications driver.
VFT2_DRV_PRINTER File contains a printer driver.
VFT2_DRV_KEYBOARD File contains a keyboard driver.
VFT2_DRV_LANGUAGE File contains a language driver.
VFT2_DRV_DISPLAY File contains a display driver.
VFT2_DRV_MOUSE File contains a mouse driver.
VFT2_DRV_NETWORK File contains a network driver.
VFT2_DRV_SYSTEM File contains a system driver.
VFT2_DRV_INSTALLABLE File contains an installable driver.
VFT2_DRV_SOUND File contains a sound driver.
If the FILETYPE statement specifies VFT_FONT, this parameter can be one of the
following values:
Value Meaning
VFT2_UNKNOWN Font type is unknown to Windows.
VFT2_FONT_RASTER File contains a raster font.
VFT2_FONT_VECTOR File contains a vector font.
VFT2_FONT_TRUETYPE File contains a TrueType font.
If the FILETYPE statement specifies VFT_VXD, this parameter must be the virtual-
device identifier included in the virtual-device control block.
All subtype values not listed here are reserved for use by Microsoft.

langID Specifies one of the following language identifiers:
Value Language
0x0401 Arabic
0x0402 Bulgarian
0x0403 Catalan
0x0404 Traditional Chinese
0x0405 Czech
0x0406 Danish
0x0407 German
0x0408 Greek
0x0409 U.S. English
0x040A Castilian Spanish
0x040B Finnish
0x040C French
0x040D Hebrew
0x040E Hungarian
0x040F Icelandic
0x0410 Italian
0x0411 Japanese
0x0412 Korean
0x0413 Dutch
0x0414 Norwegian - Bokmål
0x0415 Polish
0x0416 Brazilian Portuguese
0x0417 Rhaeto-Romanic

0x0418 Romanian
0x0419 Russian
0x041A Croato-Serbian (Latin)
0x041B Slovak
0x041C Albanian
0x041D Swedish
0x041E Thai
0x041F Turkish
0x0420 Urdu
0x0421 Bahasa
0x0804 Simplified Chinese
0x0807 Swiss German
0x0809 U.K. English
0x080A Mexican Spanish
0x080C Belgian French
0x0810 Swiss Italian
0x0813 Belgian Dutch
0x0814 Norwegian - Nynorsk
0x0816 Portuguese
0x081A Serbo-Croatian (Cyrillic)
0x0C0C Canadian French
0x100C Swiss French

charsetID Specifies one of the following character-set identifiers:
Value Character set
0 7-bit ASCII
932 Windows, Japan (Shift - JIS X-0208)
949 Windows, Korea (Shift - KSC 5601)
950 Windows, Taiwan (GB5)
1200 Unicode
1250 Windows, Latin-2 (Eastern European)
1251 Windows, Cyrillic
1252 Windows, Multilingual
1253 Windows, Greek
1254 Windows, Turkish
1255 Windows, Hebrew
1256 Windows, Arabic

string-name Specifies one of the following predefined names:
Name Value
Comments Specifies additional information that should be displayed for

diagnostic purposes.
CompanyName Specifies the company that produced the file--for example,

"Microsoft Corporation" or "Standard Microsystems
Corporation, Inc.". This string is required.

FileDescription Specifies a file description to be presented to users. This
string may be displayed in a list box when the user is
choosing files to install--for example, "Keyboard Driver for
AT-Style Keyboards" or "Microsoft Word for Windows".
This string is required.

FileVersion Specifies the version number of the file--for example, "3.
10" or "5.00.RC2". This string is required.

InternalName Specifies the internal name of the file, if one exists--for
example, a module name if the file is a dynamic-link library.
If the file has no internal name, this string should be the
original filename, without extension. This string is required.

LegalCopyright Specifies all copyright notices that apply to the file. This
should include the full text of all notices, legal symbols,
copyright dates, and so on--for example, "Copyright
Microsoft Corporation 1990-1991". This string is optional.

LegalTrademarks Specifies all trademarks and registered trademarks that apply
to the file. This should include the full text of all notices,
legal symbols, trademark numbers, and so on--for example,
"Windows(TM) is a trademark of Microsoft Corporation".
This string is optional.

OriginalFilename Specifies the original name of the file, not including a path.
This information enables an application to determine
whether a file has been renamed by a user. The format of the
name depends on the file system for which the file was
created. This string is required.

PrivateBuild Specifies information about a private version of the file--for
example, "Built by TESTER1 on \TESTBED". This string
should be present only if the VS_FF_PRIVATEBUILD flag
is set in the dwFileFlags member of the
VS_FIXEDFILEINFO structure of the root block.

ProductName Specifies the name of the product with which the file is
distributed--for example, "Microsoft Windows". This string
is required.

ProductVersion Specifies the version of the product with which the file is
distributed--for example, "3.10" or "5.00.RC2". This string
is required.

SpecialBuild Specifies how this version of the file differs from the
standard version--for example, "Private build for TESTER1
solving mouse problems on M250 and M250E computers".
This string should be present only if the
VS_FF_SPECIALBUILD flag is set in the dwFileFlags
member of the VS_FIXEDFILEINFO structure in the root
block.

A string information block has the following form:

BLOCK "StringFileInfo"
BEGIN

BLOCK "lang-charset"
BEGIN
VALUE "string-name", "value"
.
.
.
END

END

Following are the parameters in the StringFileInfo block:
lang-charset Specifies a language and character-set identifier pair. It is a hexadecimal string

consisting of the concatenation of the language and character-set identifiers listed earlier
in this section.

string-name Specifies the name of a value in the block and can be one of the predefined names listed
earlier in this section.

value Specifies, as a character string, the value of the corresponding string name. More than
one VALUE statement can be given.

A variable information block has the following form:

BLOCK "VarFileInfo"
BEGIN

VALUE "Translation",
langID, charsetID
.
.
.

END

Following are the parameters in the variable information block:
langID Specifies one of the language identifiers listed earlier in this section.
charsetID Specifies one of the character-set identifiers listed earlier in this section.

More than one identifier pair can be given, but each pair must be separated from the
preceding pair with a comma.

Resource Statements
ACCELERATORS Defines accelerator keystroke
BITMAP Defines a bitmap resource
CAPTION Defines the title for a dialog box
CHECKBOX Creates a predefined check-box control
CLASS Defines the class of a dialog box
COMBOBOX Creates a combination-box control
CONTROL Creates a control for a dialog box
CTEXT Creates a centered text control
CURSOR Specifies a cursor resource
#define Assigns a value to a name
DEFPUSHBUTTON Creates a default push-button control
DIALOG Defines a dialog window
EDITTEXT Defines an EDIT control
#elif Compiles conditionally (else if)
#else Compiles if conditional directive is false
#endif Marks the end of an #ifdef block
FONT Specifies the font in a dialog box
FONT Specifies a font resource
GROUPBOX Creates a group box
ICON Creates an icon control
ICON Specifies an icon resource
#if Conditionally compiles if an expression is true
#ifdef Conditionally compiles if a name is defined
#ifndef Conditionally compiles if a name is not defined
#include Includes a header file
LISTBOX Creates a list-box control
LTEXT Creates a left-aligned text control
MENU Defines a dialog box's menu
MENU Creates a menu
MENUITEM Defines a menu item
POPUP Creates a pop-up menu
PUSHBUTTON Creates a pushbutton control
RADIOBUTTON Creates a radio-button control
RCDATA Defines a raw-data resource
RTEXT Creates a right-aligned text control
SCROLLBAR Creates a scrollbar control
SEPARATOR Creates inactive dividing bar in menu
STRINGTABLE Defines string resources
STYLE Defines window style of dialog box
#undef Removes a name definition
User-Defined User-Defined Resources
VERSIONINFO Creates a version information resource

RegCloseKey (3.1)
#include shellapi.h

LONG RegCloseKey(hkey)
HKEY hkey; /* handle of key to close */

The RegCloseKey function closes a key. Closing a key releases the key's handle. When all keys are
closed, the registration database is updated.

Parameter Description
hkey Identifies the open key to close.

Returns
The return value is ERROR_SUCCESS if the function is successful. Otherwise, it is an error value.

Comments
The RegCloseKey function should be called only if a key has been opened by either the RegOpenKey
function or the RegCreateKey function. The handle for a given key should not be used after it has been
closed, because it may no longer be valid. Key handles should not be left open any longer than necessary.

Example
The following example uses the RegCreateKey function to create the handle of a protocol, uses the
RegSetValue function to set up the subkeys of the protocol, and then calls RegCloseKey to save the
information in the database:

HKEY hkProtocol;
if (RegCreateKey(HKEY_CLASSES_ROOT, /* root */

"NewAppDocument\\protocol\\StdFileEditing", /* protocol string */
&hkProtocol) != ERROR_SUCCESS)/* protocol key handle */
return FALSE;

RegSetValue(hkProtocol,/* handle of protocol key */
"server",/* name of subkey */
REG_SZ, /* required */
"newapp.exe", /* command to activate server*/
10);/* text string size*/

RegSetValue(hkProtocol,/* handle of protocol key */
"verb\\0", /* name of subkey */
REG_SZ, /* required */
"Edit", /* server should edit object */
4); /* text string size*/

RegCloseKey(hkProtocol);/* closes protocol key and subkeys */
See Also
RegCreateKey, RegDeleteKey, RegOpenKey, RegSetValue

RegCreateKey (3.1)
#include shellapi.h

LONG RegCreateKey(hkey, lpszSubKey, lphkResult)
HKEY hkey; /* handle of an open key */
LPCSTR lpszSubKey; /
* address of string for subkey to open *
/
HKEY FAR* lphkResult; /
* address of handle of open key *
/

The RegCreateKey function creates the specified key. If the key already exists in the registration database,
RegCreateKey opens it.

Parameter Description
hkey Identifies an open key (which can be HKEY_CLASSES_ROOT). The key opened or

created by the RegCreateKey function is a subkey of the key identified by the hkey
parameter. This value should not be NULL.

lpszSubKey Points to a null-terminated string specifying the subkey to open or create.
lphkResult Points to the handle of the key that is opened or created.

Returns
The return value is ERROR_SUCCESS if the function is successful. Otherwise, it is an error value.

Comments
An application can create keys that are subordinate to the top level of the database by specifying
HKEY_CLASSES_ROOT for the hKey parameter. An application can use the RegCreateKey function to
create several keys at once. For example, an application could create a subkey four levels deep and the
three preceding subkeys by specifying a string of the following form for the lpszSubKey parameter:

subkey1\subkey2\subkey3\subkey4

Example
The following example uses the RegCreateKey function to create the handle of a protocol, uses the
RegSetValue function to set up the subkeys of the protocol, and then calls RegCloseKey to save the
information in the database:

HKEY hkProtocol;
if (RegCreateKey(HKEY_CLASSES_ROOT, /* root */

"NewAppDocument\\protocol\\StdFileEditing", /* protocol string */
&hkProtocol) != ERROR_SUCCESS)/* protocol key handle */
return FALSE;

RegSetValue(hkProtocol,/* handle of protocol key */
"server",/* name of subkey */
REG_SZ, /* required */
"newapp.exe", /* command to activate server*/
10);/* text string size*/

RegSetValue(hkProtocol,/* handle of protocol key */
"verb\\0", /* name of subkey */
REG_SZ, /* required */
"Edit", /* server should edit object */
4); /* text string size*/

RegCloseKey(hkProtocol);/* closes protocol key and subkeys */
See Also
RegCloseKey, RegOpenKey, RegSetValue

RegDeleteKey (3.1)
#include shellapi.h

LONG RegDeleteKey(hkey, lpszSubKey)
HKEY hkey; /* handle of an open key */
LPCSTR lpszSubKey; /
* address of string for subkey to delete *
/

The RegDeleteKey function deletes the specified key. When a key is deleted, its value and all of its
subkeys are deleted.

Parameter Description
hkey Identifies an open key (which can be HKEY_CLASSES_ROOT). The key deleted by

the RegDeleteKey function is a subkey of this key.
lpszSubKey Points to a null-terminated string specifying the subkey to delete. This value should not

be NULL.

Returns
The return value is ERROR_SUCCESS if the function is successful. Otherwise, it is an error value.

If the error value is ERROR_ACCESS_DENIED, either the application does not have delete privileges for
the specified key or another application has opened the specified key.

Example
The following example uses the RegQueryValue function to retrieve the name of an object handler and
then calls the RegDeleteKey function to delete the key if its value is nwappobj.dll:

char szBuff[80];
LONG cb;
HKEY hkStdFileEditing;
if (RegOpenKey(HKEY_CLASSES_ROOT,

"NewAppDocument\\protocol\\StdFileEditing",
&hkStdFileEditing) == ERROR_SUCCESS) {
cb = sizeof(szBuff);
if (RegQueryValue(hkStdFileEditing,

"handler",
szBuff,
&cb) == ERROR_SUCCESS
&& lstrcmpi("nwappobj.dll", szBuff) == 0)
RegDeleteKey(hkStdFileEditing, "handler");
RegCloseKey(hkStdFileEditing);

}
See Also
RegCloseKey

RegEnumKey (3.1)
#include shellapi.h

LONG RegEnumKey(hkey, iSubkey, lpszBuffer, cbBuffer)
HKEY hkey; /* handle of key to query */
DWORD iSubkey; /* index of
subkey to query *
/
LPSTR lpszBuffer; /
* address of buffer for subkey string *
/
DWORD cbBuffer; /
* size of subkey buffer *
/

The RegEnumKey function enumerates the subkeys of a specified key.

Parameter Description
hkey Identifies an open key (which can be HKEY_CLASSES_ROOT) for which subkey

information is retrieved.
iSubkey Specifies the index of the subkey to retrieve. This value should be zero for the first call

to the RegEnumKey function.
lpszBuffer Points to a buffer that contains the name of the subkey when the function returns. This

function copies only the name of the subkey, not the full key hierarchy, to the buffer.
cbBuffer Specifies the size, in bytes, of the buffer pointed to by the lpszBuffer parameter.

Returns
The return value is ERROR_SUCCESS if the function is successful. Otherwise, it is an error value.

Comments
The first parameter of the RegEnumKey function must specify an open key. Applications typically precede
the call to the RegEnumKey function with a call to the RegOpenKey function and follow it with a call to
the RegCloseKey function. Calling RegOpenKey and RegCloseKey is not necessary when the first
parameter is HKEY_CLASSES_ROOT, because this key is always open and available; however, calling
RegOpenKey and RegCloseKey in this case is a time optimization. While an application is using the
RegEnumKey function, it should not make calls to any registration functions that might change the key
being queried.

To enumerate subkeys, an application should initially set the iSubkey parameter to zero and then
increment it on successive calls.

Example
The following example uses the RegEnumKey function to put the values associated with top-level keys
into a list box:

HKEY hkRoot;
char szBuff[80], szValue[80];
static DWORD dwIndex;
LONG cb;
if (RegOpenKey(HKEY_CLASSES_ROOT, NULL, &hkRoot) == ERROR_SUCCESS) {

for (dwIndex = 0; RegEnumKey(hkRoot, dwIndex, szBuff,
sizeof(szBuff)) == ERROR_SUCCESS; ++dwIndex) {
if (*szBuff == '.')
continue;
cb = sizeof(szValue);
if (RegQueryValue(hkRoot, (LPSTR) szBuff, szValue,

&cb) == ERROR_SUCCESS)
SendDlgItemMessage(hDlg, ID_ENUMLIST, LB_ADDSTRING, 0,
(LONG) (LPSTR) szValue);

}
RegCloseKey(hkRoot);

}
See Also

RegQueryValue

RegOpenKey (3.1)
#include shellapi.h

LONG RegOpenKey(hkey, lpszSubKey, lphkResult)
HKEY hkey; /* handle of an open key */
LPCSTR lpszSubKey; /
* address of string for subkey to open *
/
HKEY FAR* lphkResult; /
* address of handle of open key *
/

The RegOpenKey function opens the specified key.

Parameter Description
hkey Identifies an open key (which can be HKEY_CLASSES_ROOT). The key opened by

the RegOpenKey function is a subkey of the key identified by this parameter. This value
should not be NULL.

lpszSubKey Points to a null-terminated string specifying the name of the subkey to open.
lphkResult Points to the handle of the key that is opened.

Returns
The return value is ERROR_SUCCESS if the function is successful. Otherwise, it is an error value.

Comments
Unlike the RegCreateKey function, the RegOpenKey function does not create the specified key if the key
does not exist in the database.

Example
The following example uses the RegOpenKey function to retrieve the handle of the StdFileEditing subkey,
calls the RegQueryValue function to retrieve the name of an object handler, and then calls the
RegDeleteKey function to delete the key if its value is nwappobj.dll:

char szBuff[80];
LONG cb;
HKEY hkStdFileEditing;
if (RegOpenKey(HKEY_CLASSES_ROOT,

"NewAppDocument\\protocol\\StdFileEditing",
&hkStdFileEditing) == ERROR_SUCCESS) {
cb = sizeof(szBuff);
if (RegQueryValue(hkStdFileEditing,

"handler",
szBuff,
&cb) == ERROR_SUCCESS
&& lstrcmpi("nwappobj.dll", szBuff) == 0)
RegDeleteKey(hkStdFileEditing, "handler");
RegCloseKey(hkStdFileEditing);

}
See Also
RegCreateKey

RegQueryValue (3.1)
#include shellapi.h

LONG RegQueryValue(hkey, lpszSubKey, lpszValue, lpcb)
HKEY hkey; /* handle of key to query */
LPCSTR lpszSubKey; /
* address of string for subkey to query *
/
LPSTR lpszValue; /
* address of buffer for returned string *
/
LONG FAR* lpcb; /
* address of buffer for size of returned string *
/

The RegQueryValue function retrieves the text string associated with a specified key.

Parameter Description
hkey Identifies a currently open key (which can be HKEY_CLASSES_ROOT). This value

should not be NULL.
lpszSubKey Points to a null-terminated string specifying the name of the subkey of the hkey

parameter for which a text string is retrieved. If this parameter is NULL or points to an
empty string, the function retrieves the value of the hkey parameter.

lpszValue Points to a buffer that contains the text string when the function returns.
lpcb Points to a variable specifying the size, in bytes, of the buffer pointed to by the

lpszValue parameter. When the function returns, this variable contains the size of the
string copied to lpszValue, including the null-terminating character.

Returns
The return value is ERROR_SUCCESS if the function is successful. Otherwise, it is an error value.

Example
The following example uses the RegOpenKey function to retrieve the handle of the StdFileEditing subkey,
calls the RegQueryValue function to retrieve the name of an object handler and then calls the
RegDeleteKey function to delete the key if its value is nwappobj.dll:

char szBuff[80];
LONG cb;
HKEY hkStdFileEditing;
if (RegOpenKey(HKEY_CLASSES_ROOT,

"NewAppDocument\\protocol\\StdFileEditing",
&hkStdFileEditing) == ERROR_SUCCESS) {
cb = sizeof(szBuff);
if (RegQueryValue(hkStdFileEditing,

"handler",
szBuff,
&cb) == ERROR_SUCCESS
&& lstrcmpi("nwappobj.dll", szBuff) == 0)
RegDeleteKey(hkStdFileEditing, "handler");
RegCloseKey(hkStdFileEditing);

}
See Also
RegEnumKey

RegSetValue (3.1)
#include shellapi.h

LONG RegSetValue(hkey, lpszSubKey, fdwType, lpszValue, cb)
HKEY hkey; /* handle of key */
LPCSTR lpszSubKey; /*
address of string for subkey *
/
DWORD fdwType; /
* must be REG_SZ *
/
LPCSTR lpszValue; /
* address of string for key *
/
DWORD cb; /
* ignored *
/

The RegSetValue function associates a text string with a specified key.

Parameter Description
hkey Identifies a currently open key (which can be HKEY_CLASSES_ROOT). This value

should not be NULL.
lpszSubKey Points to a null-terminated string specifying the subkey of the hkey parameter with

which a text string is associated. If this parameter is NULL or points to an empty string,
the function sets the value of the hkey parameter.

fdwType Specifies the string type. For Windows version 3.1, this value must be REG_SZ.
lpszValue Points to a null-terminated string specifying the text string to set for the given key.
cb Specifies the size, in bytes, of the string pointed to by the lpszValue parameter. For

Windows version 3.1, this value is ignored.

Returns
The return value is ERROR_SUCCESS if the function is successful. Otherwise, it is an error value.

Comments
If the key specified by the lpszSubKey parameter does not exist, the RegSetValue function creates it.

System performance improves when a call to the RegSetValue function is made for a key that has been
opened using the RegOpenKey function and which will be closed with a call to the RegCloseKey function.

Example
The following example uses the RegSetValue function to register a filename extension and its associated
class name:

RegSetValue(HKEY_CLASSES_ROOT, /* root */
".XXX", /* string for filename extension */
REG_SZ, /* required*/
"NewAppDocument", /* class name for extension */
14);/* size of text string */

RegSetValue(HKEY_CLASSES_ROOT, /* root */
"NewAppDocument", /* string for class-definition key */
REG_SZ, /* required*/
"New Application", /* text description of class */
15);/* size of text string */

See Also
RegCloseKey, RegCreateKey, RegOpenKey, RegQueryValue

Registration functions (3.1)
RegCloseKey Closes a key and releases the key's handle
RegCreateKey Creates a specified key
RegDeleteKey Deletes a specified key
RegEnumKey Enumerates the subkeys of a specified key
RegOpenKey Opens a specified key
RegQueryValue Retrieves the text string for a specified key
RegSetValue Associates a text string with a specified key

DefScreenSaverProc (3.1)
#include <scrnsave.h>

LRESULT DefScreenSaverProc(hwnd, msg, wParam, lParam)
HWND hwnd; /* handle of screen saver window */
UINT msg; /* message */
WPARAM wParam; /
* first message parameter *
/
LPARAM lParam; /
* second message parameter *
/

The DefScreenSaverProc function provides default processing for any messages that a screen saver
application does not process. All window messages that are not explicitly processed by the screen saver
application's ScreenSaverProc window procedure must be passed to the DefScreenSaverProc function.

Parameter Description
hwnd Identifies the screen saver window.
msg Specifies the message to be processed. The DefScreenSaverProc function responds to

messages that affect screen saver operation as detailed in the list in the following
"Comments" section.
If a screen saver application must perform a different action in response to any of these
messages, the application's ScreenSaverProc window procedure should process the
message and not call DefScreenSaverProc for that message.

wParam Specifies 16 bits of additional message-dependent information.
lParam Specifies 32 bits of additional message-dependent information.

Returns
The return value specifies the result of the message processing and depends on the message sent.

Comments
A screen saver application's ScreenSaverProc window procedure should use DefScreenSaverProc in place
of the DefWindowProc function. The DefScreenSaverProc function passes any messages that do not affect
screen saver operation to DefWindowProc.

The DefScreenSaverProc function responds to messages that affect screen saver operation as follows:

Message Response
WM_ACTIVATE,
WM_ACTIVATEAPP,
WM_NCACTIVATE

Closes the screen saver if wParam is FALSE, unless the password option is
enabled in the configuration dialog box. If the password option is enabled,
these messages are ignored. A wParam value of FALSE indicates that the
screen saver is losing the input focus. The screen saver is closed by sending a
WM_CLOSE message.

WM_SETCURSOR Removes the cursor from the screen by setting the cursor to NULL.
WM_LBUTTONDOWN,
WM_RBUTTONDOWN,
WM_MBUTTONDOWN,
WM_KEYDOWN, WM_KEYUP,

.2Posts a WM_CLOSE message to close the screen saver window, unless the
password option is enabled. If the password option is enabled, a
WM_MOUSEMOVE message displays the dialog box created by the
DlgGetPassword function. WM_DESTROY

WM_SYSCOMMAND Returns FALSE if the wParam parameter of the WM_SYSCOMMAND
message is either SC_SCREENSAVE or SC_CLOSE.

See Also
ScreenSaverProc

DlgChangePassword (3.1)
#include <scrnsave.h>

BOOL DlgChangePassword(hDlg, message, wParam, lParam)
HWND hDlg; /* handle of dialog box */
UINT message; /* message *
/
WPARAM wParam; /
* first message parameter *
/
LPARAM lParam; /
* second message parameter *
/

The DlgChangePassword function receives messages from a dialog box that changes the password for a
screen saver.

Parameter Description
hDlg Identifies the dialog box that changes the password for a screen saver.
message Specifies the message.
wParam Specifies 16 bits of additional message-dependent information.
lParam Specifies 32 bits of additional message-dependent information.

Returns
The return value is nonzero if the function is successful; otherwise, it is zero.

Comments
This function is called by the ScreenSaverConfigureDialog function to change the password for a screen
saver. An application uses the MakeProcInstance function with DlgChangePassword to display a
configuration dialog box.

A password applies to all screen savers using SCRNSAVE.LIB. Whether the password is enabled,
however, is specific to a particular screen saver.

The dialog box template for the change password dialog box must use the DLG_CHANGEPASSWORD
identifier (defined as 2000).

The DlgChangePassword function must be exported by including it in an EXPORTS statement in the
application's module-definition (.DEF) file.

See Also
DlgGetPassword, DlgInvalidPassword, ScreenSaverConfigureDialog

DlgGetPassword (3.1)
#include <scrnsave.h>

BOOL DlgGetPassword(hDlg, message, wParam, lParam)
HWND hDlg; /* handle of dialog box */
UINT message; /* message *
/
WPARAM wParam; /
* first message parameter *
/
LPARAM lParam; /
* second message parameter *
/

The DlgGetPassword function receives messages from the dialog box that retrieves the user's password.

Parameter Description
hDlg Identifies the dialog box that retrieves the user's password.
message Specifies the message.
wParam Specifies 16 bits of additional message-dependent information.
lParam Specifies 32 bits of additional message-dependent information.

Returns
The return value is nonzero if the function is successful; otherwise, it is zero.

Comments
The DlgGetPassword function is provided in SCRNSAVE.LIB. Most applications provide a dialog box
template and export the function without explicitly calling it in their code. This reference information for
DlgGetPassword is provided for applications that change the default behavior.

The DlgGetPassword function is called by the DefScreenSaverProc function to retrieve the password for a
screen saver.

A password applies to all screen savers using SCRNSAVE.LIB. Whether the password is enabled,
however, is specific to a particular screen saver.

The dialog box template for the dialog box that retrieves the user's password must use the
DLG_ENTERPASSWORD identifier (defined as 2001).

The DlgGetPassword function must be exported by including it in an EXPORTS statement in the
application's module-definition (.DEF) file.

See Also
DefScreenSaverProc, DlgChangePassword, DlgInvalidPassword

DlgInvalidPassword (3.1)
#include <scrnsave.h>

BOOL DlgInvalidPassword(hDlg, message, wParam, lParam)
HWND hDlg; /* handle of dialog box */
UINT message; /* message *
/
WPARAM wParam; /
* first message parameter *
/
LPARAM lParam; /
* second message parameter *
/

The DlgInvalidPassword function displays a dialog box warning that a user's password is invalid.

Parameter Description
hDlg Identifies the dialog box that warns that a user's password is invalid.
message Specifies the message.
wParam Specifies 16 bits of additional message-dependent information.
lParam Specifies 32 bits of additional message-dependent information.

Returns
The return value is nonzero if the function is successful; otherwise, it is zero.

Comments
The DlgInvalidPassword function is provided in SCRNSAVE.LIB. Most applications provide a dialog box
template and export the function without explicitly calling it in their code. This reference information for
DlgInvalidPassword is provided for applications that change the default behavior.

DlgInvalidPassword is called during processing of the DlgGetPassword function when the user types an
incorrect password.

A password applies to all screen savers using SCRNSAVE.LIB. Whether the password is enabled,
however, is specific to a particular screen saver.

The dialog box template for the dialog box warning that the user's password is invalid must use the
DLG_INVALIDPASSWORD identifier (defined as 2002).

The DlgInvalidPassword function must be exported by including it in an EXPORTS statement in the
application's module-definition (.DEF) file.

See Also
DlgChangePassword, DlgGetPassword

HelpMessageFilterHookFunction (3.1)
#include <scrnsave.h>

DWORD HelpMessageFilterHookFunction(nCode, wParam, lpMsg)
int nCode; /* identifier of hook */
WORD wParam; /* virtual-key code */
LPMSG lpMsg; /
* address of message *
/

The HelpMessageFilterHookFunction function posts a message when the user presses the F1 key while
using one of the screen saver dialog boxes.

Parameter Description
nCode Specifies a code used by the Windows hook function (also called the message-filter

function) to determine how to process the message.
wParam Specifies the virtual-key code pressed by the user.
lpMsg Points to a message identifying the key event.

Returns
The return value is TRUE if the function posts a message. Otherwise, it specifies the result of the default
message processing and is determined by the value of the nCode parameter.

Comments
The HelpMessageFilterHookFunction function is provided in SCRNSAVE.LIB. Most applications export
the function and check for the help message registered by the library without explicitly calling the function
in their code. This reference information for HelpMessageFilterHookFunction is provided for applications
that change the default behavior.

The HelpMessageFilterHookFunction function posts a registered message called MyHelpMessage. An
application should check for this message in its ScreenSaverConfigureDialog function.

The HelpMessageFilterHookFunction function must be exported by including it in an EXPORTS
statement in the application's module-definition (.DEF) file.

See Also
ScreenSaverConfigureDialog

RegisterDialogClasses (3.1)
#include <scrnsave.h>

BOOL RegisterDialogClasses(hInst)
HANDLE hInst; /* handle of application instance */

The RegisterDialogClasses function registers any special or nonstandard window classes needed by a
screen saver application's configuration dialog box.

Parameter Description
hInst Identifies an instance of the module that is registering the window classes.

Returns
The return value is nonzero if the function is successful. Otherwise, it is zero.

Comments
The RegisterDialogClasses function should not be exported. It is called by routines defined in the
SCRNSAVE.LIB file.

If a screen saver does not register any special window classes for the configuration dialog box, the
RegisterDialogClasses function can simply return a nonzero value.

See Also
ScreenSaverConfigureDialog

ScreenSaverConfigureDialog (3.1)
#include <scrnsave.h>

BOOL ScreenSaverConfigureDialog(hdlg, wmsg, wParam, lParam)
HWND hdlg; /* handle of dialog box */
UINT wmsg; /* message */
WPARAM wParam; /
* first message parameter *
/
LPARAM lParam; /
* second message parameter *
/

The ScreenSaverConfigureDialog function receives messages sent to a screen saver application's
configuration dialog box. A screen saver application that supports user configuration must provide this
function.

Parameter Description
hdlg Identifies the configuration dialog box.
wmsg Specifies the message.
wParam Specifies 16 bits of additional message-dependent information.
lParam Specifies 32 bits of additional message-dependent information.

Returns
The return value is nonzero if the function processes the message or zero if it does not, except in response
to a WM_INITDIALOG message. In response to a WM_INITDIALOG message,
ScreenSaverConfigureDialog should return zero if it calls the SetFocus function to set the input focus to
one of the controls in the dialog box. Otherwise, it should return nonzero, in which case the system sets the
input focus to the first control in the dialog box that can be given the focus.

Comments
An application uses the MakeProcInstance function with ScreenSaverConfigureDialog to display a
configuration dialog box.

The dialog box template for the configuration dialog box must have the DLG_SCRNSAVECONFIGURE
identifier.

A screen saver application should save its configuration settings in the CONTROL.INI file.

The dialog box procedure is used only if the default window class (WC_DIALOG) is used for the dialog
box. The default class is used if no explicit class is given in the dialog box template. Although the dialog
box procedure is similar to a window procedure, it must not call the DefWindowProc function to process
unwanted messages. Unwanted messages are processed internally by the default dialog box procedure.

The ScreenSaverConfigureDialog function must be exported by including it in an EXPORTS statement in
the application's module-definition (.DEF) file.

See Also
MakeProcInstance, RegisterDialogClasses

ScreenSaverProc (3.1)
#include <scrnsave.h>

LRESULT ScreenSaverProc(hwnd, wmsg, wParam, lParam)
HWND hwnd; /* handle of screen saver window */
unsigned wmsg; /* message *
/
UINT wParam; /
* first message parameter *
/
LPARAM lParam; /
* second message parameter *
/

The ScreenSaverProc function receives messages sent to a screen saver window.

Parameter Description
hwnd Identifies the window.
wmsg Specifies the message.
wParam Specifies 16 bits of additional message-dependent information.
lParam Specifies 32 bits of additional message-dependent information.

Returns
The return value is the result of the message processing. It depends on the message that is processed.

Comments
A screen saver application's ScreenSaverProc window procedure should use the DefScreenSaverProc
function instead of the DefWindowProc function to provide default message processing. The
DefScreenSaverProc function passes any messages that do not affect screen saver operations to
DefWindowProc.

The ScreenSaverProc function must be exported by including it in an EXPORTS statement in the
application's module-definition (.DEF) file.

See Also
DefScreenSaverProc

Screen Saver functions
DefScreenSaverProc Calls default screen saver window procedure
DlgChangePassword Changes the password for a screen saver
DlgGetPassword Retrieves the password for a screen saver
DlgInvalidPassword Warns of an invalid screen saver password
HelpMessageFilterHookFunction Posts a screen saver help message
RegisterDialogClasses Registers screen-saver dialog box classes
ScreenSaverConfigureDialog Processes config. dialog box messages
ScreenSaverProc Processes screen saver window messages

ExtractIcon (3.1)
#include shellapi.h

HICON ExtractIcon(hinst, lpszExeName, iIcon)
HINSTANCE hinst; /* instance handle */
LPCSTR lpszExeName; /*
address of string for file *
/
UINT iIcon; /
* index of icon to retrieve *
/

The ExtractIcon function retrieves the handle of an icon from a specified executable file, dynamic-link
library (DLL), or icon file.

Parameter Description
hinst Identifies the instance of the application calling the function.
lpszExeName Points to a null-terminated string specifying the name of an executable file, dynamic-

link library, or icon file.
iIcon Specifies the index of the icon to be retrieved. If this parameter is zero, the function

returns the handle of the first icon in the specified file. If the parameter is -1, the
function returns the total number of icons in the specified file.

Returns
The return value is the handle of an icon if the function is successful. It is 1 if the file specified in the
lpszExeName parameter is not an executable file, dynamic-link library, or icon file. Otherwise, it is
NULL, indicating that the file contains no icons.

FindExecutable (3.1)
#include shellapi.h

HINSTANCE FindExecutable(lpszFile, lpszDir, lpszResult)
LPCSTR lpszFile; /* address of string for filename */
LPCSTR lpszDir; /
* address of string for default directory *
/
LPSTR lpszResult; /
* address of string for executable file on return *
/

The FindExecutable function finds and retrieves the executable filename that is associated with a specified
filename.

Parameter Description
lpszFile Points to a null-terminated string specifying a filename. This can be a document or

executable file.
lpszDir Points to a null-terminated string specifying the drive letter and path for the default

directory.
lpszResult Points to a buffer that receives the name of an executable file when the function returns.

This null-terminated string specifies the application that is started when the Open
command is chosen from the File menu in File Manager.

Returns
The return value is greater than 32 if the function is successful. If the return value is less than or equal to
32, it specifies an error code.
Errors

The FindExecutable function returns 31 if there is no association for the specified file type. The other
possible error values are as follows:

Value Meaning
0 System was out of memory, executable file was corrupt, or relocations were invalid.
2 File was not found.
3 Path was not found.
5 Attempt was made to dynamically link to a task, or there was a sharing or network-protection

error.
6 Library required separate data segments for each task.
8 There was insufficient memory to start the application.
10 Windows version was incorrect.
11 Executable file was invalid. Either it was not a Windows application or there was an error in

the .EXE image.
12 Application was designed for a different operating system.
13 Application was designed for MS-DOS 4.0.
14 Type of executable file was unknown.
15 Attempt was made to load a real-mode application (developed for an earlier version of

Windows).
16 Attempt was made to load a second instance of an executable file containing multiple data

segments that were not marked read-only.
19 Attempt was made to load a compressed executable file. The file must be decompressed

before it can be loaded.
20 Dynamic-link library (DLL) file was invalid. One of the DLLs required to run this application

was corrupt.
21 Application requires Microsoft Windows 32-bit extensions.

Comments
The filename specified in the lpszFile parameter is associated with an executable file when an association
has been registered between that file's filename extension and an executable file in the registration
database. An application that produces files with a given filename extension typically associates the
extension with an executable file when the application is installed.

See Also
RegQueryValue, ShellExecute

ShellExecute (3.1)
#include shellapi.h

HINSTANCE ShellExecute(hwnd, lpszOp, lpszFile, lpszParams, lpszDir, fsShowCmd)
HWND hwnd; /* handle of parent window */
LPCSTR lpszOp; /
* address of string for operation to perform *
/
LPCSTR lpszFile; /
* address of string for filename *
/
LPCSTR lpszParams; /
* address of string for executable-file parameters *
/
LPCSTR lpszDir; /
* address of string for default directory *
/
int fsShowCmd; /
* whether file is shown when opened *
/

The ShellExecute function opens or prints the specified file.

Parameter Description
hwnd Identifies the parent window. This window receives any message boxes an application

produces (for example, for error reporting).
lpszOp Points to a null-terminated string specifying the operation to perform. This string can be

"open" or "print". If this parameter is NULL, "open" is the default value.
lpszFile Points to a null-terminated string specifying the file to open.
lpszParams Points to a null-terminated string specifying parameters passed to the application when

the lpszFile parameter specifies an executable file. If lpszFile points to a string
specifying a document file, this parameter is NULL.

lpszDir Points to a null-terminated string specifying the default directory.
fsShowCmd Specifies whether the application window is to be shown when the application is

opened. This parameter can be one of the following values:

Value Meaning
SW_HIDE Hides the window and passes activation to another

window.
SW_MINIMIZE Minimizes the specified window and activates the

top-level window in the system's list.
SW_RESTORE Activates and displays a window. If the window is

minimized or maximized, Windows restores it to
its original size and position (same as
SW_SHOWNORMAL).

SW_SHOW Activates a window and displays it in its current
size and position.

SW_SHOWMAXIMIZED Activates a window and displays it as a maximized
window.

SW_SHOWMINIMIZED Activates a window and displays it as an icon.
SW_SHOWMINNOACTIVE Displays a window as an icon. The window that is

currently active remains active.
SW_SHOWNA Displays a window in its current state. The

window that is currently active remains active.
SW_SHOWNOACTIVATE Displays a window in its most recent size and

position. The window that is currently active
remains active.

SW_SHOWNORMAL Activates and displays a window. If the window is
minimized or maximized, Windows restores it to

its original size and position (same as
SW_RESTORE).

Returns
The return value is the instance handle of the application that was opened or printed, if the function is
successful. (This handle could also be the handle of a DDE server application.) A return value less than or
equal to 32 specifies an error. The possible error values are listed in the following Comments section.
Errors

The ShellExecute function returns the value 31 if there is no association for the specified file type or if
there is no association for the specified action within the file type. The other possible error values are as
follows:

Value Meaning
0 System was out of memory, executable file was corrupt, or relocations were invalid.
2 File was not found.
3 Path was not found.
5 Attempt was made to dynamically link to a task, or there was a sharing or network-protection

error.
6 Library required separate data segments for each task.
8 There was insufficient memory to start the application.
10 Windows version was incorrect.
11 Executable file was invalid. Either it was not a Windows application or there was an error in

the .EXE image.
12 Application was designed for a different operating system.
13 Application was designed for MS-DOS 4.0.
14 Type of executable file was unknown.
15 Attempt was made to load a real-mode application (developed for an earlier version of

Windows).
16 Attempt was made to load a second instance of an executable file containing multiple data

segments that were not marked read-only.
19 Attempt was made to load a compressed executable file. The file must be decompressed

before it can be loaded.
20 Dynamic-link library (DLL) file was invalid. One of the DLLs required to run this application

was corrupt.
21 Application requires Microsoft Windows 32-bit extensions.

Comments
The file specified by the lpszFile parameter can be a document file or an executable file. If it is a document
file, this function opens or prints it, depending on the value of the lpszOp parameter. If it is an executable
file, this function opens it, even if the string "print" is pointed to by lpszOp.

See Also
FindExecutable

Shell functions (3.1)
ExtractIcon Retrieves the handle of an icon from an executable file
FindExecutable Retrieves executable filename for a specified file
ShellExecute Opens or prints the specified file

AllocDiskSpace (3.1)
#include stress.h

int AllocDiskSpace(lLeft, uDrive)
long lLeft; /* number of bytes left available */
UINT uDrive; /* disk partition */

The AllocDiskSpace function creates a file that is large enough to ensure that the specified amount of
space or less is available on the specified disk partition. The file, called STRESS.EAT, is created in the
root directory of the disk partition.

If STRESS.EAT already exists when AllocDiskSpace is called, the function deletes it and creates a new
one.

Parameter Description
lLeft Specifies the number of bytes to leave available on the disk.
uDrive Specifies the disk partition on which to create the STRESS.EAT file. This parameter

must be one of the following values:

Value Meaning
EDS_WIN Creates the file on the Windows partition.
EDS_CUR Creates the file on the current partition.
EDS_TEMP Creates the file on the partition that contains the TEMP directory.

Returns
The return value is greater than zero if the function is successful; it is zero if the function could not create
a file; or it is -1 if at least one of the parameters is invalid.

Comments
In two situations, the amount of free space left on the disk may be less than the number of bytes specified
in the lLeft parameter: when the amount of free space on the disk is less than the number in lLeft when an
application calls AllocDiskSpace, or when the value of lLeft is not an exact multiple of the disk cluster
size.

The UnAllocDiskSpace function deletes the file created by AllocDiskSpace.

See Also
UnAllocDiskSpace

AllocFileHandles (3.1)
#include stress.h

int AllocFileHandles(Left)
int Left; /* number of file handles to leave available */

The AllocFileHandles function allocates file handles until only the specified number of file handles is
available to the current instance of the application. If this or a smaller number of handles is available when
an application calls AllocFileHandles, the function returns immediately.

Before allocating new handles, this function frees any handles previously allocates by AllocFileHandles.

Parameter Description
Left Specifies the number of file handles to leave available.

Returns
The return value is greater than zero if AllocFileHandles successfully allocates at least one file handle. The
return value is zero if fewer than the specified number of file handles were available when the application
called AllocFileHandles. The return value is -1 if the Left parameter is negative.

Comments
AllocFileHandles will not allocate more than 256 file handles, regardless of the number available to the
application.

The UnAllocFileHandles function frees all file handles previously allocated by AllocFileHandles.

See Also
UnAllocFileHandles

AllocGDIMem (3.1)
#include stress.h

BOOL AllocGDIMem(uLeft)
UINT uLeft; /* number of bytes to leave available */

The AllocGDIMem function allocates memory in the graphics device interface (GDI) heap until only the
specified number of bytes is available. Before making any new memory allocations, this function frees
memory previously allocated by AllocGDIMem.

Parameter Description
uLeft Specifies the amount of memory, in bytes, to leave available in the GDI heap.

Returns
The return value is nonzero if the function is successful. Otherwise, it is zero.

Comments
The FreeAllGDIMem function frees all memory allocated by AllocGDIMem.

See Also
FreeAllGDIMem

AllocMem (3.1)
#include stress.h

BOOL AllocMem(dwLeft)
DWORD dwLeft; /*smallest memory allocation */

The AllocMem function allocates global memory until only the specified number of bytes is available in
the global heap. Before making any new memory allocations, this function frees memory previously
allocated by AllocMem.

Parameter Description
dwLeft Specifies the smallest size, in bytes, of memory allocations to make.

Returns
The return value is nonzero if the function is successful. Otherwise, it is zero.

Comments
The FreeAllMem function frees all memory allocated by AllocMem.

See Also
FreeAllMem

AllocUserMem (3.1)
#include stress.h

BOOL AllocUserMem(uContig)
UINT uContig; /* smallest memory allocation */

The AllocUserMem function allocates memory in the USER heap until only the specified number of bytes
is available. Before making any new allocations, this function frees memory previously allocated by
AllocUserMem.

Parameter Description
uContig Specifies the smallest size, in bytes, of memory allocations to make.

Returns
The return value is nonzero if the function is successful. Otherwise, it is zero.

Comments
The FreeAllUserMem function frees all memory allocated by AllocUserMem.

See Also
FreeAllUserMem

FreeAllGDIMem (3.1)
#include stress.h

void FreeAllGDIMem(void)

The FreeAllGDIMem function frees all memory allocated by the AllocGDIMem function.

Returns
This function does not return a value.

See Also
AllocGDIMem

FreeAllMem (3.1)
#include stress.h

void FreeAllMem(void)

The FreeAllMem function frees all memory allocated by the AllocMem function.

Returns
This function does not return a value.

See Also
AllocMem

FreeAllUserMem (3.1)
#include stress.h

void FreeAllUserMem(void)

The FreeAllUserMem function frees all memory allocated by the AllocUserMem function.

Returns
This function does not return a value.

See Also
AllocUserMem

GetFreeFileHandles (3.1)
#include stress.h

int GetFreeFileHandles(void)

The GetFreeFileHandles function returns the number of file handles available to the current instance.

Returns
The return value is the number of file handles available to the current instance.

UnAllocDiskSpace (3.1)
#include stress.h

void UnAllocDiskSpace(drive)
UINT drive;

The UnAllocDiskSpace function deletes the STRESS.EAT file from the root directory of the specified
drive. This frees the disk space previously consumed by the AllocDiskSpace function.

Parameter Description
drive Specifies the disk partition on which to delete the STRESS.EAT file. This can be one of

the following values:

Value Meaning
EDS_WIN Deletes the file on the Windows partition.
EDS_CUR Deletes the file on the current partition.
EDS_TEMP Deletes the file on the partition that contains the TEMP directory.

Returns
This function does not return a value.

See Also
AllocDiskSpace

UnAllocFileHandles (3.1)
#include stress.h

void UnAllocFileHandles(void)

The UnAllocFileHandles function frees all file handles allocated by the AllocFileHandles function.

Returns
This function does not return a value.

See Also
AllocFileHandles

Stress Functions (3.1)
AllocDiskSpace Creates a file to consume space on a disk partition
AllocFileHandles Allocates up to 256 file handles
AllocGDIMem Allocates memory in the GDI heap
AllocMem Allocates global memory
AllocUserMem Allocates memory in the USER heap
FreeAllGDIMem Frees all memory allocated by the AllocGDIMem function
FreeAllMem Frees all memory allocated by the AllocMem function
FreeAllUserMem Frees all memory allocated by the AllocUserMem function
GetFreeFileHandles Returns the number of free file handles
UnAllocDiskSpace Deletes file created by AllocDiskSpace and frees space
UnAllocFileHandles Frees file handles allocated by AllocFileHandles

ABC (3.1)

typedef struct tagABC { /* abc */
int abcA;
UINT abcB;
int abcC;

} ABC;
The ABC structure contains the width of a character in a TrueType font.

Member Description
abcA Specifies the "A" spacing of the character. A spacing is the distance to add to the current

position before drawing the character glyph.
abcB Specifies the "B" spacing of the character. B spacing is the width of the drawn portion of the

character glyph.
abcC Specifies the "C" spacing of the character. C spacing is the distance to add to the current

position to provide white space to the right of the character glyph.

Comments
The total width of a character is the sum of the A, B, and C spaces. Either the A or the C space can be
negative, to indicate underhangs or overhangs.

See Also
GetCharABCWidths

BITMAP (2.x)

typedef struct tagBITMAP { /* bm */
intbmType;
intbmWidth;
intbmHeight;
intbmWidthBytes;
BYTE bmPlanes;
BYTE bmBitsPixel;
void FAR* bmBits;

} BITMAP;
The BITMAP structure defines the height, width, color format, and bit values of a logical bitmap.

Member Description
bmType Specifies the bitmap type. For logical bitmaps, this member must be zero.
bmWidth Specifies the width of the bitmap, in pixels. The width must be greater than zero.
bmHeight Specifies the height of the bitmap, in raster lines. The height must be greater than

zero.
bmWidthBytes Specifies the number of bytes in each raster line. This value must be an even number

since graphics device interface (GDI) assumes that the bit values of a bitmap form an
array of integer (two-byte) values. In other words, bmWidthBytes * 8 must be the
next multiple of 16 greater than or equal to the value obtained when the bmWidth
member is multiplied by the bmBitsPixel member.

bmPlanes Specifies the number of color planes in the bitmap.
bmBitsPixel Specifies the number of adjacent color bits on each plane needed to define a pixel.
bmBits Points to the location of the bit values for the bitmap. The bmBits member must be a

long pointer to an array of one-byte values.

Comments
The currently used bitmap formats are monochrome and color. The monochrome bitmap uses a one-bit,
one-plane format. Each scan is a multiple of 16 bits.

Scans are organized as follows for a monochrome bitmap of height n:

Scan 0
Scan 1
.
.
.
Scan n-2
Scan n-1
The pixels on a monochrome device are either black or white. If the corresponding bit in the bitmap is 1,
the pixel is turned on (white). If the corresponding bit in the bitmap is zero, the pixel is turned off (black).

All devices support bitmaps that have the RC_BITBLT bit set in the RASTERCAPS index of the
GetDeviceCaps function.

Each device has its own unique color format. In order to transfer a bitmap from one device to another, use
the GetDIBits and SetDIBits functions.

See Also
CreateBitmapIndirect, GetDIBits, GetObject, SetDIBits

BITMAPCOREHEADER (3.0)

typedef struct tagBITMAPCOREHEADER { /* bmch */
DWORD bcSize;
short bcWidth;
short bcHeight;
WORD bcPlanes;
WORD bcBitCount;

} BITMAPCOREHEADER;
The BITMAPCOREHEADER structure contains information about the dimensions and color format of a
device-independent bitmap (DIB). Windows applications should use the BITMAPINFOHEADER
structure instead of BITMAPCOREHEADER whenever possible.

Member Description
bcSize Specifies the number of bytes required by the BITMAPCOREHEADER structure.
bcWidth Specifies the width of the bitmap, in pixels.
bcHeight Specifies the height of the bitmap, in pixels.
bcPlanes Specifies the number of planes for the target device. This member must be set to 1.
bcBitCount Specifies the number of bits per pixel. This value must be 1, 4, 8, or 24.

Comments
The BITMAPCOREINFO structure combines the BITMAPCOREHEADER structure and a color table to
provide a complete definition of the dimensions and colors of a DIB. See the description of the
BITMAPCOREINFO structure for more information about specifying a DIB.

An application should use the information stored in the bcSize member to locate the color table in a
BITMAPCOREINFO structure with a method such as the following:

lpColor = ((LPSTR) pBitmapCoreInfo + (UINT) (pBitmapCoreInfo->bcSize))
See Also
BITMAPCOREINFO, BITMAPINFOHEADER, BITMAPINFOHEADER

BITMAPCOREINFO (3.0)

typedef struct tagBITMAPCOREINFO { /* bmci */
BITMAPCOREHEADER bmciHeader;
RGBTRIPLE bmciColors[1];

} BITMAPCOREINFO;
The BITMAPCOREINFO structure fully defines the dimensions and color information for a device-
independent bitmap (DIB). Windows applications should use the BITMAPINFO structure instead of
BITMAPCOREINFO whenever possible.

Member Description
bmciHeader Specifies a BITMAPCOREHEADER structure that contains information about the

dimensions and color format of a DIB.
bmciColors Specifies an array of RGBTRIPLE structures that define the colors in the bitmap.

Comments
The BITMAPCOREINFO structure describes the dimensions and colors of a bitmap. It is followed
immediately in memory by an array of bytes which define the pixels of the bitmap. The bits in the array
are packed together, but each scan line must be zero-padded to end on a LONG boundary. Segment
boundaries, however, can appear anywhere in the bitmap. The origin of the bitmap is the lower-left corner.

The bcBitCount member of the BITMAPCOREHEADER structure determines the number of bits that
define each pixel and the maximum number of colors in the bitmap. This member may be set to any of the
following values:

Value Meaning
1 The bitmap is monochrome, and the bmciColors member must contain two entries. Each bit in

the bitmap array represents a pixel. If the bit is clear, the pixel is displayed with the color of
the first entry in the bmciColors table. If the bit is set, the pixel has the color of the second
entry in the table.

4 The bitmap has a maximum of 16 colors, and the bmciColors member contains 16 entries.
Each pixel in the bitmap is represented by a four-bit index into the color table.
For example, if the first byte in the bitmap is 0x1F, the byte represents two pixels. The first
pixel contains the color in the second table entry, and the second pixel contains the color in the
sixteenth table entry.

8 The bitmap has a maximum of 256 colors, and the bmciColors member contains 256 entries.
In this case, each byte in the array represents a single pixel.

24 The bitmap has a maximum of 2^24 colors. The bmciColors member is NULL, and each 3-
byte sequence in the bitmap array represents the relative intensities of red, green, and blue,
respectively, of a pixel.

The colors in the bmciColors table should appear in order of importance.

Alternatively, for functions that use DIBs, the bmciColors member can be an array of 16-bit unsigned
integers that specify an index into the currently realized logical palette instead of explicit RGB values. In
this case, an application using the bitmap must call DIB functions with the wUsage parameter set to
DIB_PAL_COLORS.

Note: The bmciColors member should not contain palette indexes if the bitmap is to be stored in a file or
transferred to another application. Unless the application uses the bitmap exclusively and under its
complete control, the bitmap color table should contain explicit RGB values.

See Also
BITMAPINFO, BITMAPCOREHEADER, RGBTRIPLE

BITMAPFILEHEADER (3.0)

typedef struct tagBITMAPFILEHEADER { /* bmfh */
UINT bfType;
DWORD bfSize;
UINT bfReserved1;
UINT bfReserved2;
DWORD bfOffBits;

} BITMAPFILEHEADER;
The BITMAPFILEHEADER structure contains information about the type, size, and layout of a device-
independent bitmap (DIB) file.

Member Description
bfType Specifies the type of file. This member must be BM.
bfSize Specifies the size of the file, in bytes.
bfReserved1 Reserved; must be set to zero.
bfReserved2 Reserved; must be set to zero.
bfOffBits Specifies the byte offset from the BITMAPFILEHEADER structure to the actual

bitmap data in the file.

Comments
A BITMAPINFO or BITMAPCOREINFO structure immediately follows the BITMAPFILEHEADER
structure in the DIB file.

See Also
BITMAPCOREINFO, BITMAPINFO

Corrections

The previous documentation stated that the bfSize member specifies the size of the file in DWORDs. This
was wrong; bfSize specifies the size of the file in bytes.

BITMAPINFO (3.0)

typedef struct tagBITMAPINFO { /* bmi */
BITMAPINFOHEADER bmiHeader;
RGBQUAD bmiColors[1];

} BITMAPINFO;
The BITMAPINFO structure fully defines the dimensions and color information for a Windows 3.0 or
later device-independent bitmap (DIB).

Member Description
bmiHeader Specifies a BITMAPINFOHEADER structure that contains information about the

dimensions and color format of a DIB.
bmiColors Specifies an array of RGBQUAD structures that define the colors in the bitmap.

Comments
A Windows 3.0 or later DIB consists of two distinct parts: a BITMAPINFO structure, which describes the
dimensions and colors of the bitmap, and an array of bytes defining the pixels of the bitmap. The bits in
the array are packed together, but each scan line must be zero-padded to end on a LONG boundary.
Segment boundaries, however, can appear anywhere in the bitmap. The origin of the bitmap is the lower-
left corner.

The biBitCount member of the BITMAPINFOHEADER structure determines the number of bits which
define each pixel and the maximum number of colors in the bitmap. This member may be set to any of the
following values:

Value Meaning
1 The bitmap is monochrome, and the bmciColors member must contain two entries. Each bit in

the bitmap array represents a pixel. If the bit is clear, the pixel is displayed with the color of
the first entry in the bmciColors table. If the bit is set, the pixel has the color of the second
entry in the table.

4 The bitmap has a maximum of 16 colors, and the bmciColors member contains 16 entries.
Each pixel in the bitmap is represented by a four-bit index into the color table.
For example, if the first byte in the bitmap is 0x1F, the byte represents two pixels. The first
pixel contains the color in the second table entry, and the second pixel contains the color in the
sixteenth table entry.

8 The bitmap has a maximum of 256 colors, and the bmciColors member contains 256 entries.
In this case, each byte in the array represents a single pixel.

24 The bitmap has a maximum of 2^24 colors. The bmciColors member is NULL, and each 3-
byte sequence in the bitmap array represents the relative intensities of red, green, and blue,
respectively, of a pixel.

The biClrUsed member of the BITMAPINFOHEADER structure specifies the number of color indexes in
the color table actually used by the bitmap. If the biClrUsed member is set to zero, the bitmap uses the
maximum number of colors corresponding to the value of the biBitCount member.

The colors in the bmiColors table should appear in order of importance.

Alternatively, for functions that use DIBs, the bmiColors member can be an array of 16-bit unsigned
integers that specify an index into the currently realized logical palette instead of explicit RGB values. In
this case, an application using the bitmap must call DIB functions with the wUsage parameter set to
DIB_PAL_COLORS.

Note: The bmiColors member should not contain palette indexes if the bitmap is to be stored in a file or
transferred to another application. Unless the application uses the bitmap exclusively and under its
complete control, the bitmap color table should contain explicit RGB values.

See Also
BITMAPINFOHEADER, RGBQUAD

BITMAPINFOHEADER (3.0)

typedef struct tagBITMAPINFOHEADER { /* bmih */
DWORD biSize;
LONG biWidth;
LONG biHeight;
WORD biPlanes;
WORD biBitCount;
DWORD biCompression;
DWORD biSizeImage;
LONG biXPelsPerMeter;
LONG biYPelsPerMeter;
DWORD biClrUsed;
DWORD biClrImportant;

} BITMAPINFOHEADER;
The BITMAPINFOHEADER structure contains information about the dimensions and color format of a
Windows 3.0 or later device-independent bitmap (DIB).

Member Description
biSize Specifies the number of bytes required by the BITMAPINFOHEADER

structure.
biWidth Specifies the width of the bitmap, in pixels.
biHeight Specifies the height of the bitmap, in pixels.
biPlanes Specifies the number of planes for the target device. This member must be set

to 1.
biBitCount Specifies the number of bits per pixel. This value must be 1, 4, 8, or 24.
biCompression Specifies the type of compression for a compressed bitmap. It can be one of the

following values:

Value Meaning
BI_RGB Specifies that the bitmap is not compressed.
BI_RLE8 Specifies a run-length encoded format for bitmaps with 8 bits

per pixel. The compression format is a 2-byte format consisting
of a count byte followed by a byte containing a color index. For
more information, see the following Comments section.

BI_RLE4 Specifies a run-length encoded format for bitmaps with 4 bits
per pixel. The compression format is a 2-byte format consisting
of a count byte followed by two word-length color indexes. For
more information, see the following Comments section.

biSizeImage Specifies the size, in bytes, of the image. It is valid to set this member to zero if
the bitmap is in the BI_RGB format.

biXPelsPerMeter Specifies the horizontal resolution, in pixels per meter, of the target device for
the bitmap. An application can use this value to select a bitmap from a resource
group that best matches the characteristics of the current device.

biYPelsPerMeter Specifies the vertical resolution, in pixels per meter, of the target device for the
bitmap.

biClrUsed Specifies the number of color indexes in the color table actually used by the
bitmap. If this value is zero, the bitmap uses the maximum number of colors
corresponding to the value of the biBitCount member. For more information on
the maximum sizes of the color table, see the description of the BITMAPINFO
structure earlier in this topic.
If the biClrUsed member is nonzero, it specifies the actual number of colors
that the graphics engine or device driver will access if the biBitCount member
is less than 24. If biBitCount is set to 24, biClrUsed specifies the size of the
reference color table used to optimize performance of Windows color palettes.
If the bitmap is a packed bitmap (that is, a bitmap in which the bitmap array
immediately follows the BITMAPINFO header and which is referenced by a
single pointer), the biClrUsed member must be set to zero or to the actual size
of the color table.

biClrImportant Specifies the number of color indexes that are considered important for
displaying the bitmap. If this value is zero, all colors are important.

Comments
The BITMAPINFO structure combines the BITMAPINFOHEADER structure and a color table to provide
a complete definition of the dimensions and colors of a Windows 3.0 or later DIB. For more information
about specifying a Windows 3.0 DIB, see the description of the BITMAPINFO structure.

An application should use the information stored in the biSize member to locate the color table in a
BITMAPINFO structure as follows:

pColor = ((LPSTR) pBitmapInfo + (WORD) (pBitmapInfo->bmiHeader.biSize)
)
Windows supports formats for compressing bitmaps that define their colors with 8 bits per pixel and with
4 bits per pixel. Compression reduces the disk and memory storage required for the bitmap. The following
paragraphs describe these formats.

BI_RLE8

When the biCompression member is set to BI_RLE8, the bitmap is compressed using a run-length
encoding format for an 8-bit bitmap. This format may be compressed in either of two modes: encoded
and absolute. Both modes can occur anywhere throughout a single bitmap.

Encoded mode consists of two bytes: the first byte specifies the number of consecutive pixels to be
drawn using the color index contained in the second byte. In addition, the first byte of the pair can be set
to zero to indicate an escape that denotes an end of line, end of bitmap, or a delta. The interpretation of
the escape depends on the value of the second byte of the pair. The following list shows the meaning of
the second byte:

Value Meaning
0 End of line.
1 End of bitmap.
2 Delta. The two bytes following the escape contain unsigned values indicating the horizontal

and vertical offset of the next pixel from the current position.

Absolute mode is signaled by the first byte set to zero and the second byte set to a value between 0x03 and
0xFF. In absolute mode, the second byte represents the number of bytes that follow, each of which
contains the color index of a single pixel. When the second byte is set to 2 or less, the escape has the same
meaning as in encoded mode. In absolute mode, each run must be aligned on a word boundary.

The following example shows the hexadecimal values of an 8-bit compressed bitmap:

03 04 05 06 00 03 45 56 67 00 02 78 00 02 05 01
02 78 00 00 09 1E 00 01
This bitmap would expand as follows (two-digit values represent a color index for a single pixel):

04 04 04
06 06 06 06 06
45 56 67
78 78
move current position 5 right and 1 down
78 78
end of line
1E 1E 1E 1E 1E 1E 1E 1E 1E
end of RLE bitmap
BI_RLE4

When the biCompression member is set to BI_RLE4, the bitmap is compressed using a run-length
encoding (RLE) format for a 4-bit bitmap, which also uses encoded and absolute modes. In encoded
mode, the first byte of the pair contains the number of pixels to be drawn using the color indexes in the
second byte. The second byte contains two color indexes, one in its high-order nibble (that is, its low-
order four bits) and one in its low-order nibble. The first of the pixels is drawn using the color specified
by the high-order nibble, the second is drawn using the color in the low-order nibble, the third is drawn
with the color in the high-order nibble, and so on, until all the pixels specified by the first byte have been
drawn.

In absolute mode, the first byte contains zero, the second byte contains the number of color indexes that
follow, and subsequent bytes contain color indexes in their high- and low-order nibbles, one color index

for each pixel. In absolute mode, each run must be aligned on a word boundary. The end-of-line, end-
of-bitmap, and delta escapes also apply to BI_RLE4.

The following example shows the hexadecimal values of a 4-bit compressed bitmap:

03 04 05 06 00 06 45 56 67 00 04 78 00 02 05 01
04 78 00 00 09 1E 00 01
This bitmap would expand as follows (single-digit values represent a color index for a single pixel):

0 4 0
0 6 0 6 0
4 5 5 6 6 7
7 8 7 8
move current position 5 right and 1 down
7 8 7 8
end of line
1 E 1 E 1 E 1 E 1
end of RLE bitmap
See Also
BITMAPINFO

CBT_CREATEWND (3.1)

typedef struct tagCBT_CREATEWND { /* cbtcw */
CREATESTRUCT FAR* lpcs;
HWND hwndInsertAfter;

} CBT_CREATEWND;
The CBT_CREATEWND structure contains information passed to a WH_CBT hook function before a
window is created.

Member Description
lpcs Points to a CREATESTRUCT structure that contains initialization parameters

for the window about to be created.
hwndInsertAfter Identifies a window in the window manager's list that will precede the window

being created. If this parameter is NULL, the window being created is the
topmost window. If this parameter is 1, the window being created is the
bottommost window.

See Also
CBTProc, SetWindowsHook

CBTACTIVATESTRUCT (3.1)

typedef struct tagCBTACTIVATESTRUCT { /* cas */
BOOL fMouse;
HWND hWndActive;

} CBTACTIVATESTRUCT;
The CBTACTIVATESTRUCT structure contains information passed to a WH_CBT hook function before
a window is activated.

Member Description
fMouse Specifies whether the window is being activated as a result of a mouse click. This

value is nonzero if a mouse click is causing the activation. Otherwise, this value is
zero.

hWndActive Identifies the currently active window.

See Also
SetWindowsHook

CHOOSECOLOR (3.1)

#include <commdlg.h>
typedef struct tagCHOOSECOLOR { /* cc */

DWORD lStructSize;
HWND hwndOwner;
HWND hInstance;
COLORREF rgbResult;
COLORREF FAR* lpCustColors;
DWORD Flags;
LPARAM lCustData;
UINT (CALLBACK* lpfnHook)(HWND, UINT, WPARAM, LPARAM);
LPCSTR lpTemplateName;

} CHOOSECOLOR;
The CHOOSECOLOR structure contains information that the system uses to initialize the system-defined
Color dialog box. After the user chooses the OK button to close the dialog box, the system returns
information about the user's selection in this structure.

Member Description
lStructSize Specifies the length of the structure, in bytes. This member is filled on input.
hwndOwner Identifies the window that owns the dialog box. This member can be any valid

window handle, or it should be NULL if the dialog box is to have no owner.
If the CC_SHOWHELP flag is set, hwndOwner must identify the window that
owns the dialog box. The window procedure for this owner window receives a
notification message when the user chooses the Help button. (The identifier for
the notification message is the value returned by the RegisterWindowMessage
function when HELPMSGSTRING is passed as its argument.)
This member is filled on input.

hInstance Identifies a data block that contains the dialog box template specified by the
lpTemplateName member. This member is used only if the Flags member
specifies the CC_ENABLETEMPLATE or
CC_ENABLETEMPLATEHANDLE flag; otherwise, this member is ignored.
This member is filled on input.

rgbResult Specifies the color that is initially selected when the dialog box is displayed,
and specifies the user's color selection after the user has chosen the OK button
to close dialog box. If the CC_RGBINIT flag is set in the Flags member before
the dialog box is displayed and the value of this member is not among the
colors available, the system selects the nearest solid color available. If this
member is NULL, the first selected color is black. This member is filled on
input and output.

lpCustColors Points to an array of 16 doubleword values, each of which specifies the
intensities of the red, green, and blue (RGB) components of a custom color box
in the dialog box. If the user modifies a color, the system updates the array with
the new RGB values. This member is filled on input and output.

Flags Specifies the dialog box initialization flags. This member may be a
combination of the following values:

Value Meaning
CC_ENABLEHOOK Enables the hook function

specified in the lpfnHook
member.

CC_ENABLETEMPLATE Causes the system to use the
dialog box template identified
by the hInstance member and
pointed to by the
lpTemplateName member.

CC_ENABLETEMPLATEHANDLE Indicates that the hInstance
member identifies a data block
that contains a pre-loaded dialog
box template. If this flag is

specified, the system ignores the
lpTemplateName member.

CC_FULLOPEN Causes the entire dialog box to
appear when the dialog box is
displayed, including the portion
that allows the user to create
custom colors. Without this flag,
the user must select the Define
Custom Color button to see that
portion of the dialog box.

CC_PREVENTFULLOPEN Disables the Define Custom
Colors button, preventing the
user from creating custom
colors.

CC_RGBINIT Causes the dialog box to use the
color specified in the rgbResult
member as the initial color
selection.

CC_SHOWHELP Causes the dialog box to show
the Help button. If this flag is
specified, the hwndOwner
member must not be NULL.

These flags are used when the structure is initialized.
lCustData Specifies application-defined data that the system passes to the hook function

pointed to by the lpfnHook member. The system passes a pointer to the
CHOOSECOLOR structure in the lParam parameter of the WM_INITDIALOG
message; this pointer can be used to retrieve the lCustData member.

lpfnHook Points to a hook function that processes messages intended for the dialog box.
To enable the hook function, an application must specify the
CC_ENABLEHOOK value in the Flags member; otherwise, the system ignores
this structure member. The hook function must return zero to pass a message
that it didn't process back to the dialog box procedure in COMMDLG.DLL.
The hook function must return a nonzero value to prevent the dialog box
procedure in COMMDLG.DLL from processing a message it has already
processed. This member is filled on input.

lpTemplateName Points to a null-terminated string that specifies the name of the resource file for
the dialog box template that is to be substituted for the dialog box template in
COMMDLG.DLL. An application can use the MAKEINTRESOURCE macro
for numbered dialog box resources. This member is used only if the Flags
member specifies the CC_ENABLETEMPLATE flag; otherwise, this member
is ignored. This member is filled on input.

Comments
Some members of this structure are filled only when the dialog box is created, and some have an
initialization value that changes when the user closes the dialog box. Whenever a description in the
Members section does not specify how the value of a member is assigned, the value is assigned only when
the dialog box is created.

See Also
ChooseColor, MAKEINTRESOURCE, RGB

CHOOSEFONT (3.1)

#include <commdlg.h>
typedef struct tagCHOOSEFONT { /* cf */

DWORD lStructSize;
HWND hwndOwner;
HDC hDC;
LOGFONT FAR* lpLogFont;
int iPointSize;
DWORD Flags;
COLORREF rgbColors;
LPARAMlCustData;
UINT (CALLBACK* lpfnHook)(HWND, UINT, WPARAM, LPARAM);
LPCSTRlpTemplateName;
HINSTANCE hInstance;
LPSTR lpszStyle;
UINT nFontType;
int nSizeMin;
int nSizeMax;

} CHOOSEFONT;
The CHOOSEFONT structure contains information that the system uses to initialize the system-defined
Font dialog box. After the user chooses the OK button to close the dialog box, the system returns
information about the user's selection in this structure.

Member Description
lStructSize Specifies the length of the structure, in bytes. This member is filled on input.
hwndOwner Identifies the window that owns the dialog box. This member can be any valid

window handle, or it should be NULL if the dialog box is to have no owner.
If the CF_SHOWHELP flag is set, hwndOwner must identify the window that
owns the dialog box. The window procedure for this owner window receives a
notification message when the user chooses the Help button. (The identifier for
the notification message is the value returned by the RegisterWindowMessage
function when HELPMSGSTRING is passed as its argument.)
This member is filled on input.

hDC Identifies either the device context or the information context of the printer for
which fonts are to be listed in the dialog box. This member is used only if the
Flags member specifies the CF_PRINTERFONTS flag; otherwise, this member
is ignored.
This member is filled on input.

lpLogFont Points to a LOGFONT structure. If an application initializes the members of
this structure before calling ChooseFont and sets the
CF_INITTOLOGFONTSTRUCT flag, the ChooseFont function initializes the
dialog box with the font that is the closest possible match. After the user
chooses the OK button to close the dialog box, the ChooseFont function sets
the members of the LOGFONT structure based on the user's final selection.
This member is filled on input and output.

iPointSize Specifies the size of the selected font, in tenths of a point. The ChooseFont
function sets this value after the user chooses the OK button to close the dialog
box.

Flags Specifies the dialog box initialization flags. This member can be a combination
of the following values:

Value Meaning
CF_APPLY Specifies that the ChooseFont

function should enable the
Apply button.

CF_ANSIONLY Specifies that the ChooseFont
function should limit font
selection to those fonts that use

the Windows character set. (If
this flag is set, the user cannot
select a font that contains only
symbols.)

CF_BOTH Causes the dialog box to list the
available printer and screen
fonts. The hDC member
identifies either the device
context or the information
context associated with the
printer.

CF_TTONLY Specifies that the ChooseFont
function should enumerate and
allow the selection of only
TrueType fonts.

CF_EFFECTS Specifies that the ChooseFont
function should enable strikeout,
underline, and color effects. If
this flag is set, the lfStrikeOut
and lfUnderline members of the
LOGFONT structure and the
rgbColors member of the
CHOOSEFONT structure can
be set before calling
ChooseFont. And, if this flag is
not set, the ChooseFont function
can set these members after the
user chooses the OK button to
close the dialog box.

CF_ENABLEHOOK Enables the hook function
specified in the lpfnHook
member of this structure.

CF_ENABLETEMPLATE Indicates that the hInstance
member identifies a data block
that contains the dialog box
template pointed to by
lpTemplateName.

CF_ENABLETEMPLATEHANDLE Indicates that the hInstance
member identifies a data block
that contains a pre-loaded dialog
box template. If this flag is
specified, the system ignores the
lpTemplateName member.

CF_FIXEDPITCHONLY Specifies that the ChooseFont
function should select only
monospace fonts.

CF_FORCEFONTEXIST Specifies that the ChooseFont
function should indicate an error
condition if the user attempts to
select a font or font style that
does not exist.

CF_INITTOLOGFONTSTRUCT Specifies that the ChooseFont
function should use the
LOGFONT structure pointed to
by lpLogFont to initialize the
dialog box controls.

CF_LIMITSIZE Specifies that the ChooseFont
function should select only font
sizes within the range specified
by the nSizeMin and nSizeMax
members.

CF_NOFACESEL Specifies that there is no
selection in the Font (face
name) combo box. Applications
use this flag to support multiple
font selections. This flag is set
on input and output.

CF_NOOEMFONTS Specifies that the ChooseFont
function should not allow
vector-font selections. This flag
has the same value as
CF_NOVECTORFONTS.

CF_NOSIMULATIONS Specifies that the ChooseFont
function should not allow
graphics-device-interface (GDI)
font simulations.

CF_NOSIZESEL Specifies that there is no
selection in the Size combo box.
Applications use this flag to
support multiple size selections.
This flag is set on input and
output.

CF_NOSTYLESEL Specifies that there is no
selection in the Font Style
combo box. Applications use
this flag to support multiple
style selections. This flag is set
on input and output.

CF_NOVECTORFONTS Specifies that the ChooseFont
function should not allow
vector-font selections. This flag
has the same value as
CF_NOOEMFONTS.

CF_PRINTERFONTS Causes the dialog box to list
only the fonts supported by the
printer associated with the
device context or information
context that is identified by the
hDC member.

CF_SCALABLEONLY Specifies that the ChooseFont
function should allow the
selection of only scalable fonts.
(Scalable fonts include vector
fonts, some printer fonts,
TrueType fonts, and fonts that
are scaled by other algorithms
or technologies.)

CF_SCREENFONTS Causes the dialog box to list
only the screen fonts supported
by the system.

CF_SHOWHELP Causes the dialog box to show
the Help button. If this option is
specified, the hwndOwner must
not be NULL.

CF_USESTYLE Specifies that the lpszStyle
member points to a buffer that
contains a style-description
string that the ChooseFont
function should use to initialize
the Font Style box. When the
user chooses the OK button to
close the dialog box, the
ChooseFont function copies the

style description for the user's
selection to this buffer.

CF_WYSIWYG Specifies that the ChooseFont
function should allow the
selection of only fonts that are
available on both the printer and
the screen. If this flag is set, the
CF_BOTH and
CF_SCALABLEONLY flags
should also be set.

These flags may be set when the structure is initialized, except where specified.
rgbColors If the CF_EFFECTS flag is set, this member contains the red, green, and blue

(RGB) values the ChooseFont function should use to set the text color. After
the user chooses the OK button to close the dialog box, this member contains
the RGB values of the color the user selected.
This member is filled on input and output.

lCustData Specifies application-defined data that the application passes to the hook
function. The system passes a pointer to the CHOOSEFONT data structure in
the lParam parameter of the WM_INITDIALOG message; the lCustData
member can be retrieved using this pointer.

lpfnHook Points to a hook function that processes messages intended for the dialog box.
To enable the hook function, an application must specify the
CF_ENABLEHOOK value in the Flags member; otherwise, the system ignores
this structure member. The hook function must return zero to pass a message
that it didn't process back to the dialog box procedure in COMMDLG.DLL.
The hook function must return a nonzero value to prevent the dialog box
procedure in COMMDLG.DLL from processing a message it has already
processed.
This member is filled on input.

lpTemplateName Points to a null-terminated string that specifies the name of the resource file for
the dialog box template to be substituted for the dialog box template in
COMMDLG.DLL. An application can use the MAKEINTRESOURCE macro
for numbered dialog box resources. This member is used only if the Flags
member specifies the CF_ENABLETEMPLATE flag; otherwise, this member
is ignored.
This member is filled on input.

hInstance Identifies a data block that contains the dialog box template specified by the
lpTemplateName member. This member is used only if the Flags member
specifies the CF_ENABLETEMPLATE or the
CF_ENABLETEMPLATEHANDLE flag; otherwise, this member is ignored.
This member is filled on input.

lpszStyle Points to a buffer that contains a style-description string for the font. If the
CF_USESTYLE flag is set, the ChooseFont function uses the data in this buffer
to initialize the Font Style box. When the user chooses the OK button to close
the dialog box, the ChooseFont function copies the string in the Font Style box
into this buffer.
The buffer pointed to by lpszStyle must be at least LF_FACESIZE bytes long.
This member is filled on input and output.

nFontType Specifies the type of the selected font. This member can be one or more of the
values in the following list:

Value Meaning
BOLD_FONTTYPE Specifies that the font is bold. This value

applies only to TrueType fonts. This value
corresponds to the value of the ntmFlags
member of the NEWTEXTMETRIC
structure.

ITALIC_FONTTYPE Specifies that the font is italic. This value
applies only to TrueType fonts. This value
corresponds to the value of the ntmFlags

member of the NEWTEXTMETRIC
structure.

PRINTER_FONTTYPE Specifies that the font is a printer font.
REGULAR_FONTTYPE Specifies that the font is neither bold nor

italic. This value applies only to TrueType
fonts. This value corresponds to the value
of the ntmFlags member of the
NEWTEXTMETRIC structure.

SCREEN_FONTTYPE Specifies that the font is a screen font.
SIMULATED_FONTTYPE Specifies that the font is simulated by GDI.

This is not set if the
CF_NOSIMULATIONS flag is set.

nSizeMin Specifies the minimum point size that a user can select. The ChooseFont
function will recognize this member only if the CF_LIMITSIZE flag is set.
This member is filled on input.

nSizeMax Specifies the maximum point size that a user can select. The ChooseFont
function will recognize this member only if the CF_LIMITSIZE flag is set.
This member is filled on input.

See Also
ChooseFont, LOGFONT, MAKEINTRESOURCE

CLASSENTRY (3.1)

#include <toolhelp.h>
typedef struct tagCLASSENTRY { /* ce */

DWORD dwSize;
HMODULE hInst;
char szClassName[MAX_CLASSNAME + 1];
WORD wNext;

} CLASSENTRY;
The CLASSENTRY structure contains the name of a Windows class and a near pointer to the next class in
the list. For more information about Windows classes, see the GetClassInfo function.

Member Description
dwSize Specifies the size of the CLASSENTRY structure, in bytes.
hInst Identifies the instance handle of the task that owns the class. An application needs

this handle to call GetClassInfo. The hInst member is really a handle to a module,
since Windows classes are owned by modules. Therefore, this hInst will not match
the hInst passed as a parameter to the WinMain function of the owning task.

szClassName Specifies the null-terminated string that contains the class name. An application
needs this name to call GetClassInfo.

wNext Specifies the next class in the list. This member is reserved for internal use by
Windows.

See Also
ClassFirst, ClassNext, GetClassInfo

CLIENTCREATESTRUCT (3.0)

typedef struct tagCLIENTCREATESTRUCT { /* ccs */
HANDLE hWindowMenu;
UINT idFirstChild;

} CLIENTCREATESTRUCT;
The CLIENTCREATESTRUCT structure contains information about the menu and first multiple
document interface (MDI) child window of an MDI client window. An application passes a long pointer to
this structure as the lpParam parameter of the CreateWindow function when creating an MDI client
window.

Member Description
hWindowMenu Identifies the menu handle of the application's Window menu. An application can

retrieve this handle from the menu of the MDI frame window by using the
GetSubMenu function.

idFirstChild Specifies the child window identifier of the first MDI child window created.
Windows increments the identifier for each additional MDI child window that the
application creates, and reassigns identifiers when the application destroys a window
to keep the range of identifiers continuous. These identifiers are used in
WM_COMMAND messages to the application's MDI frame window when a child
window is selected from the Window menu; they should not conflict with any other
command identifiers.

See Also
CreateWindow, GetSubMenu

COMPAREITEMSTRUCT (3.0)

typedef struct tagCOMPAREITEMSTRUCT { /* cis */
UINT CtlType;
UINT CtlID;
HWND hwndItem;
UINT itemID1;
DWORD itemData1;
UINT itemID2;
DWORD itemData2;

} COMPAREITEMSTRUCT;
The COMPAREITEMSTRUCT structure supplies the identifiers and application-supplied data for two
items in a sorted owner-drawn combo box or list box.

Whenever an application adds a new item to an owner-drawn combo or list box created with the
CBS_SORT or LBS_SORT style, Windows sends the owner a WM_COMPAREITEM message. The
lParam parameter of the message contains a long pointer to a COMPAREITEMSTRUCT structure. When
the owner receives the message, it compares the two items and returns a value indicating which item sorts
before the other.

Member Description
CtlType Specifies ODT_LISTBOX (which identifies an owner-drawn list box) or

ODT_COMBOBOX (which identifies an owner-drawn combo box).
CtlID Specifies the identifier of the list box or combo box.
hwndItem Identifies the control.
itemID1 Specifies the index of the first item in the list box or combo box being compared.
itemData1 Specifies application-supplied data for the first item being compared. (This value was

passed as the lParam parameter of the message that added the item to the combo box or
list box.)

itemID2 Specifies the index of the second item in the list box or combo box being compared.
itemData2 Specifies application-supplied data for the second item being compared. This value was

passed as the lParam parameter of the message that added the item to the combo box or
list box.

See Also
WM_COMPAREITEM

COMSTAT (3.1)

typedef struct tagCOMSTAT { /* cmst */
BYTE status;
UINT cbInQue;
UINT cbOutQue;

} COMSTAT;
The COMSTAT structure contains information about a communications device.

Member Description
status Specifies the status of the transmission. This member can be one or more of the following

flags:

Flag Meaning
CSTF_CTSHOLD Specifies whether transmission is waiting for the CTS (clear-

to-send) signal to be sent.
CSTF_DSRHOLD Specifies whether transmission is waiting for the DSR (data-

set-ready) signal to be sent.
CSTF_RLSDHOLD Specifies whether transmission is waiting for the RLSD

(receive-line-signal-detect) signal to be sent.
CSTF_XOFFHOLD Specifies whether transmission is waiting as a result of the

XOFF character being received.
CSTF_XOFFSENT Specifies whether transmission is waiting as a result of the

XOFF character being transmitted. Transmission halts when
the XOFF character is transmitted and used by systems that
take the next character as XON, regardless of the actual
character.

CSTF_EOF Specifies whether the end-of-file (EOF) character has been
received.

CSTF_TXIM Specifies whether a character is waiting to be transmitted.
cbInQue Specifies the number of characters in the receive queue.
cbOutQue Specifies the number of characters in the transmit queue.

See Also
GetCommError

CONVCONTEXT (3.1)

#include <ddeml.h>
typedef struct tagCONVCONTEXT { /* cc */

UINT cb;
UINT wFlags;
UINT wCountryID;
int iCodePage;
DWORD dwLangID;
DWORD dwSecurity;

} CONVCONTEXT;
The CONVCONTEXT structure contains information that makes it possible for applications to share data
in several different languages.

Member Description
cb Specifies the size, in bytes, of the CONVCONTEXT structure.
wFlags Specifies conversation-context flags. Currently, no flags are defined for this member.
wCountryID Specifies the country-code identifier for topic-name and item-name strings.
iCodePage Specifies the code page for topic-name and item-name strings. Unilingual clients

should set this member to CP_WINANSI. An application that uses the OEM character
set should set this member to the value returned by the GetKBCodePage function.

dwLangID Specifies the language identifier for topic-name and item-name strings.
dwSecurity Specifies a private (application-defined) security code.

See Also
GetKBCodePage

CONVINFO (3.1)

#include <ddeml.h>
typedef struct tagCONVINFO { /* ci */

DWORD cb;
DWORD hUser;
HCONV hConvPartner;
HSZhszSvcPartner;
HSZhszServiceReq;
HSZhszTopic;
HSZhszItem;
UINT wFmt;
UINT wType;
UINT wStatus;
UINT wConvst;
UINT wLastError;
HCONVLIST hConvList;
CONVCONTEXT ConvCtxt;

} CONVINFO;
The CONVINFO structure contains information about a dynamic data exchange (DDE) conversation.

Member Description
cb Specifies the length of the structure, in bytes.
hUser Identifies application-defined data.
hConvPartner Identifies the partner application in the DDE conversation. If the partner has not

registered itself (by using the DdeInitialize function) to make DDE Management
Library (DDEML) function calls, this member is set to 0. An application should
not pass this member to any DDEML function except DdeQueryConvInfo.

hszSvcPartner Identifies the service name of the partner application.
hszServiceReq Identifies the service name of the server application that was requested for

connection.
hszTopic Identifies the name of the requested topic.
hszItem Identifies the name of the requested item. This member is transaction-specific.
wFmt Specifies the format of the data being exchanged. This member is transaction-

specific.
wType Specifies the type of the current transaction. This member is transaction-specific

and can be one of the following values:

Value Meaning
XTYP_ADVDATA Informs a client that advise data from a

server has arrived.
XTYP_ADVREQ Requests that a server send updated data

to the client during an advise loop. This
transaction results when the server calls
the DdePostAdvise function.

XTYP_ADVSTART Requests that a server begin an advise
loop with a client.

XTYP_ADVSTOP Notifies a server that an advise loop is
ending.

XTYP_CONNECT Requests that a server establish a
conversation with a client.

XTYP_CONNECT_CONFIRM Notifies a server that a conversation with
a client has been established.

XTYP_DISCONNECT Notifies a server that a conversation has
terminated.

XTYP_ERROR Notifies a DDEML application that a
critical error has occurred. The DDEML
may have insufficient resources to
continue.

XTYP_EXECUTE Requests that a server execute a command
sent by a client.

XTYP_MONITOR Notifies an application registered as
APPCMD_MONITOR of DDE data
being transmitted.

XTYP_POKE Requests that a server accept unsolicited
data from a client.

XTYP_REGISTER Notifies other DDEML applications that a
server has registered a service name.

XTYP_REQUEST Requests that a server send data to a
client.

XTYP_UNREGISTER Notifies other DDEML applications that a
server has unregistered a service name.

XTYP_WILDCONNECT Requests that a server establish multiple
conversations with the same client.

XTYP_XACT_COMPLETE Notifies a client that an asynchronous data
transaction has completed.

wStatus Specifies the status of the current conversation. This member can be a
combination of the following values:
ST_ADVISE ST_INLIST
ST_BLOCKED ST_ISLOCAL
ST_BLOCKNEXT ST_ISSELF
ST_CLIENT ST_TERMINATED
ST_CONNECTED

wConvst Specifies the conversation state. This member can be one of the following values:

Value Meaning
XST_ADVACKRCVD The advise transaction was just completed.
XST_ADVDATAACKRCVD The advise data transaction was just

completed.
XST_ADVDATASENT Advise data has been sent and is awaiting

an acknowledge.
XST_ADVSENT An advise transaction is awaiting an

acknowledge.
XST_CONNECTED The conversation has no active

transactions.
XST_DATARCVD The requested data has just been received.
XST_EXECACKRCVD An execute transaction just completed.
XST_EXECSENT An execute transaction is awaiting an

acknowledge.
XST_INCOMPLETE The last transaction failed.
XST_INIT1 Mid-initiate state 1
XST_INIT2 Mid-initiate state 2
XST_NULL Pre-initiate state
XST_POKEACKRCVD A poke transaction was just completed.
XST_POKESENT A poke transaction is awaiting an

acknowledge.
XST_REQSENT A request transaction is awaiting an

acknowledge.
XST_UNADVACKRCVD An unadvise transaction just completed.
XST_UNADVSENT An unadvise transaction is awaiting an

acknowledge.
wLastError Specifies the error value associated with the last transaction.
hConvList If the handle of the current conversation is in a conversation list, identifies the

conversation list. Otherwise, this member is NULL.
ConvCtxt Specifies the conversation context.

See Also

CONVCONTEXT, DdeQueryConvInfo

CPLINFO (3.1)

#include <cpl.h>
typedef struct tagCPLINFO { /* cpli */

int idIcon;
int idName;
int idInfo;
LONG lData;

} CPLINFO;
The CPLINFO structure contains resource information and a user-defined value for an extensible Control
Panel application.

Member Description
idIcon Specifies an icon resource identifier for the application icon. This icon is displayed in the

Control Panel window.
idName Specifies a string resource identifier for the application name. The name is the short string

displayed below the application icon in the Control Panel window. The name is also
displayed on the Settings menu of Control Panel.

idInfo Specifies a string resource identifier for the application description. The description is the
descriptive string displayed at the bottom of the Control Panel window when the application
icon is selected.

lData Specifies user-defined data for the application.

CREATESTRUCT (2.x)

typedef struct tagCREATESTRUCT { /* cs */
void FAR* lpCreateParams;
HINSTANCE hInstance;
HMENUhMenu;
HWND hwndParent;
int cy;
int cx;
int y;
int x;
LONG style;
LPCSTR lpszName;
LPCSTR lpszClass;
DWORDdwExStyle;

} CREATESTRUCT;
The CREATESTRUCT structure defines the initialization parameters passed to the window procedure of
an application.

Member Description
lpCreateParams Points to data to be used for creating the window.
hInstance Identifies the module-instance handle of the module that owns the new window.
hMenu Identifies the menu to be used by the new window.
hwndParent Identifies the window that owns the new window. This member is NULL if the

new window is a top-level window.
cy Specifies the height of the new window.
cx Specifies the width of the new window.
y Specifies the y-coordinate of the upper-left corner of the new window.

Coordinates are relative to the parent window if the new window is a child
window. Otherwise, the coordinates are relative to the screen origin.

x Specifies the x-coordinate of the upper-left corner of the new window.
Coordinates are relative to the parent window if the new window is a child
window. Otherwise, the coordinates are relative to the screen origin.

style Specifies the style for the new window.
lpszName Points to a null-terminated string that specifies the name of the new window.
lpszClass Points to a null-terminated string that specifies the class name of the new

window.
dwExStyle Specifies extended style for the new window.

See Also
CreateWindow

CTLINFO (3.1)

#include <custcntl.h>
typedef struct tagCTLINFO {

UINT wVersion;
UINT wCtlTypes;
char szClass[CTLCLASS];
char szTitle[CTLTITLE];
char szReserved[10];
CTLTYPE Type[CTLTYPES];

} CTLINFO;
The CTLINFO structure defines the class name and version number for a custom control. The CTLINFO
structure also contains an array of CTLTYPE structures, each of which lists commonly used combinations
of control styles (called variants), with a short description and information about the suggested size.

Member Description
wVersion Specifies the control version number. Although you can start your numbering scheme

from one digit, most implementations use the lower two digits to represent minor
releases.

wCtlTypes Specifies the number of control types supported by this class. This value should always
be greater than zero and less than or equal to the CTLTYPES value.

szClass Specifies a null-terminated string that contains the control class name supported by the
dynamic-link library (DLL). This string should be no longer than the CTLCLASS value.

szTitle Specifies a null-terminated string that contains various copyright or author information
relating to the control library. This string should be no longer than the CTLTITLE value.

Type Specifies an array of CTLTYPE structures containing information that relates to each of
the control types supported by the class. There should be no more elements in the array
than specified by the CTLTYPES value.

Comments
An application calls the ClassInfo function to retrieve basic information about the control library. Based
on the information returned, the application can create instances of a control by using one of the supported
styles. For example, Dialog Editor calls this function to query a library about the different control styles it
can display.

The return value of the ClassInfo function identifies a CTLINFO structure if the function is successful.
This information becomes the property of the caller, which must explicitly release it by using the
GlobalFree function when the structure is no longer needed.

See Also
CTLSTYLE, CTLTYPE

CTLSTYLE (3.1)

#include <custcntl.h>
typedef struct tagCTLSTYLE {

UINT wX;
UINT wY;
UINT wCx;
UINT wCy;
UINT wId;
DWORD dwStyle;
char szClass[CTLCLASS];
char szTitle[CTLTITLE];

} CTLSTYLE;
The CTLSTYLE structure specifies the attributes of the selected control, including the current style flags,
location, dimensions, and associated text.

Member Description
wX Specifies the x-origin, in screen coordinates, of the control relative to the client area of the

parent window.
wY Specifies the y-origin, in screen coordinates, of the control relative to the client area of the

parent window.
wCx Specifies the current control width, in screen coordinates.
wCy Specifies the current control height, in screen coordinates.
wId Specifies the current control identifier. In most cases, you should not allow the user to

change this value because Dialog Editor automatically coordinates it with a header file.
dwStyle Specifies the current control style. The high-order word contains the control-specific flags,

and the low-order word contains the Windows-specific flags. You may let the user change
these flags to any values supported by your control library.

szClass Specifies a null-terminated string representing the name of the current control class. You
should not allow the user to edit this member, because it is provided for informational
purposes only. This string should be no longer than the CTLCLASS value.

szTitle Specifies with a null-terminated string the text associated with the control. This text is
usually displayed inside the control or may be used to store other associated information
required by the control. This string should be no longer than the CTLTITLE value.

Comments
An application calls the ClassStyle function to display a dialog box to edit the style of the selected control.
When this function is called, it should display a modal dialog box in which the user can edit the
CTLSTYLE members. The user interface of this dialog box should be consistent with that of the
predefined controls that Dialog Editor supports.

See Also
CTLINFO, CTLTYPE

CTLTYPE (3.1)

#include <custcntl.h>
typedef struct tagCTLTYPE {

UINT wType;
UINT wWidth;
UINT wHeight;
DWORD dwStyle;
char szDescr[CTLDESCR];

} CTLTYPE;
The CTLTYPE structure contains information about a control in a particular class. The CTLINFO
structure includes an array of CTLTYPE structures.

Member Description
wType Reserved; must be zero.
wWidth Specifies the suggested width of the control when it is created using Dialog Editor. The

width is specified in dialog-box coordinates.
wHeight Specifies the suggested height of the control when it is created using Dialog Editor. The

height is specified in dialog-box coordinates.
dwStyle Specifies the initial style bits used to obtain this control type. This value includes the

control-defined flags in the high-order word and the Windows-defined flags in the low-
order word.

szDescr Defines the name to be used by other development tools when referring to this particular
variant of the base control class. Dialog Editor does not refer to this information. This string
should not be longer than the CTLDESCR value.

See Also
CTLINFO, CTLSTYLE

DCB (2.x)

typedef struct tagDCB /* dcb */
{

BYTE Id;
UINT BaudRate;
BYTE ByteSize;
BYTE Parity;
BYTE StopBits;
UINT RlsTimeout;
UINT CtsTimeout;
UINT DsrTimeout;
UINT fBinary :1;
UINT fRtsDisable :1;
UINT fParity :1;
UINT fOutxCtsFlow :1;
UINT fOutxDsrFlow :1;
UINT fDummy :2;
UINT fDtrDisable :1;
UINT fOutX:1;
UINT fInX :1;
UINT fPeChar :1;
UINT fNull:1;
UINT fChEvt :1;
UINT fDtrflow :1;
UINT fRtsflow :1;
UINT fDummy2 :1;
char XonChar;
char XoffChar;
UINT XonLim;
UINT XoffLim;
char PeChar;
char EofChar;
char EvtChar;
UINT TxDelay;

} DCB;
The DCB structure defines the control setting for a serial communications device.

Member Description
Id Specifies the communication device. This value is set by the device driver. If the

most significant bit is set, the DCB structure is for a parallel device.
BaudRate Specifies the baud rate at which the communications device operates. If the value of

the high-order byte is equal to 0xFF, the low-order byte specifies a baud-rate index.
The index can be one of the following values:
CBR_110 CBR_14400
CBR_4400 CBR_19200
CBR_9200 CBR_38400
CBR_8400 CBR_56000
CBR_6000 CBR_128000
CBR_28000 CBR_256000
CBR_9600
If the high-order byte is not equal to 0xFF, this parameter specifies the actual baud
rate.

ByteSize Specifies the number of bits in the characters transmitted and received. This member
can be any number from 4 through 8.

Parity Specifies the parity scheme to be used. This member can be any one of the following
values:

Value Meaning
EVENPARITY Even
MARKPARITY Mark
NOPARITY No parity
ODDPARITY Odd

StopBits Specifies the number of stop bits to be used. This member can be any one of the
following values:

Value Meaning
ONESTOPBIT 1 stop bit
ONE5STOPBITS 1.5 stop bits
TWOSTOPBITS 2 stop bits

RlsTimeout Specifies the maximum amount of time, in milliseconds, the device should wait for
the RLSD (receive-line-signal-detect) signal. RLSD is also known as the carrier-
detect (CD) signal.

CtsTimeout Specifies the maximum amount of time, in milliseconds, the device should wait for
the CTS (clear-to-send) signal.

DsrTimeout Specifies the maximum amount of time, in milliseconds, the device should wait for
the DSR (data-set-ready) signal.

fBinary Specifies binary mode. In nonbinary mode, the EofChar character is recognized on
input and remembered as the end of data.

fRtsDisable Specifies whether or not the RTS (request-to-send) signal is disabled. If this member
is set, RTS is not used and remains low. If this member is clear, RTS is sent when the
device is opened and turned off when the device is closed.

fParity Specifies whether parity checking is enabled. If this member is set, parity checking is
performed and errors are reported.

fOutxCtsFlow Specifies that CTS (clear-to-send) signal is to be monitored for output flow control.
If this member is set and CTS is turned off, output is suspended until CTS is again
sent.

fOutxDsrFlow Specifies that the DSR (data-set-ready) signal is to be monitored for output flow
control. If this member is set and DSR is turned off, output is suspended until DSR is
again sent.

fDummy Reserved.
fDtrDisable Specifies whether the DTR (data-terminal-ready) signal is disabled. If this member is

set, DTR is not used and remains low. If this member is clear, DTR is sent when the
device is opened and turned off when the device is closed.

fOutX Specifies that XON/XOFF flow control is used during transmission. If this member
is set, transmission stops when the XoffChar character is received and starts again
when the XonChar character is received.

fInX Specifies that XON/XOFF flow control is used during reception. If this member is
set, the XonChar character is sent when the reception queue comes within XoffLim
characters of being full and the XonChar character is sent when the reception queue
comes within XonLim characters of being empty.

fPeChar Specifies that characters received with parity errors are to be replaced with the
character specified by this member. This member must be set for the replacement to
occur.

fNull Specifies that received null characters are to be discarded.
fChEvt Specifies that reception of the EvtChar character is to be flagged as an event.
fDtrflow Specifies that the DTR (data-terminal-ready) signal is to be used for reception flow

control. If this member is set, DTR is turned off when the reception queue comes
within XoffLim characters of being full and sent when the reception queue comes
within XonLim characters of being empty.

fRtsflow Specifies that the RTS (ready-to-send) signal is to be used for reception flow control.
If this member is set, RTS is turned off when the reception queue comes within
XoffLim characters of being full, and sent when the reception queue comes within
XonLim characters of being empty.

fDummy2 Reserved.
XonChar Specifies the value of the XON character for both transmission and reception.

XoffChar Specifies the value of the XOFF character for both transmission and reception.
XonLim Specifies the minimum number of characters allowed in the reception queue before

the XON character is sent.
XoffLim Specifies the maximum number of characters allowed in the reception queue before

the XOFF character is sent. The value of the XoffLim member is subtracted from the
size of the reception queue, in bytes, to calculate the maximum number of characters
allowed.

PeChar Specifies the value of the character used to replace characters received with a parity
error.

EofChar Specifies the value of the character used to signal the end of data.
EvtChar Specifies the value of the character used to signal an event.
TxDelay Not currently used.

See Also
BuildCommDCB, GetCommState, SetCommState

Windows 3.1 changes

The BaudRate member can specify either the actual baud rate or a baud-rate index. If the high-order byte
is equal to 0xFF, the low-order byte specifies one of the following baud-rate index values:

CBR_110
CBR_300
CBR_600
CBR_1200
CBR_2400
CBR_4800
CBR_9600
CBR_14400
CBR_19200
CBR_38400
CBR_56000
CBR_128000
CBR_256000

If the high-order byte is not equal to 0xFF, this parameter specifies the actual baud rate.

DDEACK (2.x)

#include <dde.h>
typedef struct tagDDEACK { /* ddeack */

WORD bAppReturnCode:8,
reserved:6,
fBusy:1,
fAck:1;

} DDEACK;
The DDEACK structure contains status flags that a DDE application passes to its partner as part of the
WM_DDE_ACK message. The flags provide details about the application's response to a
WM_DDE_ADVISE, WM_DDE_DATA, WM_DDE_EXECUTE, WM_DDE_REQUEST,
WM_DDE_POKE, or WM_DDE_UNADVISE message.

Member Description
bAppReturnCode Specifies an application-defined return code.
fBusy Indicates whether the application was busy and unable to respond to the

partner's message at the time the message was received. A nonzero value
indicates the server was busy and unable to respond. The fBusy member is
defined only when the fAck member is zero.

fAck Indicates whether the application accepted the message from its partner. A
nonzero value indicates the server accepted the message.

See Also
WM_DDE_ACK, WM_DDE_ADVISE, WM_DDE_DATA, WM_DDE_EXECUTE,
WM_DDE_REQUEST, WM_DDE_POKE, WM_DDE_UNADVISE, DDEADVISE, DDEDATA,
DDEPOKE

DDEADVISE (2.x)

#include <dde.h>
typedef struct tagDDEADVISE { /* ddeadv */

WORD reserved:14,
fDeferUpd:1,
fAckReq:1;
short cfFormat;

} DDEADVISE;
The DDEADVISE structure contains flags that specify how a server should send data to a client during an
advise loop. A client passes the handle of a DDEADVISE structure to a server as part of a
WM_DDE_ADVISE message.

Member Description
fDeferUpd Indicates whether the server should defer sending updated data to the client. A nonzero

value tells the server to send a WM_DDE_DATA message with a NULL data handle
whenever the data item changes. In response, the client can post a WM_DDE_REQUEST
message to the server to obtain a handle to the updated data.

fAckReq Indicates whether the server should set the fAckReq flag in the WM_DDE_DATA
messages that it posts to the client. A nonzero value tells the server to set the fAckReq
bit.

cfFormat Specifies the client application's preferred data format. The format must be a standard or
registered clipboard format. The following standard clipboard formats may be used:
CF_BITMAP CF_OEMTEXT
CF_DCF_OEMTEXT CF_PALETTE
CF_DCF_PALETTE CF_PENDATA
CF_DCF_PENDATA CF_SYLK
CF_DCF_SYLK CF_TEXT
CF_DCF_TEXT CF_TIFF
CF_METAFILEPICT

See Also
WM_DDE_ADVISE, WM_DDE_DATA, WM_DDE_UNADVISE, DDEACK, DDEDATA, DDEPOKE

DDEDATA (2.x)

#include <dde.h>
typedef struct tagDDEDATA { /* ddedat */

WORD unused:12,
fResponse:1,
fRelease:1,
reserved:1,
fAckReq:1;
short cfFormat;
BYTE Value[1];

} DDEDATA;
The DDEDATA structure contains the data and information about the data sent as part of a
WM_DDE_DATA message.

Member Description
fResponse Indicates whether the application receiving the WM_DDE_DATA message should

acknowledge receipt of the data by sending a WM_DDE_ACK message. A nonzero
value indicates the application should send the acknowledgment.

fRelease Indicates if the application receiving the WM_DDE_POKE message should free the
data. A nonzero value indicates the data should be freed.

fAckReq Indicates whether the data was sent in response to a WM_DDE_REQUEST message or
a WM_DDE_ADVISE message. A nonzero value indicates the data was sent in
response to a WM_DDE_REQUEST message.

cfFormat Specifies the format of the data. The format should be a standard or registered clipboard
format. The following standard clipboard formats may be used:
CF_BITMAP CF_OEMTEXT
CF_DCF_OEMTEXT CF_PALETTE
CF_DCF_PALETTE CF_PENDATA
CF_DCF_PENDATA CF_SYLK
CF_DCF_SYLK CF_TEXT
CF_DCF_TEXT CF_TIFF
CF_METAFILEPICT

See Also
WM_DDE_ACK, WM_DDE_ADVISE, WM_DDE_DATA, WM_DDE_POKE, WM_DDE_REQUEST,
DDEACK, DDEADVISE, DDEPOKE

DDEPOKE (2.x)

#include <dde.h>
typedef struct tagDDEPOKE { /* ddepok */

WORD unused:13,
fRelease:1,
fReserved:2;

short cfFormat;
BYTE Value[1];

} DDEPOKE;
The DDEPOKE structure contains the data and information about the data sent as part of a
WM_DDE_POKE message.

Member Description
fRelease Indicates if the application receiving the WM_DDE_POKE message should free the data.

A nonzero value specifies the data should be freed.
cfFormat Specifies the format of the data. The format should be a standard or registered clipboard

format. The following standard clipboard formats may be used:
CF_BITMAP CF_OEMTEXT
CF_DCF_OEMTEXT CF_PALETTE
CF_DCF_PALETTE CF_PENDATA
CF_DCF_PENDATA CF_SYLK
CF_DCF_SYLK CF_TEXT
CF_DCF_TEXT CF_TIFF
CF_METAFILEPICT

Value Contains the data. The size of this array depends on the value of the cfFormat member.

See Also
WM_DDE_POKE, DDEACK, DDEADVISE, DDEDATA

DEBUGHOOKINFO (3.1)

typedef struct tagDEBUGHOOKINFO { /* dh */
HMODULE hModuleHook;
LPARAM reserved;
LPARAM lParam;
WPARAM wParam;
intcode;

} DEBUGHOOKINFO;
The DEBUGHOOKINFO structure contains debugging information.

Member Description
hModuleHook Identifies the module containing the filter function.
reserved Not used.
lParam Specifies the value to be passed to the hook in the lParam parameter of the

DebugProc callback function.
wParam Specifies the value to be passed to the hook in the wParam parameter of the

DebugProc callback function.
code Specifies the value to be passed to the hook in the code parameter of the DebugProc

callback function.

See Also
DebugProc, SetWindowsHook

DELETEITEMSTRUCT (3.0)

typedef struct tagDELETEITEMSTRUCT { /* deli */
UINT CtlType;
UINT CtlID;
UINT itemID;
HWND hwndItem;
DWORD itemData;

} DELETEITEMSTRUCT;
The DELETEITEMSTRUCT structure describes a deleted owner-drawn list-box or combo-box item.
When an item is removed from the list box or combo box or when the list box or combo box is destroyed,
Windows sends the WM_DELETEITEM message to the owner for each deleted item. The lParam
parameter of the message contains a pointer to this structure.

Member Description
CtlType Contains ODT_LISTBOX (which specifies an owner-drawn list box) or

ODT_COMBOBOX (which specifies an owner-drawn combo box).
CtlID Contains the control identifier for the list box or combo box.
itemID Contains the index of the item in the list box or combo box being removed.
hwndItem Contains the window handle of the control.
itemData Contains the value passed to the control in the lParam parameter of the

LB_INSERTSTRING, LB_ADDSTRING, CB_INSERTSTRING, or CB_ADDSTRING
message when the item was added to the list box.

See Also
WM_DELETEITEM

DEVMODE (3.0)

#include <print.h>
typedef struct tagDEVMODE { /* dm */

char dmDeviceName[CCHDEVICENAME];
UINT dmSpecVersion;
UINT dmDriverVersion;
UINT dmSize;
UINT dmDriverExtra;
DWORD dmFields;
int dmOrientation;
int dmPaperSize;
int dmPaperLength;
int dmPaperWidth;
int dmScale;
int dmCopies;
int dmDefaultSource;
int dmPrintQuality;
int dmColor;
int dmDuplex;
int dmYResolution;
int dmTTOption;

} DEVMODE;
The DEVMODE structure contains information about a printer driver's initialization and environment
data. An application passes this structure to the DeviceCapabilities and ExtDeviceMode functions.

Member Description
dmDeviceName Specifies the name of the device the driver supports--for example, "PCL/HP

LaserJet" in the case of the Hewlett-Packard LaserJet. Each driver has a unique
string.

dmSpecVersion Specifies the version number of the DEVMODE structure. For Windows
version 3.1, this value should be 0x30A.

dmDriverVersion Specifies the printer driver version number assigned by the printer driver
developer.

dmSize Specifies the size, in bytes, of the DEVMODE structure. (This value does not
include the optional dmDriverData member for device-specific data, which can
follow the structure.) If an application manipulates only the driver-independent
portion of the data, it can use this member to find out the length of the structure
without having to account for different versions.

dmDriverExtra Specifies the size, in bytes, of the optional dmDriverData member for device-
specific data, which can follow the structure. If an application does not use
device-specific information, it should set this member to zero.

dmFields Specifies a set of flags that indicate which of the remaining members in the
DEVMODE structure have been initialized. It can be any combination (or it can
be none) of the following values:

Constant Value
DM_ORIENTATION 0x0000001L
DM_PAPERSIZE 0x0000002L
DM_PAPERLENGTH 0x0000004L
DM_PAPERWIDTH 0x0000008L
DM_SCALE 0x0000010L
DM_COPIES 0x0000100L
DM_DEFAULTSOURCE 0x0000200L
DM_PRINTQUALITY 0x0000400L
DM_COLOR 0x0000800L
DM_DUPLEX 0x0001000L
DM_YRESOLUTION 0x0002000L
DM_TTOPTION 0x0004000L

A printer driver supports only those members that are appropriate for the printer
technology.

dmOrientation Specifies the orientation of the paper. It can be either
DMORIENT_PORTRAIT or DMORIENT_LANDSCAPE.

dmPaperSize Specifies the size of the paper to print on. This member may be set to zero if the
length and width of the paper are specified by the dmPaperLength and
dmPaperWidth members, respectively. Otherwise, the dmPaperSize member
can be set to one of the following predefined values:

Value Meaning
DMPAPER_FIRST DMPAPER_LETTER
DMPAPER_LETTER Letter, 8 1/2 x 11 in.
DMPAPER_LETTERSMALL Letter Small, 8 1/2 x 11 in.
DMPAPER_TABLOID Tabloid, 11 x 17 in.
DMPAPER_LEDGER Ledger, 17 x 11 in.
DMPAPER_LEGAL Legal, 8 1/2 x 14 in.
DMPAPER_STATEMENT Statement, 5 1/2 x 8 1/2 in.
DMPAPER_EXECUTIVE Executive, 7 1/2 x 10 1/2 in.
DMPAPER_A3 A3, 297 x 420 mm
DMPAPER_A4 A4, 210 x 297 mm
DMPAPER_A4SMALL A4 Small, 210 x 297 mm
DMPAPER_A5 A5, 148 x 210 mm
DMPAPER_B4 B4, 250 x 354 mm
DMPAPER_B5 B5, 182 x 257 mm
DMPAPER_FOLIO Folio, 8 1/2 x 13 in.
DMPAPER_QUARTO Quarto, 215 x 275 mm
DMPAPER_10X14 10 x 14 in.
DMPAPER_11X17 11 x 17 in.
DMPAPER_NOTE Note, 8 1/2 x 11 in.
DMPAPER_ENV_9 Envelope #9, 3 7/8 x 8 7/8

in.
DMPAPER_ENV_10 Envelope #10, 4 1/8 x 9 1/2

in.
DMPAPER_ENV_11 Envelope #11, 4 1/2 x 10 3/

8 in.
DMPAPER_ENV_12 Envelope #12, 4 1/2 x 11 in.
DMPAPER_ENV_14 Envelope #14, 5 x 11 1/2 in.
DMPAPER_CSHEET C size sheet
DMPAPER_DSHEET D size sheet
DMPAPER_ESHEET E size sheet
DMPAPER_ENV_DL Envelope DL, 110 x 220

mm
DMPAPER_ENV_C3 Envelope C3, 324 x 458 mm
DMPAPER_ENV_C4 Envelope C4, 229 x 324 mm
DMPAPER_ENV_C5 Envelope C5, 162 x 229 mm
DMPAPER_ENV_C6 Envelope C6, 114 x 162 mm
DMPAPER_ENV_C65 Envelope C65, 114 x 229

mm
DMPAPER_ENV_B4 Envelope B4, 250 x 353 mm
DMPAPER_ENV_B5 Envelope B5, 176 x 250 mm
DMPAPER_ENV_B6 Envelope B6, 176 x 125 mm
DMPAPER_ENV_ITALY Envelope, 110 x 230 mm
DMPAPER_ENV_MONARCH Envelope Monarch, 3 7/8 x

7 1/2 in.
DMPAPER_ENV_PERSONAL Envelope, 3 5/8 x 6 1/2 in.

DMPAPER_FANFOLD_US U.S. Standard Fanfold, 14 7/
8 x 11 in.

DMPAPER_FANFOLD_STD_GERMAN German Standard Fanfold, 8
1/2 x 12 in.

DMPAPER_FANFOLD_LGL_GERMAN German Legal Fanfold, 8 1/
2 x 13 in.

DMPAPER_LAST German Legal Fanfold, 8 1/
2 x 13 in.

DMPAPER_USER User-defined
dmPaperLength Specifies a paper length, in tenths of a millimeter. This parameter overrides the

paper length specified by the dmPaperSize member, either for custom paper
sizes or for such devices as dot-matrix printers that can print on a variety of
page sizes.

dmPaperWidth Specifies a paper width, in tenths of a millimeter. This parameter overrides the
paper width specified by the dmPaperSize member.

dmScale Specifies the factor by which the printed output is to be scaled. The apparent
page size is scaled from the physical page size by a factor of dmScale/100. For
example, a letter-size paper with a dmScale value of 50 would contain as much
data as a page of size 17 by 22 inches because the output text and graphics
would be half their original height and width.

dmCopies Specifies the number of copies printed if the device supports multiple-page
copies.

dmDefaultSource Specifies the default bin from which the paper is fed. The application can
override this value by using the GETSETPAPERBINS escape. This member
can be one of the following values:
DMBIN_AUTO DMBIN_LOWER
DMBIN_CASSETTE DMBIN_MANUAL
DMBIN_ENVELOPE DMBIN_MIDDLE
DMBIN_ENVMANUAL DMBIN_ONLYONE
DMBIN_FIRST DMBIN_SMALLFMT
DMBIN_LARGECAPACITY DMBIN_TRACTOR
DMBIN_LARGEFMT DMBIN_UPPER
DMBIN_LAST
A range of values is reserved for device-specific bins. To be consistent with
initialization information, the GETSETPAPERBINS and ENUMPAPERBINS
escapes use these values.

dmPrintQuality Specifies the printer resolution. Following are the four predefined device-
independent values:

DMRES_HIGH (-4)
DMRES_MEDIUM (-3)
DMRES_LOW (-2)
DMRES_DRAFT (-1)
If a positive value is given, it specifies the number of dots per inch (DPI) and is
therefore device-dependent.
If the printer initializes the dmYResolution member, the dmPrintQuality
member specifies the x-resolution of the printer, in dots per inch.

dmColor Specifies whether a color printer is to render color or monochrome output.
Possible values are:

DMCOLOR_COLOR (1)
DMCOLOR_MONOCHROME (2)

dmDuplex Specifies duplex (double-sided) printing for printers capable of duplex printing.
This member can be one of the following values:

DMDUP_SIMPLEX (1)
DMDUP_HORIZONTAL (2)
DMDUP_VERTICAL (3)

dmYResolution Specifies the y-resolution of the printer, in dots per inch. If the printer initializes
this member, the dmPrintQuality member specifies the x-resolution of the
printer, in dots per inch.

dmTTOption Specifies how TrueType fonts should be printed. It can be one of the following
values:

Value Meaning
DMTT_BITMAP Print TrueType fonts as graphics. This is the default

action for dot-matrix printers.
DMTT_DOWNLOAD Download TrueType fonts as soft fonts. This is the

default action for Hewlett-Packard printers that use
Printer Control Language (PCL).

DMTT_SUBDEV Substitute device fonts for TrueType fonts. This is
the default action for PostScript printers.

Comments
Only drivers that are fully updated for Windows versions 3.0 and later and that export the ExtDeviceMode
function use the DEVMODE structure.

An application can retrieve the paper sizes and names supported by a printer by calling the
DeviceCapabilities function with the DC_PAPERS, DC_PAPERSIZE, and DC_PAPERNAMES values.

Before setting the value of the dmTTOption member, applications should find out how a printer driver can
use TrueType fonts by calling the DeviceCapabilities function with the DC_TRUETYPE value.

Drivers can add device-specific data immediately following the DEVMODE structure.

See Also
DeviceCapabilities, ExtDeviceMode

DEVNAMES (3.1)

#include <commdlg.h>
typedef struct tagDEVNAMES { /* dn */

UINT wDriverOffset;
UINT wDeviceOffset;
UINT wOutputOffset;
UINT wDefault;
/* optional data may appear here */

} DEVNAMES;
The DEVNAMES structure contains offsets to strings that specify the driver, name, and output port of a
printer. The PrintDlg function uses these strings to initialize controls in the system-defined Print dialog
box. When the user chooses the OK button to close the dialog box, information about the selected printer
is returned in this structure.

Member Description
wDriverOffset Specifies the offset from the beginning of the structure to a null-terminated string

that specifies the Microsoft®MS-DOS®filename (without extension) of the device
driver. On input, this string is used to set which printer to initially display in the
dialog box.

wDeviceOffset Specifies the offset from the beginning of the structure to the null-terminated string
that specifies the name of the device. This string cannot exceed 32 bytes in length,
including the null character, and must be identical to the dmDeviceName member
of the DEVMODE structure.

wOutputOffset Specifies the offset from the beginning of the structure to the null-terminated string
that specifies the MS-DOS device name for the physical output medium (output
port).

wDefault Specifies whether the strings specified in the DEVNAMES structure identify the
default printer. It is used to verify that the default printer has not changed since the
last print operation. On input, this member can be set to DN_DEFAULTPRN. If the
DN_DEFAULTPRN flag is set, the other values in the DEVNAMES structure are
checked against the current default printer.
On output, the wDefault member is changed only if the Print Setup dialog box was
displayed and the user chose the OK button to close it. If the default printer was
selected, the DN_DEFAULTPRN flag is set. If a printer is specifically selected, the
flag is not set. All other bits in this member are reserved for internal use by the
dialog box procedure of the Print dialog box.

See Also
PrintDlg, DEVMODE

DOCINFO (3.1)

typedef struct { /* di */
intcbSize;
LPCSTR lpszDocName;
LPCSTR lpszOutput;

} DOCINFO;
The DOCINFO structure contains the input and output filenames used by the StartDoc function.

Member Description
cbSize Specifies the size of the structure, in bytes.
lpszDocName Points to a null-terminated string specifying the name of the document. This string

must not be longer than 32 characters, including the null terminating character.
lpszOutput Points to a null-terminated string specifying the name of an output file. This allows

a print job to be redirected to a file. If this value is NULL, output goes to the device
for the specified device context.

See Also
StartDoc

DRAWITEMSTRUCT (3.0)

typedef struct tagDRAWITEMSTRUCT { /* ditm */
UINT CtlType;
UINT CtlID;
UINT itemID;
UINT itemAction;
UINT itemState;
HWND hwndItem;
HDC hDC;
RECT rcItem;
DWORD itemData;

} DRAWITEMSTRUCT;
The DRAWITEMSTRUCT structure provides information the owner needs to determine how to paint an
owner-drawn control. The owner of the owner-drawn control receives a pointer to this structure as the
lParam parameter of the WM_DRAWITEM message.

Member Description
CtlType Specifies the control type. The values for control types follow:

Value Meaning
ODT_BUTTON Owner-drawn button
ODT_COMBOBOX Owner-drawn combo box
ODT_LISTBOX Owner-drawn list box
ODT_MENU Owner-drawn menu

CtlID Specifies the control identifier for a combo box, list box or button. This member is not
used for a menu.

itemID
Specifies the menu-item identifier for a menu or the index of the item in a list box or
combo box. For an empty list box or combo box, this member is a negative value. This
allows the application to draw only the focus rectangle at the coordinates specified by
the rcItem member even though there are no items in the control. This indicates to the
user whether the list box or combo box has input focus. The setting of the bits in the
itemAction member determines whether the rectangle is to be drawn as though the list
box or combo box has input focus.

itemAction Specifies the drawing action required. This member is one or more of the following
values:

Value Meaning
ODA_DRAWENTIRE Bit is set when the entire control needs to be drawn.
ODA_FOCUS Bit is set when the control gains or loses input focus.

The itemState member should be checked to determine
whether the control has focus.

ODA_SELECT Bit is set when only the selection status has changed.
The itemState member should be checked to determine
the new selection state.

itemState Specifies the visual state of the item after the current drawing action takes place; that is,
if a menu item is to be grayed, the state flag ODS_GRAYED will be set. Following are
the state flags:

Value Meaning
ODS_CHECKED Bit is set if the menu item is to be checked. This bit is used

only in a menu.
ODS_DISABLED Bit is set if the item is to be drawn as disabled.
ODS_FOCUS Bit is set if the item has input focus.
ODS_GRAYED Bit is set if the item is to be grayed. This bit is used only in a

menu.
ODS_SELECTED Bit is set if the item's status is selected.

hwndItem Specifies the window handle of the control for combo boxes, list boxes, and buttons.
For menus, it contains the handle of the menu (HMENU) containing the item.

hDC Identifies a device context; this device context must be used when performing drawing
operations on the control.

rcItem Specifies a rectangle in the device context identified by the hDC member that defines
the boundaries of the control to be drawn. Windows automatically clips anything the
owner draws in the device context for combo boxes, list boxes, and buttons, but it does
not clip menu items. When drawing menu items, it must ensure that the owner does not
draw outside the boundaries of the rectangle defined by the rcItem member.

itemData
Contains the value last assigned to the list box or combo box by an
LB_SETITEMDATA or CB_SETITEMDATA message. If the list box or combo box
has the LBS_HASSTRINGS or CBS_HASSTRINGS style, this value is initially zero.
Otherwise, this value is initially the value that was passed to the list box or combo box
in the lParam parameter of one of the following messages:

CB_ADDSTRING
CB_INSERTSTRING
LB_ADDSTRING
LB_INSERTSTRING

DRIVERINFOSTRUCT (3.1)

typedef struct tagDRIVERINFOSTRUCT {/* drvinfst */
UINT length;
HDRVRhDriver;
HINSTANCE hModule;
char szAliasName[128];

} DRIVERINFOSTRUCT;
The DRIVERINFOSTRUCT structure contains basic information about an installable device driver.

Member Description
length Specifies the size of the DRIVERINFOSTRUCT structure.
hDriver Identifies an instance of the installable driver.
hModule Identifies an installable driver module.
szAliasName Points to a null-terminated string that specifies the driver name or an alias under

which the driver was loaded.

See Also
GetDriverInfo

DRVCONFIGINFO (3.1)

typedef struct tagDRVCONFIGINFO { /* drvci */
DWORD dwDCISize;
LPCSTR lpszDCISectionName;
LPCSTR lpszDCIAliasName;

} DRVCONFIGINFO;
The DRVCONFIGINFO structure contains information about the entries for an installable device driver in
the SYSTEM.INI file. This structure is sent in the lParam parameter of the DRV_CONFIGURE and
DRV_INSTALL installable-driver messages.

Member Description
dwDCISize Specifies the size of the DRVCONFIGINFO structure.
lpszDCISectionName Points to a null-terminated string that specifies the name of the section in

the SYSTEM.INI file where driver information is recorded.
lpszDCIAliasName Points to a null-terminated string that specifies the driver name or an

alias under which the driver was loaded.

See Also
DRV_CONFIGURE, DRV_INSTALL

EVENTMSG (2.x)

typedef struct tagEVENTMSG { /* em */
UINT message;
UINT paramL;
UINT paramH;
DWORD time;

} EVENTMSG;
The EVENTMSG structure contains information from the Windows application queue. This structure is
used to store message information for the JournalPlaybackProc callback function.

Member Description
message Specifies the message.
paramL Specifies additional information about the message. The exact meaning depends on the

message value.
paramH Specifies additional information about the message. The exact meaning depends on the

message value.
time Specifies the time at which the message was posted.

See Also
JournalPlaybackProc, SetWindowsHook, MSG

FINDREPLACE (3.1)

#include <commdlg.h>
typedef struct tagFINDREPLACE { /* fr */

DWORDlStructSize;
HWND hwndOwner;
HINSTANCE hInstance;
DWORDFlags;
LPSTRlpstrFindWhat;
LPSTRlpstrReplaceWith;
UINT wFindWhatLen;
UINT wReplaceWithLen;
LPARAM lCustData;
UINT (CALLBACK* lpfnHook)(HWND, UINT, WPARAM, LPARAM);
LPCSTR lpTemplateName;

} FINDREPLACE;
The FINDREPLACE structure contains information that the system uses to initialize a system-defined
Find dialog box or Replace dialog box. After the user chooses the OK button to close the dialog box, the
system returns information about the user's selections in this structure.

Member Description
lStructSize Specifies the length of the structure, in bytes. This member is filled on input.
hwndOwner Identifies the window that owns the dialog box. This member can be any valid

window handle, but it must not be NULL.
If the FR_SHOWHELP flag is set, hwndOwner must identify the window that
owns the dialog box. The window procedure for this owner window receives a
notification message when the user chooses the Help button. (The identifier for
the notification message is the value returned by the RegisterWindowMessage
function when HELPMSGSTRING is passed as its argument.)
This member is filled on input.

hInstance Identifies a data block that contains a dialog box template specified by the
lpTemplateName member. This member is only used if the Flags member
specifies the FR_ENABLETEMPLATE or the
FR_ENABLETEMPLATEHANDLE flag; otherwise, this member is ignored.
This member is filled on input.

Flags Specifies the dialog box initialization flags. This member can be a combination
of the following values:

Value Meaning
FR_DIALOGTERM Indicates the dialog box is

closing. The window handle
returned by the FindText or
ReplaceText function is no
longer valid after this bit is set.
This flag is set by the system.

FR_DOWN Sets the direction of searches
through a document. If the flag
is set, the search direction is
down; if the flag is clear, the
search direction is up. Initially,
this flag specifies the state of
the Up and Down buttons; after
the user chooses the OK button
to close the dialog box, this flag
specifies the user's selection.

FR_ENABLEHOOK Enables the hook function
specified in the lpfnHook
member of this structure. This
flag can be set on input.

FR_ENABLETEMPLATE Causes the system to use the
dialog box template identified

by the hInstance and
lpTemplateName members to
display the dialog box. This flag
is used only to initialize the
dialog box.

FR_ENABLETEMPLATEHANDLE Indicates that the hInstance
member identifies a data block
that contains a pre-loaded dialog
box template. The system
ignores the lpTemplateName
member if this flag is specified.
This flag can be set on input.

FR_FINDNEXT Indicates that the application
should search for the next
occurrence of the string
specified by the lpstrFindWhat
member. This flag is set by the
system.

FR_HIDEMATCHCASE Hides and disables the Match
Case check box. This flag can
be set on input.

FR_HIDEWHOLEWORD Hides and disables the Match
Only Whole Word check box.
This flag can be set on input.

FR_HIDEUPDOWN Hides the Up and Down radio
buttons that control the direction
of searches through a document.
This flag can be set on input.

FR_MATCHCASE Specifies that the search is to be
case sensitive. This flag is set
when the dialog box is created
and may be changed by the
system in response to user input.

FR_NOMATCHCASE Disables the Match Case check
box. This flag is used only to
initialize the dialog box.

FR_NOUPDOWN Disables the Up and Down
buttons. This flag is used only
to initialize the dialog box.

FR_NOWHOLEWORD Disables the Match Whole
Word Only check box. This flag
is used only to initialize the
dialog box.

FR_REPLACE Indicates that the application
should replace the current
occurrence of the string
specified in the lpstrFindWhat
member with the string
specified in the
lpstrReplaceWith member. This
flag is set by the system.

FR_REPLACEALL Indicates that the application
should replace all occurrences
of the string specified in the
lpstrFindWhat member with the
string specified in the
lpstrReplaceWith member. This
flag is set by the system.

FR_SHOWHELP Causes the dialog box to show
the Help button. If this flag is
specified, the hwndOwner must

not be NULL. This flag can be
set on input.

FR_WHOLEWORD Checks the Match Whole Word
Only check box. Only whole
words that match the search
string will be considered. This
flag is set when the dialog box
is created and may be changed
by the system in response to
user input.

lpstrFindWhat Specifies the string to search for. If a string is specified when the dialog box is
created, the dialog box will initialize the Find What edit control with this string.
If the FR_FINDNEXT flag is set when the dialog box is created, the
application should search for an occurrence of this string (using the
FR_DOWN, FR_WHOLEWORD, and FR_MATCHCASE flags to further
define the direction and type of search). The application must allocate a buffer
for the string. This buffer should be at least 80 bytes long. This flag is set when
the dialog box is created and may be changed by the system in response to user
input.

lpstrReplaceWith Specifies the replacement string for replace operations. The FindText function
ignores this member. The ReplaceText function uses this string to initialize the
Replace With edit control. This flag is set when the dialog box is created and
may be changed by the system in response to user input.

wFindWhatLen Specifies the length, in bytes, of the buffer to which the lpstrFindWhat member
points. This member is filled on input.

wReplaceWithLen Specifies the length, in bytes, of the buffer to which the lpstrReplaceWith
member points. This member is filled on input.

lCustData Specifies application-defined data that the system passes to the hook function
identified by the lpfnHook member. The system passes a pointer to the
CHOOSECOLOR structure in the lParam parameter of the WM_INITDIALOG
message; this pointer can be used to retrieve the lCustData member.

lpfnHook Points to a hook function that processes messages intended for the dialog box.
To enable the hook function, an application must specify the
FR_ENABLEHOOK flag in the Flags member; otherwise, the system ignores
this structure member. The hook function must return zero to pass a message
that it didn't process back to the dialog box procedure in COMMDLG.DLL.
The hook function must return a nonzero value to prevent the dialog box
procedure in COMMDLG.DLL from processing a message it has already
processed.
This member is filled on input.

lpTemplateName Points to a null-terminated string that specifies the name of the resource file for
the dialog box template that is to be substituted for the dialog box template in
COMMDLG.DLL. An application can use the MAKEINTRESOURCE macro
for numbered dialog box resources. This member is used only if the Flags
member specifies the FR_ENABLETEMPLATE flag; otherwise, this member
is ignored.
This member is filled on input.

Comments
Some members of this structure are filled only when the dialog box is created, some are filled only when
the user closes the dialog box, and some have an initialization value that changes when the user closes the
dialog box. Whenever a description in the Members section does not specify how the value of a member is
assigned, the value is assigned only when the dialog box is created.

See Also
FindText, ReplaceText, MAKEINTRESOURCE

FIXED (3.1)

typedef struct tagFIXED { /* fx */
UINT fract;
intvalue;

} FIXED;
The FIXED structure contains the integral and fractional parts of a fixed-point real number.

Member Description
fract Specifies the fractional part of the number.
value Specifies the integer part of the number.

Comments
The FIXED structure is used to describe the elements of the MAT2 and POINTFX structures.

See Also
GetGlyphOutline, MAT2, POINTFX

FMS_GETDRIVEINFO

#include <wfext.h>
typedef struct tagFMS_GETDRIVEINFO { /* fmsgdi */

DWORD dwTotalSpace;
DWORD dwFreeSpace;
char szPath[260];
char szVolume[14];
char szShare[128];

} FMS_GETDRIVEINFO, FAR *LPFMS_GETDRIVEINFO;
The FMS_GETDRIVEINFO structure contains information about the drive that is selected in the currently
active File Manager window.

Member Description
dwTotalSpace Specifies the total amount of storage space, in bytes, on the disk associated with

the drive.
dwFreeSpace Specifies the amount of free storage space, in bytes, on the disk associated with the

drive.
szPath Specifies a null-terminated string that contains the path of the current directory.
szVolume Specifies a null-terminated string that contains the volume label of the disk

associated with the drive.
szShare Specifies a null-terminated string that contains the name of the sharepoint (if the

drive is being accessed through a network).

See Also
FMExtensionProc, FM_GETDRIVEINFO

FMS_GETFILESEL

#include <wfext.h>
typedef struct tagFMS_GETFILESEL { /* fmsgfs */

UINT wTime;
UINT wDate;
DWORD dwSize;
BYTE bAttr;
char szName[260];

} FMS_GETFILESEL;
The FMS_GETFILESEL structure contains information about a selected file in File Manager's directory
window or Search Results window.

Member Description
wTime Specifies the time when the file was created.
wDate Specifies the date when the file was created.
dwSize Specifies the size, in bytes, of the file.
bAttr Specifies the attributes of the file.
szName Specifies a null-terminated string (an OEM string) that contains the fully-qualified path of

the selected file. Before displaying this string, an extension should use the OemToAnsi
function to convert the string to a Windows ANSI string. If a string is to be passed to the
MS-DOS file system, an extension should not convert it.

See Also
FMExtensionProc, FM_GETFILESEL

FMS_LOAD

#include <wfext.h>
typedef struct tagFMS_LOAD { /* fmsld */

DWORD dwSize;
char szMenuName[MENU_TEXT_LEN];
HMENU hMenu;
UINT wMenuDelta;

} FMS_LOAD;
The FMS_LOAD structure contains information that File Manager uses to add a custom menu provided by
a File Manager extension dynamic-link library (DLL). The structure also provides a delta value that the
extension DLL can use to manipulate the custom menu after File Manager has loaded the menu.

Member Description
dwSize Specifies the length of the structure, in bytes.
szMenuName Contains a null-terminated string for a menu item that appears in File Manager's

main menu.
hMenu Identifies the pop-up menu that is added to File Manager's main menu.
wMenuDelta Specifies the menu-item delta value. To avoid conflicts with its own menu items, File

Manager renumbers the menu-item identifiers in the pop-up menu identified by the
hMenu member by adding this delta value to each identifier. An extension DLL that
needs to modify a menu item must identify the item to modify by adding the delta
value to the menu item's identifier. The value of this member can vary from session
to session.

See Also
FMExtensionProc

GLOBALENTRY (3.1)

#include <toolhelp.h>
typedef struct tagGLOBALENTRY { /* ge */

DWORD dwSize;
DWORD dwAddress;
DWORD dwBlockSize;
HGLOBAL hBlock;
WORD wcLock;
WORD wcPageLock;
WORD wFlags;
BOOL wHeapPresent;
HGLOBAL hOwner;
WORD wType;
WORD wData;
DWORD dwNext;
DWORD dwNextAlt;

} GLOBALENTRY;
The GLOBALENTRY structure contains information about a memory object on the global heap.

Member Description
dwSize Specifies the size of the GLOBALENTRY structure, in bytes.
dwAddress Specifies the linear address of the global-memory object.
dwBlockSize Specifies the size of the global-memory object, in bytes.
hBlock Identifies the global-memory object.
wcLock Specifies the lock count. If this value is zero, the memory object is not locked.
wcPageLock Specifies the page lock count. If this value is zero, the memory page is not locked.
wFlags Specifies additional information about the memory object. This member can be the

following value:

Value Meaning
GF_PDB_OWNER The process data block (PDB) for the task is the owner of

the memory object.
wHeapPresent Indicates whether a local heap exists within the global-memory object.
hOwner Identifies the owner of the global-memory object.
wType Specifies the memory type of the object. This type can be one of the following

values:

Value Meaning
GT_UNKNOWN The memory type is not known.
GT_DGROUP The object contains the default data segment and the

stack segment.
GT_DATA The object contains program data. (It may also

contain stack and local heap data.)
GT_CODE The object contains program code. If GT_CODE is

specified, the wData member contains the segment
number for the code.

GT_TASK The object contains the task database.
GT_RESOURCE The object contains the resource type specified in

wData.
GT_MODULE The object contains the module database.
GT_FREE The object belongs to the free memory pool.
GT_INTERNAL The object is reserved for internal use by Windows.
GT_SENTINEL The object is either the first or the last object on the

global heap.
GT_BURGERMASTER The object contains a table that maps selectors to

arena handles.
wData If the wType member is not GT_CODE or GT_RESOURCE, wData is zero.

If wType is GT_CODE, GT_DATA, or GT_DGROUP, wData contains the
segment number for the code.
If wType is GT_RESOURCE, wData specifies the type of resource. The type can
be one of the following values:

Value Meaning
GD_ACCELERATORS The object contains data from the accelerator

table.
GD_BITMAP The object contains data describing a bitmap.

This includes the bitmap color table and the
bitmap bits.

GD_CURSOR The object contains data describing a group of
cursors. This includes the height, width, color
count, bit count, and ordinal identifier for the
cursors.

GD_CURSORCOMPONENT The object contains data describing a single
cursor. This includes bitmap bits and bitmasks
for the cursor.

GD_DIALOG The object contains data describing controls
within a dialog box.

GD_ERRTABLE The object contains data from the error table.
GD_FONT The object contains data describing a single

font. This data is identical to data in a
Windows font file (.FNT).

GD_FONTDIR The object contains data describing a group of
fonts. This includes the number of fonts in the
resource and a table of metrics for each of
these fonts.

GD_ICON The object contains data describing a group of
icons. This includes the height, width, color
count, bit count, and ordinal identifier for the
icons.

GD_ICONCOMPONENT The object contains data describing a single
icon. This includes bitmap bits and bitmaps for
the icon.

GD_MENU The object contains menu data for normal and
pop-up menu items.

GD_NAMETABLE The object contains data from the name table.
GD_RCDATA The object contains data from a user-defined

resource.
GD_STRING The object contains data from the string table.
GD_USERDEFINED The resource has an unknown resource

identifier or is an application-specific named
type.

dwNext Reserved for internal use by Windows.
dwNextAlt Reserved for internal use by Windows.

See Also
GlobalEntryHandle, GlobalEntryModule, GlobalFirst, GlobalNext, GLOBALINFO

GLOBALINFO (3.1)

#include <toolhelp.h>
typedef struct tagGLOBALINFO { /* gi */

DWORD dwSize;
WORD wcItems;
WORD wcItemsFree;
WORD wcItemsLRU;

} GLOBALINFO;
The GLOBALINFO structure contains information about the global heap.

Member Description
dwSize Specifies the size of the GLOBALINFO structure, in bytes.
wcItems Specifies the total number of items on the global heap.
wcItemsFree Specifies the number of free items on the global heap.
wcItemsLRU Specifies the number of "least recently used" (LRU) items on the global heap.

See Also
GlobalInfo, GLOBALENTRY

GLYPHMETRICS (3.1)

typedef struct tagGLYPHMETRICS { /* gm */
UINT gmBlackBoxX;
UINT gmBlackBoxY;
POINT gmptGlyphOrigin;
int gmCellIncX;
int gmCellIncY;

} GLYPHMETRICS;
The GLYPHMETRICS structure contains information about the placement and orientation of a glyph in a
character cell.

Member Description
gmBlackBoxX Specifies the width of the smallest rectangle that completely encloses the glyph

(its "black box").
gmBlackBoxY Specifies the height of the smallest rectangle that completely encloses the glyph

(its "black box").
gmptGlyphOrigin Specifies the x- and y-coordinates of the upper-left corner of the smallest

rectangle that completely encloses the glyph.
gmCellIncX Specifies the horizontal distance from the origin of the current character cell to

the origin of the next character cell.
gmCellIncY Specifies the vertical distance from the origin of the current character cell to the

origin of the next character cell.

Comments
Values in the GLYPHMETRICS structure are specified in logical units.

See Also
GetGlyphOutline, POINT

HANDLETABLE (2.x)

typedef struct tagHANDLETABLE {/* ht */
HGDIOBJ objectHandle[1];

} HANDLETABLE;
The HANDLETABLE structure is an array of handles, each of which identifies a graphics device interface
(GDI) object.

Member Description
objectHandle Contains an array of handles.

See Also
EnumMetaFile, PlayMetaFileRecord

HARDWAREHOOKSTRUCT (3.1)

typedef struct tagHARDWAREHOOKSTRUCT { /* hhs */
HWND hWnd;
UINT wMessage;
WPARAM wParam;
LPARAM lParam;

} HARDWAREHOOKSTRUCT;
The HARDWAREHOOKSTRUCT contains information about a hardware message placed in the system
message queue.

Member Description
hWnd Identifies the window that will receive the message.
wMessage Specifies the message identifier.
wParam Specifies additional information about the message. The exact meaning depends on the

wMessage parameter.
lParam Specifies additional information about the message. The exact meaning depends on the

wMessage parameter.

HELPWININFO (3.1)

typedef struct { /* hi */
int wStructSize;
int x;
int y;
int dx;
int dy;
int wMax;
char rgchMember[2];

} HELPWININFO;
The HELPWININFO structure contains the size and position of a secondary help window. An application
can set this size by calling the WinHelp function with the HELP_SETWINPOS value.

Member Description
wStructSize Specifies the size of the HELPWININFO structure.
x Specifies the x-coordinate of the upper-left corner of the window.
y Specifies the y-coordinate of the upper-left corner of the window.
dx Specifies the width of the window.
dy Specifies the height of the window.
wMax Specifies whether the window should be maximized or set to the given position and

dimensions. If this value is 1, the window is maximized. If it is zero, the size and
position of the window are determined by the x, y, dx, and dy members.

rgchMember Specifies the name of the window.

Comments
Microsoft Windows Help divides the display into 1024 units in both the x- and y-directions. To create a
secondary window that fills the upper-left quadrant of the display, for example, an application would
specify zero for the x and y members and 512 for the dx and dy members.

See Also
WinHelp

HSZPAIR (3.1)

#include <ddeml.h>
typedef struct tagHSZPAIR { /* hp */

HSZ hszSvc;
HSZ hszTopic;

} HSZPAIR;
The HSZPAIR structure contains a dynamic data exchange (DDE) service name and topic name. A DDE
server application can use this structure during an XTYP_WILDCONNECT transaction to enumerate the
service/topic name pairs that it supports.

Member Description
hszSvc Identifies a service name.
hszTopic Identifies a topic name.

See Also
XTYP_WILDCONNECT

KERNINGPAIR (3.1)

typedef struct tagKERNINGPAIR { /* kp */
WORD wFirst;
WORD wSecond;
int iKernAmount;

} KERNINGPAIR;
The KERNINGPAIR structure defines a kerning pair.

Member Description
wFirst Specifies the character code for the first character in the kerning pair.
wSecond Specifies the character code for the second character in the kerning pair.
iKernAmount Specifies the amount that this pair will be kerned if they appear side by side in the

same font and size. This value is typically negative, because pair-kerning usually
results in two characters being set more tightly than normal. The value is given in
logical units--that is, it depends on the current mapping mode.

See Also
GetKerningPairs

LOCALENTRY (3.1)

#include <toolhelp.h>
typedef struct tagLOCALENTRY { /* le */

DWORD dwSize;
HLOCAL hHandle;
WORD wAddress;
WORD wSize;
WORD wFlags;
WORD wcLock;
WORD wType;
WORD hHeap;
WORD wHeapType;
WORD wNext;

} LOCALENTRY;
The LOCALENTRY structure contains information about a memory object on the local heap.

Member Description
dwSize Specifies the size of the LOCALENTRY structure, in bytes.
hHandle Identifies the local-memory object.
wAddress Specifies the address of the local-memory object.
wSize Specifies the size of the local-memory object, in bytes.
wFlags Specifies whether the memory object is fixed, free, or movable. This member can be

one of the following values:

Value Meaning
LF_FIXED The object resides in a fixed memory location.
LF_FREE The object is part of the free memory pool.
LF_MOVEABLE The object can be moved in order to compact memory.

wcLock Specifies the lock count. If this value is zero, the memory object is not locked.
wType Specifies the content of the memory object. This member can be one of the following

values:

Value Meaning
LT_FREE The object belongs to the free

memory pool.
LT_GDI_BITMAP The object contains a bitmap

header.
LT_GDI_BRUSH The object contains a brush.
LT_GDI_DC The object contains a device

context.
LT_GDI_DISABLED_DC The object is reserved for internal

use by Windows.
LT_GDI_FONT The object contains a font header.
LT_GDI_MAX The object is reserved for internal

use by Windows.
LT_GDI_METADC The object contains a metafile

device context.
LT_GDI_METAFILE The object contains a metafile

header.
LT_GDI_PALETTE The object contains a palette.
LT_GDI_PEN The object contains a pen.
LT_GDI_RGN The object contains a region.
LT_NORMAL The object is reserved for internal

use by Windows.
LT_USER_ATOMS The object contains an atom

structure.

LT_USER_BWL The object is reserved for internal
use by Windows.

LT_USER_CBOX The object contains a combo-box
structure.

LT_USER_CHECKPOINT The object is reserved for internal
use by Windows.

LT_USER_CLASS The object contains a class
structure.

LT_USER_CLIP The object is reserved for internal
use by Windows.

LT_USER_DCE The object is reserved for internal
use by Windows.

LT_USER_ED The object contains an edit-control
structure.

LT_USER_HANDLETABLE The object is reserved for internal
use by Windows.

LT_USER_HOOKLIST The object is reserved for internal
use by Windows.

LT_USER_HOTKEYLIST The object is reserved for internal
use by Windows.

LT_USER_LBIV The object contains a list-box
structure.

LT_USER_LOCKINPUTSTATE The object is reserved for internal
use by Windows.

LT_USER_MENU The object contains a menu
structure.

LT_USER_MISC The object is reserved for internal
use by Windows.

LT_USER_MWP The object is reserved for internal
use by Windows.

LT_USER_OWNERDRAW The object is reserved for internal
use by Windows.

LT_USER_PALETTE The object is reserved for internal
use by Windows.

LT_USER_POPUPMENU The object is reserved for internal
use by Windows.

LT_USER_PROP The object contains a window-
property structure.

LT_USER_SPB The object is reserved for internal
use by Windows.

LT_USER_STRING The object is reserved for internal
use by Windows.

LT_USER_USERSEEUSERDOALLOC The object is reserved for internal
use by Windows.

LT_USER_WND The object contains a window
structure.

hHeap Identifies the local-memory heap.
wHeapType Specifies the type of local heap. This type can be one of the following values:

Value Meaning
NORMAL_HEAP The heap is the default heap.
USER_HEAP The heap is used by the USER module.
GDI_HEAP The heap is used by the GDI module.

wNext Specifies the next entry in the local heap. This member is reserved for internal use by
Windows.

Comments
The wType values are for informational purposes only. Microsoft reserves the right to change or delete
these tags at any time. Applications should never directly change items on the system heaps, as this

information will change in future versions. The wType values for the USER module are included only in
the debugging versions of USER.EXE.

See Also
LocalFirst, LocalNext, LOCALINFO

LOCALINFO (toolhelp 3.1)

#include <toolhelp.h>
typedef struct tagLOCALINFO { /* li */

DWORD dwSize;
WORD wcItems;

} LOCALINFO;
The LOCALINFO structure contains information about the local heap.

Member Description
dwSize Specifies the size of the LOCALINFO structure, in bytes.
wcItems Specifies the total number of items on the local heap.

See Also
LocalInfo, LOCALENTRY

LOGBRUSH (2.x)

typedef struct tagLOGBRUSH { /* lb */
UINTlbStyle;
COLORREF lbColor;
int lbHatch;

} LOGBRUSH;
The LOGBRUSH structure defines the style, color, and pattern of a physical brush to be created by using
the CreateBrushIndirect function.

Member Description
lbStyle Specifies the brush style. This member can be one of the following values:

Value Meaning
BS_DIBPATTERN Specifies a pattern brush defined by a device-independent

bitmap (DIB) specification.
BS_HATCHED Specifies a hatched brush.
BS_HOLLOW Specifies a hollow brush.
BS_PATTERN Specifies a pattern brush defined by a memory bitmap.
BS_NULL Equivalent to BS_HOLLOW.
BS_SOLID Specifies a solid brush.

lbColor Specifies the color in which the brush is to be drawn. If the lbStyle member is the
BS_HOLLOW or BS_PATTERN value, lbColor is ignored.
If lpStyle is the BS_DIBPATTERN value, the low-order word of lbColor specifies whether
the bmiColors members of the BITMAPINFO structure contain explicit RGB values or
indexes into the currently realized logical palette. The lbColor member must be one of the
following values:

Value Meaning
DIB_PAL_COLORS Color table consists of an array of 16-bit indexes into the

currently realized logical palette.
DIB_RGB_COLORS Color table contains literal RGB values.

lbHatch Specifies a hatch style. The meaning depends on the brush style.
If the lbStyle member is the BS_DIBPATTERN style, the lbHatch member contains a
handle to a packed DIB. To obtain this handle, an application calls the GlobalAlloc function
to allocate a global memory object and then fills the memory with the packed DIB. A
packed DIB consists of a BITMAPINFO structure immediately followed by the array of
bytes which define the pixels of the bitmap.
If the lbStyle member is the BS_HATCHED style, the lbHatch member specifies the
orientation of the lines used to create the hatch. This member can be one of the following
values:

Value Meaning
HS_BDIAGONAL 45-degree upward hatch (left to right)
HS_CROSS Horizontal and vertical cross-hatch
HS_DIAGCROSS 45-degree cross-hatch
HS_FDIAGONAL 45-degree downward hatch (left to right)
HS_HORIZONTAL Horizontal hatch
HS_VERTICAL Vertical hatch
If the lbStyle member is the BS_PATTERN style, lbHatch must be a handle to the bitmap
that defines the pattern.
If the lbStyle member is the BS_SOLID or the BS_HOLLOW style, lbHatch is ignored.

See Also
BITMAPINFO, CreateBrushIndirect, CreateBrushIndirect, GlobalAlloc

LOGFONT (2.x)

typedef struct tagLOGFONT {/* lf */
int lfHeight;
int lfWidth;
int lfEscapement;
int lfOrientation;
int lfWeight;
BYTE lfItalic;
BYTE lfUnderline;
BYTE lfStrikeOut;
BYTE lfCharSet;
BYTE lfOutPrecision;
BYTE lfClipPrecision;
BYTE lfQuality;
BYTE lfPitchAndFamily;
BYTE lfFaceName[LF_FACESIZE];

} LOGFONT;
The LOGFONT structure defines the attributes of a font, a drawing object used to write text on a display
surface.

Member Description
lfHeight Specifies the desired height, in logical units, for the font. If this value is greater

than zero, it specifies the cell height of the font. If it is less than zero, it
specifies the character height of the font. (Character height is the cell height
minus the internal leading. Applications that specify font height in points
typically use a negative number for this member.) If this value is zero, the font
mapper uses a default height. The font mapper chooses the largest physical font
that does not exceed the requested size (or the smallest font, if all the fonts
exceed the requested size). The absolute value of the lfHeight member must
not exceed 16,384 after it is converted to device units.

lfWidth Specifies the average width, in logical units, of characters in the font. If this
value is zero, the font mapper chooses a reasonable default width for the
specified font height. (The default width is chosen by matching the aspect ratio
of the device against the digitization aspect ratio of the available fonts. The
closest match is determined by the absolute value of the difference.) The
widths of characters in TrueType fonts are scaled by a factor of this member
divided by the width of the characters in the physical font (as specified by the
tmAveCharWidth member of the TEXTMETRIC structure).

lfEscapement Specifies the angle, in tenths of degrees, between the base line of a character
and the x-axis. The angle is measured in a counterclockwise direction from the
x-axis for left-handed coordinate systems (that is, MM_TEXT, in which the y
direction is down) and in a clockwise direction from the x-axis for right-
handed coordinate systems (in which the y direction is up).

lfOrientation Specifies the orientation of the characters. This value is ignored.
lfWeight Specifies the font weight. This member can be one of the following values:

Constant Value
FW_DONTCARE 0
FW_THIN 100
FW_EXTRALIGHT 200
FW_ULTRALIGHT 200
FW_LIGHT 300
FW_NORMAL 400
FW_REGULAR 400
FW_MEDIUM 500
FW_SEMIBOLD 600
FW_DEMIBOLD 600
FW_BOLD 700
FW_EXTRABOLD 800

FW_ULTRABOLD 800
FW_BLACK 900
FW_HEAVY 900
The actual appearance of the font depends on the type face. Some fonts have
only FW_NORMAL, FW_REGULAR, and FW_BOLD weights. If
FW_DONTCARE is specified, a default weight is used.

lfItalic Specifies an italic font if nonzero.
lfUnderline Specifies an underlined font if nonzero.
lfStrikeOut Specifies a strikeout font if nonzero.
lfCharSet Specifies the character set of the font. The following values are predefined:

Constant Value
ANSI_CHARSET 0
DEFAULT_CHARSET 1
SYMBOL_CHARSET 2
SHIFTJIS_CHARSET 128
OEM_CHARSET 255
The DEFAULT_CHARSET value is not used by the font mapper. An
application can use this value to allow the name and size of a font to fully
describe the logical font. If the specified font name does not exist, a font from
any character set can be substituted for the specified font; applications should
use the DEFAULT_CHARSET value sparingly to avoid unexpected results.
The OEM character set is system-dependent.
Fonts with other character sets may exist in the system. If an application uses a
font with an unknown character set, it should not attempt to translate or
interpret strings that are to be rendered with that font.

lfOutPrecision Specifies the desired output precision. The output precision defines how
closely the output must match the height, width, character orientation,
escapement, and pitch of the requested font. This member can be one of the
following values:
OUT_CHARACTER_PRECIS OUT_STRING_PRECIS
OUT_DEFAULT_PRECIS OUT_STROKE_PRECIS
OUT_DEVICE_PRECIS OUT_TT_PRECIS
OUT_RASTER_PRECIS OUT_TT_ONLY_PRECIS
Applications can use the values OUT_DEVICE_PRECIS,
OUT_RASTER_PRECIS, and OUT_TT_PRECIS to control how the font
mapper chooses a font when the system contains more than one font with a
given name. For example, if a system contains a font named "Symbol" in raster
and TrueType form, specifying OUT_TT_PRECIS would force the font
mapper to choose the TrueType version. (Specifying OUT_TT_PRECIS forces
the font mapper to choose a TrueType font whenever the specified font name
matches a device or raster font, even when there is no TrueType font with the
same name.)
An application can use TrueType fonts exclusively by specifying
OUT_TT_ONLY_PRECIS. When this value is specified, the system chooses a
TrueType font even when the name specified in the lfFaceName member
matches a raster or vector font.

lfClipPrecision Specifies the desired clipping precision. The clipping precision defines how to
clip characters that are partially outside the clipping region. This member can
be any one of the following values:
CLIP_CHARACTER_PRECIS CLIP_MASK
CLIP_DEFAULT_PRECIS CLIP_STROKE_PRECIS
CLIP_EMBEDDED CLIP_TT_ALWAYS
CLIP_LH_ANGLES
To use an embedded read-only font, applications must specify the
CLIP_EMBEDDED value.
To achieve consistent rotation of device, TrueType, and vector fonts, an
application can use the OR operator to combine the CLIP_LH_ANGLES value

with any of the other lfClipPrecision values. If the CLIP_LH_ANGLES bit is
set, the rotation for all fonts is dependent on whether the orientation of the
coordinate system is left-handed or right-handed. If CLIP_LH_ANGLES is not
set, device fonts always rotate counter-clockwise, but the rotation of other fonts
is dependent on the orientation of the coordinate system. (For more
information about the orientation of coordinate systems, see the description of
the lfEscapement member.)

lfQuality Specifies the output quality of the font, which defines how carefully the
graphics device interface (GDI) must attempt to match the logical-font
attributes to those of an actual physical font. This member can be one of the
following values:

Value Meaning
DEFAULT_QUALITY Appearance of the font does not matter.
DRAFT_QUALITY Appearance of the font is less important than

when the PROOF_QUALITY value is used. For
GDI raster fonts, scaling is enabled. Bold, italic,
underline, and strikeout fonts are synthesized if
necessary.

PROOF_QUALITY Character quality of the font is more important
than exact matching of the logical-font
attributes. For GDI raster fonts, scaling is
disabled and the font closest in size is chosen.
Bold, italic, underline, and strikeout fonts are
synthesized if necessary.

lfPitchAndFamily Specifies the pitch and family of the font. The two low-order bits, which
specify the pitch of the font, can be one of the following values:
DEFAULT_PITCH VARIABLE_PITCH
FIXED_PITCH
The four high-order bits of the member, which specify the font family, can be
one of the following values:

Value Meaning
FF_DECORATIVE Novelty fonts. Old English is an example.
FF_DONTCARE Don't care or don't know.
FF_MODERN Fonts with constant stroke width, with or without

serifs. Pica, Elite, and Courier New are examples.
FF_ROMAN Fonts with variable stroke width and with serifs.

Times New Roman and New Century Schoolbook
are examples.

FF_SCRIPT Fonts designed to look like handwriting. Script and
Cursive are examples.

FF_SWISS Fonts with variable stroke width and without serifs.
MS Sans Serif is an example.

An application can specify a value for the lfPitchAndFamily member by using
the Boolean OR operator to join a pitch constant with a family constant.
Font families describe the look of a font in a general way. They are intended
for specifying fonts when the exact typeface desired is not available.

lfFaceName Specifies the typeface name of the font. The length of this string must not
exceed LF_FACESIZE - 1. The EnumFontFamilies function can be used to
enumerate the typeface names of all currently available fonts. If lfFaceName is
NULL, GDI uses a device-dependent typeface.

Comments
Applications can use the default settings for most of these members when creating a logical font. The
members that should always be given specific values are lfHeight and lfFaceName. If lfHeight and
lfFaceName are not set by the application, the logical font that is created is device-dependent.

See Also
CreateFontIndirect, EnumFontFamilies

LOGPALETTE (3.0)

typedef struct tagLOGPALETTE { /* lgpl */
WORD palVersion;
WORD palNumEntries;
PALETTEENTRY palPalEntry[1];

} LOGPALETTE;
The LOGPALETTE structure defines a logical color palette.

Member Description
palVersion Specifies the Windows version number for the structure. This value should be

0x300 for Windows 3.0 and later.
palNumEntries Specifies the number of palette color entries.
palPalEntry Specifies an array of PALETTEENTRY structures that define the color and usage

of each entry in the logical palette.

Comments
The colors in the palette entry table should appear in order of importance, because entries earlier in the
logical palette are most likely to be placed in the system palette.

This structure is passed as a parameter to the CreatePalette function.

See Also
CreatePalette, PALETTEENTRY

LOGPEN (2.x)

typedef struct tagLOGPEN { /* lgpn */
UINTlopnStyle;
POINT lopnWidth;
COLORREF lopnColor;

} LOGPEN;
The LOGPEN structure defines the style, width, and color of a pen, a drawing object used to draw lines
and borders. The CreatePenIndirect function uses the LOGPEN structure.

Member Description
lopnStyle Specifies the pen type. This member can be one of the following values:

Value Meaning
PS_SOLID Creates a solid pen.
PS_DASH Creates a dashed pen. (Valid only when the pen width is 1.

)
PS_DOT Creates a dotted pen. (Valid only when the pen width is 1.)
PS_DASHDOT Creates a pen with alternating dashes and dots. (Valid only

when the pen width is 1.)
PS_DASHDOTDOT Creates a pen with alternating dashes and double dots.

(Valid only when the pen width is 1.)
PS_NULL Creates a null pen.
PS_INSIDEFRAME Creates a pen that draws a line inside the frame of closed

shapes produced by graphics device interface (GDI) output
functions that specify a bounding rectangle (for example,
the Ellipse, Rectangle, RoundRect, Pie, and Chord
functions). When this style is used with GDI output
functions that do not specify a bounding rectangle (for
example, the LineTo function), the drawing area of the pen
is not limited by a frame.

If a pen has the PS_INSIDEFRAME style and a color that does not match a color in the
logical color table, the pen is drawn with a dithered color. The PS_SOLID pen style
cannot be used to create a pen with a dithered color. The PS_INSIDEFRAME style is
identical to PS_SOLID if the pen width is less than or equal to 1.
When the PS_INSIDEFRAME style is used with GDI objects produced by functions
other than Ellipse, Rectangle, and RoundRect, the line may not be completely inside the
specified frame.

lopnWidth Specifies the pen width, in logical units. If the lopnWidth member is zero, the pen is one
pixel wide on raster devices regardless of the current mapping mode.

lopnColor Specifies the pen color.

Comments
The y value in the POINT structure for the lopnWidth member is not used.

See Also
CreatePenIndirect, POINT

The following shows how the various pens appear when used to draw a rectangle:

MAT2 (3.1)

typedef struct tagMAT2 { /* mat2 */
FIXED eM11;
FIXED eM12;
FIXED eM21;
FIXED eM22;

} MAT2;
The MAT2 structure contains the values for a transformation matrix.

Member Description
eM11 Specifies a fixed-point value for the M11 component of a 2-by-2 transformation matrix.
eM12 Specifies a fixed-point value for the M12 component of a 2-by-2 transformation matrix.
eM21 Specifies a fixed-point value for the M21 component of a 2-by-2 transformation matrix.
eM22 Specifies a fixed-point value for the M22 component of a 2-by-2 transformation matrix.

Comments
The identity matrix produces a transformation in which the transformed graphical object is identical to the
source object. In the identity matrix, the value of eM11 is 1, the value of eM12 is zero, the value of eM21
is zero, and the value of eM22 is 1.

See Also
GetGlyphOutline, FIXED

MDICREATESTRUCT (3.0)

typedef struct tagMDICREATESTRUCT {/* mdic */
LPCSTR szClass;
LPCSTR szTitle;
HINSTANCE hOwner;
int x;
int y;
int cx;
int cy;
DWORDstyle;
LPARAM lParam;

} MDICREATESTRUCT;
The MDICREATESTRUCT structure contains information about the class, title, owner, location, and size
of a multiple document interface (MDI) child window.

Member Description
szClass Contains a long pointer to the application-defined class of the MDI child window.
szTitle Contains a long pointer to the window title of the MDI child window.
hOwner Identifies the instance handle of the application creating the MDI child window.
x Specifies the initial position of the left side of the MDI child window. If this member is set

to CW_USEDEFAULT, the MDI child window is assigned a default horizontal position.
y Specifies the initial position of the top edge of the MDI child window. If this member is set

to CW_USEDEFAULT, the MDI child window is assigned a default vertical position.
cx Specifies the initial width of the MDI child window. If this member is set to

CW_USEDEFAULT, the MDI child window is assigned a default width.
cy Specifies the initial height of the MDI child window. If this member is set to

CW_USEDEFAULT, the MDI child window is assigned a default height.
style Specifies additional styles for the MDI child window. If the MDI client window was created

with the MDIS_ALLCHILDSTYLES window style, the style member may be any
combination of the window styles documented with the CreateWindow function. Otherwise,
it may be one or more of the following values:

Value Meaning
WS_MINIMIZE MDI child window is created in a minimized state.
WS_MAXIMIZE MDI child window is created in a maximized state.
WS_HSCROLL MDI child window is created with a horizontal scroll bar.
WS_VSCROLL MDI child window is created with a vertical scroll bar.

lParam Specifies an application-defined 32-bit value.

Comments
When the MDI child window is created, Windows sends the WM_CREATE message to the window. The
lParam parameter of the WM_CREATE message contains a pointer to a CREATESTRUCT structure. The
lpCreateParams member of CREATESTRUCT contains a pointer to the MDICREATESTRUCT structure
passed with the WM_MDICREATE message that created the MDI child window.

See Also
CREATESTRUCT

MEASUREITEMSTRUCT (3.0)

typedef struct tagMEASUREITEMSTRUCT { /* mi */
UINT CtlType;
UINT CtlID;
UINT itemID;
UINT itemWidth;
UINT itemHeight;
DWORD itemData;

} MEASUREITEMSTRUCT;
The MEASUREITEMSTRUCT structure informs Windows of the dimensions of an owner-drawn control.
This allows Windows to process user interaction with the control correctly. The owner of an owner-drawn
control receives a pointer to this structure as the lParam parameter of an WM_MEASUREITEM message.
The owner-drawn control sends this message to its owner window when the control is created. The owner
then fills in the appropriate members in the structure for the control and returns. This structure is common
to all owner-drawn controls.

Member Description
CtlType Specifies the control type. The values for control types are as follows:

Value Meaning
ODT_BUTTON Owner-drawn button
ODT_COMBOBOX Owner-drawn combo box
ODT_LISTBOX Owner-drawn list box
ODT_MENU Owner-drawn menu

CtlID Specifies the control identifier for a combo box, list box, or button. This member is not
used for a menu.

itemID Specifies the menu-item identifier for a menu or the list-box item identifier for a
variable-height combo box or list box. This member is not used for a fixed-height
combo box or list box or for a button.

itemWidth Specifies the width of a menu item. The owner of the owner-drawn menu item must fill
this member before returning from the message.

itemHeight Specifies the height of an individual item in a list box or a menu. Before returning from
the message, the owner of the owner-drawn combo box, list box, or menu item must fill
out this member. The maximum height of a list box item is 255.

itemData Contains the value that was passed to the combo box or list box in the lParam parameter
of one of the following messages:

CB_ADDSTRING
CB_INSERTSTRING
LB_ADDSTRING
LB_INSERTSTRING

Comments
Failure to fill out the proper members in the MEASUREITEMSTRUCT structure will cause improper
operation of the control.

See Also
WM_MEASUREITEM

MEMMANINFO (toolhelp 3.1)

#include <toolhelp.h>
typedef struct tagMEMMANINFO { /* mmi */

DWORD dwSize;
DWORD dwLargestFreeBlock;
DWORD dwMaxPagesAvailable;
DWORD dwMaxPagesLockable;
DWORD dwTotalLinearSpace;
DWORD dwTotalUnlockedPages;
DWORD dwFreePages;
DWORD dwTotalPages;
DWORD dwFreeLinearSpace;
DWORD dwSwapFilePages;
WORD wPageSize;

} MEMMANINFO;
The MEMMANINFO structure contains information about the status and performance of the virtual-
memory manager. If the memory manager is running in standard mode, the only valid member of this
structure is the dwLargestFreeBlock member.

Member Description
dwSize Specifies the size of the MEMMANINFO structure, in bytes.
dwLargestFreeBlock Specifies the largest free block of contiguous linear memory in the

system, in bytes.
dwMaxPagesAvailable Specifies the maximum number of pages that could be allocated in the

system (the value of dwLargestFreeBlock divided by the value of
wPageSize).

dwMaxPagesLockable Specifies the maximum number of pages that could be allocated and
locked.

dwTotalLinearSpace Specifies the size of the total linear address space, in pages.
dwTotalUnlockedPages Specifies the number of unlocked pages in the system. This value

includes free pages.
dwFreePages Specifies the number of pages that are not in use.
dwTotalPages Specifies the total number of pages the virtual-memory manager

manages. This value includes free, locked, and unlocked pages.
dwFreeLinearSpace Specifies the amount of free memory in the linear address space, in

pages.
dwSwapFilePages Specifies the number of pages in the system swap file.
wPageSize Specifies the system page size, in bytes.

See Also
MemManInfo

MENUITEMTEMPLATE (3.0)

typedef struct { /* mit */
UINT mtOption;
UINT mtID;
char mtString[1];

} MENUITEMTEMPLATE;
The MENUITEMTEMPLATE structure defines a menu item.

Member Description
mtOption Specifies a mask of one or more predefined menu options that specify the appearance of

the menu item. The menu options follow:

Value Meaning
MF_CHECKED Item has a check mark next to it.
MF_GRAYED Item is initially inactive and drawn with a gray effect.
MF_HELP Item has a vertical separator to its left.
MF_MENUBARBREAK Item is placed in a new column. The old and new columns

are separated by a bar.
MF_MENUBREAK Item is placed in a new column.
MF_OWNERDRAW Owner of the menu is responsible for drawing all visual

aspects of the menu item, including highlighted, checked
and inactive states. This option is not valid for a top-level
menu item.

MF_POPUP Item displays a sublist of menu items when selected.
mtID Specifies an identification code for a non-pop-up menu item. The

MENUITEMTEMPLATE structure for a pop-up menu item does not contain the mtID
member.

mtString Specifies a null-terminated string that contains the name of the menu item.

See Also
LoadMenuIndirect, MENUITEMTEMPLATEHEADER

MENUITEMTEMPLATEHEADER (3.0)

typedef struct { /* mith */
UINT versionNumber;
UINT offset;

} MENUITEMTEMPLATEHEADER;
A complete menu template consists of a header and one or more menu-item lists.

Member Description
versionNumber Specifies the version number. This member should be zero.
offset Specifies the offset from the end of the header, in bytes, where the menu-item list

begins.

Comments
One or more MENUITEMTEMPLATE structures are combined to form the menu-item list.

See Also
MENUITEMTEMPLATE

METAFILEPICT (2.x)

typedef struct tagMETAFILEPICT { /* mfp */
int mm;
int xExt;
int yExt;
HMETAFILE hMF;

} METAFILEPICT;
The METAFILEPICT structure defines the metafile picture format used for exchanging metafile data
through the clipboard.

Member Description
mm Specifies the mapping mode in which the picture is drawn.
xExt Specifies the size of the metafile picture for all modes except the MM_ISOTROPIC and

MM_ANISOTROPIC modes. The x-extent specifies the width of the rectangle within which
the picture is drawn. The coordinates are in units that correspond to the mapping mode.

yExt Specifies the size of the metafile picture for all modes except the MM_ISOTROPIC and
MM_ANISOTROPIC modes. The y-extent specifies the height of the rectangle within
which the picture is drawn. The coordinates are in units that correspond to the mapping
mode.
For MM_ISOTROPIC and MM_ANISOTROPIC modes, which can be scaled, the xExt and
yExt members contain an optional suggested size in MM_HIMETRIC units. For
MM_ANISOTROPIC pictures, xExt and yExt can be zero when no suggested size is
supplied. For MM_ISOTROPIC pictures, an aspect ratio must be supplied even when no
suggested size is given. (If a suggested size is given, the aspect ratio is implied by the size.)
To give an aspect ratio without implying a suggested size, set xExt and yExt to negative
values whose ratio is the appropriate aspect ratio. The magnitude of the negative xExt and
yExt values will be ignored; only the ratio will be used.

hMF Identifies a memory metafile.

See Also
SetClipboardData

METAHEADER (3.1)

typedef struct tagMETAHEADER { /* mh */
UINT mtType;
UINT mtHeaderSize;
UINT mtVersion;
DWORD mtSize;
UINT mtNoObjects;
DWORD mtMaxRecord;
UINT mtNoParameters;

} METAHEADER;
The METAHEADER structure contains information about a metafile.

Member Description
mtType Specifies whether the metafile is in memory or recorded in a disk file. This

member can be one of the following values:

Value Meaning
1 Metafile is in memory.
2 Metafile is in a disk file.

mtHeaderSize Specifies the size, in words, of the metafile header.
mtVersion Specifies the Windows version number. The version number for metafiles that

support device-independent bitmaps (DIBs) is 0x0300. Otherwise, the version
number is 0x0100.

mtSize Specifies the size, in words, of the file.
mtNoObjects Specifies the maximum number of objects that exist in the metafile at the same

time.
mtMaxRecord Specifies the size, in words, of the largest record in the metafile.
mtNoParameters Reserved.

See Also
METARECORD

METARECORD (3.1)

typedef struct tagMETARECORD { /* mr */
DWORD rdSize;
UINT rdFunction;
UINT rdParm[1];

} METARECORD;
The METARECORD structure contains a metafile record.

Member Description
rdSize Specifies the size, in words, of the record.
rdFunction Specifies the function number.
rdParm Specifies an array of words containing the function parameters, in the reverse order in

which they are passed to the function.

See Also
METAHEADER

MINMAXINFO (3.1)

typedef struct tagMINMAXINFO { /* mmi */
POINT ptReserved;
POINT ptMaxSize;
POINT ptMaxPosition;
POINT ptMinTrackSize;
POINT ptMaxTrackSize;

} MINMAXINFO;
The MINMAXINFO structure contains information about a window's maximized size and position and its
minimum and maximum tracking size.

Member Description
ptReserved Reserved for internal use.
ptMaxSize Specifies the maximized width (point.x) and the maximized height (point.y) of

the window.
ptMaxPosition Specifies the position of the left side of the maximized window (point.x) and the

position of the top of the maximized window (point.y).
ptMinTrackSize Specifies the minimum tracking width (point.x) and the minimum tracking height

(point.y) of the window.
ptMaxTrackSize Specifies the maximum tracking width (point.x) and the maximum tracking

height (point.y) of the window.

See Also
POINT, WM_GETMINMAXINFO

MODULEENTRY (3.1)

#include <toolhelp.h>
typedef struct tagMODULEENTRY { /* me */

DWORD dwSize;
char szModule[MAX_MODULE_NAME + 1];
HMODULE hModule;
WORD wcUsage;
char szExePath[MAX_PATH + 1];
WORD wNext;

} MODULEENTRY;
The MODULEENTRY structure contains information about one module in the module list.

Member Description
dwSize Specifies the size of the MODULEENTRY structure, in bytes.
szModule Specifies the null-terminated string that contains the module name.
hModule Identifies the module handle.
wcUsage Specifies the reference count of the module. This is the same number returned by the

GetModuleUsage function.
szExePath Specifies the null-terminated string that contains the fully-qualified executable path for

the module.
wNext Specifies the next module in the module list. This member is reserved for internal use

by Windows.

See Also
ModuleFindHandle, ModuleFindName, ModuleFirst, ModuleNext

MONCBSTRUCT (3.1)

#include <ddeml.h>
typedef struct tagMONCBSTRUCT { /* mcbst */

UINTcb;
WORDwReserved;
DWORD dwTime;
HANDLE hTask;
DWORD dwRet;
UINTwType;
UINTwFmt;
HCONV hConv;
HSZ hsz1;
HSZ hsz2;
HDDEDATA hData;
DWORD dwData1;
DWORD dwData2;

} MONCBSTRUCT;
The MONCBSTRUCT structure contains information about the current dynamic data exchange (DDE)
transaction. A DDE debugging application can use this structure when monitoring transactions that the
system passes to the DDE callback functions of other applications.

Member Description
cb Specifies the length, in bytes, of the structure.
wReserved Reserved.
dwTime Specifies the Windows time at which the transaction occurred. Windows time is the

number of milliseconds that have elapsed since the system was started.
hTask Identifies the task (application instance) containing the DDE callback function that

received the transaction.
dwRet Specifies the value returned by the DDE callback function that processed the

transaction.
wType Specifies the transaction type.
wFmt Specifies the format of the data (if any) exchanged during the transaction.
hConv Identifies the conversation in which the transaction took place.
hsz1 Identifies a string.
hsz2 Identifies a string.
hData Identifies the data (if any) exchanged during the transaction.
dwData1 Specifies additional data.
dwData2 Specifies additional data.

See Also
MONERRSTRUCT, MONHSZSTRUCT, MONLINKSTRUCT, MONMSGSTRUCT, XTYP_MONITOR

MONCONVSTRUCT (3.1)

#include <ddeml.h>
typedef struct tagMONCONVSTRUCT { /* mcvst */

UINT cb;
BOOL fConnect;
DWORD dwTime;
HANDLE hTask;
HSZhszSvc;
HSZhszTopic;
HCONV hConvClient;
HCONV hConvServer;

} MONCONVSTRUCT;
The MONCONVSTRUCT structure contains information about a conversation. A dynamic data exchange
(DDE) monitoring application can use this structure to obtain information about an advise loop that has
been established or terminated.

Member Description
cb Specifies the length, in bytes, of the structure.
fConnect Indicates whether the conversation is currently established. A value of TRUE

indicates the conversation is established; FALSE indicates it is not.
dwTime Specifies the Windows time at which the conversation was established or terminated.

Windows time is the number of milliseconds that have elapsed since the system was
started.

hTask Identifies a task (application instance) that is a partner in the conversation.
hszSvc Identifies the service name on which the conversation is established.
hszTopic Identifies the topic name on which the conversation is established.
hConvClient Identifies the client conversation.
hConvServer Identifies the server conversation.

See Also
MONCBSTRUCT, MONERRSTRUCT, MONHSZSTRUCT, MONLINKSTRUCT, MONMSGSTRUCT,
XTYP_MONITOR

MONERRSTRUCT (3.1)

#include <ddeml.h>
typedef struct tagMONERRSTRUCT { /* mest */

UINT cb;
UINT wLastError;
DWORD dwTime;
HANDLE hTask;

} MONERRSTRUCT;
The MONERRSTRUCT structure contains information about the current dynamic data exchange (DDE)
error. A DDE monitoring application can use this structure to monitor errors returned by DDE
Management Library functions.

Member Description
cb Specifies the length, in bytes, of the structure.
wLastError Specifies the current error.
dwTime Specifies the Windows time at which the error occurred. Windows time is the number

of milliseconds that have elapsed since the system was started.
hTask Identifies the task (application instance) that called the DDE function that caused the

error.

See Also
MONCBSTRUCT, MONCONVSTRUCT, MONHSZSTRUCT, MONLINKSTRUCT,
MONMSGSTRUCT, XTYP_MONITOR

MONHSZSTRUCT (3.1)

#include <ddeml.h>
typedef struct tagMONHSZSTRUCT { /* mhst */

UINT cb;
BOOL fsAction;
DWORD dwTime;
HSZ hsz;
HANDLE hTask;
WORD wReserved;
char str[1];

} MONHSZSTRUCT;
The MONHSZSTRUCT structure contains information about a dynamic data exchange (DDE) string
handle. A DDE monitoring application can use this structure when monitoring the activity of the string-
manager component of the DDE Management Library (DDEML).

Member Description
cb Specifies the length, in bytes, of the structure.
fsAction Specifies the action being performed on the string handle identified by the hsz member.

Value Meaning
MH_CLEANUP An application is freeing its DDE resources, causing the system

to delete string handles that the application had created. (The
application called the DdeUninitialize function.)

MH_CREATE An application is creating a string handle. (The application called
the DdeCreateStringHandle function.)

MH_DELETE An application is deleting a string handle. (The application called
the DdeFreeStringHandle function.)

MH_KEEP An application is increasing the use count of a string handle.
(The application called the DdeKeepStringHandle function.)

dwTime Specifies the Windows time at which the action specified by the fsAction member
takes place. Windows time is the number of milliseconds that have elapsed since the
system was booted.

hsz Identifies the string.
hTask Identifies the task (application instance) performing the action on the string handle.
wReserved Reserved.
str Points to the string identified by the hsz member.

See Also
MONCBSTRUCT, MONCONVSTRUCT, MONERRSTRUCT, MONLINKSTRUCT,
MONMSGSTRUCT, DdeCreateStringHandle, DdeFreeStringHandle, DdeKeepStringHandle,
DdeUninitialize

MONLINKSTRUCT (3.1)

#include <ddeml.h>
typedef struct tagMONLINKSTRUCT { /* mlst */

UINT cb;
DWORD dwTime;
HANDLE hTask;
BOOL fEstablished;
BOOL fNoData;
HSZhszSvc;
HSZhszTopic;
HSZhszItem;
UINT wFmt;
BOOL fServer;
HCONV hConvServer;
HCONV hConvClient;

} MONLINKSTRUCT;
The MONLINKSTRUCT structure contains information about a dynamic data exchange (DDE) advise
loop. A DDE monitoring application can use this structure to obtain information about an advise loop that
has started or ended.

Member Description
cb Specifies the length, in bytes, of the structure.
dwTime Specifies the Windows time at which the advise loop was started or ended. Windows

time is the number of milliseconds that have elapsed since the system was started.
hTask Identifies a task (application instance) that is a partner in the advise loop.
fEstablished Indicates whether an advise loop was successfully established. A value of TRUE

indicates an advise loop was established; FALSE indicates an advise loop was not
established.

fNoData Indicates whether the XTYPF_NODATA flag was set for the advise loop. A value of
TRUE indicates the flag is set; FALSE indicates the flag was not set.

hszSvc Identifies the service name of the server in the advise loop.
hszTopic Identifies the topic name on which the advise loop is established.
hszItem Identifies the item name that is the subject of the advise loop.
wFmt Specifies the format of the data exchanged (if any) during the advise loop.
fServer Indicates whether the link notification came from the server. If the notification came

from the server, this value is TRUE. Otherwise, it is FALSE.
hConvServer Identifies the server conversation.
hConvClient Identifies the client conversation.

See Also
MONCBSTRUCT, MONERRSTRUCT, MONHSZSTRUCT, MONMSGSTRUCT, XTYP_MONITOR

MONMSGSTRUCT (3.1)

#include <ddeml.h>
typedef struct tagMONMSGSTRUCT { /* mmst */

UINT cb;
HWND hwndTo;
DWORD dwTime;
HANDLE hTask;
UINT wMsg;
WPARAM wParam;
LPARAM lParam;

} MONMSGSTRUCT;
The MONMSGSTRUCT structure contains information about a dynamic data exchange (DDE) message.
A DDE monitoring application can use this structure to obtain information about a DDE message that was
sent or posted.

Member Description
cb Specifies the length, in bytes, of the structure.
hwndTo Identifies the window that receives the DDE message.
dwTime Specifies the Windows time at which the message was sent or posted. Windows time is the

number of milliseconds that have elapsed since the system was started.
hTask Identifies the task (application instance) containing the window that receives the DDE

message.
wMsg Specifies the identifier of the DDE message.
wParam Specifies the wParam parameter of the DDE message.
lParam Specifies the lParam parameter of the DDE message.

See Also
MONCBSTRUCT, MONCONVSTRUCT, MONERRSTRUCT, MONHSZSTRUCT,
MONLINKSTRUCT, XTYP_MONITOR

MOUSEHOOKSTRUCT (3.1)

typedef struct tagMOUSEHOOKSTRUCT { /* ms */
POINT pt;
HWND hwnd;
UINT wHitTestCode;
DWORD dwExtraInfo;

} MOUSEHOOKSTRUCT;
The MOUSEHOOKSTRUCT structure contains information about a mouse event.

Member Description
pt Specifies a POINT structure that contains the x- and y-coordinates of the mouse

cursor, in screen coordinates.
hwnd Identifies the window that will receive the mouse message that corresponds to the

mouse event.
wHitTestCode Specifies the hit-test code.
dwExtraInfo Specifies extra information associated with the mouse event. An application can set

this extra information by calling the hardware_event function and retrieve it by
calling the GetMessageExtraInfo function.

See Also
hardware_event, GetMessageExtraInfo, SetWindowsHook

MSG (2.x)

typedef struct tagMSG {/* msg */
HWND hwnd;
UINT message;
WPARAM wParam;
LPARAM lParam;
DWORD time;
POINT pt;

} MSG;
The MSG structure contains information from the Windows application queue.

Member Description
hwnd Identifies the window that receives the message.
message Specifies the message number.
wParam Specifies additional information about the message. The exact meaning depends on the

message value.
lParam Specifies additional information about the message. The exact meaning depends on the

message value.
time Specifies the time at which the message was posted.
pt Specifies the position of the cursor, in screen coordinates, when the message was posted.

See Also
EVENTMSG, GetMessage

MULTIKEYHELP (3.0)

typedef struct tagMULTIKEYHELP { /* mkh */
UINT mkSize;
BYTE mkKeylist;
BYTE szKeyphrase[1];

} MULTIKEYHELP;
The MULTIKEYHELP structure specifies a keyword table and an associated keyword to be used by the
Windows Help application.

Member Description
mkSize Specifies the length, in bytes, of the MULTIKEYHELP structure.
mkKeylist Contains a single character that identifies the keyword table to be searched.
szKeyphrase Contains a null-terminated text string that specifies the keyword to be located in the

keyword table.

See Also
WinHelp

NCCALCSIZE_PARAMS (3.1)

typedef struct tagNCCALCSIZE_PARAMS {
RECT rgrc[3];
WINDOWPOS FAR* lppos;

} NCCALCSIZE_PARAMS;
The NCCALCSIZE_PARAMS structure contains information that an application can use while processing
the WM_NCCALCSIZE message to calculate the size, position, and valid contents of the client area of a
window.

Member Description
rgrc Specifies an array of rectangles. The first contains the new coordinates of a window that has

been moved or resized. The second contains the coordinates of the window before it was
moved or resized. The third contains the coordinates of the client area of a window before it
was moved or resized. If the window is a child window, the coordinates are relative to the
client area of the parent window. If the window is a top-level window, the coordinates are
relative to the screen.

lppos Points to a WINDOWPOS structure that contains the size and position values specified in
the operation that caused the window to be moved or resized.

See Also
MoveWindow, SetWindowPos, RECT, WINDOWPOS, WM_NCCALCSIZE

NEWCPLINFO (3.1)

#include <cpl.h>
typedef struct tagNEWCPLINFO { /* ncpli */

DWORD dwSize;
DWORD dwFlags;
DWORD dwHelpContext;
LONG lData;
HICON hIcon;
char szName[32];
char szInfo[64];
char szHelpFile[128];

} NEWCPLINFO;
The NEWCPLINFO structure contains resource information and a user-defined value for a Control Panel
application.

Member Description
dwSize Specifies the length of the structure, in bytes.
dwFlags Specifies Control Panel flags.
dwHelpContext Specifies the context number for the topic in the help project (.HPJ) file that

displays when the user selects help for the application.
lData Specifies data defined by the application.
hIcon Identifies an icon resource for the application icon. This icon is displayed in the

Control Panel window.
szName Specifies a null-terminated string that contains the application name. The name is

the short string displayed below the application icon in the Control Panel window.
The name is also displayed in the Settings menu of Control Panel.

szInfo Specifies a null-terminated string containing the application description. The
description displayed at the bottom of the Control Panel window when the
application icon is selected.

szHelpFile Specifies a null-terminated string that contains the path of the help file, if any, for
the application.

NEWTEXTMETRIC (3.1)

typedef struct tagNEWTEXTMETRIC { /* ntm */
int tmHeight;
int tmAscent;
int tmDescent;
int tmInternalLeading;
int tmExternalLeading;
int tmAveCharWidth;
int tmMaxCharWidth;
int tmWeight;
BYTE tmItalic;
BYTE tmUnderlined;
BYTE tmStruckOut;
BYTE tmFirstChar;
BYTE tmLastChar;
BYTE tmDefaultChar;
BYTE tmBreakChar;
BYTE tmPitchAndFamily;
BYTE tmCharSet;
int tmOverhang;
int tmDigitizedAspectX;
int tmDigitizedAspectY;
DWORD ntmFlags;
UINT ntmSizeEM;
UINT ntmCellHeight;
UINT ntmAvgWidth;

} NEWTEXTMETRIC;
The NEWTEXTMETRIC structure contains basic information about a physical font. The last four
members of the NEWTEXTMETRIC structure are not included in the TEXTMETRIC structure; in all
other respects, the structures are identical. The additional members are used for information about
TrueType fonts.

Member Description
tmHeight Specifies the height of character cells. (The height is the sum of the

tmAscent and tmDescent members.)
tmAscent Specifies the ascent of character cells. (The ascent is the space between the

base line and the top of the character cell.)
tmDescent Specifies the descent of character cells. (The descent is the space between

the bottom of the character cell and the base line.)
tmInternalLeading Specifies the difference between the point size of a font and the physical

size of the font. For TrueType fonts, this value is equal to tmHeight minus
(s * ntmSizeEM), where s is the scaling factor for the TrueType font. For
bitmap fonts, this value is used to determine the point size of a font; when
an application specifies a negative value in the lfHeight member of the
LOGFONT structure, the application is requesting a font whose height
equals tmHeight minus tmInternalLeading.

tmExternalLeading Specifies the amount of extra leading (space) that the application adds
between rows. Since this area is outside the character cell, it contains no
marks and will not be altered by text output calls in either opaque or
transparent mode. The font designer sometimes sets this member to zero.

tmAveCharWidth Specifies the average width of characters in the font. For
ANSI_CHARSET fonts, this is a weighted average of the characters "a"
through "z" and the space character. For other character sets, this value is
an unweighted average of all characters in the font.

tmMaxCharWidth
Specifies the "B" spacing of the widest character in the font. For more
information about "B" spacing, see the description of the ABC structure.

tmWeight Specifies the weight of the font. This member can be one of the following
values:

Constant Value

FW_DONTCARE 0
FW_THIN 100
FW_EXTRALIGHT 200
FW_ULTRALIGHT 200
FW_LIGHT 300
FW_NORMAL 400
FW_REGULAR 400
FW_MEDIUM 500
FW_SEMIBOLD 600
FW_DEMIBOLD 600
FW_BOLD 700
FW_EXTRABOLD 800
FW_ULTRABOLD 800
FW_BLACK 900
FW_HEAVY 900

tmItalic Specifies an italic font if it is nonzero.
tmUnderlined Specifies an underlined font if it is nonzero.
tmStruckOut Specifies a "struckout" font if it is nonzero.
tmFirstChar Specifies the value of the first character defined in the font.
tmLastChar Specifies the value of the last character defined in the font.
tmDefaultChar Specifies the value of the character that will be substituted for characters

not in the font.
tmBreakChar Specifies the value of the character that will be used to define word breaks

for text justification.
tmPitchAndFamily Specifies the pitch and family of the selected font. The four low-order bits

identify the type of font, as follows:

Value Meaning
TMPF_FIXED_PITCH Designates a fixed-pitch font.
TMPF_VECTOR Designates a vector or TrueType font.
TMPF_TRUETYPE Designates a TrueType font.
TMPF_DEVICE Designates a device font.
Some fonts are identified by several of these bits--for example, the
TMPF_FIXED_PITCH, TMPF_VECTOR, and TMPF_TRUETYPE bits
would be set for the monospace TrueType font, Courier New®.The
TMPF_DEVICE bit could be set for a TrueType font as well, because this
bit is set both for downloaded and device-resident fonts.
When the TMPF_TRUETYPE bit is set, the font is usable on all output
devices. For example, if a TrueType font existed on a printer but could not
be used on the display, the TMPF_TRUETYPE bit would not be set for
that font.
The four high-order bits specify the font family. The tmPitchAndFamily
member can be combined with the hexadecimal value 0xF0 by using the
bitwise AND operator and can then be compared with the font family
names for an identical match. The following font families are defined:

Value Meaning
FF_DECORATIVE Novelty fonts. Old English is an example.
FF_DONTCARE Don't care or don't know.
FF_MODERN Fonts with constant stroke width, with or

without serifs. Pica, Elite, and Courier New are
examples.

FF_ROMAN Fonts with variable stroke width and with
serifs. Times New Roman and New Century
Schoolbook are examples.

FF_SCRIPT Fonts designed to look like handwriting. Script
and Cursive are examples.

FF_SWISS Fonts with variable stroke width and without
serifs. MS Sans Serif is an example.

tmCharSet Specifies the character set of the font. The following values are defined:

Constant Value
ANSI_CHARSET 0
DEFAULT_CHARSET 1
SYMBOL_CHARSET 2
SHIFTJIS_CHARSET 128
OEM_CHARSET 255

tmOverhang Specifies the extra width that is added to some synthesized fonts. When
synthesizing some attributes, such as bold or italic, graphics-device
interface (GDI) or a device adds width to a string on both a per-character
and per-string basis. For example, GDI makes a string bold by expanding
the intracharacter spacing and overstriking by an offset value and italicizes
a font by skewing the string. In either case, the string is wider after the
attribute is synthesized. For bold strings, the overhang is the distance by
which the overstrike is offset. For italic strings, the overhang is the amount
the top of the font is skewed past the bottom of the font.
The tmOverhang member is zero for many italic and bold TrueType fonts
because many TrueType fonts include italic and bold faces that are not
synthesized. For example, the overhang for Courier New®Italic is zero.
An application that uses raster fonts can use the overhang value to
determine the spacing between words that have different attributes.

tmDigitizedAspectX Specifies the horizontal aspect of the device for which the font was
designed.

tmDigitizedAspectY Specifies the vertical aspect of the device for which the font was designed.
The ratio of the tmDigitizedAspectX and tmDigitizedAspectY members is
the aspect ratio of the device for which the font was designed.

ntmFlags Specifies some elements of the font style. This member can be one or more
of the following values:

NTM_REGULAR
NTM_BOLD
NTM_ITALIC
The NTM_BOLD and NTM_ITALIC flags could be combined with the
OR operator to specify a bold italic font.

ntmSizeEM Specifies the size of the em square for the font, in the units for which the
font was designed (notional units).

ntmCellHeight Specifies the height of the font, in the units for which the font was
designed (notional units). This value should be compared against the value
of the ntmSizeEM member.

ntmAvgWidth Specifies the average width of characters in the font, in the units for which
the font was designed (notional units). This value should be compared
against the value of the ntmSizeEM member.

Comments
The sizes in the NEWTEXTMETRIC structure are typically given in logical units; that is, they depend on
the current mapping mode of the display context.

See Also
EnumFontFamilies, EnumFonts, GetDeviceCaps, GetTextMetrics, TEXTMETRIC

NFYLOADSEG (3.1)

#include <toolhelp.h>
typedef struct tagNFYLOADSEG { /* nfyls */

DWORD dwSize;
WORD wSelector;
WORD wSegNum;
WORD wType;
WORD wcInstance;
LPCSTR lpstrModuleName;

} NFYLOADSEG;
The NFYLOADSEG structure contains information about the segment being loaded when the kernel sends
a load-segment notification.

Member Description
dwSize Specifies the size of the NFYLOADSEG structure, in bytes.
wSelector Contains the selector of the segment being loaded.
wSegNum Contains the executable-file segment number.
wType Indicates the type of information in the segment. Only the low bit of wType is

used. This type can be one of the following values:

Value Meaning
0 The segment contains code.
1 The segment contains data.

wcInstance Specifies the number of instances that share this segment. This value is valid
only for data segments.

lpstrModuleName Points to a null-terminated string containing the name of the module that owns
the segment being loaded.

See Also
NotifyRegister

NFYLOGERROR (3.1)

#include <toolhelp.h>
typedef struct tagNFYLOGERROR { /* nfyle */

DWORDdwSize;
UINT wErrCode;
void FAR* lpInfo;

} NFYLOGERROR;
The NFYLOGERROR structure contains information about a validation error that caused the kernel to
send an NFY_LOGERROR notification.

Member Description
dwSize Specifies the size of the NFYLOGERROR structure, in bytes.
wErrCode Identifies the error value that caused the notification to be sent.
lpInfo Points to additional information, dependent on the error value.

See Also
NotifyRegister

NFYLOGPARAMERROR (3.1)

#include <toolhelp.h>
typedef struct tagNFYLOGPARAMERROR { /* nfylpe */

DWORDdwSize;
UINT wErrCode;
FARPROC lpfnErrorAddr;
void FAR* FAR* lpBadParam;

} NFYLOGPARAMERROR;
The NFYLOGPARAMERROR structure contains information about a parameter-validation error that
caused the kernel to send an NFY_LOGPARAMERROR notification.

Member Description
dwSize Specifies the size of the NFYLOGPARAMERROR structure, in bytes.
wErrCode Identifies the error value that caused the notification to be sent.
lpfnErrorAddr Points to the address of the function with the invalid parameter.
lpBadParam Points to the name of the invalid parameter.

See Also
NotifyRegister

NFYRIP (3.1)

#include <toolhelp.h>
typedef struct tagNFYRIP { /* nfyr */

DWORD dwSize;
WORD wIP;
WORD wCS;
WORD wSS;
WORD wBP;
WORD wExitCode;

} NFYRIP;
The NFYRIP structure contains information about the system when a system debugging error (RIP)
occurs.

Member Description
dwSize Specifies the size of the NFYRIP structure, in bytes.
wIP Contains the value in the IP register at the time of the RIP.
wCS Contains the value in the CS register at the time of the RIP.
wSS Contains the value in the SS register at the time of the RIP.
wBP Contains the value in the BP register at the time of the RIP.
wExitCode Contains an exit code that describes why the RIP occurred.

Comments
The StackTraceCSIPFirst function uses the CS:IP and SS:BP values presented in this structure. The first
frame in the stack identified by these values points to the FatalExit function. The next frame points to the
routine that called FatalExit, usually in USER.EXE, GDI.EXE, or either KRNL286.EXE or KRNL386.
EXE.

See Also
FatalExit, NotifyRegister, StackTraceCSIPFirst

NFYSTARTDLL (3.1)

#include <toolhelp.h>
typedef struct tagNFYSTARTDLL { /* nfysd */

DWORD dwSize;
HMODULE hModule;
WORD wCS;
WORD wIP;

} NFYSTARTDLL;
The NFYSTARTDLL structure contains information about the dynamic-link library (DLL) being loaded
when the kernel sends a load-DLL notification.

Member Description
dwSize Specifies the size of the NFYSTARTDLL structure, in bytes.
hModule Identifies the library module being loaded.
wCS Contains the value in the CS register at load time. This value is used with the value of the

wIP member to determine the load address of the library.
wIP Contains the value in the IP register at load time. This value is used with the wCS value to

determine the load address of the library.

See Also
NotifyRegister

OFSTRUCT (2.x)

typedef struct tagOFSTRUCT { /* of */
BYTE cBytes;
BYTE fFixedDisk;
UINT nErrCode;
BYTE reserved[4];
BYTE szPathName[128];

} OFSTRUCT;
The OFSTRUCT structure contains file information which results from opening that file.

Member Description
cBytes Specifies the length, in bytes, of the OFSTRUCT structure.
fFixedDisk Specifies whether the file is on a fixed disk. The fFixedDisk member is nonzero if the

file is on a fixed disk.
nErrCode Specifies the MS-DOS error value if the OpenFile function returns -1 (that is,

OpenFile fails). For a list of possible error values, see the following Comments
section.

reserved Reserved member. Four bytes reserved for future use.
szPathName Specifies 128 bytes that contain the path of the file. This string consists of characters

from the OEM character set.

Comments
The error values that may be specified in the nErrCode parameter follow:

Value Meaning
0x0001 Invalid function
0x0002 File not found
0x0003 Path not found
0x0004 Too many open files
0x0005 Access denied
0x0006 Invalid handle
0x0007 Arena trashed
0x0008 Not enough memory
0x0009 Invalid block
0x000A Bad environment
0x000B Bad format
0x000C Invalid access
0x000D Invalid data
0x000F Invalid drive
0x0010 Current directory
0x0011 Not same device
0x0012 No more files
0x0013 Write protect error
0x0014 Bad unit
0x0015 Not ready
0x0016 Bad command
0x0017 CRC error
0x0018 Bad length
0x0019 Seek error
0x001A Not MS-DOS disk
0x001B Sector not found
0x001C Out of paper
0x001D Write fault
0x001E Read fault
0x001F General failure

0x0020 Sharing violation
0x0021 Lock violation
0x0022 Wrong disk
0x0023 File control block unavailable
0x0024 Sharing buffer exceeded
0x0032 Not supported
0x0033 Remote not listed
0x0034 Duplicate name
0x0035 Bad netpath
0x0036 Network busy
0x0037 Device does not exist
0x0038 Too many commands
0x0039 Adaptor hardware error
0x003A Bad network response
0x003B Unexpected network error
0x003C Bad remote adaptor
0x003D Print queue full
0x003E No spool space
0x003F Print canceled
0x0040 Netname deleted
0x0041 Network access denied
0x0042 Bad device type
0x0043 Bad network name
0x0044 Too many names
0x0045 Too many sessions
0x0046 Sharing paused
0x0047 Request not accepted
0x0048 Redirection paused
0x0050 File exists
0x0051 Duplicate file control block
0x0052 Cannot make
0x0053 Interrupt 24 failure
0x0054 Out of structures
0x0055 Already assigned
0x0056 Invalid password
0x0057 Invalid parameter
0x0058 Net write fault

See Also
OpenFile

OLECLIENT (3.1)

#include <ole.h>
typedef struct _OLECLIENT { /* oc */

LPOLECLIENTVTBL lpvtbl;
.
. /* any client-supplied state information */
.

} OLECLIENT;
The OLECLIENT structure points to an OLECLIENTVTBL structure and can store state information for
use by the client application.

Member Description
lpvtbl Points to a table of function pointers for the client.

Comments
Servers and object handlers should not attempt to use any state information supplied in the OLECLIENT
structure. The use and meaning of this information is entirely dependent on the client application. Because
a pointer to this structure is supplied as a parameter to the client's callback function, this is the preferred
method for the client application to store private object-state information.

See Also
OLECLIENTVTBL

OLECLIENTVTBL (3.1)

#include <ole.h>
typedef struct _OLECLIENTVTBL {/* ocv */

int (CALLBACK* CallBack)(LPOLECLIENT, OLE_NOTIFICATION,
LPOLEOBJECT);
} OLECLIENTVTBL;
The OLECLIENTVTBL structure contains a pointer to a callback function for the client application.

Member Description
ClientCallback Points to a callback function for the client application.

Comments
The address passed as the CallBack member must be created by using the MakeProcInstance function.
Function

See Also
OLECLIENT

OLECLIENT (1.x)
INT ClientCallback(lpclient, notification, lpobject)
LPOLECLIENT lpclient;
OLE_NOTIFICATION notification;
LPOLEOBJECT lpobject;

The ClientCallback function must use the Pascal calling convention and must be declared FAR.

Parameter Description
lpclient Points to the client structure associated with the object. The library retrieves this pointer

from its object structure when a notification occurs, uses it to locate the callback
function, and passes the pointer to the client structure for the client application's use.

notification Specifies the reason for the notification. This parameter can be one of the following
values:

Value Meaning
OLE_CHANGED The linked object has changed. (This notification is

not sent for embedded objects.) A typical action to
take with this notification is either to redraw or to save
the object.

OLE_CLOSED The object has been closed in its server. When the
client receives this notification, it should not call any
function that causes an asynchronous operation until it
regains control of program execution.

OLE_QUERY_PAINT A lengthy drawing operation is occurring. This
notification allows the drawing to be interrupted.

OLE_QUERY_RETRY The server has responded to a request by indicating
that it is busy. This notification requests the client to
determine whether the library should continue to make
the request. If the callback function returns FALSE,
the transaction with the server is discontinued.

OLE_RELEASE The object has been released because an asynchronous
operation has finished. The client should not quit until
all objects have been released. The client application
can call the OleQueryReleaseError function to
determine whether the operation succeeded. It can also
call the OleQueryReleaseMethod function, if
necessary, to verify that that operation has ended.

OLE_RENAMED The linked object has been renamed in its server. This
notification is for information only, because the library
automatically updates its link information.

OLE_SAVED The linked object has been saved in its server. The
client receives this notification when the server calls
the OleSavedServerDoc function in response to the
user choosing the Update command in the server's File
menu.

When the client receives the OLE_CLOSED notification, it typically stores the
condition and returns to the client library, taking action only when the client library
returns control of program execution to the client application. If the client application
must take action before regaining control, it should not call any functions that could
result in an asynchronous operation.

lpobject Points to the object that caused the notification to be sent. Applications that use the same
client structure for more than one object use the lpobject parameter to distinguish
between notifications.

Returns
When the notification parameter specifies either OLE_QUERY_PAINT or OLE_QUERY_RETRY, the
client should return TRUE if the library should continue, or FALSE to terminate the painting operation or
discontinue the server transaction. When the notification parameter does not specify either
OLE_QUERY_PAINT or OLE_QUERY_RETRY, the return value is ignored.

Comments

The client application should act on these notifications at the next appropriate time; for example, as part of
the main event loop or when closing the object. The updating of an object can be deferred until the user
requests the update, if the client provides that functionality. The client may call the library from a
notification callback function (the library is reentrant). The client should not attempt an asynchronous
operation while certain other operations are in progress (for example, opening or deleting an object). The
client also should not enter a message-dispatch loop inside the callback function. When the client
application calls a function that would cause an asynchronous operation, the client library returns
OLE_WAIT_FOR_RELEASE when the function is called, notifies the application when the operation
completes by using OLE_RELEASE, and returns OLE_BUSY if the client attempts to invoke a conflicting
operation while the previous one is in progress. The client can determine if an asynchronous operation is
in progress by calling OleQueryReleaseStatus, which returns OLE_BUSY if the operation has not yet
completed.

See Also
OleQueryReleaseStatus, OLECLIENT

OLEOBJECT (3.1)

#include <ole.h>
typedef struct _OLEOBJECT {/* oo */

LPOLEOBJECTVTBL lpvtbl;
.
. /* any server-supplied state information */
.

} OLEOBJECT;
The OLEOBJECT structure points to a table of function pointers for an object. This structure is initialized
and maintained by servers for the server library.

Member Description
lpvtbl Points to a table of function pointers for the object.

See Also
OLEOBJECTVTBL

OLEOBJECTVTBL (3.1)

#include <ole.h>
typedef struct _OLEOBJECTVTBL { /* oov */

void FAR* (CALLBACK* QueryProtocol)(LPOLEOBJECT, OLE_LPCSTR);
OLESTATUS (CALLBACK* Release)(LPOLEOBJECT);
OLESTATUS (CALLBACK* Show)(LPOLEOBJECT, BOOL);
OLESTATUS (CALLBACK* DoVerb)(LPOLEOBJECT, UINT, BOOL, BOOL);
OLESTATUS (CALLBACK* GetData)(LPOLEOBJECT, OLECLIPFORMAT,
HANDLE FAR*);
OLESTATUS (CALLBACK* SetData)(LPOLEOBJECT, OLECLIPFORMAT, HANDLE);
OLESTATUS (CALLBACK* SetTargetDevice)(LPOLEOBJECT, HGLOBAL);
OLESTATUS (CALLBACK* SetBounds)(LPOLEOBJECT, OLE_CONST RECT FAR*);
OLECLIPFORMAT (CALLBACK* EnumFormats)(LPOLEOBJECT, OLECLIPFORMAT);
OLESTATUS (CALLBACK* SetColorScheme)(LPOLEOBJECT,
OLE_CONST LOGPALETTE FAR*);
/*

* Server applications implement only the functions listed above.
* Object handlers can use any of the functions in this structure
* to modify default server behavior.
*/

OLESTATUS (CALLBACK* Delete)(LPOLEOBJECT);
OLESTATUS (CALLBACK* SetHostNames)(LPOLEOBJECT, OLE_LPCSTR,
OLE_LPCSTR);
OLESTATUS (CALLBACK* SaveToStream)(LPOLEOBJECT, LPOLESTREAM);
OLESTATUS (CALLBACK* Clone)(LPOLEOBJECT, LPOLECLIENT, LHCLIENTDOC,
OLE_LPCSTR, LPOLEOBJECT FAR*);
OLESTATUS (CALLBACK* CopyFromLink)(LPOLEOBJECT, LPOLECLIENT,
LHCLIENTDOC, OLE_LPCSTR, LPOLEOBJECT FAR*);
OLESTATUS (CALLBACK* Equal)(LPOLEOBJECT, LPOLEOBJECT);
OLESTATUS (CALLBACK* CopyToClipboard)(LPOLEOBJECT);
OLESTATUS (CALLBACK* Draw)(LPOLEOBJECT, HDC, OLE_CONST RECT FAR*,
OLE_CONST RECT FAR*, HDC);
OLESTATUS (CALLBACK* Activate)(LPOLEOBJECT, UINT, BOOL, BOOL, HWND,
OLE_CONST RECT FAR*);
OLESTATUS (CALLBACK* Execute)(LPOLEOBJECT, HGLOBAL, UINT);
OLESTATUS (CALLBACK* Close)(LPOLEOBJECT);
OLESTATUS (CALLBACK* Update)(LPOLEOBJECT);
OLESTATUS (CALLBACK* Reconnect)(LPOLEOBJECT);
OLESTATUS (CALLBACK* ObjectConvert)(LPOLEOBJECT, OLE_LPCSTR,
LPOLECLIENT, LHCLIENTDOC, OLE_LPCSTR, LPOLEOBJECT FAR*);
OLESTATUS (CALLBACK* GetLinkUpdateOptions)(LPOLEOBJECT,
OLEOPT_UPDATE FAR*);
OLESTATUS (CALLBACK* SetLinkUpdateOptions)(LPOLEOBJECT,
OLEOPT_UPDATE);
OLESTATUS (CALLBACK* Rename)(LPOLEOBJECT, OLE_LPCSTR);
OLESTATUS (CALLBACK* QueryName)(LPOLEOBJECT, LPSTR, UINT FAR*);
OLESTATUS (CALLBACK* QueryType)(LPOLEOBJECT, LONG FAR*);
OLESTATUS (CALLBACK* QueryBounds)(LPOLEOBJECT, RECT FAR*);
OLESTATUS (CALLBACK* QuerySize)(LPOLEOBJECT, DWORD FAR*);
OLESTATUS (CALLBACK* QueryOpen)(LPOLEOBJECT);
OLESTATUS (CALLBACK* QueryOutOfDate)(LPOLEOBJECT);
OLESTATUS (CALLBACK* QueryReleaseStatus)(LPOLEOBJECT);
OLESTATUS (CALLBACK* QueryReleaseError)(LPOLEOBJECT);
OLE_RELEASE_METHOD (CALLBACK* QueryReleaseMethod)(LPOLEOBJECT);
OLESTATUS (CALLBACK* RequestData)(LPOLEOBJECT, OLECLIPFORMAT);
OLESTATUS (CALLBACK* ObjectLong)(LPOLEOBJECT, UINT, LONG FAR*);

} OLEOBJECTVTBL;
The OLEOBJECTVTBL structure points to functions that manipulate an object. A server application
creates this structure and an OLEOBJECT structure to give the server library access to an object.

Server applications do not need to implement functions beyond the SetColorScheme function. Object
handlers can provide specialized treatment for some or all of the functions in the OLEOBJECTVTBL
structure.

The following list of structure members does not document all the functions pointed to by the
OLEOBJECTVTBL structure. For information about the functions not documented here, see the
documentation for the corresponding function for object linking and embedding (OLE). For example, for
more information about the QueryProtocol member, see the OleQueryProtocol function.

Member Description
Release Causes the server to free the resources associated with the specified

OLEOBJECT structure.
Show Causes the server to show an object.
DoVerb Specifies what kind of action the server should take when a user opens an

object.
GetData Retrieves data from an object in a specified format.
SetData Stores data in an object in a specified format.
SetTargetDevice Communicates information about the client's target device for the object.
SetColorScheme Sends the server application the color palette recommended by the client

application.
ObjectLong Allows the calling application to store data with an object. This function is

typically used by object handlers.

Comments
The following functions in OLEOBJECTVTBL should return OLE_BUSY when appropriate:
Activate SetBounds
Close SetColorScheme
CopyFromLink SetData
Delete SetHostNames
DoVerb SetLinkUpdateOptions
Execute SetTargetDevice
ObjectConvert Show
Reconnect Update
RequestData
Function

See Also
OLEOBJECT

Release (OLE 1.x)
OLESTATUS (FAR PASCAL *Release)(lpObject)
LPOLEOBJECT lpObject;

The Release function causes the server to free the resources associated with the specified OLEOBJECT
structure.

Parameter Description
lpObject Points to the OLEOBJECT structure to be released.

Returns
The return value is OLE_OK if the function is successful. Otherwise, it is an error value.

Comments
The server application should not destroy data when the library calls the Release function. The library calls
the Release function when no clients are connected to the object.
Function

Show (OLE 1.x)
OLESTATUS (FAR PASCAL *Show)(lpObject, fTakeFocus)
LPOLEOBJECT lpObject;
BOOL fTakeFocus;

The Show function causes the server to show an object, displaying its window and scrolling (if necessary)
to make the object visible.

Parameter Description
lpObject Points to the OLEOBJECT structure to show.
fTakeFocus Specifies whether the server window gets the focus. If the server window is to get the

focus, this value is TRUE. Otherwise, this value is FALSE.

Returns
The return value is OLE_OK if the function is successful. Otherwise, it is an error value.

Comments
The library calls the Show function when the server application should show the document to the user for
editing or to request the server to scroll the document to bring the object into view.
Function

DoVerb (OLE 1.x)
OLESTATUS (FAR PASCAL *DoVerb)(lpObject, iVerb, fShow, fTakeFocus);
LPOLEOBJECT lpObject;
UINT iVerb;
BOOL fShow;
BOOL fTakeFocus;

The DoVerb function specifies what kind of action the server should take when a user activates an object.

Parameter Description
lpObject Points to the object to activate.
iVerb Specifies the action to take. The meaning of this parameter is determined by the server

application.
fShow Specifies whether to show the server window. This value is TRUE to show the window;

otherwise, it is FALSE.
fTakeFocus Specifies whether the server window gets the focus. If the server window is to get the

focus, this value is TRUE. Otherwise, it is FALSE. This parameter is relevant only if the
fShow parameter is TRUE.

Returns
The return value is OLE_OK if the function is successful. Otherwise, it is an error value.

Comments
All servers must support the editing of objects. If a server does not support any verbs except Edit, it should
edit the object no matter what value is specified by the iVerb parameter.
Function

GetData (OLE 1.x)
OLESTATUS (FAR PASCAL *GetData)(lpObject, cfFormat, lphdata)
LPOLEOBJECT lpObject;
OLECLIPFORMAT cfFormat;
HANDLE FAR* lphdata;

The GetData function retrieves data from an object in a specified format. The server application should
allocate memory, fill it with the data, and return the data through the lphdata parameter.

Parameter Description
lpObject Points to the OLEOBJECT structure from which data is requested.
cfFormat Specifies the format in which the data is requested.
lphdata Points to the handle of the allocated memory that the server application returns. The

library frees the memory when it is no longer needed.

Returns
The return value is OLE_OK if the function is successful. Otherwise, it is an error value, which may be
one of the following:

OLE_ERROR_BLANK
OLE_ERROR_FORMAT
OLE_ERROR_OBJECT
Function

SetData (OLE 1.x)
OLESTATUS (FAR PASCAL *SetData)(lpObject, cfFormat, hdata)
LPOLEOBJECT lpObject;
OLECLIPFORMAT cfFormat;
HANDLE hdata;

The SetData function stores data in an object in a specified format. This function is called (with the Native
data format) when a client opens an embedded object for editing. This function is also used if the client
calls the OleSetData function with some other format.

Parameter Description
lpObject Points to the OLEOBJECT structure in which data is stored.
cfFormat Specifies the format of the data.
hdata Identifies a place in memory from which the server application should extract the data.

The server should delete this handle after it uses the data.

Returns
The return value is OLE_OK if the function is successful. Otherwise, it is an error value.

Comments
The server application is responsible for the memory identified by the hdata parameter. The server must
delete this data even if it returns OLE_BUSY or if an error occurs.
Function

SetTargetDevice (OLE 1.x)
OLESTATUS (FAR PASCAL *SetTargetDevice)(lpObject, hotd)
LPOLEOBJECT lpObject;
HGLOBAL hotd;

The SetTargetDevice function communicates information about the client's target device for the object.
The server can use this information to customize output for the target device.

Parameter Description
lpObject Points to the OLEOBJECT structure for which the target device is specified.
hotd Identifies an OLETARGETDEVICE structure.

Returns
The return value is OLE_OK if the function is successful. Otherwise, it is an error value.

Comments
The server application is responsible for the memory identified by the hotd parameter. The server must
delete this data even if it returns OLE_BUSY or if an error occurs.

The library passes NULL for the hotd parameter to indicate that the rendering is necessary for the screen.

See Also
OleSetTargetDevice, OLETARGETDEVICE Function

ObjectLong (OLE 1.x)
OLESTATUS (FAR PASCAL *ObjectLong)(lpObject, wFlags, lpData)
LPOLEOBJECT lpObject;
UINT wFlags;
LONG FAR* lpData;

The ObjectLong function allows the calling application to store data with an object. This function is
typically used by object handlers.

Parameter Description
lpObject Points to the OLEOBJECT structure for which the data is stored.
wFlags Specifies the method used for setting and retrieving data. It can be one or more of the

following values:

Value Meaning
OF_SET Data is written to the location specified by the lpData parameter,

replacing any data already there.
OF_GET Data is read from the location specified by the lpData parameter.
OF_HANDLER Data is written or read by an object handler. This value prevents

data from an object handler from being replaced by other
applications.

If the calling application specifies OF_SET and OF_GET, the function returns a pointer
to the previous data and replaces the data pointed to by the lpData parameter with the
data specified by the calling application.

lpData Points to data to be written or read.

Returns
The return value is OLE_OK if the function is successful. Otherwise, it is an error value.
Function

SetColorScheme (OLEOBJECTVTBL 1.x)
OLESTATUS SetColorScheme(lpObject, lpPal)
LPOLEOBJECT lpObject;
OLE_CONST LOGPALETTE FAR* lpPal;

The SetColorScheme function sends the server application the color palette recommended by the client
application.

Parameter Description
lpObject Points to an OLEOBJECT structure for which the client application recommends a

palette.
lpPal Points to a LOGPALETTE structure specifying the recommended palette.

Returns
The return value is OLE_OK if the function is successful. Otherwise, it is an error value.

Comments
Server applications are not required to use the palette recommended by the client application.

Before returning from the SetColorScheme function, the server application should use the palette pointed
to by the lpPal parameter in a call to the CreatePalette function to create the handle of the palette:

hpal = CreatePalette(lpPal);
The server can then use the palette handle to refer to the palette.

The first palette entry in the LOGPALETTE structure specifies the foreground color recommended by the
client application. The second palette entry specifies the background color. The first half of the remaining
palette entries are fill colors, and the second half are colors for lines and text.

Client applications typically specify an even number of palette entries. When there is an uneven number of
entries, the server should interpret the odd entry as a fill color; that is, if there are five entries, three should
be interpreted as fill colors and two as line and text colors.

OLESERVER (3.1)

#include <ole.h>
typedef struct _OLESERVER {/* os */

LPOLESERVERVTBL lpvtbl;
.
. /* any server-supplied state information */
.

} OLESERVER;
The OLESERVER structure points to a table of function pointers for the server. This structure is initialized
and maintained by servers for the server library.

Member Description
lpvtbl Points to a table of function pointers for the server.

See Also
OLESERVERVTBL

OLESERVERDOC (3.1)

#include <ole.h>
typedef struct _OLESERVERDOC { /* osd */

LPOLESERVERDOCVTBL lpvtbl;
.
. /* any server-supplied document-state information */
.

} OLESERVERDOC;
The OLESERVERDOC structure points to a table of function pointers for a document. This structure is
initialized and maintained by servers for the server library.

Member Description
lpvtbl Points to a table of function pointers for the document.

See Also
OLESERVERDOCVTBL

OLESERVERDOCVTBL (3.1)

#include <ole.h>
typedef struct _OLESERVERDOCVTBL { /* odv */

OLESTATUS (CALLBACK* Save)(LPOLESERVERDOC);
OLESTATUS (CALLBACK* Close)(LPOLESERVERDOC);
OLESTATUS (CALLBACK* SetHostNames)(LPOLESERVERDOC, OLE_LPCSTR,
OLE_LPCSTR);
OLESTATUS (CALLBACK* SetDocDimensions)(LPOLESERVERDOC,
OLE_CONST RECT FAR*);
OLESTATUS (CALLBACK* GetObject)(LPOLESERVERDOC, OLE_LPCSTR,
LPOLEOBJECT FAR*, LPOLECLIENT);
OLESTATUS (CALLBACK* Release)(LPOLESERVERDOC);
OLESTATUS (CALLBACK* SetColorScheme)(LPOLESERVERDOC,
OLE_CONST LOGPALETTE FAR*);
OLESTATUS (CALLBACK* Execute)(LPOLESERVERDOC, HGLOBAL);

} OLESERVERDOCVTBL;
The OLESERVERDOCVTBL structure points to functions that manipulate a document. A server
application creates this structure and an OLESERVERDOC structure to give the server library access to a
document.

Documents opened or created on request from the library should not be shown to the user for editing until
the library requests that they be shown.

Every function except Release can return OLE_BUSY.

Member Description
Save Instructs the server to save the document.
Close Instructs the server application to unconditionally close the document.
SetHostNames Sets the names that should be used for window titles.
SetDocDimensions Gives the server the rectangle on the target device for which the object

should be formatted.
GetObject Requests the server to create an OLEOBJECT structure.
Release Notifies the server when a revoked document has terminated conversations

and may be destroyed.
SetColorScheme Specifies the color palette preferred by the client application.
Execute Specifies DDE execute strings.

See Also
OLESERVERDOC

Save (OLE 1.x)
OLESTATUS Save(lpDoc)
LPOLESERVERDOC lpDoc;

The Save function instructs the server to save the document.

Parameter Description
lpDoc Points to an OLESERVERDOC structure corresponding to the document to save.

Returns
The return value is OLE_OK if the function is successful. Otherwise, it is an error value.
Function

Close (OLE 1.x)
OLESTATUS Close(lpDoc)
LPOLESERVERDOC lpDoc;

The Close function instructs the server application to unconditionally close the document. The library calls
this function when the client application initiates the closure.

Parameter Description
lpDoc Points to an OLESERVERDOC structure corresponding to the document to close.

Returns
The return value is OLE_OK if the function is successful. Otherwise, it is an error value.

Comments
The library always calls the Close function before calling the Release function in the OLESERVERVTBL
structure.

The server application should not prompt the user to save the document or take other actions; messages of
this kind are handled by the client application.

When the library calls the Close function, the server should respond by calling the OleRevokeServerDoc
function. The resources for the document are freed when the library calls the Release function. The server
should not wait for the Release function by entering a message-dispatch loop after calling
OleRevokeServerDoc. (A server should never enter message-dispatch loops while processing any of these
functions.)

When a document is closed, the server should free the memory for the OLESERVERDOCVTBL structure
and associated resources.
Function

SetHostNames (OLE 1.x)
OLESTATUS SetHostNames(lpDoc, lpszClient, lpszDoc)
LPOLESERVERDOC lpDoc;
OLE_LPCSTR lpszClient;
OLE_LPCSTR lpszDoc;

The SetHostNames function sets the name that should be used for a window title. This name is used only
for an embedded object, because a linked object has its own title. This function is used only for documents
that are embedded objects.

Parameter Description
lpDoc Points to an OLESERVERDOC structure corresponding to a document that is the

embedded object for which a name is specified.
lpszClient Points to a null-terminated string specifying the name of the client.
lpszDoc Points to a null-terminated string specifying the client's name for the object.

Returns
The return value is OLE_OK if the function is successful. Otherwise, it is an error value.
Function

SetDocDimensions (OLE 1.x)
OLESTATUS SetDocDimensions(lpDoc, lpRect)
LPOLESERVERDOC lpDoc;
OLE_CONST RECT FAR* lpRect;

The SetDocDimensions function gives the server the rectangle on the target device for which the object
should be formatted. This function is relevant only for documents that are embedded objects.

Parameter Description
lpDoc Points to the OLESERVERDOC structure corresponding to the document that is the

embedded object for which the target size is specified.
lpRect Points to a RECT structure containing the target size of the object, in MM_HIMETRIC

units. (In the MM_HIMETRIC mapping mode, the positive y-direction is up.)

Returns
The return value is OLE_OK if the function is successful. Otherwise, it is an error value.
Function

GetObject (OLE 1.x)
OLESTATUS GetObject(lpDoc, lpszItem, lplpObject, lpClient)
LPOLESERVERDOC lpDoc;
OLE_LPCSTR lpszItem;
LPOLEOBJECT FAR* lplpObject;
LPOLECLIENT lpClient;

The GetObject function requests the server to create an OLEOBJECT structure.

Parameter Description
lpDoc Points to an OLESERVERDOC structure corresponding to this document.
lpszItem Points to a null-terminated string specifying the name of an item in the specified

document for which an object structure is requested. If this string is set to NULL, the
entire document is requested. This string cannot contain a slash mark (/).

lplpObject Points to a variable of type LPOLEOBJECT in which the server application should
return a long pointer to the allocated OLEOBJECT structure.

lpClient Points to an OLECLIENT structure allocated by the library. The server should associate
the OLECLIENT structure with the object and use it to notify the library of changes to
the object.

Returns
The return value is OLE_OK if the function is successful. Otherwise, it is an error value.

Comments
The server application should allocate and initialize the OLEOBJECT structure, associate it with the
OLECLIENT structure pointed to by the lpClient parameter, and return a pointer to the OLEOBJECT
structure through the lplpObject argument.

The library calls the GetObject function to associate a client with the part of the document identified by
the lpszItem parameter. When a client has been associated with an object by this function, the server can
send notifications to the client.

Applications should be prepared to handle multiple calls to GetObject for a given object. This entails
creating multiple OLECLIENT structures and sending notifications to each of these structures when
appropriate. Multiple calls to GetObject are possible because some client applications that implement
object linking and embedding (OLE) by using dynamic data exchange (DDE) rather than the OLE
dynamic-link libraries may use both NULL and an actual item name for the lpszItem parameter.
Function

Release (OLE 1.x)
OLESTATUS Release(lpDoc)
LPOLESERVERDOC lpDoc;

The Release function notifies the server when a revoked document has terminated conversations and can
be destroyed.

Parameter Description
lpDoc Points to an OLESERVERDOC structure for which the handle was revoked and which

can now be released.

Returns
The return value is OLE_OK if the function is successful. Otherwise, it is an error value.
Function

SetColorScheme (OLESERVERDOCVTBL 1.x)
OLESTATUS SetColorScheme(lpDoc, lpPal)
LPOLESERVERDOC lpDoc;
OLE_CONST LOGPALETTE FAR* lpPal;

The SetColorScheme function sends the server application the color palette recommended by the client
application.

Parameter Description
lpDoc Points to an OLESERVERDOC structure for which the client application recommends a

palette.
lpPal Points to a LOGPALETTE structure specifying the recommended palette.

Returns
The return value is OLE_OK if the function is successful. Otherwise, it is an error value.

Comments
Server applications are not required to use the palette recommended by the client application.

Before returning from the SetColorScheme function, the server application should create a handle to the
palette. To do this, the server application should use the palette pointed to by the lpPal parameter in a call
to the CreatePalette function, as shown in the following example.

hpal = CreatePalette(lpPal);
The server can then use the palette handle to refer to the palette.

The first palette entry in the LOGPALETTE structure specifies the foreground color recommended by the
client application. The second palette entry specifies the background color. The first half of the remaining
palette entries are fill colors, and the second half are colors for lines and text.

Client applications typically specify an even number of palette entries. When there is an uneven number of
entries, the server should interpret the odd entry as a fill color; that is, if there are five entries, three should
be interpreted as fill colors and two as line and text colors.
Function

Execute (OLE 1.x)
OLESTATUS Execute(lpDoc, hCommands)
LPOLESERVERDOC lpDoc;
HGLOBAL hCommands;

The Execute function receives WM_DDE_EXECUTE commands sent by client applications. The
applications send these commands by calling the OleExecute function.

Parameter Description
lpDoc Points to an OLESERVERDOC structure to which the dynamic data exchange (DDE)

commands apply.
hCommands Identifies memory containing one or more DDE execute commands.

Returns
The return value is OLE_OK if the function is successful. Otherwise, it is an error value.

Comments
The server should never free the handle specified in the hCommands parameter.

OLESERVERVTBL (3.1)

#include <ole.h>
typedef struct _OLESERVERVTBL { /* osv */

OLESTATUS (CALLBACK* Open)(LPOLESERVER, LHSERVERDOC,
OLE_LPCSTR, LPOLESERVERDOC FAR*);
OLESTATUS (CALLBACK* Create)(LPOLESERVER, LHSERVERDOC,
OLE_LPCSTR, OLE_LPCSTR, LPOLESERVERDOC FAR*);
OLESTATUS (CALLBACK* CreateFromTemplate)(LPOLESERVER,
LHSERVERDOC, OLE_LPCSTR, OLE_LPCSTR, OLE_LPCSTR,
LPOLESERVERDOC FAR*);
OLESTATUS (CALLBACK* Edit)(LPOLESERVER, LHSERVERDOC,
OLE_LPCSTR, OLE_LPCSTR, LPOLESERVERDOC FAR*);
OLESTATUS (CALLBACK* Exit)(LPOLESERVER);
OLESTATUS (CALLBACK* Release)(LPOLESERVER);
OLESTATUS (CALLBACK* Execute)(LPOLESERVER, HGLOBAL);

} OLESERVERVTBL;
The OLESERVERVTBL structure points to functions that manipulate a server. After a server application
creates this structure and an OLESERVER structure, the server library can perform operations on the
server application.

Every function except Release can return OLE_BUSY.

Member Description
Open Opens an existing file and prepares to edit the contents.
Create Makes a new object of a given class name which will be embedded in the

client application.
CreateFromTemplate Creates a new document that is initialized with the data in a specified file.
Edit Creates a document that is initialized with data retrieved by a subsequent

call to the SetData function.
Exit Instructs the server application to close documents and shut down.
Release Notifies a server that all connections to it have closed and that it is safe to

terminate.
Execute Specifies DDE execute strings.
Function

See Also
OLESERVER

Open (OLE 1.x)
OLESTATUS Open(lpServer, lhDoc, lpszDoc, lplpDoc)
LPOLESERVER lpServer;
LHSERVERDOC lhDoc;
OLE_LPCSTR lpszDoc;
LPOLESERVERDOC FAR* lplpDoc;

The Open function opens an existing file and prepares to edit the contents. A server typically uses this
function to open a linked object for a client application.

Parameter Description
lpServer Points to an OLESERVER structure identifying the server.
lhDoc Identifies the document. The library uses this handle internally.
lpszDoc Points to a null-terminated string specifying the permanent name of the document to be

opened. Typically this string is a path, but for some applications it might be further
qualified. For example, the string might specify a particular table in a database.

lplpDoc Points to a variable of type LPOLESERVERDOC in which the server application
returns a long pointer to the OLESERVERDOC structure it has created in response to
this function.

Returns
The return value is OLE_OK if the function is successful. Otherwise, it is an error value.

Comments
When the library calls this function, the server application opens a specified document, allocates and
initializes an OLESERVERDOC structure, associates the library's handle with the document, and returns
the address of the structure. The server does not show the document or its window.
Function

Create (OLE 1.x)
OLESTATUS Create(lpServer, lhDoc, lpszClass, lpszDoc, lplpDoc)
LPOLESERVER lpServer;
LHSERVERDOC lhDoc;
OLE_LPCSTR lpszClass;
OLE_LPCSTR lpszDoc;
LPOLESERVERDOC FAR* lplpDoc;

The Create function makes a new object that is to be embedded in the client application. The lpszDoc
parameter identifies the object but should not be used to create a file for the object.

Parameter Description
lpServer Points to an OLESERVER structure identifying the server.
lhDoc Identifies the document. The library uses this handle internally.
lpszClass Points to a null-terminated string specifying the class of document to create.
lpszDoc Points to a null-terminated string specifying a name for the document to be created. This

name can be used to identify the document in window titles.
lplpDoc Points to a variable of type LPOLESERVERDOC in which the server application should

return a long pointer to the created OLESERVERDOC structure.

Returns
The return value is OLE_OK if the function is successful. Otherwise, it is an error value.

Comments
When the library calls this function, the server application creates a document of a specified class,
allocates and initializes an OLESERVERDOC structure, associates the library's handle with the
document, and returns the address of the structure. This function opens the created document for editing
and embeds it in the client when it is updated or closed.

Server applications often track changes to the document specified in this function, so that the user can be
prompted to save changes when necessary.
Function

CreateFromTemplate (OLE 1.x)
OLESTATUS CreateFromTemplate(lpServer, lhDoc, lpszClass, lpszDoc, lpszTemplate, lplpDoc)
LPOLESERVER lpServer;
LHSERVERDOC lhDoc;
OLE_LPCSTR lpszClass;
OLE_LPCSTR lpszDoc;
OLE_LPCSTR lpszTemplate;
LPOLESERVERDOC FAR* lplpDoc;

The CreateFromTemplate function creates a new document that is initialized with the data in a specified
file. The new document is opened for editing by this function and embedded in the client when it is
updated or closed.

Parameter Description
lpServer Points to an OLESERVER structure identifying the server.
lhDoc Identifies the document. The library uses this handle internally.
lpszClass Points to a null-terminated string specifying the class of document to create.
lpszDoc Points to a null-terminated string specifying a name for the document to be created.

This name need not be used by the server application but can be used in window titles.
lpszTemplate Points to a null-terminated string specifying the permanent name of the document to

use to initialize the new document. Typically this string is a path, but for some
applications it might be further qualified. For example, the string might specify a
particular table in a database.

lplpDoc Points to a variable of type LPOLESERVERDOC in which the server application
should return a long pointer to the created OLESERVERDOC structure.

Returns
The return value is OLE_OK if the function is successful. Otherwise, it is an error value.

Comments
When the library calls this function, the server application creates a document of a specified class,
allocates and initializes an OLESERVERDOC structure, associates the library's handle with the
document, and returns the address of the structure.

A server application often tracks changes to the document specified in this function, so that the user can be
prompted to save changes when necessary.
Function

Edit (OLE 1.x)
OLESTATUS Edit(lpServer, lhDoc, lpszClass, lpszDoc, lplpDoc)
LPOLESERVER lpServer;
LHSERVERDOC lhDoc;
OLE_LPCSTR lpszClass;
OLE_LPCSTR lpszDoc;
LPOLESERVERDOC FAR* lplpDoc;

The Edit function creates a document that is initialized with data retrieved by a subsequent call to the
SetData function. The object is embedded in the client application. The server does not show the document
or its window.

Parameter Description
lpServer Points to an OLESERVER structure identifying the server.
lhDoc Identifies the document. The library uses this handle internally.
lpszClass Points to a null-terminated string specifying the class of document to create.
lpszDoc Points to a null-terminated string specifying a name for the document to be created. This

name need not be used by the server application but may be used--for example, in a
window title.

lplpDoc Points to a variable of type LPOLESERVERDOC in which the server application should
return a long pointer to the created OLESERVERDOC structure.

Returns
The return value is OLE_OK if the function is successful. Otherwise, it is an error value.

Comments
When the library calls this function, the server application creates a document of a specified class,
allocates and initializes an OLESERVERDOC structure, associates the library's handle with the
document, and returns the address of the structure.

The document created by the Edit function retrieves the initial data from the client in a subsequent call to
the SetData function. The user can edit the document after the data has been retrieved and the library has
used either the Show function in the OLEOBJECTVTBL structure or the DoVerb function with an Edit
verb to show the document to the user.
Function

Exit (OLE 1.x)
OLESTATUS Exit(lpServer)
LPOLESERVER lpServer;

The Exit function instructs the server application to close documents and quit.

Parameter Description
lpServer Points to an OLESERVER structure identifying the server.

Returns
The return value is OLE_OK if the function is successful. Otherwise, it is an error value.

Comments
The server library calls the Exit function to instruct a server application to terminate. If the server
application has no open documents when the Exit function is called, it should call the OleRevokeServer
function.
Function

Release (OLE 1.x)
OLESTATUS Release(lpServer)
LPOLESERVER lpServer;

The Release function notifies a server that all connections to it have closed and that it is safe to quit.

Parameter Description
lpServer Points to an OLESERVER structure identifying the server.

Returns
The return value is OLE_OK if the function is successful. Otherwise, it is an error value.

Comments
The server library calls the Release function when it is safe for a server to quit. When a server application
calls the OleRevokeServer function, the application must continue to dispatch messages and wait for the
library to call the Release function before quitting.

When the server is invisible and the library calls Release, the server must exit. (The only exception is
when an application supports multiple servers; in this case, an invisible server is sometimes not revocable
when the library calls Release.) If the server has no open documents and it was started with the /
Embedding option (indicating that it was started by a client application), the server should exit when the
library calls the Release function. If the user has explicitly loaded a document into a single-instance
multiple document interface server, however, the server should not exit when the library calls Release.
Typically, a single-instance server is a multiple document interface (MDI) server.

All registered server structures must be released before a server can quit.

A server can call the PostQuitMessage function inside the Release function.
Function

See Also
PostQuitMessage

Execute (OLE 1.x)
OLESTATUS Execute(lpServer, hCommands)
LPOLESERVER lpServer;
HGLOBAL hCommands;

The Execute function receives WM_DDE_EXECUTE commands sent by client applications. The
applications send these commands by calling the OleExecute function.

Parameter Description
lpServer Points to an OLESERVER structure identifying the server.
hCommands Identifies memory containing one or more dynamic data exchange (DDE) execute

commands.

Returns
The return value is OLE_OK if the function is successful. Otherwise, it is an error value.

Comments
The server should never free the handle specified in the hCommands parameter.

OLESTREAM (3.1)

#include <ole.h>
typedef struct _OLESTREAM {/* ostr */

LPOLESTREAMVTBL lpstbl;
} OLESTREAM;
The OLESTREAM structure points to an OLESTREAMVTBL structure that provides stream input and
output functions. These functions are used by the client library for stream operations on objects. The
OLESTREAM structure is allocated and initialized by client applications.

Member Description
lpstbl Points to an OLESTREAMVTBL structure.

See Also
OLESTREAMVTBL

OLESTREAMVTBL (3.1)

#include <ole.h>
typedef struct _OLESTREAMVTBL { /* ostrv */

DWORD (CALLBACK* Get)(LPOLESTREAM, void FAR*, DWORD);
DWORD (CALLBACK* Put)(LPOLESTREAM, OLE_CONST void FAR*, DWORD);

} OLESTREAMVTBL;
The OLESTREAMVTBL structure points to functions the client library uses for stream operations on
objects. This structure is allocated and initialized by client applications.

Member Description
Get Gets data from the stream.
Put Puts data into the stream.

Comments
The stream is valid only for the duration of the function to which it is passed. The library obtains
everything it requires while the stream is valid.

The return values for the stream functions may indicate that an error has occurred, but these values do not
indicate the nature of the error. The client application is responsible for any required error-recovery
operations.

A client application can use these functions to provide variations on the standard stream procedures; for
example, the client could change the permanent storage of some objects so that they were stored in a
database instead of the client document.
Function

See Also
OLESTREAM

Get (OLE 1.x)
DWORD Get(lpstream, lpszBuf, cbbuf)
LPOLESTREAM lpstream;
void FAR* lpszBuf;
DWORD cbbuf;

The Get function gets data from the specified stream.

Parameter Description
lpstream Points to an OLESTREAM structure allocated by the client.
lpszBuf Points to a buffer to fill with data from the stream.
cbbuf Specifies the number of bytes to read into the buffer.

Returns
The return value is the number of bytes actually read into the buffer if the function is successful. If the end
of the file is encountered, the return value is zero. A negative return value indicates that an error occurred.

Comments
The value specified by the cbbuf parameter can be larger than 64K. If the client application uses a stream-
reading function that is limited to 64K, it should call that function repeatedly until it has read the number
of bytes specified by cbbuf. Whenever the data size is larger than 64K, the pointer to the data buffer is
always at the beginning of the segment.
Function

Put (OLE 1.x)
DWORD Put(lpstream, lpszBuf, cbbuf)
LPOLESTREAM lpstream;
OLE_CONST void FAR* lpszBuf;
DWORD cbbuf;

The Put function puts data into the specified stream.

Parameter Description
lpstream Points to an OLESTREAM structure allocated by the client.
lpszBuf Points to a buffer from which to write data into the stream.
cbbuf Specifies the number of bytes to write into the stream.

Returns
The return value is the number of bytes actually written to the stream. A return value less than the number
specified in the cbbuf parameter indicates that either there was insufficient space in the stream or an error
occurred.

Comments
The value specified by the cbbuf parameter can be greater than 64K. If the client application uses a stream-
writing function that is limited to 64K, it should call that function repeatedly until it has written the
number of bytes specified by cbbuf. Whenever the data size is greater than 64K, the pointer to the data
buffer is always at the beginning of the segment.

OLETARGETDEVICE (3.1)

#include <ole.h>
typedef struct _OLETARGETDEVICE { /* otd */

UINT otdDeviceNameOffset;
UINT otdDriverNameOffset;
UINT otdPortNameOffset;
UINT otdExtDevmodeOffset;
UINT otdExtDevmodeSize;
UINT otdEnvironmentOffset;
UINT otdEnvironmentSize;
BYTE otdData[1];

} OLETARGETDEVICE;
The OLETARGETDEVICE structure contains information about the target device that a client application
is using. Server applications can use the information in this structure to change the rendering of an object,
if necessary. A client application provides a handle to this structure in a call to the OleSetTargetDevice
function.

Member Description
otdDeviceNameOffset Specifies the offset from the beginning of the array to the name of the

device.
otdDriverNameOffset Specifies the offset from the beginning of the array to the name of the

device driver.
otdPortNameOffset Specifies the offset from the beginning of the array to the name of the

port.
otdExtDevmodeOffset Specifies the offset from the beginning of the array to a DEVMODE

structure retrieved by the ExtDeviceMode function.
otdExtDevmodeSize Specifies the size of the DEVMODE structure whose offset is specified

by the otdExtDevmodeOffset member.
otdEnvironmentOffset Specifies the offset from the beginning of the array to the device

environment.
otdEnvironmentSize Specifies the size of the environment whose offset is specified by the

otdEnvironmentOffset member.
otdData Specifies an array of bytes containing data for the target device.

Comments
The otdDeviceNameOffset, otdDriverNameOffset, and otdPortNameOffset members should be NULL-
terminated.

In Windows 3.1, the ability to connect multiple printers to one port has made the environment obsolete.
The environment information retrieved by the GetEnvironment function can occasionally be incorrect. To
ensure that the OLETARGETDEVICE structure is initialized correctly, the application should copy
information from the DEVMODE structure retrieved by a call to the ExtDeviceMode function to the
environment position of the OLETARGETDEVICE structure.

See Also
OleSetTargetDevice

OPENFILENAME (3.1)

#include <commdlg.h>
typedef struct tagOPENFILENAME { /* ofn */

DWORDlStructSize;
HWND hwndOwner;
HINSTANCE hInstance;
LPCSTR lpstrFilter;
LPSTRlpstrCustomFilter;
DWORDnMaxCustFilter;
DWORDnFilterIndex;
LPSTRlpstrFile;
DWORDnMaxFile;
LPSTRlpstrFileTitle;
DWORDnMaxFileTitle;
LPCSTR lpstrInitialDir;
LPCSTR lpstrTitle;
DWORDFlags;
UINT nFileOffset;
UINT nFileExtension;
LPCSTR lpstrDefExt;
LPARAM lCustData;
UINT (CALLBACK* lpfnHook) (HWND, UINT, WPARAM, LPARAM);
LPCSTR lpTemplateName;

} OPENFILENAME;
The OPENFILENAME structure contains information that the system uses to initialize the system-defined
Open dialog box or Save dialog box. After the user chooses the OK button to close the dialog box, the
system returns information about the user's selection in this structure.

Member Description
lStructSize Specifies the length of the structure, in bytes. This member is filled on input.
hwndOwner Identifies the window that owns the dialog box. This member can be any valid

window handle, or it should be NULL if the dialog box is to have no owner.
If the OFN_SHOWHELP flag is set, hwndOwner must identify the window
that owns the dialog box. The window procedure for this owner window
receives a notification message when the user chooses the Help button. (The
identifier for the notification message is the value returned by the
RegisterWindowMessage function when HELPMSGSTRING is passed as its
argument.)
This member is filled on input.

hInstance Identifies a data block that contains a dialog box template specified by the
lpTemplateName member. This member is used only if the Flags member
specifies the OFN_ENABLETEMPLATE or the
OFN_ENABLETEMPLATEHANDLE flag; otherwise, this member is ignored.
This member is filled on input.

lpstrFilter Points to a buffer containing one or more pairs of null-terminated strings
specifying filters. The first string in each pair describes a filter (for example,
"Text Files"); the second specifies the filter pattern (for example, "*.txt").
Multiple filters can be specified for a single item; in this case, the semicolon (;
) is used to separate filter pattern strings--for example, "*.txt;*.doc;*.bak". The
last string in the buffer must be terminated by two null characters. If this
parameter is NULL, the dialog box does not display any filters. The filter
strings must be in the proper order--the system does not change the order.
This member is filled on input.

lpstrCustomFilter Points to a buffer containing a pair of user-defined strings that specify a filter.
These strings should be formatted in the same way as is described for the
lpstrFilter member. The first string describes the filter and the second specifies
the filter pattern (for example, "WinWord", "*.doc"). The buffer is terminated
by two null characters. The system copies the strings from the File Name edit
control to the buffer when the user chooses the OK button to close the dialog
box.

If the nFilterIndex member is zero, the system uses the lpstrCustomFilter
strings as the initial filter description and filter pattern for the dialog box. If the
first string in the pair pointed to by lpstrCustomFilter is NULL (for example,
"", "*.doc"), only the strings pointed to by lpstrFilter are displayed in the List
Files of Type listbox, but the last specified filter pattern is still passed to the
second string location of lpstrCustomFilter.

nMaxCustFilter Specifies the size, in bytes, of the buffer identified by the lpstrCustomFilter
member. This buffer should be at least 40 bytes long. This parameter is ignored
if the lpstrCustomFilter member is NULL.
This member is filled on input.

nFilterIndex Specifies an index into the buffer pointed to by the lpstrFilter member. The
system uses the index value to obtain a pair of strings to use as the initial filter
description and filter pattern for the dialog box. The first pair of strings has an
index value of 1. When the user chooses the OK button to close the dialog box,
the system copies the index of the selected filter strings into this location. If the
nFilterIndex member is 0, the filter in the buffer pointed to by the
lpstrCustomFilter member is used. If the nFilterIndex member is 0 and the
lpstrCustomFilter member is NULL, the system uses the first filter in the buffer
pointed to by the lpstrFilter member. If each of the three members is either 0 or
NULL, the system does not use any filters and does not show any files in the
File Name list box of the dialog box.

lpstrFile Points to a buffer that specifies a filename used to initialize the File Name edit
control. If initialization is not necessary, the first character of this buffer must
be NULL. When the GetOpenFileName or GetSaveFileName function returns,
this buffer contains the complete location and name of the selected file.
If the buffer is too small, the dialog box procedure copies the required size into
this member and returns 0. To retrieve the required size, cast the lpstrFile
member to type LPWORD. The buffer must be at least three bytes to receive
the required size. When the buffer is too small, the CommDlgExtendedError
function returns the FNERR_BUFFERTOOSMALL value.

nMaxFile Specifies the size, in bytes, of the buffer pointed to by the lpstrFile member.
The GetOpenFileName and GetSaveFileName functions return FALSE if the
buffer is too small to contain the file information. The buffer does not need to
be larger than 128 bytes; lpstrFile entries longer than 128 bytes are truncated. If
the lpstrFile member is NULL, this member is ignored.
This member is filled on input.

lpstrFileTitle Points to a buffer that receives the title of the selected file. This buffer receives
the filename and extension but no path information. An application should use
this string to display the file title. If this member is NULL, the function does
not copy the file title. This member is filled on output.

nMaxFileTitle Specifies the maximum length, in bytes, of the string that can be copied into the
lpstrFileTitle buffer. This member is ignored if lpstrFileTitle is NULL. This
member is filled on input.

lpstrInitialDir Points to a string that specifies the initial file directory. If this member is
NULL, the system uses the current directory as the initial directory. (If the
lpstrFile member contains a string that specifies a valid path, the common
dialog box procedure will use the path specified by this string instead of the
path specified by the string to which lpstrInitialDir points.)
This member is filled on input.

lpstrTitle Points to a string to be placed in the title bar of the dialog box. If this member
is NULL, the system uses the default title (that is, Save As or Open). This
member is filled on input.

Flags Specifies the dialog box initialization flags. This member may be a
combination of the following values:

Value Meaning
OFN_ALLOWMULTISELECT

Specifies that the File Name list box is to allow multiple selections.
When this flag is set, the lpstrFile member points to a buffer containing
the path to the current directory and all filenames in the selection. The
first filename is separated from the path by a space. Each subsequent
filename is separated by one space from the preceding filename. Some of

the selected filenames may be preceded by relative paths; for example,
the buffer could contain something like this:

c:\files file1.txt file2.txt ..\bin\file3.txt
OFN_CREATEPROMPT

Causes the dialog box procedure to generate a message box to notify the
user when a specified file does not currently exist and to make it possible
for the user to specify that the file should be created. (This flag
automatically sets the OFN_PATHMUSTEXIST and
OFN_FILEMUSTEXIST flags.)

OFN_ENABLEHOOK
Enables the hook function specified in the lpfnHook member.

OFN_ENABLETEMPLATE
Causes the system to use the dialog box template identified by the
hInstance and lpTemplateName members to create the dialog box.

OFN_ENABLETEMPLATEHANDLE
Indicates that the hInstance member identifies a data block that contains a
pre-loaded dialog box template. The system ignores the lpTemplateName
member if this flag is specified.

OFN_EXTENSIONDIFFERENT
Indicates that the extension of the returned filename is different from the
extension specified by the lpstrDefExt member. This flag is not set if
lpstrDefExt is NULL, if the extensions match, or if the file has no
extension. This flag can be set on output.

OFN_FILEMUSTEXIST
Specifies that the user can type only the names of existing files in the File
Name edit control. If this flag is set and the user types an invalid
filename in the File Name edit control, the dialog box procedure displays
a warning in a message box. (This flag also causes the
OFN_PATHMUSTEXIST flag to be set.)

OFN_HIDEREADONLY
Hides the Read Only check box.

OFN_NOCHANGEDIR
Forces the dialog box to reset the current directory to what it was when
the dialog box was created.

OFN_NOREADONLYRETURN
Specifies that the file returned will not have the Read Only attribute set
and will not be in a write-protected directory.

OFN_NOTESTFILECREATE
Specifies that the file will not be created before the dialog box is closed.
This flag should be set if the application saves the file on a create-no-
modify network share point. When an application sets this flag, the
library does not check against write protection, a full disk, an open drive
door, or network protection. Therefore, applications that use this flag
must perform file operations carefully--a file cannot be reopened once it
is closed.

OFN_NOVALIDATE
Specifies that the common dialog boxes will allow invalid characters in
the returned filename. Typically, the calling application uses a hook
function that checks the filename using the FILEOKSTRING registered
message. If the text in the edit control is empty or contains nothing but
spaces, the lists of files and directories are updated. If the text in the edit
control contains anything else, the nFileOffset and nFileExtension
members are set to values generated by parsing the text. No default
extension is added to the text, nor is text copied to the lpstrFileTitle
buffer.

If the value specified by the nFileOffset member is negative, the filename
is invalid. If the value specified by nFileOffset is not negative, the
filename is valid, and nFileOffset and nFileExtension can be used as if
the OFN_NOVALIDATE flag had not been set.

OFN_OVERWRITEPROMPT
Causes the Save As dialog box to generate a message box if the selected
file already exists. The user must confirm whether to overwrite the file.

OFN_PATHMUSTEXIST
Specifies that the user can type only valid paths. If this flag is set and the
user types an invalid path in the File Name edit control, the dialog box
procedure displays a warning in a message box.

OFN_READONLY
Causes the Read Only check box to be initially checked when the dialog
box is created. When the user chooses the OK button to close the dialog
box, the state of the Read Only check box is specified by this member.
This flag can be set on input and output.

OFN_SHAREAWARE
Specifies that if a call to the OpenFile function has failed because of a
network sharing violation, the error is ignored and the dialog box returns
the given filename. If this flag is not set, the registered message for
SHAREVISTRING is sent to the hook function, with a pointer to a null-
terminated string for the path name in the lParam parameter. The hook
function responds with one of the following values:
Value Meaning
OFN_SHAREFALLTHROUGH

Specifies that the filename is returned from the dialog box.
OFN_SHARENOWARN

Specifies no further action.
OFN_SHAREWARN

Specifies that the user receives the standard warning message for
this error. (This is the same result as if there were no hook function.
)

This flag may be set on output.
OFN_SHOWHELP

Causes the dialog box to show the Help push button. The hwndOwner
must not be NULL if this option is specified.

These flags may be set when the structure is initialized, except where specified.
nFileOffset Specifies a zero-based offset from the beginning of the path to the filename

specified by the string in the buffer to which lpstrFile points. For example, if
lpstrFile points to the string, "c:\dir1\dir2\file.ext", this member contains the
value 13.
This member is filled on output.

nFileExtension Specifies a zero-based offset from the beginning of the path to the filename
extension specified by the string in the buffer to which lpstrFile points. For
example, if lpstrFile points to the following string, "c:\dir1\dir2\file.ext", this
member contains the value 18. If the user did not type an extension and
lpstrDefExt is NULL, this member specifies an offset to the terminating null
character. If the user typed a period (.) as the last character in the filename, this
member is 0.
This member is filled on output.

lpstrDefExt
Points to a buffer that contains the default extension. The GetOpenFileName or
GetSaveFileName function appends this extension to the filename if the user
fails to enter an extension. If the filename with the default extension is not
found, the GetOpenFileName or GetSaveFileName function attempts to find
the file using the name exactly as the user typed it. This string can be any
length, but only the first three characters are appended. The string should not
contain a period (.). If this member is NULL and the user fails to type an
extension, no extension is appended. This member is filled on input.

lCustData Specifies application-defined data that the system passes to the hook function
pointed to by the lpfnHook member. The system passes a pointer to the
OPENFILENAME structure in the lParam parameter of the
WM_INITDIALOG message; this pointer can be used to retrieve the lCustData
member.

lpfnHook Points to a hook function that processes messages intended for the dialog box.
To enable the hook function, an application must specify the
OFN_ENABLEHOOK flag in the Flags member; otherwise, the system ignores
this structure member. The hook function must return zero to pass a message
that it didn't process back to the dialog box procedure in COMMDLG.DLL.
The hook function must return a nonzero value to prevent the dialog box
procedure in COMMDLG.DLL from processing a message it has already
processed.
This member is filled on input.

lpTemplateName Points to a null-terminated string that specifies the name of the resource file for
the dialog box template that is to be substituted for the dialog box template in
COMMDLG.DLL. An application can use the MAKEINTRESOURCE macro
for numbered dialog box resources. This member is used only if the Flags
member specifies the OFN_ENABLETEMPLATE flag; otherwise, this
member is ignored.
This member is filled on input.

See Also
GetOpenFileName, GetSaveFileName, MAKEINTRESOURCE

OFN_ALLOWMULTISELECT 0x00000200

Specifies that the File Name list box is to allow multiple selections. When this flag is set, the lpstrFile
member points to a buffer containing the path to the current directory and all filenames in the selection.
The first filename is separated from the path by a space. Each subsequent filename is separated by one
space from the preceding filename. Some of the selected filenames may be preceded by relative paths; for
example, the buffer could contain something like this:

OFN_ALLOWMULTISELECT 0x00000200

OFN_CREATEPROMPT 0x00002000

Causes the dialog box procedure to generate a message box to notify the user when a specified file does
not currently exist and to make it possible for the user to specify that the file should be created. (This flag
automatically sets the OFN_PATHMUSTEXIST and OFN_FILEMUSTEXIST flags.)

OFN_CREATEPROMPT 0x00002000

OFN_ENABLEHOOK 0x00000020

Enables the hook function specified in the lpfnHook member.

OFN_ENABLEHOOK 0x00000020

OFN_ENABLETEMPLATE 0x00000040

Causes the system to use the dialog box template identified by the hInstance and lpTemplateName
members to create the dialog box.

OFN_ENABLETEMPLATE 0x00000040

OFN_ENABLETEMPLATEHANDLE 0x00000080

Indicates that the hInstance member identifies a data block that contains a pre-loaded dialog box template.
The system ignores the lpTemplateName member if this flag is specified.

OFN_ENABLETEMPLATEHANDLE 0x00000080

OFN_EXTENSIONDIFFERENT 0x00000400

Indicates that the extension of the returned filename is different from the extension specified by the
lpstrDefExt member. This flag is not set if lpstrDefExt is NULL, if the extensions match, or if the file has
no extension. This flag can be set on output.

OFN_EXTENSIONDIFFERENT 0x00000400

OFN_FILEMUSTEXIST 0x00001000

Specifies that the user can type only the names of existing files in the File Name edit control. If this flag is
set and the user types an invalid filename in the File Name edit control, the dialog box procedure displays
a warning in a message box. (This flag also causes the OFN_PATHMUSTEXIST flag to be set.)

OFN_FILEMUSTEXIST 0x00001000

OFN_HIDEREADONLY 0x00000004

Hides the Read Only check box.

OFN_HIDEREADONLY 0x00000004

OFN_NOCHANGEDIR 0x00000008

Forces the dialog box to reset the current directory to what it was when the dialog box was created.

OFN_NOCHANGEDIR 0x00000008

OFN_NOREADONLYRETURN 0x00008000

Specifies that the file returned will not have the Read Only attribute set and will not be in a write-
protected directory.

OFN_NOREADONLYRETURN 0x00008000

OFN_NOTESTFILECREATE 0x00010000

Specifies that the file will not be created before the dialog box is closed. This flag should be set if the
application saves the file on a create-no-modify network share point. When an application sets this flag,
the library does not check against write protection, a full disk, an open drive door, or network protection.
Therefore, applications that use this flag must perform file operations carefully--a file cannot be reopened
once it is closed.

OFN_NOTESTFILECREATE 0x00010000

OFN_NOVALIDATE 0x00000100

Specifies that the common dialog boxes will allow invalid characters in the returned filename. Typically,
the calling application uses a hook function that checks the filename using the FILEOKSTRING registered
message. If the text in the edit control is empty or contains nothing but spaces, the lists of files and
directories are updated. If the text in the edit control contains anything else, the nFileOffset and
nFileExtension members are set to values generated by parsing the text. No default extension is added to
the text, nor is text copied to the lpstrFileTitle buffer. If the value specified by the nFileOffset member is
negative, the filename is invalid. If the value specified by nFileOffset is not negative, the filename is valid,
and nFileOffset and nFileExtension can be used as if the OFN_NOVALIDATE flag had not been set.

OFN_NOVALIDATE 0x00000100

OFN_OVERWRITEPROMPT 0x00000002

Causes the Save As dialog box to generate a message box if the selected file already exists. The user must
confirm whether to overwrite the file.

OFN_OVERWRITEPROMPT 0x00000002

OFN_PATHMUSTEXIST 0x00000800

Specifies that the user can type only valid paths. If this flag is set and the user types an invalid path in the
File Name edit control, the dialog box procedure displays a warning in a message box.

OFN_PATHMUSTEXIST 0x00000800

OFN_READONLY 0x00000001

Causes the Read Only check box to be initially checked when the dialog box is created. When the user
chooses the OK button to close the dialog box, the state of the Read Only check box is specified by this
member. This flag can be set on input and output.

OFN_READONLY 0x00000001

OFN_SHAREAWARE 0x00004000

Specifies that if a call to the OpenFile function has failed because of a network sharing violation, the error
is ignored and the dialog box returns the given filename. If this flag is not set, the registered message for
SHAREVISTRING is sent to the hook function, with a pointer to a null-terminated string for the path
name in the lParam parameter. The hook function responds with one of the following values:

OFN_SHAREAWARE 0x00004000

This

flag may be set on output.

OFN_SHOWHELP 0x00000010

Causes the dialog box to show the Help push button. The hwndOwner must not be NULL if this option is
specified.

OFN_SHOWHELP 0x00000010

OUTLINETEXTMETRIC (3.1)

typedef struct tagOUTLINETEXTMETRIC { /* otm */
UINT otmSize;
TEXTMETRIC otmTextMetrics;
BYTE otmFiller;
PANOSE otmPanoseNumber;
UINT otmfsSelection;
UINT otmfsType;
UINT otmsCharSlopeRise;
UINT otmsCharSlopeRun;
UINT otmItalicAngle;
UINT otmEMSquare;
INT otmAscent;
INT otmDescent;
UINT otmLineGap;
UINT otmsXHeight;
UINT otmsCapEmHeight;
RECT otmrcFontBox;
INT otmMacAscent;
INT otmMacDescent;
UINT otmMacLineGap;
UINT otmusMinimumPPEM;
POINT otmptSubscriptSize;
POINT otmptSubscriptOffset;
POINT otmptSuperscriptSize;
POINT otmptSuperscriptOffset;
UINT otmsStrikeoutSize;
INT otmsStrikeoutPosition;
INT otmsUnderscorePosition;
UINT otmsUnderscoreSize;
PSTR otmpFamilyName;
PSTR otmpFaceName;
PSTR otmpStyleName;
PSTR otmpFullName;

} OUTLINETEXTMETRIC;
The OUTLINETEXTMETRIC structure contains metrics describing a TrueType font.

Member Description
otmSize Specifies the size, in bytes, of the OUTLINETEXTMETRIC structure.
otmTextMetrics Specifies a TEXTMETRIC structure containing further information

about the font.
otmFiller Specifies a value that causes the structure to be byte-aligned.
otmPanoseNumber Specifies the Panose number for this font.
otmfsSelection Specifies the nature of the font pattern. This member can be a

combination of the following bits:

Bit Meaning
0 Italic
1 Underscore
2 Negative
3 Outline
4 Strikeout
5 Bold

otmfsType Specifies whether the font is licensed. Licensed fonts may not be
modified or exchanged. If bit 1 is set, the font may not be embedded
in a document. If bit 1 is clear, the font can be embedded. If bit 2 is
set, the embedding is read-only.

otmsCharSlopeRise Specifies the slope of the cursor. This value is 1 if the slope is vertical.
Applications can use this value and the value of the
otmsCharSlopeRun member to create an italic cursor that has the same

slope as the main italic angle (specified by the otmItalicAngle
member).

otmsCharSlopeRun Specifies the slope of the cursor. This value is zero if the slope is
vertical. Applications can use this value and the value of the
otmsCharSlopeRise member to create an italic cursor that has the
same slope as the main italic angle (specified by the otmItalicAngle
member).

otmItalicAngle Specifies the main italic angle of the font, in counterclockwise degrees
from vertical. Regular (roman) fonts have a value of zero. Italic fonts
typically have a negative italic angle (that is, they lean to the right).

otmEMSquare Specifies the number of logical units defining the x- or y-dimension of
the em square for this font. (The number of units in the x- and y-
directions are always the same for an em square.)

otmAscent Specifies the maximum distance characters in this font extend above
the base line. This is the typographic ascent for the font.

otmDescent Specifies the maximum distance characters in this font extend below
the base line. This is the typographic descent for the font.

otmLineGap Specifies typographic line spacing.
otmsXHeight Not supported.
otmsCapEmHeight Not supported.
otmrcFontBox Specifies the bounding box for the font.
otmMacAscent Specifies the maximum distance characters in this font extend above

the base line for the Macintosh.
otmMacDescent Specifies the maximum distance characters in this font extend below

the base line for the Macintosh.
otmMacLineGap Specifies line-spacing information for the Macintosh.
otmusMinimumPPEM Specifies the smallest recommended size for this font, in pixels per

em-square.
otmptSubscriptSize Specifies the recommended horizontal and vertical size for subscripts

in this font.
otmptSubscriptOffset Specifies the recommended horizontal and vertical offset for

subscripts in this font. The subscript offset is measured from the
character origin to the origin of the subscript character.

otmptSuperscriptSize Specifies the recommended horizontal and vertical size for
superscripts in this font.

otmptSuperscriptOffset Specifies the recommended horizontal and vertical offset for
superscripts in this font. The subscript offset is measured from the
character base line to the base line of the superscript character.

otmsStrikeoutSize Specifies the width of the strikeout stroke for this font. Typically, this
is the width of the em-dash for the font.

otmsStrikeoutPosition Specifies the position of the strikeout stroke relative to the base line
for this font. Positive values are above the base line and negative
values are below.

otmsUnderscorePosition Specifies the position of the underscore character for this font.
otmsUnderscoreSize Specifies the thickness of the underscore character for this font.
otmpFamilyName Specifies the offset from the beginning of the structure to a string

specifying the family name for the font.
otmpFaceName Specifies the offset from the beginning of the structure to a string

specifying the face name for the font. (This face name corresponds to
the name specified in the LOGFONT structure.)

otmpStyleName Specifies the offset from the beginning of the structure to a string
specifying the style name for the font.

otmpFullName Specifies the offset from the beginning of the structure to a string
specifying the full name for the font. This name is unique for the font
and often contains a version number or other identifying information.

Comments
The sizes returned in OUTLINETEXTMETRIC are given in logical units; that is, they depend on the
current mapping mode of the specified display context.

See Also
GetOutlineTextMetrics, PANOSE, TEXTMETRIC

PAINTSTRUCT (2.x)

typedef struct tagPAINTSTRUCT {/* ps */
HDC hdc;
BOOL fErase;
RECT rcPaint;
BOOL fRestore;
BOOL fIncUpdate;
BYTE rgbReserved[16];

} PAINTSTRUCT;
The PAINTSTRUCT structure contains information for an application. This information can be used to
paint the client area of a window owned by that application.

Member Description
hdc Identifies the display context to be used for painting.
fErase Specifies whether the background needs to be redrawn. This value is nonzero if the

application should redraw the background. The application is responsible for
drawing the background if a window class is created without a background brush.
For more information, see the description of the hbrBackground member of the
WNDCLASS structure.

rcPaint Specifies the upper-left and lower-right corners of the rectangle in which the painting
is requested.

fRestore Reserved; used internally by Windows.
fIncUpdate Reserved; used internally by Windows.
rgbReserved Reserved (reserved memory object used internally by Windows)

See Also
BeginPaint, WNDCLASS

Corrections

The description of the fErase member was reversed. It is nonzero if the application should redraw the
background.

PALETTEENTRY (3.0)

typedef struct tagPALETTEENTRY { /* pe */
BYTE peRed;
BYTE peGreen;
BYTE peBlue;
BYTE peFlags;

} PALETTEENTRY;
The PALETTEENTRY structure specifies the color and usage of an entry in a logical color palette. A
logical palette is defined by a LOGPALETTE structure.

Member Description
peRed Specifies the intensity of red for the palette entry color.
peGreen Specifies the intensity of green for the palette entry color.
peBlue Specifies the intensity of blue for the palette entry color.
peFlags Specifies how the palette entry is to be used. The peFlags member may be set to NULL or

to one of the following values (specifying NULL informs Windows that the palette entry
contains an RGB value and that it should be mapped normally):

Value Meaning
PC_EXPLICIT Specifies that the low-order word of the logical palette entry

designates a hardware palette index. This flag allows the
application to show the contents of the palette for the display
device.

PC_NOCOLLAPSE Specifies that the color will be placed in an unused entry in the
system palette instead of being matched to an existing color in
the system palette. Once this color is in the system palette,
colors in other logical palettes can be matched to this color. If
there are no unused entries in the system palette, the color is
matched normally.

PC_RESERVED Specifies that the logical palette entry will be used for palette
animation. Because the color will frequently change, using this
flag prevents other windows from matching colors to this
palette entry. If an unused system-palette entry is available,
this color is placed in that entry. Otherwise, the color will not
be available for animation.

See Also
AnimatePalette, LOGPALETTE

PANOSE (3.1)

typedef struct tagPANOSE { /* panose */
BYTE bFamilyType;
BYTE bSerifStyle;
BYTE bWeight;
BYTE bProportion;
BYTE bContrast;
BYTE bStrokeVariation;
BYTE bArmStyle;
BYTE bLetterform;
BYTE bMidline;
BYTE bXHeight;

} PANOSE;
The PANOSE structure describes the Panose font-classification values for a TrueType font.

Member Description
bFamilyType Specifies the font family. This member can be one of the following values:

Value Meaning
0 Any
1 No fit
2 Text and display
3 Script
4 Decorative
5 Pictorial

bSerifStyle Specifies the style of serifs for the font. This member can be one of the
following values:

Value Meaning
0 Any
1 No fit
2 Cove
3 Obtuse cove
4 Square cove
5 Obtuse square cove
6 Square
7 Thin
8 Bone
9 Exaggerated
10 Triangle
11 Normal sans
12 Obtuse sans
13 Perp sans
14 Flared
15 Rounded

bWeight Specifies the weight of the font. This member can be one of the following
values:

Value Meaning
0 Any
1 No fit
2 Very light
3 Light
4 Thin
5 Book
6 Medium
7 Demi

8 Bold
9 Heavy
10 Black
11 Nord

bProportion Specifies the proportion of the font. This member can be one of the following
values:

Value Meaning
0 Any
1 No fit
2 Old style
3 Modern
4 Even width
5 Expanded
6 Condensed
7 Very expanded
8 Very condensed
9 Monospaced

bContrast Specifies the contrast of the font. This member can be one of the following
values:

Value Meaning
0 Any
1 No fit
2 None
3 Very low
4 Low
5 Medium low
6 Medium
7 Medium high
8 High
9 Very high

bStrokeVariation Specifies the stroke variation for the font. This member can be one of the
following values:

Value Meaning
0 Any
1 No fit
2 Gradual/diagonal
3 Gradual/transitional
4 Gradual/vertical
5 Gradual/horizontal
6 Rapid/vertical
7 Rapid/horizontal
8 Instant/vertical

bArmStyle Specifies the style for the arms in the font. This member can be one of the
following values:

Value Meaning
0 Any
1 No fit
2 Straight arms/horizontal
3 Straight arms/wedge
4 Straight arms/vertical
5 Straight arms/single serif
6 Straight arms/double serif

7 Non-straight arms/horizontal
8 Non-straight arms/wedge
9 Non-straight arms/vertical
10 Non-straight arms/single serif
11 Non-straight arms/double serif

bLetterform Specifies the letter form for the font. This member can be one of the following
values:

Value Meaning
0 Any
1 No fit
2 Normal/contact
3 Normal/weighted
4 Normal/boxed
5 Normal/flattened
6 Normal/rounded
7 Normal/off-center
8 Normal/square
9 Oblique/contact
10 Oblique/weighted
11 Oblique/boxed
12 Oblique/flattened
13 Oblique/rounded
14 Oblique/off-center
15 Oblique/square

bMidline Specifies the style of the midline for the font. This member can be one of the
following values:

Value Meaning
0 Any
1 No fit
2 Standard/trimmed
3 Standard/pointed
4 Standard/serifed
5 High/trimmed
6 High/pointed
7 High/serifed
8 Constant/trimmed
9 Constant/pointed
10 Constant/serifed
11 Low/trimmed
12 Low/pointed
13 Low/serifed

bXHeight Specifies the X-height of the font. This member can be one of the following
values:

Value Meaning
0 Any
1 No fit
2 Constant/small
3 Constant/standard
4 Constant/large
5 Ducking/small
6 Ducking/standard
7 Ducking/large

See Also
OUTLINETEXTMETRIC

POINT (2.x)

typedef struct tagPOINT { /* pt */
int x;
int y;

} POINT;
The POINT structure defines the x- and y-coordinates of a point.

Member Description
x Specifies the x-coordinate of a point.
y Specifies the y-coordinate of a point.

See Also
ChildWindowFromPoint, PtInRect, WindowFromPoint

POINTFX (3.1)

typedef struct tagPOINTFX {
FIXED x;
FIXED y;

} POINTFX;
The POINTFX structure contains the coordinates of points that describe the outline of a character in a
TrueType font. POINTFX is a member of the TTPOLYCURVE and TTPOLYGONHEADER structures.

Member Description
x Specifies the x-component of a point on the outline of a TrueType character.
y Specifies the y-component of a point on the outline of a TrueType character.

See Also
FIXED, TTPOLYCURVE, TTPOLYGONHEADER, GetGlyphOutline

PRINTDLG (3.1)

#include <commdlg.h>
typedef struct tagPD { /* pd */

DWORDlStructSize;
HWND hwndOwner;
HGLOBAL hDevMode;
HGLOBAL hDevNames;
HDC hDC;
DWORDFlags;
UINT nFromPage;
UINT nToPage;
UINT nMinPage;
UINT nMaxPage;
UINT nCopies;
HINSTANCE hInstance;
LPARAM lCustData;
UINT (CALLBACK* lpfnPrintHook)(HWND, UINT, WPARAM, LPARAM);
UINT (CALLBACK* lpfnSetupHook)(HWND, UINT, WPARAM, LPARAM);
LPCSTR lpPrintTemplateName;
LPCSTR lpSetupTemplateName;
HGLOBAL hPrintTemplate;
HGLOBAL hSetupTemplate;

} PRINTDLG;
The PRINTDLG structure contains information that the system uses to initialize the system-defined Print
dialog box. After the user chooses the OK button to close the dialog box, the system returns information
about the user's selections in this structure.

Member Description
lStructSize Specifies the length of the structure, in bytes. This member is filled on

input.
hwndOwner Identifies the window that owns the dialog box. This member can be

any valid window handle, or it should be NULL if the dialog box is to
have no owner.
If the PD_SHOWHELP flag is set, hwndOwner must identify the
window that owns the dialog box. The window procedure for this
owner window receives a notification message when the user chooses
the Help button. (The identifier for the notification message is the value
returned by the RegisterWindowMessage function when
HELPMSGSTRING is passed as its argument.)
This member is filled on input.

hDevMode Identifies a movable global memory object that contains a DEVMODE
structure. Before the PrintDlg function is called, the members in this
structure may contain data used to initialize the dialog box controls.
When the PrintDlg function returns, the members in this structure
specify the state of each of the dialog box controls.
If the application uses the structure to initialize the dialog box controls,
it must allocate space for and create the DEVMODE structure. (The
application should allocate a movable memory object.)
If the application does not use the structure to initialize the dialog box
controls, the hDevMode member may be NULL. In this case, the
PrintDlg function allocates memory for the structure, initializes its
members, and returns a handle that identifies it.
If the device driver for the specified printer does not support extended
device modes, the hDevMode member is NULL when PrintDlg returns.
If the device name (specified by the dmDeviceName member of the
DEVMODE structure) does not appear in the [devices] section of WIN.
INI, the PrintDlg function returns an error.
The value of hDevMode may change during the execution of the
PrintDlg function. If this value changes, the PrintDlg function has

already freed the original handle and allocated a new one. When the
calling application is finished with the handle, it must free it by calling
the GlobalFree function. This value may change even if the PrintDlg
function returns zero.
This member is filled on input and output.

hDevNames Identifies a movable global memory object that contains a
DEVNAMES structure. This structure contains three strings; these
strings specify the driver name, the printer name, and the output-port
name. Before the PrintDlg function is called, the members of this
structure contain strings used to initialize the dialog box controls. When
the PrintDlg function returns, the members of this structure contain the
strings typed by the user. The calling application uses these strings to
create a device context or an information context.
If the application uses the structure to initialize the dialog box controls,
it must allocate space for and create the DEVMODE data structure.
(The application should allocate a movable global memory object.)
If the application does not use the structure to initialize the dialog box
controls, the hDevNames member can be NULL. In this case, the
PrintDlg function allocates memory for the structure, initializes its
members (using the printer name specified in the DEVMODE data
structure), and returns a handle that identifies it. When the PrintDlg
function initializes the members of the DEVNAMES structure, it uses
the first port name that appears in the [devices] section of WIN.INI. For
example, the function uses "LPT1" as the port name if the following
string appears in the [devices] section:

PCL / HP LaserJet=HPPCL,LPT1:,LPT2:
If both the hDevMode and hDevNames members are NULL, PrintDlg
specifies the current default printer for hDevNames.
The value of hDevNames may change during the execution of the
PrintDlg function. If this value changes, the PrintDlg function has
already freed the original handle and allocated a new one. When the
calling application is finished with the handle, it must free it by calling
the GlobalFree function. This value may change even if the PrintDlg
function returns zero.
This member is filled on input and output.

hDC Identifies either a device context or an information context, depending
on whether the Flags member specifies the PD_RETURNDC or the
PC_RETURNIC flag. If neither flag is specified, the value of this
member is undefined. If both flags are specified, hDC is
PD_RETURNDC.
This member is filled on output.

Flags Specifies the dialog box initialization flags. This member may be a
combination of the following values:

Value Meaning
PD_ALLPAGES Indicates that

the All radio
button was
selected when
the user closed
the dialog box.
(This value is
used as a
placeholder, to
indicate that
the
PD_PAGENUMS
and
PD_SELECTION
flags are not
set. This value

can be set on
input and
output.)

PD_COLLATE Causes the
Collate Copies
check box to
be checked
when the
dialog box is
created. When
the PrintDlg
function
returns, this
flag indicates
the state in
which the user
left the Collate
Copies check
box. This flag
can be set on
input and
output.

PD_DISABLEPRINTTOFILE Disables the
Print to File
check box.

PD_ENABLEPRINTHOOK Enables the
hook function
specified in the
lpfnPrintHook
member of this
structure.

PD_ENABLEPRINTTEMPLATE Causes the
system to use
the dialog box
template
identified by
the hInstance
and
lpPrintTemplateName
members to
create the Print
dialog box.

PD_ENABLEPRINTTEMPLATEHANDLE Indicates that
the
hPrintTemplate
member
identifies a
data block that
contains a pre-
loaded dialog
box template.
The system
ignores the
hInstance
member if this
flag is
specified.

PD_ENABLESETUPHOOK Enables the
hook function
specified in the
lpfnSetupHook
member of this
structure.

PD_ENABLESETUPTEMPLATE Causes the
system to use
the dialog box
template
identified by
the hInstance
and
lpSetupTemplateName
members to
create the Print
Setup dialog
box.

PD_ENABLESETUPTEMPLATEHANDLE Indicates that
the
hSetupTemplate
member
identifies a
data block that
contains a pre-
loaded dialog
box template.
The system
ignores the
hInstance
member if this
flag is
specified.

PD_HIDEPRINTTOFILE Hides and
disables the
Print to File
check box.

PD_NOPAGENUMS Disables the
Pages radio
button and the
associated edit
controls.

PD_NOSELECTION Disables the
Selection radio
button.

PD_NOWARNING Prevents the
warning
message from
being
displayed
when there is
no default
printer.

PD_PAGENUMS Causes the
Pages radio
button to be
selected when
the dialog box
is created.
When the
PrintDlg
function
returns, this
flag is set if the
Pages button is
in the selected
state. If neither
PD_PAGENUMS
nor

PD_SELECTION
is specified,
the All radio
button is in the
selected state.
This flag can
be set on input
and output.

PD_PRINTSETUP Causes the
system to
display the
Print Setup
dialog box
rather than the
Print dialog
box.

PD_PRINTTOFILE Causes the
Print to File
check box to
be checked
when the
dialog box is
created.
This flag can
be set on input
and output.

PD_RETURNDC Causes the
PrintDlg
function to
return a device
context
matching the
selections that
the user made
in the dialog
box. The
handle to the
device context
is returned in
the hDC
member. If
neither
PD_RETURNDC
nor
PD_RETURNIC
is specified,
the hDC
parameter is
undefined on
output.

PD_RETURNDEFAULT Causes the
PrintDlg
function to
return
DEVMODE
and
DEVNAMES
structures that
are initialized
for the system
default printer.
PrintDlg does
this without

displaying a
dialog box.
Both the
hDevNames
and the
hDevMode
members
should be
NULL;
otherwise, the
function
returns an
error. If the
system default
printer is
supported by
an old printer
driver (earlier
than Windows
version 3.0),
only the
hDevNames
member is
returned--the
hDevMode
member is
NULL.

PD_RETURNIC Causes the
PrintDlg
function to
return an
information
context
matching the
selections that
the user made
in the dialog
box. The
information
context is
returned in the
hDC member.
If neither
PD_RETURNDC
nor
PD_RETURNIC
is specified,
the hDC
parameter is
undefined on
output.

PD_SELECTION Causes the
Selection radio
button to be
selected when
the dialog box
is created.
When the
PrintDlg
function
returns, this
flag is set if the
Selection
button is in the

selected state.
If neither
PD_PAGENUMS
nor
PD_SELECTION
is specified,
the All radio
button is in the
selected state.
This flag can
be set on input
and output.

PD_SHOWHELP Causes the
dialog box to
show the Help
button. If this
flag is
specified, the
hwndOwner
must not be
NULL.

PD_USEDEVMODECOPIES Disables the
Copies edit
control if a
printer driver
does not
support
multiple
copies. If a
driver does
support
multiple
copies, setting
this flag
indicates that
the PrintDlg
function
should store
the requested
number of
copies in the
dmCopies
member of the
DEVMODE
structure and
store the value
1 in the
nCopies
member of the
PRINTDLG
structure.
If this flag is
not set, the
PRINTDLG
structure stores
the value 1 in
the dmCopies
member of the
DEVMODE
structure and
stores the
requested
number of

copies in the
nCopies
member of the
PRINTDLG
structure.

These flags may be set when the structure is initialized, except where
specified.

nFromPage Specifies the initial value for the starting page in the From edit control.
When the PrintDlg function returns, this member specifies the page at
which to begin printing. This value is valid only if the
PD_PAGENUMS flag is specified. The maximum value for this
member is 0xFFFE; if 0xFFFF is specified, the From edit control is left
blank.
This member is filled on input and output.

nToPage Specifies the initial value for the ending page in the To edit control.
When the PrintDlg function returns, this member specifies the last page
to print. This value is valid only if the PD_PAGENUMS flag is
specified. The maximum value for this member is 0xFFFE; if 0xFFFF
is specified, the To edit control is left blank.
This member is filled on input and output.

nMinPage Specifies the minimum number of pages that can be specified in the
From and To edit controls. This member is filled on input.

nMaxPage Specifies the maximum number of pages that can be specified in the
From and To edit controls. This member is filled on input.

nCopies Before the PrintDlg function is called, this member specifies the value
to be used to initialize the Copies edit control if the hDevMode member
is NULL; otherwise, the dmCopies member of the DEVMODE
structure contains the value used to initialize the Copies edit control.
When PrintDlg returns, the value specified by this member depends on
the version of Windows for which the printer driver was written. For
printer drivers written for Windows versions earlier than 3.0, this
member specifies the number of copies requested by the user in the
Copies edit control. For printer drivers written for Windows versions 3.
0 and later, this member specifies the number of copies requested by
the user if the PD_USEDEVMODECOPIES flag was not set;
otherwise, this member specifies the value 1 and the actual number of
copies requested appears in the DEVMODE structure.
This member is filled on input and output.

hInstance Identifies a data block that contains the pre-loaded dialog box template
specified by the lpPrintTemplateName or the lpSetupTemplateName
member. This member is used only if the Flags member specifies the
PD_ENABLEPRINTTEMPLATE or
PD_ENABLESETUPTEMPLATE flag; otherwise, this member is
ignored.
This member is filled on input.

lCustData Specifies application-defined data that the system passes to the hook
function identified by the lpfnPrintHook or the lpfnSetupHook member.
The system passes a pointer to the PRINTDLG structure in the lParam
parameter of the WM_INITDIALOG message; this pointer can be used
to retrieve the lCustData member.

lpfnPrintHook Points to the exported hook function that processes dialog box
messages if the application customizes the Print dialog box. This
member is ignored unless the PD_ENABLEPRINTHOOK flag is
specified in the Flags member.
This member is filled on input.

lpfnSetupHook Points to the exported hook function that processes dialog box
messages if the application customizes the Print Setup dialog box. This
member is ignored unless the PD_ENABLESETUPHOOK flag is
specified in the Flags member.
This member is filled on input.

lpPrintTemplateName Points to a null-terminated string that specifies the dialog box template
that is to be substituted for the standard dialog box template in
COMMDLG. An application must specify the
PD_ENABLEPRINTTEMPLATE constant in the Flags member to
enable the hook function; otherwise, the system ignores this structure
member.
This member is filled on input.

lpSetupTemplateName Points to a null-terminated string that specifies the dialog box template
that is to be substituted for the standard dialog box template in
COMMDLG. An application must specify the
PD_ENABLEPRINTTEMPLATE constant in the Flags member to
enable the hook function; otherwise, the system ignores this structure
member.
This member is filled on input.

hPrintTemplate Identifies the handle of the global memory object that contains the pre-
loaded dialog box template to be used instead of the default template in
COMMDLG.DLL for the Print dialog box. To use the dialog box
template, the PD_ENABLEPRINTTEMPLATEHANDLE flag must be
set.
This member is filled on input.

hSetupTemplate Identifies the handle of the global memory object that contains the pre-
loaded dialog box template to be used instead of the default template in
COMMDLG.DLL for the Print Setup dialog box. To use the dialog box
template, the PD_ENABLEPRINTTEMPLATEHANDLE flag must be
set.
This member is filled on input.

See Also
CreateDC, CreateIC, PrintDlg, DEVMODE, DEVNAMES

RASTERIZER_STATUS (3.1)

typedef struct tagRASTERIZER_STATUS { /* rs */
int nSize;
int wFlags;
int nLanguageID;

} RASTERIZER_STATUS;
The RASTERIZER_STATUS structure contains information about whether TrueType is installed. This
structure is filled when an application calls the GetRasterizerCaps function.

Member Description
nSize Specifies the size, in bytes, of the RASTERIZER_STATUS structure.
wFlags Specifies whether at least one TrueType font is installed and whether TrueType is

enabled. This value is TT_AVAILABLE and/or TT_ENABLED if TrueType is on
the system.

nLanguageID Specifies the language in the system's SETUP.INF file.

See Also
GetRasterizerCaps

RECT (2.x)

typedef struct tagRECT { /* rc */
int left;
int top;
int right;
int bottom;

} RECT;
The RECT structure defines the coordinates of the upper-left and lower-right corners of a rectangle.

Member Description
left Specifies the x-coordinate of the upper-left corner of a rectangle.
top Specifies the y-coordinate of the upper-left corner of a rectangle.
right Specifies the x-coordinate of the lower-right corner of a rectangle.
bottom Specifies the y-coordinate of the lower-right corner of a rectangle.

Comments
The width of the rectangle defined by the RECT structure must not exceed 32,767 units.

When the RECT structure is passed to the FillRect function, graphics device interface (GDI) fills the
rectangle up to, but not including, the right column and bottom row of pixels.

RGBQUAD (3.0)

typedef struct tagRGBQUAD {/* rgbq */
BYTE rgbBlue;
BYTE rgbGreen;
BYTE rgbRed;
BYTE rgbReserved;

} RGBQUAD;
The RGBQUAD structure describes a color consisting of relative intensities of red, green, and blue. The
bmiColors member of the BITMAPINFO structure consists of an array of RGBQUAD structures.

Member Description
rgbBlue Specifies the intensity of blue in the color.
rgbGreen Specifies the intensity of green in the color.
rgbRed Specifies the intensity of red in the color.
rgbReserved Not used; must be set to zero.

See Also
BITMAPINFO

RGBTRIPLE (3.0)

typedef struct tagRGBTRIPLE { /* rgbt */
BYTE rgbtBlue;
BYTE rgbtGreen;
BYTE rgbtRed;

} RGBTRIPLE;
The RGBTRIPLE structure describes a color consisting of relative intensities of red, green, and blue. The
bmciColors member of the BITMAPCOREINFO structure consists of an array of RGBTRIPLE structures.

Windows applications should use the BITMAPINFO structure instead of BITMAPCOREINFO whenever
possible. The BITMAPINFO structure uses an RGBQUAD structure instead of the RGBTRIPLE
structure.

Member Description
rgbtBlue Specifies the intensity of blue in the color.
rgbtGreen Specifies the intensity of green in the color.
rgbtRed Specifies the intensity of red in the color.

See Also
BITMAPCOREINFO, BITMAPINFO, RGBQUAD

SEGINFO (3.1)

typedef struct tagSEGINFO { /* segi */
UINT offSegment;
UINT cbSegment;
UINT flags;
UINT cbAlloc;
HGLOBAL h;
UINT alignShift;
UINT reserved[2];

} SEGINFO;
The SEGINFO structure contains information about a data or code segment. This structure is filled in by
the GetCodeInfo function.

Member Description
offSegment Specifies the offset, in sectors, to the contents of the segment data, relative to the

beginning of the file. (Zero means no file data is available.) The size of the sector is
determined by shifting left by 1 the value given in the alignShift member.

cbSegment Specifies the length of the segment in the file, in bytes. Zero means 64K.
flags Contains flags which specify attributes of the segment. The following list describes

these flags:

Bit Meaning
0-2 Specifies the segment type. If bit 0 is set to 1, the segment is a data segment.

Otherwise, the segment is a code segment.
3 Specifies whether segment data is iterated. When this bit is set to 1, the

segment data is iterated.
4 Specifies whether the segment is movable or fixed. When this bit is set to 1,

the segment is movable. Otherwise, it is fixed.
5-6 Reserved.
7 Specifies whether the segment is a read-only data segment or an execute-

only code segment. If this bit is set to 1 and the segment is a code segment,
the segment is an execute-only segment. If this bit is set to zero and the
segment is a data segment, it is a read-only segment.

8 Specifies whether the segment has associated relocation information. If this
bit is set to 1, the segment has relocation information. Otherwise, the segment
does not have relocation information.

9 Specifies whether the segment has debugging information. If this bit is set to
1, the segment has debugging information. Otherwise, the segment does not
have debugging information.

10-15 Reserved.
cbAlloc Specifies the total amount of memory allocated for the segment. This amount may

exceed the actual size of the segment. Zero means 64K.
h Identifies the global memory for the segment.
alignShift Specifies the size of the addressable sector as an exponent of 2. An executable file pads

the application's code, data, and resource segments with zero bytes so that the
segments are always a multiple of the file-segment size. Windows discards the extra
bytes when it loads the segments from the file.

reserved Specifies two reserved UINT values.

See Also
GetCodeInfo

SIZE (3.1)

typedef struct tagSIZE {
int cx;
int cy;

} SIZE;
The SIZE structure contains viewport extents, window extents, text extents, bitmap dimensions, and the
aspect-ratio filter for some extended functions for Windows 3.1

Member Description
cx Specifies the x-extent when a function returns.
cy Specifies the y-extent when a function returns.

See Also
GetAspectRatioFilterEx, GetBitmapDimensionEx, GetTextExtentPoint, GetViewportExtEx,
GetWindowExtEx, ScaleViewportExtEx, ScaleWindowExtEx, SetBitmapDimensionEx,
SetViewportExtEx, SetWindowExtEx

STACKTRACEENTRY (3.1)

#include <toolhelp.h>
typedef struct tagSTACKTRACEENTRY { /* ste */

DWORD dwSize;
HTASK hTask;
WORD wSS;
WORD wBP;
WORD wCS;
WORD wIP;
HMODULE hModule;
WORD wSegment;
WORD wFlags;

} STACKTRACEENTRY;
The STACKTRACEENTRY structure contains information about one stack frame. This information
enables an application to trace back through the stack of a specific task.

Member Description
dwSize Specifies the size of the STACKTRACEENTRY structure, in bytes.
hTask Identifies the task handle for the stack.
wSS Contains the value in the SS register. This value is used with the value of the wBP

member to determine the next entry in the stack-trace table.
wBP Contains the value in the BP register. This value is used with the wSS value to

determine the next entry in the stack-trace table.
wCS Contains the value in the CS register on return. This value is used with the value of the

wIP member to determine the return value of the function.
wIP Contains the value in the IP register on return. This value is used with the wCS value to

determine the return value of the function.
hModule Identifies the module that contains the currently executing function.
wSegment Contains the segment number of the current selector.
wFlags Indicates the frame type. This type can be one of the following values:

Value Meaning
FRAME_FAR The CS register contains a valid code segment.
FRAME_NEAR The CS register is null.

See Also
StackTraceCSIPFirst, StackTraceNext, StackTraceFirst

SYSHEAPINFO (3.1)

#include <toolhelp.h>
typedef struct tagSYSHEAPINFO { /* shi */

DWORD dwSize;
WORD wUserFreePercent;
WORD wGDIFreePercent;
HGLOBAL hUserSegment;
HGLOBAL hGDISegment;

} SYSHEAPINFO;
The SYSHEAPINFO structure contains information about the USER and GDI modules.

Member Description
dwSize Specifies the size of the SYSHEAPINFO structure, in bytes.
wUserFreePercent Specifies the percentage of the USER local heap that is free.
wGDIFreePercent Specifies the percentage of the GDI local heap that is free.
hUserSegment Identifies the DGROUP segment of the USER local heap.
hGDISegment Identifies the DGROUP segment of the GDI local heap.

See Also
SystemHeapInfo

TASKENTRY (3.1)

#include <toolhelp.h>
typedef struct tagTASKENTRY { /* te */

DWORDdwSize;
HTASKhTask;
HTASKhTaskParent;
HINSTANCE hInst;
HMODULE hModule;
WORD wSS;
WORD wSP;
WORD wStackTop;
WORD wStackMinimum;
WORD wStackBottom;
WORD wcEvents;
HGLOBAL hQueue;
char szModule[MAX_MODULE_NAME + 1];
WORD wPSPOffset;
HANDLE hNext;

} TASKENTRY;
The TASKENTRY structure contains information about one task.

Member Description
dwSize Specifies the size of the TASKENTRY structure, in bytes.
hTask Identifies the task handle for the stack.
hTaskParent Identifies the parent of the task.
hInst Identifies the instance handle of the task. This value is equivalent to the task's

DGROUP segment selector.
hModule Identifies the module that contains the currently executing function.
wSS Contains the value in the SS register.
wSP Contains the value in the SP register.
wStackTop Specifies the offset to the top of the stack (lowest address on the stack).
wStackMinimum Specifies the lowest segment number of the stack during execution of the task.
wStackBottom Specifies the offset to the bottom of the stack (highest address on the stack).
wcEvents Specifies the number of pending events.
hQueue Identifies the task queue.
szModule Specifies the name of the module that contains the currently executing function.
wPSPOffset Specifies the offset from the program segment prefix (PSP) to the beginning of

the executable code segment.
hNext Identifies the next entry in the task list. This member is reserved for internal use

by Windows.

See Also
TaskFindHandle, TaskFirst, TaskNext

TEXTMETRIC (2.x)

typedef struct tagTEXTMETRIC { /* tm */
int tmHeight;
int tmAscent;
int tmDescent;
int tmInternalLeading;
int tmExternalLeading;
int tmAveCharWidth;
int tmMaxCharWidth;
int tmWeight;
BYTE tmItalic;
BYTE tmUnderlined;
BYTE tmStruckOut;
BYTE tmFirstChar;
BYTE tmLastChar;
BYTE tmDefaultChar;
BYTE tmBreakChar;
BYTE tmPitchAndFamily;
BYTE tmCharSet;
int tmOverhang;
int tmDigitizedAspectX;
int tmDigitizedAspectY;

} TEXTMETRIC;
The TEXTMETRIC structure contains basic information about a physical font. For Windows version 3.1
and later, the EnumFonts and EnumFontFamilies functions return information about TrueType fonts in a
NEWTEXTMETRIC structure.

Member Description
tmHeight Specifies the height of character cells. (The height is the sum of the

tmAscent and tmDescent members.)
tmAscent Specifies the ascent of character cells. (The ascent is the space between the

base line and the top of the character cell.)
tmDescent Specifies the descent of character cells. (The descent is the space between

the bottom of the character cell and the base line.)
tmInternalLeading Specifies the difference between the point size of a font and the physical

size of the font. For TrueType fonts, this value is equal to tmHeight minus
(s * ntmSizeEM), where s is the scaling factor for the TrueType font and
ntmSizeEM is a value from the NEWTEXTMETRIC structure. For bitmap
fonts, this value is used to determine the point size of a font. When an
application specifies a negative value in the lfHeight member of the
LOGFONT structure, the application is requesting a font whose height
equals tmHeight minus tmInternalLeading.

tmExternalLeading Specifies the amount of extra leading (space) that the application adds
between rows. Since this area is outside the character cell, it contains no
marks and will not be altered by text output calls in either opaque or
transparent mode. The font designer sometimes sets this member to zero.

tmAveCharWidth Specifies the average width of characters in the font. For
ANSI_CHARSET fonts, this is a weighted average of the characters "a"
through "z" and the space character. For other character sets, this value is
an unweighted average of all characters in the font.

tmMaxCharWidth
Specifies the "B" spacing of the widest character in the font. For more
information about "B" spacing, see the description of the ABC structure.

tmWeight Specifies the weight of the font. This member can be one of the following
values:

Constant Value
FW_DONTCARE 0
FW_THIN 100
FW_EXTRALIGHT 200

FW_ULTRALIGHT 200
FW_LIGHT 300
FW_NORMAL 400
FW_REGULAR 400
FW_MEDIUM 500
FW_SEMIBOLD 600
FW_DEMIBOLD 600
FW_BOLD 700
FW_EXTRABOLD 800
FW_ULTRABOLD 800
FW_BLACK 900
FW_HEAVY 900

tmItalic Specifies an italic font if it is nonzero.
tmUnderlined Specifies an underlined font if it is nonzero.
tmStruckOut Specifies a "struckout" font if it is nonzero.
tmFirstChar Specifies the value of the first character defined in the font.
tmLastChar Specifies the value of the last character defined in the font.
tmDefaultChar Specifies the value of the character that will be substituted for characters

that are not in the font.
tmBreakChar Specifies the value of the character that will be used to define word breaks

for text justification.
tmPitchAndFamily Specifies the pitch and family of the selected font.

The four low-order bits identify the type of font, as shown in the following
list:

Value Meaning
TMPF_FIXED_PITCH Designates a fixed-pitch font.
TMPF_VECTOR Designates a vector or TrueType font.
TMPF_TRUETYPE Designates a TrueType font.
TMPF_DEVICE Designates a device font.
Some fonts are identified by several of these bits--for example, the
TMPF_FIXED_PITCH, TMPF_VECTOR, and TMPF_TRUETYPE bits
would be set for the monospace TrueType font, Courier New®.The
TMPF_DEVICE bit could be set for a TrueType font as well, because this
bit is set both for downloaded and device-resident fonts.
When the TMPF_TRUETYPE bit is set, the font is usable on all output
devices. For example, if a TrueType font existed on a printer but could not
be used on the display, the TMPF_TRUETYPE bit would not be set for
that font.
The four high-order bits of this member designate the font family. The
tmPitchAndFamily member can be combined with the hexadecimal value
0xF0 by using the bitwise AND operator and can then be compared with
the font family names for an identical match. The following font families
are defined:

Value Meaning
FF_DECORATIVE Novelty fonts. Old English is an example.
FF_DONTCARE Don't care or don't know.
FF_MODERN Fonts with constant stroke width, with or

without serifs. Pica, Elite, and Courier New are
examples.

FF_ROMAN Fonts with variable stroke width and with
serifs. Times New Roman and New Century
Schoolbook are examples.

FF_SCRIPT Fonts designed to look like handwriting. Script
and Cursive are examples.

FF_SWISS Fonts with variable stroke width and without
serifs. MS Sans Serif is an example.

tmCharSet Specifies the character set of the font. The following values are defined:

Constant Value
ANSI_CHARSET 0
DEFAULT_CHARSET 1
SYMBOL_CHARSET 2
SHIFTJIS_CHARSET 128
OEM_CHARSET 255

tmOverhang Specifies the extra width that is added to some synthesized fonts. When
synthesizing some attributes, such as bold or italic, graphics device
interface (GDI) or a device sometimes adds width to a string on both a per-
character and per-string basis. For example, graphics device interface
(GDI) makes a string bold by expanding the intracharacter spacing and
overstriking by an offset value and italicizes a font by skewing the string.
In either case, the string is wider after the attribute is synthesized. For bold
strings, the overhang is the distance by which the overstrike is offset. For
italic strings, the overhang is the amount the top of the font is skewed past
the bottom of the font.
The tmOverhang member is zero for many italic and bold TrueType fonts
because many TrueType fonts include italic and bold faces that are not
synthesized. For example, the overhang for Courier New®Italic is zero.
An application that uses raster fonts can use the overhang value to
determine the spacing between words that have different attributes.

tmDigitizedAspectX Specifies the horizontal aspect of the device for which the font was
designed.

tmDigitizedAspectY Specifies the vertical aspect of the device for which the font was designed.
The ratio of the tmDigitizedAspectX and tmDigitizedAspectY members is
the aspect ratio of the device for which the font was designed.

Comments
All sizes are given in logical units; that is, they depend on the current mapping mode of the display
context.

See Also
EnumFontFamilies, EnumFonts, GetDeviceCaps, GetTextMetrics, NEWTEXTMETRIC

TIMERINFO (3.1)

#include <toolhelp.h>
typedef struct tagTIMERINFO { /* ti */

DWORD dwSize;
DWORD dwmsSinceStart;
DWORD dwmsThisVM;

} TIMERINFO;
The TIMERINFO structure contains the elapsed time since the current task became active and since the
virtual machine (VM) started.

Member Description
dwSize Specifies the size of the TIMERINFO structure, in bytes.
dwmsSinceStart Contains the amount of time, in milliseconds, since the current task became

active.
dwmsThisVM Contains the amount of time, in milliseconds, since the current VM started.

Comments
In standard mode, the dwmsSinceStart and dwmsThisVM values are the same.

See Also
TimerCount

TTPOLYCURVE (3.1)

typedef struct tagTTPOLYCURVE {
UINT wType;
UINT cpfx;
POINTFX apfx[1];

} TTPOLYCURVE;
The TTPOLYCURVE structure contains information about a curve in the outline of a TrueType character.

Member Description
wType Specifies the type of curve described by the structure. This member can be one of the

following values:

Value Meaning
TT_PRIM_LINE Curve is a polyline.
TT_PRIM_QSPLINE Curve is a quadratic spline.

cpfx Specifies the number of POINTFX structures in the array.
apfx Specifies an array of POINTFX structures that define the polyline or quadratic spline.

Comments
When an application calls the GetGlyphOutline function, a glyph outline for a TrueType character is
returned in a TTPOLYGONHEADER structure followed by as many TTPOLYCURVE structures as are
required to describe the glyph. All points are returned as POINTFX structures and represent absolute
positions, not relative moves. The starting point given by the pfxStart member of the
TTPOLYGONHEADER structure is the point at which the outline for a contour begins. The
TTPOLYCURVE structures that follow can be either polyline records or spline records.

Polyline records are a series of points; lines drawn between the points describe the outline of the character.
Spline records represent the quadratic curves used by TrueType (that is, quadratic b-splines).

See Also
POINTFX, TTPOLYGONHEADER, GetGlyphOutline

TTPOLYGONHEADER (3.1)

typedef struct tagTTPOLYGONHEADER {
DWORD cb;
DWORD dwType;
POINTFX pfxStart;

} TTPOLYGONHEADER;
The TTPOLYGONHEADER structure specifies the starting position and type of a contour in a TrueType
character outline.

Member Description
cb Specifies the number of bytes required by the TTPOLYGONHEADER structure and

TTPOLYCURVE structure or structures required to describe the contour.
dwType Specifies the type of character outline that is returned. Currently, this value must be

TT_POLYGON_TYPE.
pfxStart Specifies the starting point of the contour in the character outline.

Comments
Each TTPOLYGONHEADER structure is followed by one or more TTPOLYCURVE structures.

See Also
POINTFX, TTPOLYCURVE, GetGlyphOutline

VS_FIXEDFILEINFO (3.1)

#include <ver.h>
typedef struct tagVS_FIXEDFILEINFO { /* vsffi */

DWORD dwSignature;
DWORD dwStrucVersion;
DWORD dwFileVersionMS;
DWORD dwFileVersionLS;
DWORD dwProductVersionMS;
DWORD dwProductVersionLS;
DWORD dwFileFlagsMask;
DWORD dwFileFlags;
DWORD dwFileOS;
DWORD dwFileType;
DWORD dwFileSubtype;
DWORD dwFileDateMS;
DWORD dwFileDateLS;

} VS_FIXEDFILEINFO;
The VS_FIXEDFILEINFO structure contains version information about a file.

Member Description
dwSignature Specifies the value 0xFEEFO4BD.
dwStrucVersion Specifies the binary version number of this structure. The high-order word

contains the major version number, and the low-order word contains the
minor version number. This value must be greater than 0x00000029.

dwFileVersionMS Specifies the high-order 32 bits of the binary version number for the file.
The value of this member is used with the value of the dwFileVersionLS
member to form a 64-bit version number.

dwFileVersionLS Specifies the low-order 32 bits of the binary version number for the file.
The value of this member is used with the dwFileVersionMS value to
form a 64-bit version number.

dwProductVersionMS Specifies the high-order 32 bits of the binary version number of the
product with which the file is distributed. The value of this member is
used with the value of the dwProductVersionLS member to form a 64-bit
version number.

dwProductVersionLS Specifies the low-order 32 bits of the binary version number of the
product with which the file is distributed. The value of this member is
used with the dwProductVersionMS value to form a 64-bit version
number.

dwFileFlagsMask Specifies which bits in the dwFileFlags member are valid. If a bit is set,
the corresponding bit in the dwFileFlags member is valid.

dwFileFlags Specifies the Boolean attributes of the file. The attributes can be a
combination of the following values:

Value Meaning
VS_FF_DEBUG File contains debugging information

or is compiled with debugging
features enabled.

VS_FF_INFOINFERRED File contains a dynamically created
version-information resource. Some
of the blocks for the resource may be
empty or incorrect. This value is not
intended to be used in version-
information resources created by
using the VERSIONINFO statement.

VS_FF_PATCHED File has been modified and is not
identical to the original shipping file
of the same version number.

VS_FF_PRERELEASE File is a development version, not a
commercially released product.

VS_FF_PRIVATEBUILD File was not built using standard
release procedures. If this value is
given, the StringFileInfo block must
contain a PrivateBuild string.

VS_FF_SPECIALBUILD File was built by the original
company using standard release
procedures but is a variation of the
standard file of the same version
number. If this value is given, the
StringFileInfo block must contain a
SpecialBuild string.

dwFileOS Specifies the operating system for which this file was designed. This
member can be one of the following values:

Value Meaning
VOS_UNKNOWN Operating system for which the file was

designed is unknown to Windows.
VOS_DOS File was designed for MS-DOS.
VOS_NT File was designed for Windows NT.
VOS_WINDOWS16 File was designed for Windows version

3.0 or later.
VOS_WINDOWS32 File was designed for 32-bit Windows.
VOS_DOS_WINDOWS16 File was designed for Windows version

3.0 or later running with MS-DOS.
VOS_DOS_WINDOWS32 File was designed for 32-bit Windows

running with MS-DOS.
VOS_NT_WINDOWS32 File was designed for 32-bit Windows

running with Windows NT.
The values 0x00002L, 0x00003L, 0x20000L and 0x30000L are reserved.

dwFileType Specifies the general type of file. This type can be one of the following
values:

Value Meaning
VFT_UNKNOWN File type is unknown to Windows.
VFT_APP File contains an application.
VFT_DLL File contains a dynamic-link library (DLL).
VFT_DRV File contains a device driver. If the

dwFileType member is VFT_DRV, the
dwFileSubtype member contains a more
specific description of the driver.

VFT_FONT File contains a font. If the dwFileType
member is VFT_FONT, the dwFileSubtype
member contains a more specific description
of the font.

VFT_VXD File contains a virtual device.
VFT_STATIC_LIB File contains a static-link library.
All other values are reserved for use by Microsoft.

dwFileSubtype Specifies the function of the file. This member is zero unless the
dwFileType member is VFT_DRV, VFT_FONT, or VFT_VXD.
If dwFileType is VFT_DRV, dwFileSubtype may be one of the following
values:

Value Meaning
VFT2_UNKNOWN Driver type is unknown to

Windows.
VFT2_DRV_COMM File contains a communications

driver.
VFT2_DRV_PRINTER File contains a printer driver.
VFT2_DRV_KEYBOARD File contains a keyboard driver.
VFT2_DRV_LANGUAGE File contains a language driver.

VFT2_DRV_DISPLAY File contains a display driver.
VFT2_DRV_MOUSE File contains a mouse driver.
VFT2_DRV_NETWORK File contains a network driver.
VFT2_DRV_SYSTEM File contains a system driver.
VFT2_DRV_INSTALLABLE File contains an installable driver.
VFT2_DRV_SOUND File contains a sound driver.
If dwFileType is VFT_FONT, dwFileSubtype may be one of the
following values:

Value Meaning
VFT2_UNKNOWN Font type is unknown to Windows.
VFT2_FONT_RASTER File contains a raster font.
VFT2_FONT_VECTOR File contains a vector font.
VFT2_FONT_TRUETYPE File contains a TrueType font.
If dwFileType is VFT_VXD, dwFileSubtype contains the virtual-device
identifier included in the virtual-device control block.
All dwFileSubtype values not listed here are reserved for use by
Microsoft.

dwFileDateMS Specifies the high-order 32 bits of a binary date/time stamp for the file.
The value of this member is used with the value of the dwFileDateLS
member to form a 64-bit number representing the date and time the file
was created.

dwFileDateLS Specifies the low-order 32 bits of a binary date/time stamp for the file.
The value of this member is used with the dwFileDateMS value to form a
64-bit number representing the date and time the file was created.

Comments
The binary version numbers specified in this structure are intended to be integers rather than character
strings. For a file or product that has decimal points or letters in its version number, the corresponding
binary version number should be a reasonable numeric representation.

A third-party developer can use the file-version values to reflect a private version-numbering scheme, as
long as each new version of the product has a higher number than the previous version. The File
Installation library functions use these values when comparing the ages of files.

Microsoft Windows Resource Compiler sets the dwFileDateMS and dwFileDateLS members to zero.

See Also
VerQueryValue

WINDEBUGINFO (3.1)

typedef struct tagWINDEBUGINFO {
UINT flags;
DWORD dwOptions;
DWORD dwFilter;
char achAllocModule[8];
DWORD dwAllocBreak;
DWORD dwAllocCount;

} WINDEBUGINFO;
The WINDEBUGINFO structure contains current system-debugging information for the debugging
version of Windows 3.1.

Member Description
flags Specifies which members of the WINDEBUGINFO structure are valid. This

member can be one or more of the following values:

Value Meaning
WDI_OPTIONS dwOptions member is valid.
WDI_FILTER dwFilter member is valid.
WDI_ALLOCBREAK achAllocModule, dwAllocBreak, and

dwAllocCount members are valid.
dwOptions Specifies debugging options. This member is valid only if WDI_OPTIONS is

specified in the flags member. It can be one or more of the following values:

Value Meaning
DBO_CHECKHEAP Performs local heap checking after all

calls to functions that manipulate
local memory.

DBO_BUFFERFILL Fills buffers passed to API functions
with 0xF9. This ensures that the
supplied buffer is completely writable
and helps detect overwrite problems
when the supplied buffer size is not
large enough.

DBO_DISABLEGPTRAPPING Disables hooking of the fault interrupt
vectors. This option is not typically
used by application developers,
because parameter validation can
cause many spurious traps that are not
errors.

DBO_CHECKFREE Fills all freed local memory with
0xFB. All newly allocated memory is
checked to ensure that it is still filled
with 0xFB--this ensures that no
application has written into a freed
memory object. This option has no
effect if DBO_CHECKHEAP is not
specified.

DBO_INT3BREAK Breaks to the debugger with simple
INT 3 rather than a call to the
FatalExit function. This option does
not generate a stack backtrace.

DBO_NOFATALBREAK Does not break with the "abort, break,
ignore" prompt if a DBF_FATAL
message occurs.

DBO_NOERRORBREAK Does not break with the "abort, break,
ignore" prompt if a DBF_ERROR
message occurs. This option also
applies to invalid parameter errors.

DBO_WARNINGBREAK Breaks with the "abort, break, ignore"
prompt if a DBF_WARNING

message occurs. (Normally,
DBF_WARNING messages are
displayed but no break occurs). This
option also applies to invalid
parameter warnings.

DBO_TRACEBREAK Breaks with the "abort, break, ignore"
on any DBF_TRACE message that
matches the value specified in the
dwFilter member.

DBO_SILENT Does not display warning, error, or
fatal messages except in cases where
a stack trace and "abort, break,
ignore" prompt would occur.

dwFilter Specifies filtering options for DBF_TRACE messages. (Normally, trace
messages are not sent to the debug terminal.) This member can be one or more of
the following values:

Value Meaning
DBF_KRN_MEMMAN Enables KERNEL messages related to local

and global memory management.
DBF_KRN_LOADMODULE Enables KERNEL messages related to

module loading.
DBF_KRN_SEGMENTLOAD Enables KERNEL messages related to

segment loading.
DBF_APPLICATION Enables trace messages originating from an

application.
DBF_DRIVER Enables trace messages originating from

device drivers.
DBF_PENWIN Enables trace messages originating from

PENWIN.
DBF_MMSYSTEM Enables trace messages originating from

MMSYSTEM.
DBF_GDI Enables trace messages originating from

GDI.
DBF_USER Enables trace messages originating from

USER.
DBF_KERNEL Enables any trace message originating from

KERNEL. (This is a combination of
DBF_KRN_MEMMAN,
DBF_KRN_LOADMODULE, and
DBF_KRN_SEGMENTLOAD.)

achAllocModule Specifies the name of the application module. (This can be different from the
name of the executable file.) This cannot be the name of a dynamic-link library
(DLL). The name is limited to 8 characters.

dwAllocBreak Specifies the number of global or local memory allocations to allow before
failing allocation requests. When the count of allocations reaches the number
specified in this member, that allocation and all subsequent allocations fail. If
this member is zero, no allocation break is set, but the system counts allocations
and reports the current count in the dwAllocCount member.

dwAllocCount Current count of allocations. (This information is typically retrieved by calling
the GetWinDebugInfo function.)

Comments
Developers can use the achAllocModule, dwAllocBreak, and dwAllocCount members to ensure that an
application performs correctly in out-of-memory conditions. Because memory allocations made by the
system fail once the break count is reached, calls to functions such as CreateWindow, CreateBrush, and
SelectObject will fail as well. Only allocations made within the context of the application specified by the
achAllocModule member are affected by the allocation break count.

See Also
DebugOutput, GetWinDebugInfo, SetWinDebugInfo

DBO_CHECKHEAP 0x0001

Performs local heap checking after all calls to functions that manipulate local memory.

DBO_CHECKHEAP 0x0001

DBO_BUFFERFILL 0x0004

Fills buffers passed to API functions with 0xF9. This ensures that the supplied buffer is completely
writable and helps detect overwrite problems when the supplied buffer size is not large enough.

DBO_BUFFERFILL 0x0004

DBO_DISABLEGPTRAPPING 0x0010

Disables hooking of the fault interrupt vectors. This option is not typically used by application developers,
because parameter validation can cause many spurious traps that are not errors.

DBO_DISABLEGPTRAPPING 0x0010

DBO_CHECKFREE 0x0020

Fills all freed local memory with 0xFB. All newly allocated memory is checked to ensure that it is still
filled with 0xFB--this ensures that no application has written into a freed memory object. This option has
no effect if DBO_CHECKHEAP is not specified.

DBO_CHECKFREE 0x0020

DBO_INT3BREAK 0x0100

Breaks to the debugger with simple INT 3 rather than a call to the FatalExit function. This option does not
generate a stack backtrace.

DBO_INT3BREAK 0x0100

DBO_NOFATALBREAK 0x0400

Does not break with the "abort, break, ignore" prompt if a DBF_FATAL message occurs.

DBO_NOFATALBREAK 0x0400

DBO_NOERRORBREAK 0x0800

Does not break with the "abort, break, ignore" prompt if a DBF_ERROR message occurs. This option also
applies to invalid parameter errors.

DBO_NOERRORBREAK 0x0800

DBO_WARNINGBREAK 0x1000

Breaks with the "abort, break, ignore" prompt if a DBF_WARNING message occurs. (Normally,
DBF_WARNING messages are displayed but no break occurs). This option also applies to invalid
parameter warnings.

DBO_WARNINGBREAK 0x1000

DBO_TRACEBREAK 0x2000

Breaks with the "abort, break, ignore" on any DBF_TRACE message that matches the value specified in
the dwFilter member.

DBO_TRACEBREAK 0x2000

DBO_SILENT 0x8000

Does not display warning, error, or fatal messages except in cases where a stack trace and "abort, break,
ignore" prompt would occur.

DBO_SILENT 0x8000

DBF_KRN_MEMMAN 0x0001

Enables KERNEL messages related to local and global memory management.

DBF_KRN_MEMMAN 0x0001

DBF_KRN_LOADMODULE 0x0002

Enables KERNEL messages related to module loading.

DBF_KRN_LOADMODULE 0x0002

DBF_KRN_SEGMENTLOAD 0x0004

Enables KERNEL messages related to segment loading.

DBF_KRN_SEGMENTLOAD 0x0004

DBF_APPLICATION 0x0008

Enables trace messages originating from an application.

DBF_APPLICATION 0x0008

DBF_DRIVER 0x0010

Enables trace messages originating from device drivers.

DBF_DRIVER 0x0010

DBF_PENWIN 0x0020

Enables trace messages originating from PENWIN.

DBF_PENWIN 0x0020

DBF_MMSYSTEM 0x0040

Enables trace messages originating from MMSYSTEM.

DBF_MMSYSTEM 0x0040

DBF_GDI 0x0400

Enables trace messages originating from GDI.

DBF_GDI 0x0400

DBF_USER 0x0800

Enables trace messages originating from USER.

DBF_USER 0x0800

DBF_KERNEL 0x1000

Enables any trace message originating from KERNEL. (This is a combination of DBF_KRN_MEMMAN,
DBF_KRN_LOADMODULE, and DBF_KRN_SEGMENTLOAD.)

DBF_KERNEL 0x1000

WINDOWPLACEMENT (3.1)

typedef struct tagWINDOWPLACEMENT {/* wndpl */
UINT length;
UINT flags;
UINT showCmd;
POINT ptMinPosition;
POINT ptMaxPosition;
RECT rcNormalPosition;

} WINDOWPLACEMENT;
The WINDOWPLACEMENT structure contains information about the placement of a window on the
screen.

Member Description
length Specifies the length, in bytes, of the structure.
flags Specifies flags that control the position of the minimized window and the

method by which the window is restored. This member can be one or both of
the following flags:

Value Meaning
WPF_SETMINPOSITION Specifies that the x- and y-

positions of the minimized window
may be specified. This flag must
be specified if the coordinates are
set in the ptMinPosition member.

WPF_RESTORETOMAXIMIZED Specifies that the restored window
will be maximized, regardless of
whether it was maximized before it
was minimized. This setting is
valid only the next time the
window is restored. It does not
change the default restoration
behavior. This flag is valid only
when the
SW_SHOWMINIMIZED value is
specified for the showCmd
member.

showCmd Specifies the current show state of the window. This member may be one of the
following values:

Value Meaning
SW_HIDE Hides the window and passes activation

to another window.
SW_MINIMIZE Minimizes the specified window and

activates the top-level window in the
system's list.

SW_RESTORE Activates and displays a window. If the
window is minimized or maximized,
Windows restores it to its original size
and position (same as
SW_SHOWNORMAL).

SW_SHOW Activates a window and displays it in its
current size and position.

SW_SHOWMAXIMIZED Activates a window and displays it as a
maximized window.

SW_SHOWMINIMIZED Activates a window and displays it as an
icon.

SW_SHOWMINNOACTIVE Displays a window as an icon. The
window that is currently active remains
active.

SW_SHOWNA Displays a window in its current state.

The window that is currently active
remains active.

SW_SHOWNOACTIVATE Displays a window in its most recent size
and position. The window that is
currently active remains active.

SW_SHOWNORMAL Activates and displays a window. If the
window is minimized or maximized,
Windows restores it to its original size
and position (same as SW_RESTORE).

ptMinPosition Specifies the position of the window's top-left corner when the window is
minimized.

ptMaxPosition Specifies the position of the window's top-left corner when the window is
maximized.

rcNormalPosition Specifies the window's coordinates when the window is in the normal
(restored) position.

See Also
POINT, RECT, ShowWindow, GetWindowPlacement, SetWindowPlacement

WINDOWPOS (3.1)

typedef struct tagWINDOWPOS { /* wp */
HWND hwnd;
HWND hwndInsertAfter;
intx;
inty;
intcx;
intcy;
UINT flags;

} WINDOWPOS;
The WINDOWPOS structure contains information about the size and position of a window.

Member Description
hwnd Identifies the window.
hwndInsertAfter Identifies the window behind which this window is placed.
x Specifies the position of the left edge of the window.
y Specifies the position of the right edge of the window.
cx Specifies the window width.
cy Specifies the window height.
flags Specifies window-positioning options. This member can be one of the following

values:

Value Meaning
SWP_DRAWFRAME Draws a frame (defined in the class

description for the window) around the
window. The window receives a
WM_NCCALCSIZE message.

SWP_HIDEWINDOW Hides the window.
SWP_NOACTIVATE Does not activate the window.
SWP_NOMOVE Retains current position (ignores the x and y

members).
SWP_NOOWNERZORDER Does not change the owner window's

position in the Z order.
SWP_NOSIZE Retains current size (ignores the cx and cy

members).
SWP_NOREDRAW Does not redraw changes.
SWP_NOREPOSITION Same as SWP_NOOWNERZORDER.
SWP_NOZORDER Retains current ordering (ignores the

hwndInsertAfter member).
SWP_SHOWWINDOW Displays the window.

See Also
EndDeferWindowPos, WM_NCCALCSIZE, WM_WINDOWPOSCHANGED,
WM_WINDOWPOSCHANGING

WNDCLASS (2.x)

typedef struct tagWNDCLASS { /* wc */
UINT style;
WNDPROC lpfnWndProc;
int cbClsExtra;
int cbWndExtra;
HINSTANCE hInstance;
HICONhIcon;
HCURSOR hCursor;
HBRUSH hbrBackground;
LPCSTR lpszMenuName;
LPCSTR lpszClassName;

} WNDCLASS;
The WNDCLASS structure contains the class attributes that are registered by the RegisterClass function.

Member Description
style Specifies the class style. These styles can be combined by using the bitwise OR

operator. This can be any combination of the following values:

Value Meaning
CS_BYTEALIGNCLIENT Aligns the client area of a window on the

byte boundary (in the x-direction).
CS_BYTEALIGNWINDOW Aligns a window on the byte boundary (in

the x-direction). This flag should be set by
applications that perform bitmap operations
in windows by using the BitBlt function.

CS_CLASSDC Gives the window class its own display
context (shared by instances).

CS_DBLCLKS Sends double-click messages to a window.
CS_GLOBALCLASS Specifies that the window class is an

application global class. An application
global class is created by an application or
library and is available to all applications.
The class is destroyed when the application
or library that created the class exits; it is
essential, therefore, that all windows created
with the application global class be closed
before this occurs.

CS_HREDRAW Redraws the entire window if the horizontal
size changes.

CS_NOCLOSE Inhibits the close option on the System
menu.

CS_OWNDC Gives each window instance its own display
context. Note that although the CS_OWNDC
style is convenient, it must be used with
discretion because each display context
occupies approximately 800 bytes of
memory.

CS_PARENTDC Gives the display context of the parent
window to the window class.

CS_SAVEBITS Specifies that the system should try to save
the screen image behind a window created
from this window class as a bitmap. Later,
when the window is removed, the system
uses the bitmap to quickly restore the screen
image. This style is useful for small windows
that are displayed briefly and then removed
before much other screen activity takes place
(for example, menus or dialog boxes). This
style increases the time required to display

the window since the system must first
allocate memory to store the bitmap.

CS_VREDRAW Redraws the entire window if the vertical
size changes.

lpfnWndProc Points to the window procedure. For more information, see the description of the
WindowProc callback function.

cbClsExtra Specifies the number of bytes to allocate following the window-class structure.
These bytes are initialized to zero.

cbWndExtra Specifies the number of bytes to allocate following the window instance. These
bytes are initialized to zero. If an application uses the WNDCLASS structure to
register a dialog box created with the CLASS directive in the resource file, it
must set this member to DLGWINDOWEXTRA.

hInstance Identifies the class module. This member must be an instance handle and must
not be NULL.

hIcon Identifies the class icon. This member must be a handle to an icon resource. If
this member is NULL, the application must draw an icon whenever the user
minimizes the application's window.

hCursor Identifies the class cursor. This member must be a handle to a cursor resource. If
this member is NULL, the application must explicitly set the cursor shape
whenever the mouse moves into the application's window.

hbrBackground Identifies the class background brush. This member can be either a handle to the
physical brush that is to be used for painting the background, or it can be a color
value. If a color value is given, it must be one of the standard system colors listed
below, and the value 1 must be added to the chosen color (for example,
COLOR_BACKGROUND + 1 specifies the system background color). If a color
value is given, it must be converted to one of the following HBRUSH types:
COLOR_ACTIVEBORDER COLOR_HIGHLIGHTTEXT
COLOR_ACTIVECAPTION COLOR_INACTIVEBORDER
COLOR_APPWORKSPACE COLOR_INACTIVECAPTION
COLOR_BACKGROUND COLOR_INACTIVECAPTIONTEXT
COLOR_BTNFACE COLOR_MENU
COLOR_BTNSHADOW COLOR_MENUTEXT
COLOR_BTNTEXT COLOR_SCROLLBAR
COLOR_CAPTIONTEXT COLOR_WINDOW
COLOR_GRAYTEXT COLOR_WINDOWFRAME
COLOR_HIGHLIGHT COLOR_WINDOWTEXT
The system automatically deletes class background brushes when the class is
freed. An application should not delete these brushes because a class may be used
by multiple instances of the application.
When this member is NULL, the application must paint its own background
whenever it is requested to paint in its client area. The application can determine
when the background needs painting by processing the WM_ERASEBKGND
message or by testing the fErase member of the PAINTSTRUCT structure filled
by the BeginPaint function.

lpszMenuName Points to a null-terminated string that specifies the resource name of the class
menu (as the name appears in the resource file). If an integer is used to identify
the menu, the MAKEINTRESOURCE macro can be used. If this member is
NULL, windows belonging to this class have no default menu.

lpszClassName Points to a null-terminated string that specifies the name of the window class.

See Also
PAINTSTRUCT, MAKEINTRESOURCE, RegisterClass, WindowProc

CS_BYTEALIGNCLIENT 0x1000

Aligns the client area of a window on the byte boundary (in the x-direction).

CS_BYTEALIGNCLIENT 0x1000

CS_BYTEALIGNWINDOW 0x2000

Aligns a window on the byte boundary (in the x-direction). This flag should be set by applications that
perform bitmap operations in windows by using the BitBlt function.

CS_BYTEALIGNWINDOW 0x2000

CS_CLASSDC 0x0040

Gives the window class its own display context (shared by instances).

CS_CLASSDC 0x0040

CS_DBLCLKS 0x0008

Sends double-click messages to a window.

CS_DBLCLKS 0x0008

CS_GLOBALCLASS 0x4000

Specifies that the window class is an application global class. An application global class is created by an
application or library and is available to all applications. The class is destroyed when the application or
library that created the class exits; it is essential, therefore, that all windows created with the application
global class be closed before this occurs.

CS_GLOBALCLASS 0x4000

CS_HREDRAW 0x0002

Redraws the entire window if the horizontal size changes.

CS_HREDRAW 0x0002

CS_NOCLOSE 0x0200

Inhibits the close option on the System menu.

CS_NOCLOSE 0x0200

CS_OWNDC 0x0020

Gives each window instance its own display context. Note that although the CS_OWNDC style is
convenient, it must be used with discretion because each display context occupies approximately 800 bytes
of memory.

CS_OWNDC 0x0020

CS_PARENTDC 0x0080

Gives the display context of the parent window to the window class.

CS_PARENTDC 0x0080

CS_SAVEBITS 0x0800

Specifies that the system should try to save the screen image behind a window created from this window
class as a bitmap. Later, when the window is removed, the system uses the bitmap to quickly restore the
screen image. This style is useful for small windows that are displayed briefly and then removed before
much other screen activity takes place (for example, menus or dialog boxes). This style increases the time
required to display the window since the system must first allocate memory to store the bitmap.

CS_SAVEBITS 0x0800

CS_VREDRAW 0x0001

Redraws the entire window if the vertical size changes.

CS_VREDRAW 0x0001

Windows structures (3.1)
ABC Contains width of a character in a TrueType font
BITMAP Defines characteristics of a logical bitmap
BITMAPCOREHEADER Defines characteristics of a DIB
BITMAPCOREINFO Defines characteristics and colors of a DIB
BITMAPFILEHEADER Defines characteristics of a DIB file
BITMAPINFO Defines characteristics and colors of a DIB
BITMAPINFOHEADER Defines characteristics of a DIB
CBT_CREATEWND Contains data passed to a WH_CBT hook function
CBTACTIVATESTRUCT Contains data passed to a WH_CBT hook function
CHOOSECOLOR Contains data for the color-selection dialog box
CHOOSEFONT Contains data for the font-selection dialog box
CLASSENTRY Contains the name of a Windows class
CLIENTCREATESTRUCT Defines Window menu and first MDI child window
COMPAREITEMSTRUCT Contains data for a sorted owner-drawn combo box
COMSTAT Contains data about a communications device
CONVCONTEXT Contains language data for a DDE conversation
CONVINFO Contains information about a DDE conversation
CPLINFO Contains resource data for Control Panel application
CREATESTRUCT Defines window-initialization parameters
CTLINFO Defines class name and version of selected control
CTLSTYLE Specifies attributes of selected control
CTLTYPE Specifies width, height, and style of control
DCB Defines settings for serial communications device
DDEACK Contains status flags sent by a WM_DDE_ACK message
DDEADVISE Contains flags sent by a WM_DDE_ADVISE message
DDEDATA Contains data sent by a WM_DDE_DATA message
DDEPOKE Contains data sent by a WM_DDE_POKE message
DEBUGHOOKINFO Contains data used for debugging
DELETEITEMSTRUCT Describes a deleted owner-drawn item
DEVMODE Contains information about the printer environment
DEVNAMES Contains device data for the Print dialog box
DOCINFO Contains document input and output filenames
DRAWITEMSTRUCT Contains painting data for an owner-drawn control
DRIVERINFOSTRUCT Contains data about an installable driver
DRVCONFIGINFO Contains data about the configuration of a driver
EVENTMSG Contains message information for a journaling hook
FINDREPLACE Contains data for a Find or Replace dialog box
FIXED Contains integral and fractional parts of a number
FMS_GETDRIVEINFO Contains drive data for File Manager
FMS_GETFILESEL Contains file data for File Manager
FMS_LOAD Contains custom menu data for File Manager
GLOBALENTRY Describes a memory object on the global heap
GLOBALINFO Describes the global heap
GLYPHMETRICS Describes placement of a glyph in a character cell
HANDLETABLE Contains an array of handles to GDI objects
HARDWAREHOOKSTRUCT Contains data about a nonstandard hardware message
HELPWININFO Contains message information for a journaling hook
HSZPAIR Contains a DDE service name and topic name
KERNINGPAIR Defines a kerning pair
LOCALENTRY Describes a memory object on the local heap
LOCALINFO Describes the local heap
LOGBRUSH Defines characteristics of a logical brush
LOGFONT Specifies attributes of a logical font
LOGPALETTE Defines a logical color palette
LOGPEN Defines characteristics of a logical pen
MAT2 Contains values for a transformation matrix
MDICREATESTRUCT Contains initialization data for MDI child window
MEASUREITEMSTRUCT Contains dimensions of an owner-drawn control
MEMMANINFO Describes the status of the virtual-memory manager
MENUITEMTEMPLATE Defines a menu item
MENUITEMTEMPLATEHEADER Contains header data for a menu template
METAFILEPICT Defines metafile picture format for clipboard
METAHEADER Contains information about a metafile

METARECORD Contains a metafile record
MINMAXINFO Contains window size and tracking data
MODULEENTRY Describes a module in the module list
MONCBSTRUCT Contains data about the current DDE transaction
MONCONVSTRUCT Contains data about a DDE conversation
MONERRSTRUCT Contains data about the current DDE error
MONHSZSTRUCT Contains data about a DDE string handle
MONLINKSTRUCT Contains data about a DDE advise loop
MONMSGSTRUCT Contains data about a DDE message
MOUSEHOOKSTRUCT Contains data about a mouse event
MSG Contains message information
MULTIKEYHELP Contains keyword data for Windows Help
NCCALCSIZE_PARAMS Contains data for calculating client area
NEWCPLINFO Contains resource data of Control Panel application
NEWTEXTMETRIC Contains basic information about a physical font
NFYLOADSEG Describes the segment being loaded
NFYLOGERROR Describes a validation error
NFYLOGPARAMERROR Describes a parameter-validation error
NFYRIP Contains the RIP exit code and relevant registers
NFYSTARTDLL Describes the dynamic-link library being loaded
OFSTRUCT Contains data about an open file
OLECLIENT Points to structure providing state information
OLECLIENTVTBL Points to client's callback function
OLEOBJECT Points to table of object-function pointers
OLEOBJECTVTBL Points to functions for object manipulation
OLESERVER Points to table of server-function pointers
OLESERVERDOC Points to table of document-function pointers
OLESERVERDOCVTBL Points to functions for document manipulation
OLESERVERVTBL Points to functions for server manipulation
OLESTREAM Points to structure providing stream functions
OLESTREAMVTBL Points to functions for stream operations
OLETARGETDEVICE Contains information about target device for client
OPENFILENAME Contains data for the Open dialog box
OUTLINETEXTMETRIC Contains TrueType font metrics
PAINTSTRUCT Contains painting data for a client area
PALETTEENTRY Specifies an entry in a logical color palette
PANOSE Contains Panose values for a TrueType font
POINT Contains the coordinates of a point
POINTFX Describes a point in a character outline
PRINTDLG Contains data for the Print dialog box
RASTERIZER_STATUS Contains data about TrueType installation
RECT Defines the coordinates of a rectangle
RGBQUAD Describes colors for a DIB
RGBTRIPLE Describes colors for a DIB
SEGINFO Contains code- or data-segment information
SIZE Contains extents when a function returns
STACKTRACEENTRY Describes one stack frame
SYSHEAPINFO Describes the User and GDI modules
TASKENTRY Contains information about a task
TEXTMETRIC Contains information about a physical font
TIMERINFO Contains elapsed execution times of a task and VM
TTPOLYCURVE Describes a curve in a character outline
TTPOLYGONHEADER Specifies starting point for character outline
VS_FIXEDFILEINFO Contains version information about a file
WINDEBUGINFO Contains system-debugging information
WINDOWPLACEMENT Contains window-placement information
WINDOWPOS Contains window size and position information
WNDCLASS Defines attributes of a window class

Database Tables (3.1)
Binary and Ternary Raster-Operation Codes
Clipboard formats
Control classes
Control styles
Error Values
Metafile Records
Module and Library Names
Naming Conventions
Resource Compiler Diagnostic Messages
Virtual Key Codes

Control styles (3.1)
Button styles
Combination box styles
Edit control styles
List box styles
Scroll bar styles
Static control styles

MS Windows Naming Conventions
The following examples show some of the standard prefix and base types you will see in this database:

ABORTPROC abrtprc
ATOM atm
BOOL f
BYTE b
BYTE FAR* lpb
char FAR* lpch
DLGPROC dlgprc
DWORD dw
DWORD FAR* lpdw
EDITWORDBREAKPROC ewbprc
ENUMPROPPROC enmprc
FONTENUMPROC fntenmprc
GNOTIFYPROC gnprc
GOBJENUMPROC goenmprc
GRAYSTRINGPROC gsprc
HACCEL haccl
HBITMAP hbm
HBRUSH hbr
HCURSOR hcur
HDC hdc
HDRVR hdrvr
HDWP hdwp
HFILE hf
HFONT hfont
HGDIOBJ hgdiobj
HGLOBAL hglb
HHOOK hhook
HICON hicon
HINSTANCE hinst
HLOCAL hloc
HMENU hmenu
HMETAFILE hmf
HMODULE hmod
HOOKPROC hkprc
HPALETTE hpal
HPEN hpen
HRGN hrgn
HRSRC hrsrc
HSTR hstr
HTASK htask
HWND hwnd
int n (optional)
LINEDDAPROC lnddaprc
LNOTIFYPROC lmprc
LONG l
LPARAM lParam
LPBYTE lpb
LPCSTR lpsz

LPINT lpn
LPLONG lpl
LPSTR lpsz
LPVOID lpv
LPWORD lpw
LRESULT lResult
MFENUMPROC mfenmprc
NPSTR npsz
PBYTE npb
POINT FAR* lppt
PROPENUMPROC prpenmprc
RECT FAR* lprc
RSRCHDLRPROC rschldprc
TIMERPROC tmprc
UINT u (optional)
WNDENUMPROC wndenmprc
WNDPROC wndprc
WORD u or w
WPARAM wParam

Clipboard formats (3.1)
Value Meaning
CF_BITMAP The data is a bitmap.
CF_DIB The data is a memory object containing a BITMAPINFO structure

followed by the bitmap data.
CF_DIF The data is in Data Interchange Format (DIF).
CF_DSPBITMAP The data is a bitmap representation of a private format. This data is

displayed in bitmap format in lieu of the privately formatted data.
CF_DSPMETAFILEPICT The data is a metafile representation of a private data format. This data

is displayed in metafile-picture format in lieu of the privately
formatted data.

CF_DSPTEXT The data is a textual representation of a private data format. This data
is displayed in text format in lieu of the privately formatted data.

CF_METAFILEPICT The data is a metafile (see the description of the METAFILEPICT
structure.

CF_OEMTEXT The data is an array of text characters in the OEM character set. Each
line ends with a carriage return–linefeed (CR-LF) combination. A
null character signals the end of the data.

CF_OWNERDISPLAY The data is in a private format that the clipboard owner must display.
CF_PALETTE The data is a color palette.
CF_PENDATA The data is for the pen extensions to the Windows operating system.
CF_RIFF The data is in Resource Interchange File Format (RIFF).
CF_SYLK The data is in Microsoft Symbolic Link (SYLK) format.
CF_TEXT The data is an array of text characters. Each line ends with a carriage

return–linefeed (CR-LF) combination. A null character signals the
end of the data.

CF_TIFF The data is in Tag Image File Format (TIFF).
CF_WAVE The data describes a sound wave. This is a subset of the CF_RIFF data

format; it can be used only for RIFF WAVE files.

Control classes (3.1)
Class Description
BUTTON A button control is a small rectangular child window that represents a "button" the

user can turn on or off by clicking it with the mouse. Button controls can be used
alone or in groups and can either be labeled or appear without text. Button controls
typically change appearance when the user clicks them.

COMBOBOX A combo box control consists of a text box similar to an edit control, plus a list box.
The list box may be displayed at all times or may be dropped down when the user
selects a "pop box" next to the text box.
The style of the combo box determines whether the user can edit the contents of the
text box. If the list box is visible, typing characters into the text box causes the first
list box entry that matches the characters typed to be highlighted. Conversely,
selecting an item in the list box displays the selected text in the text box.

EDIT An edit control is a rectangular child window in which the user can enter text from
the keyboard. The user selects the control and gives it the input focus by clicking the
mouse inside it or pressing the TAB key. The user can enter text when the control
displays a flashing caret. The mouse can be used to move the cursor and select
characters to be replaced or to position the cursor for inserting characters. The
BACKSPACE key can be used to delete characters.
Edit controls expand tab characters into as many space characters as are required to
move the cursor to the next tab stop. The default for tab stops is eight characters.

LISTBOX A list box control consists of a list of items. The control is used whenever an
application needs to present a list of names, such as filenames, that the user can view
and select. The user can select an item by pointing to the name with the mouse and
clicking a mouse button. When an item is selected, it is highlighted, and a notification
message is passed to the parent window. A scroll bar can be used with a list box
control to scroll lists that are too long or too wide for the control window.

SCROLLBAR A scroll bar control is a rectangle that contains a scroll box and has direction arrows
at both ends. The scroll bar sends a notification message to its parent whenever the
user clicks the mouse in the control. The parent is responsible for updating the scroll
box position, if necessary. Scroll bar controls have the same appearance and function
as the scroll bars used in ordinary windows. But unlike scroll bars, scroll bar controls
can be positioned anywhere within a window and used whenever needed to provide
scrolling input for a window.
The scroll bar class also includes size box controls. A size box control is a small
rectangle that the user can expand to change the size of the window.

STATIC A static control is a simple text field, box, or rectangle that can be used to label, box,
or separate other controls. Static controls take no input and provide no output.

Virtual Key Codes
The following table shows the symbolic constant names, hexadecimal values, and keyboard equivalents
for the virtual-key codes used by the Microsoft Windows operating system version 3.1. The codes are
listed in numeric order.

Symbolic name Value (in hex) Mouse or keyboard equivalent
VK_LBUTTON 01 Left mouse button
VK_RBUTTON 02 Right mouse button
VK_CANCEL 03 Used for control-break processing
VK_MBUTTON 04 Middle mouse button (three-button mouse)
-- 05-07 Undefined
VK_BACK 08 BACKSPACE key
VK_TAB 09 TAB key
-- 0A–0B Undefined
VK_CLEAR 0C CLEAR key
VK_RETURN 0D ENTER key
-- 0E–0F Undefined
VK_SHIFT 10 SHIFT key
VK_CONTROL 11 CTRL key
VK_MENU 12 ALT key
VK_PAUSE 13 PAUSE key
VK_CAPITAL 14 CAPS LOCK key
-- 15-19 Reserved for Kanji systems
-- 1A Undefined
VK_ESCAPE 1B ESC key
-- 1C–1F Reserved for Kanji systems
VK_SPACE 20 SPACEBAR

VK_PRIOR 21 PAGE UP key
VK_NEXT 22 PAGE DOWN key
VK_END 23 END key
VK_HOME 24 HOME key
VK_LEFT 25 LEFT ARROW key
VK_UP 26 UP ARROW key
VK_RIGHT 27 RIGHT ARROW key
VK_DOWN 28 DOWN ARROW key
VK_SELECT 29 SELECT key
-- 2A OEM specific
VK_EXECUTE 2B EXECUTE key
VK_SNAPSHOT 2C PRINT SCREEN key for Windows 3.0 and later
VK_INSERT 2D INS key
VK_DELETE 2E DEL key
VK_HELP 2F HELP key
VK_0 30 0 key
VK_1 31 1 key
VK_2 32 2 key
VK_3 33 3 key
VK_4 34 4 key
VK_5 35 5 key
VK_6 36 6 key
VK_7 37 7 key
VK_8 38 8 key
VK_9 39 9 key
-- 3A–40 Undefined

VK_A 41 A key
VK_B 42 B key
VK_C 43 C key
VK_D 44 D key
VK_E 45 E key
VK_F 46 F key
VK_G 47 G key
VK_H 48 H key
VK_I 49 I key
VK_J 4A J key
VK_K 4B K key
VK_L 4C L key
VK_M 4D M key
VK_N 4E N key
VK_O 4F O key
VK_P 50 P key
VK_Q 51 Q key
VK_R 52 R key
VK_S 53 S key
VK_T 54 T key
VK_U 55 U key
VK_V 56 V key
VK_W 57 W key
VK_X 58 X key
VK_Y 59 Y key
VK_Z 5A Z key
-- 5B–5F Undefined
VK_NUMPAD0 60 Numeric keypad 0 key
VK_NUMPAD1 61 Numeric keypad 1 key
VK_NUMPAD2 62 Numeric keypad 2 key
VK_NUMPAD3 63 Numeric keypad 3 key
VK_NUMPAD4 64 Numeric keypad 4 key
VK_NUMPAD5 65 Numeric keypad 5 key
VK_NUMPAD6 66 Numeric keypad 6 key
VK_NUMPAD7 67 Numeric keypad 7 key
VK_NUMPAD8 68 Numeric keypad 8 key
VK_NUMPAD9 69 Numeric keypad 9 key
VK_MULTIPLY 6A Multiply key
VK_ADD 6B Add key
VK_SEPARATOR 6C Separator key
VK_SUBTRACT 6D Subtract key
VK_DECIMAL 6E Decimal key
VK_DIVIDE 6F Divide key
VK_F1 70 F1 key
VK_F2 71 F2 key
VK_F3 72 F3 key
VK_F4 73 F4 key
VK_F5 74 F5 key
VK_F6 75 F6 key
VK_F7 76 F7 key
VK_F8 77 F8 key
VK_F9 78 F9 key

VK_F10 79 F10 key
VK_F11 7A F11 key
VK_F12 7B F12 key
VK_F13 7C F13 key
VK_F14 7D F14 key
VK_F15 7E F15 key
VK_F16 7F F16 key
VK_F17 80H F17 key
VK_F18 81H F18 key
VK_F19 82H F19 key
VK_F20 83H F20 key
VK_F21 84H F21 key
VK_F22 85H F22 key
VK_F23 86H F23 key
VK_F24 87H F24 key
-- 88-8F Unassigned
VK_NUMLOCK 90 NUM LOCK key
VK_SCROLL 91 SCROLL LOCK key
-- 92–B9 Unassigned
-- BA–C0 OEM specific
-- C1–DA Unassigned
-- DB–E4 OEM specific
-- E5 Unassigned
-- E6 OEM specific
-- E7–E8 Unassigned
-- E9–F5 OEM specific
-- F6–FE Unassigned

ATOM

16-bit value used as an atom handle.

BOOL

16-bit Boolean value.

BYTE

8-bit unsigned integer. Use LPBYTE to create 32-bit pointers. Use PBYTE to create pointers that match
the compiler memory model.

CATCHBUF[9]

18-byte buffer used by the Catch function.

COLORREF

32-bit value used as a color value.

DLGPROC

32-bit pointer to a dialog box procedure.

DWORD

32-bit unsigned integer or a segment:offset address. Use LPDWORD to create 32-bit pointers. Use
PDWORD to create pointers that match the compiler memory model.

FARPROC

32-bit pointer to a function.

FNCALLBACK

32-bit value identifying the DdeCallback function. Use PFNCALLBACK to create pointers that match the
compiler memory model.

FONTENUMPROC

32-bit pointer to an EnumFontsProc callback function.

GNOTIFYPROC

32-bit pointer to a NotifyProc callback function.

GOBJENUMPROC

32-bit pointer to a EnumObjectsProc callback function.

HANDLE

16-bit value used as a general handle. Use LPHANDLE to create 32-bit pointers. Use SPHANDLE to
create 16-bit pointers. Use PHANDLE to create pointers that match the compiler memory model.

HCURSOR

16-bit value used as a cursor handle.

HFILE

16-bit value used as a file handle.

HGDIOBJ

16-bit value used as a graphics device interface (GDI) object handle.

HGLOBAL

16-bit value used as a handle to a global memory object.

HHOOK

32-bit value used as a hook handle.

HKEY

32-bit value used as a handle to a key in the registration database. Use PHKEY to create 32-bit pointers.

HINSTANCE

16-bit handle to an instance of a module or application.

HLOCAL

16-bit value used as a handle to a local memory object.

HMODULE

16-bit value used as a module handle.

HOBJECT

16-bit value used as a handle to an OLE object.

HWND

16-bit value used as a handle to a window.

HOOKPROC

32-bit pointer to a hook procedure.

HRSRC

16-bit value used as a resource handle.

LHCLIENTDOC

32-bit value used as a handle to an OLE client document.

LHSERVER

32-bit value used as a handle to an OLE server.

LHSERVERDOC

32-bit value used as a handle to an OLE server document.

LONG

32-bit signed integer.

LPABC

32-bit pointer to an ABC structure.

LPARAM

32-bit signed value passed as a parameter to a window procedure or callback function.

LPBI

32-bit pointer to a BANDINFOSTRUCT structure.

LPBITMAP

32-bit pointer to a BITMAP structure. Use NPBITMAP to create 16-bit pointers. Use PBITMAP to create
pointers that match the compiler memory model.

LPBITMAPCOREHEADER

32-bit pointer to a BITMAPCOREHEADER structure. Use PBITMAPCOREHEADER to create pointers
that match the compiler memory model.

LPBITMAPCOREINFO

32-bit pointer to a BITMAPCOREINFO structure. Use PBITMAPCOREINFO to create pointers that
match the compiler memory model.

LPBITMAPFILEHEADER

32-bit pointer to a BITMAPFILEHEADER structure. Use PBITMAPFILEHEADER to create pointers that
match the compiler memory model.

LPBITMAPINFO

32-bit pointer to a BITMAPINFO structure. Use PBITMAPINFO to create pointers that match the
compiler memory model.

LPBITMAPINFOHEADER

32-bit pointer to a BITMAPINFOHEADER structure. Use PBITMAPINFOHEADER to create pointers
that match the compiler memory model.

LPCATCHBUF

32-bit pointer to a CATCHBUF array.

LPCBT_CREATEWND

32-bit pointer to a CBT_CREATEWND structure.

LPCHOOSECOLOR

32-bit pointer to a CHOOSECOLOR structure.

LPCHOOSEFONT

32-bit pointer to a CHOOSEFONT structure.

LPCLIENTCREATESTRUCT

32-bit pointer to a CLIENTCREATESTRUCT structure.

LPCOMPAREITEMSTRUCT

32-bit pointer to a COMPAREITEMSTRUCT structure. Use PCOMPAREITEMSTRUCT to create
pointers that match the compiler memory model.

LPCPLINFO

32-bit pointer to a CPLINFO structure. Use PCPLINFO to create pointers that match the compiler memory
model.

LPCREATESTRUCT

32-bit pointer to a CREATESTRUCT structure.

LPCSTR

32-bit pointer to a nonmodifiable character string.

LPCTLINFO

32-bit pointer to a CTLINFO structure. Use PCTLINFO to create pointers that match the compiler
memory model.

LPCTLSTYLE

32-bit pointer to a CTLSTYLE structure. Use PCTLSTYLE to create pointers that match the compiler
memory model.

LPDCB

32-bit pointer to a DCB structure.

LPDEBUGHOOKINFO

32-bit pointer to a DEBUGHOOKINFO structure.

LPDELETEITEMSTRUCT

32-bit pointer to a DELETEITEMSTRUCT structure. Use PDELETEITEMSTRUCT to create pointers
that match the compiler memory model.

LPDEVMODE

32-bit pointer to a DEVMODE structure. Use NPDEVMODE to create 16-bit pointers. Use PDEVMODE
to create pointers that match the compiler memory model.

LPDEVNAMES

32-bit pointer to a DEVNAMES structure.

LPDOCINFO

32-bit pointer to a DOCINFO structure.

LPDRAWITEMSTRUCT

32-bit pointer to a DRAWITEMSTRUCT structure. Use PDRAWITEMSTRUCT to create pointers that
match the compiler memory model.

LPDRIVERINFOSTRUCT

32-bit pointer to a DRIVERINFOSTRUCT structure.

LPDRVCONFIGINFO

32-bit pointer to a DRVCONFIGINFO structure. Use PDRVCONFIGINFO to create pointers that match
the compiler memory model.

LPEVENTMSG

32-bit pointer to a EVENTMSG structure. Use NPEVENTMSG to create 16-bit pointers. Use
PEVENTMSG to create pointers that match the compiler memory model.

LPFINDREPLACE

32-bit pointer to a FINDREPLACE structure.

LPFMS_GETDRIVEINFO

32-bit pointer to a FMS_GETDRIVEINFO structure.

LPFMS_GETFILESEL

32-bit pointer to a FMS_GETFILESEL structure.

LPFMS_LOAD

32-bit pointer to a FMS_LOAD structure.

LPHANDLETABLE

32-bit pointer to a HANDLETABLE structure. Use PHANDLETABLE to create pointers that match the
compiler memory model.

LPHELPWININFO

32-bit pointer to a HELPWININFO structure. Use PHELPWININFO to create pointers that match the
compiler memory model.

LPINT

32-bit pointer to a 16-bit signed value. Use PINT to create pointers that match the compiler memory
model.

LPKERNINGPAIR

32-bit pointer to a KERNINGPAIR structure.

LPLOGBRUSH

32-bit pointer to a LOGBRUSH structure. Use NPLOGBRUSH to create 16-bit pointers. Use
PLOGBRUSH to create pointers that match the compiler memory model.

LPLOGFONT

32-bit pointer to a LOGFONT structure. Use NPLOGFONT to create 16-bit pointers. Use PLOGFONT to
create pointers that match the compiler memory model.

LPLOGPALETTE

32-bit pointer to a LOGPALETTE structure. Use NPLOGPALETTE to create 16-bit pointers. Use
PLOGPALETTE to create pointers that match the compiler memory model.

LPLOGPEN

32-bit pointer to a LOGPEN structure. Use NPLOGPEN to create 16-bit pointers. Use PLOGPEN to
create pointers that match the compiler memory model.

LPLONG

32-bit pointer to a 32-bit signed integer. Use PLONG to create pointers that match the compiler memory
model.

LPMAT2

32-bit pointer to a MAT2 structure.

LPMDICREATESTRUCT

32-bit pointer to an MDICREATESTRUCT structure.

LPMEASUREITEMSTRUCT

32-bit pointer to a MEASUREITEMSTRUCT structure. Use PMEASUREITEMSTRUCT to create
pointers that match the compiler memory model.

LPMETAFILEPICT

32-bit pointer to a METAFILEPICT structure.

LPMETARECORD

32-bit pointer to a METARECORD structure. Use PMETARECORD to create pointers that match the
compiler memory model.

LPMOUSEHOOKSTRUCT

32-bit pointer to a MOUSEHOOKSTRUCT structure.

LPMSG

32-bit pointer to an MSG structure. Use NPMSG to create 16-bit pointers. Use PMSG to create pointers
that match the compiler memory model.

LPNCCALCSIZE_PARAMS

32-bit pointer to an NCCALCSIZE_PARAMS structure.

LPNEWCPLINFO

32-bit pointer to an NEWCPLINFO structure. Use PNEWCPLINFO to create pointers that match the
compiler memory model.

LPNEWTEXTMETRIC

32-bit pointer to a NEWTEXTMETRIC structure. Use NPNEWTEXTMETRIC to create 16-bit pointers.
Use PNEWTEXTMETRIC to create pointers that match the compiler memory model.

LPOFSTRUCT

32-bit pointer to an OFSTRUCT structure. Use NPOFSTRUCT to create 16-bit pointers. Use
POFSTRUCT to create pointers that match the compiler memory model.

LPOLECLIENT

32-bit pointer to OLECLIENT structure.

LPOLECLIENTVTBL

32-bit pointer to OLECLIENTVTBL structure.

LPOLEOBJECT

32-bit pointer to OLEOBJECT structure.

LPOLEOBJECTVTBL

32-bit pointer to OLEOBJECTVTBL structure.

LPOLESERVER

32-bit pointer to OLESERVER structure.

LPOLESERVERDOC

32-bit pointer to OLESERVERDOC structure.

LPOLESERVERDOCVTBL

32-bit pointer to OLESERVERDOCVTBL structure.

LPOLESERVERVTBL

32-bit pointer to OLESERVERVTBL structure.

LPOLESTREAM

32-bit pointer to OLESTREAM structure.

LPOLESTREAMVTBL

32-bit pointer to OLESTREAMVTBL structure.

LPOLETARGETDEVICE

32-bit pointer to OLETARGETDEVICE structure.

LPOPENFILENAME

32-bit pointer to OPENFILENAME structure.

LPOUTLINETEXTMETRIC

32-bit pointer to an OUTLINETEXTMETRIC structure.

LPPAINTSTRUCT

32-bit pointer to a PAINTSTRUCT structure. Use NPPAINTSTRUCT to create 16-bit pointers. Use
PPAINTSTRUCT to create pointers that match the compiler memory model.

LPPALETTEENTRY

32-bit pointer to a PALETTEENTRY structure.

LPPOINT

32-bit pointer to a POINT structure. Use NPPOINT to create 16-bit pointers. Use PPOINT to create
pointers that match the compiler memory model.

LPPOINTFX

32-bit pointer to a POINTFX structure.

LPPRINTDLG

32-bit pointer to a PRINTDLG structure.

LPRASTERIZER_STATUS

32-bit pointer to a RASTERIZER_STATUS structure.

LPRECT

32-bit pointer to a RECT structure. Use NPRECT to create 16-bit pointers. Use PRECT to create pointers
that match the compiler memory model.

LPRGBQUAD

32-bit pointer to a RGBQUAD structure.

LPRGBTRIPLE

32-bit pointer to a RGBTRIPLE structure.

LPSEGINFO

32-bit pointer to a SEGINFO structure.

LPSIZE

32-bit pointer to a SIZE structure. Use NPSIZE to create 16-bit pointers. Use PSIZE to create pointers that
match the compiler memory model.

LPSTR

32-bit pointer to a character string. Use NPSTR to create 16-bit pointers. Use PSTR to create pointers that
match the compiler memory model.

LPTEXTMETRIC

32-bit pointer to a TEXTMETRIC structure. Use NPTEXTMETRIC to create 16-bit pointers. Use
PTEXTMETRIC to create pointers that match the compiler memory model.

LPTTPOLYCURVE

32-bit pointer to a TTPOLYCURVE structure.

LPTTPOLYGONHEADER

32-bit pointer to a TTPOLYGONHEADER structure.

LPVOID

32-bit pointer to an unspecified type.

LPWINDOWPLACEMENT

32-bit pointer to a WINDOWPLACEMENT structure. Use PWINDOWPLACEMENT to create pointers
that match the compiler memory model.

LPWINDOWPOS

32-bit pointer to a WINDOWPOS structure.

LPWNDCLASS

32-bit pointer to a WNDCLASS structure. Use NPWNDCLASS to create 16-bit pointers. Use
PWNDCLASS to create pointers that match the compiler memory model.

LPWORD

32-bit pointer to a 16-bit unsigned value. Use PWORD to create pointers that match the compiler memory
model.

LRESULT

32-bit signed value returned from a window procedure or callback function.

MFENUMPROC

32-bit pointer to an EnumMetaFileProc callback function.

NEARPROC

16-bit pointer to a function.

OLECLIPFORMAT

16-bit value used as a standard clipboard format.

PATTERN

Equivalent to the LOGBRUSH structure. Use LPPATTERN to create 32-bit pointers. Use NPPATTERN
to create 16-bit pointers. Use PPATTERN to create pointers that match the compiler memory model.

PCONVCONTEXT

32-bit pointer to a CONVCONTEXT structure.

PCONVINFO

32-bit pointer to a CONVINFO structure.

PHSZPAIR

32-bit pointer to a HSZPAIR structure.

PROPENUMPROC

32-bit pointer to an EnumPropFixedProc or EnumPropMovableProc callback function.

RSRCHDLRPROC

32-bit pointer to a LoadProc callback function.

UINT

16-bit unsigned value.

WNDENUMPROC

32-bit pointer to an EnumWindowsProc callback function.

WNDPROC

32-bit pointer to a window procedure.

WORD

16-bit unsigned value.

WPARAM

16-bit signed value passed as a parameter to a window procedure or callback function.

Button styles (3.1)
Value Meaning
BS_3STATE Creates a button that is the same as a check box, except that the box

can be grayed (dimmed) as well as checked. The grayed state is used
to show that the state of the check box is not determined.

BS_AUTO3STATE Creates a button that is the same as a three-state check box, except
that the box changes its state when the user selects it. The state
cycles through checked, grayed, and normal.

BS_AUTOCHECKBOX Creates a button that is the same as a check box, except that an X
appears in the check box when the user selects the box; the X
disappears (is cleared) the next time the user selects the box.

BS_AUTORADIOBUTTON Creates a button that is the same as a radio button, except that when
the user selects it, the button automatically highlights itself and
clears (removes the selection from) any other buttons in the same
group.

BS_CHECKBOX Creates a small square that has text displayed to its right (unless this
style is combined with the BS_LEFTTEXT style).

BS_DEFPUSHBUTTON Creates a button that has a heavy black border. The user can select
this button by pressing the ENTER key. This style is useful for
enabling the user to quickly select the most likely option (the default
option).

BS_GROUPBOX Creates a rectangle in which other controls can be grouped. Any text
associated with this style is displayed in the rectangle's upper-left
corner.

BS_LEFTTEXT Places text on the left side of the radio button or check box when
combined with a radio button or check box style.

BS_OWNERDRAW Creates an owner-drawn button. The owner window receives a
WM_MEASUREITEM message when the button is created, and it
receives a WM_DRAWITEM message when a visual aspect of the
button has changed. The BS_OWNERDRAW style cannot be
combined with any other button styles.

BS_PUSHBUTTON Creates a push button that posts a WM_COMMAND message to the
owner window when the user selects the button.

BS_RADIOBUTTON Creates a small circle that has text displayed to its right (unless this
style is combined with the BS_LEFTTEXT style). Radio buttons are
usually used in groups of related but mutually exclusive choices.

Combination box styles (3.1)
Style Description
CBS_AUTOHSCROLL Automatically scrolls the text in the edit control to the right

when the user types a character at the end of the line. If this
style is not set, only text that fits within the rectangular
boundary is allowed.

CBS_DISABLENOSCROLL Shows a disabled vertical scroll bar in the list box when the
box does not contain enough items to scroll. Without this
style, the scroll bar is hidden when the list box does not
contain enough items.

CBS_DROPDOWN Similar to CBS_SIMPLE, except that the list box is not
displayed unless the user selects an icon next to the edit
control.

CBS_DROPDOWNLIST Similar to CBS_DROPDOWN, except that the edit control is
replaced by a static text item that displays the current selection
in the list box.

CBS_HASSTRINGS Specifies that an owner-drawn combo box contains items
consisting of strings. The combo box maintains the memory
and pointers for the strings so the application can use the
CB_GETLBTEXT message to retrieve the text for a particular
item.

CBS_NOINTEGRALHEIGHT Specifies that the size of the combo box is exactly the size
specified by the application when it created the combo box.
Normally, Windows sizes a combo box so that the combo box
does not display partial items.

CBS_OEMCONVERT Converts text entered in the combo-box edit control from the
Windows character set to the OEM character set and then
back to the Windows set. This ensures proper character
conversion when the application calls the AnsiToOem
function to convert a Windows string in the combo box to
OEM characters. This style is most useful for combo boxes
that contain filenames and applies only to combo boxes
created with the CBS_SIMPLE or CBS_DROPDOWN styles.

CBS_OWNERDRAWFIXED Specifies that the owner of the list box is responsible for
drawing its contents and that the items in the list box are all
the same height. The owner window receives a
WM_MEASUREITEM message when the combo box is
created and a WM_DRAWITEM message when a visual
aspect of the combo box has changed.

CBS_OWNERDRAWVARIABLE Specifies that the owner of the list box is responsible for
drawing its contents and that the items in the list box are
variable in height. The owner window receives a
WM_MEASUREITEM message for each item in the combo
box when the combo box is created and a WM_DRAWITEM
message whenever the visual aspect of the combo box
changes.

CBS_SIMPLE Displays the list box at all times. The current selection in the
list box is displayed in the edit control.

CBS_SORT Automatically sorts strings entered into the list box.

Edit control styles (3.1)
Style Meaning
ES_AUTOHSCROLL Automatically scrolls text to the right by 10 characters when the user types a

character at the end of the line. When the user presses the ENTER key, the
control scrolls all text back to position zero.

ES_AUTOVSCROLL Automatically scrolls text up one page when the user presses ENTER on the
last line.

ES_CENTER Centers text in a multiline edit control.
ES_LEFT Left aligns text.
ES_LOWERCASE Converts all characters to lowercase as they are typed into the edit control.
ES_MULTILINE Designates a multiline edit control. (The default is single-line edit control.)

When the multiline edit control is in a dialog box, the default response to
pressing the ENTER key is to activate the default button. To use the ENTER
key as a carriage return, an application should use the ES_WANTRETURN
style.
When the multiline edit control is not in a dialog box and the
ES_AUTOVSCROLL style is specified, the edit control shows as many lines
as possible and scrolls vertically when the user presses the ENTER key. If
ES_AUTOVSCROLL is not specified, the edit control shows as many lines
as possible and beeps if the user presses ENTER when no more lines can be
displayed.
If the ES_AUTOHSCROLL style is specified, the multiline edit control
automatically scrolls horizontally when the caret goes past the right edge of
the control. To start a new line, the user must press ENTER. If
ES_AUTOHSCROLL is not specified, the control automatically wraps
words to the beginning of the next line when necessary. A new line is also
started if the user presses ENTER. The position of the wordwrap is determined
by the window size. If the window size changes, the wordwrap position
changes and the text is redisplayed.
Multiline edit controls can have scroll bars. An edit control with scroll bars
processes its own scroll bar messages. Edit controls without scroll bars scroll
as described in the previous two paragraphs and process any scroll messages
sent by the parent window.

ES_NOHIDESEL Negates the default behavior for an edit control. The default behavior is to
hide the selection when the control loses the input focus and invert the
selection when the control receives the input focus.

ES_OEMCONVERT Converts text entered in the edit control from the Windows character set to
the OEM character set and then back to the Windows set. This ensures
proper character conversion when the application calls the AnsiToOem
function to convert a Windows string in the edit control to OEM characters.
This style is most useful for edit controls that contain filenames.

ES_PASSWORD Displays all characters as an asterisk (*) as they are typed into the edit
control. An application can use the EM_SETPASSWORDCHAR message to
change the character that is displayed.

ES_READONLY Prevents the user from typing or editing text in the edit control.
ES_RIGHT Right aligns text in a multiline edit control.
ES_UPPERCASE Converts all characters to uppercase as they are typed into the edit control.
ES_WANTRETURN Specifies that a carriage return be inserted when the user presses the ENTER

key while entering text into a multiline edit control in a dialog box. If this
style is not specified, pressing the ENTER key has the same effect as pressing
the dialog box's default push button. This style has no effect on a single-line
edit control.

List box styles (3.1)
Style Meaning
LBS_DISABLENOSCROLL Shows a disabled vertical scroll bar for the list box when the

box does not contain enough items to scroll. If this style is not
specified, the scroll bar is hidden when the list box does not
contain enough items.

LBS_EXTENDEDSEL Allows multiple items to be selected by using the SHIFT key
and the mouse or special key combinations.

LBS_HASSTRINGS Specifies that a list box contains items consisting of strings.
The list box maintains the memory and pointers for the strings
so the application can use the LB_GETTEXT message to
retrieve the text for a particular item. By default, all list boxes
except owner-drawn list boxes have this style. An application
can create an owner-drawn list box either with or without this
style.

LBS_MULTICOLUMN Specifies a multicolumn list box that is scrolled horizontally.
The LB_SETCOLUMNWIDTH message sets the width of the
columns.

LBS_MULTIPLESEL Turns string selection on or off each time the user clicks or
double-clicks the string. Any number of strings can be
selected.

LBS_NOINTEGRALHEIGHT Specifies that the size of the list box is exactly the size
specified by the application when it created the list box.
Normally, Windows sizes a list box so that the list box does
not display partial items.

LBS_NOREDRAW Specifies that the list box's appearance is not updated when
changes are made. This style can be changed at any time by
sending a WM_SETREDRAW message.

LBS_NOTIFY Notifies the parent window with an input message whenever
the user clicks or double-clicks a string.

LBS_OWNERDRAWFIXED Specifies that the owner of the list box is responsible for
drawing its contents and that the items in the list box are the
same height. The owner window receives a
WM_MEASUREITEM message when the list box is created
and a WM_DRAWITEM message when a visual aspect of the
list box has changed.

LBS_OWNERDRAWVARIABLE Specifies that the owner of the list box is responsible for
drawing its contents and that the items in the list box are
variable in height. The owner window receives a
WM_MEASUREITEM message for each item in the combo
box when the combo box is created and a WM_DRAWITEM
message whenever the visual aspect of the combo box
changes.

LBS_SORT Sorts strings in the list box alphabetically.
LBS_STANDARD Sorts strings in the list box alphabetically. The parent window

receives an input message whenever the user clicks or double-
clicks a string. The list box has borders on all sides.

LBS_USETABSTOPS Allows a list box to recognize and expand tab characters when
drawing its strings. The default tab positions are 32 dialog box
units. (A dialog box unit is a horizontal or vertical distance.
One horizontal dialog box unit is equal to one-fourth of the
current dialog box base width unit. The dialog box base units
are computed based on the height and width of the current
system font. The GetDialogBaseUnits function returns the
current dialog box base units in pixels.)

LBS_WANTKEYBOARDINPUT Specifies that the owner of the list box receives
WM_VKEYTOITEM or WM_CHARTOITEM messages
whenever the user presses a key and the list box has the input
focus. This allows an application to perform special
processing on the keyboard input. If a list box has the

LBS_HASSTRINGS style, the list box can receive
WM_VKEYTOITEM messages but not WM_CHARTOITEM
messages. If a list box does not have the LBS_HASSTRINGS
style, the list box can receive WM_CHARTOITEM messages
but not WM_VKEYTOITEM messages.

Scroll bar styles (3.1)
Style Meaning
SBS_BOTTOMALIGN Aligns the bottom edge of the scroll bar with the

bottom edge of the rectangle defined by the following
CreateWindow parameters: x, y, nWidth, and
nHeight. The scroll bar has the default height for
system scroll bars. Used with the SBS_HORZ style.

SBS_HORZ Designates a horizontal scroll bar. If neither the
SBS_BOTTOMALIGN nor SBS_TOPALIGN style
is specified, the scroll bar has the height, width, and
position specified by the CreateWindow parameters.

SBS_LEFTALIGN Aligns the left edge of the scroll bar with the left
edge of the rectangle defined by the CreateWindow
parameters. The scroll bar has the default width for
system scroll bars. Used with the SBS_VERT style.

SBS_RIGHTALIGN Aligns the right edge of the scroll bar with the right
edge of the rectangle defined by the CreateWindow
parameters. The scroll bar has the default width for
system scroll bars. Used with the SBS_VERT style.

SBS_SIZEBOX Designates a size box. If neither the
SBS_SIZEBOXBOTTOMRIGHTALIGN nor
SBS_SIZEBOXTOPLEFTALIGN style is specified,
the size box has the height, width, and position
specified by the CreateWindow parameters.

SBS_SIZEBOXBOTTOMRIGHTALIGN Aligns the lower-right corner of the size box with the
lower-right corner of the rectangle specified by the
CreateWindow parameters. The size box has the
default size for system size boxes. Used with the
SBS_SIZEBOX style.

SBS_SIZEBOXTOPLEFTALIGN Aligns the upper-left corner of the size box with the
upper-left corner of the rectangle specified by the
following CreateWindow parameters: x, y, nWidth,
and nHeight. The size box has the default size for
system size boxes. Used with the SBS_SIZEBOX
style.

SBS_TOPALIGN Aligns the top edge of the scroll bar with the top edge
of the rectangle defined by the CreateWindow
parameters. The scroll bar has the default height for
system scroll bars. Used with the SBS_HORZ style.

SBS_VERT Designates a vertical scroll bar. If neither the
SBS_RIGHTALIGN nor SBS_LEFTALIGN style is
specified, the scroll bar has the height, width, and
position specified by the CreateWindow parameters.

Static control styles (3.1)
Style Meaning
SS_BLACKFRAME Specifies a box with a frame drawn in the same color as window

frames. This color is black in the default Windows color scheme.
SS_BLACKRECT Specifies a rectangle filled with the color used to draw window frames.

This color is black in the default Windows color scheme.
SS_CENTER Designates a simple rectangle and displays the given text centered in

the rectangle. The text is formatted before it is displayed. Words that
would extend past the end of a line are automatically wrapped to the
beginning of the next centered line.

SS_GRAYFRAME Specifies a box with a frame drawn with the same color as the screen
background (desktop). This color is gray in the default Windows color
scheme.

SS_GRAYRECT Specifies a rectangle filled with the color used to fill the screen
background. This color is gray in the default Windows color scheme.

SS_ICON Designates an icon displayed in the dialog box. The given text is the
name of an icon (not a filename) defined elsewhere in the resource file.
The nWidth and nHeight parameters are ignored; the icon
automatically sizes itself.

SS_LEFT Designates a simple rectangle and displays the given text left-aligned
in the rectangle. The text is formatted before it is displayed. Words that
would extend past the end of a line are automatically wrapped to the
beginning of the next left-aligned line.

SS_LEFTNOWORDWRAP Designates a simple rectangle and displays the given text left-aligned
in the rectangle. Tabs are expanded but words are not wrapped. Text
that extends past the end of a line is clipped.

SS_NOPREFIX Prevents interpretation of any & characters in the control's text as
accelerator prefix characters (which are displayed with the & removed
and the next character in the string underlined). This static control style
may be included with any of the defined static controls.
You can combine SS_NOPREFIX with other styles by using the
bitwise OR operator. This is most often used when filenames or other
strings that may contain an & need to be displayed in a static control in
a dialog box.

SS_RIGHT Designates a simple rectangle and displays the given text right-aligned
in the rectangle. The text is formatted before it is displayed. Words that
would extend past the end of a line are automatically wrapped to the
beginning of the next right-aligned line.

SS_SIMPLE Designates a simple rectangle and displays a single line of text left-
aligned in the rectangle. The line of text cannot be shortened or altered
in any way. (The control's parent window or dialog box must not
process the WM_CTLCOLOR message.)

SS_WHITEFRAME Specifies a box with a frame drawn in the same color as window
backgrounds. This color is white in the default Windows color scheme.

SS_WHITERECT Specifies a rectangle filled with the color used to fill window
backgrounds. This color is white in the default Windows color scheme.

BS_3STATE

Creates a button that is the same as a check box, except that the box can be grayed (dimmed) as well as
checked. The grayed state is used to show that the state of the check box is not determined.

BS_AUTO3STATE

Creates a button that is the same as a three-state check box, except that the box changes its state when the
user selects it. The state cycles through checked, grayed, and normal.

BS_AUTOCHECKBOX

Creates a button that is the same as a check box, except that an X appears in the check box when the user
selects the box; the X disappears (is cleared) the next time the user selects the box.

BS_AUTORADIOBUTTON

Creates a button that is the same as a radio button, except that when the user selects it, the button
automatically highlights itself and clears (removes the selection from) any other buttons in the same group.

BS_CHECKBOX

Creates a small square that has text displayed to its right (unless this style is combined with the
BS_LEFTTEXT style).

BS_DEFPUSHBUTTON

Creates a button that has a heavy black border. The user can select this button by pressing the ENTER key.
This style is useful for enabling the user to quickly select the most likely option (the default option).

BS_GROUPBOX

Creates a rectangle in which other controls can be grouped. Any text associated with this style is displayed
in the rectangle's upper-left corner.

BS_LEFTTEXT

Places text on the left side of the radio button or check box when combined with a radio button or check
box style.

BS_OWNERDRAW

Creates an owner-drawn button. The owner window receives a WM_MEASUREITEM message when the
button is created, and it receives a WM_DRAWITEM message when a visual aspect of the button has
changed. The BS_OWNERDRAW style cannot be combined with any other button styles.

BS_PUSHBUTTON

Creates a push button that posts a WM_COMMAND message to the owner window when the user selects
the button.

BS_RADIOBUTTON

Creates a small circle that has text displayed to its right (unless this style is combined with the
BS_LEFTTEXT style). Radio buttons are usually used in groups of related but mutually exclusive choices.

CBS_AUTOHSCROLL

Automatically scrolls the text in the edit control to the right when the user types a character at the end of
the line. If this style is not set, only text that fits within the rectangular boundary is allowed.

CBS_DISABLENOSCROLL

Shows a disabled vertical scroll bar in the list box when the box does not contain enough items to scroll.
Without this style, the scroll bar is hidden when the list box does not contain enough items.

CBS_DROPDOWN

Similar to CBS_SIMPLE, except that the list box is not displayed unless the user selects an icon next to
the edit control.

CBS_DROPDOWNLIST

Similar to CBS_DROPDOWN, except that the edit control is replaced by a static text item that displays
the current selection in the list box.

CBS_HASSTRINGS

Specifies that an owner-drawn combo box contains items consisting of strings. The combo box maintains
the memory and pointers for the strings so the application can use the CB_GETLBTEXT message to
retrieve the text for a particular item.

CBS_NOINTEGRALHEIGHT

Specifies that the size of the combo box is exactly the size specified by the application when it created the
combo box. Normally, Windows sizes a combo box so that the combo box does not display partial items.

CBS_OEMCONVERT

Converts text entered in the combo-box edit control from the Windows character set to the OEM character
set and then back to the Windows set. This ensures proper character conversion when the application calls
the AnsiToOem function to convert a Windows string in the combo box to OEM characters. This style is
most useful for combo boxes that contain filenames and applies only to combo boxes created with the
CBS_SIMPLE or CBS_DROPDOWN styles.

CBS_OWNERDRAWFIXED

Specifies that the owner of the list box is responsible for drawing its contents and that the items in the list
box are all the same height. The owner window receives a WM_MEASUREITEM message when the
combo box is created and a WM_DRAWITEM message when a visual aspect of the combo box has
changed.

CBS_OWNERDRAWVARIABLE

Specifies that the owner of the list box is responsible for drawing its contents and that the items in the list
box are variable in height. The owner window receives a WM_MEASUREITEM message for each item in
the combo box when the combo box is created and a WM_DRAWITEM message whenever the visual
aspect of the combo box changes.

CBS_SIMPLE

Displays the list box at all times. The current selection in the list box is displayed in the edit control.

CBS_SORT

Automatically sorts strings entered into the list box.

ES_AUTOHSCROLL

Automatically scrolls text to the right by 10 characters when the user types a character at the end of the
line. When the user presses the ENTER key, the control scrolls all text back to position zero.

ES_AUTOVSCROLL

Automatically scrolls text up one page when the user presses ENTER on the last line.

ES_CENTER

Centers text in a multiline edit control.

ES_LEFT

Left aligns text.

ES_LOWERCASE

Converts all characters to lowercase as they are typed into the edit control.

ES_MULTILINE

Designates a multiline edit control. (The default is single-line edit control.)

When

the multiline edit control is in a dialog box, the default response to pressing the ENTER key is to activate
the default button. To use the ENTER key as a carriage return, an application should use the
ES_WANTRETURN style. When the multiline edit control is not in a dialog box and the
ES_AUTOVSCROLL style is specified, the edit control shows as many lines as possible and scrolls
vertically when the user presses the ENTER key. If ES_AUTOVSCROLL is not specified, the edit control
shows as many lines as possible and beeps if the user presses ENTER when no more lines can be displayed.

If

the ES_AUTOHSCROLL style is specified, the multiline edit control automatically scrolls horizontally
when the caret goes past the right edge of the control. To start a new line, the user must press ENTER. If
ES_AUTOHSCROLL is not specified, the control automatically wraps words to the beginning of the next
line when necessary. A new line is also started if the user presses ENTER. The position of the wordwrap is
determined by the window size. If the window size changes, the wordwrap position changes and the text is
redisplayed. Multiline edit controls can have scroll bars. An edit control with scroll bars processes its own
scroll bar messages. Edit controls without scroll bars scroll as described in the previous two paragraphs
and process any scroll messages sent by the parent window.

ES_NOHIDESEL

Negates the default behavior for an edit control. The default behavior is to hide the selection when the
control loses the input focus and invert the selection when the control receives the input focus.

ES_OEMCONVERT

Converts text entered in the edit control from the Windows character set to the OEM character set and then
back to the Windows set. This ensures proper character conversion when the application calls the
AnsiToOem function to convert a Windows string in the edit control to OEM characters. This style is most
useful for edit controls that contain filenames.

ES_PASSWORD

Displays all characters as an asterisk (*) as they are typed into the edit control. An application can use the
EM_SETPASSWORDCHAR message to change the character that is displayed.

ES_READONLY

Prevents the user from typing or editing text in the edit control.

ES_RIGHT

Right aligns text in a multiline edit control.

ES_UPPERCASE

Converts all characters to uppercase as they are typed into the edit control.

ES_WANTRETURN

Specifies that a carriage return be inserted when the user presses the ENTER key while entering text into a
multiline edit control in a dialog box. If this style is not specified, pressing the ENTER key has the same
effect as pressing the dialog box's default push button. This style has no effect on a single-line edit
control.

LBS_DISABLENOSCROLL

Shows a disabled vertical scroll bar for the list box when the box does not contain enough items to scroll.
If this style is not specified, the scroll bar is hidden when the list box does not contain enough items.

LBS_EXTENDEDSEL

Allows multiple items to be selected by using the SHIFT key and the mouse or special key combinations.

LBS_HASSTRINGS

Specifies that a list box contains items consisting of strings. The list box maintains the memory and
pointers for the strings so the application can use the LB_GETTEXT message to retrieve the text for a
particular item. By default, all list boxes except owner-drawn list boxes have this style. An application can
create an owner-drawn list box either with or without this style.

LBS_MULTICOLUMN

Specifies a multicolumn list box that is scrolled horizontally. The LB_SETCOLUMNWIDTH message
sets the width of the columns.

LBS_MULTIPLESEL

Turns string selection on or off each time the user clicks or double-clicks the string. Any number of strings
can be selected.

LBS_NOINTEGRALHEIGHT

Specifies that the size of the list box is exactly the size specified by the application when it created the list
box. Normally, Windows sizes a list box so that the list box does not display partial items.

LBS_NOREDRAW

Specifies that the list box's appearance is not updated when changes are made. This style can be changed
at any time by sending a WM_SETREDRAW message.

LBS_NOTIFY

Notifies the parent window with an input message whenever the user clicks or double-clicks a string.

LBS_OWNERDRAWFIXED

Specifies that the owner of the list box is responsible for drawing its contents and that the items in the list
box are the same height. The owner window receives a WM_MEASUREITEM message when the list box
is created and a WM_DRAWITEM message when a visual aspect of the list box has changed.

LBS_OWNERDRAWVARIABLE

Specifies that the owner of the list box is responsible for drawing its contents and that the items in the list
box are variable in height. The owner window receives a WM_MEASUREITEM message for each item in
the combo box when the combo box is created and a WM_DRAWITEM message whenever the visual
aspect of the combo box changes.

LBS_SORT

Sorts strings in the list box alphabetically.

LBS_STANDARD

Sorts strings in the list box alphabetically. The parent window receives an input message whenever the
user clicks or double-clicks a string. The list box has borders on all sides.

LBS_USETABSTOPS

Allows a list box to recognize and expand tab characters when drawing its strings. The default tab
positions are 32 dialog box units. (A dialog box unit is a horizontal or vertical distance. One horizontal
dialog box unit is equal to one-fourth of the current dialog box base width unit. The dialog box base units
are computed based on the height and width of the current system font. The GetDialogBaseUnits function
returns the current dialog box base units in pixels.)

LBS_WANTKEYBOARDINPUT

Specifies that the owner of the list box receives WM_VKEYTOITEM or WM_CHARTOITEM messages
whenever the user presses a key and the list box has the input focus. This allows an application to perform
special processing on the keyboard input. If a list box has the LBS_HASSTRINGS style, the list box can
receive WM_VKEYTOITEM messages but not WM_CHARTOITEM messages. If a list box does not
have the LBS_HASSTRINGS style, the list box can receive WM_CHARTOITEM messages but not
WM_VKEYTOITEM messages.

SBS_BOTTOMALIGN

Aligns the bottom edge of the scroll bar with the bottom edge of the rectangle defined by the following
CreateWindow parameters: x, y, nWidth, and nHeight. The scroll bar has the default height for system
scroll bars. Used with the SBS_HORZ style.

SBS_HORZ

Designates a horizontal scroll bar. If neither the SBS_BOTTOMALIGN nor SBS_TOPALIGN style is
specified, the scroll bar has the height, width, and position specified by the CreateWindow parameters.

SBS_LEFTALIGN

Aligns the left edge of the scroll bar with the left edge of the rectangle defined by the CreateWindow
parameters. The scroll bar has the default width for system scroll bars. Used with the SBS_VERT style.

SBS_RIGHTALIGN

Aligns the right edge of the scroll bar with the right edge of the rectangle defined by the CreateWindow
parameters. The scroll bar has the default width for system scroll bars. Used with the SBS_VERT style.

SBS_SIZEBOX

Designates a size box. If neither the SBS_SIZEBOXBOTTOMRIGHTALIGN nor
SBS_SIZEBOXTOPLEFTALIGN style is specified, the size box has the height, width, and position
specified by the CreateWindow parameters.

SBS_SIZEBOXBOTTOMRIGHTALIGN

Aligns the lower-right corner of the size box with the lower-right corner of the rectangle specified by the
CreateWindow parameters. The size box has the default size for system size boxes. Used with the
SBS_SIZEBOX style.

SBS_SIZEBOXTOPLEFTALIGN

Aligns the upper-left corner of the size box with the upper-left corner of the rectangle specified by the
following CreateWindow parameters: x, y, nWidth, and nHeight. The size box has the default size for
system size boxes. Used with the SBS_SIZEBOX style.

SBS_TOPALIGN

Aligns the top edge of the scroll bar with the top edge of the rectangle defined by the CreateWindow
parameters. The scroll bar has the default height for system scroll bars. Used with the SBS_HORZ style.

SBS_VERT

Designates a vertical scroll bar. If neither the SBS_RIGHTALIGN nor SBS_LEFTALIGN style is
specified, the scroll bar has the height, width, and position specified by the CreateWindow parameters.

SS_BLACKFRAME

Specifies a box with a frame drawn in the same color as window frames. This color is black in the default
Windows color scheme.

SS_BLACKRECT

Specifies a rectangle filled with the color used to draw window frames. This color is black in the default
Windows color scheme.

SS_CENTER

Designates a simple rectangle and displays the given text centered in the rectangle. The text is formatted
before it is displayed. Words that would extend past the end of a line are automatically wrapped to the
beginning of the next centered line.

SS_GRAYFRAME

Specifies a box with a frame drawn with the same color as the screen background (desktop). This color is
gray in the default Windows color scheme.

SS_GRAYRECT

Specifies a rectangle filled with the color used to fill the screen background. This color is gray in the
default Windows color scheme.

SS_ICON

Designates an icon displayed in the dialog box. The given text is the name of an icon (not a filename)
defined elsewhere in the resource file. The nWidth and nHeight parameters are ignored; the icon
automatically sizes itself.

SS_LEFT

Designates a simple rectangle and displays the given text left-aligned in the rectangle. The text is
formatted before it is displayed. Words that would extend past the end of a line are automatically wrapped
to the beginning of the next left-aligned line.

SS_LEFTNOWORDWRAP

Designates a simple rectangle and displays the given text left-aligned in the rectangle. Tabs are expanded
but words are not wrapped. Text that extends past the end of a line is clipped.

SS_NOPREFIX

Prevents interpretation of any & characters in the control's text as accelerator prefix characters (which are
displayed with the & removed and the next character in the string underlined). This static control style
may be included with any of the defined static controls. You can combine SS_NOPREFIX with other
styles by using the bitwise OR operator. This is most often used when filenames or other strings that may
contain an & need to be displayed in a static control in a dialog box.

SS_RIGHT

Designates a simple rectangle and displays the given text right-aligned in the rectangle. The text is
formatted before it is displayed. Words that would extend past the end of a line are automatically wrapped
to the beginning of the next right-aligned line.

SS_SIMPLE

Designates a simple rectangle and displays a single line of text left-aligned in the rectangle. The line of
text cannot be shortened or altered in any way. (The control's parent window or dialog box must not
process the WM_CTLCOLOR message.)

SS_WHITEFRAME

Specifies a box with a frame drawn in the same color as window backgrounds. This color is white in the
default Windows color scheme.

SS_WHITERECT

Specifies a rectangle filled with the color used to fill window backgrounds. This color is white in the
default Windows color scheme.

Module and Library Names
This topic lists the module and import libraries associated with each Microsoft Windows function.

Function Module Import library
AbortDoc GDI LIBW.LIB
AccessResource KERNEL LIBW.LIB
AddAtom KERNEL LIBW.LIB
AddFontResource GDI LIBW.LIB
AdjustWindowRect USER LIBW.LIB
AdjustWindowRectEx USER LIBW.LIB
AllocDiskSpace STRESS STRESS.LIB
AllocDStoCSAlias KERNEL LIBW.LIB
AllocFileHandles STRESS STRESS.LIB
AllocGDIMem STRESS STRESS.LIB
AllocMem STRESS STRESS.LIB
AllocResource KERNEL LIBW.LIB
AllocSelector KERNEL LIBW.LIB
AllocUserMem STRESS STRESS.LIB
AnimatePalette GDI LIBW.LIB
AnsiLower USER LIBW.LIB
AnsiLowerBuff USER LIBW.LIB
AnsiNext USER LIBW.LIB
AnsiPrev USER LIBW.LIB
AnsiToOem KEYBOARD LIBW.LIB
AnsiToOemBuff KEYBOARD LIBW.LIB
AnsiUpper USER LIBW.LIB
AnsiUpperBuff USER LIBW.LIB
AnyPopup USER LIBW.LIB
AppendMenu USER LIBW.LIB
Arc GDI LIBW.LIB
ArrangeIconicWindows USER LIBW.LIB
BeginDeferWindowPos USER LIBW.LIB
BeginPaint USER LIBW.LIB
BitBlt GDI LIBW.LIB
BringWindowToTop USER LIBW.LIB
BuildCommDCB USER LIBW.LIB
CallMsgFilter USER LIBW.LIB
CallNextHookEx USER LIBW.LIB
CallWindowProc USER LIBW.LIB
Catch KERNEL LIBW.LIB
ChangeClipboardChain USER LIBW.LIB
ChangeMenu USER LIBW.LIB
CheckDlgButton USER LIBW.LIB
CheckMenuItem USER LIBW.LIB
CheckRadioButton USER LIBW.LIB
ChildWindowFromPoint USER LIBW.LIB
ChooseColor COMMDLG COMMDLG.LIB
ChooseFont COMMDLG COMMDLG.LIB
Chord GDI LIBW.LIB
ClassFirst TOOLHELP TOOLHELP.LIB
ClassNext TOOLHELP TOOLHELP.LIB
ClearCommBreak USER LIBW.LIB

ClientToScreen USER LIBW.LIB
ClipCursor USER LIBW.LIB
CloseClipboard USER LIBW.LIB
CloseComm USER LIBW.LIB
CloseDriver USER LIBW.LIB
CloseMetaFile GDI LIBW.LIB
CloseWindow USER LIBW.LIB
CombineRgn GDI LIBW.LIB
CommDlgExtendedError COMMDLG COMMDLG.LIB
CopyCursor USER LIBW.LIB
CopyIcon USER LIBW.LIB
CopyLZFile LZEXPAND LZEXPAND.LIB
CopyMetaFile GDI LIBW.LIB
CopyRect USER LIBW.LIB
CountClipboardFormats USER LIBW.LIB
CreateBitmap GDI LIBW.LIB
CreateBitmapIndirect GDI LIBW.LIB
CreateBrushIndirect GDI LIBW.LIB
CreateCaret USER LIBW.LIB
CreateCompatibleBitmap GDI LIBW.LIB
CreateCompatibleDC GDI LIBW.LIB
CreateCursor USER LIBW.LIB
CreateDC GDI LIBW.LIB
CreateDialog USER LIBW.LIB
CreateDialogIndirect USER LIBW.LIB
CreateDialogIndirectParam USER LIBW.LIB
CreateDialogParam USER LIBW.LIB
CreateDIBitmap GDI LIBW.LIB
CreateDIBPatternBrush GDI LIBW.LIB
CreateDiscardableBitmap GDI LIBW.LIB
CreateEllipticRgn GDI LIBW.LIB
CreateEllipticRgnIndirect GDI LIBW.LIB
CreateFont GDI LIBW.LIB
CreateFontIndirect GDI LIBW.LIB
CreateHatchBrush GDI LIBW.LIB
CreateIC GDI LIBW.LIB
CreateIcon USER LIBW.LIB
CreateMenu USER LIBW.LIB
CreateMetaFile GDI LIBW.LIB
CreatePalette GDI LIBW.LIB
CreatePatternBrush GDI LIBW.LIB
CreatePen GDI LIBW.LIB
CreatePenIndirect GDI LIBW.LIB
CreatePolygonRgn GDI LIBW.LIB
CreatePolyPolygonRgn GDI LIBW.LIB
CreatePopupMenu USER LIBW.LIB
CreateRectRgn GDI LIBW.LIB
CreateRectRgnIndirect GDI LIBW.LIB
CreateRoundRectRgn GDI LIBW.LIB
CreateScalableFontResource GDI LIBW.LIB
CreateSolidBrush GDI LIBW.LIB
CreateWindow USER LIBW.LIB

CreateWindowEx USER LIBW.LIB
DdeAbandonTransaction DDEML DDEML.LIB
DdeAccessData DDEML DDEML.LIB
DdeAddData DDEML DDEML.LIB
DdeClientTransaction DDEML DDEML.LIB
DdeCmpStringHandles DDEML DDEML.LIB
DdeConnect DDEML DDEML.LIB
DdeConnectList DDEML DDEML.LIB
DdeCreateDataHandle DDEML DDEML.LIB
DdeCreateStringHandle DDEML DDEML.LIB
DdeDisconnect DDEML DDEML.LIB
DdeDisconnectList DDEML DDEML.LIB
DdeEnableCallback DDEML DDEML.LIB
DdeFreeDataHandle DDEML DDEML.LIB
DdeFreeStringHandle DDEML DDEML.LIB
DdeGetData DDEML DDEML.LIB
DdeGetLastError DDEML DDEML.LIB
DdeInitialize DDEML DDEML.LIB
DdeKeepStringHandle DDEML DDEML.LIB
DdeNameService DDEML DDEML.LIB
DdePostAdvise DDEML DDEML.LIB
DdeQueryConvInfo DDEML DDEML.LIB
DdeQueryNextServer DDEML DDEML.LIB
DdeQueryString DDEML DDEML.LIB
DdeReconnect DDEML DDEML.LIB
DdeSetUserHandle DDEML DDEML.LIB
DdeUnaccessData DDEML DDEML.LIB
DdeUninitialize DDEML DDEML.LIB
DebugBreak KERNEL LIBW.LIB
DebugOutput KERNEL LIBW.LIB
DefDlgProc USER LIBW.LIB
DefDriverProc USER LIBW.LIB
DeferWindowPos USER LIBW.LIB
DefFrameProc USER LIBW.LIB
DefHookProc USER LIBW.LIB
DefMDIChildProc USER LIBW.LIB
DefScreenSaverProc — SCRNSAVE.LIB
DefWindowProc USER LIBW.LIB
DeleteAtom KERNEL LIBW.LIB
DeleteDC GDI LIBW.LIB
DeleteMenu USER LIBW.LIB
DeleteMetaFile GDI LIBW.LIB
DeleteObject GDI LIBW.LIB
DestroyCaret USER LIBW.LIB
DestroyCursor USER LIBW.LIB
DestroyIcon USER LIBW.LIB
DestroyMenu USER LIBW.LIB
DestroyWindow USER LIBW.LIB
DialogBox USER LIBW.LIB
DialogBoxIndirect USER LIBW.LIB
DialogBoxIndirectParam USER LIBW.LIB
DialogBoxParam USER LIBW.LIB

DirectedYield KERNEL LIBW.LIB
DispatchMessage USER LIBW.LIB
DlgChangePassword — SCRNSAVE.LIB
DlgDirList USER LIBW.LIB
DlgDirListComboBox USER LIBW.LIB
DlgDirSelect USER LIBW.LIB
DlgDirSelectComboBox USER LIBW.LIB
DlgDirSelectComboBoxEx USER LIBW.LIB
DlgDirSelectEx USER LIBW.LIB
DlgGetPassword — SCRNSAVE.LIB
DlgInvalidPassword — SCRNSAVE.LIB
DOS3Call KERNEL LIBW.LIB
DPtoLP GDI LIBW.LIB
DragAcceptFiles SHELL SHELL.LIB
DragFinish SHELL SHELL.LIB
DragQueryFile SHELL SHELL.LIB
DragQueryPoint SHELL SHELL.LIB
DrawFocusRect USER LIBW.LIB
DrawIcon USER LIBW.LIB
DrawMenuBar USER LIBW.LIB
DrawText USER LIBW.LIB
Ellipse GDI LIBW.LIB
EmptyClipboard USER LIBW.LIB
EnableCommNotification USER LIBW.LIB
EnableHardwareInput USER LIBW.LIB
EnableMenuItem USER LIBW.LIB
EnableScrollBar USER LIBW.LIB
EnableWindow USER LIBW.LIB
EndDeferWindowPos USER LIBW.LIB
EndDialog USER LIBW.LIB
EndDoc GDI LIBW.LIB
EndPage GDI LIBW.LIB
EndPaint USER LIBW.LIB
EnumChildWindows USER LIBW.LIB
EnumClipboardFormats USER LIBW.LIB
EnumFontFamilies GDI LIBW.LIB
EnumFonts GDI LIBW.LIB
EnumMetaFile GDI LIBW.LIB
EnumObjects GDI LIBW.LIB
EnumProps USER LIBW.LIB
EnumTaskWindows USER LIBW.LIB
EnumWindows USER LIBW.LIB
EqualRect USER LIBW.LIB
EqualRgn GDI LIBW.LIB
Escape GDI LIBW.LIB
EscapeCommFunction USER LIBW.LIB
ExcludeClipRect GDI LIBW.LIB
ExcludeUpdateRgn USER LIBW.LIB
ExitWindows USER LIBW.LIB
ExitWindowsExec USER LIBW.LIB
ExtFloodFill GDI LIBW.LIB
ExtractIcon SHELL SHELL.LIB

ExtTextOut GDI LIBW.LIB
FatalAppExit KERNEL LIBW.LIB
FatalExit KERNEL LIBW.LIB
FillRect USER LIBW.LIB
FillRgn GDI LIBW.LIB
FindAtom KERNEL LIBW.LIB
FindExecutable SHELL SHELL.LIB
FindResource KERNEL LIBW.LIB
FindText COMMDLG COMMDLG.LIB
FindWindow USER LIBW.LIB
FlashWindow USER LIBW.LIB
FloodFill GDI LIBW.LIB
FlushComm USER LIBW.LIB
FrameRect USER LIBW.LIB
FrameRgn GDI LIBW.LIB
FreeAllGDIMem STRESS STRESS.LIB
FreeAllMem STRESS STRESS.LIB
FreeAllUserMem STRESS STRESS.LIB
FreeLibrary KERNEL LIBW.LIB
FreeModule KERNEL LIBW.LIB
FreeProcInstance KERNEL LIBW.LIB
FreeResource KERNEL LIBW.LIB
FreeSelector KERNEL LIBW.LIB
GetActiveWindow USER LIBW.LIB
GetAspectRatioFilter GDI LIBW.LIB
GetAspectRatioFilterEx GDI LIBW.LIB
GetAsyncKeyState USER LIBW.LIB
GetAtomHandle KERNEL LIBW.LIB
GetAtomName KERNEL LIBW.LIB
GetBitmapBits GDI LIBW.LIB
GetBitmapDimension GDI LIBW.LIB
GetBitmapDimensionEx GDI LIBW.LIB
GetBkColor GDI LIBW.LIB
GetBkMode GDI LIBW.LIB
GetBoundsRect GDI LIBW.LIB
GetBrushOrg GDI LIBW.LIB
GetBrushOrgEx GDI LIBW.LIB
GetCapture USER LIBW.LIB
GetCaretBlinkTime USER LIBW.LIB
GetCaretPos USER LIBW.LIB
GetCharABCWidths GDI LIBW.LIB
GetCharWidth GDI LIBW.LIB
GetClassInfo USER LIBW.LIB
GetClassLong USER LIBW.LIB
GetClassName USER LIBW.LIB
GetClassWord USER LIBW.LIB
GetClientRect USER LIBW.LIB
GetClipboardData USER LIBW.LIB
GetClipboardFormatName USER LIBW.LIB
GetClipboardOwner USER LIBW.LIB
GetClipboardViewer USER LIBW.LIB
GetClipBox GDI LIBW.LIB

GetClipCursor USER LIBW.LIB
GetCodeHandle KERNEL LIBW.LIB
GetCodeInfo KERNEL LIBW.LIB
GetCommError USER LIBW.LIB
GetCommEventMask USER LIBW.LIB
GetCommState USER LIBW.LIB
GetCurrentPDB KERNEL LIBW.LIB
GetCurrentPosition GDI LIBW.LIB
GetCurrentPositionEx GDI LIBW.LIB
GetCurrentTask KERNEL LIBW.LIB
GetCurrentTime USER LIBW.LIB
GetCursor USER LIBW.LIB
GetCursorPos USER LIBW.LIB
GetDC USER LIBW.LIB
GetDCEx USER LIBW.LIB
GetDCOrg GDI LIBW.LIB
GetDesktopWindow USER LIBW.LIB
GetDeviceCaps GDI LIBW.LIB
GetDialogBaseUnits USER LIBW.LIB
GetDIBits GDI LIBW.LIB
GetDlgCtrlID USER LIBW.LIB
GetDlgItem USER LIBW.LIB
GetDlgItemInt USER LIBW.LIB
GetDlgItemText USER LIBW.LIB
GetDOSEnvironment KERNEL LIBW.LIB
GetDoubleClickTime USER LIBW.LIB
GetDriverInfo USER LIBW.LIB
GetDriverModuleHandle USER LIBW.LIB
GetDriveType KERNEL LIBW.LIB
GetExpandedName LZEXPAND LZEXPAND.LIB
GetFileResource VER VER.LIB
GetFileResourceSize VER VER.LIB
GetFileTitle COMMDLG COMMDLG.LIB
GetFileVersionInfo VER VER.LIB
GetFileVersionInfoSize VER VER.LIB
GetFocus USER LIBW.LIB
GetFontData GDI LIBW.LIB
GetFreeFileHandles STRESS STRESS.LIB
GetFreeSpace KERNEL LIBW.LIB
GetFreeSystemResources USER LIBW.LIB
GetGlyphOutline GDI LIBW.LIB
GetInputState USER LIBW.LIB
GetInstanceData KERNEL LIBW.LIB
GetKBCodePage KEYBOARD LIBW.LIB
GetKerningPairs GDI LIBW.LIB
GetKeyboardState USER LIBW.LIB
GetKeyboardType KEYBOARD LIBW.LIB
GetKeyNameText KEYBOARD LIBW.LIB
GetKeyState USER LIBW.LIB
GetLastActivePopup USER LIBW.LIB
GetMapMode GDI LIBW.LIB
GetMenu USER LIBW.LIB

GetMenuCheckMarkDimensions USER LIBW.LIB
GetMenuItemCount USER LIBW.LIB
GetMenuItemID USER LIBW.LIB
GetMenuState USER LIBW.LIB
GetMenuString USER LIBW.LIB
GetMessage USER LIBW.LIB
GetMessageExtraInfo USER LIBW.LIB
GetMessagePos USER LIBW.LIB
GetMessageTime USER LIBW.LIB
GetMetaFile GDI LIBW.LIB
GetMetaFileBits GDI LIBW.LIB
GetModuleFileName KERNEL LIBW.LIB
GetModuleHandle KERNEL LIBW.LIB
GetModuleUsage KERNEL LIBW.LIB
GetNearestColor GDI LIBW.LIB
GetNearestPaletteIndex GDI LIBW.LIB
GetNextDlgGroupItem USER LIBW.LIB
GetNextDlgTabItem USER LIBW.LIB
GetNextDriver USER LIBW.LIB
GetNextWindow USER LIBW.LIB
GetNumTasks KERNEL LIBW.LIB
GetObject GDI LIBW.LIB
GetOpenClipboardWindow USER LIBW.LIB
GetOpenFileName COMMDLG COMMDLG.LIB
GetOutlineTextMetrics GDI LIBW.LIB
GetPaletteEntries GDI LIBW.LIB
GetParent USER LIBW.LIB
GetPixel GDI LIBW.LIB
GetPolyFillMode GDI LIBW.LIB
GetPriorityClipboardFormat USER LIBW.LIB
GetPrivateProfileInt KERNEL LIBW.LIB
GetPrivateProfileString KERNEL LIBW.LIB
GetProcAddress KERNEL LIBW.LIB
GetProfileInt KERNEL LIBW.LIB
GetProfileString KERNEL LIBW.LIB
GetProp USER LIBW.LIB
GetQueueStatus USER LIBW.LIB
GetRasterizerCaps GDI LIBW.LIB
GetRgnBox GDI LIBW.LIB
GetROP2 GDI LIBW.LIB
GetSaveFileName COMMDLG COMMDLG.LIB
GetScrollPos USER LIBW.LIB
GetScrollRange USER LIBW.LIB
GetSelectorBase KERNEL LIBW.LIB
GetSelectorLimit KERNEL LIBW.LIB
GetStockObject GDI LIBW.LIB
GetStretchBltMode GDI LIBW.LIB
GetSubMenu USER LIBW.LIB
GetSysColor USER LIBW.LIB
GetSysModalWindow USER LIBW.LIB
GetSystemDebugState USER LIBW.LIB
GetSystemDir — VERS.LIB

GetSystemDirectory KERNEL LIBW.LIB
GetSystemMenu USER LIBW.LIB
GetSystemMetrics USER LIBW.LIB
GetSystemPaletteEntries GDI LIBW.LIB
GetSystemPaletteUse GDI LIBW.LIB
GetTabbedTextExtent USER LIBW.LIB
GetTempDrive KERNEL LIBW.LIB
GetTempFileName KERNEL LIBW.LIB
GetTextAlign GDI LIBW.LIB
GetTextCharacterExtra GDI LIBW.LIB
GetTextColor GDI LIBW.LIB
GetTextExtent GDI LIBW.LIB
GetTextExtentPoint GDI LIBW.LIB
GetTextFace GDI LIBW.LIB
GetTextMetrics GDI LIBW.LIB
GetTickCount USER LIBW.LIB
GetTimerResolution USER LIBW.LIB
GetTopWindow USER LIBW.LIB
GetUpdateRect USER LIBW.LIB
GetUpdateRgn USER LIBW.LIB
GetVersion KERNEL LIBW.LIB
GetViewportExt GDI LIBW.LIB
GetViewportExtEx GDI LIBW.LIB
GetViewportOrg GDI LIBW.LIB
GetViewportOrgEx GDI LIBW.LIB
GetWinDebugInfo KERNEL LIBW.LIB
GetWindow USER LIBW.LIB
GetWindowDC USER LIBW.LIB
GetWindowExt GDI LIBW.LIB
GetWindowExtEx GDI LIBW.LIB
GetWindowLong USER LIBW.LIB
GetWindowOrg GDI LIBW.LIB
GetWindowOrgEx GDI LIBW.LIB
GetWindowPlacement USER LIBW.LIB
GetWindowRect USER LIBW.LIB
GetWindowsDir — VERS.LIB
GetWindowsDirectory KERNEL LIBW.LIB
GetWindowTask USER LIBW.LIB
GetWindowText USER LIBW.LIB
GetWindowTextLength USER LIBW.LIB
GetWindowWord USER LIBW.LIB
GetWinFlags KERNEL LIBW.LIB
GetWinMem32Version WINMEM32 WINMEM32.LIB
Global16PointerAlloc WINMEM32 WINMEM32.LIB
Global16PointerFree WINMEM32 WINMEM32.LIB
Global32Alloc WINMEM32 WINMEM32.LIB
Global32CodeAlias WINMEM32 WINMEM32.LIB
Global32CodeAliasFree WINMEM32 WINMEM32.LIB
Global32Free WINMEM32 WINMEM32.LIB
Global32Realloc WINMEM32 WINMEM32.LIB
GlobalAddAtom USER LIBW.LIB
GlobalAlloc KERNEL LIBW.LIB

GlobalCompact KERNEL LIBW.LIB
GlobalDeleteAtom USER LIBW.LIB
GlobalDosAlloc KERNEL LIBW.LIB
GlobalDosFree KERNEL LIBW.LIB
GlobalEntryHandle TOOLHELP TOOLHELP.LIB
GlobalEntryModule TOOLHELP TOOLHELP.LIB
GlobalFindAtom USER LIBW.LIB
GlobalFirst TOOLHELP TOOLHELP.LIB
GlobalFix KERNEL LIBW.LIB
GlobalFlags KERNEL LIBW.LIB
GlobalFree KERNEL LIBW.LIB
GlobalGetAtomName USER LIBW.LIB
GlobalHandle KERNEL LIBW.LIB
GlobalHandleToSel TOOLHELP TOOLHELP.LIB
GlobalInfo TOOLHELP TOOLHELP.LIB
GlobalLock KERNEL LIBW.LIB
GlobalLRUNewest KERNEL LIBW.LIB
GlobalLRUOldest KERNEL LIBW.LIB
GlobalNext TOOLHELP TOOLHELP.LIB
GlobalNotify KERNEL LIBW.LIB
GlobalPageLock KERNEL LIBW.LIB
GlobalPageUnlock KERNEL LIBW.LIB
GlobalReAlloc KERNEL LIBW.LIB
GlobalSize KERNEL LIBW.LIB
GlobalUnfix KERNEL LIBW.LIB
GlobalUnlock KERNEL LIBW.LIB
GlobalUnWire KERNEL LIBW.LIB
GlobalWire KERNEL LIBW.LIB
GrayString USER LIBW.LIB
hardware_event USER LIBW.LIB
HelpMessageFilterHookFunction — SCRNSAVE.LIB
HideCaret USER LIBW.LIB
HiliteMenuItem USER LIBW.LIB
hmemcpy KERNEL LIBW.LIB
_hread KERNEL LIBW.LIB
_hwrite KERNEL LIBW.LIB
InflateRect USER LIBW.LIB
InitAtomTable KERNEL LIBW.LIB
InSendMessage USER LIBW.LIB
InsertMenu USER LIBW.LIB
InterruptRegister TOOLHELP TOOLHELP.LIB
InterruptUnRegister TOOLHELP TOOLHELP.LIB
IntersectClipRect GDI LIBW.LIB
IntersectRect USER LIBW.LIB
InvalidateRect USER LIBW.LIB
InvalidateRgn USER LIBW.LIB
InvertRect USER LIBW.LIB
InvertRgn GDI LIBW.LIB
IsBadCodePtr KERNEL LIBW.LIB
IsBadHugeReadPtr KERNEL LIBW.LIB
IsBadHugeWritePtr KERNEL LIBW.LIB
IsBadReadPtr KERNEL LIBW.LIB

IsBadStringPtr KERNEL LIBW.LIB
IsBadWritePtr KERNEL LIBW.LIB
IsCharAlpha USER LIBW.LIB
IsCharAlphaNumeric USER LIBW.LIB
IsCharLower USER LIBW.LIB
IsCharUpper USER LIBW.LIB
IsChild USER LIBW.LIB
IsClipboardFormatAvailable USER LIBW.LIB
IsDBCSLeadByte KERNEL LIBW.LIB
IsDialogMessage USER LIBW.LIB
IsDlgButtonChecked USER LIBW.LIB
IsGDIObject GDI LIBW.LIB
IsIconic USER LIBW.LIB
IsMenu USER LIBW.LIB
IsRectEmpty USER LIBW.LIB
IsTask KERNEL LIBW.LIB
IsWindow USER LIBW.LIB
IsWindowEnabled USER LIBW.LIB
IsWindowVisible USER LIBW.LIB
IsZoomed USER LIBW.LIB
KillTimer USER LIBW.LIB
_lclose KERNEL LIBW.LIB
_lcreat KERNEL LIBW.LIB
LimitEmsPages KERNEL LIBW.LIB
LineDDA GDI LIBW.LIB
LineTo GDI LIBW.LIB
_llseek KERNEL LIBW.LIB
LoadAccelerators USER LIBW.LIB
LoadBitmap USER LIBW.LIB
LoadCursor USER LIBW.LIB
LoadIcon USER LIBW.LIB
LoadLibrary KERNEL LIBW.LIB
LoadMenu USER LIBW.LIB
LoadMenuIndirect USER LIBW.LIB
LoadModule KERNEL LIBW.LIB
LoadResource KERNEL LIBW.LIB
LoadString USER LIBW.LIB
LocalAlloc KERNEL LIBW.LIB
LocalCompact KERNEL LIBW.LIB
LocalFirst TOOLHELP TOOLHELP.LIB
LocalFlags KERNEL LIBW.LIB
LocalFree KERNEL LIBW.LIB
LocalHandle KERNEL LIBW.LIB
LocalInfo TOOLHELP TOOLHELP.LIB
LocalInit KERNEL LIBW.LIB
LocalLock KERNEL LIBW.LIB
LocalNext TOOLHELP TOOLHELP.LIB
LocalReAlloc KERNEL LIBW.LIB
LocalShrink KERNEL LIBW.LIB
LocalSize KERNEL LIBW.LIB
LocalUnlock KERNEL LIBW.LIB
LockInput USER LIBW.LIB

LockResource KERNEL LIBW.LIB
LockSegment KERNEL LIBW.LIB
LockWindowUpdate USER LIBW.LIB
LogError KERNEL LIBW.LIB
LogParamError KERNEL LIBW.LIB
_lopen KERNEL LIBW.LIB
LPtoDP GDI LIBW.LIB
_lread KERNEL LIBW.LIB
lstrcat KERNEL LIBW.LIB
lstrcmp USER LIBW.LIB
lstrcmpi USER LIBW.LIB
lstrcpy KERNEL LIBW.LIB
lstrlen KERNEL LIBW.LIB
_lwrite KERNEL LIBW.LIB
LZClose LZEXPAND LZEXPAND.LIB
LZCopy LZEXPAND LZEXPAND.LIB
LZDone LZEXPAND LZEXPAND.LIB
LZInit LZEXPAND LZEXPAND.LIB
LZOpenFile LZEXPAND LZEXPAND.LIB
LZRead LZEXPAND LZEXPAND.LIB
LZSeek LZEXPAND LZEXPAND.LIB
LZStart LZEXPAND LZEXPAND.LIB
MakeProcInstance KERNEL LIBW.LIB
MapDialogRect USER LIBW.LIB
MapVirtualKey KEYBOARD LIBW.LIB
MapWindowPoints USER LIBW.LIB
MemManInfo TOOLHELP TOOLHELP.LIB
MemoryRead TOOLHELP TOOLHELP.LIB
MemoryWrite TOOLHELP TOOLHELP.LIB
MessageBeep USER LIBW.LIB
MessageBox USER LIBW.LIB
ModifyMenu USER LIBW.LIB
ModuleFindHandle TOOLHELP TOOLHELP.LIB
ModuleFindName TOOLHELP TOOLHELP.LIB
ModuleFirst TOOLHELP TOOLHELP.LIB
ModuleNext TOOLHELP TOOLHELP.LIB
MoveTo GDI LIBW.LIB
MoveToEx GDI LIBW.LIB
MoveWindow USER LIBW.LIB
MulDiv GDI LIBW.LIB
NetBIOSCall KERNEL LIBW.LIB
NotifyRegister TOOLHELP TOOLHELP.LIB
NotifyUnRegister TOOLHELP TOOLHELP.LIB
OemKeyScan KEYBOARD LIBW.LIB
OemToAnsi KEYBOARD LIBW.LIB
OemToAnsiBuff KEYBOARD LIBW.LIB
OffsetClipRgn GDI LIBW.LIB
OffsetRect USER LIBW.LIB
OffsetRgn GDI LIBW.LIB
OffsetViewportOrg GDI LIBW.LIB
OffsetViewportOrgEx GDI LIBW.LIB
OffsetWindowOrg GDI LIBW.LIB

OffsetWindowOrgEx GDI LIBW.LIB
OleActivate OLECLI OLECLI.LIB
OleBlockServer OLESVR OLESVR.LIB
OleClone OLECLI OLECLI.LIB
OleClose OLECLI OLECLI.LIB
OleCopyFromLink OLECLI OLECLI.LIB
OleCopyToClipboard OLECLI OLECLI.LIB
OleCreate OLECLI OLECLI.LIB
OleCreateFromClip OLECLI OLECLI.LIB
OleCreateFromFile OLECLI OLECLI.LIB
OleCreateFromTemplate OLECLI OLECLI.LIB
OleCreateInvisible OLECLI OLECLI.LIB
OleCreateLinkFromClip OLECLI OLECLI.LIB
OleCreateLinkFromFile OLECLI OLECLI.LIB
OleDelete OLECLI OLECLI.LIB
OleDraw OLECLI OLECLI.LIB
OleEnumFormats OLECLI OLECLI.LIB
OleEnumObjects OLECLI OLECLI.LIB
OleEqual OLECLI OLECLI.LIB
OleExecute OLECLI OLECLI.LIB
OleGetData OLECLI OLECLI.LIB
OleGetLinkUpdateOptions OLECLI OLECLI.LIB
OleIsDcMeta OLECLI OLECLI.LIB
OleLoadFromStream OLECLI OLECLI.LIB
OleLockServer OLECLI OLECLI.LIB
OleObjectConvert OLECLI OLECLI.LIB
OleQueryBounds OLECLI OLECLI.LIB
OleQueryClientVersion OLECLI OLECLI.LIB
OleQueryCreateFromClip OLECLI OLECLI.LIB
OleQueryLinkFromClip OLECLI OLECLI.LIB
OleQueryName OLECLI OLECLI.LIB
OleQueryOpen OLECLI OLECLI.LIB
OleQueryOutOfDate OLECLI OLECLI.LIB
OleQueryProtocol OLECLI OLECLI.LIB
OleQueryReleaseError OLECLI OLECLI.LIB
OleQueryReleaseMethod OLECLI OLECLI.LIB
OleQueryReleaseStatus OLECLI OLECLI.LIB
OleQueryServerVersion OLESVR OLESVR.LIB
OleQuerySize OLECLI OLECLI.LIB
OleQueryType OLECLI OLECLI.LIB
OleReconnect OLECLI OLECLI.LIB
OleRegisterClientDoc OLECLI OLECLI.LIB
OleRegisterServer OLESVR OLESVR.LIB
OleRegisterServerDoc OLESVR OLESVR.LIB
OleRelease OLECLI OLECLI.LIB
OleRename OLECLI OLECLI.LIB
OleRenameClientDoc OLECLI OLECLI.LIB
OleRenameServerDoc OLESVR OLESVR.LIB
OleRequestData OLECLI OLECLI.LIB
OleRevertClientDoc OLECLI OLECLI.LIB
OleRevertServerDoc OLESVR OLESVR.LIB
OleRevokeClientDoc OLECLI OLECLI.LIB

OleRevokeObject OLESVR OLESVR.LIB
OleRevokeServer OLESVR OLESVR.LIB
OleRevokeServerDoc OLESVR OLESVR.LIB
OleSavedClientDoc OLECLI OLECLI.LIB
OleSavedServerDoc OLESVR OLESVR.LIB
OleSaveToStream OLECLI OLECLI.LIB
OleSetBounds OLECLI OLECLI.LIB
OleSetColorScheme OLECLI OLECLI.LIB
OleSetData OLECLI OLECLI.LIB
OleSetHostNames OLECLI OLECLI.LIB
OleSetLinkUpdateOptions OLECLI OLECLI.LIB
OleSetTargetDevice OLECLI OLECLI.LIB
OleUnblockServer OLESVR OLESVR.LIB
OleUnlockServer OLECLI OLECLI.LIB
OleUpdate OLECLI OLECLI.LIB
OpenClipboard USER LIBW.LIB
OpenComm USER LIBW.LIB
OpenDriver USER LIBW.LIB
OpenFile LZEXPAND LZEXPAND.LIB
OpenIcon USER LIBW.LIB
OutputDebugString KERNEL LIBW.LIB
PaintRgn GDI LIBW.LIB
PatBlt GDI LIBW.LIB
PeekMessage USER LIBW.LIB
Pie GDI LIBW.LIB
PlayMetaFile GDI LIBW.LIB
PlayMetaFileRecord GDI LIBW.LIB
Polygon GDI LIBW.LIB
Polyline GDI LIBW.LIB
PolyPolygon GDI LIBW.LIB
PostAppMessage USER LIBW.LIB
PostMessage USER LIBW.LIB
PostQuitMessage USER LIBW.LIB
PrestoChangoSelector KERNEL LIBW.LIB
PrintDlg COMMDLG COMMDLG.LIB
ProfClear — LIBW.LIB
ProfFinish — LIBW.LIB
ProfFlush — LIBW.LIB
ProfInsChk — LIBW.LIB
ProfSampRate — LIBW.LIB
ProfSetup — LIBW.LIB
ProfStart — LIBW.LIB
ProfStop — LIBW.LIB
PtInRect USER LIBW.LIB
PtInRegion GDI LIBW.LIB
PtVisible GDI LIBW.LIB
QueryAbort GDI LIBW.LIB
QuerySendMessage USER LIBW.LIB
ReadComm USER LIBW.LIB
RealizePalette USER LIBW.LIB
Rectangle GDI LIBW.LIB
RectInRegion GDI LIBW.LIB

RectVisible GDI LIBW.LIB
RedrawWindow USER LIBW.LIB
RegCloseKey SHELL SHELL.LIB
RegCreateKey SHELL SHELL.LIB
RegDeleteKey SHELL SHELL.LIB
RegEnumKey SHELL SHELL.LIB
RegisterClass USER LIBW.LIB
RegisterClipboardFormat USER LIBW.LIB
RegisterWindowMessage USER LIBW.LIB
RegOpenKey SHELL SHELL.LIB
RegQueryValue SHELL SHELL.LIB
RegSetValue SHELL SHELL.LIB
ReleaseCapture USER LIBW.LIB
ReleaseDC USER LIBW.LIB
RemoveFontResource GDI LIBW.LIB
RemoveMenu USER LIBW.LIB
RemoveProp USER LIBW.LIB
ReplaceText COMMDLG COMMDLG.LIB
ReplyMessage USER LIBW.LIB
ResetDC GDI LIBW.LIB
ResizePalette GDI LIBW.LIB
RestoreDC GDI LIBW.LIB
RoundRect GDI LIBW.LIB
SaveDC GDI LIBW.LIB
ScaleViewportExt GDI LIBW.LIB
ScaleViewportExtEx GDI LIBW.LIB
ScaleWindowExt GDI LIBW.LIB
ScaleWindowExtEx GDI LIBW.LIB
ScreenSaverProc — SCRNSAVE.LIB
ScreenToClient USER LIBW.LIB
ScrollDC USER LIBW.LIB
ScrollWindow USER LIBW.LIB
ScrollWindowEx USER LIBW.LIB
SelectClipRgn GDI LIBW.LIB
SelectObject GDI LIBW.LIB
SelectPalette USER LIBW.LIB
SendDlgItemMessage USER LIBW.LIB
SendDriverMessage USER LIBW.LIB
SendMessage USER LIBW.LIB
SetAbortProc GDI LIBW.LIB
SetActiveWindow USER LIBW.LIB
SetBitmapBits GDI LIBW.LIB
SetBitmapDimension GDI LIBW.LIB
SetBitmapDimensionEx GDI LIBW.LIB
SetBkColor GDI LIBW.LIB
SetBkMode GDI LIBW.LIB
SetBoundsRect GDI LIBW.LIB
SetBrushOrg GDI LIBW.LIB
SetCapture USER LIBW.LIB
SetCaretBlinkTime USER LIBW.LIB
SetCaretPos USER LIBW.LIB
SetClassLong USER LIBW.LIB

SetClassWord USER LIBW.LIB
SetClipboardData USER LIBW.LIB
SetClipboardViewer USER LIBW.LIB
SetCommBreak USER LIBW.LIB
SetCommEventMask USER LIBW.LIB
SetCommState USER LIBW.LIB
SetCursor USER LIBW.LIB
SetCursorPos USER LIBW.LIB
SetDIBits GDI LIBW.LIB
SetDIBitsToDevice GDI LIBW.LIB
SetDlgItemInt USER LIBW.LIB
SetDlgItemText USER LIBW.LIB
SetDoubleClickTime USER LIBW.LIB
SetErrorMode KERNEL LIBW.LIB
SetFocus USER LIBW.LIB
SetHandleCount KERNEL LIBW.LIB
SetKeyboardState USER LIBW.LIB
SetMapMode GDI LIBW.LIB
SetMapperFlags GDI LIBW.LIB
SetMenu USER LIBW.LIB
SetMenuItemBitmaps USER LIBW.LIB
SetMessageQueue USER LIBW.LIB
SetMetaFileBits GDI LIBW.LIB
SetMetaFileBitsBetter GDI LIBW.LIB
SetPaletteEntries GDI LIBW.LIB
SetParent USER LIBW.LIB
SetPixel GDI LIBW.LIB
SetPolyFillMode GDI LIBW.LIB
SetProp USER LIBW.LIB
SetRect USER LIBW.LIB
SetRectEmpty USER LIBW.LIB
SetRectRgn GDI LIBW.LIB
SetResourceHandler KERNEL LIBW.LIB
SetROP2 GDI LIBW.LIB
SetScrollPos USER LIBW.LIB
SetScrollRange USER LIBW.LIB
SetSelectorBase KERNEL LIBW.LIB
SetSelectorLimit KERNEL LIBW.LIB
SetStretchBltMode GDI LIBW.LIB
SetSwapAreaSize KERNEL LIBW.LIB
SetSysColors USER LIBW.LIB
SetSysModalWindow USER LIBW.LIB
SetSystemPaletteUse GDI LIBW.LIB
SetTextAlign GDI LIBW.LIB
SetTextCharacterExtra GDI LIBW.LIB
SetTextColor GDI LIBW.LIB
SetTextJustification GDI LIBW.LIB
SetTimer USER LIBW.LIB
SetViewportExt GDI LIBW.LIB
SetViewportExtEx GDI LIBW.LIB
SetViewportOrg GDI LIBW.LIB
SetViewportOrgEx GDI LIBW.LIB

SetWinDebugInfo KERNEL LIBW.LIB
SetWindowExt GDI LIBW.LIB
SetWindowExtEx GDI LIBW.LIB
SetWindowLong USER LIBW.LIB
SetWindowOrg GDI LIBW.LIB
SetWindowOrgEx GDI LIBW.LIB
SetWindowPlacement USER LIBW.LIB
SetWindowPos USER LIBW.LIB
SetWindowsHook USER LIBW.LIB
SetWindowsHookEx USER LIBW.LIB
SetWindowText USER LIBW.LIB
SetWindowWord USER LIBW.LIB
ShellExecute SHELL SHELL.LIB
ShowCaret USER LIBW.LIB
ShowCursor USER LIBW.LIB
ShowOwnedPopups USER LIBW.LIB
ShowScrollBar USER LIBW.LIB
ShowWindow USER LIBW.LIB
SizeofResource KERNEL LIBW.LIB
SpoolFile GDI LIBW.LIB
StackTraceCSIPFirst TOOLHELP TOOLHELP.LIB
StackTraceFirst TOOLHELP TOOLHELP.LIB
StackTraceNext TOOLHELP TOOLHELP.LIB
StartDoc GDI LIBW.LIB
StartPage GDI LIBW.LIB
StretchBlt GDI LIBW.LIB
StretchDIBits GDI LIBW.LIB
SubtractRect USER LIBW.LIB
SwapMouseButton USER LIBW.LIB
SwapRecording KERNEL LIBW.LIB
SwitchStackBack KERNEL LIBW.LIB
SwitchStackTo KERNEL LIBW.LIB
SystemHeapInfo TOOLHELP TOOLHELP.LIB
SystemParametersInfo USER LIBW.LIB
TabbedTextOut USER LIBW.LIB
TaskFindHandle TOOLHELP TOOLHELP.LIB
TaskFirst TOOLHELP TOOLHELP.LIB
TaskGetCSIP TOOLHELP TOOLHELP.LIB
TaskNext TOOLHELP TOOLHELP.LIB
TaskSetCSIP TOOLHELP TOOLHELP.LIB
TaskSwitch TOOLHELP TOOLHELP.LIB
TerminateApp TOOLHELP TOOLHELP.LIB
TextOut GDI LIBW.LIB
Throw KERNEL LIBW.LIB
TimerCount TOOLHELP TOOLHELP.LIB
ToAscii KEYBOARD LIBW.LIB
TrackPopupMenu USER LIBW.LIB
TranslateAccelerator USER LIBW.LIB
TranslateMDISysAccel USER LIBW.LIB
TranslateMessage USER LIBW.LIB
TransmitCommChar USER LIBW.LIB
UnAllocDiskSpace STRESS STRESS.LIB

UnAllocFileHandles STRESS STRESS.LIB
UngetCommChar USER LIBW.LIB
UnhookWindowsHook USER LIBW.LIB
UnhookWindowsHookEx USER LIBW.LIB
UnionRect USER LIBW.LIB
UnlockSegment KERNEL LIBW.LIB
UnrealizeObject GDI LIBW.LIB
UnregisterClass USER LIBW.LIB
UpdateColors GDI LIBW.LIB
UpdateWindow USER LIBW.LIB
ValidateCodeSegments KERNEL LIBW.LIB
ValidateFreeSpaces KERNEL LIBW.LIB
ValidateRect USER LIBW.LIB
ValidateRgn USER LIBW.LIB
VerFindFile VER VER.LIB
VerInstallFile VER VER.LIB
VerLanguageName VER VER.LIB
VerQueryValue VER VER.LIB
VkKeyScan KEYBOARD LIBW.LIB
WaitMessage USER LIBW.LIB
WindowFromPoint USER LIBW.LIB
WinExec KERNEL LIBW.LIB
WinHelp USER LIBW.LIB
WNetAddConnection USER LIBW.LIB
WNetCancelConnection USER LIBW.LIB
WNetGetConnection USER LIBW.LIB
WriteComm USER LIBW.LIB
WritePrivateProfileString KERNEL LIBW.LIB
WriteProfileString KERNEL LIBW.LIB
_wsprintf USER LIBW.LIB
wvsprintf USER LIBW.LIB
Yield KERNEL LIBW.LIB

Binary and Ternary Raster-Operation Codes
This topic lists and describes the binary and ternary raster operations used by graphics device interface
(GDI). A binary raster operation involves two operands: a pen and a destination bitmap. A ternary raster
operation involves three operands: a source bitmap, a brush, and a destination bitmap. Both binary and
ternary raster operations use Boolean operators.

Binary Raster Operations

This section lists the binary raster-operation codes used by the GetROP2 and SetROP2 functions.
Raster-operation codes define how GDI combines the bits from the selected pen with the bits in the
destination bitmap.

Each raster-operation code represents a Boolean operation in which the values of the pixels in the
selected pen and the destination bitmap are combined. Following are the two operands used in these
operations:

Operand Meaning
P Selected pen
D Destination bitmap

The Boolean operators used in these operations follow:

Operator Meaning
a Bitwise AND
n Bitwise NOT (inverse)
o Bitwise OR
x Bitwise exclusive OR (XOR)

All Boolean operations are presented in reverse Polish notation. For example, the following operation
replaces the values of the pixels in the destination bitmap with a combination of the pixel values of the pen
and the selected brush:

DPo
Each raster-operation code is a 32-bit integer whose high-order word is a Boolean operation index and
whose low-order word is the operation code. The 16-bit operation index is a zero-extended 8-bit value that
represents all possible outcomes resulting from the Boolean operation on two parameters (in this case, the
pen and destination values). For example, the operation indexes for the DPo and DPan operations are
shown in the following list:

P D DPo DPan
0 0 0 1
0 1 1 1
1 0 1 1
1 1 1 0

The following list outlines the drawing modes and the Boolean operations that they represent:

Raster operation Boolean operation
R2_BLACK 0
R2_COPYPEN P
R2_MASKNOTPEN DPna
R2_MASKPEN DPa
R2_MASKPENNOT PDna
R2_MERGENOTPEN DPno
R2_MERGEPEN DPo
R2_MERGEPENNOT PDno
R2_NOP D
R2_NOT Dn
R2_NOTCOPYPEN Pn
R2_NOTMASKPEN DPan
R2_NOTMERGEPEN DPon
R2_NOTXORPEN DPxn

R2_WHITE 1
R2_XORPEN DPx

For a monochrome device, GDI maps the value zero to black and the value 1 to white. If an application
attempts to draw with a black pen on a white destination by using the available binary raster operations,
the following results occur:

Raster operation Result
R2_BLACK Visible black line
R2_COPYPEN Visible black line
R2_MASKNOTPEN No visible line
R2_MASKPEN Visible black line
R2_MASKPENNOT Visible black line
R2_MERGENOTPEN No visible line
R2_MERGEPEN Visible black line
R2_MERGEPENNOT Visible black line
R2_NOP No visible line
R2_NOT Visible black line
R2_NOTCOPYPEN No visible line
R2_NOTMASKPEN No visible line
R2_NOTMERGEPEN Visible black line
R2_NOTXORPEN Visible black line
R2_WHITE No visible line
R2_XORPEN No visible line

For a color device, GDI uses RGB values to represent the colors of the pen and the destination. An RGB
color value is a long integer that contains a red, a green, and a blue color field, each specifying the
intensity of the given color. Intensities range from 0 through 255. The values are packed in the three low-
order bytes of the long integer. The color of a pen is always a solid color, but the color of the destination
may be a mixture of any two or three colors. If an application attempts to draw with a white pen on a blue
destination by using the available binary raster operations, the following results occur:

Raster operation Result
R2_BLACK Visible black line
R2_COPYPEN Visible white line
R2_MASKNOTPEN Visible black line
R2_MASKPEN Invisible blue line
R2_MASKPENNOT Visible red/green line
R2_MERGENOTPEN Invisible blue line
R2_MERGEPEN Visible white line
R2_MERGEPENNOT Visible white line
R2_NOP Invisible blue line
R2_NOT Visible red/green line
R2_NOTCOPYPEN Visible black line
R2_NOTMASKPEN Visible red/green line
R2_NOTMERGEPEN Visible black line
R2_NOTXORPEN Invisible blue line
R2_WHITE Visible white line
R2_XORPEN Visible red/green line

Ternary Raster Operations

This section lists the ternary raster-operation codes used by the BitBlt, PatBlt, and StretchBlt functions.
Ternary raster-operation codes define how GDI combines the bits in a source bitmap with the bits in the
destination bitmap.

Each raster-operation code represents a Boolean operation in which the values of the pixels in the
source, the selected brush, and the destination are combined. Following are the three operands used in
these operations:

Operand Meaning

D Destination bitmap
P Selected brush (also called pattern)
S Source bitmap

Boolean operators used in these operations follow:

Operator Meaning
a Bitwise AND
n Bitwise NOT (inverse)
o Bitwise OR
x Bitwise exclusive OR (XOR)

All Boolean operations are presented in reverse Polish notation. For example, the following operation
replaces the values of the pixels in the destination bitmap with a combination of the pixel values of the
source and brush:

PSo
The following operation combines the values of the pixels in the source and brush with the pixel values of
the destination bitmap (there are alternative spellings of the same function, so although a particular
spelling may not be in the list, an equivalent form would be):

DPSoo
Each raster-operation code is a 32-bit integer whose high-order word is a Boolean operation index and
whose low-order word is the operation code. The 16-bit operation index is a zero-extended, 8-bit value that
represents the result of the Boolean operation on predefined brush, source, and destination values. For
example, the operation indexes for the PSo and DPSoo operations are shown in the following list:

P S D PSo DPSoo
0 0 0 0 0
0 0 1 0 1
0 1 0 1 1
0 1 1 1 1
1 0 0 1 1
1 0 1 1 1
1 1 0 1 1
1 1 1 1 1
Operation index: 00FCh 00FEh

In this case, PSo has the operation index 00FC (read from the bottom up); DPSoo has the operation index
00FE. These values define the location of the corresponding raster-operation codes, as shown in Table A.
1, "Raster-Operation Codes." The PSo operation is in line 252 (00FCh) of the table; DPSoo is in line 254
(00FEh).

The most commonly used raster operations have been given special names in the Windows include file,
WINDOWS.H. You should use these names whenever possible in your applications.

When the source and destination bitmaps are monochrome, a bit value of zero represents a black pixel and
a bit value of 1 represents a white pixel. When the source and the destination bitmaps are color, those
colors are represented with RGB values. For more information about RGB values, see the RGB structure
in Chapter 3, "Structures."

Boolean function
(hexadecimal)

Raster operation
(hexadecimal)

Boolean function in reverse
Polish

Common name

00 00000042 0 BLACKNESS
01 00010289 DPSoon -
02 00020C89 DPSona -
03 000300AA PSon -
04 00040C88 SDPona -
05 000500A9 DPon -
06 00060865 PDSxnon -
07 000702C5 PDSaon -
08 00080F08 SDPnaa -

09 00090245 PDSxon -
0A 000A0329 DPna -
0B 000B0B2A PSDnaon -
0C 000C0324 SPna -
0D 000D0B25 PDSnaon -
0E 000E08A5 PDSonon -
0F 000F0001 Pn -
10 00100C85 PDSona -
11 001100A6 DSon NOTSRCERASE
12 00120868 SDPxnon -
13 001302C8 SDPaon -
14 00140869 DPSxnon -
15 001502C9 DPSaon -
16 00165CCA PSDPSanaxx -
17 00171D54 SSPxDSxaxn -
18 00180D59 SPxPDxa -
19 00191CC8 SDPSanaxn -
1A 001A06C5 PDSPaox -
1B 001B0768 SDPSxaxn -
1C 001C06CA PSDPaox -
1D 001D0766 DSPDxaxn -
1E 001E01A5 PDSox -
1F 001F0385 PDSoan -
20 00200F09 DPSnaa -
21 00210248 SDPxon -
22 00220326 DSna -
23 00230B24 SPDnaon -
24 00240D55 SPxDSxa -
25 00251CC5 PDSPanaxn -
26 002606C8 SDPSaox -
27 00271868 SDPSxnox -
28 00280369 DPSxa -
29 002916CA PSDPSaoxxn -
2A 002A0CC9 DPSana -
2B 002B1D58 SSPxPDxaxn -
2C 002C0784 SPDSoax -
2D 002D060A PSDnox -
2E 002E064A PSDPxox -
2F 002F0E2A PSDnoan -
30 0030032A PSna -
31 00310B28 SDPnaon -
32 00320688 SDPSoox -
33 00330008 Sn NOTSRCCOPY
34 003406C4 SPDSaox -
35 00351864 SPDSxnox -
36 003601A8 SDPox -
37 00370388 SDPoan -
38 0038078A PSDPoax -
39 00390604 SPDnox -
3A 003A0644 SPDSxox -
3B 003B0E24 SPDnoan -
3C 003C004A PSx -

3D 003D18A4 SPDSonox -
3E 003E1B24 SPDSnaox -
3F 003F00EA PSan -
40 00400F0A PSDnaa -
41 00410249 DPSxon -
42 00420D5D SDxPDxa -
43 00431CC4 SPDSanaxn -
44 00440328 SDna SRCERASE
45 00450B29 DPSnaon -
46 004606C6 DSPDaox -
47 0047076A PSDPxaxn -
48 00480368 SDPxa -
49 004916C5 PDSPDaoxxn -
4A 004A0789 DPSDoax -
4B 004B0605 PDSnox -
4C 004C0CC8 SDPana -
4D 004D1954 SSPxDSxoxn -
4E 004E0645 PDSPxox -
4F 004F0E25 PDSnoan -
50 00500325 PDna -
51 00510B26 DSPnaon -
52 005206C9 DPSDaox -
53 00530764 SPDSxaxn -
54 005408A9 DPSonon -
55 00550009 Dn DSTINVERT
56 005601A9 DPSox -
57 00570389 DPSoan -
58 00580785 PDSPoax -
59 00590609 DPSnox -
5A 005A0049 DPx PATINVERT
5B 005B18A9 DPSDonox -
5C 005C0649 DPSDxox -
5D 005D0E29 DPSnoan -
5E 005E1B29 DPSDnaox -
5F 005F00E9 DPan -
60 00600365 PDSxa -
61 006116C6 DSPDSaoxxn -
62 00620786 DSPDoax -
63 00630608 SDPnox -
64 00640788 SDPSoax -
65 00650606 DSPnox -
66 00660046 DSx SRCINVERT
67 006718A8 SDPSonox -
68 006858A6 DSPDSonoxxn -
69 00690145 PDSxxn -
6A 006A01E9 DPSax -
6B 006B178A PSDPSoaxxn -
6C 006C01E8 SDPax -
6D 006D1785 PDSPDoaxxn -
6E 006E1E28 SDPSnoax -
6F 006F0C65 PDSxnan -
70 00700CC5 PDSana -

71 00711D5C SSDxPDxaxn -
72 00720648 SDPSxox -
73 00730E28 SDPnoan -
74 00740646 DSPDxox -
75 00750E26 DSPnoan -
76 00761B28 SDPSnaox -
77 007700E6 DSan -
78 007801E5 PDSax -
79 00791786 DSPDSoaxxn -
7A 007A1E29 DPSDnoax -
7B 007B0C68 SDPxnan -
7C 007C1E24 SPDSnoax -
7D 007D0C69 DPSxnan -
7E 007E0955 SPxDSxo -
7F 007F03C9 DPSaan -
80 008003E9 DPSaa -
81 00810975 SPxDSxon -
82 00820C49 DPSxna -
83 00831E04 SPDSnoaxn -
84 00840C48 SDPxna -
85 00851E05 PDSPnoaxn -
86 008617A6 DSPDSoaxx -
87 008701C5 PDSaxn -
88 008800C6 DSa SRCAND
89 00891B08 SDPSnaoxn -
8A 008A0E06 DSPnoa -
8B 008B0666 DSPDxoxn -
8C 008C0E08 SDPnoa -
8D 008D0668 SDPSxoxn -
8E 008E1D7C SSDxPDxax -
8F 008F0CE5 PDSanan -
90 00900C45 PDSxna -
91 00911E08 SDPSnoaxn -
92 009217A9 DPSDPoaxx -
93 009301C4 SPDaxn -
94 009417AA PSDPSoaxx -
95 009501C9 DPSaxn -
96 00960169 DPSxx -
97 0097588A PSDPSonoxx -
98 00981888 SDPSonoxn -
99 00990066 DSxn -
9A 009A0709 DPSnax -
9B 009B07A8 SDPSoaxn -
9C 009C0704 SPDnax -
9D 009D07A6 DSPDoaxn -
9E 009E16E6 DSPDSaoxx -
9F 009F0345 PDSxan -
A0 00A000C9 DPa -
A1 00A11B05 PDSPnaoxn -
A2 00A20E09 DPSnoa -
A3 00A30669 DPSDxoxn -
A4 00A41885 PDSPonoxn -

A5 00A50065 PDxn -
A6 00A60706 DSPnax -
A7 00A707A5 PDSPoaxn -
A8 00A803A9 DPSoa -
A9 00A90189 DPSoxn -
AA 00AA0029 D -
AB 00AB0889 DPSono -
AC 00AC0744 SPDSxax -
AD 00AD06E9 DPSDaoxn -
AE 00AE0B06 DSPnao -
AF 00AF0229 DPno -
B0 00B00E05 PDSnoa -
B1 00B10665 PDSPxoxn -
B2 00B21974 SSPxDSxox -
B3 00B30CE8 SDPanan -
B4 00B4070A PSDnax -
B5 00B507A9 DPSDoaxn -
B6 00B616E9 DPSDPaoxx -
B7 00B70348 SDPxan -
B8 00B8074A PSDPxax -
B9 00B906E6 DSPDaoxn -
BA 00BA0B09 DPSnao -
BB 00BB0226 DSno MERGEPAINT
BC 00BC1CE4 SPDSanax -
BD 00BD0D7D SDxPDxan -
BE 00BE0269 DPSxo -
BF 00BF08C9 DPSano -
C0 00C000CA PSa MERGECOPY
C1 00C11B04 SPDSnaoxn -
C2 00C21884 SPDSonoxn -
C3 00C3006A PSxn -
C4 00C40E04 SPDnoa -
C5 00C50664 SPDSxoxn -
C6 00C60708 SDPnax -
C7 00C707AA PSDPoaxn -
C8 00C803A8 SDPoa -
C9 00C90184 SPDoxn -
CA 00CA0749 DPSDxax -
CB 00CB06E4 SPDSaoxn -
CC 00CC0020 S SRCCOPY
CD 00CD0888 SDPono -
CE 00CE0B08 SDPnao -
CF 00CF0224 SPno -
D0 00D00E0A PSDnoa -
D1 00D1066A PSDPxoxn -
D2 00D20705 PDSnax -
D3 00D307A4 SPDSoaxn -
D4 00D41D78 SSPxPDxax -
D5 00D50CE9 DPSanan -
D6 00D616EA PSDPSaoxx -
D7 00D70349 DPSxan -
D8 00D80745 PDSPxax -

D9 00D906E8 SDPSaoxn -
DA 00DA1CE9 DPSDanax -
DB 00DB0D75 SPxDSxan -
DC 00DC0B04 SPDnao -
DD 00DD0228 SDno -
DE 00DE0268 SDPxo -
DF 00DF08C8 SDPano -
E0 00E003A5 PDSoa -
E1 00E10185 PDSoxn -
E2 00E20746 DSPDxax -
E3 00E306EA PSDPaoxn -
E4 00E40748 SDPSxax -
E5 00E506E5 PDSPaoxn -
E6 00E61CE8 SDPSanax -
E7 00E70D79 SPxPDxan -
E8 00E81D74 SSPxDSxax -
E9 00E95CE6 DSPDSanaxxn -
EA 00EA02E9 DPSao -
EB 00EB0849 DPSxno -
EC 00EC02E8 SDPao -
ED 00ED0848 SDPxno -
EE 00EE0086 DSo SRCPAINT
EF 00EF0A08 SDPnoo -
F0 00F00021 P PATCOPY
F1 00F10885 PDSono -
F2 00F20B05 PDSnao -
F3 00F3022A PSno -
F4 00F40B0A PSDnao -
F5 00F50225 PDno -
F6 00F60265 PDSxo -
F7 00F708C5 PDSano -
F8 00F802E5 PDSao -
F9 00F90845 PDSxno -
FA 00FA0089 DPo -
FB 00FB0A09 DPSnoo PATPAINT
FC 00FC008A PSo -
FD 00FD0A0A PSDnoo -
FE 00FE02A9 DPSoo -
FF 00FF0062 1 WHITENESS

Resource Compiler Diagnostic Messages

This topic contains descriptions of diagnostic messages produced by Microsoft Windows Resource
Compiler (RC). Many of these messages appear when RC is not able to compile resources properly. The
descriptions in this topic clarify the causes. The messages are listed in alphabetic order.

A capital V in parentheses (V) at the beginning of a message description indicates that the message is
displayed only if RC is run with the –V (verbose) option. These messages are generally informational and
do not necessarily indicate errors.
Accelerator Type required (ASCII or VIRTKEY)

The type parameter in the ACCELERATORS statement must contain either the ASCII or VIRTKEY
value.

BEGIN expected in Accelerator Table
An ACCELERATORS statement was not followed by the BEGIN keyword.

BEGIN expected in Dialog
A DIALOG satement was not followed by the BEGIN keyword.

BEGIN expected in menu
A MENU statement was not followed by the BEGIN keyword.

BEGIN expected in RCData
An RCDATA statement was not followed by the BEGIN keyword.

BEGIN expected in String Table
A STRINGTABLE statement was not followed by the BEGIN keyword.

BEGIN expected in VERSIONINFO resource
A VERSIONINFO statement was not followed by the BEGIN keyword.

Bitmap file resource-file is not in version-number format.
Use Microsoft Image Editor (IMAGEDIT.EXE) to convert version 2.x resource files to the version
3.1 format.

Cannot Re-use String Constants
You are using the same value twice in a STRINGTABLE statement. Make sure that you have not
mixed overlapping decimal and hexadecimal values.

Control Character out of range [A - Z]
A control character in the ACCELERATORS statement is invalid. The character following the caret
(^) must be in the range A through Z.

Copying segment id (size bytes)
(V) Microsoft Windows Resource Compiler (RC) is copying the specified segment to the executable
(.EXE) file.

Could not find RCPP.EXE
The preprocessor (RCPP.EXE) must be in the current directory or in a directory specified in the
PATH environment variable.

Could not open in-file-name
Microsoft Windows Resource Compiler (RC) could not open the specified file. Make sure that the
file exists and that you typed the filename correctly.

Couldn't open resource-name
Microsoft Windows Resource Compiler (RC) could not open the specified file. Make sure that the
file exists and that you typed the filename correctly.

Creating resource-name
(V) Microsoft Windows Resource Compiler (RC) is creating a new binary resource (.RES) file.

Empty menus not allowed
An END keyword appears before any menu items are defined in the MENU statement. Empty
menus are not permitted by Microsoft Windows Resource Compiler (RC). Make sure that you do not
have any opening quotation marks within the MENU statement.

END expected in Dialog
The END keyword must appear at the end of a DIALOG statement. Make sure that there are no
opening quotation marks left from the preceding statement.

END expected in menu
The END keyword must appear at the end of a MENU statement. Make sure that there are no
mismatched BEGIN and END statements.

Error Creating resource-name
Microsoft Windows Resource Compiler (RC) could not create the specified binary resource (.RES)

file. Make sure that it is not being created on a read-only drive. Use the –V option to find out
whether the file is being created.

Errors occurred when linking file.
The linker failed. For more information, see the documentation for your linker.

EXE file too large; relink with higher /ALIGN value
The executable (.EXE) file is too large. Relink the .EXE file with a larger value. For more
information, see the documentation for your linker.

Expected Comma in Accelerator Table
Microsoft Windows Resource Compiler (RC) requires a comma between the event and idvalue
parameters in the ACCELERATORS statement.

Expected control class name
The class parameter of a CONTROL statement in the DIALOG statement must be one of the
following control types: BUTTON, COMBOBOX, EDIT, LISTBOX, SCROLLBAR, STATIC, or
user-defined. Make sure that the class is spelled correctly.

Expected font face name
The typeface parameter of the FONT statement in the DIALOG statement must be an ASCII
character string enclosed in double quotation marks. This parameter specifies the name of a font.

Expected ID value for Menuitem
The MENU statement must contain a MENUITEM statement, which has either an integer or a
symbolic constant in the MenuID parameter.

Expected Menu String
Each MENUITEM and POPUP statement must contain a text parameter. This parameter is a string
enclosed in double quotation marks that specifies the name of the menu item or pop-up menu. A
MENUITEM SEPARATOR statement requires no quoted string.

Expected numeric command value
Microsoft Windows Resource Compiler (RC) was expecting a numeric idvalue parameter in the
ACCELERATORS statement. Make sure that you have used a #define constant to specify the value
and that the constant used is spelled correctly.

Expected numeric constant in string table
A numeric constant, defined in a #define statement, must immediately follow the BEGIN keyword
in a STRINGTABLE statement.

Expected numeric point size
The pointsize parameter of the FONT statement in the DIALOG statement must be an integer point-
size value.

Expected Numerical Dialog constant
A DIALOG statement requires integer values for the x, y, width, and height parameters. Make sure
that these values, which are included after the DIALOG keyword, are not negative.

Expected String in STRINGTABLE
A string is expected after each numeric stringid parameter in a STRINGTABLE statement.

Expected String or Constant Accelerator command
Microsoft Windows Resource Compiler (RC) was not able to determine which key was being set up
for the accelerator. The event parameter in the ACCELERATORS statement might be invalid.

Expected VALUE, BLOCK, or END keyword.
The VERSIONINFO structure requires a VALUE, BLOCK, or END keyword.

Expecting number for ID
A number is expected for the id parameter of a CONTROL statement in the DIALOG statement.
Make sure that you have a number or a #define statement for the control identifier.

Expecting quoted string for key
The key string following the BLOCK or VALUE keyword should be enclosed in double quotation
marks.

Expecting quoted string in dialog class
The class parameter of the CLASS statement in the DIALOG statement must be an integer or a
string enclosed in double quotation marks.

Expecting quoted string in dialog title
The captiontext parameter of the CAPTION statement in the DIALOG statement must be an ASCII
character string, enclosed in double quotation marks.

Fast-load area is [size] bytes at offset 0x[address]
(V) This is the size, in bytes, of all the following segments:

Segments with the PRELOAD attribute
Segments with the DISCARDABLE attribute

Code segments that contain the entry point, WinMain
Data segments (which should not be discardable)

To disable fast loading, use the –k option. Fast loading is the placement of segments in a contiguous
area in the executable (.EXE) file for quicker loading. The offset is from the the beginning of the
file.

File not created by LINK
You must create the executable (.EXE) file with an appropriate version of the linker.

File not found: filename
The file specified in the rc command was not found. Make sure that the file has not been moved to
another directory and that the filename or path is typed correctly.

Font names must be ordinals
The pointsize parameter in the FONT statement must be an integer, not a string.

Insufficient memory to spawn RCPP.EXE
There wasn't enough memory to run the preprocessor (RCPP.EXE). Try disabling any memory-
resident software that might be taking up too much memory. To verify the amount of memory you
have, use the chkdsk command.

Invalid Accelerator
An event parameter in the ACCELERATORS statement was not recognized or was more than two
characters long.

Invalid Accelerator Type (ASCII or VIRTKEY)
The type parameter in the ACCELERATORS statement must contain either the ASCII or VIRTKEY
value.

Invalid control character
A control character in the ACCELERATORS statement is invalid. A valid control character consists
of a caret (^) followed by a single letter.

Invalid Control type
The CONTROL statement in a DIALOG statement must be one of the following: CHECKBOX,
COMBOBOX, CONTROL, CTEXT, DEFPUSHBUTTON, EDITTEXT, GROUPBOX, ICON,
LISTBOX, LTEXT, PUSHBUTTON, RADIOBUTTON, RTEXT, or SCROLLBAR.

Invalid directive in preprocessed RC file
The specified filename has an embedded newline character.

Invalid .EXE file
The executable (.EXE) file is invalid. Make sure that the linker created it correctly and that the file
exists.

Invalid switch, option
An option used was invalid. For a list of the command-line options, use the rc -? command.

Invalid type
The resource type was not among the types defined in the include file.

Invalid usage. Use rc -? for Help
Make sure that you have at least one filename to work with. For a list of the command-line options,
use the rc -? command.

I/O error reading file.
Read failed. Since this is a generic routine, no specific filename is supplied.

I/O error seeking in file
Seeking in file failed. Since this is a generic routine, no specific filename is supplied.

I/O error writing file.
Write failed. Since this is a generic routine, no specific filename is supplied.

No executable filename specified.
The –FE option was used, but no executable (.EXE) file was specified.

No resource binary filename specified.
The –FO option was used, but no binary resource (.RES) file was specified.

Not a Microsoft Windows format .EXE file
Make sure that the linker created the executable (.EXE) file correctly and that the file exists.

Old DIB in resource-name. Pass it through IMAGEDIT.
The resource file specified is not compatible with Windows version 3.1. Make sure you have read
and saved this file using the latest version of Microsoft Image Editor (IMAGEDIT.EXE). (Image
Editor has replaced SDK Paint.)

Out of far heap memory

There was not enough memory. Try disabling any memory-resident software that might be taking up
too much space. To find out how much memory you have, use the chkdsk command.

Out of memory, needed n bytes
Microsoft Windows Resource Compiler (RC) was not able to allocate the specified amount of
memory.

RC: Invalid swap area size: -S string
Invalid swap area size. Check your syntax for the –S option on the command line for Microsoft
Windows Resource Compiler (RC). The following examples show acceptable command lines:

RC S123
RC S123K ; where K is kilobytes
RC S123p ; where p is paragraphs

RC: Invalid switch: option
An option used was invalid. For a list of the command-line options, use the rc -? command.

RC: RCPP.ERR not found
The RCPP.ERR file must be in the current directory or in a directory specified in the PATH
environment variable.

RC terminated by user
A CTRL+C key combination was pressed, exiting Microsoft Windows Resource Compiler (RC).

RC terminating after preprocessor errors
For information about preprocessor errors, see the documentation for the preprocessor.

RCPP.EXE command line greater than 128 bytes
The command line for the preprocessor (RCPP.EXE) was too long.

RCPP.EXE is not a valid executable
The preprocessor (RCPP.EXE) may have been altered. Try copying the file again from the Microsoft
Windows Software Development Kit (SDK) disks.

Resource file resource-name is not in version-number format.
Make sure your icons and cursors have been read and saved using the latest version of Microsoft
Image Editor (IMAGEDIT.EXE).

Resources will be aligned on number byte boundaries
(V) The alignment is determined by an option on the command line for the linker.

Sorting preload segments and resources into fast-load section
(V) Microsoft Windows Resource Compiler (RC) is sorting the preloaded segments into a
contiguous area in the executable (.EXE) file (the fast-load section) so that they can be loaded
quickly.

Text string or ordinal expected in Control
The text parameter of a CONTROL statement in the DIALOG statement must be either a text string
or an ordinal reference to the type of control that is expected. If using an ordinal, make sure that you
have a #define statement for the control.

The EXETYPE of this program is not Windows
The EXETYPE WINDOWS statement did not appear in the module-definition (.DEF) file. Since the
linker might make optimizations that are not appropriate for Windows, the EXETYPE WINDOWS
statement must be specified.

Unable to create destination
Microsoft Windows Resource Compiler (RC) was not able to create the destination file. Make sure
that there is enough disk space.

Unable to open exe-file
Microsoft Windows Resource Compiler (RC) could not open the executable (.EXE) file. Make sure
that the linker created it correctly and that the file exists.

Unbalanced Parentheses
Make sure that you have closed every opening parenthesis in the DIALOG statement.

Unexpected value in RCData
The values for the raw-data parameter in the RCDATA statement must be integers or strings,
separated by commas. Make sure that you did not leave out a comma or a quotation mark around a
string.

Unexpected value in value data
A statement contained information with a format or size different from the expected value for that
parameter.

Unknown DIB header format

The device-independent bitmap (DIB) header is not a BITMAPCOREHEADER or
BITMAPINFOHEADER structure.

Unknown error spawning RCPP.EXE
For an unknown reason, the preprocessor (RCPP.EXE) has not started. Try copying the file again
from the SDK disks and use the chkdsk command to verify the amount of available memory.

Unknown Menu SubType
The item-definitions parameter of the MENU statement can contain only MENUITEM and POPUP
statements.

Unrecognized VERSIONINFO field; BEGIN or comma expected
The format of the information following a VERSIONINFO statement is incorrect.

Version WORDs separated by commas expected
Values in an information block for a VERSIONINFO statement should be separated by commas.

Warning: ASCII character not equivalent to virtual key code
An invalid virtual-key code exists in the ACCELERATORS statement. The ASCII values for some
characters (such as *, ^, or &) are not equivalent to the virtual-key codes for the corresponding keys.
(In the case of the asterisk [*], the virtual-key code is equivalent to the ASCII value for 8, the
numeric character on the same key. Therefore, the statement VIRTKEY '* ' is invalid.)

Warning: SHIFT or CONTROL used without VIRTKEY
The ALT, SHIFT, and CONTROL options apply only to virtual keys in the ACCELERATORS
statement. Make sure that the VIRTKEY option is used with one of these other options.

Warning: string segment number set to PRELOAD
Microsoft Windows Resource Compiler (RC) displays this warning when it copies a segment that
must be preloaded but is not marked PRELOAD in the module-definition (.DEF) file for the linker.
All nondiscardable segments should be preloaded, including automatic data segments, fixed
segments, and the entry point of the code (WinMain). (The attributes of code segments are set by the
.DEF file.)

Writing resource resource-name or ordinal-id. resource type (resource size)
(V) Microsoft Windows Resource Compiler (RC) is writing the resource name or ordinal identifier,
followed by a period and the resource type and size, in bytes.

ClassFirst (3.1)
#include toolhelp.h

BOOL ClassFirst(lpce)
CLASSENTRY FAR* lpce; /* address of structure for class info */

The ClassFirst function fills the specified structure with general information about the first class in the
Windows class list.

Parameter Description
lpce Points to a CLASSENTRY structure that will receive the class information.

Returns
The return value is nonzero if the function is successful. Otherwise, it is zero.

Comments
The ClassFirst function can be used to begin a walk through the Windows class list. To examine
subsequent items in the class list, an application can use the ClassNext function.

Before calling ClassFirst, an application must initialize the CLASSENTRY structure and specify its size,
in bytes, in the dwSize member. An application can examine subsequent entries in the Windows class list
by using the ClassNext function.

For more specific information about an individual class, use the GetClassInfo function, specifying the
name of the class and instance handle from the CLASSENTRY structure.

See Also
ClassNext, GetClassInfo, CLASSENTRY

ClassNext (3.1)
#include toolhelp.h

BOOL ClassNext(lpce)
CLASSENTRY FAR* lpce; /* address of structure for class info */

The ClassNext function fills the specified structure with general information about the next class in the
Windows class list.

Parameter Description
lpce Points to a CLASSENTRY structure that will receive the class information.

Returns
The return value is nonzero if the function is successful. Otherwise, it is zero.

Comments
The ClassNext function can be used to continue a walk through the Windows class list started by the
ClassFirst function.

For more specific information about an individual class, use the GetClassInfo function with the name of
the class and instance handle from the CLASSENTRY structure.

See Also
ClassFirst, CLASSENTRY

GlobalEntryHandle (3.1)
#include toolhelp.h

BOOL GlobalEntryHandle(lpge, hglb)
GLOBALENTRY FAR* lpge; /* address of structure for object */
HGLOBAL hglb; /*
handle of item *
/

The GlobalEntryHandle function fills the specified structure with information that describes the given
global memory object.

Parameter Description
lpge Points to a GLOBALENTRY structure that receives information about the global

memory object.
hglb Identifies the global memory object to be described.

Returns
The return value is nonzero if the function is successful. Otherwise, it is zero. The function fails if the hglb
value is an invalid handle or selector.

Comments
This function retrieves information about a global memory handle or selector. Debuggers use this function
to obtain the segment number of a segment loaded from an executable file.

Before calling the GlobalEntryHandle function, an application must initialize the GLOBALENTRY
structure and specify its size, in bytes, in the dwSize member.

See Also
GlobalEntryModule, GlobalFirst, GlobalInfo, GlobalNext, GLOBALENTRY

GlobalEntryModule (3.1)
#include toolhelp.h

BOOL GlobalEntryModule(lpge, hmod, wSeg)
GLOBALENTRY FAR* lpge; /* address of structure for segment */
HMODULE hmod; /
* handle of module *
/
WORD wSeg; /
* segment to describe *
/

The GlobalEntryModule function fills the specified structure by lpge with information about the specified
module segment.

Parameter Description
lpge Points to a GLOBALENTRY structure that receives information about the segment

specified in the wSeg parameter.
hmod Identifies the module that owns the segment.
wSeg Specifies the segment to be described in the GLOBALENTRY structure. The number of

the first segment in the module is 1. Segment numbers are always contiguous, so if the
last valid segment number is 10, all segment numbers 1 through 10 are also valid.

Returns
The return value is nonzero if the function is successful. Otherwise, it is zero. This function fails if the
segment in the wSeg parameter does not exist in the module specified in the hmod parameter.

Comments
Debuggers can use the GlobalEntryModule function to retrieve global heap information about a specific
segment loaded from an executable file. Typically, the debugger will have symbols that refer to segment
numbers; this function translates the segment numbers to heap information.

Before calling GlobalEntryModule, an application must initialize the GLOBALENTRY structure and
specify its size, in bytes, in the dwSize member.

See Also
GlobalEntryHandle, GlobalFirst, GlobalInfo, GlobalNext, GLOBALENTRY

GlobalFirst (3.1)
#include toolhelp.h

BOOL GlobalFirst(lpge, wFlags)
GLOBALENTRY FAR* lpge; /* address of structure for object */
WORD wFlags; /*
specifies the heap to use *
/

The GlobalFirst function fills the specified structure with information that describes the first object on the
global heap.

Parameter Description
lpge Points to a GLOBALENTRY structure that receives information about the global

memory object.
wFlags Specifies the heap to use. This parameter can be one of the following values:

Value Meaning
GLOBAL_ALL Structure pointed to by lpge will receive information about the

first object on the complete global heap.
GLOBAL_FREE Structure will receive information about the first object on the

free list.
GLOBAL_LRU Structure will receive information about the first object on the

least-recently-used (LRU) list.

Returns
The return value is nonzero if the function is successful. Otherwise, it is zero.

Comments
The GlobalFirst function can be used to begin a global heap walk. An application can examine subsequent
objects on the global heap by using the GlobalNext function. Calls to GlobalNext must have the same
wFlags value as that specified in GlobalFirst.

Before calling GlobalFirst, an application must initialize the GLOBALENTRY structure and specify its
size, in bytes, in the dwSize member.

See Also
GlobalEntryHandle, GlobalEntryModule, GlobalInfo, GlobalNext, GLOBALENTRY

GlobalHandleToSel (3.1)
#include toolhelp.h

WORD GlobalHandleToSel(hglb)
HGLOBAL hglb;

The GlobalHandleToSel function converts the given handle to a selector.

Parameter Description
hglb Identifies the global memory object to be converted.

Returns
The return value is the selector of the given object if the function is successful. Otherwise, it is zero.

Comments
The GlobalHandleToSel function converts a global handle to a selector appropriate for Windows, version
3.0 or 3.1, depending on which version is running. A debugging application might use this selector to
access a global memory object if the object is not discardable or if the object's attributes are irrelevant.

See Also
GlobalAlloc

GlobalInfo function (3.1)
#include toolhelp.h

BOOL GlobalInfo(lpgi)
GLOBALINFO FAR* lpgi; /* address of global-heap structure */

The GlobalInfo function fills the specified structure with information that describes the global heap.

Parameter Description
lpgi Points to a GLOBALINFO structure that receives information about the global heap.

Returns
The return value is nonzero if the function successful. Otherwise, it is zero.

Comments
The information in the structure can be used to determine how much memory to allocate for a global heap
walk.

Before calling the GlobalInfo function, an application must initialize the GLOBALINFO structure and
specify its size, in bytes, in the dwSize member.

See Also
GlobalEntryHandle, GlobalEntryModule, GlobalFirst, GlobalNext, GLOBALINFO, GLOBALENTRY

GlobalNext (3.1)
#include toolhelp.h

BOOL GlobalNext(lpge, flags)
GLOBALENTRY FAR* lpge; /* address of structure for object */
WORD flags; /* heap
to use *
/

The GlobalNext function fills the specified structure with information that describes the next object on the
global heap.

Parameter Description
lpge Points to a GLOBALENTRY structure that receives information about the global

memory object.
flags Specifies heap to use. This parameter can be one of the following values:

Value Meaning
GLOBAL_ALL Structure pointed by the lpge parameter will receive information

about the first object on the complete global heap.
GLOBAL_FREE Structure will receive information about the first object on the

free list.
GLOBAL_LRU Structure will receive information about the first object on the

least-recently-used (LRU) list.

Returns
The return value is nonzero if the function is successful. Otherwise, it is zero.

Comments
The GlobalNext function can be used to continue a global heap walk started by the GlobalFirst,
GlobalEntryHandle, or GlobalEntryModule functions.

If GlobalFirst starts a heap walk, the flags value used in GlobalNext must be the same as the value used in
GlobalFirst.

See Also
GlobalEntryHandle, GlobalEntryModule, GlobalFirst, GlobalInfo, GLOBALENTRY

InterruptRegister (3.1)
#include toolhelp.h

BOOL InterruptRegister(htask, lpfnIntCallback)
HTASK htask; /* handle of task */
FARPROC lpfnIntCallback; /
* address of callback function *
/

The InterruptRegister function installs a callback function to handle all system interrupts.

Parameter Description
htask Identifies the task that is registering the callback function. The htask value is for

registration purposes, not for filtering interrupts. Typically, this value is NULL,
indicating the current task. The only time this value is not NULL is when an
application requires more than one interrupt handler.

lpfnIntCallback Points to the interrupt callback function that will handle interrupts. The Tool Helper
library calls this function whenever a task receives an interrupt.
The lpfnIntCallback value is normally the return value of a call to the
MakeProcInstance function. This causes the interrupt callback function to be entered
with the AX register set to the selector of the application's data segment. Usually, an
exported function prolog contains the following code:

mov ds,ax
Returns
The return value is nonzero if the function is successful. Otherwise, it is zero.

Comments
The syntax of the function pointed to by lpfnIntCallback is as follows:

void InterruptRegisterCallback(void)

InterruptRegisterCallback is a placeholder for the application-defined function name. The actual name
must be exported by including it an EXPORTS in the application's module-definition file.

An interrupt callback function must be reentrant, must be page-locked, and must explicitly preserve all
register values.

| . |
| . |
.
SS (fault)

SP (fault)

Flags (fault)

CS (fault)

IP (fault)

handle (internal)

interrupt number

AX

CS (toolhelp.dll)

IP (toolhelp.dll)
+-----------------------+

The SS and SP values will not be on the stack unless a low-stack fault occurred. This fault is indicated by
the high bit of the interrupt number being set.

When Windows calls a callback function, the AX register contains the DS value for the instance of the
application that contains the callback function. For more information about this process, see the
MakeProcInstance function.

Typically, an interrupt callback function is exported. If it is not exported, the developer should verify that
the appropriate stack frame is generated, including the correct DS value.

An interrupt callback function must save and restore all register values. The function must also do one of
the following:

Execute an retf instruction if it does not handle the interrupt. The Tool Helper library will pass the
interrupt to the next appropriate handler in the interrupt handler list.

Terminate the application by using the TerminateApp function.
Correct the problem that caused the interrupt, clear the first 10 bytes of the stack, and execute an

iret instruction. This action will restart execution at the specified address. An application may change this
address, if necessary.

Execute a nonlocal goto to a known position in the application by using the Catch and Throw
functions. This type of interrupt handling can be hazardous; the system may be in an unstable state and
another fault may occur. Applications that handle interrupts in this way must verify that the fault was a
result of the application's code.

The Tool Helper library supports the following interrupts:

Name Number Meaning
INT_DIV0 0 Divide-error exception
INT_1 1 Debugger interrupt
INT_3 3 Breakpoint interrupt
INT_UDINSTR 6 Invalid-opcode exception
INT_STKFAULT 12 Stack exception
INT_GPFAULT 13 General protection violation
INT_BADPAGEFAULT 14 Page fault not caused by normal virtual-memory

operation
INT_CTLALTSYS RQ 256 User pressed CTRL+ALT+SYS RQ

The Tool Helper library returns interrupt numbers as word values. Normal software interrupts and
processor faults are represented by numbers in the range 0 through 255. Interrupts specific to Tool Helper
are represented by numbers greater than 255.

Some developers may wish to use CTRL+ALT+SYS RQ (Interrupt 256) to break into the debugger. Be
cautious about implementing this interrupt, because the point at which execution stops will probably be in
a sensitive part of the Windows kernel. All InterruptRegisterCallback functions must be page-locked to
prevent problems when this interrupt is used. In addition, the debugger probably will not be able to
perform user-interface functions. However, the debugger can use Tool Helper functions to set breakpoints
and gather information. The debugger may also be able to use a debugging terminal or secondary screen to
display information.

Low-stack Faults

A low-stack fault occurs when inadequate stack space is available on the faulting application's stack.
For example, if any fault occurs when there is less than 128 bytes of stack space available or if runaway
recursion depletes the stack, a low-stack fault occurs. The Tool Helper library processes a low-stack
fault differently than it processes other faults.

A low-stack fault is indicated by the high-order bit of the interrupt number being set. For example, if a
stack fault occurs and the SP value becomes invalid, the Tool Helper library will return the fault number
as 0x800C rather than 0x000C.

Interrupt handlers designed to process low-stack faults must be aware that the Tool Helper library has
passed a fault frame on a stack other that the faulting application's stack. The SS:SP value is on the
stack because it was pushed before the rest of the information in the stack frame. The SS:SP value is
available only for advisory purposes.

An interrupt handler should never restart the faulting instruction, because this will cause the system to
crash. The handler may terminate the application with TerminateApp or pass the fault to the next
handler in the interrupt-handler list.

Interrupt handlers should not assume that all stack faults are low-stack faults. For example, if an
application accesses a stack-relative variable that is out of range, a stack fault will occur. This type of
fault can be processed in the same manner as any general protection (GP) fault. If the high-order bit of
the interrupt number is not set, the instruction can be restarted.

Interrupt handlers also should not assume that all low-stack faults are stack faults. Any fault that occurs
when there is less than 128 bytes of stack available will cause a low-stack fault.

Interrupt callback functions that are not designed to process low-stack faults should execute an retf
instruction so that the Tool Helper library will pass the fault to the next appropriate handler in the
interrupt-handler list.

See Also
Catch, InterruptUnRegister, NotifyRegister, NotifyUnRegister, TerminateApp, Throw

InterruptUnRegister (3.1)
#include toolhelp.h

BOOL InterruptUnRegister(htask)
HTASK htask; /* handle of task */

The InterruptUnRegister function restores the default interrupt handle for system interrupts.

Parameter Description
htask Identifies the task. If this value is NULL, it identifies the current task.

Returns
The return value is nonzero if the function is successful. Otherwise, it is zero.

Comments
After this function is executed, the Tool Helper library will pass all interrupts it receives to the system's
default interrupt handler.

See Also
InterruptRegister, NotifyRegister, NotifyUnRegister, TerminateApp

LocalFirst (3.1)
#include toolhelp.h

BOOL LocalFirst(lple, hglbHeap)
LOCALENTRY FAR* lple; /* address of LOCALENTRY structure */
HGLOBAL hglbHeap; /
* handle of local heap *
/

The LocalFirst function fills the specified structure with information that describes the first object on the
local heap.

Parameter Description
lple Points to a LOCALENTRY structure that will receive information about the local

memory object.
hglbHeap Identifies the local heap.

Returns
The return value is nonzero if the function is successful. Otherwise, it is zero.

Comments
The LocalFirst function can be used to begin a local heap walk. An application can examine subsequent
objects on the local heap by using the LocalNext function.

Before calling LocalFirst, an application must initialize the LOCALENTRY structure and specify its size,
in bytes, in the dwSize member.

See Also
LocalInfo, LocalNext, LOCALENTRY

LocalInfo function (3.1)
#include toolhelp.h

BOOL LocalInfo(lpli, hglbHeap)
LOCALINFO FAR* lpli; /* address of LOCALINFO structure */
HGLOBAL hglbHeap; /
* handle of local heap *
/

The LocalInfo function fills the specified structure with information that describes the local heap.

Parameter Description
lpli Points to a LOCALINFO structure that will receive information about the local heap.
hglbHeap Identifies the local heap to be described.

Returns
The return value is nonzero if the function is successful. Otherwise, it is zero.

Comments
The information in the LOCALINFO structure can be used to determine how much memory to allocate for
a local heap walk.

Before calling LocalInfo, an application must initialize the LOCALINFO structure and specify its size, in
bytes, in the dwSize member.

See Also
LocalFirst, LocalNext, LOCALINFO, LOCALENTRY

LocalNext (3.1)
#include toolhelp.h

BOOL LocalNext(lple)
LOCALENTRY FAR* lple; /* address of LOCALENTRY structure */

The LocalNext function fills the specified structure with information that describes the next object on the
local heap.

Parameter Description
lple Points to a LOCALENTRY structure that will receive information about the local

memory object.

Returns
The return value is nonzero if the function is successful. Otherwise, it is zero.

Comments
The LocalNext function can be used to continue a local heap walk started by the LocalFirst function.

See Also
LocalFirst, LocalInfo, LOCALENTRY

MemManInfo function (3.1)
#include toolhelp.h

BOOL MemManInfo(lpmmi)
MEMMANINFO FAR* lpmmi; /* address of MEMMANINFO structure */

The MemManInfo function fills the specified structure with status and performance information about the
memory manager. This function is most useful in 386 enhanced mode but can also be used in standard
mode.

Parameter Description
lpmmi Points to a MEMMANINFO structure that will receive information about the memory

manager.

Returns
The return value is nonzero if the function is successful. Otherwise, it is zero.

Comments
This function is included for advisory purposes.

Before calling MemManInfo, an application must initialize the MEMMANINFO structure and specify its
size, in bytes, in the dwSize member.

See Also
MEMMANINFO

MemoryRead (3.1)
#include toolhelp.h

DWORD MemoryRead(wSel, dwOffset, lpvBuf, dwcb)
WORD wSel; /* selector of global heap object */
DWORD dwOffset; /* offset to
object *
/
void FAR* lpvBuf; /
* address of buffer to read to *
/
DWORD dwcb; /
* number of bytes to read *
/

The MemoryRead function copies memory from the specified global heap object to the specified buffer.

Parameter Description
wSel Specifies the global heap object from which to read. This value must be a selector on the

global heap; if the value is an alias selector or a selector in a tiled selector array,
MemoryRead will fail.

dwOffset Specifies the offset in the object specified in the wSel parameter at which to begin
reading. The dwOffset value may point anywhere within the object; it may be greater
than 64K if the object is larger than 64K.

lpvBuf Points to the buffer to which MemoryRead will copy the memory from the object. This
buffer must be large enough to contain the entire amount of memory copied to it. If the
application is running under low memory conditions, lpvBuf should be in a fixed object
while MemoryRead copies data to it.

dwcb Specifies the number of bytes to copy from the object to the buffer pointed to by lpvBuf.

Returns
The return value is the number of bytes copied from wSel to lpvBuf. If wSel is invalid or if dwOffset is
out of the selector's range, the return value is zero.

Comments
The MemoryRead function enables developers to examine memory without consideration for selector
tiling and aliasing. MemoryRead reads memory in read-write or read-only objects. This function can be
used in any size object owned by any task. It is not necessary to compute selector array offsets.

The MemoryRead and MemoryWrite functions are designed to read and write objects loaded by the
LoadModule function or allocated by the GlobalAlloc function. Developers should not split off the
selector portion of a far pointer and use this as the value for wSel, unless the selector is known to be on the
global heap.

See Also
MemoryWrite

MemoryWrite (3.1)
#include toolhelp.h

DWORD MemoryWrite(wSel, dwOffset, lpvBuf, dwcb)
WORD wSel; /* selector of global heap object */
DWORD dwOffset; /* offset to
object *
/
void FAR* lpvBuf; /
* address of buffer to write from *
/
DWORD dwcb; /
* number of bytes to write *
/

The MemoryWrite function copies memory from the specified buffer to the specified global heap object.

Parameter Description
wSel Specifies the global heap object to which MemoryWrite will write. This value must be a

selector on the global heap; if the value is an alias selector or a selector in a tiled selector
array, MemoryWrite will fail.

dwOffset Specifies the offset in the object at which to begin writing. The dwOffset value may
point anywhere within the object; it may be greater than 64K if the object is larger than
64K.

lpvBuf Points to the buffer from which MemoryWrite will copy the memory to the object. If the
application is running under low memory conditions, lpvBuf should be in a fixed object
while MemoryWrite copies data from it.

dwcb Specifies the number of bytes to copy to the object from the buffer pointed to by lpvBuf.

Returns
The return value is the number of bytes copied from lpvBuf to wSel. If the selector is invalid or if
dwOffset is out of the selector's range, the return value is zero.

Comments
The MemoryWrite function enables developers to modify memory without consideration for selector tiling
and aliasing. MemoryWrite writes memory in read-write or read-only objects. This function can be used in
any size object owned by any task. It is not necessary to make alias objects writable or to compute selector
array offsets.

The MemoryRead and MemoryWrite functions are designed to read and write objects loaded by the
LoadModule function or allocated by the GlobalAlloc function. Developers should not split off the
selector portion of a far pointer and use this as the value for wSel, unless the selector is known to be on the
global heap.

See Also
MemoryRead

ModuleFindHandle (3.1)
#include toolhelp.h

HMODULE ModuleFindHandle(lpme, hmod)
MODULEENTRY FAR* lpme; /* address of MODULEENTRY structure */
HMODULE hmod; /
* handle of module *
/

The ModuleFindHandle function fills the specified structure with information that describes the given
module.

Parameter Description
lpme Points to a MODULEENTRY structure that will receive information about the module.
hmod Identifies the module to be described.

Returns
The return value is the handle of the given module if the function is successful. Otherwise, it is NULL.

Comments
The ModuleFindHandle function returns information about a currently loaded module whose module
handle is known.

This function can be used to begin a walk through the list of all currently loaded modules. An application
can examine subsequent items in the module list by using the ModuleNext function.

Before calling ModuleFindHandle, an application must initialize the MODULEENTRY structure and
specify its size, in bytes, in the dwSize member.

See Also
ModuleFindName, ModuleFirst, ModuleNext, MODULEENTRY

ModuleFindName (3.1)
#include toolhelp.h

HMODULE ModuleFindName(lpme, lpszName)
MODULEENTRY FAR* lpme; /* address of MODULEENTRY structure */
LPCSTR lpszName; /
* address of module name *
/

The ModuleFindName function fills the specified structure with information that describes the module
with the specified name.

Parameter Description
lpme Points to a MODULEENTRY structure that will receive information about the module.
lpszName Specifies the name of the module to be described.

Returns
The return value is the handle named in the lpszName parameter, if the function is successful. Otherwise,
it is NULL.

Comments
The ModuleFindName function returns information about a currently loaded module by looking up the
module's name in the module list.

This function can be used to begin a walk through the list of all currently loaded modules. An application
can examine subsequent items in the module list by using the ModuleNext function.

Before calling ModuleFindName, an application must initialize the MODULEENTRY structure and
specify its size, in bytes, in the dwSize member.

See Also
ModuleFindHandle, ModuleFirst, ModuleNext, MODULEENTRY

ModuleFirst (3.1)
#include toolhelp.h

BOOL ModuleFirst(lpme)
MODULEENTRY FAR* lpme; /* address of MODULEENTRY structure */

The ModuleFirst function fills the specified structure with information that describes the first module in
the list of all currently loaded modules.

Parameter Description
lpme Points to a MODULEENTRY structure that will receive information about the first

module.

Returns
The return value is nonzero if the function is successful. Otherwise, it is zero.

Comments
The ModuleFirst function can be used to begin a walk through the list of all currently loaded modules. An
application can examine subsequent items in the module list by using the ModuleNext function.

Before calling ModuleFirst, an application must initialize the MODULEENTRY structure and specify its
size, in bytes, in the dwSize member.

See Also
ModuleFindHandle, ModuleFindName, ModuleNext, MODULEENTRY

ModuleNext (3.1)
#include toolhelp.h

BOOL ModuleNext(lpme)
MODULEENTRY FAR* lpme; /* address of MODULEENTRY structure */

The ModuleNext function fills the specified structure with information that describes the next module in
the list of all currently loaded modules.

Parameter Description
lpme Points to a MODULEENTRY structure that will receive information about the next

module.

Returns
The return value is nonzero if the function is successful. Otherwise, it is zero.

Comments
The ModuleNext function can be used to continue a walk through the list of all currently loaded modules.
The walk must have been started by the ModuleFirst, ModuleFindName, or ModuleFindHandle function.

See Also
ModuleFindHandle, ModuleFindName, ModuleFirst, MODULEENTRY

NotifyRegister (3.1)
#include toolhelp.h

BOOL NotifyRegister(htask, lpfnCallback, wFlags)
HTASK htask; /* handle of task */
LPFNNOTIFYCALLBACK lpfnCallback; /
* address of callback function *
/
WORD wFlags; /
* notification flags *
/

The NotifyRegister function installs a notification callback function for the given task.

Parameter Description
htask Identifies the task associated with the callback function. If this parameter is NULL, it

identifies the current task.
lpfnCallback Points to the notification callback function that is installed for the task. The kernel calls

this function whenever it sends a notification to the task.
The callback-function address is normally the return value of a call to
MakeProcInstance. This causes the callback function to be entered with the AX register
set to the selector of the application's data segment. Usually, an exported function
prolog contains the following code:

mov ds,ax
wFlags Specifies the optional notifications that the application will receive, in addition to the

default notifications. This parameter can be NF_NORMAL or any combination of the
following values:

Value Meaning
NF_NORMAL The application will receive the default notifications but

none of the notifications of task switching, system
debugging errors, or debug strings.

NF_TASKSWITCH The application will receive task-switching notifications. To
avoid poor performance, an application should not receive
these notifications unless absolutely necessary.

NF_RIP The application will receive notifications of system
debugging errors.

Returns
The return value is nonzero if the function was successful. Otherwise, it is zero.
Callback Function

The syntax of the function pointed to by lpfnCallback is as follows:

BOOL NotifyRegisterCallback(wID, dwData)
WORD wID;
DWORD dwData;

Parameter Description
wID Indicates the type of notification and the value of the dwData parameter. The wID

parameter may be one of the following values in Windows versions 3.0 and later:

Value Meaning
NFY_DELMODULE The low-order word of dwData is the handle of the module

to be freed.
NFY_EXITTASK The low-order byte of dwData contains the program exit

code.
NFY_FREESEG The low-order word of dwData is the selector of the

segment to be freed.
NFY_INCHAR The dwData parameter is not used. The notification callback

function should return either the ASCII value for the
keystroke or NULL.

NFY_LOADSEG The dwData parameter points to an NFYLOADSEG
structure.

NFY_OUTSTR The dwData parameter points to the string to be displayed.
NFY_STARTDLL The dwData parameter points to an NFYSTARTDLL

structure.
NFY_STARTTASK The dwData parameter is the CS:IP of the starting address

of the task.
NFY_UNKNOWN The kernel returned an unknown notification.
In Windows version 3.1, wID may be one of the following values:

Value Meaning
NFY_LOGERROR The dwData parameter points to an

NFYLOGERROR structure.
NFY_LOGPARAMERROR The dwData parameter points to an

NFYLOGPARAMERROR structure.
NFY_RIP The dwData parameter points to an NFYRIP

structure.
NFY_TASKIN The dwData parameter is undefined. The callback

function should call the GetCurrentTask function.
NFY_TASKOUT The dwData parameter is undefined. The callback

function should call GetCurrentTask.
dwData Specifies data, or specifies a pointer to data, or is undefined, depending on the value of

wID.

Returns
The return value of the callback function is nonzero if the callback function handled the notification.
Otherwise, it is zero and the notification is passed to other callback functions.

Comments
A notification callback function must be able to ignore any unknown notification value. Typically, the
notification callback function cannot use any Windows function, with the exception of the Tool Helper
functions and PostMessage.

NotifyRegisterCallback is a placeholder for the application-defined function name. The actual name must
be exported by including it in an EXPORTS statement in the application's module-definition file.

See Also
InterruptRegister, InterruptUnRegister, MakeProcInstance, NotifyUnRegister, TerminateApp,
NFYLOADSEG, NFYLOGERROR, NFYLOGPARAMERROR, NFYRIP, NFYSTARTDLL

NotifyUnRegister (3.1)
#include toolhelp.h

BOOL NotifyUnRegister(htask)
HTASK htask; /* handle of task */

The NotifyUnRegister function restores the default notification handler.

Parameter Description
htask Identifies the task. If htask is NULL, it identifies the current task.

Returns
The return value is nonzero if the function is successful. Otherwise, it is zero.

Comments
After this function is executed, the given task no longer receives notifications from the kernel.

See Also
InterruptRegister, InterruptUnRegister, NotifyRegister, TerminateApp

StackTraceCSIPFirst (3.1)
#include toolhelp.h

BOOL StackTraceCSIPFirst(lpste, wSS, wCS, wIP, wBP)
STACKTRACEENTRY FAR* lpste; /* address of stack-frame structure */
WORD wSS; /
* value of SS register *
/
WORD wCS; /
* value of CS register *
/
WORD wIP; /
* value of IP register *
/
WORD wBP; /
* value of BP register *
/

The StackTraceCSIPFirst function fills the specified structure with information that describes the specified
stack frame.

Parameter Description
lpste Points to a STACKTRACEENTRY structure to receive information about the stack.
wSS Contains the value in the SS register. This value is used with the wBP value to

determine the next entry in the stack trace.
wCS Contains the value in the CS register of the first stack frame.
wIP Contains the value in the IP register of the first stack frame.
wBP Contains the value in the BP register. This value is used with the wSS value to

determine the next entry in the stack trace.

Returns
The return value is nonzero if the function is successful. Otherwise, it is zero.

Comments
The StackTraceFirst function can be used to begin a stack trace of any task except the current task. When a
task is inactive, the kernel maintains its state, including its current stack, stack pointer, CS and IP values,
and BP value. The kernel does not maintain these values for the current task. Therefore, when a stack trace
is done on the current task, the application must use StackTraceCSIPFirst to begin a stack trace. An
application can continue to trace through the stack by using the StackTraceNext function.

Before calling StackTraceCSIPFirst, an application must initialize the STACKTRACEENTRY structure
and specify its size, in bytes, in the dwSize member.

See Also
StackTraceNext, StackTraceFirst, STACKTRACEENTRY

StackTraceFirst (3.1)
#include toolhelp.h

BOOL StackTraceFirst(lpste, htask)
STACKTRACEENTRY FAR* lpste; /* address of stack-frame structure */
HTASK htask; /
* handle of task *
/

The StackTraceFirst function fills the specified structure with information that describes the first stack
frame for the given task.

Parameter Description
lpste Points to a STACKTRACEENTRY structure to receive information about the task's

first stack frame.
htask Identifies the task whose stack information is to be described.

Returns
The return value is nonzero if the function is successful. Otherwise, it is zero.

Comments
The StackTraceFirst function can be used to begin a stack trace of any task except the current task. When a
task is inactive, the kernel maintains its state, including its current stack, stack pointer, CS and IP values,
and BP value. The kernel does not maintain these values for the current task. Therefore, when a stack trace
is done on the current task, the application must use the StackTraceCSIPFirst function to begin a stack
trace. An application can continue to trace through the stack by using the StackTraceNext function.

Before calling StackTraceFirst, an application must initialize the STACKTRACEENTRY structure and
specify its size, in bytes, in the dwSize member.

See Also
StackTraceCSIPFirst, StackTraceNext, STACKTRACEENTRY

StackTraceNext (3.1)
#include toolhelp.h

BOOL StackTraceNext(lpste)
STACKTRACEENTRY FAR* lpste; /* address of stack-frame structure */

The StackTraceNext function fills the specified structure with information that describes the next stack
frame in a stack trace.

Parameter Description
lpste Points to a STACKTRACEENTRY structure to receive information about the next stack

frame.

Returns
The return value is nonzero if the function is successful. Otherwise, it is zero.

Comments
The StackTraceNext function can be used to continue a stack trace started by using the StackTraceFirst or
StackTraceCSIPFirst function.

See Also
StackTraceCSIPFirst, StackTraceFirst, STACKTRACEENTRY

SystemHeapInfo (3.1)
#include toolhelp.h

BOOL SystemHeapInfo(lpshi)
SYSHEAPINFO FAR* lpshi; /* address of heap-info structure */

The SystemHeapInfo function fills the specified structure with information that describes the USER.EXE
and GDI.EXE heaps.

Parameter Description
lpshi Points to a SYSHEAPINFO structure to receive information about the USER and GDI

heaps.

Returns
The return value is nonzero if the function is successful. Otherwise, it is zero.

Comments
This function is included for advisory purposes. Before calling SystemHeapInfo, an application must
initialize the SYSHEAPINFO structure and specify its size, in bytes, in the dwSize member.

See Also
SYSHEAPINFO

TaskFindHandle (3.1)
#include toolhelp.h

BOOL TaskFindHandle(lpte, htask)
TASKENTRY FAR* lpte; /* address of TASKENTRY structure */
HTASK htask; /*
handle of task *
/

The TaskFindHandle function fills the specified structure with information that describes the given task.

Parameter Description
lpte Points to a TASKENTRY structure to receive information about the task.
htask Identifies the task to be described.

Returns
The return value is nonzero if the function is successful. Otherwise, it is zero.

Comments
The TaskFindHandle function can be used to begin a walk through the task queue. An application can
examine subsequent entries in the task queue by using the TaskNext function.

Before calling TaskFindHandle, an application must initialize the TASKENTRY structure and specify its
size, in bytes, in the dwSize member.

See Also
TaskFirst, TaskNext, TASKENTRY

TaskFirst (3.1)
#include toolhelp.h

BOOL TaskFirst(lpte)
TASKENTRY FAR* lpte; /* address of TASKENTRY structure */

The TaskFirst function fills the specified structure with information about the first task on the task queue.

Parameter Description
lpte Points to a TASKENTRY structure to receive information about the first task.

Returns
The return value is nonzero if the function is successful. Otherwise, it is zero.

Comments
The TaskFirst function can be used to begin a walk through the task queue. An application can examine
subsequent entries in the task queue by using the TaskNext function.

Before calling TaskFirst, an application must initialize the TASKENTRY structure and specify its size, in
bytes, in the dwSize member.

See Also
TaskFindHandle, TaskNext, TASKENTRY

TaskGetCSIP (3.1)
#include toolhelp.h

DWORD TaskGetCSIP(htask)
HTASK htask; /* handle of task */

The TaskGetCSIP function returns the next CS:IP value of a sleeping task. This function is useful for
applications that must "know" where a sleeping task will begin execution upon awakening.

Parameter Description
htask Identifies the task whose CS:IP value is being examined. This task must be sleeping

when the application calls TaskGetCSIP.

Returns
The return value is the next CS:IP value, if the function is successful. If the htask parameter is invalid, the
return value is NULL.

Comments
TaskGetCSIP should not be called if htask identifies the current task.

See Also
DirectedYield, TaskSetCSIP, TaskSwitch

TaskNext (3.1)
#include toolhelp.h

BOOL TaskNext(lpte)
TASKENTRY FAR* lpte; /* address of TASKENTRY structure */

The TaskNext function fills the specified structure with information about the next task on the task queue.

Parameter Description
lpte Points to a TASKENTRY structure to receive information about the next task.

Returns
The return value is nonzero if the function is successful. Otherwise, it is zero.

Comments
The TaskNext function can be used to continue a walk through the task queue. The walk must have been
started by the TaskFirst or TaskFindHandle function.

See Also
TaskFindHandle, TaskFirst, TASKENTRY

TaskSetCSIP (3.1)
#include toolhelp.h

DWORD TaskSetCSIP(htask, wCS, wIP)
HTASK htask; /* handle of task */
WORD wCS; /* value in CS register */
WORD wIP; /
* value in IP register *
/

The TaskSetCSIP function sets the CS:IP value of a sleeping task. When the task is yielded to, it will
begin execution at the specified address.

Parameter Description
htask Identifies the task to be assigned the new CS:IP value.
wCS Contains the new value of the CS register.
wIP Contains the new value of the IP register.

Returns
The return value is the previous CS:IP value for the task. The TaskSwitch function uses this value. The
return value is NULL if the htask parameter is invalid.

Comments
TaskSetCSIP should not be called if htask identifies the current task.

See Also
DirectedYield, TaskGetCSIP, TaskSwitch

TaskSwitch (3.1)
#include toolhelp.h

BOOL TaskSwitch(htask, dwNewCSIP)
HTASK htask; /* handle of task */
DWORD dwNewCSIP; /*
execution address within task *
/

The TaskSwitch function switches to the given task. The task begins executing at the specified address.

Parameter Description
htask Identifies the new task.
dwNewCSIP Identifies the address within the given task at which to begin execution. Be very

careful that this address is not in a code segment owned by the given task.

Returns
The return value is nonzero if the task switch is successful. Otherwise, it is zero.

Comments
When the task identified by the htask parameter yields, TaskSwitch returns to the calling application.

TaskSwitch changes the CS:IP value of the task's stack frame to the value specified by the dwNewCSIP
parameter and then calls the DirectedYield function.

See Also
DirectedYield, TaskSetCSIP, TaskGetCSIP

TerminateApp (3.1)
#include toolhelp.h

void TerminateApp(htask, wFlags)
HTASK htask; /* handle of task */
WORD wFlags; /* termination flags */

The TerminateApp function ends the given application instance (task).

Parameter Description
htask Identifies the task to be ended. If this parameter is NULL, it identifies the current task.
wFlags Indicates how to end the task. This parameter can be one of the following values:

Value Meaning
UAE_BOX Calls the Windows kernel to display the Application Error

message box and then ends the task.
NO_UAE_BOX Calls the Windows kernel to end the task but does not display the

Application Error message box. The application's interrupt or
notification callback function should have displayed an error
message, a warning, or both.

Returns
This function returns only if htask is not NULL and does not identify the current task.

Comments
The TerminateApp function unregisters all callback functions registered with the Tool Help functions and
then ends the application as if the given task had produced a general-protection (GP) fault or other error.

TerminateApp should be used only by debugging applications, because the function may not free not all
objects owned by the ended application.

See Also
InterruptRegister, InterruptUnRegister, NotifyRegister, NotifyUnRegister

TimerCount (3.1)
#include toolhelp.h

BOOL TimerCount(lpti)
TIMERINFO FAR* lpti; /* address of structure for execution times */

The TimerCount function fills the specified structure with the execution times of the current task and VM
(virtual machine).

Parameter Description
lpti Points to the TIMERINFO structure that will receive the execution times.

Returns
The return value is nonzero if the function is successful. Otherwise, it is zero.

Comments
The TimerCount function provides a consistent source of timing information, accurate to the millisecond.
In enhanced mode, TimerCount uses the VTD (virtual timer device) to obtain accurate execution times.

In standard mode, TimerCount calls the GetTickCount function, which returns information accurate to one
clock tick (approximately 55 ms). TimerCount then reads the hardware timer to estimate how many
milliseconds remain until the next clock tick. The resulting time is accurate to 1 ms.

Before calling TimerCount, an application must initialize the TIMERINFO structure and specify its size,
in bytes, in the dwSize member.

See Also
GetTickCount, TIMERINFO

Toolhelp Functions (3.1)
ClassFirst Retrieves information about first class in class list
ClassNext Retrieves information about next class in class list
GlobalEntryHandle Retrieves information about given global memory object
GlobalEntryModule Retrieves information about specified module segment
GlobalFirst Retrieves information about first global memory object
GlobalHandleToSel Converts the given global handle to a selector
GlobalInfo function Retrieves information about the global heap
GlobalNext Retrieves information about next global memory object
InterruptRegister Installs callback function to handle system interrupts
InterruptUnRegister Removes function handling system interrupts
LocalFirst Retrieves information about first local memory object
LocalInfo function Fills structure with information about local heap
LocalNext Retrieves information about next local memory object
MemManInfo function Retrieves information about the memory manager
MemoryRead Reads memory from an arbitrary global heap object
MemoryWrite Writes memory to an arbitrary global heap object
ModuleFindHandle Retrieves information about the given module
ModuleFindName Retrieves information about module with specified name
ModuleFirst Retrieves information about the first module
ModuleNext Retrieves information about the next module
NotifyRegister Installs a notification callback function
NotifyUnRegister Removes a notification callback function
StackTraceCSIPFirst Retrieves information about a stack frame
StackTraceFirst Retrieves information about the first stack frame
StackTraceNext Retrieves information about the next stack frame
SystemHeapInfo Retrieves information about the USER and GDI heaps
TaskFindHandle Retrieves information about a task
TaskFirst Retrieves information about first task in task queue
TaskGetCSIP Returns the next CS:IP value of a sleeping task
TaskNext Retrieves information about next task on the task queue
TaskSetCSIP Sets the CS:IP value of a sleeping task
TaskSwitch Switches to a specific address within a new task
TerminateApp Ends the given application instance (task)
TimerCount Retrieves execution times of current task and VM

Windows SDK Tools (3.1)
Advanced Debugging (wdeb386.exe)
Analyzing CPU Time: Profiler
Analyzing System Failures: Dr. Watson
Compiling Resources: Resource Compiler
Compressing Files (compress.exe)
Creating WinHelp Databases
Debugging DDE Transactions (ddespy.exe)
Debugging: CodeView for Windows
Expanding Compressed Files (expand.exe)
Module Definition Statements
Monitoring Messages: SPY
Viewing the Heap (heapwalk.exe)

Analyzing Performance: Profiler

Profiler analyzes applications running with Windows in 386 enhanced mode; however, it cannot analyze
applications running with Windows in standard mode.

The following topics describe how to set up and use Profiler:

An Overview of Profiler
Preparing to Run Profiler
Using Profiler Functions
Sampling Code
Displaying Samples

Overview of Profiler
Profiler contains the following:

A sampling utility
A reporting utility
A set of functions your application can call

The sampling utility gathers information about the time spent between adjacent labels and records memory
addresses of code. The utility is a special device driver, VPROD.386. To run Profiler, install VPROD.386
and then run Windows directly.

Profiler stores the information it gathers in a buffer. It writes the buffer to disk when Windows terminates,
producing a CSIPS.DAT file and a SEGENTRY.DAT file in the directory that was your current directory
when you started Windows. The CSIPS.DAT file contains statistical samplings of the code segment (CS)
and instruction pointer (IP) registers. The SEGENTRY.DAT file contains information about the
movement of code segments. Because code segments can be located at different physical addresses during
the execution of the program, information from both the CSIPS.DAT and SEGENTRY.DAT files is
required to prepare the profiling report.

After the sampling utility has finished gathering information, the SHOWHITS.EXE reporting utility
organizes and displays the results.

With Profiler's functions, you start and stop examining code, manage the output of code samples, and get
information about Profiler. All applications that Profiler examines must include the two functions that start
and stop the sampling of code. Other Profiler functions are optional.

Preparing to Run Profiler
To profile an application running with Windows in 386 enhanced mode, you can use any system that is
capable of running Windows in 386 enhanced mode.

In addition to ensuring that your system is compatible with Profiler, you must do the following:
1 Ensure that the Windows directory is defined in your PATH environment variable.

2 Include in your application at least the two mandatory Profiler functions ProfStart and ProfStop.
ProfStart indicates when you want Profiler to start sampling code; ProfStop indicates when you want
Profiler to stop sampling. Other Profiler functions are optional.

3 Compile your application. Then link the compiled code with the standard Windows libraries, using
the appropriate command-line option to prepare a symbol map (.MAP) file that includes PUBLIC
symbols. The .MAP file is required by Microsoft Symbol File Generator (MAPSYM). For
information about how to create the .MAP file during linking, see the documentation that
accompanied your linker. For more information about MAPSYM, see Advanced Debugging in
Protected Mode: WDEB386.

4 Use MAPSYM to convert the .MAP file to a symbol (.SYM) file.

Using Profiler Functions
In addition to the mandatory ProfStart and ProfStop functions, Profiler includes functions that determine
whether Profiler is installed, specify a rate for sampling, and control the output buffer. Following are the
available Profiler functions:

Function Description
ProfClear Discards all buffered Profiler samples.
ProfFinish Stops profile sampling and flushes profile buffer.
ProfFlush Flushes the Profiler sampling buffer to disk.
ProfInsChk Determines whether Profiler is installed.
ProfSampRate Sets the Profiler sampling rate.
ProfSetup Sets Profiler buffer size and sample quantity.
ProfStart Starts Profiler sampling.
ProfStop Stops Profiler sampling.

PROFILER: Sampling Code
To use the Profiler functions, you must first install VPROD.386, a virtual device driver. Your application
can call the ProfSetup function to set the size of the output buffer (up to 1064K).

Profiler sampling uses memory that is otherwise available to Windows. Therefore, using Profiler may
decrease the performance of the application you are analyzing. By specifying a small output buffer for
Profiler, you can reduce the amount of memory used. However, a small output buffer may cause sample
loss.

Profiler can write samples to disk only when Windows indicates it is safe to do so. When the sampling
buffer is full, Profiler ignores additional samples until the buffer is flushed to disk. To minimize sample
loss, either increase the buffer size or periodically call the ProfFlush function.

To profile applications, do the following:
1 Install the VPROD.386 driver by adding the following setting to the [386enh] section of your

SYSTEM.INI file:

device=vprod.386
2 Run Windows in 386 enhanced mode.

3 Run the application you want to profile.
4 When you have finished profiling your application, remove the SYSTEM.INI file setting you added

in step 1.

Displaying Samples: SHOWHITS.EXE
To display the data Profiler gathers, run the SHOWHITS.EXE application from the MS-DOS command
line. This reporting utility reads CSIPS.DAT, SEGENTRY.DAT, and .SYM files and then organizes and
displays the data. The CSIPS.DAT and SEGENTRY.DAT files are located where the sampling utility
placed them--that is, in the directory that was your current directory when you started Windows. To ensure
that SHOWHITS.EXE can locate these files, either run SHOWHITS.EXE from the same directory or
specify full paths for the CSIPS.DAT and SEGENTRY.DAT files. If the .SYM files are not in the current
directory, use the /ipath option on the showhits command line to specify the directory or directories
containing them.

SHOWHITS.EXE reads .SYM files to match instruction pointer samples with global symbols in the
application. When you run SHOWHITS.EXE, the utility searches for .SYM files that contain symbolic
names identical to the names of modules that Profiler sampled. Each match is called a hit. If the sampled
program is written in the C language, the symbolic names are typically function names. If the sampled
program is written in assembly language, the symbolic names can be either procedure names or PUBLIC
symbols within procedures.

SHOWHITS.EXE reports the number of times sampling occurred between adjacent symbols.

The syntax for the showhits command line is as follows:

showhits [/ipath [/ipath [...]]] [cs_file] [seg_file]

Following are the command-line options and parameters:
/ipath Specifies one or more directories to search for .SYM files. SHOWHITS.EXE loads all .SYM

files from the specified directories, regardless of their relevance to the application you are
profiling. The default value is the current directory.

cs_file Specifies the full path of the CSIPS.DAT file. If no path is specified, SHOWHITS.EXE
looks for the file in the current directory.

seg_file Specifies the full path of the SEGENTRY.DAT file. If no path is specified, SHOWHITS.
EXE looks for the file in the current directory.

SHOWHITS.EXE displays information about hits, which are instruction pointer samples, in the following
four categories:

Category Description
Unrecognized segments A list of instruction pointer values that occur within segments for which

there are no symbols of module names. Unrecognized segments are
typically code for device drivers, terminate-and-stay-resident (TSR)
programs, and other code that Windows does not use.

Known segments The number of hits that occur within known modules. Hits on known
segments typically include counts for the application and counts for such
Windows modules as KERNEL, GDI, and DISPLAY. Profiler also counts
hits in MS-DOS and the read-only memory (ROM) basic input-and-output
system (BIOS). In addition to displaying hits, SHOWHITS.EXE lists the
total number of hits and the segment's percentage of total hits.

Breakdown A detailed breakdown of the hits between labels of the modules for which
SHOWHITS.EXE finds .SYM files. SHOWHITS.EXE also displays the
total number of hits and the percentage of the total number.

Summary A list of the top hits.

The following example illustrates a profiling-report display:

Here are the Hits for Unrecognized Segments
Here are the Hits for Known Segments
0.3% 3 Hits on SYSTEM!
0.5% 5 Hits on HELLO!
76.5% 786 Hits on DISPLAY!
11.3% 116 Hits on GDI!
11.5% 118 Hits on KERNEL!

1028 TOTAL HITS
HELLO!_TEXT

0.4% 4 Hits between labels _HelloPaint and _HelloInit
0.1% 1 Hits between labels __cintDIV and __fptrap
Profiler Summary (Top 10 Hits):
0.4% 4 HELLO! _TEXT! _HelloPaint - _HelloInit
0.1% 1 HELLO! _TEXT! __cintDIV - __fptrap

Advanced Debugging in Protected Mode: WDEB386
Microsoft Windows 80386 Debugger (WDEB386.EXE) is used to test and debug Windows applications
and dynamic-link libraries (DLLs) running with the Microsoft Windows operating system in standard or
386 enhanced mode. With 80386 Debugger commands, you can inspect and manipulate test code and
environment status, install breakpoints, and perform other debugging operations.

Although 80386 Debugger offers debugging features not available in CodeView for Windows (CVW),
80386 Debugger lacks the convenient window interface of CVW and does not provide source-level
debugging.

To use 80386 Debugger, you must have a serial terminal connected to the computer on which you are
running the debugger and test application.

The following topics describe how to set up and use WDEB386:

Preparing Symbol Files for the 80386 Debugger
Starting the Debugger
Entering the Debugger
Debugger Command Format
Common Command Directory

Preparing Symbol Files for the 80386 Debugger

Preparing Symbol Files for 80386 Debugger

To prepare application symbol files, perform the following steps:
1 Compile your C-language source files, using the appropriate command-line option to generate object

files with line-number information for use by 80386 Debugger. For more information about compiler
options, see the documentation that accompanied your compiler.

2 Link the compiled code with the standard Windows libraries, using the appropriate command-line
option to prepare a symbol map (.MAP) file that includes PUBLIC symbols. The map file is required
by Microsoft Symbol File Generator (MAPSYM).

You may also want to use the linker option for display of line-number information. For more
information about linker options, see the documentation that accompanied your linker.

3 Run MAPSYM to create a symbol file for symbolic debugging. MAPSYM converts the contents of
your application's symbol map (.MAP) file into a form suitable for loading with 80386 Debugger;
then MAPSYM copies the result to a symbol (.SYM) file.

Following is the command-line syntax for MAPSYM:

mapsym [/l][/n] mapfilename
/l Directs MAPSYM to display information on the screen about the conversion. The

information includes the names of groups defined in the application, the
application start address, the number of segments, and the number of symbols per
segment.

/n Directs MAPSYM to ignore line-number information in the map file. The
resulting symbol file contains no line-number information.

mapfilename Specifies the filename for a symbol map file that was created during linking. If
you do not give a filename extension, .MAP is assumed. If you do not give a full
path, the current directory and drive are assumed. MAPSYM creates a new
symbol file having the same name as the map file but with the .SYM extension.

In the following example, MAPSYM uses the symbol information in FILE.MAP to create FILE.
SYM in the current directory on the current drive:

mapsym /l file.map
Information about the conversion is sent to the screen.

Note: MAPSYM always places the new symbol file in the current directory on the
current drive. MAPSYM can process up to 10,000 symbols for each segment in the application
and up to 1024 segments.

Starting the Debugger

Starting 80386 Debugger

A three-wire null modem cable is the minimum cable requirement for the serial terminal. In a three-wire
null modem cable, the TxD (transmit data) and RxD (receive data) lines are in opposite positions at the
two ends of the cable, but the signal ground is connected straight through.

The command-line syntax is as follows:

wdeb386 [/C:comport] [/D:"commands"] [/F:filename] [/N] [/T:hhhh] [/S:symfile] [/V[P]] [X] winfile
[parameters]

Following are the command-line options and parameters:
/C:comport Specifies a COM port for debugger output. If this option is not specified, 80386

Debugger checks first for COM2. If COM2 is not found, the debugger then checks
for COM1. If neither COM1 nor COM2 exists, the debugger checks for any other
COM port in the read-only memory (ROM) data area (40:0). A three-wire null
modem cable is all that is needed for terminal connection; no DTR (data-
terminal-ready) and CTS (clear-to-send) handshaking is used.

/D:"commands" Carries out the 80386 Debugger command line specified by the string enclosed in
quotation marks. Spaces, semicolons (;), and other punctuation can be included in
the command string. To use a single quote (') on the command line, use double
quotation marks (") before and after the single quotation mark.
The commands specified in this option are carried out after symbols are loaded.
This means you can set breakpoints in code even before the code has been loaded.
Before a segment or module has been loaded or defined, breakpoints can be set on
the logical address (a combination of map number and group number) until the
segment or module is defined, at which point the breakpoint turns into a real
breakpoint.

/F: filename Specifies a file containing command-line options for 80386 Debugger. Maximum
file size is 4K, and the input file cannot contain the /F option.

/N Sets the following options:

dislwr
codebytes
symaddrs
int3line
newvec
newreg
newprompt

/S: symfile Specifies a symbol file to be loaded. This option can be repeated to load more than
one symbol file. If the symbol files are not in your current directory, you must
supply a full path, because 80386 Debugger does not use the PATH environment
variable to locate any of the files supplied on the command line.
When memory is low, you can use more symbol files by running 80386 Debugger
in the Windows directory and specifying the full path of WIN386.EXE (such as \
WINDOWS\SYSTEM\WIN386.EXE) instead of WIN.COM.

/T:hhhh Sets the port number for the timing card. (The default number is 250h.)
/V Enables verbose mode, which displays messages indicating which segments are

being being loaded. This option displays the messages for both Windows in 386
enhanced mode and Windows applications.

/VP Enables verbose mode, which displays messages indicating which segments are
being loaded. This option displays the messages for applications only.

/X Causes symbols to be loaded into Extended Memory Specification (XMS)
memory. This option has no effect with Windows version 3.1.

winfile Specifies the Windows application to run under 80386 Debugger control. You will
usually specify WIN.COM.

parameters Specifies any parameters to be passed to the application.

Note: The length of the command line cannot exceed 128 characters.

Following are two examples of valid commands:

wdeb386 /V /S:\windows\system\krnl286.sym /S:myapp.sym
\windows\win.com /s myapp
wdeb386 /C:1 /S:krnl386.sym /s:user.sym /S:\myapp\myapp.sym
\windows\win.com /3 myapp
You can start 80386 Debugger as a device driver by placing the following line in your CONFIG.SYS file:

device=c:\windev\wdeb386.exe
You must specify the full path to the WDEB386.EXE file. You can specify any command-line options on
the line with device= (for example, you can load symbol files).

Entering the Debugger

Entering 80386 Debugger

To enter 80386 Debugger at any time interrupts are not disabled, press the CTRL+C key combination on
the debugging terminal. A nonmaskable interrupt (NMI) can be used to enter the debugger even when
interrupts are disabled.

An int 3 instruction or a call to the Windows DebugBreak function passes control to the 80386
Debugger.

When a Windows application running in standard or 386 enhanced mode attempts to read or write
memory with a bad selector, beyond a selector limit, or with a selector set to 0, a general protection (GP)
fault occurs.

In such cases, Windows displays a dialog box notifying the user of a problem. When 80386 Debugger is
loaded, the dialog box has a Cancel button. If the user chooses the Cancel button, Windows passes
control to the debugger at the instruction that caused the fault with a display of the following form:

GENERAL PROTECTION VIOLATION
AX=00000000 BX=00002136 CX=06040079 DX=00001EF5 SI=000000C3 DI=
00002283
IP=00000028 SP=80012126 BP=0000212C CR2=80501FFC CR3=0293 IOPL=0 F=-- -
-
CS=0915 SS=091D DS=091D ES=0000 FS=0000 GS=0000 -- NV UP EI PLZR NA PE
NC
00AD:00000FA0 MOV BX, WORD PTR ES:[BX]
ES:65DF=INV:0003#
For more information about commands shown in the remaining examples in this section, see Command
Parameters.

You can determine the cause of the GP fault by looking at the value and the limit of the selector. To dump
the local descriptor table (LDT) entry, you can use a command of the following form:

dl selector

The ability to continue execution depends on the cause of the fault. If the fault was caused by reading or
writing beyond the selector limit, it may be possible to skip the instruction by incrementing the IP register.

To determine how many bytes the instruction contains, you may need to display the actual code bytes
when disassembling the instruction. To do this, use the following commands:

y codebytes
r
If the fault is caused by a critical logic error, such as trying to use a selector for a temporary variable, there
probably is no way to continue execution of the application. You may need to restart the computer.

Debugger Command Format

Command Syntax

To enter 80386 Debugger commands, you use a debugging terminal rather than your computer's
keyboard.

Commands and parameters are not case-sensitive.

If a syntax error occurs in a debugger command, 80386 Debugger redisplays the command line and
indicates the error with a caret (^) and the word Error, as in the following example:

A100
^ Error

Command Keys

Following are the command keys:

Key Action
CTRL+A Repeats the previous command.
CTRL+C Halts 80386 Debugger output, and returns to the debugger prompt.
CTRL+S Freezes an 80386 Debugger display.
CTRL+Q Restarts the display.

If the target system is executing code, CTRL+S and CTRL+Q are ignored.

Command Parameters

You can separate 80386 Debugger command parameters with delimiters (spaces or commas), but a
delimiter is required only between two consecutive hexadecimal values. The following commands are
equivalent:

dCS:100 110
d CS:100 110
d,CS:100,110
Following are the parameters you can use with 80386 Debugger commands:
addr Represents an address parameter in one of four forms. For more information about the

operators shown in the following address forms, see Section 5.4.3, "Binary and Unary
Operators."
Address Mode
#1f:02C0 Protected-mode address (selector:offset)
%31020 Linear address
%%31020 Physical address
&0100:02FF Real-mode address (segment:offset)
Any of these specified address forms overrides the current address type.

byte Specifies a two-digit hexadecimal value.
cmds Specifies an optional set of debugger commands to be executed with the bp (Set

Breakpoint) or j (Conditionally Execute) command.
count Specifies a count. Valid values depend on the command with which this parameter is

being used.
dword Represents an eight-digit (4-byte) hexadecimal value. The DWORD data type is most

commonly used as a physical address.
expr Represents a combination of parameters and operators that evaluates to an 8-bit, 16-bit,

or 32-bit value. An expr parameter can be used as a value in any command. An expr
parameter can combine any symbol, number, or address with any of the binary and
unary operators.

flags Specifies one or more conditions. Valid conditions depend on the command with which
this parameter is being used.

group-name Specifies the name of a group that contains the map symbols you want to display.
list Specifies a series of byte values or a string. The list parameter must be the last parameter

on the command line. Following is an example of the f (Fill) command with a list
parameter:

fCS:100 42 45 52 54 41
map-name Specifies the name of a symbol map file.
name-chars Specifies one or more characters.
number Specifies a numeric value. Valid values depend on the command with which this

parameter is being used.
object Specifies a handle, a selector, or (in 386 enhanced mode) a heap address.
option Specifies an option. Valid options depend on the command with which this parameter is

being used.
range Specifies the block of memory on which the command should operate. The range

parameter can be two addresses (addr addr); or it can be one address and a length (addr
L word, where word is the number of items on which the command should operate; 80h
is the default value). Following are three valid examples:

CS:100 110
CS:100 L 10
CS:100
The limit for range is 10000h. To specify a word of 10000h using only four digits, use
0000h or 0h.

reg Specifies the name of a microprocessor register.
string Represents any number of characters enclosed in single quotation marks (') or double

quotation marks ("). For quotation marks that must appear within string, you must use
two sets of quotation marks. For example, the following strings are valid:

'This ''string'' is OK.'
\"This \"\"string\"\" is OK.\"
However, the following strings are not valid:

\"This \"string\" is not OK.\"
\"This 'string' is not OK.\"
The ASCII values of the characters in the string are used as a list of byte values.

word Specifies a four-digit (2-byte) hexadecimal value.

Stopping Execution

The BreakInDebugVxD entry in the [386Enh] section of SYSTEM.INI controls where WDEB386 stops
execution when CTRL+ALT+SYSREQ is pressed. The default setting for this entry is FALSE, which causes
WDEB386 to stop in application code. When the setting is TRUE, WDEB386 stops at the current
instruction, which is frequently in WIN386.EXE or in a VxD.

Binary and Unary Operators

Following, in descending order of precedence, are the binary operators that can be used in 80386
Debugger commands:

Operator Meaning
() Parentheses
: Address binder
* Multiplication
/ Integer division
MOD Modulus (remainder)
+ Addition
- Subtraction
> Greater-than relational operator
< Less-than relational operator
>= Greater-than/equal-to relational operator
<= Less-than/equal-to relational operator
== Equal-to relational operator
!= Not-equal-to relational operator
AND Bitwise Boolean AND

XOR Bitwise Boolean exclusive OR
OR Bitwise Boolean OR
&& Logical AND
|| Logical OR

Following, in descending order of precedence, are the unary operators that can be used in 80386 Debugger
commands:

Operator Meaning
&(seg) Address of segment value
#(sel) Address of selector value
%%(phy) Address as a physical value
%(lin) Address as a linear value
- Two's complement
! Logical NOT operator
NOT One's complement
SEG Segment address of operand
OFF Address offset of operand
BY Low-order byte from given address
WO Low-order word from given address
DW Doubleword from given address
POI Pointer (4 bytes) from given address--this operator works only with 16:16 addresses
PORT 1 byte from given port
WPORT Word from given port

Regular Expressions

The set of regular expressions that 80386 Debugger supports for matching symbols is similar to the set
supported by UNIX grep. The 80386 Debugger set includes a few enhancements.

Following are the 80386 Debugger wildcards:

Wildcard Description
. Matches any single character.
[] Defines a character class; matches a set or range of characters.
^ Negates a character class.

Following are the 80386 Debugger postfix operators:

Operator Description
* Causes the previous wildcard or single character to match zero or more characters.
Matches zero or one.
+ Plus sign, matches one or more.

Anywhere a symbol is accepted, a regular expression can be used. If there is more than one match, a list of
matching symbols is displayed and you must select the proper symbol. The symbol match is not case-
sensitive.

The asterisk (*), number sign (#), and plus sign (+) are already math expression operators. To be
recognized as a regular expression operator, each of these characters must be immediately preceded by an
escape character--the backslash (\). The period (.), opening bracket ([), and closing bracket (]) do not
require escape characters. Anything inside the brackets of a character class does not have to be escaped.
Following are valid character classes:

[a-z]
[;*+#]
Characters are escaped at two levels: in the expression evaluator and in the regular expression parser. A
character special to the expression evaluator (*, #, +, or \) must be escaped to make it to the regular
expression parser. If a character special to the regular expression parser must be escaped (for example, to
match symbols with * or # in them), it must be escaped twice. If a backslash is needed in an expression, it
must be double escaped.

Following are sample regular expressions:

Regular expression Description
sym.* Matches any symbols beginning with the string sym.
sym* Matches sym alone and sym followed by any characters.
.*sym.* Matches any symbols containing the string sym.
sym[0-9] Matches sym0, sym1, sym2, and so on.
sym* Matches sym*.
sym\\\\ Matches sym\.
sym\\\\.* Matches any symbols beginning with the string sym\.

Common Command Directory

Common Commands

This section documents the commands available in all environments in which you can use 80386
Debugger. A command that begins with a period (.) is called a dot command.

Command Description
? Display expression, or display help menu.
.? Display external commands.
.b Set baud rate for COM port.
.df Display global free list.
.dg Display global heap.
.dh Display local heap.
.dm Display global module list.
.dq Dump task queues.
.du Display list of least recently used (LRU) global memory objects.
.reboot Restart target system.
bc Clear breakpoint.
bd Disable breakpoint.
be Enable breakpoint.
bl List breakpoints.
bp Set breakpoint.
br Set breakpoint on debug register.
c Compare memory locations.
d Display memory.
db Display bytes.
dd Display doublewords.
dg Display global descriptor table (GDT).
di Display interrupt descriptor table (IDT).
dl Display local descriptor table (LDT).
dp Display page directory and page tables.
dt Display task state segment (TSS).
dw Display words.
e Enter byte.
f Fill memory.
g Go.
h Perform hexadecimal arithmetic.
i Display 1 byte of input.
j Conditionally execute command.
k Display current stack frame.
ka Set backtrace argument.
kt Display stack frame of task.
la List absolute symbols.
lg List groups.
lm List maps.
ln List nearest symbol.
ls List symbols.
m Move memory.
o Write output to a port.
p Execute instruction, returning from any call or interrupt.
r Display register.
s Search for a byte.
t Execute instruction.

u Disassemble bytes.
v Display debugger version.
vc Clear interrupt vector.
vl List debugger interrupt vectors.
vo List debugger interrupt vectors in specified format.
vs Add debugger interrupt vector (not at ring 0).
vt Add debugger interrupt vector.
w Change active map list.
wa Add map to active list.
wr Remove map from active list.
y Change debugger configuration.
z Zap embedded int 1 or int 3 instruction.
zd Execute default command string.
zl Display default command string.
zs Change default command string.

? WDEB386 command
? [[option.]expr]&? ["string", expr, expr, [...]]

The ? command evaluates an expression and displays the result.

The ? command with no arguments displays a list of commands and syntax recognized by the debugger.

Parameter Description
option Specifies the format in which to display the expression specified by expr. The option

parameter can be one of the following characters:

Character Format
h Hexadecimal
d Decimal
t Decimal
o Octal
q Octal
y Binary
If option is given, a period (.) must be used to separate option and expr. If option is not
given, the command displays all formats, an ASCII character representation, and
whether the expression is TRUE or FALSE.

expr Specifies an expression consisting of one or more addresses, numbers, and operators.
The operators in the expression can be any of the 80386 Debugger operators listed in
Section 5.4.3, "Binary and Unary Operators." The addresses in the expression can be 32-
bit physical addresses or protected-mode addresses (selector:offset). The number sign
(#) operator overrides the current address type.

string Specifies a printf formatting string. Supported printf format characters are as follows:

Format character Meaning
%% %
%c Character
%[-][+][][0][width][.precision][p][n]d Decimal
%[-][0][width][.precision][p][n]u Unsigned decimal
%[-][#][0][width][.precision][p][n]x Hexadecimal
%[-][#][0][width][.precision][p][n]X Hexadecimal
%[-][0][width][.precision][p][n]o Octal
%[-][0][width][.precision][p][n]b Binary
%[-][width][.precision][a]s String
%[-][width][.precision][a][p][n][L][H][N]S Symbol
%[-][width][.precision][a][p][n][L][H][N]G Group:symbol
%[-][width][.precision][a][p][n][L][H][N]M Map:group:symbol
%[-][width][.precision][a][p][n][L][H][N]A Address
Specifying an asterisk (*) for the width or precision parameter causes the field width or
precision, respectively, to be picked up from the next parameter. Decimal values can
also be specified for the width and precision parameters.
The following escape sequences are supported:

Escape sequence Description
\a Alert (bell) character
\b Backspace
\n New line
\r Carriage return
\t Horizontal tab

The following table describes the optional prefixes:

Prefix Format character(s) Meaning
a s,S,G,M,A Address argument size
H S,G,M,A 16-bit offset
L S,G,M,A 32-bit offset

N S,G,M,A Offset only
p S,G,M Get the previous symbol
n S,G,M Get the next symbol
p A Get the previous symbol address
n A Get the next symbol address
p d,u,x,X,o,b Get the previous symbol offset
n d,u,x,X,o,b Get the next symbol offset

Example
The following example looks up the physical address of selector 1Fh in the current local descriptor table
(LDT) and adds 220h to it:

?%(#001F:0220)
The following example displays the value of the expression DS:SI + BX:

? ds:si+bx
The debugger returns a display similar to the following:

987A:000001B3 %00098953 %%00098953
The following example displays the value of the arithmetic expression 3*4:

? 3*4
The debugger returns the following display:

0Ch 12T 14Q 00001100Y '.' TRUE

.? WDEB386 command

.?

The .? command displays a list of external commands. These commands are part of 80386 Debugger, but
they are specific to the environment in which the debugger is running.

.b WDEB386 command

.b number [addr]

The .b command sets the baud rate for the debugging port (COM2).

Parameter Description
number Specifies the baud rate. It can be one of the following values: 150, 300, 600, 1200, 2400,

4800, 9600, or 19200. Because the default radix for the debugger is 16, you must type t
after the number to indicate a decimal value.

addr Specifies 1 for COM1 or 2 for COM2; anything else is taken as a base port address. If
there is no COM2, 80386 Debugger checks for COM1 and then for any other COM port
address in the read-only memory (ROM) data area to use as the console.

Example
The following example sets the baud rate to 1200:

#.b 1200t

.df WDEB386 command

.df

The .df command displays a list of the free global memory objects in the global heap.

The list has the following form:

address: size owner [chain]
address Specifies the selector of the memory in standard mode. In 386 enhanced mode, the address

field specifies physical and heap addresses.
size Specifies the size, in paragraphs (multiples of 16 bytes), of the object in standard mode. In

386 enhanced mode, the size field specifies the size of the object, in bytes.
owner Always specifies that the module is free.
chain Specifies the previous and next addresses in the list of least recently used (LRU) objects.

80386 Debugger displays the addresses only if the segment is movable and discardable.

.dg WDEB386 command

.dg [object]

The .dg command displays a list of the global memory objects in the global heap.

Parameter Description
object Specifies the first object to be listed. The object parameter can be a handle, a selector, or

(in 386 enhanced mode) a heap address.

The list has the following form:

address: size segment-type owner [handle flags chain]
address Specifies the selector of the memory in standard mode. In 386 enhanced mode, the

address field specifies physical and heap addresses.
size Specifies the size, in paragraphs (multiples of 16 bytes), of the object in standard

mode. In 386 enhanced mode, the size field specifies the size of the object, in bytes.
segment-type Specifies the type of object. The type can be any one of the following:

Segment type Meaning
CODE Segment contains application code.
DATA Segment contains application data and possible stack and local

heap data.
FREE Segment belongs to pool of free memory objects ready for

allocation by an application.
PRIV Segment contains private data.
SENTINAL Segment marks the beginning or end of the global heap.

owner Specifies the module name of the application or library that allocated the memory
object. The acronym PDB is used for memory objects that represent process descriptor
blocks. These blocks contain execution information about applications.

handle Specifies the handle of the global memory object. If 80386 Debugger displays no
handle, the segment is fixed.

flags Specifies either of the following:
Flag Meaning
D The segment is movable and discardable.
L The segment is locked. If the segment is locked, the lock count appears to

the right of the flag.
If 80386 Debugger displays a handle but no flag, the segment is movable but not
discardable.

chain Specifies the previous and next addresses in the list of least recently used (LRU)
objects. Addresses are displayed only if the segment is movable and discardable
(specified by the D flag).

.dh WDEB386 command

.dh

The .dh command displays a list of the local memory objects in the local heap (if any) belonging to the
current data segment. The command uses the current value of the DS register to locate the data segment
and check for a local heap.

The list of memory objects has the following form:

offset: size { BUSY | FREE }
offset Specifies the address offset from the beginning of the data segment to the local memory object.
size Specifies the size of the object, in bytes.

If BUSY is displayed, the object has been allocated and is currently in use. If FREE is displayed, the
object is in the pool of free objects ready to be allocated by the application. A special memory object,
SENTINAL, may also be displayed.

.dm WDEB386 command

.dm

The .dm command displays a list of the global modules in the global heap.

The list has the following form:

module-handle module-type module-name filename
module-handle Specifies the handle of the module.
module-type Specifies either a dynamic-link library (DLL) or the name of the application you are

debugging.
module-name Specifies the name of the module.
filename Specifies the name of the file from which you loaded the application.

.dq WDEB386 command

.dq

The .dq command displays a list containing information about the various task queues supported by the
system.

The list has the following form:

task-descriptor-block stack-segment:stack-pointer number-of-events
priority internal-messaging-information module
task-descriptor-block Specifies the selector or segment address.

The task descriptor block is identical to the process descriptor block
(PDB).

stack-segment:stack-pointer Specifies the stack segment and pointer.
number-of-events Specifies the number of events waiting for the segment.
priority Specifies the priority of the segment.
internal-messaging-information Specifies information about internal messages.
module Specifies the module name.

.du WDEB386 command

.du

The .du command displays a list of the least recently used (LRU) global memory objects in the global
heap.

The list has the following form:

address: size segment-type owner [handle flags chain]
address Specifies the selector of the memory in standard mode. In 386 enhanced mode, the

address field specifies physical and heap addresses.
size Specifies the size, in paragraphs (multiples of 16 bytes), of the object in standard

mode. In 386 enhanced mode, the size field specifies the size of the object, in bytes.
segment-type Specifies the type of object. The type can be any one of the following:

Segment type Meaning
CODE Segment contains application code.
DATA Segment contains application data and possible stack and local

heap data.
FREE Segment belongs to pool of free memory objects ready for

allocation by an application.
PRIV Segment contains private data.
SENTINAL Segment marks the beginning or end of the global heap.

owner Specifies the module name of the application or library that allocated the memory
object. The acronym PDB is used for memory objects that represent process descriptor
blocks. These blocks contain execution information about applications.

handle Specifies the handle of the global memory object.
flags Specifies D, which means the segment is movable and discardable.
chain Specifies the previous and next addresses in the LRU list.

.reboot WDEB386 command

.reboot

The .reboot command causes the target system to restart.

bc WDEB386 command
bc list | *

The bc command removes one or more defined breakpoints.

Parameter Description
list Specifies any combination of integer values in the range 0 through 9. If you specify list,

the debugger removes the specified breakpoints.
* Clears all breakpoints.

Example
The following example removes breakpoints 0, 4, and 8:

bc 0 4 8
The following example removes all breakpoints:

bc *

bd WDEB386 command
bd list | *

The bd command temporarily disables one or more breakpoints. To restore breakpoints disabled by the bd
command, use the be (Enable Breakpoints) command.

Parameter Description
list Specifies any combination of integer values in the range 0 through 9. If you specify list,

the debugger disables the specified breakpoints.
* Disables all breakpoints.

Example
The following example disables breakpoints 0, 4, and 8:

bd 0 4 8
The following example disables all breakpoints:

bd *

be WDEB386 command
be list | *

The be command restores (enables) one or more breakpoints that have been temporarily disabled by a bd
(Disable Breakpoints) command.

Parameter Description
list Specifies any combination of integer values in the range 0 through 9. If you specify list,

the debugger enables the specified breakpoints.
* Enables all breakpoints.

Example
The following example enables breakpoints 0, 4, and 8:

be 0 4 8
The following example enables all breakpoints:

be *

bl WDEB386 command
bl

The bl command lists current information about all breakpoints created by the bp (Set Breakpoints)
command.

Example
If no breakpoints are currently defined, the debugger displays nothing. Otherwise, the breakpoint number,
enabled status, breakpoint address, number of passes remaining, initial number of passes (in parentheses),
and any optional debugger commands to be executed when the breakpoint is reached are displayed on the
screen, as in the following example:

0 e 04BA:0100
4 d 04BA:0503 4 (10)
8 e 0D2D:0001 3 (3) "R;DB DS:SI"
9 e xxxx:0012
In this example, breakpoints 0 and 8 are enabled (e) and 4 is disabled (d). Breakpoint 4 had an initial pass
count of 10h and has four remaining passes to be taken before the breakpoint. Breakpoint 8 had an initial
pass count of 3 and must make all three passes before it halts execution and forces the debugger to execute
the optional debugger commands enclosed in quotation marks. Breakpoint 0 shows no initial pass count,
which means it was set to 1. Breakpoint 9 shows a virtual breakpoint (a breakpoint set in a segment that
has not been loaded into memory).

bp WDEB386 command
bp[number]addr [count] ["cmds"]

The bp command creates a software breakpoint at an address. When the application is running, software
breakpoints stop execution and force the debugger to execute the default or optional command string.
Unlike breakpoints created by the g (Go) command, software breakpoints remain in memory until you
remove them with the bc (Clear Breakpoints) command or temporarily disable them with the bd (Disable
Breakpoints) command.

The debugger allows up to 10 software breakpoints (0 through 9). If you specify more than 10 breakpoints,
the debugger returns the following message:

Too Many Breakpoints
The addr parameter is required for all new breakpoints.

Parameter Description
number Specifies which breakpoint is being created. No space is allowed between the bp and

number. If number is omitted, the first available breakpoint number is used.
addr Specifies any valid instruction address--the first byte of an operation code (opcode).
count Specifies the number of times the breakpoint is to be ignored before being executed. It

can be any 16-bit value.
cmds Specifies an optional list of debugger commands to be executed in place of the default

command when the breakpoint is reached. You must enclose optional commands in
quotation marks and separate optional commands with semicolons (;).

Example
The following example creates a breakpoint at address CS:123:

bp 123
The following example creates breakpoint 8 at address 400:23 and executes a db (Display Bytes)
command:

bp8 400:23 "db DS:SI"
The following example creates a breakpoint at address 100 in the current CS selector and displays the
registers before comparing a block of memory. The breakpoint is ignored 16 (10h) times before being
executed.

bp 100 10 "r;c100 L 100 300"

br WDEB386 command
br[number] flags [count] ["cmds"]

The br command sets an 80386 debug register breakpoint. Debug registers can be used to break on data
reads and writes and instruction execution. Up to four debug registers can be set and enabled at one time.

Parameter Description
number Specifies which breakpoint is being created. No space is allowed between the br

command and the number parameter. If number is omitted, the first available breakpoint
number is used.

flags Specifies the length and break conditions for the breakpoint. This parameter can be
some combination of the following values:

Value Meaning
1 Set 1-byte length (default value).
2 Set word length on word boundary.
4 Set doubleword length on doubleword boundary.
E Break on instruction execution only (1-byte length only).
W Break on writes only.
R Break on reads and writes.

count Specifies the number of times the breakpoint is to be ignored before being executed. It
can be any 16-bit value.

cmds Specifies an optional list of debugger commands to be executed in place of the default
command when the breakpoint is reached. You must enclose the group of optional
commands in quotation marks and separate optional commands with semicolons (;).

c WDEB386 command
c range addr

The c command compares one memory location with another memory location.

If the two memory areas are identical, the debugger displays nothing and returns the debugger prompt.
Differences, when they exist, are displayed in the following form:

addr1 byte1 byte2 addr2

Parameter Description
range Specifies the block of memory that is to be compared with a block of memory starting at

addr.
addr Specifies the starting address of the second block of memory.

Example
This section shows two forms of the c command that have the same effect. Each compares the block of
memory from 100h to 1FFh with the block of memory from 300h to 3FFh.

The first example specifies a range with a starting address of 100h and an ending address of 1FFh. This
block of memory is compared with a block of memory of the same size starting at 300h.

c100 1FF 300
The second example compares the same block of memory but specifies the range by using the L (length)
option.

c100 L 100 300

d WDEB386 command
d [range]

The d command displays the contents of memory at a given address or in a range of addresses. The d
command displays one or more lines, depending on the range given. Each line displays the address of the
first item displayed. The command always displays at least one value. The memory display is in the format
defined by a previously executed db (Display Bytes), dd (Display Doublewords), or dw (Display Words)
command. Each subsequent d (typed without parameters) displays the bytes immediately following those
last displayed.

Parameter Description
range Specifies the block of memory to display. If you omit range, the d command displays

the next byte of memory after the last one displayed. The d command must be separated
by at least one space from any range value.

Example
The following example displays 20h bytes at CS:100:

d CS:100 L 20
The following example displays all the bytes in the range 100h to 115h in the CS selector:

d CS:100 115

db WDEB386 command
db [range]

The db command displays the values of the bytes at a given address or in a given range.

The display is in two portions: a hexadecimal display (each byte is shown in hexadecimal format) and an
ASCII display (the bytes are shown as ASCII characters). A nonprinting character is denoted by a period (.
) in the ASCII portion of the display. Each display line shows 16 bytes, with a hyphen between the eighth
and ninth bytes. Each displayed line begins on a 16-byte boundary.

Parameter Description
range Specifies the block of memory to display. If you omit range, 128 bytes are displayed

beginning at the first address after the address displayed by the previous db command.

Example
The following example displays 0Ah bytes of memory, beginning at the specified address:

db CS:100 0A
This example displays lines in a format similar to the following:

04BA:0100 54 4F 4D 20 53 . . . 45 52 TOM SAWYER
Each line of the display begins with an address, incremented by 10h from the address on the previous line.

dd WDEB386 command
dd [range]

The dd command displays the hexadecimal values of the doublewords at the address specified or in the
specified range of addresses.

The dd command displays one or more lines, depending on the range given. Each line displays the address
of the first doubleword in the line, followed by up to four hexadecimal doubleword values. The
hexadecimal values are separated by spaces. The dd command displays values up to the end of the range or
until the first 32 doublewords have been displayed.

Typing dd displays 32 doublewords at the current dump address. For example, if the last byte in the
previous dd command was 04BA:0110, the display starts at 04BA:0111.

Parameter Description
range Specifies the block of memory to display. If you omit range, 32 doubleword values are

displayed beginning at the first address after the address displayed by the previous dd
command.

Example
The following example displays the doubleword values from CS:100 to CS:110:

dd CS:100 110
The resulting display is similar to the following:

04BA:0100 7473:2041 676E:6972 5405:0104 0A0D:7865
04BA:0110 0000:002E
No more than four values per line are displayed.

dg WDEB386 command
dg[a] [range]

The dg command displays the specified range of entries in the global descriptor table (GDT).

Parameter Description
range Specifies the range of entries in the GDT. If you omit range, the debugger displays the

entire contents of the GDT.
a Causes all entries in the table to be displayed, not just the valid entries. By default, only

the valid GDT entries are displayed. If the command is passed a local descriptor table
(LDT) selector, it displays the appropriate LDT entry.

Example
The following example displays only the valid entries from 0h to 40h in the GDT:

dg 0 40
The resulting display is similar to the following:

0008 Data Seg Base=01D700 Limit=3677 DPL=0 Present ReadWriteAccessed
0010 TSS Desc Base=007688 Limit=002B DPL=0 Present Busy
0018 Data Seg Base=020D7A Limit=03FF DPL=0 Present ReadWrite
0020 Data Seg Base=000000 Limit=03FF DPL=0 Present ReadWrite
0028 LDT Desc Base=000000 Limit=0000 DPL=0 Present
0030 Data Seg Base=000000 Limit=0000 DPL=0 Present ReadWrite
0040 Data Seg Base=000400 Limit=03BF DPL=3 Present ReadWrite

di WDEB386 command
di[a] [range]

The di command displays the specified range of entries in the interrupt descriptor table (IDT).

Parameter Description
a Causes all entries in the table to be displayed, not just the valid ones. The default is to

display just the valid IDT entries.
range Specifies the range of entries to be displayed. If you omit range, the debugger displays

all IDT entries.

Example
The following example displays the valid IDT entries in the range 0h through 10h:

di 0 10
The resulting display is similar to the following:

0000 Int Gate Sel=1418 Offst=03D8 DPL=3 Present
0001 Int Gate Sel=2D38 Offst=0049 DPL=3 Present
0002 Int Gate Sel=1418 Offst=03E4 DPL=3 Present
0003 Int Gate Sel=2D38 Offst=006F DPL=3 Present
0004 Int Gate Sel=1418 Offst=0417 DPL=3 Present
0005 Int Gate Sel=1418 Offst=041D DPL=3 Present
0006 Int Gate Sel=1418 Offst=0423 DPL=3 Present
0007 Int Gate Sel=2D38 Offst=00A3 DPL=3 Present
0008 Int Gate Sel=1418 Offst=042F DPL=3 Present
0009 Int Gate Sel=2D38 Offst=00CA DPL=3 Present
000A Int Gate Sel=2D38 Offst=00D3 DPL=3 Present
000B Int Gate Sel=2D38 Offst=0156 DPL=3 Present
000C Int Gate Sel=2D38 Offst=01A4 DPL=3 Present
000D Int Gate Sel=2D38 Offst=01C6 DPL=3 Present

dl WDEB386 command
dl[a | p | s | h] [range]

The dl command displays the specified range of entries in the local descriptor table (LDT).

Parameter Description
a Causes all entries in the table to be displayed, not just the valid ones. By default, only

the valid LDT entries are displayed. If the command is passed a global descriptor table
(GDT) selector, it displays the appropriate GDT entry.

p Causes private segment selectors to be displayed.
s Causes shared segment selectors to be displayed.
h Causes huge segment selectors to be displayed. To display the huge segment selectors,

give the shadow selector followed by the maximum number of selectors reserved for
that segment plus 1.

range Specifies the range of entries to be displayed. If you omit range, the entire table is
displayed.

Example
The following example displays all the LDT entries:

dla 4 57
The command produces a display similar to the following:

0014 Call Gate Sel=1418 Offst=0417 DPL=0 NotPres WordCount=1D
001C Code Seg Base=051418 Limit=0423 DPL=0 NotPres ExecOnly
0027 Reserved Base=87F000 Limit=FEA5 DPL=3 Present
0034 Code Seg Base=05F000 Limit=1805 DPL=0 NotPres ExecOnly
003C Code Seg Base=05F000 Limit=EF57 DPL=0 NotPres ExecOnly
0047 Code Seg Base=4DC000 Limit=0050 DPL=3 Present ExecOnly
004D Reserved Base=71F000 Limit=F841 DPL=1 NotPres
0057 Code Seg Base=59F000 Limit=E739 DPL=3 Present ExecOnly

dp WDEB386 command
dp[a|d] [range]

The dp command displays the page directory and page tables. Page tables are always skipped if the
corresponding page directory entry is not present. Page directory entries appear with an asterisk next to the
page frame.

Parameter Description
a Displays all present page directory and page table entries; by default, page directory and

page table entries that are zero are skipped.
d Displays only page directory entries. If a count is given as part of the optional range, it

will be interpreted as a page directory entry count.
range Specifies the range of linear addresses for page tables.

Example
The following example displays the page directory and page table in the range 0 through 12h:

dp 0 l2
The resulting display is similar to the following:

%00000000 *frame=00FCE state=3 res=0 c A pb1=0 pb0=0 U W P
%00000000 frame=00000 state=3 res=0 c u pb1=0 pb0=0 U W P
%00001000 frame=00001 state=3 res=0 c u pb1=0 pb0=0 U W P
The display produced by the dp command can contain flags that have the following meanings:

Bit set Bit clear Meaning
D c Dirty/clean
A u Accessed/unaccessed
U s User/supervisor
W r Writable/read-only
P n Present/not-present

dt WDEB386 command
dt [addr]

The dt command displays the current task state segment (TSS) or the selected TSS if you specify the
optional address.

Parameter Description
addr Specifies the address of the TSS to display. If no addr is given, dt displays the current

TSS pointed to by the TR register.

Example
The following example displays the current TSS:

dt
The resulting display is similar to the following:

AX=0000 BX=0000 CX=0000 DX=0000 SP=0000 BP=0000 SI=0000 DI=0000
IP=0000 CS=0000 DS=0000 ES=0000 SS=0000 NV UP DI PL NZ NAPO NC
SS0=0038 SP0=08DE SS1=0000 SP1=0000 SS2=0000 SP2=0000
IOPL=0 LDTR=0028 LINK=0000

dw WDEB386 command
dw [range]

The dw command displays the hexadecimal values of the words at a given address or in a given range of
addresses.

The command displays one or more lines, depending on the range given. Each line displays the address of
the first word in the line, followed by up to eight hexadecimal word values. The hexadecimal values are
separated by spaces. The command displays values until the end of the range or until the first 64 words
have been displayed.

Typing dw displays 64 words at the current dump address. For example, if the last word in the previous dw
command was displayed at address 04BA:0110, the next display will start at 04BA:0112.

Parameter Description
range Specifies the range of addresses to display. If you omit range, 64 words are displayed

beginning at the first address after the address displayed by the previous dw command.

Example
The following example displays the word values from CS:100 to CS:110:

dw CS:100 110
The resulting display is similar to the following:

04BA:0100 2041 7473 6972 676E 0104 5404 7865 0A0D
04BA:0110 002E

e WDEB386 command
e addr [list]

The e command enters byte values into memory at a specified address. You can specify the new values on
the command line or let the debugger prompt you for values. If the debugger prompts you, it displays the
address and its contents and then waits for you to perform one of the following actions:

Replace a byte value with a value you type. Type the value after the current value. If the byte you
type is an invalid hexadecimal value or contains more than two digits, the system does not echo the illegal
or extra character.

Press the SPACEBAR to advance to the next byte. To change the value, type the new value after the
current value. If, when you press the SPACEBAR, you move beyond an 8-byte boundary, 80386 Debugger
starts a new display line with the address displayed at the beginning.

Type a hyphen (-) to return to the preceding byte. If you decide to change a byte before the current
position, typing the hyphen returns the current position to the previous byte. When you type the hyphen, a
new line is started with its address and byte value displayed.

Press ENTER to terminate the e command. You can press ENTER at any byte position.

Parameter Description
addr Specifies the address of the first byte to be entered.
list Specifies the byte values used for replacement. These values are inserted automatically.

If an error occurs when you are using the list form of the command, no byte values are
changed.

Example
The following example prompts you to change the value EB at CS:100:

eCS:100
04BA:0100 EB.
To step through the subsequent bytes without changing values, press the SPACEBAR. In the following
example, the SPACEBAR is pressed three times:

04BA:0100 EB.41 10. 00. BC.
To return to a value at a previous address, type a hyphen, as shown in the following example:

04BA:0100 EB.41 10. 00. BC.-
04BA:0102 00.-
04BA:0101 10.
This example returns to the address CS:101.

f WDEB386 command
f range list

The f command fills the addresses in a specified range with the values in the specified list.

Parameter Description
range Specifies the block of memory to be filled. If range contains more bytes than the number

of values in list, the debugger uses list repeatedly until all bytes in range are filled. If
any of the memory in range is not valid (bad or nonexistent), an error occurs in all
succeeding locations.

list Specifies the list of values to fill the given range. If list contains more values than the
number of bytes in range, the debugger ignores the extra values in list.

Example
The following example fills memory locations 04BA:100 through 04BA:1FF with the bytes specified,
repeating the five values until it has filled all 100h bytes:

f04BA:100 L 100 42 45 52 54 41

g WDEB386 command
g[s|h|t|z] [=addr [addr[...]]]

The g command executes the application currently in memory. If you type the g command by itself, the
current application runs as if it had been run outside the debugger. If you specify =addr, execution begins
at the specified address.

Specifying an optional breakpoint address causes execution to halt at the first address encountered,
regardless of the position of the address in the list of addresses that halts execution or application
branching. When execution of the application reaches a breakpoint, the default command string is
executed.

The stack (SS:SP) must be valid and have 6 bytes available for this command. The g command uses an iret
instruction to cause a jump to the application being tested. The stack is set, and the user flags, CS register,
and IP register are pushed on the user stack. (If the user stack is not valid or is too small, the operating
system may crash.) An interrupt code (0CCh) is placed at the specified breakpoint addresses.

When the debugger encounters an instruction with the breakpoint code, it restores all breakpoint addresses
listed with the g command to their original instructions. If you do not halt execution at one of the
breakpoints, the interrupt codes are not replaced with the original instructions.

Parameter Description
s Shows the time, in microseconds, from when the system is started with gs until the next

entry to the debugger. No attempt is made to calculate and remove debugger overhead
from the measurement. Requires a timing card.

h Displays the approximate debugger overhead in the s option. Requires a timing card.
t or z Allows trapped exceptions to resume at the original trap handler address without having

to unhook the exception. Use these options instead of the vcp d; t; vsp d command.
=addr Specifies the address at which execution is to begin. The equal sign (=) is needed to

distinguish the starting address from the breakpoint address.
addr Specifies one or more breakpoint addresses where execution is to halt. You can specify

up to 10 breakpoints, but only at addresses containing the first byte of an operation code
(opcode). If you attempt to set more than 10 breakpoints, an error message is displayed.

Example
The following example executes the application currently in memory until address 7550 in the CS selector
is executed. The debugger then executes the default command string, removes the int 3 trap from this
address, and restores the original instruction. When you resume execution, the original instruction is
executed.

gCS:7550

h WDEB386 command
h word word

The h command performs hexadecimal arithmetic on the two specified parameters.

The debugger adds, subtracts, and multiplies the two parameters; divides the second parameter by the first;
and then displays the results on one line. The debugger does 32-bit multiplication and displays the result as
doublewords. The debugger displays the result of division as a 16-bit quotient and a 16-bit remainder.

Parameter Description
word Specifies a 16-bit word parameter.

Example
The following example performs the calculations on 300h and 100h:

h 300 100
The resulting display is the following:

+0400 -0200 *0000 0003 /0003 0000

i WDEB386 command
i word

The i command accepts and displays 1 byte from a specified port.

Parameter Description
word Specifies the 16-bit port address.

Example
The following example displays the byte at port address 2F8h:

i2F8

j WDEB386 command
j expr ["cmds"]

The j command executes the specified commands when the specified expression is TRUE. If expr is
FALSE, the debugger continues to the next command line (excluding the commands in cmds).

The j command is useful in breakpoint commands to conditionally break execution when an expression
becomes TRUE.

Parameter Description
expr Evaluates to a Boolean TRUE or FALSE.
cmds Specifies a list of debugger commands to be executed when expr is TRUE. The list must

be enclosed in single or double quotation marks. You must separate optional commands
with semicolons (;). Single commands do not require quotation marks.

Example
The following example causes execution to break if AX does not equal zero when the breakpoint is
reached:

bp 167:1454 "J AX == 0;G"
The following example displays the registers and continues execution when the byte pointed to by DS:SI +
3 is equal to 40h; otherwise, it displays the descriptor table:

bp 167:1462 "J BY (DS:SI+3) == 40 'R;G';DG DS"

k WDEB386 command
k[b|s|v] [addr] [addr]

This command displays the current stack frame. Each line shows the name of a procedure, its arguments,
and the address of the statement that called it. The command displays four 2-byte arguments by default.
The ka command changes the number of arguments displayed by this command.

Using the k command at the beginning of a function (before the function prolog has been executed) gives
incorrect results. The command uses the BP register to compute the current backtrace, and this register is
not correctly set for a function until its prolog has been executed.

Parameter Description
b Indicates the stack frame is 32 bits wide.
s Indicates the stack frame is 16 bits wide.
v Displays the verbose version of stack information--that is, information about stack

location and frame pointer values for each frame.
addr Specifies an optional stack-frame address (SS:BP) or an optional code address (CS:IP).

ka WDEB386 command
ka count

The ka command sets the number of arguments displayed for all subsequent stack trace commands. The
initial default value is 4.

Parameter Description
count Specifies the number of arguments to be displayed. The count parameter must be in the

range 0 through 1Fh.

kt WDEB386 command
k[b|s|v]t [addr]

This command displays the stack frame of the current task or the task specified by the addr parameter.
Each line shows the name of a procedure, its arguments, and the address of the statement that called it. The
command displays four 2-byte arguments by default. The ka command changes the number of arguments
displayed by this command.

Parameter Description
b Indicates the stack frame is 32 bits wide.
s Indicates the stack frame is 16 bits wide.
v Displays the verbose version of stack information--that is, information about stack

location and frame pointer values for each frame.
addr Specifies the segment address of the process descriptor block (PDB) for the task to be

traced. To obtain the addr value, use the .dq (Dump Task Queue) command. If addr is
not supplied, the kt command displays the stack frame of the current task.

la WDEB386 command
la

The la command lists the absolute symbols in the active map.

lg WDEB386 command
lg

The lg command lists the selector (or segment) and the name of each group in the active map.

Example
The lg command produces a display similar to the following:

#0090:0000 DOSCODE
#0828:0000 DOSGROUP
#1290:0000 DBGCODE
#16C0:0000 DBGDATA
#1A38:0000 TASKCODE
#1AD8:0000 DOSRING3CODE
#1AE0:0000 DOSINITCODE
#2018:0000 DOSINITRMCODE
#20A8:0000 DOSINITDATA
#23F8:0000 DOSMTE
#2420:0000 DOSHIGHDATA
#28D0:0000 DOSHIGHCODE
#3628:0000 DOSHIGH2CODE
#0090:0000 DOSCODE

lm WDEB386 command
lm

The lm command lists the symbol files currently loaded and indicates which one is active.

The last symbol file loaded is made active by default. Use the w (Change Map) command to change the
active file.

Example
The lm command returns a display similar to the following:

COMSAM2D is active.
DISK01D.

ln WDEB386 command
ln [addr]

The ln command lists the symbol nearest the specified address. The command lists the nearest symbol
before and after the specified addr parameter. This command also shows line-number information if it is
available in the symbol file.

Parameter Description
addr Specifies any valid instruction address. The default value is the current disassembly

address.

Example
The ln command without the addr parameter displays the nearest symbols before and after the current
disassembly address. The output looks similar to the following:

6787 VerifyRamSemAddr + 10
67AA PutRamSemID - 13

ls WDEB386 command
ls group-name | name-chars | *

The ls command lists the symbols in the specified group or lists names that match the search specification
in all groups. The only valid wildcard is a single asterisk (*) as the last character on the command line; all
other characters are ignored.

Parameter Description
group-name Names the group that contains the symbols you want to list.
name-chars Specifies the beginning characters of the symbols you want to list.

Example
The following example displays all the symbols in the DOSRING3CODE group:

ls DOSRING3CODE
Symbols are displayed in a format similar to the following:

0000 Sigdispatch
001A LibInitDisp
The following example displays all the symbols that begin with the string vkd:

ls vkd*
Group names are displayed as they are searched, in a form similar to the following:

GROUP: [0028] CODE
60003A74 VKD_Control_Debug

GROUP: [0030] DATA
6001DFFC VKD_CB_Offset

GROUP: [0030} IDATA
The following example displays the address and group for the symbol VMM_base:

ls vmm_base

m WDEB386 command
m range addr

The m command moves a block of memory from one memory location to another.

Overlapping moves--those in which part of the block overlaps some of the current addresses--are always
performed without loss of data. Addresses that could be overwritten are moved first. For moves from
higher to lower addresses, the sequence of events is first to move the data at the block's lowest address and
then to work toward the highest. For moves from lower to higher addresses, the sequence is first to move
the data at the block's highest address and then to work toward the lowest.

Note that if the addresses in the block being moved will not have new data written to them, the data that
was in the block before the move will remain. The m command copies the data from one area into another,
in the sequence described, and writes over the new addresses--hence, the importance of the moving
sequence.

To review the results of a memory move, use the d (Display Memory) command, specifying the same
address you used with the m command.

Parameter Description
range Specifies the block of memory to be moved.
addr Specifies the starting address at which the memory is to be relocated.

Example
The following example first moves the data at address CS:110 to CS:510 and then moves the data at CS:
10F to CS:50F, and so on, until the data at CS:100 is moved to CS:500:

mCS:100 110 CS:500

o WDEB386 command
o word byte

The o command writes a byte to a 16-bit port address.

Parameter Description
word Specifies the 16-bit port address to be written to.
byte Specifies the 8-bit value to be written to the port.

Example
The following example writes the byte value 4Fh to output port 2F8h:

o 2F8 4F

p WDEB386 command
p[n] [=addr][count]

The p command executes the instruction at a specified address and displays the current values of all the
registers and flags (whatever the zd command has been set to). It then executes the default command
string, if any.

The p command is identical to the t (Trace Instructions) command, except that it automatically executes
and returns from any calls or software interrupts it encounters. The t command always stops after
executing into the call or interrupt, leaving execution control inside the called routine.

Parameter Description
n Suppresses the register display so just the assembly line is displayed. The suppression

results only if the default command, zd, is set to a normal setting, r.
addr Specifies the starting address at which to begin execution. If you omit the optional addr

parameter, execution begins at the instruction pointed to by the CS and IP registers. Use
the equal sign (=) only if you specify addr.

count Specifies the number of instructions to execute before stopping and executing the
default command string. The command executes the default command string for each
instruction before executing the next.

Example
The following example executes the instruction pointed to by the current CS and IP register values before
it executes the default command string:

p
The following example executes the instruction at address CS:120 before it executes the default command
string:

p=120

r WDEB386 command
r reg=word

The r command displays the contents of one or more central processing unit (CPU) registers and allows
the contents to be changed to new values. If you specify the reg parameter with the r command, the 16-bit
value of that register is displayed in hexadecimal format followed by a colon (:) prompt on the next line.
You can then enter a new word value for the specified register or press ENTER if you do not want to change
the register value.

If you specify f for reg, the debugger displays the flags in a row at the beginning of a new line and displays
a hyphen (-) after the last flag.

You can type new flag values in any order as alphabetic pairs. You do not have to leave spaces between
these values. To terminate the r command, press ENTER. Any flags for which you did not specify new
values remain unchanged.

If you type more than one value for a flag or enter an invalid flag name, the flags up to the error in the list
are changed and those flags at and after the error are not changed. In addition, 80386 Debugger returns the
following error message:

Bad Flag
Parameter Description
reg Specifies the register to be displayed. If you omit reg, the debugger displays the contents

of all registers and flags along with the next executable instruction.
word Specifies the new value for the register. For the Flags register, set or clear a flag by

using one of the following names:

Flag code Meaning
OV Overflow set
NV Overflow clear
DN Direction decrement
UP Direction increment
EI Interrupt enabled
DI Interrupt disabled
NG Sign negative
PL Sign positive
ZR Zero set
NZ Zero clear
AC Auxiliary carry set
NA Auxiliary carry clear
PE Parity even
PO Parity odd
CY Carry set
NC Carry clear
NT Nested task switch (on and off)
For the machine status word (MSW) register, use the following names to set a flag:

Flag name Action
TS Sets the task switch bit.
EM Sets the emulation processor extension bit.
MP Sets the monitor processor extension bit.
PM Sets the protected-mode bit.

Comments
Setting the protected-mode bit from within the debugger does not set the target system to run in protected
mode. The debugger simulates the setting. To configure the target system to run in protected mode, you
would have to set the PM bit in the MSW register and reset the target system to restart in protected mode.

Example
The r command without parameters produces a display similar to the following:

AX=0698 BX=2008 CX=2C18 DX=18AB SP=1B7A BP=00FF SI=0020 DI=10CD
IP=0450 CS=18B0 DS=1BE8 ES=0DA8 SS=0048 NV UP DI PL NZ NA PONC
GDTR=01BE80 3687 IDTR=01F508 03FF TR=0010 LDTR=0028 IOPL=3 MSW=PM
18B0:0450 C3 RET
The following example displays each flag with a two-letter code. To change any flag, type the two-letter
code that inverts the setting. The flags are either set or cleared.

rf
The example produces a display similar to the following:

NV UP DI NG NZ AC PE NC - _
To change the value of a flag's setting, type the two-letter code that inverts the setting for that flag. The
following example changes the sign flag to positive, enables interrupts, and sets the carry flag:

NV UP DI NG NZ AC PE NC - PLEICY
The following command modifies the MSW bits:

rmsw
Then 80386 Debugger displays the status of the MSW register and prints a colon on the next line.

s WDEB386 command
s range list | "string"

The s command searches an address range for a specified list of bytes or an ASCII character string.

You can include one or more bytes in list, but multiple bytes must be separated by a space or comma.
When you search for more than one byte, the command returns the address of only the first byte in the
string. When list contains only one byte, the debugger displays the addresses of all occurrences of the byte
in range.

Parameter Description
range Specifies the block of memory to be searched.
list Specifies one or more byte values to search for.
string Specifies an ASCII character string to be searched for. The string must be enclosed in

quotation marks.

Example
The following example searches for byte 41h in the address range CS:100 to CS:110:

sCS:100 110 41
If it finds the value, this command produces a display similar to the following:

04BA:0104
04BA:010D

t WDEB386 command
t[a|c|n|s|x|z][=start_addr][count][addr]

The t command executes one or more instructions along with the default command string and then
displays the decoded instruction. If you include the start_addr parameter, tracing starts at the specified
address. Otherwise, the command steps through the next machine instruction and then executes the default
command string.

The t command uses the hardware trace mode of the Intel microprocessor. Consequently, you can also
trace instructions stored in read-only memory (ROM).

Parameter Description
a Indicates that an ending address is specified for the trace. Instructions are traced until the

address in addr is reached.
c Suppresses all output and counts instructions traced. An ending address is required for

this command. Instructions are traced until the address in addr is reached.
n Suppresses the register display so just the assembly line is displayed. This works only if

the default command, zd, is set to r (the normal setting).
s Suppresses output; the instruction and count are displayed for each call and the return

from that call.
x Forces the debugger to trace regions of code known to be untraceable

(_PGSwitchContext, for example).
z Allows original trap handler address to be traced into without having to unhook the

exception. Use this option instead of vcp d; t; vsp d.
start_addr Specifies the instruction address at which to start tracing. The equal sign (=) is required.
count Specifies the number of instructions to execute and trace.
addr Specifies the instruction address at which to stop tracing.

Example
The following example traces the current position (04BA:011A) and uses the default command string (r
command) to display registers:

t
The resulting output is similar to the following:

AX=0E00 BX=00FF CX=0007 DX=01FF SP=039D BP=0000 SI=005C DI=0000
IP=011A CS=04BA DS=04BA ES=04BA SS=04BA NV UP DI NG NZ AC PENC
GDTR=01D700 3677 IDTR=020D7A 03FF TR=0010 LDTR=0028 IOPL=3 MSW=PM
04BA:011A CD21PUSH 21
The following command causes the debugger to execute 16 (10h) instructions beginning at 011A in the
current selector:

t=011A 10
The debugger executes and displays the results of the default command string for each instruction. The
display is scrolled until the last instruction is executed. Press the CTRL+S key combination to stop the
scrolling and CTRL+Q to resume.

u WDEB386 command
u [range]

The u command disassembles bytes and displays the source statements, with addresses and byte values,
that correspond to them.

The display of disassembled code looks similar to a code listing for an assembled file. If you type the u
command by itself, 20h bytes are disassembled at the first address after the one displayed by the previous
u command.

Parameter Description
range Specifies the block of memory in which instructions are to be disassembled. If no range

is given, the command disassembles the next 20h bytes.

Example
The following example disassembles and displays 20h bytes from the specified address:

uCS:046C
The resulting display is similar to the following:

1A60:046C C3RET
1A60:046D 9A6B3E100D CALL 0D10:3E6B
1A60:0472 33C0 XOR AX,AX
1A60:0474 50PUSH AX
1A60:0475 9DPOPF
1A60:0476 9CPUSHF
1A60:0477 58POP AX
1A60:0478 2500F0 AND AX,F000
1A60:047B 3D00F0 CMP AX,F000
1A60:047E 7508 JNZ 0488
1A60:0480 689C26 PUSH 269C
1A60:0483 9AF105100D CALL 0D10:05F1
If the bytes at some addresses are altered, the disassembler alters the instruction statements. You can also
use the u command for the changed locations, for the new instructions viewed, and for the disassembled
code used to edit the source file.

v WDEB386 command
v

The v command displays the current 80386 Debugger version number and date.

vc WDEB386 command
vc[n | p | r | v] number[,number [,...]]

The vc command clears the specified interrupt vector and reinstalls the previous interrupt vector.

Parameter Description
n Removes the beep from traps that beep when encountered; does not clear the traps.
p Clears protected-mode vectors only.
r Clears real-mode vectors only.
v Clears virtual 8086 (V86) mode vectors only.
number Specifies the interrupt vector to clear.

vl WDEB386 command
vl[n | p | r | v]

Lists the interrupt vectors that the debugger intercepts. Vectors that have been set with the vt command (as
opposed to vs) are listed with an asterisk (*) following the vector number.

Parameter Description
n Lists the traps that beep when encountered.
p Lists the protected-mode vectors only.
r Lists the real-mode vectors only.
v Lists the virtual 8086 (V86) mode vectors only.

vo WDEB386 command
vo[n | p | r | v]

The vo command lists interrupt vectors in the display format based on the newvec option. For details, see
the y command.

Parameter Description
n Lists the traps that beep when encountered.
p Lists the protected-mode vectors only.
r Lists the real-mode vectors only.
v Lists the virtual 8086 (V86) mode vectors only.

vs WDEB386 command
vs[n | p | r | v] number[,number[,...]]

The vs command adds a new interrupt vector to the list of intercepted vectors. Vectors set by this
command do not intercept interrupts that occur at ring 0.

Parameter Description
n Lists the traps that beep when encountered.
p Lists the protected-mode vectors only.
r Lists the real-mode vectors only.
v Lists the virtual 8086 (V86) mode vectors only.
number Specifies the interrupt vector to intercept.

vt WDEB386 command
vt[n | p | r | v] number[,number[,...]]

The vt command adds a new interrupt vector to the list of intercepted vectors.

Parameter Description
n Lists the traps that beep when encountered.
p Lists the protected-mode vectors only.
r Lists the real-mode vectors only.
v Lists the virtual 8086 (V86) mode vectors only.
number Specifies the interrupt vector to intercept.

w WDEB386 command
w [map-name]

The w command changes the active map file.

Parameter Description
map-name Specifies the name of the map file you want to make active. Use the lm (List Map)

command to display a list of available map files.
If map-name is not specified, the loaded maps are displayed and the user is prompted to
select a map by pressing its corresponding number.

Example
The lm command can be used to display the loaded map files in a form similar to the following:

COMSAM2D is active.
DISK01D.
Then the following command can be used to change the active map file to DISK01D:

w DISK01D
The following command displays the list of loaded maps:

w
The resulting display is similar to the following, prompting the user to type the number corresponding to
the map to activate:

1. KERNEL
2. Win386 is active
activate which map?
In this case, pressing 1 activates the KERNEL map; pressing 2 leaves the Win386 map activated; and
pressing the SPACEBAR leaves the current map activated. Any other key is ignored, and the debugger will
continue to wait for input.

wa WDEB386 command
wa map-name

The wa command adds the specified map to the list of active maps.

Parameter Description
map-name Specifies the map to add to the list of active maps.

wr WDEB386 command
wr map-name

The wr command removes the specified map from the list of active maps.

Parameter Description
map-name Specifies the map to remove from the list of active maps.

y WDEB386 command
y[? | option]

The y command changes the debugger configuration. The following list describes the available
configuration options. All settings are toggles.

Parameter Description
? Displays a list of supported options.
option Following are the available configuration options:

/a Controls automatic symbol loading. If this option is set, Windows
will not load symbols automatically.

/n Sets the following options:

codebytes
dislwr
int3line
newprompt
newreg
newvec
symaddrs

/v Controls segment load notification messages. If this option is set, all
segment load notifications will be displayed.

386env Controls the size of addresses, registers, and so on when displayed.
When this option is on, addresses, registers, and so on are shown in
32-bit format; otherwise, they are shown in 16-bit format.

codebytes Causes the disassembler to display the code bytes along with the
disassembled instructions.

disaddr Causes the disassembler to display the disassembly address.
disline Causes the disassembler to display the filename and line number of

each operation code (opcode).
dislwr Controls the disassembler's lowercase option. When the flag is on,

disassembly is in lowercase.
int3line Causes the disassembler to display the filename and line number on

int 3 instructions.
newprompt Causes 80386 Debugger to produce a double prompt when paging is

enabled and a nesting level if the debugger is reentered.
newreg Controls the format of the register display.
newvec Controls the display format for the intercepted interrupt vectors.
regterse Controls the number of registers displayed by the r (Register Dump)

command. In the 80386 environment, when regterse is on, only the
first three lines are displayed (instead of the normal six lines plus
disassembly line). In the 80286 environment (386env off), only the
first two lines are displayed (instead of the normal three lines plus
disassembly line).

scrncols Sets the number of screen columns in the debug display. The default
is 79 columns.

scrnlines Sets the number of screen lines in the debug display. The default is 24
lines.

skipint3s Causes the debugger to ignore inline int 3 instructions.
symaddrs Causes the disassembler to display symbol values along with the

symbols.
teftibase Sets the base port address for the timing card.

z WDEB386 command
z

Replaces the instruction bytes of the current int 3 instruction or the previous int 1 instruction with nop
instructions. This allows the user to avoid int 1 or int 3 instructions that were assembled into the
executable file by breaking into the debugger more than once.

zd WDEB386 command
zd

The zd command executes the default command string.

The default command string is initially set to the r (Display Registers) command by the debugger. The
default command string is executed every time a breakpoint is encountered during execution of the
application or whenever a p (Program Trace) or t (Trace Instructions) command is executed.

Use the zl command to display the default command string and the zs command to change the default
command string.

zl WDEB386 command
zl

The zl command displays the default command string.

Example
The following example displays the default command string:

zl
The resulting output is similar to the following:

"R"

zs WDEB386 command
zs "string"

The zs command makes it possible for you to change the default command string.

Parameter Description
string Specifies the new default command string. The string must be enclosed in single or

double quotation marks. You must separate the debugger commands within the string
with semicolons.

Example
The following example changes the current default command string to an r (Display Register) command
followed by a c (Compare Memory) command:

zs "r;c100 L 100 300"
The following example begins execution whenever an int 3 instruction is executed in your test application.
This example executes a g (Go) command every time an int 3 instruction is executed.

zs "j (by cs:ip) == cc 'g'"
You can use zs as follows to set up a watchpoint:

zs "j (wo 40:1234) == 0eeed;t"
This command traces until the word at 40:1234 is not equal to 0EEED. This does not work if you are
tracing through the mode switching code in MS-DOS or other sections of code that cannot be traced.

CodeView for Windows
The Microsoft CodeView for Windows (CVW) debugger is a powerful, easy-to-use tool for the Microsoft
Windows operating system. With CVW, you have the power to test the execution of your application and
examine your data simultaneously. You can isolate problems quickly because you can display any
combination of variables--global or local--while you interrupt or trace an application's execution.

CVW provides a variety of ways to analyze an application. You can use the debugger to examine source
code, disassemble machine code, or examine a mixed display that shows you precisely which machine
instructions correspond to each of your C-language statements. You can also monitor the occurrence of
specific Windows messages.

CVW is similar to Microsoft CodeView (CV) version 3.0 for Microsoft®MS-DOS®.If you are familiar
with CV for MS-DOS, see Differences Between CVW and CodeView for MS-DOS for a concise
description of the unique features of CVW.

This topic serves as a complement to the CVW Help system. A significant portion of the CVW
documentation is online. For information about using the CVW Help system, see Accessing Help.

Using CVW with a Single Monitor

CodeView for Windows version 3.07 allows you to debug Windows applications with a single monitor.
See Using Codeview with a Single Monitor for more information.

The following topics describe how to set up and use CodeView for Windows:

Requirements for Using CVW
Comparing CVW with Other Microsoft Debuggers
Preparing to Run CVW
Starting a Debugging Session
Saving Session Information
Using Codeview with a Single Monitor
Working with the CVW Screen
Getting On-line Help in CVW
Displaying Program Data
Modifying Program Data
Controlling Program Execution
Handling Abnormal Termination of the Application
Ending a CVW Session
Advanced CVW Techniques
Customizing CVW with the TOOLS.INI File

Note: CVW supports the Microsoft Mouse or any fully compatible pointing device. This topic describes
both mouse and keyboard procedures.

Requirements for Using CVW

Requirements for Using CodeView for Windows

Following are the system requirements for using CVW:
Your system must have at least 384K of extended memory. For applications compiled with many

symbols, 1 megabyte or more of extended memory is required.
For 80386-based systems, the following required entry is automatically added to the [386enh]

section of your SYSTEM.INI file when you install CVW:

device=windebug.386
Your PATH environment variable must include the directory (or directories) containing CVW3.

EXE, CVWIN.DLL, WINDEBUG.386, and CVW3.HLP.

Using CVW with a Single Monitor

Using CVW with a Single Monitor

It is possible to use CVW version 3.07 with a single monitor. For single-monitor debugging, you must
have one of the following:

A VGA display. CVW directly supports single-monitor debugging with a VGA display in both 386
enhanced and standard modes. No additional driver is needed.

An EGA or other display with an 80386-based or 80486-based system running in 386 enhanced
mode (you must use a VGA display in standard mode). With a non-VGA (or nonstandard VGA) display,
you must install the VCV.386 driver. Place the driver in your Windows \SYSTEM directory and add the
following entry to the [386enh] section of your Windows SYSTEM.INI file:

device=vcv.386
Using CVW with a Secondary Monitor

You may find it more convenient to use a dual-monitor configuration. With the secondary monitor
connected to your system, you can view CVW output and Windows output simultaneously. (CVW
version 3.07 does not support a serial terminal.)

If you are using a secondary monochrome monitor for your CVW display, you need a monochrome
adapter card and monochrome display monitor.

To set up a secondary monitor for debugging, do the following:
1 Install a secondary monochrome adapter card in a free slot in your computer, and connect the

monochrome monitor to the port in the back.

2 Set the switches for the secondary display adapter to the appropriate settings, according to the
display adapter and computer manufacturers' recommendations.

To use the secondary monochrome monitor, you must specify the /2 option on the command line when
you start CVW.

If your system is an IBM Personal System/2, it must be configured with an IBM 8514/a display as the
primary monitor and a VGA display as the secondary monitor. To use this configuration, specify the /8
(8514/a) option on the cvw command line when you choose the Run command from the File menu in
Program Manager. If your VGA display is monochrome, you must also use the /b (black-and-white)
option. The 8514/a display serves as the Windows screen and the VGA display as the debugging screen.

Do not attempt to run non-Windows applications or MS-DOS Shell while running CVW with the /8
option.

By default, the debugging screen operates in 50-line mode in this configuration. If you specify the /8
option, you can optionally specify the /25 or /43 option for 25- or 43-line mode, respectively, on the VGA
debugging screen.

For more information about the command-line display options for CVW, see Display Options.

Comparing CVW with Other Microsoft Debuggers

Comparing CodeView for Windows with Other Microsoft Debuggers

If you have programmed in the Windows environment, you may have used the Microsoft Symbolic
Debugger (SYMDEB) to debug Windows applications. You may also be familiar with CodeView (CV)
for MS-DOS. This section describes the features and functions of CVW that are different from the
features and functions of these other Microsoft debugging tools.

Differences Between CVW and SYMDEB

CVW has all the capabilities of SYMDEB and a number of features that SYMDEB does not provide.
Following is a summary of the differences between SYMDEB and CVW:

SYMDEB feature CVW feature
Debugs applications in real mode. Debugs applications in protected mode.
Examines only global (static)
variables.

Examines both global and local variables.

Examines memory only when you
specify simple memory addresses or
symbol

.2Examines memory directly, but also uses the C-language expression
evaluators to combine any variables with higher-level-language syntax.
Provides only breakpoints to interrupt execution.

Does not set breakpoints or tracepoints
on Windows messages.

Sets breakpoints and tracepoints on Windows messages.

Works through command line. Works through command line or menus.

Differences Between CVW and CodeView for MS-DOS

With CVW, as with CV for MS-DOS, you can display and modify any variable, section of addressable
memory, or processor register; monitor the path of execution; and precisely control where execution
pauses. However, CV for MS-DOS and CVW differ in the following ways:

CV feature CVW feature
Starts from the MS-DOS prompt. Starts from within Windows.
Repeats a search when you press ALT+/. Repeats a search when you press CTRL+R.
Returns to MS-DOS upon termination. Returns to Windows under normal termination

conditions. An abnormal termination of CVW may cause
the Windows session to be terminated.

In addition to these differences, CVW includes the following unique features:
The ability to track your application's segments and data as Windows moves their locations in

memory. As items are moved, the debugger readjusts its symbol table accordingly.
The (lh) and (gh) type casts, which you can use to dereference local and global handles of a

memory object into near and far pointer addresses. For a more detailed description, see Dereferencing
Memory Handles.

Windows-specific commands. CVW has the following six new commands:

Command Action
wdl (Windows Display Local Heap) Displays a list of the memory objects in the local heap.
wdg (Windows Display Global Heap) Displays a list of the memory objects in the global heap.
wdm (Windows Display Modules) Displays a list of the application and library modules

available to Windows.
wwm (Windows Watch Message) Displays a Windows message or class of messages in

the CVW Command window.
wbm (Windows Breakpoint Message) Sets a breakpoint on a Windows message or class of

messages.
wka (Windows Kill Application) Terminates the task that is running. You should use this

command with caution.

Preparing to Run CVW

Preparing Windows Applications for Debugging

If you want to use symbolic information and access source files with CVW, preparation depends on your
compiler and linker.

Suppose, for example, that you were using Microsoft C Optimizing Compiler (CL), version 5.1 or later,
and Microsoft Segmented Executable Linker (LINK). You would compile with the /Zi option to produce
object files containing symbolic information and the /Od (disable optimization) option to ensure that
code generated by the compiler would match the statements in the C-language source code. You would
link with the /co option to produce an executable file containing symbolic information.

For further information about the settings you need to use, see the documentation that accompanied your
compiler and linker.

Setting Up the Debugging Version of Windows

You can run CVW with either the debugging or retail version of Windows. The debugging version
performs error checking that is not available with the retail version.

For example, the debugging version of Windows checks whether a window handle passed to a Windows
function is valid. When the debugging version of Windows detects such an error, it reports a fatal exit. If
this happens while you are running CVW, the fatal exit is reported in the CVW Command window. For
details about this error handling, see "Handling Abnormal Termination of the Application."

When you use the debugging version of Windows with CVW, the Windows core dynamic-link libraries
(DLLs) provide debugging support. These DLLs (KRNL286.EXE, KRNL386.EXE, GDI.EXE, and
USER.EXE) contain symbol information that makes it easier to determine the cause of an error. For
example, if your application were to cause a general protection (GP) fault while running with the
debugging version, Windows would display symbol information for the Windows code that was running
when the GP fault was detected. If, instead, your application were running with the retail version of
Windows, Windows would be able to display only CS:IP address values of the code that was being
executed when the fault occurred.

CVW does not automatically use these Windows core DLL symbols. To provide CVW access to these
symbols, you must specify one or more of the core DLLs either by using the /l command-line option or
in response to the DLL prompt within CVW. If you are running CVW with Windows in standard mode,
specify KRNL286.EXE. In 386 enhanced mode, specify KRNL386.EXE. For an explanation of how to
load symbols from a DLL, see "Starting a Debugging Session for Dynamic-Link Libraries."

To install the debugging version of Windows, run the batch program N2D.BAT from your Windows
system directory. This batch program replaces the nondebugging Windows core files with the debugging
versions. (It copies both symbol files and executable files.) When the batch program has finished
running, you start the debugging version of Windows by typing the win command. No special
command-line options are required. To restore the nondebugging version of Windows, follow the same
procedure using the batch program D2N.BAT.

Starting a Debugging Session
As with Windows applications, you can start CVW in any of several ways. For a complete description of
how to start Windows applications, see the Microsoft Windows User's Guide. To specify CVW options
and parameters, you must choose the Run command from the File menu in Program Manager. For more
information about CVW options, see "Command-Line Options."

You can run CVW to debug any of the following:
A single application
Multiple instances of an application
Multiple applications
DLLs

This section describes the methods you use to perform these tasks and summarizes the display options you
can specify when you start CVW from the Run dialog box. This dialog box appears when you choose the
Run command from the File menu in Program Manager.

Display Options

You must specify your display selection on the command line when you start CVW. The following list
describes the display options:

Option Display configuration
None VGA; debugging on single monitor
/v (VCV.386 must be installed) Non-VGA; debugging on single monitor
/2 Any; debugging on secondary monochrome monitor
/8 8514/a; debugging on secondary VGA monitor

Starting a Debugging Session for a Single Application

After you start CVW from Windows, CVW displays the Command Line dialog box. To start debugging
a single application, do the following:
1 In the Command Line dialog box, type the name of the application. If you do not include an

extension, CVW assumes the .EXE extension by default. You can also include any arguments that
the application recognizes. Following is the syntax of the command to start debugging a single
application:

app_name[.exe] [app_arguments]
2 Press ENTER, or choose the OK button.

CVW displays a dialog box with the following message:

Name any other DLL or executable with debug info.
3 Because you are debugging only one application and no DLLs, press ENTER or choose the OK

button. CVW loads the application and displays on the debugging screen the source code for the
application's WinMain function.

4 Set any breakpoints you want in the code.
5 To continue running the application, choose the <F5=Go> button on the status line or press the F5

key.

You can avoid startup dialog boxes and start CVW more quickly by specifying the application name as an
argument on the command line, as follows:
1 From the Program Manager File menu, choose Run.

2 Type the application name and any application arguments on the command line. Following is the
command syntax to start debugging a single application:

cvw [cvw_options] app_name[.exe] [app_arguments]
3 Press ENTER, or choose the OK button.

Starting a Debugging Session for Multiple Instances of an Application

Windows can run multiple instances of an application simultaneously, which can cause a problem for
your application. For example, two instances of an application might interfere with each other, or one
application might corrupt the data of the other.

To help you solve problems associated with running multiple instances of an application, CVW allows
you to debug multiple instances of an application at the same time. You can determine which instance of
an application you are looking at by examining the DS register at any breakpoint.

To debug multiple instances of an application, perform the following steps:
1 Start CVW as usual for your application.

2 Run one or more additional instances of your application by choosing Run from the Program
Manager File menu.

Specifying your application name more than once when starting CVW does not have the effect of loading
multiple instances of the application.

The breakpoints you set in your application apply to all instances of the application. To determine which
instance of the application has the current focus in CVW, examine the DS register.

Starting a Debugging Session for Multiple Applications

You can debug two or more applications at the same time, such as a dynamic data exchange (DDE)
client and server. However, when global symbols are shared by applications (such as the symbol name
WINMAIN), CVW resolves symbol references to the first application named when you started CVW.

Perform the following steps to debug two applications at the same time:
1 Start CVW as usual for a single application.

2 Type the name of the second application when CVW displays a dialog box with the following
message:

Name any other DLL or executable with debug info.
You must include the .EXE extension after the filename of the second application.

3 Set breakpoints in either or both applications, choosing Open Module from the CVW File menu to
display the source code for the different modules.

4 Press F5 to continue running the first application.

5 From the Program Manager File menu, choose Run, type the application name and any application
arguments, and press ENTER or choose the OK button to start execution of the second application.

An alternative way to load the symbols for a second application is to use the /l option on the command
line when you start CVW, as follows:

cvw /l second.exe first.exe
The /l option and the name of the second application must precede the name of the first application on the
command line in the Run dialog box. You can repeat the /l option for each application to be included in the
debugging session. Once CVW starts, choose the Run command from the Program Manager File menu to
start the second application.

Starting a Debugging Session for Dynamic-Link Libraries

You can debug one or more DLLs while you are debugging an application. However, no distinction is
made between global symbols shared by the applications and any DLLs.

Perform the following steps to debug a DLL at the same time as an application:
1 Start CVW as usual for the application.

2 Type the name of the DLL when CVW displays a dialog box with the following message:

Name any other DLL or executable with debug info.
CVW assumes the .DLL extension if you do not supply an extension with the filename. If your DLL
has another extension (such as .DRV), you must specify it explicitly.

3 From the File menu, choose Open Module to display the source code for the different modules. Set
breakpoints in either the application or the DLL.

4 Press F5 to continue running the application.

Alternatively, you can use the /l option to specify the DLL on the command line in the Run dialog box, as
follows:

cvw /l appdll appname.exe

The /l option and the name of the DLL must precede the name of the first application on the command
line. You can repeat the /l option for each DLL to be included in the debugging session. The .DLL
extension is the default extension for the /l option.

CVW allows you to debug the LibEntry initialization routine of a DLL. If your application implicitly loads
the library, a special technique is required to debug the LibEntry routine. An application implicitly loads a
DLL if the library routines are imported in the application's module-definition (.DEF) file or if your
application imports library routines through an import library when you link the application. An
application explicitly loads a DLL by calling the LoadLibrary function.

If you type in the Command Line dialog box the name of an application that implicitly loads a DLL, CVW
automatically loads the DLL and executes the DLL's LibEntry routine when CVW loads the application.
In this case, you have no opportunity to debug the LibEntry routine. To avoid this problem, perform the
following steps:
1 Instead of typing the name of your application in the Command Line dialog box, type the name of a

dummy application that does not implicitly load the library.

2 Type the name of your DLL, being sure to include the extension if it is not .DLL, when the following
message is displayed:

Name any other DLL or executable with debug info.
3 From the File menu, choose Open Module to display the source code for the library module

containing the LibEntry routine. Set breakpoints in the LibEntry routine.

4 From the File menu, choose Open Module to display the source code for other library or application
modules. Set breakpoints.

5 Press F5 to start running the dummy application.

6 Run the application that implicitly loads the DLL by choosing Run from the Program Manager File
menu. CVW will resume control when the breakpoint in the LibEntry routine is encountered.

Alternatively, you can use a command line of the following form to specify the dummy application, your
application, and the DLL:

cvw /l appdll dummyapp
After this command starts CVW, you need to perform steps 5 and 6 of the preceding procedure.

Command-Line Options

Following is the command-line syntax to start CVW from the Run dialog box, which is displayed when
you choose the Run command from the Program Manager File menu:

cvw [cvw_options] app_name[.exe] [app_arguments]

Parameters are not case-sensitive. Following are the command-line parameters:
cvw_options Specifies one or more options that modify how CVW runs. Options are not case-

sensitive. Valid options are as follows:
Option Purpose
/b Specifies a monochrome VGA display used as the secondary

display with an 8514/a display. This option is valid only in
conjunction with the /8 option.

/c command Specifies one or more commands that CVW is to carry out
when it loads the application specified by the app_name
parameter. The group of commands must be enclosed in double
quotation marks ("). Commands must be separated with
semicolons (;).

/l dll_or_exe Specifies the name of an application or DLL that has been
compiled and linked with CVW symbols. CVW assumes the
default filename extension .DLL if no extension is supplied.
You can use the /l option more than once to specify multiple
DLLs or executable files.

/m Disables the use of the mouse on the debugging screen. You
should use this option when you set breakpoints in code that is
responsive to mouse movements on the Windows application
screen.

/tsf Inverts save-state-file status for the current session.

/v Allows single-monitor debugging on a non-VGA display.
/2 Allows CVW to use a secondary monochrome monitor for

debugger output while displaying Windows output on your
primary monitor.

/8 Allows CVW to use an 8514/a display as the Windows display
and a VGA display for debugger output.

/25 Specifies 25-line mode for the secondary VGA display. This
option is valid only in conjunction with the /8 option.

/43 Specifies 43-line mode for the secondary VGA display. This
option is valid only in conjunction with the /8 option.

/50 Specifies 50-line mode for the secondary VGA display. This
option is valid only in conjunction with the /8 option. The /50
option is not required, because 50-line mode is the default for
the dual-monitor configuration.

app_name[.exe] Specifies the location and name of the application for which CVW is to load
symbols and issue an initial breakpoint. The .EXE extension is optional.

app_arguments Specifies one or more arguments recognized by the application that CVW loads.

Saving Session Information
After your session, CVW stores session information in a file called CURRENT.STS, which is located in
the directory pointed to by the INIT environment variable or in the current directory. If this file does not
already exist, CVW automatically creates it. Session information includes the following:

CVW display windows that were opened
Breakpoint locations

CVW saves this information, which becomes the default session information the next time you run a CVW
session for that application.

By default, this feature is enabled. You can disable this feature by placing the following entry in your
TOOLS.INI file:

[cvw]
StateFileRead: n
The /tsf option temporarily inverts this setting when you run CVW. That is, if TOOLS.INI disables this
feature, running CVW with the /tsf option saves session information for that session only.

If your Windows session abnormally terminates while CVW is running, the CURRENT.STS file may be
corrupted. This may cause CVW to fail when it first tries to execute the application you are debugging. If
this happens, delete the CURRENT.STS file before attempting to run CVW again.

Note: Microsoft Programmer's WorkBench (PWB) version 2.0 modifies the CURRENT.STS file. Once
PWB has modified this file, CVW cannot read the command settings.

Working with the CVW Screen

Working with the CodeView for Windows Screen

When you start CVW, the CVW menu bar and three display windows--the Local window, the Source
window, and the Command window--appear.

Using CVW Display Windows

CVW divides the screen into logically separate sections called display windows, so that a large amount
of information can be displayed in an organized and easy-to-read presentation. Each CVW display
window is a distinct area on your monitor that operates independently of the other display windows. The
name of each display window appears in the window's title bar. The following list describes the eight
types of CVW display windows:

CVW display window Purpose
Source window Displays the source code. You can open a second source window to view a

header file, another source file, or the same source file at a different
location.

Command window Accepts debugging commands.
Watch window Displays the current values of selected variables.
Local window Lists the values of all variables local to the current function or block.
Memory window Shows the contents of memory. You can open a second Memory window to

view a different section of memory.
Reg window Displays the contents of the microprocessor's registers, including flags.
8087 window Displays the registers of the coprocessor or its software emulator.
Help window Displays the Help options or any Help information that you request.

Opening Display Windows

Following are the two ways to open CVW display windows:
Choose a window from the View menu. (Note that you can open two Source windows and two

Memory windows.)
Perform an operation that automatically opens a window if it is not already open. For example,

selecting a Watch variable automatically opens the Watch window.

CVW continually and automatically updates the contents of all its display windows.

Selecting Display Windows

To select a window, click anywhere in it. You can also press F6 or SHIFT+F6 to move the focus from one
window to the next.

The selected window is called the active window and is marked in three ways:
The window's name is displayed in reverse video.
The cursor appears in the window.
Vertical and horizontal scroll bars appear in the window.

Typing commands in the Source window causes CVW to temporarily shift its focus to the Command
window. Whatever you type is appended to the last line in the Command window. If the Command
window is closed, CVW beeps in response to your input and ignores the input.

Adjusting Display Windows

CVW display windows often contain more information than they can display on the screen. Although
you cannot change the relative positions of the display windows, you can manipulate a selected window
by using the mouse, as follows:

To scroll through the information in the window, use the vertical or horizontal scroll bar.
To maximize a window so that it fills the screen, click the Maximize arrow at the right end of the

window's top border. To restore the window to its previous size and position, click the Maximize arrow
again.

To change the size of a window:

1 Position the cursor anywhere on the border between two windows.
2 Press and hold down the left mouse button.

Two double-headed arrows appear on the line.

3 Drag the mouse to enlarge or reduce the window.

To close a window, click the Close box at the left end of the top border.
The adjacent windows automatically expand to recover the empty space.

You can also use the following keyboard commands:

Keyboard command Description
PAGE UP or PAGE DOWN Scrolls through the text vertically.
CTRL+F10 Maximizes a selected display window.
CTRL+F8 Enables the arrow keys to resize the active window.
CTRL+F4 Removes a selected display window.

You can also choose the Maximize, Size, and Close commands from the View menu to manipulate a
selected display window.

The different CVW display windows can help you to conduct a variety of debugging activities
simultaneously. These activities are initiated and controlled with CVW debugging commands, which you
can type on the command line when you start CVW or choose from CVW menus.

Using the Menu Bar

In addition to display windows, the CVW screen includes a menu bar, which contains the following
menus. For a more detailed description of CVW menus and commands, see CVW Help.

Menu Contents
File This menu contains the following commands:

Command Description
Open Source Opens any text file, and reads it into the active Source window.
Open Module Opens the source file of any module for which CVW information has

been loaded, and reads it into the active Source window.
Exit Ends your CVW session, and returns you to Windows.

Edit This menu contains the following commands:
Command Description
Undo Retracts the most recent edit, and restores the current line to its previous

condition.
Copy Copies selected text to the paste buffer.
Paste Inserts text from the paste buffer into the active window at the present

cursor location, if that location is valid (for example, text cannot be pasted
into the Source window).

View This menu contains the following commands:
Command Description
Source Opens a new Source window.
Memory Opens a new Memory window.
Register Acts as a switch to open and close the Reg window.
8087 Acts as a switch to open and close the 8087 window.
Local Acts as a switch to open and close the Local window.
Watch Acts as a switch to open and close the Watch window.
Command Acts as a switch to open and close the Command window.
Help Acts as a switch to open and close the Help window.
Maximize Enlarges the active window so that it fills the screen.
Size Enables the arrow keys to resize the active window.
Close Closes the active window.

Search This menu contains the following commands:
Command Description
Find Searches for the next occurrence of a text string or a regular

expression that you supply in the Find dialog box.
Selected Text Searches for the next occurrence of a string of selected text.
Repeat Last Find Searches for the next occurrence of the string or regular expression

specified in the previous Find dialog box.
Label/Function Searches for a label definition or function in the active Source

window; if one is found, moves the input focus to the found label
definition or function in the active Source window.

Run This menu contains the following command:
Command Description
Animate Continues running an application while displaying the execution path in the

Source window. This type of display is called an animated trace display.
Watch This menu contains the following commands:

Command Description
Add Watch Adds an expression to the Watch window.
Delete Watch Deletes an expression from the Watch window.
Set Breakpoint Specifies where to interrupt execution of an application. You can set

breakpoints on lines of source code, variables, expressions, and
Windows messages.

Edit Breakpoints Performs editing functions on breakpoints; they can be added,
removed, modified, enabled, or disabled.

Quick Watch Selects one expression for the Quick Watch dialog box. For a
description of the Quick Watch window, see Section 4.9.4, "Using the
Quick Watch Command."

Options This menu contains the following commands:
Command Description
Source Window Sets the display characteristics of the active Source window.
Memory Window Sets the display characteristics of the active Memory window.
Trace Speed Sets the speed of tracing and execution of an application.
Case Sensitivity Turns case sensitivity on or off.
386 Instructions Reads all 80386 instructions as 32-bit values when this command is

checked; otherwise, reads all instructions as 16-bit values.
Calls The contents and size of this menu change as your application runs. The Calls menu shows

the currently executing routine and the trail of routines from which it was called. Your
application must execute at least the beginning of the WinMain function before CVW will
display the current routine. When you select one of the lines in the Calls menu, CVW
displays the source code corresponding to the calling location in the active source window.

Help This menu can be used to access Help.

Getting On-line Help in CVW

Accessing Help

CVW Help contains detailed information and examples not found in this topic. You can access Help by
choosing a command from the Help menu described in the preceding section or by selecting an item on
your screen and pressing F1. Help is available on such items as commands, menus, dialog boxes, and
error messages.

Displaying Program Data

Displaying Application Data

CVW offers a variety of ways to display variables, processor registers, and memory. You can also
modify the values of any of these items as the application runs. This section describes how to display the
following:

Variables in the Watch window
Expressions in the Watch window
Arrays and structures in the Watch window
A single expression in the Quick Watch dialog box
Windows messages in the Command window
Memory in the Memory window
Contents of registers in the Reg window

Displaying Variables

You can use the Watch window to monitor the value of a given variable throughout the execution of
your application. For example, do, for, and while loops can cause problems when they don't terminate
correctly. By displaying loop variables in the Watch window, you can determine whether a loop variable
achieves its proper value.

To add a variable to the Watch window, perform the following steps:
1 In the Source window, use the mouse or the arrow keys to position the cursor on the name of the

variable you want to watch.

2 From the Watch menu, choose Add Watch, or press CTRL+W.
An Add Watch dialog box appears with the selected variable's name displayed in the Expression
field.

3 Choose the OK button or press ENTER to add the variable to the Watch window.
If you want to add a variable other than the one shown in the dialog box, type its name over the one
displayed and press ENTER.

Adding a Watch variable opens the Watch window automatically if it is not already open. The Watch
window appears at the top of the screen.

When you add a local variable, the following message may be displayed:

Watch Expression Not in Context
This message appears when execution has not yet reached the C-language function that defines the local
variable. Global variables (those declared outside C-language functions) never cause CVW to display this
message; you can watch them from anywhere in the application.

If any two or more applications or DLLs you are debugging contain global variables with the same name,
CVW displays the variable of only the first application or DLL containing that variable name.

For example, if you are debugging App1 and App2, which both contain a global variable named hInst,
CVW always displays the value of hInst in App1--even if CVW stopped at a breakpoint in App2.

The Watch window can display as many variables as you like; the quantity is limited only by available
memory. You can scroll through information in the Watch window to view other variables. CVW
automatically updates all watched variables as the application runs, including those not currently visible.

To remove a variable from the Watch window, do the following:
1 From the Watch menu, choose Delete Watch.

2 Scroll through information in the Delete Watch dialog box, and select the variable you want to
remove.

Alternatively, you can position the cursor on any line in the Watch window and press CTRL+Y to delete the
line.

Displaying Expressions

You may have noticed that the Add Watch dialog box prompts for an expression, not simply a variable
name. You can add any valid combination of variables, constants, or operators as an expression for
CVW to evaluate and display in the Watch window.

The advantage of evaluating expressions is that you can reduce several variables to a single value, which
may be easier to interpret than the components that make it up. For example, imagine a for loop in

which the ratio between two variables, var1 and var2, should remain constant. You suspect that one of
these variables sometimes has the wrong value. To see when the quotient changes, without having to
mentally divide two numbers, you can specify the following expression for display in the Watch
window:

(var1 / var2)
You can also display Boolean expressions. For example, if the variable var is never supposed to be greater
than 100 or less than 25, the following expression evaluates to 1 (TRUE) when var exceeds its limits:

(var < 25 || var > 100)
Displaying Arrays and Structures

An application variable is usually a scalar quantity (a single character, integer, or floating-point value).
The variable appears in the Watch window with the variable name to the left, followed by an equal sign
(=) and the current value.

The Watch window provides a different way to display aggregate data items, such as arrays and
structures. Arrays and structures contain multiple values that can be arranged in one or more layers. You
can control how these variables appear in the Watch window--whether all, part, or none of their internal
structure is displayed.

For example, the array WordHolder initially appears in the Watch window in the following form:

+WordHolder[] = [...]
The brackets indicate that this variable contains more than one element. The plus sign (+) indicates that the
variable has more elements than are displayed on the screen. You can expand the variable to display any or
all of its components; this technique is called dereferencing.

To dereference (expand) the array, you can double-click anywhere on the displayed line or you can
position the cursor on the line and press ENTER. For example, if WordHolder is a six-character array
containing the word Basic, the Watch window display changes to the following:

-WordHolder[]
[0] = 66 'B'
[1] = 97 'a'
[2] = 115 's'
[3] = 105 'i'
[4] = 99 'c'
[5] = 0 ''

Note that both the individual character values and their ASCII decimal equivalents are listed. The minus
sign (-) indicates that no further expansion is possible. To contract the array, you can double-click its line
again or you can position the cursor on the line and press ENTER.

Displaying Character Arrays

If viewing a character array in this form is inconvenient, use either of the following methods to specify
the watchpoint:

Type the variable name, a comma (,), and the letter s, as shown in the following example:

WordHolder,s
CVW displays the contents of the array, as follows:

WordHolder,s[] = "Basic"
Cast the variable's name to a character pointer, as shown in the following example:

(char *)WordHolder
CVW displays the address of the array and its contents, as follows:

(char *)WordHolder = 0x8C7:0x0010 "Basic"
Displaying Multidimensional Arrays

You can display an array with more than one dimension. For example, imagine an integer array (5 by 5)
named Matrix, whose diagonal elements are the numbers 1 through 5 and whose other elements are zero.
Unexpanded, the array is displayed like this:

+Matrix[] = [...]
Double-click on the word Matrix (or position the cursor on that line and press ENTER) to change the
display to the following:

-Matrix[]
+[0][] = [...]
+[1][] = [...]
+[2][] = [...]
+[3][] = [...]
+[4][] = [...]

The actual values of the elements are not shown yet. You have to descend one more level to see them. For
example, to view the elements of the third row of the array, position the cursor anywhere on its subscript
line (the +[2] line) and press ENTER. The following example shows the third row of the array dereferenced:

-Matrix[]
+[0][] = [...]
+[1][] = [...]
-[2][]

[0] = 0
[1] = 0
[2] = 3
[3] = 0
[4] = 0
+[3][] = [...]
+[4][] = [...]

Dereferencing the fifth row (+[4]) of the array produces this display:

-Matrix[]
+[0][] = [...]
+[1][] = [...]
-[2][]

[0] = 0
[1] = 0
[2] = 3
[3] = 0
[4] = 0
+[3][] = [...]
-[4][]

[0] = 0
[1] = 0
[2] = 0
[3] = 0
[4] = 5
Any element of an array or structure can be independently expanded or contracted; you need not display
every element of the variable. If you want to view only one or two elements of a large array, specify the
particular array or structure elements in the Expression field of the Add Watch dialog box.

You can dereference a pointer in the same way as an array or structure. The Watch window displays the
pointer address, followed by all the elements of the variable to which the pointer currently refers. You can
display multiple levels of indirection (that is, pointers referencing other pointers) simultaneously.

Displaying Dynamic Array Elements

An array may have dynamic elements that change as some other variable changes. Just as you can
display a particular element of an array by selecting its subscript, you can also display a dynamic array
element by specifying its variable subscript. For example, suppose that the loop variable p is a subscript
for the array variable Catalogprice. The Watch window expression Catalogprice[p] displays only the
array element currently specified by the variable p, not the entire array.

You can mix constant and variable subscripts. For example, the expression BigArray[3][i] displays only
the element in the third row of the array to which the index variable i points.

Using the Quick Watch Command

Using the Quick Watch command is a convenient way to take a quick look at a variable or expression.
Because the Quick Watch dialog box can display only one variable at a time, it's best to use the Watch
window to view most variables.

Selecting the Quick Watch command from the Watch menu (or pressing SHIFT+F9) displays the Quick
Watch dialog box. If the cursor is in the Source, Local, or Watch window, the variable at the current
cursor position appears in the Quick Watch dialog box.

The Quick Watch display automatically expands arrays and structures to their first level. For example,
an array with three dimensions expands to the first dimension. You can expand or contract an element
just as you would in the Watch window; position the cursor on the appropriate line and press ENTER. If
the array has more lines than the Quick Watch dialog box can display, you can view the rest of the array
either by using the scroll bar or by pressing the DOWN ARROW or PAGE DOWN key.

To add a Quick Watch item to the Watch window, choose the Add Watch button. Arrays and structures
appear in the Watch window expanded as they were displayed in the Quick Watch dialog box.

You can also display a Quick Watch dialog box for a variable by typing two question marks and the
variable name in the Command window. For example, the following command shows the contents of the
Index variable:

?? Index
Tracing Windows Messages

You can trace occurrences of a Windows message or an entire class of Windows messages by using the
wwm (Windows Watch Message) command. CVW displays the messages in the CVW Command
window.

To trace a Windows message or message class, type the wwm command in the Command window. The
syntax for the command is as follows:

wwm winproc msgname | msgclasses

The winproc parameter is the symbol name or address of an application's window procedure. The
msgname parameter is the name of a Windows message, such as WM_PAINT. The msgclasses
parameter is a string of characters that identify one or more classes of messages to be traced. If
msgclasses is not specified, CVW traces all message classes. The class, if specified, is consistent with
those defined in Microsoft Windows Spy (SPY.EXE); they are as follows:

Message class Type of Windows message
c Clipboard
d DDE
i Initialization
m Mouse
n Input
s System
w Window management
z Nonclient

For example, the following command traces all mouse and input messages sent to the MainWndProc
procedure:

wwm MainWndProc mn
The following example illustrates how the CVW Command window displays a Windows message:

HWND:lc00 wParm:0000 lParm:000000 msg:000F WM_PAINT
Displaying Memory

Selecting the Memory command from the View menu opens a Memory window. You can have two
CVW Memory windows open at a time.

By default, memory is displayed as byte values in hexadecimal format, with 16 bytes per line. At the end
of each line is a second display of the same memory in ASCII form. Values that correspond to printable
ASCII characters (decimal values 32 through 127) are displayed in decimal format. Values outside that
range are represented by periods (.).

Byte values are not always the most convenient way to view memory. If the area of memory you are
examining contains character strings or floating-point values, you might prefer to view them in a directly
readable form. The Memory Window command on the Options menu displays a dialog box with the
display options in the following categories:

ASCII characters
Byte, word, or doubleword binary values
Signed or unsigned integer decimal values
Short (32-bit), long (64-bit), or 10-byte (80-bit) floating-point values

You can also cycle through these display formats directly by pressing SHIFT+F3.

If a section of memory cannot be displayed as a valid floating-point number, the value shown includes the
characters NAN (not a number).

Displaying Local and Global Memory Objects

CVW is also useful for displaying global and local memory objects in their respective Windows heaps.
You can use the wdg (Windows Display Global Heap) command to display the entire heap of global
memory objects in the Command window, or you can use the wdl (Windows Display Local Heap)
command to display the entire heap of local memory objects in the Command window.

For the wdg command, you can specify a global handle to display a partial list of the global heap. The
Command window displays the first five memory objects in the global heap, starting at the handle rather
than at the beginning of the heap. The following example illustrates the wdg output format:

(1) (2) (3) (4) (5) (6)
047E (0A7D) 00000020b MYAPP PRIV MOVEABLE DISCARDABLE

(7)
0A6D00000134b MYAPP DATA FIXED PGLOCKED=0001

(8)
0806 (0805) 00000600b PDB (0465)
(9)
FREE000000A0b
The following table describes the indicated fields:

Field Description
1 The value of the handle of a global memory object. Global memory objects are displayed in the

order in which Windows manages them, which is typically not in ascending handle order.
2 A memory selector. This value is not displayed if the selector value is the same as the global

handle, as is the case for DATA objects.
3 The length, in bytes, of the global memory object.
4 The name of the application or library module that allocated the object.
5 The type of global memory object, which can be the following:

Type Meaning
PRIV Application or DLL global data, or system object
CODE Code segment
DATA Data segment of application or DLL
FREE Free memory object in the global heap

6 One of the following memory allocation attributes:

MOVEABLE

MOVEABLE DISCARDABLE

FIXED
7 One of the following dispositions if the object is movable:

Disposition Meaning
LOCKED=number Number of times the object has been locked with any of the

Windows functions that lock data

PGLOCKED=number Number of times Windows has locked the object in its linear
address space

8 The handle of the application or library module that allocated the process descriptor block
(PDB).

9 A free memory object, followed by the size of the free object, in bytes.

The following example shows sample output of the wdl (Windows Display Local Heap) command:

(1) (2) (3)(4)
190A: 000A BUSY (16DA)
The following table describes the indicated fields:

Field Description
1 The offset of the local memory object in the local data segment
2 The length of the object, in bytes
3 One of the following dispositions:

Disposition Meaning
BUSY A currently allocated object
FREE A free object in the local heap

4 A local memory handle

Displaying Variables with a Live Expression

"Using the Quick Watch Command," explains how to display a specific array element by adding the
appropriate expression to the Watch window. It is also possible to view a particular array element or
structure element in the Memory window. This CVW display feature is called a live expression, because
the displayed area of memory changes to reflect the value of a pointer or subscript. For example, if
Buffer is an array and pBuf is a pointer to that array, then *pBuf points to the array element currently
referenced. A live expression displays the section of memory beginning with this element.

CVW displays live expressions in a Memory window. To create a live expression:
1 From the Options menu, choose Memory Window.

2 Select the Live Expression check box, and type the name of the element you want to view.
For example, if pszMsg is a pointer to a null-terminated array of characters and you want to see what
it currently points to, type the following:

*pszMsg
3 Choose the OK button, or press ENTER.

A new Memory window opens. The first memory location in the window is the first memory location of
the live expression. The section of memory displayed changes to the section the pointer currently
references.

You can use the Memory Window command on the Options menu to display the value of the live
expression in a readable form. This is especially convenient when the live expression represents strings or
floating-point values, which are difficult to interpret in hexadecimal form.

It is usually more convenient to view an item in the Watch window than as a live expression. However,
you might find some items easier to view as live expressions. For example, you can examine what is
currently at the top of the stack by specifying SS:SP as the live expression.

Dereferencing Memory Handles

In a Windows application, the LocalLock and GlobalLock functions are used to dereference memory
handles into near or far pointers. In a debugging session, you may know the handle of the memory
object, but might not know which near or far address it dereferences to, unless you are debugging in an
area where the application has just completed a LocalLock or GlobalLock function call. To get the near
and far pointer addresses for your local and global handles, use the (lh) and (gh) type casts. For example,
you could use (lh) to dereference the array in the following code:

HANDLE hLocalMem;
PBYTE pbArray;
hLocalMem = LocalAlloc(LMEM_MOVEABLE, 100);
pbArray = (PBYTE)LocalLock(hLocalMem);

/* Use the array.*/
LocalUnlock(hLocalMem);
To properly display this array in CVW, you can use the following command:

dw (lh)hLocalMem
If you set a breakpoint immediately after the LocalLock function, you could find out where the local object
was allocated in the application's data segment by looking at the value of the pbArray variable. To display
the value of pbArray, use the following CVW command:

dw pbArray
Note that you cannot rely on the value of pbArray anywhere else in the application, because it may change
or the memory object may move.

In the following example, the memory object lpszTest is a string:

HANDLE hGlobalMem;
LPSTR lpszTest;
hGlobalMem = GlobalAlloc(GMEM_MOVEABLE, 10L)
lpszTest = GlobalLock(hGlobalMem);
lstrcpy(lpszTest, "ABCDEF");
GlobalUnlock(hGlobalMem);
To display the contents of the string, you could use double type casting, as follows:

? *(char far*) (gh)lpszTest,s
The (gh) type cast returns a pointer to the far address of the global memory object.

Displaying the Contents of Registers

Selecting the Register command from the View menu (or pressing F2) opens a Reg window on the right
side of the screen. The current values of the microprocessor's registers appear in this window.

At the bottom of the window are a group of mnemonics representing the processor flags. When your
application first starts running, all values are shown in normal-intensity video. Any subsequent changes
are marked in high-intensity video. For example, suppose the overflow flag is not set when the
application starts. The corresponding mnemonic is NV, and it appears in normal-intensity video. If the
overflow flag is subsequently set, the mnemonic changes to OV and appears in high-intensity video.

Selecting the 386 Instructions command from the Options menu displays the contents of the registers as
32-bit values. This command is valid only if your computer uses an 80386 processor. Selecting this
command a second time changes the registers back to 16-bit values.

You can also display the registers of an 8087/80287/80387 coprocessor in a separate window by
choosing the 8087 command from the View menu. If your application uses a coprocessor emulator, the
emulated registers are displayed instead.

Displaying Windows Modules

The wdm (Windows Display Modules) command displays a list of all the DLL and task modules that
Windows has loaded. For each module, the list shows the module handle, the type of module (DLL or
task), the name of the module, and the path of the module.

Modifying Program Data

Modifying Application Data

You can easily change the values of variables, memory locations, or registers displayed in the Watch,
Memory, Reg, or 8087 window. Simply position the cursor at the value you want to change, and type the
appropriate value. If you change your mind, press ALT+BACKSPACE to undo the last change you made.

The Memory window displays the starting address of each line in segment:offset form. Altering the
address automatically shifts the display to the corresponding section of memory. If that section is not
used by your application, memory locations are displayed as double question marks (??). You cannot
change memory that is displayed as question marks.

You can also change the values of memory locations by modifying the right side of the memory display,
which shows memory values in ASCII form. For example, you can change a byte from decimal value 75
(ASCII value for uppercase K) to decimal value 85 (ASCII value for uppercase U). To do so, place the
cursor over the letter K, which corresponds to the position where the memory value is 75, and type U.

To change a processor flag, you can click its mnemonic or you can position the cursor on a mnemonic
and press any key (except TAB or SPACEBAR). Repeat these operations to restore the flag to its previous
setting.

Although you can alter most items from the Watch window, sometimes it is useful to modify a register
or memory directly. For example, if a function returns a value in the AX register, you can modify the
AX register to change a returned value without executing the function.

Warning: You should be especially cautious when altering machine-level values. The effect of
changing a register, flag, or memory location may vary from having no effect at all to causing
the operating system to crash.

Controlling Program Execution

Controlling Execution of Your Application

This section describes how you can use CVW to control the execution of your application.

Following are the three possible forms of execution in CVW:

Application execution Description
Continuous The application runs until either a previously specified breakpoint has

been reached or the application terminates normally.
Single-step The application pauses after each line of code has been executed.
Animated The application pauses after each line of code has been executed, but

execution continues after a short pause. The application continues to run
until you press a key.

Continuous Execution

With continuous execution, you can quickly execute bug-free sections of code. To initiate continuous
execution, either you can click the right mouse button on the line of code you want to debug or examine
in more detail or you can position the cursor on this line and then press F7. Execution proceeds at full
speed and pauses when it reaches the selected line.

You can also use a breakpoint to cause execution to pause at a specific line of code. CVW provides you
with several types of breakpoints to control your application's execution. The sections that follow
describe how to use breakpoints.

Selecting Breakpoint Lines

By specifying one or more lines as breakpoints, you can skip over the parts of the application that you
don't want to examine. Execution of the application proceeds at full speed up to the first breakpoint, at
which execution is interrupted; pressing F5 causes execution to continue up to the next breakpoint; and
so on. You can set as many breakpoints as you want, provided that you have available memory.

Following are several ways to set breakpoints:
Double-click anywhere on the desired breakpoint line. The selected line is highlighted to show that

it is a breakpoint. To remove the breakpoint, double-click on the line a second time.
Position the cursor anywhere on the line at which you want execution to pause. Press F9 to select

the line as a breakpoint and to highlight it. Press F9 a second time to remove the breakpoint and highlighting.
Display the Set Breakpoint dialog box by choosing the Set Breakpoint command from the Watch

menu. Select one of the breakpoint options that permits you to specify a line (location). The line on which
the cursor rests is the default breakpoint line in the Location field. If this line is not the location you want,
replace it by typing another line number in the Location field. When you type a new line number, make sure
that you precede it with a period.

Your application can call the Windows DebugBreak function to interrupt execution and return
control to CVW. When your application calls the DebugBreak function, execution may stop within the
DebugBreak code rather than in your application. You may have to single-step out of the DebugBreak code
and back into your application.

A breakpoint line must contain executable code. You cannot select a blank line, a comment line, or a
declaration line (such as a variable declaration or a preprocessor statement) as a breakpoint.

To set a breakpoint on a multiline statement, you must position the cursor on the last line of the statement.
If you try to set a breakpoint on any other line of the statement, CVW does not accept it.

If your compiler optimizes your code, some lines of code may be repositioned or reorganized for more
efficient execution. These changes can prevent CVW from recognizing the corresponding lines of source
code as breakpoints. Therefore, it is a good idea to disable optimization during development. You can
restore optimization once debugging is completed.

A breakpoint can also be set at a function or an explicit address. To set a breakpoint at a function, simply
enter the name of the function in the Set Breakpoint dialog box. To set a breakpoint at an address, enter the
address in CS:IP form.

If any of the applications or DLLs you are debugging share names for certain window procedures (such as
MainWndProc), you can refer by name only to the procedure that is defined in the first application or
DLL.

You can remove a breakpoint by choosing the Edit Breakpoints command from the Watch menu or by
selecting the breakpoint in the Source window and pressing F9. When your application pauses at a

breakpoint, you can continue execution by pressing F5. You cannot remove a breakpoint set by an
application calling the DebugBreak function.

Setting Breakpoint Values

Breakpoints are not limited to specific lines of code. CVW can also break execution when an expression
changes value or reaches a particular value. Use one of the following methods to set a breakpoint value:

To interrupt execution when an expression changes value, type the name of the expression in the
Expression field of the Set Breakpoint dialog box.

To interrupt execution when an expression reaches a particular value, use that value in the
expression you type in the Expression field of the Set Breakpoint dialog box.

For example, if you want the application to pause when a variable named looptest equals 17, type the
following in the Expression field:

looptest==17
The application pauses when this statement becomes true.

You can also use the Set Breakpoint dialog box to combine value breakpoints with line breakpoints so that
execution stops at a specified line only if an expression has simultaneously changed value or reached a
specified value.

For large variables (such as arrays and character strings), you can specify the number of bytes you want
checked (up to 32K) in the Length field.

Note: When a breakpoint is tied to a variable, CVW must check the variable's value after each machine
instruction is executed. This computational overhead slows execution greatly. For maximum speed
when debugging, either tie value breakpoints to specific lines or set value breakpoints only after
you have reached the section of code that needs to be debugged.

Setting Breakpoints on Windows Messages

You can also set a breakpoint on a Windows message or an entire class of Windows messages. By using
this feature, you can track your application's response to user input and window-management messages.

To set a breakpoint on a Windows message or message class, type the wbm (Windows Breakpoint
Message) command in the Watch window. The syntax for the command is:

wbm winproc msgname | msgclasses

The winproc parameter is the symbol name or address of an application's window procedure. The
msgname parameter is the name of a Windows message, such as WM_PAINT. The msgclasses
parameter is a string of characters that identify one or more classes of messages. If msgclasses is not
specified, CVW traces all message classes. If it is specified, the classes are consistent with those defined
in Microsoft Windows Spy (SPY.EXE); they are as follows:

Message class Type of Windows message
c Clipboard
d DDE
i Initialization
m Mouse
n Input
s System
w Window management
z Nonclient

For example, if your application is failing to refresh the client area of a window, you might set a
breakpoint on the WM_PAINT message so that you can watch your application's behavior as it processes
the message. The following command interrupts execution whenever the application's MainWndProc
procedure receives a WM_PAINT message:

wbm MainWndProc WM_PAINT
Using Breakpoints

This section shows how breakpoints can help you find the cause of a problem.

One of the most common bugs is a for loop that executes too many or too few times. If you set a
breakpoint that encloses the loop statements, the application pauses after each iteration. You can then

monitor the loop variable or critical program variables in the Watch or Local window to find the error in
loop processing.

You can specify that a breakpoint is to be ignored. To set the number of times a breakpoint is to be
ignored before execution is interrupted, perform the following steps:
1 From the Watch menu, choose Set Breakpoint.

2 In the Pass Count field of the Set Breakpoint dialog box, type the decimal number.

For example, suppose your application repeatedly calls a function to create a binary tree. You suspect that
something goes wrong approximately halfway through the process. You could mark the line that calls the
function as the breakpoint, then specify how many times this line is to be executed before execution
pauses. Running the application creates a representative (but unfinished) tree structure that can be
examined from the Watch window. You can then continue your analysis by using single-step execution,
which is described in the next section.

Another programming error is assignment of the wrong value to a variable. If you enter a variable in the
Expression field of the Set Breakpoint dialog box, execution is interrupted every time the variable changes
value.

Breakpoints make it possible for you to interrupt execution of an application so that you can assign new
values to variables. For example, if a limit value is set by a variable, you can change the value to see if it
affects the application's execution. Similarly, you can pass a variety of values to a switch statement to see
if they are correctly processed. This ability to alter variables provides an especially convenient way to test
new functions without having to write a stand-alone test application.

When your application reaches a breakpoint and you change a variable, you might want to watch each step
be executed while you check the value of that variable. This technique is called single-stepping.

Single-Step Execution

When single-stepping, CVW pauses after each line of code is executed. If a line contains more than one
executable statement, CVW executes all the statements on the line before pausing. The next line to be
executed is displayed in reverse video. You can use either the Trace command or the Step command to
single-step through an application.

To use Trace, press F8. Trace displays each step of every function for which CVW has symbolic
information. Each line of the function is a separate step. If CVW does not have symbolic information for
a function, the function runs in a single step.

To use Step, press F10. Step displays each step of the current function but does not step into function
calls. Instead, the called function runs as a single step.

You can alternate between Trace and Step as you like. Which method you should use depends on
whether you want to see what happens within a particular function.

Attempting to step or trace through Windows startup code while viewing assembly-language
instructions causes unpredictable results. To step through your application while viewing assembly-
language instructions, set a breakpoint at the WinMain function and begin stepping through the
application only after the breakpoint has been reached.

Using the Trace command to step out of a window procedure causes CVW to step into Windows system
code.

Animated Execution

To trace through the application continuously without having to press F8, choose the Animate command
from the Run menu. The speed of execution is controlled by the Trace Speed command on the Options
menu. You can interrupt animated execution at any time by pressing any key.

Jumping to a Particular Location

At times, you may wish to force the system to jump to a particular location in your application during
execution. For example, you may want to avoid executing code that you know has bugs, or you may
want to repeatedly execute a particularly troublesome portion of your application.

To jump to a specific location in your application, do the following:
1 From the Options menu, choose Source. Select the Mix Source and Assembly radio button and the

Show Machine Code check box.

2 In the Source window, view the line of source code to which you want to jump.
3 Examine the code offset of the first machine instruction for the assembled statement.

4 To change the IP register to this code offset, type the rip (Register IP) command in the command
window, supplying the value in hexadecimal format.

CVW highlights the line to which you have jumped.

Warning: Do not jump from one procedure to another. Jumping from one procedure to another
disrupts the stack.

Assembled source code for a given statement may rely on memory values and registers set in previous
instructions. If you cause execution to jump to a specific point in your application, values and registers
may not be correctly set, particularly if optimization was not disabled during compiling.

Interrupting Your Application

There may be times when you want to interrupt your application immediately. You can force an
immediate interruption of a CVW session by pressing CTRL+ALT+SYS RQ. You then have the opportunity
to change debugging options; for example, you can add breakpoints and modify variables. To resume
continuous execution, just press F5; to single-step, press F10.

You should take care when you interrupt the CVW session. For example, if you interrupt the session
while Windows code or other system code is being executed, attempting to use the Step command or the
Trace command could produce unpredictable results. When you interrupt the CVW session, it is usually
safer to set breakpoints in your code and resume continuous execution than to use Step or Trace.

An infinite loop in your code presents a special problem. Again, because you should avoid using Step or
Trace after interrupting your application, you should try to locate the loop by setting breakpoints in
places you suspect are in the loop.

Whether or not you locate the infinite loop, you will have to terminate your application. The wka
(Windows Kill Application) command terminates the task that is currently running. You should use the
wka command only when your application is the one being executed.

If your application is currently executing a module that contains symbol information, the CVW Source
window highlights the current instruction. However, if your application contains modules without
symbolic information, it is more difficult to determine whether the assembly-language code displayed in
the Source window belongs to your application or to another task.

In this case, use the wdg (Windows Display Global Heap) command, supplying the value in the CS
register as the parameter. CVW displays a listing that indicates whether the code segment belongs to
your application. If the code segment does belong to your application, you can use the wka command
without affecting other tasks. The wka command does not perform all the cleanup tasks associated with
the normal termination of a Windows application. For example, graphics device interface (GDI) objects
created during the execution of the application but not destroyed before you terminated the application
remain allocated in the systemwide global heap. This reduces the amount of memory available during
your Windows session. Because of this, you should use the wka command to terminate the application
only if you cannot terminate it normally.

The wka command simulates a fatal error in your application. Because of this, when you use the wka
command, Windows displays an error message. After you close the message box, Windows may not
release subsequent mouse input messages from the system queue until you press a key. If this happens,
the cursor moves on the Windows screen, but Windows does not appear to respond to the mouse. After
you press any key, Windows responds to all mouse events that occurred before you pressed the key.

Handling Abnormal Termination of the Application
Your application can terminate abnormally in one of two ways while you are debugging it with CVW. It
can cause a fatal exit, or it can cause a GP fault. In both cases, CVW regains control, giving you the
opportunity to examine the state of the system when your application terminated. In particular, you can
often determine the location in your application's code where the error occurred or which call caused the
error. CVW makes it possible for you to view registers, display the global heap, display memory, and
examine the source code.

Once you have determined where the error occurred, type the q (Quit) command in the Command window
to terminate CVW. In most cases, control returns to Windows.

Handling a Fatal Exit

If the abnormal termination was a fatal exit and the application was running with the retail version of
Windows, CVW displays a fatal exit code and the CS:IP register contains an address in the Windows
code itself. This small amount of information provides little to help you locate the last call that your
application made before the error was detected.

If, however, your application was running with the debugging version of Windows, the CVW Command
window displays a stack trace that is much more useful for finding the error in your source code.

After the stack trace appears in the CVW Command window, Windows prompts you with the following
message:

Abort, Break, or Ignore?
To locate the cause of the error, press the B key. This allows CVW to regain control from Windows.

In most cases, the stack trace will have been scrolled past the top of the CVW Command window; but
once CVW regains control, you can scroll the information in the window to examine the entire stack trace.
The following information appears at the top of the stack trace:

A fatal exit number. For more information about Windows debugging messages, see Appendix C,
"Windows Debugging Version."

The CS:IP address, the name of the Windows function where the error was detected, or the name
of the last Windows function called before the error was detected.

Following this information, additional Windows functions may be listed in the stack trace. Somewhere
near the top of the stack trace, a CS:IP address is listed without a Windows function name. In most cases,
this is the location in the source code of your application at which the call to a Windows function
occurred, triggering the fatal exit.

To examine this location in your source code, open or switch to a Source window and use the v (View)
command followed by the CS:IP address; be sure to precede both the segment and the offset with the
hexadecimal prefix 0x. For example, if CVW indicates that the error occurred at 07DA:0543 in your
application, type the following command:

v 0x07DA:0x0543
If the module at which the error occurred was compiled to produce object files containing symbolic
information, the CVW Source window displays the location in your code at which the errant call to a
Windows function occurred.

The first CS:IP address without a name in the stack trace may point to a location in your code without
symbols. For example, the code may be in a DLL you didn't specify with the /l command-line option or
when CVW prompted you for a DLL, or the address might be in a module that was not compiled to
produce symbolic information. In such cases, CVW reports that no source code is available. If this
happens, continue down the stack trace, using the v command to examine each unnamed CS:IP address.
You are likely to find a location in a module that was compiled to produce symbolic information and to
find this location made a call into one of your modules that was not compiled to produce symbolic
information.

Handling a General Protection Fault

When a general protection (GP) fault occurs, CVW displays a message in the Command window to
notify you of the event. If the GP fault occurred at an instruction in one of your modules, CVW displays
the corresponding source code if the module was compiled to produce symbolic information. You can
obtain information about the chain of calls leading up to the GP fault by using the CVW Call menu. This
menu displays a backtrace of calls in the form of a series of segments and offsets, starting at the most
recent call.

If your application was running with the debugging version of Windows, the backtrace shows function
names next to some of the segment:offset pairs. By examining the function names, you may be able to
determine where in your code the error occurred.

Ending a CVW Session

Ending a Session

To terminate a CVW session, you can choose the Exit command from the File menu or type the q (Quit)
command in the Command window.

You can also terminate your application without terminating CVW. While Windows is terminating the
application, it notifies CVW. CVW then displays the following message:

Program terminated normally (0)
The value in parentheses is the return value of the WinMain function. This value is usually the wParam
parameter of the WM_QUIT message, which in turn is the value of the nExitCode parameter passed to the
PostQuitMessage function.

If you were debugging more than one application or DLL, you can press F5 to continue the debugging
session.

Advanced CVW Techniques

Advanced Techniques

Once you are comfortable displaying variables, changing variables, and controlling the execution of
your application, you may want to experiment with the following advanced techniques:

Using multiple Source windows
Checking for undefined pointers
Handling register variables
Redirecting CVW input and output

Using Multiple Source Windows

You can have two Source windows open at the same time. The windows can display two different
sections of source code for the same application. They can both track CS:IP addresses, or one can
display a high-level listing and one can display an assembly-language listing. You can move freely
between the Source windows, executing a single line of source code or a single assembly-language
instruction at a time.

Checking for Undefined Pointers

Until a pointer has been explicitly assigned a value, its value is undefined. Its value can be completely
random, or it can be some consistent value (such as 1) that does not point to a useful data address.

Accessing a value through an uninitialized pointer address can cause inexplicable or erratic application
behavior, because the data is not being read from or written to the intended location. For example,
suppose that var1 is mistakenly written to the address specified by an uninitialized pointer and that then
var2 is written there. When var1 is read back, it does not have its original value, having been replaced by
var2.

Handling Register Variables

A register variable is stored in one of the microprocessor's registers, rather than in random-access
memory (RAM). This speeds up access to the variable.

A conventional variable can become a register variable in either of the following ways:
The variable is declared as a register variable. If a register is free, the compiler stores the variable

there.
The compiler stores a frequently used variable (such as a loop variable) in a register during

optimization to speed up execution.

Register variables can cause problems during debugging. As with local variables, they are visible only
within the function where they are defined. In addition, a register variable may not always be displayed
with its current value.

Usually, it is a good idea to turn off all optimization and to avoid declaring register variables until the
application has been fully debugged. Any side effects produced by optimization or register variables can
then be easily isolated.

Redirecting CodeView for Windows Input and Output

You can cause CVW to receive input from an input file and generate output to an output file. To redirect
CVW input and output, you can use the /c option on a command line of the following form to start
CVW:

cvw /c "<infile; t >outfile"

When you redirect input in this way, CVW carries out any commands in infile during startup. When
CVW exhausts all commands in the input file, focus automatically shifts to the Command window.

When you redirect output, it is sent to both outfile and the Command window. You can use the t
parameter before the right angle bracket (>) on the command line to send output to the Command
window. You can also redirect output from the command line after CVW has started.

Redirection is a useful way to automate CVW startup. Although redirection makes it possible for you to
keep a viewable record of command-line input and output, you cannot record mouse operations. Some
applications--particularly interactive ones--may need modification to allow for redirection of input to the
application itself.

Customizing CVW with the TOOLS.INI File

Modifying the TOOLS.INI File

To customize the behavior and user interface of CVW, modify the [cvw] section of your TOOLS.INI
file. The TOOLS.INI file is an ASCII text file. You should place it in a directory pointed to by the INIT
environment variable. (If you do not use the INIT environment variable, CVW looks for TOOLS.INI
only in the CVW source directory.)

Most TOOLS.INI customizations control screen colors, but you can also specify startup commands or
the name of the file that receives CVW output. The Help system contains complete information about all
the TOOLS.INI entries for CVW.

Monitoring DDE Transactions: DDESPY

DDESpy is a typical DDE monitoring application. Because DDE is a cooperative activity, DDE
monitoring applications must follow certain guidelines for your Windows system to operate properly while
they are in use. In particular, DDE monitoring applications should not perform DDE server or client
communications--problems may arise when the monitoring application intercepts its own communications.

The following topics describe how to set up and use DDESPY:

Output Options
Monitor Options
Tracking Options

DDESPY Output Options

The Output Menu

DDESpy can display DDE information in a window or on your debugging terminal or can save the
displayed information in a file for later use.

You use the Output menu to select where DDESpy is to send output. If you choose the File command,
you must specify the name of an output file. After you have chosen the File command once, DDESpy
prompts you for an output filename every time you restart the application.

From the Output menu, you can choose the Clear Screen command to clear the display window. You
can choose the Mark command to add text to the display as a marker--for example, before a DDE event
to make it easier to find the event in the output file.

DDESPY Monitor Options

The Monitor Menu

You use the Monitor menu to specify one or more types of DDE information that DDESpy is to display.
The following information can be displayed:

String Handle Data
Sent DDE Messages
Posted DDE Messages
Callbacks
Errors

The Dynamic Data Exchange Management Library (DDEML) passes information by using shared
memory. The contents of the shared memory depend on the type of DDE transaction. Several structures
have been defined to allow applications using DDE to access the information in the shared memory.
DDESpy displays the contents of the appropriate structure for the DDE activity being monitored.

Monitoring String Handle Data

Monitoring String-Handle Data

The DDEML uses the MONHSZSTRUCT structure to pass string-handle data. DDESpy displays the
following information from this structure:

Task (application instance)
Time, in milliseconds, since you started Windows
Activity type (create, destroy, or increment)
String handle
String contents

The following example shows a typical DDESpy display of string-handle data:

Task:0x94f, Time:519700, String Handle Created: c4a4(this is a test)
Task:0x94f, Time:526126, String Handle Created: c4aa(another test)

Monitoring Sent and Posted DDE Messages

Monitoring Sent or Posted DDE Messages

The DDEML uses the MONMSGSTRUCT structure to send and post DDE messages. DDESPY
displays the following information from this structure:

Task
Time
Handle of receiving window
Transaction type (sent or posted)
Message type
Handle of sending application
Other message-specific information

The following example shows a typical DDESpy display of DDE message activity:

Task:0x8df Time:642402 hwndTo=0x38dc Message(Sent)=Initiate:
hwndFrom=9224, App=0xc35d("Server")
Topic=*

Task:0x94f Time:642457 hwndTo=0x2408 Message(Sent)=Ack:
hwndFrom=9396, App=0xc35d("Server")status=c35d(fAck fBusy)
Topic=Item=0xc361("System")

Monitoring Callbacks

Monitoring Callbacks

The DDEML uses the MONCBSTRUCT structure to pass information to application callback functions.
DDESpy displays the following information from this structure:

Task
Time
Transaction type
Exchanged-data format, if any
Conversation handle
String handles and their referenced strings
Transaction-specific data

The following example shows a typical DDESPY display of callback activity:

Task:0x8df Time:2882628 Callback:
Type=Advstart, fmt=0x1("CF_TEXT"), hConv=0xc24b4,
hsz1=0xc361("System") hsz2=0xc4df("xxcall"), hData=0x0,
lData1=0x83f0000, lData2=0x0
return=0x0

Monitoring Errors

Monitoring Errors

When an error occurs during a DDE transaction, the DDEML places the error value and associated
information in a MONERRSTRUCT structure. DDESpy uses this structure to display the following
information about the error:

Task (the handle of the application that caused the error)
Time
Error value and name

Tracking Options
DDESPY can also display information about aspects of DDE communication in your Windows system:

String handles
Active conversations
Active links
Registered servers

You use the Track menu to specify which DDE activity DDESpy is to track. When you choose a command
from the Track menu, DDESpy creates a separate window for the display of information in conjunction
with the DDE functions. For each window created, DDESpy updates the displayed information as DDE
activity occurs. Events that occurred prior to creation of the tracking window are not displayed in the
tracking window.

DDESpy can sort the displayed information in the tracking window. If you select the heading for a
particular column in the tracking window, DDESpy will sort the displayed information based on the
column you selected. This can be useful if you are searching for a particular event or handle.

Tracking String Handles

Windows maintains a systemwide string table containing the string handles applications use in DDE
transactions. To display the system string table so that the string, the string handle, and the string usage
count are shown, choose the String Handles command from the Track menu.

Tracking Active Conversations

To see a display of all active DDE conversations in your Windows system, choose the Active
Conversations command from the Track menu. The Active Conversations window shows the server
name, the current topic, and the server and client handles for each active conversation.

Tracking Active Links

To see a display of all active DDE advise loops, choose the Active Links command from the Track
menu. The Active Links window shows the server name, topic, item format, transaction type, client
handle, and server handle for every active advise loop in your Windows system.

Tracking Registered Servers

Server applications use the DdeNameService function to register with the DDEML. When the DDEML
receives the DdeNameService function call, it adds the server name and an instance-specific name to a
list of registered servers. To see a list of registered servers, choose the Registered Servers command
from the Track menu.

Viewing the Heap: HEAPWALK

The following topics describe how to use HEAPWALK:

The HEAPWALK Window
Performing File Operations
Walking the Heap
Sorting Memory Objects
Displaying Memory Objects
Allocating Memory
Determining Memory Size
Suggestions for Using HEAPWALK

The HEAPWALK Window

The Heap Walker Window

When you start Heap Walker, it scans the global heap and displays information about the allocated and
free memory objects.

Heap Walker displays the following information about each object:

Column heading Information displayed
ADDRESS Address of the memory object (displayed in hexadecimal format).
HANDLE Handle of the memory object (displayed in hexadecimal format).
SIZE Size of the memory object, in bytes (displayed in decimal format).
LOCK Lock count of the object. There are two types of lock counts: page-locked (P) and

object-locked (L). Page-locked means that virtual memory will not be used to
page the object (pieces of the object will not be written to the swap file); object-
locked means the entire object will not be discarded.

FLG D if the object is discardable; F if the object is fixed (not movable or discardable)
.

HEAP Y if the object has a local heap.
OWNER Owner of the object (name of the module that allocated the object).
TYPE Type of object (code segment, data segment, resource, and so on). Heap Walker

searches for symbol files and lists names for segments whenever corresponding
symbol files are found.

Performing File Operations: The File Menu
The following commands are on the File menu:

Command Action
Save Saves in a file the current listing of objects in the heap. Heap Walker writes the first

listing you save to the file HWG00.TXT and numbers subsequent files consecutively
(HWG01.TXT, HWG02.TXT, and so on).

Exit Closes Heap Walker.
About Displays information about the current version of Heap Walker.

When you save a current heap listing to a file, Heap Walker includes all the information shown in the
HeapWalker-[Main Heap] window, the number of free blocks in the heap, the size of the largest free
block, the total free global heap space, and the following information about each module that has allocated
memory from the global heap:

Module name
Number of discardable segments loaded in memory
Number of bytes in discardable segments
Number of bytes in nondiscardable segments
Total number of bytes used by the module

Walking the Heap: The Walk Menu
The following commands are on the Walk menu:

Command Action
Walk Heap Displays all objects in the global heap.
Walk LRU List Displays only discardable objects. Heap Walker lists objects from the least

recently used to the most recently used. The object at the top of the list has been
least recently used and, therefore, is most eligible for discarding.

Walk Free List Displays only free blocks of memory.
GC(0) and Walk Compacts the global heap, asking for 0 bytes, and then displays the heap.
GC(-1) and Walk Attempts to discard all discardable objects and then displays the heap.
GC(-1) and Hit A: Attempts to discard all discardable objects and then accesses drive A. This

command is used to test critical error handling.
Set Swap Area Resets the code fence. The code fence defines an area of memory reserved for

discardable code.
Segmentation Test Dumps the heap to a file called HWGxx.TXT and then compacts the heap.

Sorting Memory Objects: The Sort Menu
The Sort menu is useful for sorting memory objects in a variety of ways. The following commands are on
the Sort menu:

Command Action
Address Sorts numerically by address.
Module Sorts alphabetically by the owning module's name and sorts alphabetically by

object type within each owner name.
Size Sorts numerically by object size.
Type Sorts alphabetically by object type and sorts alphabetically by owner name

within each object type.
Refresh Seg Names Searches for symbol files and lists segment names. This command can be used

to list segment names for applications loaded after you start Heap Walker.

Displaying Memory Objects: The Object Menu
The Object menu is useful for viewing objects selectively. The following commands are on the Object
menu:

Command Action
Show Displays the contents of a selected object in hexadecimal format and ASCII

format. When possible for resources, this command displays the resource (such
as an icon, menu, or dialog box).

Discard Discards a selected object.
Oldest Marks a selected object as the next candidate for discarding.
Newest Marks a selected object as the last candidate for discarding.
LocalWalk Displays the local heap of the currently selected object, if it has one.
LC(-1) and LocalWalk Compacts the selected local heap and then displays the heap.
GDI LocalWalk Displays the GDI local heap and provides information about the objects in the

heap.
User LocalWalk Displays the USER local heap and provides information about the objects in

the heap.

The Show Command

To display a hexadecimal dump of an object, select the object in the HeapWalker-[Main Heap] window
and either double-click the left mouse button or choose the Show command from the Object menu. In
addition to the hexadecimal dump, the Show command can display the following kinds of resources:

Bitmaps
Cursors
Dialog boxes
Icons
Menus

For example, the following illustration shows how the Show command displays the memory and icon
associated with the selected memory object.

The LocalWalk Commands

You can choose the LocalWalk command from the Object menu to view the local heap for a selected
object. You can also choose the GDI LocalWalk or User LocalWalk command to view the GDI or
USER local heap, respectively, at any time. Local Walk windows show the following information:

Window heading Information displayed
OFFSET Offset of the object from the beginning of the heap. You can use this information

to locate the contents of the object within the hexadecimal display of the heap.
HANDLE Handle of the object.
SIZE Size of the object, in bytes.
FLAGS Whether the object is movable, fixed, or free.
LCK Lock count for the object.
TYPE Object type (shown only for GDI and USER heaps).

The following illustration shows a Local Walk window.

Windows allocates the first object in the local heap, so there are always at least two objects in a local heap.

Local Walk: The Heap Menu

Following are the commands on the Heap menu:

Command Action
Info Displays a message box showing the number of free, movable, and fixed objects; the

number of bytes they use; the total number of allocated objects; and the number of bytes
they use.

Save Saves the Local Walk display to a file. The first file saved is named HWL00.TXT;
subsequent files are numbered sequentially (HWL01.TXT, HWL02.TXT, and so on).
The file contains all the information shown in the Local Walk window and a summary of
local objects by type (free, movable, fixed, and total allocated).

Local Walk: The Sort Menu

Following are the commands on the Sort menu:

Command Action
Address Sorts the Local Walk display numerically by address.
Flags Sorts the Local Walk display alphabetically by flags (fixed, free, or movable).
Size Sorts the Local Walk display numerically by object size.

Local Walk: The Add! Menu

The Add! menu displays a message box showing the total number of bytes used by selected objects.

Allocating Memory: The Alloc Menu
The Alloc menu is useful for allocating memory for test purposes. You can allocate all free memory and
then run your program to see how it behaves when no memory is available. You can free all or a specified
part of the allocated memory.

The following commands are available from the Alloc menu:

Command Action
Allocate All of Memory Allocates all free memory. This command is useful for testing out-of-

memory conditions in applications.
Free All Frees memory allocated by the Allocate All of Memory command.
Free 1K Frees 1K of the memory allocated by the Allocate All of Memory

command.
Free 2K Frees 2K of the memory allocated by the Allocate All of Memory

command.
Free 5K Frees 5K of the memory allocated by the Allocate All of Memory

command.
Free 10K Frees 10K of the memory allocated by the Allocate All of Memory

command.
Free 25K Frees 25K of the memory allocated by the Allocate All of Memory

command.
Free 50K Frees 50K of the memory allocated by the Allocate All of Memory

command.
Free XK Frees a specified number of kilobytes of the memory allocated by the

Allocate All of Memory command. A dialog box is displayed, in which you
can specify the number.

The last eight commands apply only to memory allocated when you chose the first command--it is not
possible to free memory allocated by another program.

Determining Memory Size: The Add! Menu
The Add! menu on the Heap Walker menu bar adds the total number of bytes of selected memory objects.
Opening this menu displays a dialog box that shows the number of selected segments and total segment
sizes.

Suggestions for Using HEAPWALK

Suggestions for Using Heap Walker

One error that frequently occurs in applications is the failure to free memory objects when they are no
longer needed. This can cause Windows to fail when one of its data segments grows beyond the 64K
limit.

You can use Heap Walker to help determine if your application is not freeing memory objects. With
Heap Walker, you can view changes in the sizes of all Windows data segments to observe the effect
your application has on these segments.

To check how your application changes the sizes of the Windows data segments, follow these steps:
1 Make sure that your application does not generate fatal exits.

2 Start the debugging version of Windows.
3 Start Heap Walker, and note the sizes of the GDI and USER data segments. This establishes the

reference for comparing the size of the data segments later.

4 From the Object menu, choose the GDI LocalWalk command to display the GDI Heap (Local Walk)
window, which lists the different objects in the GDI data segment. Then choose the Save command
from the Heap menu to copy this list to a file; the file will also contain a summary of GDI objects.

5 Run your application, and exercise it fully over a long period of time, noting the changes in the size
of the GDI and USER data segments that Heap Walker displays as your application runs. While your
application is running, repeat step 4 a number of times to take "snapshots" of the effect your
application has on the GDI data segment.

6 Close your application, take a final snapshot of the GDI data segment, and note the total sizes of the
GDI and USER data segments.

As you analyze the data that you've recorded, you should look for GDI objects that your application
creates but does not delete when they are no longer needed.

Monitoring Messages: SPY
Microsoft Windows Spy (SPY.EXE) is a tool for the Microsoft Windows operating system. Spy makes it
possible for you to monitor messages sent to one or more windows and to examine the values of message
parameters.

Note: If you are using the Microsoft CodeView for Windows (CVW) debugger to debug your application,
you can use CVW instead of Spy to trace messages.

The following topics describe how to use SPY:

Choosing Options
Choosing a Window: The Window Menu
Turning Spy On and Off: The Spy Menu

This topic describes how to use the Options!, Window, and Spy menus to specify how Spy is to operate.

Selecting Options: The Options! Menu
The Options! menu displays a dialog box in which you make selections about the following:

Monitored message types
Output device
Synchronous or asynchronous output

Selecting Message Types

Selecting Message Types

Under Messages, you can select any of the following message types you want Spy to monitor:

Message Description
Mouse Mouse messages, such as WM_MOUSEMOVE and WM_SETCURSOR
Input Input messages, such as WM_CHAR and WM_COMMAND
System Systemwide messages, such as WM_ENDSESSION and WM_TIMECHANGE
Window Window manager messages, such as WM_SIZE and WM_SHOWWINDOW
Init Initialization messages, such as WM_INITMENU and WM_INITDIALOG
Clipboard Clipboard messages, such as WM_RENDERFORMAT
Other Messages other than the types explicitly listed
DDE Dynamic data exchange (DDE) messages, such as WM_DDE_REQUEST
Non Client Windows nonclient messages, such as WM_NCDESTROY and WM_NCHITTEST

By default, Spy monitors all messages.

Selecting the Output Device

Selecting the Output Device

Under Output, you can select which of the following output devices you want Spy to send messages to:

Device Description
Window Spy displays messages in the Spy window. You can specify how many messages Spy stores

in its buffer. By default, Spy stores up to 100 lines of messages, which you can view by
scrolling through the Spy window. You can also change the maximum number of lines that
can be stored in the buffer.

Com1 Spy sends messages to the COM1 port.
File Spy sends messages to the specified file. The default output file is SPY.OUT.

Selecting Frequency of Output

Selecting Frequency of Output

Under Display, you can select which of the following frequency options you want Spy to use:

Option Description
Synchronous Spy displays messages as it receives them.
Asynchronous Spy queues messages for display.

By default, Spy sends messages synchronously.

Selecting a Window: The Window Menu
Use the Window menu to select the window you want Spy to monitor. The Window menu contains the
following commands:

Command Description
Window Specifies the window that Spy is to monitor. When you choose the Window command,

Spy displays the Spy Window dialog box. This dialog box displays information about
the window in which the cursor is located. As you move the cursor from window to
window, the following information is updated:
Item Description
Window Handle of the window.
Class Window class.
Module Program that created the window.
Parent Handle of the parent window and the name of the program that created the

parent window.
Rect Upper-right and lower-left coordinates of the window and the window size

in screen coordinates.
Style Style bits of the window in which the cursor is located, the principal style

of the window, and an identifier if the window is a child window. The
principal style can be WS_POPUP, WS_ICONIC, WS_OVERLAPPED,
or WS_CHILD.

All Windows Specifies that Spy is to display messages received by all windows.
Clear Window Clears the Spy window.

Turning Spy On and Off: The Spy Menu

Starting and Stopping Spy: The Spy Menu

After using the Options! and Window menus to make your selections, start Spy by clicking the window
you selected and choosing the OK button in the dialog box.

To stop monitoring messages, resume monitoring messages, or close Spy, use the Spy menu. The Spy
menu contains the following commands:

Command Description
Spy On/Off Starts and stops message monitoring.
Exit Closes Spy.
About Spy Provides information about the version of Spy you are using.

Compressing Files: compress.exe

Compressing Files: Compress

Compress (COMPRESS.EXE) creates compressed versions of one or more files. The resulting files are
typically 25 to 45 percent smaller than the original files.

Command-line syntax for Compress is as follows:

compress [/?][/r] source destination

Following are command-line options and parameters for Compress:
/? Displays information about how to use Compress.
/r Specifies that compressed files should be renamed.
source Specifies the source filename. The name can include a drive letter, a directory path, or

both; and it can contain wildcards.
destination Specifies the destination. This parameter can consist of a directory (with optional drive

letter), a filename, or any combination of the two.
If the source parameter contains wildcards and the destination parameter does not specify
only a directory, the /r option must be used.
If the destination parameter does not contain a filename, Compress uses the filename or
filenames specified by the source parameter when Compress copies the file or files to the
location specified by the destination parameter.

The Microsoft File Expansion Utility (Expand) restores files previously compressed by the Compress
utility.

Expanding Compressed Files: expand.exe

Decompressing Compressed Files: Expand

Expand (EXPAND.EXE) decompresses files previously compressed by Compress. Expand restores
these files to their original sizes.

Command-line syntax for Expand is as follows:

expand [/?][/r] source destination

Following are command-line options and parameters for Expand:
/? Displays information about how to use Expand.
/r Specifies that compressed files should be renamed.
source Specifies the source filename. The name can include a drive letter, a directory path, or

both; and it can contain wildcards.
destination Specifies the destination. This parameter can consist of a directory (with optional drive

letter), a filename, or any combination of the two.
If the source parameter contains wildcards and the destination parameter does not specify
only a directory, the /r option must be used.
If the destination parameter does not contain a filename, Expand uses the filename or
filenames specified by the source parameter when Expand copies the file or files to the
location specified by the destination parameter.

The following example shows how to create decompressed versions of all the files on drive A, writing
them to a directory on drive C:

expand a:*.* c:\mydir

Dr. Watson
Microsoft Windows Dr. Watson is a diagnostic tool for the Microsoft Windows operating system. It
detects system and application failures caused by Windows applications and can store information in a
disk file. This file can help you find and fix problems in your applications.

Only a single instance of Dr. Watson can be run at a time. Dr. Watson uses the dynamic-link library
TOOLHELP.DLL, so it runs only in standard or 386 enhanced mode. Dr. Watson cannot trap faults in a
Windows MS-DOS session.

Configuring Dr. Watson from the WIN.INI File

You can configure Dr. Watson to meet your needs by including settings for any of the following entries
in the [Dr. Watson] section of your WIN.INI file (note the space between Dr. and Watson):

DisLen
DisStack
GPContinue
LogFile
ShowInfo
SkipInfo
TrapZero

The SkipInfo Entry

The SkipInfo Entry

The SkipInfo entry controls which parts of the failure report are actually written to disk. Following are
the values you can set to disable parts of the failure report:

Value Meaning
32bitregs Disable values of 32-bit registers and of the FS and GS registers on 80386/80486

processors.
clues Disable the dialog box titled "Dr. Watson's Clues."
information Disable system information, such as the Windows version number, processor type, and

memory available.
registers Disable 16-bit registers.
segments Disable segment contents, base addresses, length, and flags.
stack Disable stack backtrace.
summary Disable four-line summary at beginning of error report.
tasks Disable list of all active tasks (running applications).
time Disable Dr. Watson start and stop times.

Each of the SkipInfo values can be abbreviated to its first three letters. The following example disables the
Dr. Watson's Clues dialog box and the stack backtrace:

[Dr. Watson]
SkipInfo=clu sta

The ShowInfo Entry

The ShowInfo Entry

Some parts of the Dr. Watson failure report are disabled by default. They can be enabled with the
ShowInfo entry. Following are the values you can set to enable parts of the failure report:

Value Meaning
disassembly Enable separate disassembly of the fault address. This does not affect disassembly of

stack frames. (See Section 6.1.3, "The DisLen Entry.")
errorlog Enable error logging.
locals Enable stack dump of local variable and parameter values.
modules Enable list of all loaded modules, including dynamic-link libraries (DLLs) and font

files.
paramlog Enable parameter-validation error logging.
sound Enable audible warnings.

Each of the ShowInfo values can be abbreviated to its first three letters. The following example sets all six
values for the ShowInfo entry, enabling those six parts of the failure report:

[Dr. Watson]
ShowInfo=dis err loc mod par sou

The DisLen Entry

The DisLen Entry

The DisLen entry controls how many instructions are disassembled in stack traces and the disassembly
portion of the failure report. The default value is 8. The following example sets the value to 4:

[Dr. Watson]
DisLen=4

The TrapZero Entry

The TrapZero Entry

By default, Dr. Watson does not trap divide overflow exceptions, because many applications provide
their own handling. The TrapZero entry can be used to enable trapping of divide overflow exceptions, as
shown in the following example:

[Dr. Watson]
TrapZero=1

The GPContinue Entry

The GPContinue Entry

One of the most advanced features of Dr. Watson enables an application to continue even after a general
protection (GP) fault occurs. Because a GP fault means that a bug has been encountered, continuing is
dangerous. However, some application developers requested the ability to continue running an
application even after a GP fault. If the GPContinue entry is used, Dr. Watson performs the following
tests when a GP fault occurs. If each of the following four conditions is true, Dr. Watson allows the
application to continue:
1 Bit 0 of GPContinue is set.

2 The faulting instruction is one that can be allowed to continue.
The following example, which happens to be beyond the end of a segment, would be allowed to
continue:

movax,[ffff]
The following instruction, which involves an invalid address, would not be allowed to proceed:

jmpseg:offs
3 The fault is not in KERNEL or USER. (Or the fault is in KERNEL or USER, and you have set the

appropriate bit in the GPContinue value to continue in spite of the risk.)

4 The user wants to continue. Dr. Watson displays the following dialog box so that the user can decide.

If the user chooses the Close button, an error message box appears.

Although it is very risky, you can also allow continuation in KERNEL or USER by setting GPContinue as
required. Following are the bits and values for the GPContinue entry:

Bit Value Meaning
0 1 Allow continuation. (This is the default setting.)
1 2 Write only three-line reports.
2 4 Continue even if the fault is in KERNEL.
3 8 Continue even if the fault is in USER.

You must combine these values. The following example permits continuation after a GP fault in USER:

set GPContinue=9

The DisStack Entry

The DisStack Entry

The DisStack entry controls how many levels back on the stack are to be disassembled. The default
value is 2. The following example sets the value to 100:

[Dr. Watson]
DisStack=100

The LogFile Entry

The LogFile Entry

By default, the Dr. Watson log file is named DRWATSON.LOG and placed in the Windows directory.
The filename can be changed to any valid filename, even the name of a printer or debugging terminal.
For example, to write to a terminal on COM1, use the following setting:

[Dr. Watson]
LogFile=com1

Compiling Resources: Resource Compiler
Microsoft Windows Resource Compiler (RC) is a tool for the Microsoft Windows operating system.

This topic describes how to do the following:

Including Resources in an Application
Creating a Resource Script File
Single-Line Statements
Multiple-Line Statements
Directives
User-Defined Resources
Using the Resource Compiler
RC Command-Line Syntax
Compiling Resources Separately
Defining Names for the Preprocessor
Renaming the Compiled Resource File
Controlling the Directories that RC Searches
Displaying Progress Messages

Including Resources in an Application
To include resources in your Windows application, do the following:
1 Create individual resource files for cursors, icons, bitmaps, dialog boxes, and fonts. To do this, you

can use Microsoft Image Editor and Dialog Editor (IMAGEDIT.EXE and DLGEDIT.EXE) and
Microsoft Windows Font Editor (FONTEDIT.EXE).

2 Create a resource-definition file that describes all the resources used by the application.
3 Use RC to compile the resource-definition file.

4 Add the compiled resource files to the application's compiled executable file.

Creating a Resource-Definition File

After creating individual resource files for your application's icon, cursor, font bitmap, and dialog box
resources, you create a resource-definition file. A resource-definition file is an ASCII text file with the
file extension .RC.

The .RC file lists every resource in your application and describes some types of resources in great
detail. For a resource that exists in a separate file, such as an icon or cursor, the .RC file simply names
the resource and the file that contains it. For some resources, such as a menu, the entire definition of the
resource exists within the .RC file.

An .RC file can contain either or both of the following types of information:
Statements, which name and describe resources.
Directives, which instruct RC to perform actions on the resource-definition file before compiling it.

Directives can also assign values to names.

The following sections describe the statements and directives you can use in a resource-definition file.

Single-Line Statements

A single-line resource-definition statement can begin with any of the following keywords:

Keyword Description
BITMAP Defines a bitmap by naming it and specifying the name of the file that contains it. (To use

a particular bitmap, the application requests it by name.)
CURSOR Defines a cursor by naming it and specifying the name of the file that contains it. (To use

a particular cursor, the application requests it by name.)
FONT Specifies the name of a file that contains a font.
ICON Defines an icon by naming it and specifying the name of the file that contains it. (To use a

particular icon, the application requests it by name.)

Multiline Statements

A multiline resource-definition statement can begin with any of the following keywords:

Keyword Description
ACCELERATORS Defines menu accelerator keys.
DIALOG Defines a template that an application can use to create dialog boxes.
MENU Defines the appearance and function of an application menu.
RCDATA Defines data resources. Data resources let you include binary data directly

into the executable file.
STRINGTABLE Defines string resources. String resources are null-terminated ASCII strings

that can be loaded from the executable file.

Directives

The following directives can be used as needed in the resource-definition file to instruct RC to perform
actions or to assign values to names:

Keyword Description
#define Defines a specified name by assigning it a given value.
#elif Marks an optional clause of a conditional compilation block.
#else Marks the last optional clause of a conditional compilation block.
#endif Marks the end of a conditional compilation block.
#if Carries out conditional compilation if a specified expression is true.
#ifdef Carries out conditional compilation if a specified name is defined.
#ifndef Carries out conditional compilation if a specified name is not defined.
#include Copies the contents of a file into the resource-definition file before RC processes the latter.
#undef Removes the current definition of the specified name.

Sample Resource-Definition File

The following example shows an .RC file that defines the resources for an application named Shapes:

#include "SHAPES.H"
ShapesCursor CURSOR SHAPES.CUR
ShapesIcon ICON SHAPES.ICO
ShapesMenu MENU

BEGIN
POPUP "&Shape"
BEGIN
MENUITEM "&Clear", ID_CLEAR
MENUITEM "&Rectangle", ID_RECT
MENUITEM "&Triangle", ID_TRIANGLE
MENUITEM "&Star", ID_STAR
MENUITEM "&Ellipse", ID_ELLIPSE
END
END

The CURSOR statement names the application's cursor resource ShapesCursor and specifies the cursor
file SHAPES.CUR, which contains the image for that cursor.

The ICON statement names the application's icon resource ShapesIcon and specifies the icon file
SHAPES.ICO, which contains the image for that icon.

The MENU statement defines an application menu named ShapesMenu, a pop-up menu with five menu
items.

The menu definition, enclosed by the BEGIN and END keywords, specifies each menu item and the menu
identifier that is returned when the user selects that item. For example, the first item on the menu, Clear,
returns the menu identifier ID_CLEAR when the user selects it. The menu identifiers are defined in the
application header file, SHAPES.H.

For more information about resource-definition files, the syntax of resource statements, and how to define
your own resources, see the Microsoft Windows Programmer's Reference, Volume 4.

Resource Compiler (RC) serves the following functions:
It compiles the resource-definition file and the resource files (such as icon and cursor files) into a

binary resource (.RES) file.
It combines the .RES file with the executable (.EXE) file created by the linker; the result is an

executable Windows application.
It marks the Windows application as a Windows 3.0 or Windows 3.1 application.

Note: Each Windows application and dynamic-link library (DLL) must be identified with a Windows
version number. For this reason, use RC on each Windows application or DLL you build, even if it
uses no resources. For more information about Windows versions, see the discussions of the /30
and /31 options in Specifying Options.

Command-Line Syntax

To start RC, use the rc command. What you need to specify on the command line depends on whether
you are compiling resources, adding compiled resources to an executable file, or both.

The following line shows rc command-line syntax:

rc [options] definition-file [executable-file]

Following are several ways you can use the rc command:
To compile resources separately, use the rc command in the following form:

rc /r [options] definition-file
When you use this form, RC ignores any executable file you specify.

To compile an .RC file and add the resulting .RES file to the executable file, use the rc command
in the following form:

rc [options] definition-file [executable-file]
To compile an application or DLL that does not have a .RES file, use the rc command in the

following form:
rc [options] dll-or-executable-file
When you use this form, the filename must explicitly have an .EXE, .DRV, or .DLL extension.

To simply add a compiled resource (.RES) file to an executable file, use the rc command in the
following form:

rc [options] res-file.res [executable-file]

Specifying Options

The rc command's options parameter can include one or more of the following options:
/30 Marks the executable file so it will run with Windows version 3.0 or Windows version

3.1. By default, RC marks the executable file to run only with Windows 3.1.
/31 Marks the executable file so it will run only with Windows 3.1. This is the default

condition.
/? Displays a list of rc command-line options.
/d Defines a symbol for the preprocessor that you can test with the #ifdef directive.
/e Changes the default location of global memory for a DLL from below the Expanded

Memory Specification (EMS) bank line to above the EMS bank line. This option has
no effect with Windows 3.1.

/fe newname Uses newname for the name of the .EXE file.
/fo newname Uses newname for the name of the .RES file.
/h Displays a list of rc command-line options.
/i Searches the specified directory before searching the directories specified by the

INCLUDE environment variable.
/k Disables the load-optimization feature of RC. If this option is not specified, the

compiler arranges segments and resources in the executable file so that all preloaded
information is contiguous.
This feature allows Windows to load the application much more quickly. If you do not
specify the /k option, all data segments, nondiscardable code segments, and the entry-
point code segment will be preloaded, unless any segment and its relocation
information exceed 64K. If the PRELOAD attribute is not assigned to these segments
in the module-definition (.DEF) file when you link your application, RC will add the
PRELOAD attribute and display a warning. Resources and segments will have the
same segment alignment. This alignment should be as small as possible to limit the size
of the final executable file. You can set the alignment by using the link command with
the /a option.

/l[im32] Specifies to Windows that the application uses expanded memory directly, according to
the Lotus/Intel/Microsoft Expanded Memory Specification (LIM EMS), version 3.2.
This option has no effect with Windows 3.1.

/m[ultinst] Assigns each instance of the application task to a distinct EMS bank when Windows is
running with the EMS 4.0 memory configuration. (By default, all instances of a task
share the same EMS bank.) This option has no effect with Windows 3.1.

/p Creates a private DLL that is called by only one application. This allows Windows to
use memory more efficiently, because only one application (or multiple instances of the
same application) calls the DLL. For example, in the large-frame EMS memory model,

the DLL is loaded above the EMS bank line, freeing memory below the bank line. This
option has no effect with Windows 3.1.

/r Creates an .RES file from an .RC file. Use this option when you do not want to add the
compiled .RES file to the .EXE file.

/t Creates an application that runs with Windows only in protected (standard or 386
enhanced) mode. If the user attempts to run the application in real mode, Windows will
display a message that the application cannot run in real mode. This option has no
effect with Windows 3.1.

/v Displays messages that report on the progress of the compiler.
/x Prevents RC from checking the INCLUDE environment variable when searching for

header files or resource files.
/z Prevents RC from checking for RCINCLUDE statements. When you have not used

RCINCLUDE statements, using this option can greatly improve the speed of RC.

Options are not case-sensitive, and a hyphen (-) can be used in place of a slash mark (/). You can combine
single-letter options if they do not require any additional parameters. For example, the following two
commands are equivalent:

RC /R /V SAMPLE.RC
rc -rv sample.rc
Specifying the Resource-Definition File

The rc command's definition-file parameter specifies the name of the resource-definition file that
contains the names, types, filenames, and descriptions of the resources to be added to the .EXE file. It
can also specify the name of a compiled .RES file, in which case RC adds the compiled resources to the
executable file.

Specifying the Executable File

The rc command's executable-file parameter specifies the name of the executable file that the compiled
resources should be added to. If you do not specify an executable file, RC uses the executable file with
the same name as the resource-definition file (excluding the filename extension).

Renaming the Executable File

The rc command's /fe option makes it possible for you to specify the name of the final executable file.
The following example combines MYEXE.EXE with MYRES.RES to produce the final executable file
FINAL.EXE:

rc /fe final.exe myres.res myexe.exe

Compiling Resources Separately

By default, RC adds the compiled resources to the specified executable file. Sometimes you might want
to first compile the resources and then add them to the executable file in separate steps. This can be
useful because resource files typically change little after initial development. You can save time by
compiling your application's resources separately and then adding the compiled .RES file to your
executable file each time you recompile the .EXE file.

You can use the /r option to compile the resources separately without adding them to the executable file.
When you use this option, RC compiles the .RC file and creates a compiled resource (.RES) file.

For example, the following command reads the resource-definition file SAMPLE.RC and creates the
compiled resource file SAMPLE.RES:

rc -r sample.rc
In this case, RC does not add SAMPLE.RES to the executable file.

Defining Names for the Preprocessor

You can specify conditional branching in a resource-definition file, based on whether a term is defined
on the rc command line with the /d option.

For example, suppose your application has a pop-up menu, the Debug menu, that should appear only
during debugging. When you compile the application for normal use, the Debug menu is not included.
The following example shows the statements that can be added to the resource-definition file to define
the Debug menu:

MainMenu MENU
BEGIN
.
.
.

#ifdef DEBUG
POPUP "&Debug"
BEGIN

MENUITEM "&Memory usage", ID_MEMORY
MENUITEM "&Walk data heap", ID_WALK_HEAP
END

#endif
END
When compiling resources for a debugging version of the application, you could include the Debug menu
by using the following rc command:

rc -r -d debug myapp.rc
To compile resources for a normal version of the application--one that does not include the Debug menu--
you could use the following rc command:

rc -r myapp.rc

Renaming the Compiled Resource File

By default, when compiling resources, RC names the compiled resource (.RES) file with the same name
as the .RC file (but not the same extension) and places it in the same directory as the .RC file. The
following example compiles MYAPP.RC and creates a compiled resource file named MYAPP.RES in
the same directory as MYAPP.RC:

rc -r myapp.rc
The /fo option lets you give the resulting .RES file a name that differs from the name of the corresponding
.RC file. For example, to name the resulting .RES file NEWFILE.RES, you would type the following
command:

rc -r -fo newfile.res myapp.rc
The /fo option can also place the .RES file in a different directory. For example, the following command
places the compiled resource file MYAPP.RES in the directory C:\SOURCE\RESOURCE:

rc -r -fo c:\source\resource\myapp.res myapp.rc

Controlling Which Directories the Resource Compiler Searches

By default, RC searches for header files and resource files (such as icon and cursor files) first in the
current directory and then in the directories specified by the INCLUDE environment variable. (The
PATH environment variable has no effect on which directories RC searches.)

Adding a Directory to Search

You can use the /i option to add a directory to the list of directories RC searches. The compiler then
searches the directories in the following order:
1 The current directory

2 The directory or directories you specify by using the /i option, in the order in which they appear on
the rc command line

3 The list of directories specified by the INCLUDE environment variable, in the order in which the
variable lists them, unless you specify the /x option

The following example compiles the resource-definition file MYAPP.RC and adds the compiled resources
to MYAPP.EXE:

rc /i c:\source\stuff /i d:\resources myapp.rc
When compiling the resource-definition file MYAPP.RC, RC searches for header files and resource files
first in the current directory, then in C:\SOURCE\STUFF and D:\RESOURCES, and then in the
directories specified by the INCLUDE environment variable.

Suppressing the INCLUDE Environment Variable

You can prevent RC from using the INCLUDE environment variable when determining the directories
to search. To do so, use the /x option. The compiler then searches for files only in the current directory
and in any directories you specify by using the /i option.

The following example compiles the resource-definition file MYAPP.RC and adds the compiled
resources to MYAPP.EXE:

rc /x /i c:\source\stuff myapp.rc
When compiling the resource-definition file MYAPP.RC, RC searches for header files and resource files
first in the current directory and then in C:\SOURCE\STUFF. It does not search the directories specified
by the INCLUDE environment variable.

Displaying Progress Messages

By default, RC does not display messages that report on its progress as it compiles. You can, however,
specify that RC is to display these messages. To do so, use the /v option.

The following example causes RC to report on its progress as it compiles the resource-definition file
SAMPLE.RC, creates the compiled resource file SAMPLE.RES, and adds the .RES file to the
executable file SAMPLE.EXE:

rc /v sample.rc

Creating Help Files
Microsoft Windows Help provides online help for users working with a Windows application. Windows
Help provides a practical way to present information about your application in a format users can access
easily.

This topic introduces the tools you can use to develop Windows Help files and to incorporate Help in
Windows applications.

About Windows Help Files

Windows Help files can display information by using the following elements:
Text in multiple fonts, sizes, and colors
Bitmaps and metafiles with up to 16 colors
Segmented-graphics bitmaps with embedded hot spots
Cross-reference jumps for links to additional information
Pop-up windows to present text and graphics
Secondary windows to present information without the full menus and buttons of Windows Help
Keywords to help users find the information they need

You create help files by creating topic and graphics files and a Help project file. A topic file contains the
text for the help topic and contains the Help statements and macros that define the format of the text and
the position of graphics in each topic. The graphics files contain the bitmaps and metafiles you want to
display in the topics. The project file contains a description of how to build the help file.

You use the Microsoft Help Compiler to build the final help file. Combining the topic, graphics, and
project files, the compiler creates a single help file (with the filename extension .HLP) that you can open
and view by using Windows Help.

For more information about creating help files, see the following topics:

Creating Topic Files
Using Graphics Files
Creating Help Project Files
Using Help in a Windows Application
Help Macros
HPJ Statements
RTF Tokens

Creating Topic Files
A topic file contains the text for the help file, as well as the statements and macros that define the format
of the text and the position of the graphics. Every topic file consists of one or more topics. A topic is any
distinct unit of information, such as a contents screen, a conceptual description, a set of instructions, a
keyboard table, a glossary definition, a list of jumps, a picture, and so on.

Windows Help displays only one topic at a time, but a user can view any topic in a help file by using a link
to the topic or searching for keywords associated with the topic.

You create topic files directly by using a text editor and inserting Help statements. You can create them
indirectly by using a word processor that generates rich-text format (RTF) files. The Help statements are
an extended subset of the RTF statements, which provide a wide variety of formatting capabilities.

Declaring Character Set, Fonts, and Colors

When you create a topic file, you must ensure that the entire contents of the file are enclosed in braces (
{ }). The first statement in the file must be the \rtf statement; it immediately follows the first opening
brace. You should follow the \rtf statement with a \ansi statement (or a similar statement) that specifies
the character set used in the file. The following example shows the general form for a topic file:

{\rtf1\ansi
.
.
.

}
You must declare the names of the fonts you use in the file by using a \fonttbl statement. The \fonttbl
statement, enclosed in braces, contains a list of font and family names and specifies a unique number for
each font. You use these numbers with \f statements later in the file to set specific fonts. The following \
fonttbl statement assigns font numbers 0, 1, and 2 to the TrueType fonts Times New Roman®,Courier
New®,and Arial®,respectively:

{\fonttbl
\f0\froman Times New Roman;
\f1\fdecor Courier New;
\f2\fswiss Arial;}
You should also use the \deff statement to set the default font for the file. Windows Help uses this default
font if no other font is specified. The following example sets the default font number to zero,
corresponding to the Times New Roman font specified in the previous \fonttbl statement:

\deff0
If you use specific text colors or choose not to rely on the default text colors set by Windows, you must
define your colors by using a \colortbl statement. The \colortbl statement, enclosed in braces, defines each
color by specifying the amount of each primary color (red, green, and blue) used in it. The statement
implicitly numbers the colors consecutively starting from zero. You use these color numbers with \cf
statements later in the file to set the color. The following example creates four colors (black, red, green,
and blue):

{\colortbl
\red0\green0\blue0;
\red255\green0\blue0;
\red0\green128\blue0;
\red0\green0\blue255;}
Although it is not shown here, you can put a semicolon immediately after the \colortbl statement to define
the default color as 0.

Defining Individual Topics

Each topic starts with one or more \footnote statements and ends with a \page statement. All text and
graphics specified between these statements belong to the topic.

Every topic must have a context string. Windows Help uses the context string to locate the topic when
the user requests to view it. You assign a context string to a topic by using the \footnote statement and
the number sign (#) footnote character. Context strings can consist of letters, digits, and the underscore
character (_). To prevent conflicts, each context string in a help file must be unique.

You can also assign a title to the topic by using the \footnote statement and the dollar sign ($) footnote
character. Windows Help uses the title to identify the topic in the History and Search dialog boxes. You
must provide a title if you assign keywords to the topic.

The following example defines a small topic having the context string "topic1" and the title My Topic:

#{\footnote topic1}
$(DOLLAR_BRACE)\footnote My Topic}
This is my first topic.
\par
\page
In general, you use the \par statement to mark the end of each paragraph. In this example, the \par
statement marks the end of the only paragraph in the topic.

You can add a macro to a topic by using the \footnote statement and the exclamation point (!) as the
footnote character. For example, the following \footnote statement adds the CopyTopic macro to the topic:

!{\footnote CopyTopic()}
Windows Help executes the macro each time it displays the topic.

The total size of text and graphics data stored in a paragraph must not exceed 64K. (Bitmaps included by
using the bmc, bml, and bmr statements do not contribute to this total.)

Setting Font Size and Name

You can set the font name and size by using the \f and \fs statements. The name is set by using a font
number specified in the \fonttbl statement. The size of the font is specified in half-points. The following
example sets the text to 10-point Times New Roman (if the \fonttbl statement matches the example
given earlier):

\f0\fs20
Once you set the font name and size, the settings apply to all subsequent text up to the next \plain
statement or until you change the name or size by using the \f or \fs statement again. The \plain statement
resets the name and font to the defaults. The default font name is as set by the \deff statement; the default
font size is 12 points.

Setting Space Before and After Paragraphs

You can set the amount of space before and after each paragraph by using the \sb and \sa statements.
These statements let you control the amount of space that appears between paragraphs. You specify the
space in twips. (A twip is 1/1440 inch, or 1/20 of a printer's point). The following example sets the
space before a paragraph to 360 twips:

\sa360
This paragraph has 360 twips space immediately before it.
\par
This paragraph also has 360 twips before it.
\par
Once you set the space before or after a paragraph, the spacing applies to all subsequent paragraphs up to
the next \pard statement or until you change the spacing by using the \sa and \sb statements again. The \
pard statement restores the default spacing.

Setting the Left and Right Indents

When Windows Help displays its window, it automatically creates left and right margins and wraps text
to fit within these margins. The margins are positioned slightly within the left and right edges of the
window to prevent text in the topic from being clipped by the window.

You can override these margins by setting the left and right indents for a paragraph. The \li and \ri
statements set an indent to a position relative to the corresponding left and right margins. For example,
the following paragraph is indented 1 inch (1440 twips) from the left margin:

\\li1440
This paragraph is indented 1 inch.
\par \pard
This paragraph is not indented.

Once indents are set, they apply to all subsequent paragraphs up to the next \pard statement. Note that the \
pard statement must follow the \par statement that ends the paragraph to be indented.

You can set an indent for the first line in a paragraph by using the \fi statement. This allows you to create
paragraphs with hanging indents. It is also useful for creating two-column lists.

Setting Tab Stops

You can set tab stops by using the \tx statement. You can use one or more \tx statements, each setting a
specific position in twips relative to the left margin. Once you have set tab stops, you can use the \tab
statement to align subsequent text with the next tab. The tab settings remain active until you use the pard
statement. The following example creates a two-column list by using a tab stop and paragraph indenting:

\fi-1440\li1440\tx1440
left
\tab
right
\par
left
\tab
right
\par
\pard
Breaking Lines

Ordinarily, Windows Help wraps all lines in a paragraph, fitting as many words on a line as will fit
between the current left and right indents. You can force Windows Help to break a line at a given place
by using the \line statement. You can control wrapping by using the \keep and \pard statements.

The following example uses the \keep statement to turn off word wrapping for three short lines and uses
the \pard statement to restore the default properties:

\keep
3 pairs black socks\line
5 pairs blue socks\line
2 pairs brown socks\line
\par
\pard
The following example uses the \keep and \pard statements to create three nonwrapping paragraphs:

\keep
3 pairs black socks
\par
5 pairs blue socks
\par
2 pairs brown socks
\par
\pard
Creating Links and Pop-up Topics

Windows Help displays only one topic at a time. To enable users to view other topics, you must create
hot spots that link your topics to other topics. You create a hot spot by using the \strike, \ul, or \uldb
statement and a corresponding \v statement. When you create a link, you provide the text for the hot spot
and the context string for the topic that is to be jumped to or displayed. The following example creates a
hot spot named Glossary and establishes a link from the hot spot to the topic having the context string
"glo1":

You can find a list of terms used in this
help file in the {\uldb Glossary}{\v glo1}.
When Windows Help displays the topic with this hot spot, it places a line under the word Glossary and
colors the word green. The context string is not shown, but if the user clicks on the hot spot, Windows
Help jumps to and displays the corresponding topic.

The \strike and \uldb statements are used to create jumps to other topics. The \ul statement creates a link to

a pop-up topic. Windows Help displays pop-up topics in a pop-up window and leaves the current topic in
the main window.

You can also associate a Help macro with a hot spot in a topic. For example, the following \uldb and \v
statements create a hot spot for the ExecProgram macro:

{\uldb Clock}{\v !ExecProgram("clock.exe", 1)}
Windows Help executes the macro whenever the user chooses the hot spot. Windows Help continues
displaying the topic while it executes the macro, unless the macro causes a jump to another topic.

Creating a Keyword List

You can also enable users to find and view topics by assigning keywords to the topics. You assign a
keyword by using the \footnote statement and the letter K as the footnote character. Windows Help
collects all keywords in a help file and displays them in its Search dialog box. Using this dialog box, a
user can select a keyword and view the help topics associated with it. The following example assigns the
keyword "Sample Topics" to the current topic:

#{\footnote topic1}
$(DOLLAR_BRACE)\footnote My Topic}
K{\footnote Sample Topics}
This is my first topic.
\par
\page
If a keyword begins with the letter K, you must place an extra space before the word. Multiple keywords
for a topic are separated by semicolons.

A keyword can be assigned to any number of topics. When the user selects the keyword in the Search
dialog box, Windows Help displays all topics associated with the keyword. The user then picks the one to
view.

You can also create alternative keywords for a help file for use with the WinHelp function.

Creating Browse Sequences

You can enable users to browse through a sequence of help topics by creating a browse sequence and
adding browse buttons to your help file. A browse sequence typically consists of two or more related
topics that are intended to be read sequentially. You create a browse sequence by using the \footnote
statement and the plus-sign (+) footnote character to assign a sequence identifier. The following
example assigns a sequence identifier to the topic titled A Topic:

#{\footnote topic5}
$(DOLLAR_BRACE)\footnote A Topic}
+{\footnote shorttopics}
This is one topic in a browse sequence.
\par
\page
Windows Help adds topics with sequence identifiers to the browse sequence and determines the order of
topics in the sequence by sorting the identifiers alphabetically. If two topics have the same identifier,
Windows Help assumes that the topic that was compiled first is to be displayed first.

Windows Help uses the sequence only if the browse buttons have been enabled. You can enable the
buttons by placing the following statements in the Help project file:

[CONFIG]
BrowseButtons()
For more information about the project file, see Section 3.4, "Creating Help Project Files."

You can create more than one browse sequence in a help file by using sequence numbers with sequence
identifiers. The sequence number consists of a colon (:) followed by an integer. Windows Help combines
all topics having the same sequence identifier (but different sequence numbers) into a single browse
sequence and determines the order of the topics by sorting them alphabetically. To ensure that numerals
are sorted correctly, they should have the same number of digits. For example, the numerals 1 through 10
should be 01 through 10.

#{\footnote topic10}
$(DOLLAR_BRACE)\footnote Alpha Topic #3}

+{\footnote alpha:3}
This topic is part of the alpha browse sequence.
\par
\page

Using Graphics Files
You can add bitmaps and metafiles to your help files by using the bml, bmc, and bmr statements. These
statements take the name of a graphics file and insert the corresponding bitmap or metafile into the help
file at the specified position.

Windows Help requires graphics files to be in one of the following formats:
Windows bitmap (.BMP)
Placeable Windows metafile (.WMF)
Multiple-resolution bitmap (.MRB)
Segmented-graphics bitmap (.SHG)

Multiple-resolution bitmaps can be created by using the Microsoft Multiple-Resolution Bitmap Compiler
(MRBC). Segmented-graphics bitmaps can be created by using Microsoft Windows Hotspot Editor. Only
16-color and monochrome bitmaps may be used. Windows Help does not support 256-color bitmaps.

Although the \pict statement can also be used to add bitmaps and metafiles to a help file, the bitmap or
metafile data must be inserted into the topic file rather than specified as a separate file.

Inserting a Bitmap in Text

You can insert a bitmap into a paragraph as if it were a character by using the bmc statement. The
statement aligns the bottom of the bitmap with the base line of the current line of text and places the left
edge of the bitmap at the next character position.

Since the bitmap is treated as text, any paragraph properties assigned to the paragraph also apply to the
bitmap. Windows Help places text following the bitmap on the same base line at the next available
character position.

In general, bitmaps inserted as characters should be clipped to the smallest possible size. Any extra
white space at the top or bottom of the bitmap image affects the alignment of the bitmap with the text
and may affect the spacing between lines.

You must not specify negative line spacing for paragraphs that contain bmc statements. Doing so might
cause the bitmap to appear on top of the paragraph.

Wrapping Text Around a Bitmap

You can place a bitmap at the left or right margin of the Help window and have subsequent text wrap
around the bitmap by using the bml or bmr statement. The bml statement inserts a bitmap at the left
margin; bmr inserts it at the right.

If you want text to wrap around a bitmap, you must place the bml or bmr statement at the beginning of a
paragraph. Windows Help aligns the start of the paragraph with the top of the bitmap and wraps around
the left or right edge of the bitmap.

If you place a bml or bmr statement at the end of a paragraph, Windows Help places the bitmap under
the paragraph instead of wrapping the text around the bitmap. If you do not want text to wrap around a
bitmap, place \par statements immediately before and after the bml or bmr statement.

Using a Bitmap as a Hot Spot

You can use bitmaps as hot spots. This enables you to create graphics, such as icons or buttons, and use
them as "jumps" to particular topics or as hot spots for macros.

You can also divide a single bitmap into several hot spots and assign a different link or macro to each
hot spot. Such bitmaps, called segmented-graphics bitmaps, are created by using Hotspot Editor. For
example, if you have a bitmap of a dialog box, you can assign links to each of the control windows in
the dialog box, enabling the user to click a control window and view information about it. Segmented-
graphics bitmaps already contain the context strings needed for the links; only a bml or bmr statement is
needed to insert the bitmap. The \strike and \v statements must not be used.

Using a Bitmap on Different Displays

A multiple-resolution bitmap is a single bitmap file that contains one or more bitmaps that have been
marked for use with specific displays, such as the CGA, EGA, VGA, or 8514 displays. You use
multiple-resolution bitmaps to avoid problems associated with displaying bitmaps designed for a single
type of display. Single-resolution bitmaps can have the following problems:

Appear too big or too small on displays having different resolutions
Appear stretched or compressed on displays with different aspect ratios
Lack colors or use unintended colors on displays with different color capabilities.

You create multiple-resolution bitmaps by using MRBC. The compiler, an MS-DOS program, has the
following command-line syntax:

mrbc [/s] filename ...

The filename parameter specifies the name of a Windows bitmap file. Typically, you specify several
filenames, one for each type of display. Wildcards can be used. The compiler uses the filename of the first
bitmap file as the name of the output file but gives the output file the filename extension .MRB. The
following example combines the bitmap files MYBUTTON.EGA, MYBUTTON.VGA, and
MYBUTTON.854 into the multiple-resolution bitmap file MYBUTTON.MRB:

mrbc mybutton.ega mybutton.vga mybutton.854
In this example, the compiler checks the biXPelsPerMeter and biYPelsPerMeter members of the
BITMAPINFOHEADER structure in each bitmap file to determine the display type for the bitmap. (For a
description of the BITMAPINFOHEADER structure, see the Microsoft Windows Programmer's
Reference, Volume 3.) If these members are set to zero, the compiler prompts for the display type with a
message such as the following:

Please enter the monitor type for the bitmap mybutton.ega:
You must enter at least the first character of one of the following display-type names: CGA, EGA, VGA,
or 8514. The compiler sets the display type you specify, but it does not check that the type is valid. For
example, if you specify VGA for an EGA bitmap, the compiler marks it as a VGA bitmap. The result may
be undesirable.

The /s option, specifying silent mode, speeds up compilation if the names of the bitmap files conform to
the MRBC filename convention. If you use the /s option, the compiler uses the first character of the
filename extension to determine the display type for the bitmap, as described in the following list:

Letter Meaning
C CGA bitmap
E EGA bitmap
V VGA bitmap
8 8514 bitmap

If the filename extension starts with any other character, MRBC assumes a VGA bitmap. The following
example creates the multiple-resolution bitmap file MYBUTTON.MRB, containing bitmaps for EGA,
VGA, and 8514 displays:

mrbc /s mybutton.ega mybutton.vga mybutton.854
The compiler never writes over existing multiple-resolution bitmap files. If the output file already exists,
the compiler displays an error message.

You insert multiple-resolution bitmaps into your help file by using the same statements as for Windows
bitmaps.

Before displaying a multiple-resolution bitmap, Windows Help checks the display type for the computer
and then selects the bitmap that has the closest matching resolution, aspect ratio, and color capabilities.
Windows Help never displays more than one bitmap from a multiple-resolution bitmap file.

Creating Help Project Files
This section describes the format and contents of the Help project file (.HPJ) used to build the help file.
The project file contains all the information the Microsoft Help Compiler needs to combine topic files and
other elements into a help file.

Project File Sections

Every project file consists of one or more sections. Each section has a section name, enclosed in
brackets ([]), that defines the purpose and format of statements and options in the section. Following are
the sections used in project files:

Section Description
[OPTIONS] Specifies options that control the build process. This section is optional. If this

section is used, it should be the first section listed in the project file, so that the
options will apply during the entire build process.

[FILES] Specifies topic files to be included in the build. This section is required.
[BUILDTAGS] Specifies valid build tags. This section is optional.
[CONFIG] Specifies Help macros that define nonstandard menus, buttons, and macros used in

the help file. This section is required if the help file uses any of these features.
This section is new for Windows 3.1.

[BITMAPS] Specifies bitmap files to be included in the build. This section is not required if the
project file lists a path for bitmap files by using the BMROOT or ROOT option.

[MAP] Associates context strings with context numbers. This section is optional.
[ALIAS] Assigns one or more context strings to the same topic. This section is optional.
[WINDOWS] Defines the characteristics of the primary Help window and the secondary-

window types used in the help file. This section is required if the help file uses
secondary windows. This section is new for Windows 3.1.

[BAGGAGE] Lists files that are to be placed within the help file (which contains its own file
system). This section is optional.

Every project file requires a [FILES] section. This section names the topic files. Most project files also
have an [OPTIONS] section that specifies how to build the help file. A very useful option in the
[OPTIONS] section is the COMPRESS option, which specifies whether the help file should be
compressed or uncompressed. Compressing a help file reduces its size considerably and saves valuable
disk space.

The following example creates a compressed help file from two topic files, MAIN.RTF and MENUS.
RTF:

[OPTIONS]
COMPRESS=TRUE
[FILES]
MAIN.RTF
MENUS.RTF
Using Macros in Project Files

You can add macros to the [CONFIG] section of a project file. Since Windows Help executes the
macros when it first opens the help file, macros that create menus, menu items, and buttons are typically
placed in this section. If there is more than one macro listed in the [CONFIG] section, Windows Help
executes them in the order in which they are listed.

You can create new menu items and buttons for Windows Help by using such macros as CreateButton
and InsertMenu. These macros define other Help macros and associate them with the menu items and
buttons. Windows Help executes these macros when the user chooses a corresponding menu item or
button. Macros that create Help buttons, menus, or menu items remain in effect until the user quits
Windows Help or opens a new help file.

You can extend the capabilities of Windows Help by developing your own dynamic-link libraries
(DLLs) and defining Help macros that call functions in the libraries. To define Help macros that call
DLL functions, you must register each function and its corresponding library by using the
RegisterRoutine macro in the [CONFIG] section of the project file.

Sample Project File

The following example is a sample project file for the Cardfile application. Comments, marked by a
beginning semicolon (;), indicate the purpose of each section in the file:

; Options used to define the Help title bar and icon
[OPTIONS]
ROOT=C:\HELP
BMROOT=C:\HELP\ART
CONTENTS=cont_idx_card
TITLE=Cardfile Help
ICON=CARDHLP.ICO
COMPRESS=OFF
WARNING=3
REPORT=ON
ERRORLOG=CARD.BUG
; Files used to build Cardfile Help
[FILES]
RTFTXT\COMMANDS.RTF
RTFTXT\HOWTO.RTF
RTFTXT\KEYS.RTF
RTFTXT\GLOSSARY.RTF
; Button macros and Using Help file
[CONFIG]
CreateButton("btn_up", "&Up", "JumpContents(`HOME.HLP')")
BrowseButtons()
SetHelpOnFile("APPHELP.HLP")
; Secondary-window characteristics
[WINDOWS]
picture = "Samples", (123,123,256,256), 0, (0,255,255), (255,0,0)

Using Help in a Windows Application
Windows applications can offer help to their users by using the WinHelp function to start Windows Help
and display topics in the application's help file. The WinHelp function gives a Windows application
complete access to the help file, as well as to the menus and commands of Windows Help. Many
applications use WinHelp to implement context-sensitive Help. Context-sensitive Help enables users to
view topics about specific windows, menus, menu items, and control windows by selecting the item with
the keyboard or the mouse. For example, a user can learn about the Open command on the File menu by
selecting the command (using the direction keys) and pressing the F1 key.

Choosing Help from the Help Menu

Every application should provide a Help menu to allow the user to open the help file with either the
keyboard or the mouse. The Help menu should contain at least one Contents menu item that, when
chosen, displays the contents or the main topic in the help file. To support the Help menu, the
application's main window procedure should check for the Contents menu item and call the WinHelp
function, as in the following example:

case WM_COMMAND:
switch (wParam) {
case IDM_HELP_CONTENTS:
WinHelp(hwnd, "myhelp.hlp", HELP_CONTENTS, 0L);
return 0L;
.
.
.
}
break;

You can add other menu items to the Help menu for topics containing general information about the
application. For example, if your help file contains a topic that describes how to use the keyboard, you can
place a Keyboard menu item on the Help menu. To support additional menu items, your application must
specify either the context string or the context identifier for the corresponding topic when it calls the
WinHelp function. The following example uses a Help macro to specify the context string
IDM_HELP_KEYBOARD for the Keyboard topic:

case IDM_HELP_KEYBOARD:
WinHelp(hwnd, "myhelp.hlp", HELP_COMMAND,

(LPSTR)"JumpID(\"myhelp.hlp\",\"IDM_HELP_KEYBOARD\")");
return 0L;

A better way to display a topic is to use a context identifier. To do this, the help file must assign a unique
number to the corresponding context string, in the [MAP] section of the project file. For example, the
following section assigns the number 101 to the context string IDM_HELP_KEYBOARD:

[MAP]
IDM_HELP_KEYBOARD 101
An application can display the Keyboard topic by specifying the context identifier in the call to the
WinHelp function, as in the following example:

#define IDM_HELP_KEYBOARD 101
WinHelp(hwnd, "myhelp.hlp", HELP_CONTEXT, (DWORD)IDM_HELP_KEYBOARD);
To make maintenance of an application easier, most programmers place their defined constants (such as
IDM_HELP_KEYBOARD in the previous example) in a single header file. As long as the names of the
defined constants in the header file are identical to the context strings in the help file, you can include the
header file in the [MAP] section to assign context identifiers, as shown in the following example:

[MAP]
#include <myhelp.h>
If a help file contains two or more Contents topics, the application can assign one as the default by using
the context identifier and the HELP_SETCONTENTS value in a call to the WinHelp function.

Choosing Help with the Keyboard

An application can enable the user to choose a help topic with the keyboard by intercepting the F1 key.
Intercepting this key lets the user select a menu, menu item, dialog box, message box, or control window
and view Help for it with a single keystroke.

To intercept the F1 key, the application must install a message-filter procedure by using the
SetWindowsHook function. This allows the application to examine all keystrokes for the application,
regardless of which window has the input focus. If the filter procedure detects the F1 key, it posts a
WM_F1DOWN message (application-defined) to the application's main window procedure. The
procedure then determines which help topic to display.

The filter procedure should have the following form:

int FAR PASCAL FilterFunc(nCode, wParam, lParam)
int nCode;
WORD wParam;
DWORD lParam;
{

LPMSG lpmsg = (LPMSG)lParam;
if ((nCode == MSGF_DIALOGBOX || nCode == MSGF_MENU) &&

lpmsg->message == WM_KEYDOWN && lpmsg->wParam == VK_F1) {
PostMessage(hWnd, WM_F1DOWN, nCode, 0L);
}
DefHookProc(nCode, wParam, lParam, &lpFilterFunc);
return 0;

}
The application should install the filter procedure after creating the main window, as shown in the
following example:

lpProcInstance = MakeProcInstance(FilterFunc, hInstance);
if (lpProcInstance == NULL)

return FALSE;
lpFilterFunc = SetWindowsHook(WH_MSGFILTER, lpProcInstance);
Like all callback functions, the filter procedure must be exported by the application.

The filter procedure sends a WM_F1DOWN message only when the F1 key is pressed in a dialog box,
message box, or menu. Many applications also display the Contents topic if no menu, dialog box, or
message box is selected when the user presses the F1 key. In this case, the application should define the F1
key as an accelerator key that starts Help.

To create an accelerator key, the application's resource-definition file must define an accelerator table, as
follows:

1 ACCELERATORS
BEGIN

VK_F1, IDM_HELP_CONTENTS, VIRTKEY
END
To support the accelerator key, the application must load the accelerator table by using the
LoadAccelerators function and translate the accelerator keys in the main message loop by using the
TranslateAccelerator function.

In addition to installing the filter procedure, the application must keep track of which menu, menu item,
dialog box, or message box is currently selected. In other words, when the user selects an item, the
application must set a global variable indicating the current context. For dialog and message boxes, the
application should set the global variable immediately before calling the DialogBox or MessageBox
function. For menus and menu items, the application should set the variable whenever it receives a
WM_MENUSELECT message. As long as identifiers for all menu items and controls in an application are
unique, an application can use code similar to the following example to monitor menu selections:

case WM_MENUSELECT:
/*

* Set dwCurrentHelpId to the Help ID of the menu item that is

* currently selected.
*/

if (HIWORD(lParam) == 0) /* no menu selected */
dwCurrentHelpId = ID_NONE;
else if (lParam & MF_POPUP) { /* pop-up selected*/
if ((HMENU)wParam == hMenuFile)
dwCurrentHelpId = ID_FILE;
else if ((HMENU)wParam == hMenuEdit)
dwCurrentHelpId = ID_EDIT;
else if ((HMENU)wParam == hMenuHelp)
dwCurrentHelpId = ID_HELP;
else
dwCurrentHelpId = ID_SYSTEM;
}
else /* menu item selected */
dwCurrentHelpId = wParam;
break;

In this example, the hMenuFile, hMenuEdit, and hMenuHelp parameters must previously have been set to
specify the corresponding menu handles. An application can use the GetMenu and GetSubMenu functions
to retrieve these handles.

When the main window procedure finally receives a WM_F1DOWN message, it should use the current
value of the global variable to display a help topic. The application can also provide Help for individual
controls in a dialog box by determining which control has the focus at this point, as shown in the following
example:

case WM_F1DOWN:
/*

* If there is a current Help context, display it.
*/

if (dwCurrentHelpId != ID_NONE) {
DWORD dwHelp = dwCurrentHelpId;
/*
* Check for context-sensitive Help for individual dialog
* box controls.
*/
if (wParam == MSGF_DIALOGBOX) {
WORD wID = GetWindowWord(GetFocus(), GWW_ID);
if (wID != IDOK && wID != IDCANCEL)
dwHelp = (DWORD) wID;
}
WinHelp(hWnd, szHelpFileName, HELP_CONTEXT, dwHelp);
/*
* This call is used to remove the highlighting from the
* System menu, if necessary.
*/
DrawMenuBar(hWnd);
}
break;

When the application ends, it must remove the filter procedure by using the UnhookWindowsHook
function and free the procedure instance for the function by using the FreeProcInstance function.

Choosing Help with the Mouse

An application can enable the user to choose a help topic with the mouse by intercepting mouse input
messages and calling the WinHelp function. To distinguish requests to view Help from regular mouse
input, the user must press the SHIFT+F1 key combination. In such cases, the application sets a global
variable when the user presses the key combination and changes the cursor shape to a question-mark
pointer to indicate that the mouse can be used to choose a help topic.

To detect the SHIFT+F1 key combination, an application checks for the VK_F1 virtual-key value in each
WM_KEYDOWN message sent to its main window procedure. It also checks for the VK_ESCAPE
virtual-key code. The user presses the ESC key to quit Help and restore the mouse to its regular function.
The following example checks for these keys:

case WM_KEYDOWN:
if (wParam == VK_F1) {
/* If Shift-F1, turn Help mode on and set Help cursor. */
if (GetKeyState(VK_SHIFT)) {
bHelp = TRUE;
SetCursor(hHelpCursor);
return DefWindowProc(hwnd, message, wParam, lParam);
}
/* If F1 without shift, call Help main index topic. */
else {
WinHelp(hwnd,"myhelp.hlp",HELP_CONTENTS,0L);
}
}
else if (wParam == VK_ESCAPE && bHelp) {
/* Escape during Help mode: turn Help mode off. */
bHelp = FALSE;
SetCursor((HCURSOR) GetClassWord(hWnd, GCW_HCURSOR));
}
break;

Until the user clicks the mouse or presses the ESC key, the application responds to WM_SETCURSOR
messages by resetting the cursor to the arrow and question-mark combination.

case WM_SETCURSOR:
/*

* In Help mode, it is necessary to reset the cursor in response
* to every WM_SETCURSOR message. Otherwise, by default, Windows
* will reset the cursor to that of the window class.
*/

if (bHelp) {
SetCursor(hHelpCursor);
break;
}
return (DefWindowProc(hwnd, message, wParam, lParam));

case WM_INITMENU:
if (bHelp) {
SetCursor(hHelpCursor);
}
return (TRUE);

If the user clicks the mouse button in a nonclient area of the application window while in Help mode, the
application receives a WM_NCLBUTTONDOWN message. By examining the wParam value of this
message, the application can determine which context identifier to pass to WinHelp.

case WM_NCLBUTTONDOWN:
/*

* If in Help mode (Shift+F1), display context-sensitive
* Help for nonclient area.
*/

if (bHelp) {
dwHelpContextId =
(wParam == HTCAPTION) ?(DWORD) HELPID_TITLE_BAR:
(wParam == HTSIZE) ? (DWORD) HELPID_SIZE_BOX:
(wParam == HTREDUCE) ? (DWORD) HELPID_MINIMIZE_ICON:
(wParam == HTZOOM) ? (DWORD) HELPID_MAXIMIZE_ICON:
(wParam == HTSYSMENU) ?(DWORD) HELPID_SYSTEM_MENU:
(wParam == HTBOTTOM) ? (DWORD) HELPID_SIZING_BORDER:
(wParam == HTBOTTOMLEFT) ? (DWORD) HELPID_SIZING_BORDER:
(wParam == HTBOTTOMRIGHT) ?(DWORD) HELPID_SIZING_BORDER:
(wParam == HTTOP) ?(DWORD) HELPID_SIZING_BORDER:
(wParam == HTLEFT) ?(DWORD) HELPID_SIZING_BORDER:
(wParam == HTRIGHT) ?(DWORD) HELPID_SIZING_BORDER:
(wParam == HTTOPLEFT) ?(DWORD) HELPID_SIZING_BORDER:
(wParam == HTTOPRIGHT) ? (DWORD) HELPID_SIZING_BORDER:
(DWORD) 0L;
if (!((BOOL) dwHelpContextId))
return DefWindowProc(hwnd, message, wParam, lParam);
bHelp = FALSE;
WinHelp(hWnd, szHelpFileName, HELP_CONTEXT, dwHelpContextId);
break;
}
return (DefWindowProc(hWnd, message, wParam, lParam));

If the user clicks a menu item while in Help mode, the application intercepts the WM_COMMAND
message and sends the Help request:

case WM_COMMAND:
/* In Help mode (Shift-F1)? */
if (bHelp) {
bHelp = FALSE;
WinHelp(hWnd,szHelpFileName,HELP_CONTEXT, (DWORD)wParam);
return NULL;
}

Searching for Help with Keywords

An application can enable the user to search for help topics based on full or partial keywords. This
method is similar to employing the Search dialog box in Windows Help to find useful topics. The
following example searches for the keyword "Keyboard" and displays the corresponding topic, if found:

WinHelp(hwnd, "myhelp.hlp", HELP_KEY, "Keyboard");
If the topic is not found, Windows Help displays an error message. If more than one topic has the same
keyword, Windows Help displays only the first topic.

An application can give the user more options in a search by specifying partial keywords. When a partial
keyword is given, Windows Help usually displays the Search dialog box to allow the user to continue the
search or return to the application. However, if there is an exact match and no other topic exists with the
given keyword, Windows Help displays the topic. The following example opens the Search dialog box and
selects the first keyword in the list starting with the letters Ke:

WinHelp(hwnd, "myhelp.hlp", HELP_PARTIALKEY, "Ke");
When the HELP_KEY and HELP_PARTIALKEY values are specified in the WinHelp function, Windows
Help searches the K keyword table. This table contains keywords generated by using the letter K with \

footnote statements in the topic file. An application can search alternative keyword tables by specifying
the HELP_MULTIKEY value in the WinHelp function. In this case, the application must specify the
footnote character and the full keyword in a MULTIKEYHELP structure, as follows:

HGLOBAL hglblmkh;
MULTIKEYHELP FAR* mkh;
PSTR pszKeyword = "Frame";
UINT cb;
cb = sizeof(MULTIKEYHELP) + lstrlen(pszKeyword);
hglblmkh = GlobalAlloc(GHND, (DWORD) cb);
if (hglblmkh == NULL)

break;
mkh = (MULTIKEYHELP FAR*) GlobalLock(hglblmkh);
mkh->mkSize = cb;
mkh->mkKeylist = 'L';
lstrcpy(mkh->szKeyphrase, pszKeyword);
WinHelp(hwnd, "myhelp.hlp", HELP_MULTIKEY, (DWORD) mkh);
GlobalUnlock(hglblmkh);
GlobalFree(hglblmkh);
If the keyword is not found, Windows Help displays an error message. If more than one topic has the
keyword, Windows Help displays only the first topic.

Applications cannot use alternative keyword tables unless the MULTIKEY option is specified in the
[OPTIONS] section of the project file.

Displaying Help in a Secondary Window

An application can display help topics in secondary windows instead of in Windows Help's main
window. Secondary windows are useful whenever the user does not need the full capabilities of
Windows Help. The Windows Help menus and buttons are not available in secondary windows.

To display Help in a secondary window, the application specifies the name of the secondary window
along with the name of the help file. The following example displays the help topic having the context
identifier IDM_FILE_SAVE in the secondary window named wnd_menu:

WinHelp(hwnd, "myhelp.hlp>wnd_menu", HELP_CONTEXT, IDM_FILE_SAVE);
The name and characteristics of the secondary window must be defined in the [WINDOWS] section of the
project file, as in the following example:

[WINDOWS]
wnd_menu = "Menus", (128, 128, 256, 256), 0
Windows Help displays the secondary window with the initial size and position specified in the
[WINDOWS] section. However, an application can set a new size and position by specifying the
HELP_SETWINPOS value in the WinHelp function. In this case, the application sets the members in a
HELPWININFO structure to specify the window size and position. The following examples sets the
secondary window wnd_menu to a new size and position:

HANDLE hhwi;
LPHELPWININFO lphwi;
WORD wSize;
char *szWndName = "wnd_menu";
wSize = sizeof(HELPWININFO) + lstrlen(szWndName);
hhwi = GlobalAlloc(GHND, wSize);
lphwi = (LPHELPWININFO)GlobalLock(hhwi);
lphwi->wStructSize = wSize;
lphwi->x = 256;
lphwi->y = 256;
lphwi->dx= 767;

lphwi->dy= 512;
lphwi->wMax = 0;
lstrcpy(lphwi->rgchMember, szWndName);
WinHelp(hwnd, "myhelp.hlp", HELP_SETWINPOS, lphwi);
GlobalUnlock(hhwi);
GlobalFree(hhwi);
Canceling Help

Windows Help requires an application to explicitly cancel Help so that Windows Help can free any
resources it used to keep track of the application and its help files. The application can do this at any
time.

An application cancels Windows Help by calling the WinHelp function and specifying the HELP_QUIT
value, as shown in the following example:

WinHelp(hwnd, "myhelp.hlp", HELP_QUIT, NULL);
If the application has made any calls to the WinHelp function, it must cancel Help before it closes its main
window (for example, in response to the WM_DESTROY message in the main window procedure). An
application needs to call WinHelp only once to cancel Help, no matter how many help files it has opened.
Windows Help remains running until all applications or dynamic-link libraries that have called the
WinHelp function have canceled Help.

CODE Module Definition Statement
CODE Module-Definition Statement

CODE attributes [[FIXED|MOVEABLE]] [[DISCARDABLE]] [[\PRELOAD|LOADONCALL]]

The CODE statement specifies the attributes of code segments.
Parameters

This statement takes no parameters. However, options selected from the following list must be specified:

Option Meaning
FIXED Specifies that the segment remains at a fixed memory location.
MOVEABLE Specifies that the segment can be moved, if necessary, in order to compact

memory.
DISCARDABLE Specifies that the segment can be discarded if it is no longer needed.
PRELOAD Specifies that the segment is loaded when the module is first loaded.
LOADONCALL Specifies that the segment is loaded when it is called. The Resource Compiler

(RC) may override this option.

Comments
There are no default attributes for code segments. The .DEF file should always define code-segment
attributes explicitly.

The FIXED and MOVEABLE options are mutually exclusive. The PRELOAD and LOADONCALL
options are mutually exclusive: If options conflict with each other, MOVEABLE overrides FIXED and
PRELOAD overrides LOADONCALL.

Example
The following example sets defaults for the module's code segments so that they are movable and are not
loaded until accessed.

CODE MOVEABLE LOADONCALL

DATA Module Definition Statement
DATA Module-Definition Statement

DATA [[NONE|SINGLE|MULTIPLE]] [[FIXED|MOVEABLE]]

The DATA statement specifies the attributes of the standard data segment, which is all application
segments belonging to the DGROUP group and the DATA class. In C applications, the standard data
segment is created automatically. The data is always preloaded.
Parameters

This statement takes no parameters. However, options selected from the following list must be specified:

Option Meaning
NONE Specifies that there is no data segment. To be effective, this option should be the only

attribute of the segment. This option is valid only for libraries.
SINGLE Specifies that a single data segment is shared by all instances of the module. This

option is valid only for libraries.
MULTIPLE Specifies that one data segment exists for each instance. This option is valid only for

applications.
PRELOAD Specifies that the segment is loaded when the module is first loaded.
FIXED Specifies that the segment remains at a fixed memory location.
MOVEABLE Specifies that the segment can be moved, if necessary, in order to compact memory.

Comments
There are no default attributes for data segments. The .DEF file should always define data-segment
attributes explicitly. Data segments are always preloaded.

The NONE, SINGLE, and MULTIPLE options are mutually exclusive.

The FIXED amd MOVEABLE options are mutually exclusive.

If options conflict with each other, MULTIPLE overrides NONE, SINGLE overrides NONE, and
MOVEABLE overrides FIXED.

Example
The following example defines application's data segment so that it can be moved. It also specifies that a
single data segment is shared by all instances of the module.

DATA MOVEABLE SINGLE

DESCRIPTION Module Definition Statement
DESCRIPTION Module-Definition Statement

DESCRIPTION `text'

The DESCRIPTION statement inserts text into the application module. It is useful for embedding version-
control or copyright information.

Parameter Description
text Specifies a one-line string enclosed in single quotation marks.

Example
The following example embeds the text "Microsoft Windows Template Application" in the application
module.

DESCRIPTION 'Microsoft Windows Template Application'

EXETYPE Module Definition Statement
EXETYPE Module-Definition Statement EXETYPE headertype

The EXETYPE statement specifies the default executable-file (.EXE) header type. The statement is
required for every Windows application.

Parameter Description
headertype Specifies the header type. When linking an application intended for the Windows

environment, set this parameter to the value "WINDOWS".

Example
The following example specifies Windows as the .EXE header type.

EXETYPE WINDOWS

EXPORTS Module Definition Statement
EXPORTS Module-Definition Statement

EXPORTS exportname [[ordinal-option]] [[\res-option]] [[data-option]] [[parameter-option]]

The EXPORTS statement specifies the names and attributes of the functions to be exported to other
applications. The EXPORTS keyword marks the beginning of the definitions. It can be followed by any
number of export definitions, each on a separate line.

Parameter Description
exportname Specifies the name of the function to be exported. This name consists of one or

more ASCII characters in the following format:

<entryname>=[[internalname]]
The entryname parameter specifies the name to be used by other applications to
access the exported function, and internalname, an optional parameter specifies the
actual name of the function if entryname is not its real name.

ordinal-option Defines ordinal value of the function. This parameter is an integer and has the
following format:

@ordinal
The ordinal value defines the location of the function's name in the application's
string table.

res-option Specifies the optional keyword RESIDENTNAME, which stipulates that the
function's name must be resident at all times.

data-option Specifies the optional keyword NODATA, which stipulates that the function is not
bound to a specific data segment. When called, the function uses the current data
segment.

parameter-option Specifies an integer value for the number of words the function expects to be
passed as parameters. This parameter is optional.

Comments
When exporting functions from libraries, use an ordinal value rather than a name; using an ordinal
conserves space.

Functions using the C calling convention (declared with the _cdecl keyword) must be exported with a
leading underscore. For example, the following statement exports the MyPrintf function:

EXPORTS
_MyPrintf

In addition, applications calling this function must explicitly import the function by declaring it (with the
leading underscore) in the IMPORTS section of the application's module-definition (.DEF) file.

Functions using the _fastcall calling convention must be explicitly exported and imported with a leading
@ symbol.

Example
The following example exports the SampleRead, StringIn and CharTest functions so that other
applications, or Windows itself, can call them.

EXPORTS
SampleRead=read2bin @1 8
StringIn=str1 @2 4
CharTest NODATA

HEAPSIZE Module Definition Statement
HEAPSIZE Module-Definition Statement HEAPSIZE bytes

The HEAPSIZE statement specifies the number of bytes needed by the application for its local heap. An
application uses the local heap whenever it allocates local memory. The size of the local heap must be at
least large enough to hold the current environment for an application.

Parameter Description
bytes Specifies the heap size in bytes. The default heap size is zero; the minimum size is 256

bytes. The heap size must not exceed 65,536 bytes (the size of a single physical
segment).

Example
This example sets the size of the application's local heap to 4,096 bytes.

HEAPSIZE 4096

IMPORTS Module Definition Statement
IMPORTS Module-Definition Statement

IMPORTS [[internal-option]] modulename [[entry-option]]

The IMPORTS statement specifies the names and attributes of the functions to be imported from dynamic-
link libraries (DLLs). The IMPORTS keyword marks the beginning of the definitions. It can be followed
by any number of import definitions, each on a separate line.

Parameter Description
internal-option Specifies the name of the function to be imported. This name consists of one or more

ASCII characters in the following format:

internal-name=
The internal-name parameter specifies the name to be used by the application to call
the function. This name must be unique.

modulename Specifies one or more ASCII characters that constitute the name of the executable
module containing the function. The module name must match the name of the
executable file. For example, an application with the executable file SAMPLE.DLL
has the module name "SAMPLE". The executable file must be named with the .DLL
extension.

entry-option Specifies the function to be imported. This parameter can be either .entryname or .
entryordinal, where entryname is the actual name of the function and entryordinal is
the ordinal value of the function.

Comments
Instead of listing imported DLL functions in the IMPORTS statement, you can specify an "import library"
for the DLL in the LINK command line for your application.

Functions using the _cdecl or _fastcall calling conventions, however, must be explicitly imported in the
module-definition file for the application (using either a leading underscore or a leading @ symbol,
respectively).

Example

IMPORTS
Sample.SampleRead
write2hex=Sample.SampleWrite
Read.1

LIBRARY Module Definition Statement
LIBRARY Module-Definition Statement LIBRARY libraryname

The LIBRARY statement specifies the name of a library module. Library modules are resource modules
that contain code, data, and other resources but are not executed as independent programs.

Parameter Description
libraryname Specifies one or more ASCII characters that constitute the name of the library module.

A library's module name must match the name of the executable file. For example, the
library USER.EXE has the module name "USER".
The libraryname parameter is optional. If it is not included, LINK takes the library name
from the filename (without extension) for the executable file.

Comments
The starting address of the library module is determined by the object files for the library; it is an
internally defined function.

If the .DEF file includes neither a NAME nor a LIBRARY statement, LINK uses a NAME statement
without a modulename parameter as the default.

Example
This example gives a library the module name "Utilities."

LIBRARY Utilities

NAME Module Definition Statement
NAME Module-Definition Statement NAME modulename

The NAME statement specifies the name of the executable module for the application. The module name
identifies the module when exporting functions.

Parameter Description
modulename Specifies one or more uppercase ASCII characters that constitute the name of the

executable module. The module name must match the name of the executable file. For
example, an application with the executable file SAMPLE.EXE has the module name
"SAMPLE". Do not use system library names; examples of these names are KERNEL,
USER, GDI, SHELL, COMMDLG, and TOOLHELP.

The modulename parameter is optional. If it is not included, LINK takes the module name from the
filename (without extension) of the executable file. For example, if you do not specify a module name and
the executable file is named MYAPP.EXE, LINK assumes that the module name is "MYAPP".

Comments
If the .DEF file includes neither a NAME nor a LIBRARY statement, LINK uses a NAME statement
without a modulename parameter as the default.

Example
This example gives an application the module name "Calendar".

NAME Calendar

SEGMENTS Module Definition Statement
SEGMENTS Module-Definition Statement

SEGMENTS segmentname [[CLASS ' class-name']] [[minalloc]]\ [[FIXED|MOVEABLE]] [
[DISCARDABLE]] [[SHARED|NONSHARED]] [[PRELOAD|LOADONCALL]]

The SEGMENTS statement specifies the segment attributes of additional code and data segments.
Parameters

This statement takes no parameters. However, options selected from the following list must be specified:

Option Meaning
FIXED Specifies that the segment remains at a fixed memory location.
MOVEABLE Specifies that the segment can be moved if necessary, in order to compact

memory.
DISCARDABLE Specifies that the segment can be discarded if it is no longer needed.
PRELOAD Specifies that the segment is loaded when the module is first loaded.
LOADONCALL Specifies that the segment is loaded when it is accessed or called. The Resource

Compiler (RC) may override this option. For more information, see Microsoft
Windows Tools.

Parameter Description
segmentname Specifies one or more ASCII characters that constitute the name of the new segment.

This parameter can be any name, including the standard segment names _TEXT and
_DATA, which represent the standard code and data segments.

class-name Specifies the class name of the segment. If no class name is specified, LINK uses the
CODE class name by default.

minalloc Specifies the minimum allocation size for the segment. This value must be an integer.
The minalloc parameter is optional.

Comments
There are no default attributes for additional segments. The .DEF file should always define the attributes
of additional segments explicitly.

The FIXED and MOVEABLE options are mutually exclusive. The PRELOAD and LOADONCALL
options are mutually exclusive. If options conflict with each other, MOVEABLE overrides FIXED and
PRELOAD overrides LOADONCALL.

Example
The following example defines the segment named _TEXT as FIXED. It specifies the _INIT segment as
PRELOAD and DISCARDABLE. The _RES segment of the data class becomes PRELOAD and
DISCARDABLE.

SEGMENTS
_TEXT FIXED
_INIT PRELOAD DISCARDABLE
_RES CLASS 'DATA' PRELOAD DISCARDABLE

STACKSIZE Module Definition Statement
STACKSIZE Module-Definition Statement STACKSIZE bytes

The STACKSIZE statement specifies the number of bytes needed by the application for its local stack. An
application uses the local stack whenever it makes function calls.

Parameter Description
bytes Specifies the stack size, in bytes. If the application makes no function calls, the default

stack size is zero. If your application does make function calls and you specify a stack
size smaller than 5K, Windows automatically sets the size to 5K.

Comments
Do not use the STACKSIZE statement for dynamic-link libraries (DLLs).

Example
This example sets the size of an application's stack to 6,144 bytes.

STACKSIZE 6144

STUB Module Definition Statement
STUB Module-Definition Statement STUB `filename'

The STUB statement appends the old-style executable file specified by filename to the beginning of the
module. The executable stub should display a warning message and stop execution if the user attempts to
run the module without having loaded Windows. The default file WINSTUB.EXE can be used if no other
actions are required.

Parameter Description
filename Specifies the name of the old-style executable file to be appended to the module. The

name must have the DOS filename format.

Comments
If the file named by filename is not in the current directory, LINK searches for the file in the directories
specified in PATH environment variable.

Example
This example specifies the executable file WINSTUB.EXE as the stub for the application. If a user tries to
run this application in the DOS environment rather than with the Windows operating system, WINSTUB.
EXE starts instead.

STUB 'WINSTUB.EXE'

Module Definition Statements
CODE Module Definition Statement Defines attributes of standard code segment
DATA Module Definition Statement defines attributes of standard data segment
DESCRIPTION Module Definition Statement Inserts text into application module
EXETYPE Module Definition Statement Specifies the default .EXE header type
EXPORTS Module Definition Statement Specifies functions to export to other apps
HEAPSIZE Module Definition Statement Specifies size of local heap
IMPORTS Module Definition Statement Specifies functions to import from DLLs
LIBRARY Module Definition Statement Specifies name of a library module
NAME Module Definition Statement Specifies name of executable module
SEGMENTS Module Definition Statement Specifies segment attributes
STACKSIZE Module Definition Statement Specifies size of local stack
STUB Module Definition Statement Appends stub to the beginning of the

module

[ALIAS] Section

[ALIAS]
context_string = alias

.

.

.

The [ALIAS] section assigns one or more context strings to the same topic alias. This section is optional.

Parameter Description
context_string Specifies the context string that identifies a particular topic. This context string may be

used in a hotspot or in the [MAP] section to refer to a particular topic.
alias Specifies the alternative string or alias name. This string is used in the \footnote

statement. An alias string has the same form and follows the same conventions as the
topic context string. That is, it is not case-sensitive and may contain the alphabetic
characters A through Z, the numeric characters 0 through 9, and the period and
underscore characters.

Comments
Because context strings must be unique for each topic and cannot be used for any other topic in the Help
project, the [ALIAS] section provides a way to delete or combine help topics without recoding your files.
For example, if you create a topic that replaces information in three other topics, you could manually
search through your files for invalid cross-references to the deleted topics. The easier approach, however,
would be to use the [ALIAS] section to assign the name of the new topic to the deleted topics.

The [ALIAS] section can also be used when your application has multiple context identifiers for one help
topic. This situation occurs in context-sensitive Help.

Alias names can be used in a [MAP] section, but only if the [ALIAS] section precedes the [MAP] section.

Example
The following example creates several aliases:

[ALIAS]
sm_key=key_shrtcuts
cc_key=key_shrtcuts
st_key=key_shrtcuts; combined into Keyboard Shortcuts topic
clskey=us_dlog_bxs
maakey=us_dlog_bxs ; covered in Using Dialog Boxes topic.
chk_key=dlogprts
drp_key=dlogprts
lst_key=dlogprts
opt_key=dlogprts
tbx_key=dlogprts ; combined into Parts of Dialog Box topic.
frmtxt=edittxt
wrptxt=edittxt
seltxt=edittxt; covered in Editing Text topic.
See Also
[MAP]

[BAGGAGE] Section

[BAGGAGE]
filename

.

.

.

The [BAGGAGE] section lists files (typically multimedia elements) that the Microsoft Help Compiler
stores within the help file's internal file system. Windows Help can access data files stored in the help file
more efficiently than it can access files in the normal MS-DOS file system, since it doesn't have to read
the file allocation table from CD-ROM.

Parameter Description
filename Specifies the full path of a file. If a file cannot be found, the compiler reports an error.

Comments
A maximum of 1,000 files can be stored as baggage files.

If a file is listed in the [BAGGAGE] section, you must use or write a dynamic-link library that uses
Windows Help to read these files from the help file.

See Also
ROOT

[BITMAPS] Section

[BITMAPS]
filename

.

.

.

The [BITMAPS] section specifies the names and locations of the bitmap files specified in the bmc, bml,
and bmr statements.

Parameter Description
filename Specifies the full path of a bitmap file. If a file cannot be found, the compiler reports an

error.

Comments
For Windows 3.1, the [BITMAPS] section is not required if the bitmaps are located in the Help project
directory or if the path containing the bitmaps is listed in the BMROOT or ROOT option. If the project file
does not include either of these options, each bitmap filename must be listed in the [BITMAPS] section of
the project file.

Example
The following example specifies three bitmap files:

[BITMAPS]
BMP01.BMP
BMP02.BMP
BMP03.BMP
See Also
BMROOT, ROOT

Changes for Windows 3.1

For Windows 3.1, the [BITMAPS] section is not required if the bitmaps are located in the Help project
directory or if the path containing the bitmaps is listed in the BMROOT or ROOT option. For Windows 3.
0, all bitmaps used in the help file must be placed in the [BITMAPS] section.

BMROOT Option

BMROOT = path[, path]...

The BMROOT option specifies the directory containing the bitmap files specified in the bmc, bml, and
bmr statements.

Parameter Description
path Specifies a drive and full path.

Comments
If the project file has a BMROOT option, you do not need to list the bitmap files in the [BITMAPS]
section.

If the project file does not have a BMROOT option, the Help compiler looks for bitmaps in the directories
specified by the ROOT option. If the project file does not have a ROOT option or if the ROOT option does
not specify the directory containing the bitmap files, the filename for each bitmap must be specified in the
[BITMAPS] section.

Example
The following example specifies that bitmaps are in the \HELP\BMP directory on drive C: and the \
GRAPHICS\ART directory on drive D:

[OPTIONS]
BMROOT=C:\HELP\BMP, D:\GRAPHICS\ART
See Also
[BITMAPS], [OPTIONS], ROOT

BUILD Option

BUILD = expression

The BUILD option specifies which topics containing build tags are included in a build. The BUILD option
does not apply to topics that do not contain build tags.

A topic contains a build tag if it contains a build-tag \footnote statement. Topics without build tags are
always compiled, regardless of the current build expression.

Parameter Description
expression Specifies the build expression. This parameter consists of a combination of build tags

(specified in the [BUILDTAGS] section) and the following operators:

Operator Description
~ Applies the NOT operator to a single tag. The Help compiler compiles a

topic only if the tag is not present. This operator has the highest
precedence; the compiler applies it before any other operator.

& Combines two tags by using the AND operator. The Help compiler
compiles a topic only if it contains both tags. The compiler applies this
operator only after the ~ operator has been applied.

| Combines two tags by using the OR operator. The Help compiler
compiles a topic if it has at least one tag. This operator has the lowest
precedence; the compiler applies it only after all other operators have
been applied.

Parentheses may be used to override operator precedence. Expressions enclosed in
parentheses are always evaluated first.

Comments
Only one BUILD option can be given per project file.

The Help compiler evaluates all build expressions from left to right, using the specified precedence rules.

Example
The following examples assume that the [BUILDTAGS] section in the project file defines the build tags
DEMO, MASTER, and TEST_BUILD. Although the following examples show several BUILD options on
consecutive lines, only one BUILD option per project file is allowed.

BUILD = DEMO ; compile topics that have the DEMO tag
BUILD = DEMO & MASTER ; compile topics with both DEMO and MASTER
BUILD = DEMO | MASTER ; compile topics with either DEMO or MASTER
BUILD = ~DEMO ; compile topics that do not have DEMO
BUILD = (DEMO | MASTER) & TEST_BUILD

; compile topics that have TEST_BUILD and
; either DEMO or MASTER

See Also
[BUILDTAGS], [OPTIONS]

[BUILDTAGS] Section

[BUILDTAGS]
tag

.

.

.

The [BUILDTAGS] section defines the build tags for the help file. The Help compiler uses these tags to
determine which topics to include when building the help file.

This section is used in conjunction with the build-tag \footnote statements. These \footnote statements
associate a build tag with a given topic. If the build tag is also defined in the [BUILDTAGS] section, the
Help compiler compiles the topic; otherwise, it ignores the topic.

Parameter Description
tag Specifies a build tag consisting of any combination of characters except spaces. The

Help compiler strips any space characters from the tag. Also, the compiler treats
uppercase and lowercase characters as the same characters (that is, it is case-insensitive)
.

Comments
The [BUILDTAGS] section is optional. If given, it can contain up to 30 build tags.

Example
The following example shows the form of the [BUILDTAGS] section in a sample project file:

[BUILDTAGS]
DEMO ; topics to include in demo build
MASTER; topics to include in master help file
DEBUGBUILD ; topics to include in debugging build
TESTBUILD ; topics to include in a mini-build for testing
See Also
BUILD

CITATION Option

CITATION = citation

The CITATION option places a custom citation in the About dialog box of Windows Help. Windows Help
displays the citation immediately below the Microsoft copyright notice.

Parameter Description
citation Specifies the citation. The notice can be any combination of characters; its length must

be in the range 35 through 75 characters.

See Also
COPYRIGHT, [OPTIONS]

COMPRESS Option

COMPRESS = compression-level

The COMPRESS option specifies the level of compression to be used when building the help file.
Compression levels indicate either no compression, medium compression (approximately 40%), or high
compression (approximately 50%).

Parameter Description
compression-level Specifies the level of compression. This parameter can be one of the following

values:

Value Meaning
0 No compression
1 High compression
FALSE No compression
HIGH High compression
MEDIUM Medium compression
NO No compression
TRUE High compression
YES High compression

Comments
Depending on the degree of compression requested, the build uses either block compression or a
combination of block and key-phrase compression. Block compression compresses the topic data into
predefined units known as blocks. Key-phrase compression combines repeated phrases found within the
source file(s). The compiler creates a phrase-table file with the .PH extension if one does not already exist.
If the compiler finds a file with the .PH extension, it uses that file for the current compilation. Because the
.PH file speeds up the compression process when little text has changed since the last compilation, you
might want to keep the phrase file if you compile the same Help file several times with compression.
However, you will get maximum compression if you delete the .PH file before starting each build.

See Also
[OPTIONS] section

[CONFIG] Section

[CONFIG]
macro

.

.

.

The [CONFIG] section contains one or more macros that carry out actions, such as enabling browse
buttons and registering dynamic-link library (DLL) functions. Windows Help executes the macros when it
opens the help file.

Parameter Description
macro Specifies a Windows Help macro.

Comments
The [CONFIG] section may include any number of lines. Each line of the [CONFIG] section may be up to
254 characters long.

Example
The following example registers a DLL, creates a button, enables the browse buttons, and sets the name of
the help file containing information about how to use Help:

[CONFIG]
RegisterRoutine("bmp","HDisplayBmp","USSS")
RegisterRoutine("bmp","CopyBmp", "v=USS")
CreateButton("btn_up", "&Up", "JumpContents(`HOME.HLP')")
BrowseButtons()
SetHelpOnFile("APPHELP.HLP")

CONTENTS Option

CONTENTS = context-string

The CONTENTS option identifies the context string of the highest-level or Contents topic. This topic is
usually a table of contents or index within the help file. Windows Help displays the Contents topic
whenever the user clicks the Contents button.

Parameter Description
context-string Specifies the context string of a topic in the help file. The string can be any

combination of characters, except spaces, and must also be specified in a context-string
\footnote statement in some topic in the help file.

Comments
If the [OPTIONS] section does not include a CONTENTS option, the compiler assumes that the Contents
topic is the first topic encountered in the first listed topic file in the [FILES] section of the project file.

The CONTENTS option is equivalent to the INDEX option that was available in Windows version 3.0.

Example
The following example sets the topic containing the context string "main_contents" as the Contents topic:

CONTENTS=main_contents
See Also
[FILES], [OPTIONS]

COPYRIGHT Option

COPYRIGHT = copyright-notice

The COPYRIGHT option places a custom copyright notice in the About dialog box of Windows Help.
Windows Help displays the notice immediately below the Microsoft copyright notice.

Parameter Description
copyright-notice Specifies the copyright notice. The notice can be any combination of characters; its

length must be in the range 35 through 75 characters.

Comments
The copyright notice is also appended to topics that are copied to the clipboard, unless it is replaced by
using the CITATION option.

See Also
CITATION, [OPTIONS]

ERRORLOG Option

ERRORLOG = error-filename

The ERRORLOG option directs the Help compiler to write all error messages to the specified file. The
compiler also displays the error messages on the screen.

Parameter Description
error-filename Specifies the name of the file to receive the error messages. This parameter can be a

full or partial path if the error file should be written to a directory other than the
project root directory.

Example
The following example writes all errors during the build to the HLPBUGS.TXT file in the Help project
root directory.

ERRORLOG=HLPBUGS.TXT
See Also
[OPTIONS]

[FILES] Section

[FILES]
filename

.

.

.

The [FILES] section lists all topic files used to build the help file. Every project file requires a [FILES]
section.

Parameter Description
filename Specifies the full or partial path of a topic file. If a partial path is given, the Help

compiler uses the directories specified by the ROOT option to construct a full path. If a
file cannot be found, the compiler reports an error.

Comments
The #include directive can also be used in the [FILES] section to specify the topic files indirectly by
designating a file that contains a list of the topic files.

Example
The following example specifies four topic files:

[FILES]
rtftxt\COMMANDS.RTF
rtftxt\HOWTO.RTF
rtftxt\KEYS.RTF
rtftxt\GLOSSARY.RTF
The following example uses the #include directive to specify the topic files indirectly. In this case, the file
RTFFILES.H must be in the project file (the Help compiler does not use the INCLUDE environment
variable to search for files).

[FILES]
#include <rtffiles.h>
See Also
ROOT

FORCEFONT Option

FORCEFONT = fontname

The FORCEFONT option forces the specified font to be substituted for all requested fonts. The option is
used to create help files that can be viewed on systems that do not have all fonts available.

Parameter Description
fontname Specifies the name of an available font. Font names must be spelled the same as they are

in the Fonts dialog box in Control Panel. Font names cannot exceed 20 characters. If an
invalid font name is given, the Help compiler uses the MS Sans Serif font as the default.

See Also
[OPTIONS]

ICON Option

ICON = icon-file

The ICON option identifies the icon file to display when the user minimizes Windows Help.

Parameter Description
icon-file Specifies the name of the icon file. This file must have the standard Windows icon-file

format.

See Also
[OPTIONS]

LANGUAGE Option

LANGUAGE = language-name

The LANGUAGE option sets the sorting order for keywords in the Search dialog box.

Parameter Description
language-name Specifies the language on which to base sorting. This parameter can be the

following:

Value Meaning
scandanavian Sets the sorting order to the Scandavanian-language order.

Comments
The default sorting order is the English-language order.

Microsoft Windows Help version 3.1 supports only English and Scandanavian sorting.

See Also
[OPTIONS]

[MAP] Section

[MAP]
context-string context-number

.

.

.

The [MAP] section associates context strings (or aliases) with context numbers for context-sensitive Help.
The context number corresponds to a value the parent application passes to Windows Help in order to
display a particular topic. This section is optional.

Parameter Description
context-string Specifies the context string of a topic in the help file. The string can be any

combination of characters, except spaces, and must also be specified in a context-
string \footnote statement in some topic in the help file.

context-number Specifies the context number to associate with the context string. The number can be
in either decimal or standard C hexadecimal format. Only one context number may
be assigned to a context string or alias. Assigning the same number to more than one
context string generates a compiler error. At least one space must separate the
context number from the context string.

Comments
You can define the context strings listed in the [MAP] section either in a help topic or in the [ALIAS]
section. The compiler generates a warning message if a context string appearing in the [MAP] section is
not defined in any of the topic files or in the [ALIAS] section.

If you use an alias name, the [ALIAS] section must precede the [MAP] section in the Help project file.

The [MAP] section supports two additional statements for specifying context strings and their associated
context numbers. The first statement has the following form:

#define context-string context-number

The context-string and context-number parameters are as described in the Parameters section.

The second statement has the following form:

#include "filename"

The filename parameter, which can be enclosed in either double quotation marks or angle brackets(<>),
specifies the name of a file containing one or more #define statements. The file may contain additional
#include statements as well, but files may not be nested in this way more than five deep.

Example
The following example assigns hexadecimal context numbers to the context strings:

[MAP]
Edit_Window0x0001
Control_Menu 0x0002
Maximize_Icon 0x0003
Minimize_Icon 0x0004
Split_Bar 0x0005
Scroll_Bar 0x0006
Title_Bar 0x0007
Window_Border 0x0008
See Also
[ALIAS]

MAPFONTSIZE Option

MAPFONTSIZE = m:p

The MAPFONTSIZE option maps font sizes specified in topic files to different sizes when they are
displayed in the Help window. This option is especially useful if there is a significant size difference
between the authoring display and the intended user display.

Parameter Description
m Specifies the size of the source font. This parameter is either a single point size or a

range of point sizes. A range of point sizes consists of the low and high point sizes
separated by a hyphen (-). If a range is specified, all fonts in the range are changed to the
size specified by the p parameter.

p Specifies the size of the desired font for the help file.

Comments
Although the [OPTIONS] section can contain up to five font ranges, only one font size or range is allowed
with each MAPFONTSIZE statement. If more than one MAPFONTSIZE statement is included, the source
font size or range specified in subsequent statements cannot overlap previous mappings.

Example
The following examples illustrate the use of the MAPFONTSIZE option:

MAPFONTSIZE=8:12 ; display all 8-pt. fonts as 12-pt.
MAPFONTSIZE=12-24:16 ; display fonts from 12 to 24 pts. as 16 pts.
See Also
[OPTIONS]

MULTIKEY Option

MULTIKEY = footnote-character

The MULTIKEY option specifies the footnote character to use for an alternative keyword table. This
option is intended to be used in conjunction with topic files that contain \footnote statements for
alternative keywords.

Parameter Description
footnote-character Specifies the case-sensitive letter to be used for the keyword footnote.

Comments
Since keyword footnotes are case-sensitive, you should limit your keyword-table footnotes to one case,
usually uppercase. If an uppercase letter is specified, the compiler will not include footnotes with the
lowercase form of the same letter in the keyword table.

You may use any alphanumeric character for a keyword table except K and k, which are reserved for
Help's standard keyword table. There is an absolute limit of five keyword tables, including the standard
table. However, depending upon system configuration and the structure of your Help system, a practical
limit of only two or three tables may be more realistic. If the compiler cannot create an additional keyword
table, the additional table is ignored in the build.

Example
The following example illustrates how to enable the letter L for a keyword-table footnote:

MULTIKEY=L
See Also
[OPTIONS]

OLDKEYPHRASE Option

OLDKEYPHRASE = onoff

The OLDKEYPHRASE option specifies whether an existing key-phrase file should be used to build the
help file.

Parameter Description
onoff Specifies whether the existing file should be used. This parameter can be one of the

following values:

Value Meaning
0 Recreate the file
1 Use the existing file
FALSE Recreate the file
NO Recreate the file
OFF Recreate the file
ON Use the existing file
TRUE Use the existing file
YES Use the existing file

See Also
[OPTIONS]

OPTCDROM Option

OPTCDROM = yesvalue

The OPTCDROM option optimizes a help file for display on CD-ROM by aligning topic files on
predefined block boundaries.

Parameter Description
yesvalue Specifies that the file should be optimized for CD-ROM. This parameter can be any of

the following values:

YES
TRUE
1
ON

See Also
[OPTIONS]

[OPTIONS] Section

[OPTIONS]
option

.

.

.

The [OPTIONS] section includes options that control how a help file is built and what feedback the build
process displays. If this section is included in the project file, it should be the first section listed, so that the
options will apply during the entire build process.

Parameter Description
option Specifies one of the following project-file options:

Option Description
BMROOT Specifies the directory containing the bitmap files named in

the bmc, bml, and bmr statements in topic files. This option
is new for Windows 3.1.

BUILD Specifies which topics to include in the build.
CITATION Specifies a string that is appended to topics that are copied

from Windows Help instead of the COPYRIGHT string.
This option is new for Windows 3.1.

COMPRESS Specifies the type of compression to use during the build.
CONTENTS Specifies the context string of the Contents topic for a help

file. This option is new for Windows 3.1.
COPYRIGHT Adds a unique copyright message for the help file to the

About dialog box. This option is new for Windows 3.1.
ERRORLOG Puts compilation errors in a file during the build. This

option is new for Windows 3.1.
FORCEFONT Forces all authored fonts in the topic files to appear in a

different font when displayed in the Help window.
ICON Specifies the icon file to be displayed when the help file is

minimized. This option is new for Windows 3.1.
LANGUAGE Specifies a different sorting order for help files authored in

a Scandanavian language.
MAPFONTSIZE Maps a font size in the topic file to a different font size in

the compiled help file.
MULTIKEY Specifies an alternative keyword table to use for mapping

topics.
OLDKEYPHRASE Specifies whether the compiler should use the existing key-

phrase table or create a new one during the build. This
option is new for Windows 3.1.

OPTCDROM Optimizes the help file for CD-ROM use. This option is
new for Windows 3.1.

REPORT Controls the display of messages during the build process.
ROOT Specifies the directories containing the topic and data files

listed in the project file.
TITLE Specifies the text displayed in the title bar of the Help

window when the file is open.
WARNING Specifies the level of error-message reporting the compiler

is to display during the build.

Comments
These options can appear in any order within the [OPTIONS] section. The [OPTIONS] section is not
required.

REPORT Option

REPORT = ON

The REPORT option displays messages on the screen during the build. These messages indicate when the
Help compiler is performing the different phases of the build, including compiling the file, resolving
jumps, and verifying browse sequences.

See Also
[OPTIONS], WARNING

ROOT Option

ROOT = pathname[, pathname]...

The ROOT option specifies the directories where the Help compiler looks for files listed in the project file.

Parameter Description
pathname Specifies either a drive and full path or a relative path from the project directory. If the

project file has a ROOT option, all relative paths in the project file refer to one of these
paths. If the project file does not have a ROOT option, all paths are relative to the
directory containing the project file.

Comments
If the project file does not have a BMROOT option, the compiler looks in the directories specified in the
ROOT option to find bitmaps positioned by using the bmc, bml, and bmr statements. If none of these
directories contains these bitmaps, the bitmap filenames must be listed in the [BITMAPS] section of the
project file.

Example
The following example specifies that the project root directory is C:\WINHELP\HELPDIR and is found
on drive C:

[OPTIONS]
ROOT=C:\WINHELP\HELPDIR
Given this root directory, if the [FILES] section contains the entry TOPICS\FILE.RTF, the full path for the
topic file is C:\WINHELP\HELPDIR\TOPICS\FILE.RTF.

See Also
[BITMAPS], BMROOT, [OPTIONS]

TITLE Option

TITLE = titlename

The TITLE option sets the title for the help file. Windows Help displays the title in its title bar whenever it
displays the help file.

Parameter Description
titlename Specifies the title displayed in the Windows Help title bar. The title must not exceed 50

characters.

Comments
If no title is specified by using the TITLE option, Windows Help displays the title Windows Help in the
title bar.

Example
The following example sets the help-file title to ABC Help.

[OPTIONS]
TITLE=ABC Help
See Also
[OPTIONS]

WARNING Option

WARNING = level

The WARNING option specifies the amount of debugging information the Help compiler is to report.

Parameter Description
level Specifies the warning level. This parameter may be one of the following values:

Value Meaning
1 Report only the most severe errors.
2 Report an intermediate number of errors.
3 Report all errors and warnings.

Example
The following example specifies an intermediate level of error reporting:

[OPTIONS]
WARNING=2
See Also
[OPTIONS], REPORT

[WINDOWS] Section

[WINDOWS]
type = "caption", (x, y, width, height), sizing,

(clientRGB), (nonscrollRGB), (fTop)
.
.
.

The [WINDOWS] section defines the size, location, and colors for the primary Help window and any
secondary-window types used in a help file.

The secondary windows defined in this section are intended to be used with Windows applications that
specify secondary windows when calling the WinHelp function.

Parameter Description
type Specifies the type of window that uses the defined attributes. For the primary Help

window, this parameter is main. For a secondary window, this parameter may be any
unique name of up to 8 characters. Any jumps that display a topic in a secondary
window give this type name as part of the jump.

caption Specifies the title for a secondary window. Windows Help places the title in the title
bar of the window. To set the title for the primary Help window, use the TITLE option
in the [OPTIONS] section.

x Specifies the x-coordinate, in help units, of the window's upper-left corner. Windows
Help always assumes the screen is 1024 help units wide, regardless of resolution. For
example, if the x-coordinate is 512, the left edge of the Help window is in the middle
of the screen.

y Specifies the y-coordinate, in help units, of the window's upper-left corner. Windows
Help always assumes the screen is 1024 help units high, regardless of resolution. For
example, if the x-coordinate is 512, the top edge of the Help window is in the middle
of the screen.

width Specifies the default width, in help units, for a secondary window.
height Specifies the default height, in help units, for a secondary window.
sizing Specifies the relative size of a secondary window when Windows Help first opens the

window. This parameter can be one of the following values:

Value Meaning
0 Set the window to the size specified by the x, y, width, and height

parameters.
1 Maximize the window; ignore the x, y, width, and height parameters.

clientRGB Specifies the background color of the window. This parameter is an RGB color value
consisting of three 8-bit hexadecimal numbers enclosed in parentheses and separated
by commas. If this parameter is not given, Windows Help uses the default window
color specified by Control Panel.

nonscrollRGB Specifies the background color of the non-scrolling region (if any) in the Help
window. This parameter is an RGB color value consisting of three 8-bit hexadecimal
numbers enclosed in parentheses and separated by commas. If this parameter is not
given, Windows Help uses the default window color specified by Control Panel.

fTop Specifies whether the secondary window is displayed on top of all other windows.
When this parameter is 1, the window is diplayed over all windows that do not also use
this attribute. Otherwise, it should be zero. This parameter is optional.

Example
The following example defines two windows, the main window and a secondary window named "picture".
The main-window definition sets the background color of non-scrolling regions in the main Help window
to (128, 0, 128) but leaves several other values empty (for which Windows Help will supply its own
default values). The secondary-window definition sets the caption to "Samples" and sets the width and
height of the window to about one-quarter of the width and height of the screen. The background colors
for the window and non-scrolling region are (0, 255, 255) and (255, 0, 0), respectively. The sizing
parameter for both the main and secondary windows is zero.

[WINDOWS]
main=, (, , ,), 0, (, ,), (128, 0, 128)

picture = "Samples", (123,123,256,256), 0, (0,255,255), (255,0,0)
See Also
[Options], TITLE

HPJ Statements
[ALIAS] Section Assigns context strings to a topic alias
[BAGGAGE] Section Lists files to add to the Help file
[BITMAPS] Section Specifies the names of bitmap files
BMROOT Option Specifies the directory containing bitmaps
BUILD Option Specifies which topics to build
[BUILDTAGS] Section Specifies valid build tags
CITATION Option Inserts a citation string in the About dialog box
COMPRESS Option Sets the level of compression for the help file
[CONFIG] Section Specifies the Help file configuration
CONTENTS Option Specifies the context string of the contents topic
COPYRIGHT Option Inserts a copyright string in the About dialog box
ERRORLOG Option Specifies the file to receive error messages
[FILES] Section Specifies the topic files
FORCEFONT Option Sets the Help file font
ICON Option Specifies the Windows Help icon
LANGUAGE Option Sets the sort-ordering for the keyword list
[MAP] Section Associates context strings with context numbers
MAPFONTSIZE Option Maps font sizes for the Help file
MULTIKEY Option Specifies the footnote for alternate keywords
OLDKEYPHRASE Option Specifies whether to use old phrase files
OPTCDROM Option Optimizes help file for display on CD-ROM
[OPTIONS] Section Contains options that control the Help compiler
REPORT Option Displays build message during compilation
ROOT Option Specifies the directories containing topic and data files
TITLE Option Specifies the Help file title
WARNING Option Specifies the warning level for error messages
[WINDOWS] Section Contains definitions for Help windows

About WinHelp macro
About()

The About macro displays Windows Help's About dialog box.
Parameters

This macro does not take any parameters.

Comments
Use of this macro in secondary windows is not recommended.

AddAccelerator WinHelp macro
AddAccelerator(key, shift-state, "macro")

The AddAccelerator macro assigns a Help macro to an accelerator key (or key combination) so that the
macro is carried out when the user presses the accelerator key(s).

Parameter Description
key Specifies the Windows virtual-key value. See the Virtual key codes topic for a list of

virtual-key codes that may be used for this parameter.
shift-state Specifies the combination of ALT, SHIFT, and CTRL keys to be used with the accelerator.

This parameter may be one of the following values:

Value Meaning
0 None
1 SHIFT

2 CTRL

3 SHIFT+CTRL

4 ALT

5 ALT+SHIFT

6 ALT+CTRL

7 SHIFT+ALT+CTRL

macro Specifies the Help macro or macro string executed when the user presses the accelerator
key(s). The macro must appear in quotation marks. Multiple macros in a string must be
separated by semicolons.

Comments
The AddAccelerator macro can be abbreviated as AA.

Example
The following macro executes the Windows Clock program when the user presses ALT+SHIFT+CONTROL+
F4:

AddAccelerator(0x73, 7, "ExecProgram(`clock.exe', 1)")
See Also
RemoveAccelerator

Annotate WinHelp macro
Annotate()

The Annotate macro displays the Annotation dialog box from the Edit menu.
Parameters

This macro does not take any parameters.

Comments
Use of this macro in secondary windows is not recommended.

AppendItem WinHelp macro
AppendItem("menu-id", "item-id", "item-name", "macro")

The AppendItem macro appends a menu item to the end of a menu created with the InsertMenu macro.

Parameter Description
menu-id Specifies the name used in the InsertMenu macro used to create the menu. This name

must appear in quotation marks. The new item is appended to this menu.
item-id Specifies the name that Windows Help uses internally to identify the menu item. This

name must appear in quotation marks. This name is used by the DisableItem or
DeleteItem macros.

item-name Specifies the name that Windows Help displays on the menu for the item. This name
must appear in quotation marks. Within the quotation marks, place an ampersand (&)
before the character used for the macro's accelerator key.

macro Specifies one or more macros that are to be executed when the user chooses the menu
item. The macro must appear in quotation marks. Multiple macros in a string must be
separated by semicolons (;).

Comments
Windows Help ignores this macro if it is executed in a secondary window.

If the keyboard accelerator conflicts with other menu access keys, Windows Help displays the error
message "Unable to add item" and ignores the macro.

Example
The following macro appends a menu item labeled "Tools" to a pop-up menu that has an identifier
"IDM_TLS". Choosing the menu item causes a jump to a topic with the context string "tpc1" in the TLS.
HLP file:

AppendItem("IDM_BKS", "IDM_TLS", "&Tools", "JI(`tls.hlp', `tpc1')")
See Also
DeleteItem, DisableItem, InsertMenu

Back WinHelp macro
Back()

The Back macro displays the previous topic in the history list. The history list is a list of the last 40 topics
the user has displayed since starting Windows Help.
Parameters

This macro does not take any parameters.

Comments
Windows Help ignores this macro if it is executed in a secondary window.

If the Back macro is executed when the Back list is empty, Windows Help takes no action.

BookmarkDefine WinHelp macro
BookmarkDefine()

The BookmarkDefine macro displays the Define dialog from the Bookmark menu.
Parameters

This macro does not take any parameters.

Comments
Use of this macro in secondary windows is not recommended.

If the BookmarkDefine macro is executed from a pop-up window, the bookmark is attached to the topic
that invoked the pop-up window.

BookmarkMore WinHelp macro
BookmarkMore()

The BookmarkMore macro displays the More dialog from the Bookmark menu. The More command
appears on the Bookmark menu if the menu lists more than nine bookmarks.
Parameters

This macro does not take any parameters.

Comments
Use of the macro in secondary windows is not recommended.

BrowseButtons WinHelp macro
BrowseButtons()

The BrowseButtons macro adds browse buttons to the button bar.
Parameters

This macro does not take any parameters.

Comments
Windows Help ignores this macro if it is executed from a secondary window.

If the BrowseButtons macro is used with one or more CreateButton macros in the [CONFIG] section of
the project file, the order of the browse buttons on the Windows Help button bar is determined by the order
of the BrowseButtons macro in relation to the other macros listed in the [CONFIG] section.

Example
The following macros in the project file cause the Clock button to appear immediately before the two
browse buttons on the button bar:

[CONFIG]
CreateButton("&Clock", "ExecProgram(`clock', 0)")
BrowseButtons()
See Also
CreateButton

ChangeButtonBinding WinHelp macro
ChangeButtonBinding("button-id", "button-macro")

The ChangeButtonBinding macro assigns a Help macro to a Help button.

Parameter Description
button-id Specifies the identifier assigned to the button by the CreateButton macro or, for a

standard Help button, one of the following predefined button identifiers:

ID Description
BTN_CONTENTS Contents
BTN_SEARCH Search
BTN_BACK Back
BTN_HISTORY History
BTN_PREVIOUS Browse previous
BTN_NEXT Browse next
The button identifier must be enclosed in quotation marks.

button-macro Specifies the Help macro executed when the user selects the button. The macro must be
enclosed in quotation marks.

Comments
Windows Help ignores this macro if it is executed in a secondary window.

The ChangeButtonBinding macro can be abbreviated as CBB.

Example
In the following macro, "conts" is the context string for the table of contents in the DICT.HLP file:

ChangeButtonBinding("btn_contents", "JumpId(`dict.hlp', `conts')")

ChangeItemBinding WinHelp macro
ChangeItemBinding("item-id", "item-macro")

The ChangeItemBinding macro assigns a Help macro to an item previously added to a Windows Help
menu using the AppendItem macro.

Parameter Description
item-id Identifies the menu item appended by the AppendItem macro. The item identifier must

be enclosed in quotation marks.
item-macro Specifies the Help macro to execute when the user selects the item. The macro must be

enclosed in quotation marks.

Comments
Windows Help ignores this macro if it is executed in a secondary window.

The ChangeItemBinding macro can be abbreviated as CIB.

Example
The following macro changes the menu item identified by "time_item" so that it displays the Windows
clock:

ChangeItemBinding("time_item", "ExecProgram(`clock', 0)")

CheckItem WinHelp macro
CheckItem("item-id")

The CheckItem macro places a check-mark beside a menu item.

Parameter Description
item-id Identifies the menu item to check. The item identifier must be enclosed in quotation

marks.

Comments
The CheckItem macro can be abbreviated as CI.

See Also
UncheckItem

CloseWindow WinHelp macro
CloseWindow("window-name")

The CloseWindow macro closes either a secondary window or the main Help window.

Parameter Description
window-name Specifies the name of the window to close. The name "main" is reserved for the main

Help window. For secondary windows, the window name is defined in the
[WINDOWS] section of the project file. This name must be enclosed in quotation
marks.

Example
The following macro closes the secondary window named "keys":

CloseWindow("keys")

Contents WinHelp macro
Contents()

The Contents macro displays the Contents topic in the current Help file. The Contents topic is defined by
the CONTENTS option in the [OPTIONS] section of the project file. If the project file does not have a
CONTENTS option, the Contents topic is the first topic of the first topic file specified in the project file.

CopyDialog WinHelp macro
CopyDialog()

The CopyDialog macro displays the Copy dialog from the Edit menu.

Comments
Use of this macro in secondary windows is not recommended.

CopyTopic WinHelp macro
CopyTopic()

The CopyTopic macro copies all the text in the currently displayed topic to the Clipboard.

Comments
Use of the macro in secondary windows is not recommended.

CreateButton WinHelp macro
CreateButton("button-id", "name", "macro")

The CreateButton macro adds a new button to the button bar.

Parameter Description
button-id Specifies the name that WinHelp uses internally to identify the button. This name must

appear in quotation marks. Use this name in the DisableButton or DestroyButton macro
if you want to remove or disable the button or in the ChangeButtonBinding if you want
to change the Help macro that the button executes in certain topics.

name Specifies the text that appears on the button. To make a letter in this text the mnemonic
for the button, place an ampersand (&) before that letter. The button name is case-
sensitive and can have up to 29 characters in it -- any additional characters are ignored.

macro Specifies the Help macro or macro string executed when the user clicks on the button.
Multiple macros in a macro string must be separated by semicolons.

Comments
Windows Help allows a maximum of 16 custom buttons. It allows a total of 22 buttons, including the
standard Browse buttons, on the button bar.

If the BrowseButtons macro is used with one or more CreateButton macros in the project file, the buttons
appear in the same order on the button bar as the macros appear in the project file.

Windows Help ignores this macro if it is executed in a secondary window.

The CreateButton macro can be abbreviated as CB.

Example
The following macro creates a new button labeled "Ideas" that jumps to the topic with the context string
"dir" in the IDEAS.HLP file when clicked:

CreateButton("btn_ideas", "&Ideas", "JumpId(`ideas.hlp', `dir')")
See Also
DisableButton, DestroyButton, ChangeButtonBinding, JumpId

DeleteItem WinHelp macro
DeleteItem("item-id")

The DeleteItem macro removes a menu item that was added by using the AppendItem macro.

Parameter Description
item-id Specifies the item identifier used in the AppendItem macro. The item identifier must be

enclosed in quotation marks.

Comments
Windows Help ignores this macro if it is executed in a secondary window.

Example
The following macro removes the menu item "Tools" appended in the example for the AppendItem macro:

DeleteItem("IDM_TOOLS")
See Also
AppendItem

DeleteMark WinHelp macro
DeleteMark("marker-text")

The DeleteMark macro removes a text marker added with the SaveMark macro.

Parameter Description
marker-text Specifies the text marker previously added by the SaveMark macro. The marker text

must be enclosed in quotation marks.

Comments
If the marker does not exist when the DeleteMark macro is executed, Windows Help displays a "Topic not
found" error message.

Example
The following macro removes the marker "Managing Memory" from a Help file:

DeleteMark("Managing Memory")
See Also
SaveMark

DestroyButton WinHelp macro
DestroyButton("button-id")

The DestroyButton macro removes a button added with the CreateButton macro.

Parameter Description
button-id Identifies a button previously created by the CreateButton macro. The button identifier

must be enclosed in quotation marks.

Comments
The button identifier cannot be an identifier for one of the standard Help buttons. For a list of those
identifiers, see the ChangeButtonBinding macro.

Windows Help ignores this macro if it is executed in a secondary window.

See Also
CreateButton, ChangeButtonBinding

DisableButton WinHelp macro
DisableButton("button-id")

The DisableButton macro grays out a button added with the CreateButton macro. This button cannot be
used in the topic until an EnableButton macro is executed.

Parameter Description
button-id Specifies the identifier assigned to the button by the CreateButton macro. The button

identifier must be enclosed in quotation marks.

Comments
Windows Help ignores this macro if it is executed in a secondary window.

The DisableButton macro can be abbreviated as DB.

See Also
CreateButton, EnableButton

DisableItem WinHelp macro
DisableItem("item-id")

The DisableItem macro grays out a menu item added with the AppendItem macro. The menu item cannot
be used in the topic until an EnableItem macro is executed.

Parameter Description
item-id Identifies a menu item previously appended with the AppendItem macro. The item

identifier must be enclosed in quotation marks.

Comments
Windows Help ignores this macro if it is executed in a secondary window.

The DisableItem macro can be abbreviated as DI.

See Also
AppendItem

EnableButton WinHelp macro
EnableButton("button-id")

The EnableButton macro re-enables a button disabled with the DisableButton macro.

Parameter Description
button-id Specifies the identifier assigned to the button by the CreateButton macro. The button

identifier must be enclosed in quotation marks.

Comments
Windows Help ignores this macro if it is executed in a secondary window.

The EnableButton macro can be abbreviated as EB.

See Also
CreateButton, DisableButton

EnableItem WinHelp macro
EnableItem("item-id")

The EnableItem macro re-enables a menu item disabled with the DisableItem macro.

Parameter Description
item-id Specifies the identifier assigned to the menu item by the AppendItem macro. The item

identifier must be enclosed in quotation marks.

Comments
Windows Help ignores this macro if it is executed in a secondary window.

The EnableItem macro can be abbreviated as EI.

See Also
AppendItem, DisableItem

ExecProgram WinHelp macro
ExecProgram("command-line", display-state)

The ExecProgram macro executes a Windows application.

Parameter Description
command-line Specifies the command line for the application to be executed. The command line

must be enclosed in quotation marks. Windows Help searches for this application in
the current directory, followed by the Windows directory, the user's path, and the
directory of the currently viewed Help file.

display-state Specifies a value indicating how the application is shown when executed. It may be
one of the following values:

Value Meaning
0 Normal
1 Minimized
2 Maximized

Comments
The ExecProgram macro can be abbreviated as EP.

The backslash character should not be used to escape double quotation-mark characters in macros. Instead,
you can enclose the command line in single quotation marks and omit the backslash for the double
quotation marks, as shown in the following:

`command "string as parameter"'
Note that the first single quotation mark must be an open quote and the last single quotation mark must be
a close quote.

Example
The following example executes the Clock application. The application is minimized when it starts:

ExecProgram(`clock.exe', 1)

Exit WinHelp macro
Exit()

The Exit macro exits the Windows Help application. It has the same effect as selecting Exit from the File
menu.
Parameters

This macro does not take any parameters.

FileOpen WinHelp macro
FileOpen()

The FileOpen macro displays the Open dialog box from the File menu.
Parameters

This macro does not take any parameters.

Comments
Use of the macro in secondary windows is not recommended.

FocusWindow WinHelp macro
FocusWindow("window-name")

The FocusWindow macro changes the focus to the specified window, either the main Help window or a
secondary window.

Parameter Description
window-name Specifies the name of the window to receive the focus. The name "main" is reserved

for the main Help window. For secondary windows, the window name is defined in the
[WINDOWS] section of the project file. This name must be enclosed in quotation
marks.

Comments
This macro is ignored if the specified window does not exist.

Example
The following macro changes the focus to the secondary window "keys":

FocusWindow("keys")

GoToMark WinHelp macro
GoToMark("marker-text")

The GoToMark macro jumps to a marker set with the SaveMark macro.

Parameter Description
marker-text Specifies a text marker previously defined by using the SaveMark macro.

Example
The following macros jumps to the marker "Managing Memory".

GoToMark("Managing Memory")
See Also
SaveMark

HelpOn WinHelp macro
HelpOn()

The HelpOn macro displays the Help file for the Windows Help application. The macro carries out the
same action as choosing the How to Use Help command on the Help menu.
Parameters

This macro does not take any parameters.

HelpOnTop WinHelp macro
HelpOnTop()

The HelpOnTop macro toggles the on-top state of Windows Help. It is equivalent to checking or
unchecking the Always On Top command in the Help menu.
Parameters

This macro does not take any parameters.

Comments
Windows Help does not provide a macro to check the current state of the Always On Top command. It is
up to the user to determine whether the macro should be used to change the state of the command.

History WinHelp macro
History()

The History macro displays the history list, which shows the last 40 topics the user has viewed since
opening a Help file in Windows Help. It has the same effect as choosing the History button.
Parameters

This macro does not take any parameters.

Comments
Windows Help ignores this macro if it is executed in a secondary window.

IfThen WinHelp macro
IfThen(IsMark("marker-text"), "macro")

The IfThen macro executes a Help macro if a given marker exists. It uses the IsMark macro to make the
test.

Parameter Description
marker-text Specifies a text marker previously created by using the SaveMark macro. The marker

must be enclosed in quotation marks.
macro Specifies a Help macro or macro string to be executed if the marker exists. Multiple

macros in a macro string must be separated by semicolons.

Example
The following macro jumps to the topic with context string "man_mem" if a marker named "Managing
Memory" has been set by the SaveMark macro:

IfThen(IsMark("Managing Memory"), "JI(`trb.hlp', `man_mem')")
See Also
IsMark, SaveMark

IfThenElse WinHelp macro
IfThenElse(IsMark("marker-text"), "macro1", "macro2")

The IfThenElse macro executes one of two Help macros depending on whether or not a marker exists. It
uses the IsMark macro to make the test.

Parameter Description
marker-text Specifies a text marker previously created by using the IsMark macro. The marker must

be enclosed in quotation marks.
macro1 Specifies a Help macro or macro string to be executed if the marker exits. Multiple

macros in either macro string must be separated by semicolons.
macro2 Specifies a Help macro or macro string to be executed if the marker does not exit.

Multiple macros in either macro string must be separated by semicolons.

Example
The following macro jumps to the topic with context string "mem" if a marker named "Memory" has been
set by the SaveMark macro. If the marker does not exist, it jumps to the next topic in the browse sequence.

IfThenElse(IsMark("Memory"), "JI(`trb.hlp', `mem')", "Next()")
See Also
IfThen, IsMark, SaveMark

InsertItem WinHelp macro
InsertItem("menu-id", "item-id", "item-name", "macro", position)

The InsertItem macro inserts a menu item at a given position on an existing menu. The menu can be either
one you create with the InsertMenu macro or one of the standard Windows Help menus.

Parameter Description
menu-id Identifies either a standard Windows Help menu or a menu previously created by using

the InsertMenu macro. For a standard menu, this parameter can be one of the following:

Name Menu
MNU_FILE File
MNU_EDIT Edit
MNU_BOOKMARK Bookmark menu
MNU_HELPON Help
For other menus, this parameter must be the name used with the InsertMenu macro. In
all cases, the menu identifier must be enclosed in quotation marks. The new item is
inserted into this menu.

item-id Specifies the name that Windows Help uses internally to identify the menu item. The
item identifier must be enclosed in quotation marks.

item-name Specifies the name Windows Help displays in the menu for the item. This name is case-
sensitive and must be enclosed in quotation marks. An ampersand (&) before a character
in the name identifies it as the item's keyboard access key.

macro Specifies a Help macro or macro string to be executed when the user chooses the menu
item. The macro must be enclosed in quotation marks. Multiple macros in a string must
be separated by semicolons (;).

position Specifies the position of the menu item in the menu. It must be an integer value. Position
0 is the first or topmost position in the menu.

Comments
The item-id parameter can be used in a subsequent DisableItem or DeleteItem macro to remove or disable
the item or to change the operations that the item performs in certain topics.

Windows Help ignores this macro if it is executed in a secondary window.

The specified keyboard access keys must be unique. If a key conflicts with other menu access keys,
Windows Help displays the error message "Unable to add item" and ignores the macro.

Example
The following macro inserts a menu item labeled "Tools" as the third item on a menu that has an identifier
"MNU_BKS". Selecting the menu item causes a jump to a topic with the context string "tls1" in the TLS.
HLP file:

InsertItem("mnu_bks", "m_tls", "&Tools", "JI(`tls.hlp', `tls1')", 3)
See Also
InsertMenu

InsertMenu WinHelp macro
InsertMenu("menu-id", "menu-name", menu-position)

The InsertMenu inserts a new menu in the Windows Help menu bar.

Parameter Description
menu-id Specifies the name that Windows Help uses internally to identify the menu. The menu

identifier must be enclosed in quotation marks. This identifier can be used in the
AppendItem macro to add macros to the menu.

menu-name Specifies the name that Windows Help displays on the menu bar. This name must be
enclosed in quotation marks. An ampersand (&) before a character in the name
identifies it as the menu's keyboard access key.

menu-position Specifies the position on the menu bar of the new menu name. This parameter must be
an integer number. Positions are numbered from left to right, with position 0 the left-
most menu.

Comments
Windows Help ignores this macro if it is executed in a secondary window.

Example
The following macro adds a menu named "Utilities" to the Windows Help application. The label
"Utilities" appears as the fourth item on the Windows Help menu bar. The user presses U with the ALT key
to open the menu.

InsertMenu("IDM_UTIL", "&Utilities", 3)
See Also
AppendItem, InsertItem

IsMark WinHelp macro
IsMark("marker-text")

The IsMark macro tests whether or not a marker set by the SaveMark macro exists. It is used as a
parameter to the conditional macros IfThen and IfThenElse. The IsMark macro returns nonzero if the mark
exists or zero if it does not.

Parameter Description
marker-text Specifies a text marker previous created using the SaveMark macro.

Comments
The Not macro can be used to reverse the results of the IsMark macro.

Example
The following macro jumps to the topic with the context string "man_mem" if a marker named "Managing
Memory" has been set by the SaveMark macro:

IfThen(IsMark("Managing Memory"), "JI(`trb.hlp', `man_mem')")
See Also
IfThen, IfThenElse, Not

JumpContents WinHelp macro
JumpContents("filename")

The JumpContents macro jumps to the Contents topic of a specified file in the Help file. The Contents
topic is indicated by the CONTENTS option entry in the [OPTIONS] section of project file. If the
CONTENTS option is not specified, Windows Help jumps to the first topic in the Help file.

Parameter Description
filename Specifies the name of the destination file for the jump. The filename must be enclosed in

quotation marks. If Windows Help cannot find this file, it displays an error message and
does not perform the jump.

Comments
Windows Help ignores this macro if it is executed in a secondary window.

Example
The following macro jumps to the Contents topic of the PROGMAN.HLP file:

JumpContents("PROGMAN.HLP")
See Also
JumpContext

JumpContext WinHelp macro
JumpContext("filename", context-number)

Parameter Description
filename Specifies the name of the destination file for the jump. The filename must be

enclosed in quotation marks. If Windows Help cannot find this file, it displays an
error message and does not perform the jump.

context-number Specifies the context number of the topic in the destination file. The context number
must be defined in the [MAP] section of the project file. If the context number is not
valid, Windows Help jumps to the Contents topic or to the first topic in the file
instead and displays an error message.

Comments
The JumpContext macro can be abbreviated as JC.

Example
The following macro jumps to the topic mapped to the context number 801 in the PROGMAN.HLP file:

JumpContext("PROGMAN.HLP", 801)
See Also
JumpContents

JumpHelpOn WinHelp macro
JumpHelpOn()

The JumpHelpOn macro jumps to the Contents topic of the How to Use Help file. The How To Use Help
file is either the default WINHELP.HLP file shipped with Windows 3.1 or the Help file designated by the
SetHelpOnFile macro in the [CONFIG] section of the project file.
Parameters

This macro does not take any parameters.

Comments
If Windows Help cannot find the specified Help file, it displays an error message and does not perform the
jump.

Example
The following macro jumps to the Contents topic of the designated How to Use Help file:

JumpHelpOn()

JumpId WinHelp macro
JumpId("filename", "context-string")

The JumpId macro jumps to the topic with the specified context string in the Help file.

Parameter Description
filename Specifies the name of the Help file containing the context string. The filename must be

enclosed in quotation marks. If Windows Help does not find this file, it displays an
error message and does not perform the jump.

context-string Context string of the topic in the destination file. The context string must be enclosed in
quotation marks. If the context string does not exist, Windows Help jumps to the
Contents topic for that file instead.

Comments
The JumpId macro may be abbreviated as JI.

Example
The following macro jumps to a topic with "second_topic" as its context string in the SECOND.HLP file:

JI("second.hlp", "second_topic")

JumpKeyword WinHelp macro
JumpKeyword("filename", "keyword")

The JumpKeyword macro loads the indicated Help file, searches through the K keyword table, and
displays the first topic containing the index keyword specified in the macro.

Parameter Description
filename Specifies the name of the Help file containing the desired keyword table. The filename

must be enclosed in quotation marks. If this file does not exist, Windows Help displays
an error message and does not perform the jump.

keyword Specifies the keyword that the macro searches for. The keyword must be enclosed in
quotation marks. If Windows Help finds more than one match, it displays the first
matched topic. If it does not find any matches, it displays a "Not a keyword" message
and displays the Contents topic of the destination file instead.

Comments
The JumpKeyword macro can be abbreviated as JK.

Example
The following macro displays the first topic that has "hands" as an index keyword in the CLOCK.HLP
file:

JumpKeyword("clock.hlp", "hands")

Next WinHelp macro
Next()

The Next macro displays the next topic in the browse sequence for the Help file.
Parameters

This macro does not take any parameters.

Comments
If the currently displayed topic is the last topic of a browse sequence, this macro does nothing.

Windows Help ignores this macro if it is executed in a secondary window.

Not WinHelp macro
Not(IsMark("marker-text"))

The Not macro reverses the result (nonzero or zero) returned by the IsMark macro. It is used along with
the IsMark macro as a parameter to the conditional macros IfThen and IfThenElse.

Parameter Description
marker-text Specifies a text marker previously created by using the SaveMark macro. The marker

text must be enclosed in quotation marks.

Example
The following macro jumps to the topic with the context string "mem1" if a marker named "Memory" has
not been set by the SaveMark macro:

IfThen(Not(IsMark("Memory")), "JI(`trb.hlp', `mem1')")
See Also
IfThen, IfThenElse, IsMark

PopupContext WinHelp macro
PopupContext("filename", context-number)

The PopupContext macro displays in a pop-up window the topic identified by a specific context number.

Parameter Description
filename Specifies the name of the file that contains the topic to be displayed. The filename

must be enclosed in quotation marks. If Windows Help cannot find this file, it
displays an error message.

context number Specifies the context number of the topic to be displayed. The context number must
be specified in the [MAP] section of the project file. If the context number is not
valid, Windows Help displays the Contents topic or the first topic in the file instead.

Comments
The PopupContext macro can be abbreviated as PC.

Example
The following macro displays in a pop-up window the topic mapped to the context number 801 in the
PROGMAN.HLP file:

PopupContext("progman.hlp", 801)
See Also
PopupId

PopupId WinHelp macro
PopupId("filename", "context-string")

The PopupId macro displays a topic from a specified file in a pop-up window.

Parameter Description
filename Specifies the name of the file containing the pop-up window topic. The filename must

be enclosed in quotation marks. If this file does not exist, Windows Help displays a
warning.

context-string Specifies the context string of the topic in the destination file. If the requested context
string does not exist, Windows Help displays the Contents topic or the first topic in the
file.

Comments
The PopupId macro can be abbreviated as PI.

Example
The following macro displays a pop-up window with context string "second_topic" from the SECOND.
HLP file:

PopupId("second.hlp", "second_topic")
See Also
PopupContext

PositionWindow WinHelp macro
PositionWindow(x, y, width, height, state, "name")

The PositionWindow macro sets the size and position of a window.

Parameter Description
x Specifies the x-coordinate, in help units, of the upper-left corner of the window.

Windows Help always assumes the screen (regardless of resolution) is 1024 help units
wide. For example, if the x-coordinate is 512, the left edge of the Help window is in the
middle of the screen.

y Specifies the y-coordinate, in help units, of the upper-left corner of the window.
Windows Help always assumes the screen (regardless of resolution) is 1024 help units
high. For example, if the y-coordinate is 512, the top edge of the Help window is in the
middle of the screen.

width Specifies the default width, in help units, of the window.
height Specifies the default height, in help units, of the window.
state Specifies how the window is sized. This parameter can be one of the following values:

Value Meaning
0 Normal size
1 Maximized
If the parameter is 1, Windows Help ignores the x, y, width, and height parameters.

name Specifies the name of the window to position. The name "main" is reserved for the main
Help window. For secondary windows, the window name must be defined in the
[WINDOWS] section of the project file. This name must be enclosed in quotation
marks.

Comments
If the window to be positioned does not exist, Windows Help ignores the macro.

The PositionWindow macro can be abbreviated as PW.

Example
The following macro positions the secondary window "Samples" in the upper-left corner (100, 100) with a
width and height of 500 (in help units):

PositionWindow(100, 100, 500, 500, 0, "Samples")

Prev WinHelp macro
Prev()

The Prev macro displays the previous topic in the browse sequence for the Help file. If the currently
displayed topic is the first topic of a browse sequence, this macro does nothing.
Parameters

This macro does not take any parameters.

Comments
Windows Help ignores this macro if it is executed in a secondary window.

Print WinHelp macro
Print()

The Print macro sends the currently displayed topic to the printer. It should be used only to print topics in
windows other than the main Help window (for example, topics in a secondary window).
Parameters

This macro does not take any parameters.

See Also
PrinterSetup

PrinterSetup WinHelp macro
PrinterSetup()

The PrinterSetup macro displays the Printer Setup dialog box from the File menu.
Parameters

This macro does not take any parameters.

Comments
Use of the macro in secondary windows is not recommended.

See Also
Print

RegisterRoutine WinHelp macro
RegisterRoutine("DLL-name", "function-name", "format-spec")

The RegisterRoutine macro registers a function within a dynamic-link library (DLL). Registered functions
can be used in macro footnotes in topic files or in the [CONFIG] section of the project file, the same as
standard Help macros.

Parameter Description
DLL-name Specifies the filename of the DLL. The filename must be enclosed in quotation marks.

If Windows Help cannot find the library, it displays an error message.
function-name Specifies the name of the function to execute in the designated DLL.
format-spec Specifies a string indicating the formats of parameters passed to the function. The

format string must be enclosed in quotation marks. Characters in the string represent C
parameter types:

Character Description
u unsigned short (WORD)
U unsigned long (DWORD)
i short int
I int
s near char * (PSTR)
S far char * (LPSTR)
v void
If the function is used as a Help macro, Windows Help makes sure the macro
parameters match the parameter types given in this macro.

Comments
The RegisterRoutine macro can be abbreviated as RR.

Example
The following call registers a routine named PlayAudio in a DLL, MMLIB.DLL. PlayAudio takes
arguments of the far char *, int, and unsigned long types:

RegisterRoutine("MMLIB", "PlayAudio", "SIU")

RemoveAccelerator WinHelp macro
RemoveAccelerator(key, shift-state)

The RemoveAccelerator macro removes the assignment of a Help macro to an accelerator key (or key
combination). These assignments are made by using the AddAccelerator macro.

Parameter Description
key Specifies the Windows virtual-key value. See the Virtual key codes topic for a list of

virtual-key codes that may be used for this parameter.
shift-state Specifies the combination of ALT, SHIFT, and CTRL keys that were used with the

accelerator. This parameter may be one of the following values:

Value Meaning
0 None
1 SHIFT

2 CTRL

3 SHIFT+CTRL

4 ALT

5 ALT+SHIFT

6 ALT+CTRL

7 SHIFT+ALT+CTRL

Comments
The RemoveAccelerator macro can be abbreviated as RA. No error occurs when this macro is used with
an accelerator for which a macro was not defined.

Example
The following macro disassociates a macro from the ALT+SHIFT+CONTROL+F4 key combination:

RemoveAccelerator(0x73, 7)
See Also
AddAccelerator

SaveMark WinHelp macro
SaveMark("marker-text")

The SaveMark macro saves the location of the currently displayed topic and file and associates a text
marker with that location. The GotoMark macro can then be used to jump to this location.

Parameter Description
marker-text Specifies the text marker to be used to identify the topic location. This text must be

enclosed in quotation marks, and it must be unique. If the same text is used for more
than one marker, the most recently entered marker is used.

Comments
A text marker can be used with the GotoMark, DeleteMark, IfThen, and IfThenElse macros.

If the user exits Windows Help, all text markers are deleted.

Example
The following macro saves the marker "Managing Memory" in the current topic:

SaveMark("Managing Memory")
See Also
DeleteMark, GotoMark, IfThen, IfThenElse, IsMark, Not

Search WinHelp macro
Search()

The Search macro displays the dialog for the Search button, which allows users to search for topics using
keywords defined by the K footnote character.
Parameters

This macro does not take any parameters.

Comments
Windows Help ignores this macro if it is executed in a secondary window.

SetContents WinHelp macro
SetContents("filename", context-number)

The SetContents macro designates a specific topic as the Contents topic in the specified Help file.

Parameter Description
filename Specifies the name of the Help file that contains the Contents topic. The filename

must be enclosed in quotation marks. If Windows Help cannot find this file, it
displays an error message and does not perform the jump.

context number Specifies the context number of the topic in the specified file. The context number
must be defined in the [MAP] section of the project file. If the context number is not
valid, Windows Help displays an error message.

Example
The following example sets the topic mapped to the context number 801 in the PROGMAN.HLP file as
the Contents topic. After executing this macro, clicking the Contents button will cause a jump to the topic
specified by the context-number parameter:

SetContents("PROGMAN.HLP", 801)

SetHelpOnFile WinHelp macro
SetHelpOnFile("filename")

Parameter Description
filename Specifies the name of the replacement How to Use Help file. The filename must be

enclosed in quotation marks. If Windows Help cannot find this file, it displays an error
message.

Comments
If this macro appears in a topic in the Help file, the replacement file is set after execution of the macro. If
this macro appears in the [CONFIG] section of the project file, the replacement file is set when the help
file is opened.

Example
The following macro sets the Using Help file to MYHELP.HLP:

SetHelpOnFile("myhelp.hlp")

UncheckItem WinHelp macro
UncheckItem("item-id")

The UncheckItem macro removes the check mark from a menu item.

Parameter Description
item-id Identifies the menu item to uncheck. The item identifier must be enclosed in quotation

marks.

Comments
The UncheckItem macro can be abbreviated UI.

See Also
CheckItem

Help Macros
About WinHelp macro Displays the About dialog box
AddAccelerator WinHelp macro Assigns a macro to an accelerator key
Annotate WinHelp macro Displays Annotation dialog box
AppendItem WinHelp macro Appends a menu item
Back WinHelp macro Displays previous topic in the history list
BookmarkDefine WinHelp macro Displays the Define dialog box
BookmarkMore WinHelp macro Displays the More dialog box
BrowseButtons WinHelp macro Adds browse buttons
ChangeButtonBinding WinHelp macro Assigns a macro to a button
ChangeItemBinding WinHelp macro Assigns a macro to a menu item
CheckItem WinHelp macro Checks a menu item
CloseWindow WinHelp macro Closes a window
Contents WinHelp macro Displays the Contents topic
CopyDialog WinHelp macro Displays the Copy dialog box
CopyTopic WinHelp macro Copies current topic to the clipboard
CreateButton WinHelp macro Adds a new button to the button bar
DeleteItem WinHelp macro Removes a menu item
DeleteMark WinHelp macro Deletes a text marker
DestroyButton WinHelp macro Removes a button from the button bar
DisableButton WinHelp macro Disables a button
DisableItem WinHelp macro Disables a menu item
EnableButton WinHelp macro Enables a button
EnableItem WinHelp macro Enables a menu item
ExecProgram WinHelp macro Executes a program
Exit WinHelp macro Exits WinHelp
FileOpen WinHelp macro Displays the Open dialog box
FocusWindow WinHelp macro Changes the focus window
GoToMark WinHelp macro Jumps to a marker
HelpOn WinHelp macro Displays the Help on Using topic
HelpOnTop WinHelp macro Toggles on-top state of help
History WinHelp macro Displays the history list
IfThen WinHelp macro Executes macro if marker exists
IfThenElse WinHelp macro Executes one of two macros if marker exists
InsertItem WinHelp macro Inserts a menu item
InsertMenu WinHelp macro Inserts a new menu
IsMark WinHelp macro Tests if a marker is set
JumpContents WinHelp macro Jumps to the Contents topic
JumpContext WinHelp macro Jumps to the specified context
JumpHelpOn WinHelp macro Jumps to Using Help file
JumpId WinHelp macro Jumps to the specified topic
JumpKeyword WinHelp macro Jumps to the topic containing the keyword
Next WinHelp macro Displays the next topic in the browse sequence
Not WinHelp macro Reverses the IsMark macro
PopupContext WinHelp macro Displays a topic in a popup window
PopupId WinHelp macro Displays topic in a popup window
PositionWindow WinHelp macro Sets the size and position of a window
Prev WinHelp macro Displays previous topic in browse sequence
Print WinHelp macro Prints the current topic
PrinterSetup WinHelp macro Displays the Printer Setup dialog box
RegisterRoutine WinHelp macro Registers a DLL function
RemoveAccelerator WinHelp macro Assigns a macro to an accelerator key
SaveMark WinHelp macro Saves a marker
Search WinHelp macro Displays the Search dialog box
SetContents WinHelp macro Sets the Contents topic
SetHelpOnFile WinHelp macro Sets the Using Help help file
UncheckItem WinHelp macro Unchecks a menu item

RTF Tokens
\ansi Specifies the ANSI character set
\b Starts bold text
\bin Specifies binary picture data
bmc Displays a bitmap or metafile in text
bml Displays a bitmap or metafile at the left margin
bmr Displays a bitmap or metafile at the right margin
\box Draws a box
\brdrb Draws a bottom border
\brdrbar Draws a vertical bar
\brdrdb Sets double-lined borders
\brdrdot Sets dotted border
\brdrl Draws a left border
\brdrr Draws a right border
\brdrs Sets standard borders
\brdrt Draws a top border
\brdrth Sets thick borders
\cell Marks end of table cell
\cellx Sets the position of a cell's right edge
\cf Sets the foreground color
\colortbl Creates the color table
\deff Sets default font
emc Allows DLL to paint window in text
eml Allows DLL to paint window at left margin
emr Allows DLL to paint window at right margin
\f Sets the font
\fi Sets the first-line indent
\fldrslt Result of a field
\fonttbl Creates the font table
\footnote Defines topic-specific information
\fs Sets the font size
\' Inserts a character by value
\i Starts italic text
\intbl Marks paragraph as in table
\keep Makes text non-wrapping
\keepn Creates a non-scrolling region
\li Sets the left indent
\line Breaks the current line
\mac Sets the Apple MacIntosh character set
\page Ends current topic
\par Marks the end of a paragraph
\pard Restores default paragraph properties
\pc Sets the PC character set
\pich Specifies the picture height
\pichgoal Specifies the desired picture height
\picscalex Specifies the horizontal scaling value
\picscaley Specifies the vertical scaling value
\pict Creates a picture
\picw Specifies the picture width
\picwgoal Specifies the desired picture width
\plain Restores default character properties
\qc Centers text

\ql Aligns text left
\qr Aligns text right
\ri Sets the right indent
\row Marks end of a table row
\rtf Specifies the RTF version
\sa Sets the spacing after a paragraph
\sb Sets space before
\scaps Starts small capitals
\sect Marks the end of a section and paragraph
\sl Sets the spacing between lines
\strike Creates a hotspot
\tab Inserts a tab character
\tqc Tabs and centers text
\tqr Tabs and aligns text right
\trgaph Sets space between text columns in a table
\trleft Sets left margin for the first cell
\trowd Sets table defaults
\trqc Sets relative column widths
\trql Left-aligns table row
\tx Sets a tab stop
\ul Creates a link to a pop-up topic
\uldb Creates a hot spot
\v Creates a link to a topic
\wbitmap Specifies a Windows bitmap
\wbmbitspixel Specifies the number of bits per pixel
\wbmplanes Specifies the number of planes
\wbmwidthbytes Specifies the bitmap width in bytes
\wmetafile Specifies a Windows metafile

\ansi RTF statement
\ansi

The \ansi statement sets the American National Standards Institute (ANSI) character set. The Windows
character set is essentially equivalent to the ANSI character set.

See Also
\mac, \pc

\b RTF statement
\b

The \b statement starts bold text. The statement applies to all subsequent text up to the next \plain or \b0
statement.

Comments
No \plain or \b0 statement is required if the \b statement and subsequent text are enclosed in braces. Braces
limit the scope of a character property statement to just the enclosed text.

The \b0 statement was first supported in the Microsoft Help Compiler version 3.1.

Example
The following example sets "Note" to bold:

{\b Note} Setting the Auto option frees novice users from
determining their system configurations.
See Also
\i, \plain, \scaps

\bin RTF statement
\binn

The \bin statement indicates the start of binary picture data. The Help compiler interprets subsequent bytes
in the file as binary data. This statement is used in conjunction with the \pict statement.

Parameter Description
n Specifies the number of bytes of binary data following the statement.

Comments
A single space character must separate the \bin statement from subsequent bytes. The Microsoft Help
Compiler assumes that all subsequent bytes, including linefeed and carriage return characters, are binary
data. These bytes can have any value in the range 0 through 255. For this reason, the \bin statement is
typically used in program-generated files only.

If the \bin statement is not given with a \pict statement, the default picture data format is hexadecimal.

See Also
\pict

bmc RTF statement
\{bmc filename\}

The bmc statement displays a specified bitmap or metafile in the current line of text. The statement
positions the bitmap or metafile as if it were the next character in the line, aligning it on the base line and
applying the current paragraph properties.

Parameter Description
filename Specifies the name of a file containing either a Windows bitmap, a placeable Windows

metafile, a multiresolution bitmap, or a segmented-graphics bitmap.

Comments
Since the bmc statement is not a standard RTF statement, the Microsoft Help Compiler relies on the
opening and closing braces, including the backslashes (\), to distinguish the statement from regular text.

If a file containing a metafile is specified, the file must contain a placeable Windows metafile; the
Microsoft Help Compiler will not accept standard Windows metafiles. Furthermore, Windows Help sets
the MM_ANISOTROPIC mode prior to displaying the metafile, so the placeable Windows metafile must
either set the window origin and extents or set some other mapping mode.

See Also
bmr, bml, \wbitmap

bml RTF statement
\{bml filename\}

The bml statement displays a specified bitmap or metafile at the left margin of the Help window. The first
line of subsequent text aligns with the upper-right corner of the image and subsequent lines wrap along the
right edge of the image.

Parameter Description
filename Specifies the name of a file containing either a Windows bitmap, a placeable Windows

metafile, a multiresolution bitmap, or a segmented-graphics bitmap.

Comments
Since the bml statement is not a standard RTF statement, the Microsoft Help Compiler relies on the
opening and closing braces, including the backslashes (\), to distinguish the statement from regular text.

If a file containing a metafile is specified, the file must contain a placeable Windows metafile; the
Microsoft Help Compiler will not accept standard Windows metafiles. Furthermore, Windows Help sets
the MM_ANISOTROPIC mode prior to displaying the metafile, so the placeable Windows metafile must
either set the window origin and extents or set some other mapping mode.

See Also
bmc, bmr, \wbitmap

bmr RTF statement
\{bmr filename\}

The bmr statement displays a specified bitmap or metafile at the right margin of the Help window. The
first line of subsequent text aligns with the upper-left corner of the image and subsequent lines wrap along
the left edge of the image.

Parameter Description
filename Specifies the name of a file containing either a Windows bitmap, a placeable Windows

metafile, a multiresolution bitmap, or a segmented-graphics bitmap.

Comments
Since the bmr statement is not a standard RTF statement, the Microsoft Help Compiler relies on the
opening and closing braces, including the backslashes (\), to distinguish the statement from regular text.

If a file containing a metafile is specified, the file must contain a placeable Windows metafile; the Help
compiler will not accept standard Windows metafiles. Furthermore, Windows Help sets the
MM_ANISOTROPIC mode prior to displaying the metafile, so the placeable Windows metafile must
either set the window origin and extents or set some other mapping mode.

See Also
bmc, bml, \wbitmap

\box RTF statement
\box

The \box statement draws a box around the current paragraph or picture. The statement applies to all
subsequent paragraphs or pictures up to the next \pard statement.

Comments
For paragraphs, Windows Help uses the height of the paragraph, excluding space before or after the
paragraph, as the height of the box. For pictures (as defined by \pict statements), Windows Help uses the
specified height of the picture as the height of the box. For both paragraphs and pictures, the width of the
box is equal to the space between the left and right indents.

Windows Help draws the box using the current border style.

Example
The following example draws a box around the paragraph:

\par \box
{\b Note} Setting the Auto option frees novice users from
determining their system configurations.
\par \pard
See Also

\brdrb, \brdrl, \brdrr, \brdrt, \pard

\brdrb RTF statement
\brdrb

The \brdrb statement draws a border below the current paragraph or picture. The statement applies to all
subsequent paragraphs or pictures up to the next \pard statement.

Comments
Windows Help draws the border using the current border style.

See Also

\box, \brdrbar, \brdrl, \brdrr, \brdrt, \pard

\brdrbar RTF statement
\brdrbar

The \brdrbar statement draws a vertical bar to the left of the current paragraph or picture. The statement
applies to all subsequent paragraphs or pictures up to the next \pard statement.

Comments
Windows Help draws the border using the current border style.

In a print-based document, the \brdrbar statement draws the bar on the right side of paragraphs on odd-
numbered pages, but on the left side of paragraphs on even-numbered pages.

See Also

\box, \brdrl, \brdrb, \brdrr, \brdrt, \pard

\brdrdb RTF statement
\brdrdb

The \brdrdb statement selects a double line for drawing borders. The selection applies to all subsequent
paragraphs or pictures up to the next \pard statement.

See Also

\brdrdot, \brdrs, \brdrth, \pard

\brdrdot RTF statement
\brdrdot

The Help compiler ignores this statement.

See Also

\brdrs, \brdrth, \brdrdb, \pard

\brdrl RTF statement
\brdrl

The \brdrl statement draws a border to the left of the current paragraph or picture. The statement applies to
all subsequent paragraphs or pictures up to the next \pard statement.

Comments
Windows Help draws the border using the current border style.

See Also

\box, \brdrb, \brdrbar, \brdrr, \brdrt, \pard

\brdrr RTF statement
\brdrr

The \brdrr statement draws a border to the right of the current paragraph or picture. The statement applies
to all subsequent paragraphs or pictures up to the next \pard statement.

Comments
Windows Help draws the border using the current border style.

See Also

\box, \brdrb, \brdrbar, \brdrl, \brdrt, \pard

\brdrs RTF statement
\brdrs

The \brdrs statement selects a standard-width line for drawing borders. The selection applies to all
subsequent paragraphs or pictures up to the next \pard statement.

See Also

\brdrdb, \brdrdot, \brdrth, \pard

\brdrt RTF statement
\brdrt

The \brdrt statement draws a border above the current paragraph or picture. The statement applies to all
subsequent paragraphs or pictures up to the next \pard statement.

Comments
Windows Help draws the border using the current border style.

See Also

\box, \brdrb, \brdrbar, \brdrl, \brdrr, \pard

\brdrth RTF statement
\brdrth

The \brdrth statement selects a thick line for drawing borders. The selection applies to all subsequent
paragraphs or pictures up to the next \pard statement.

See Also

\brdrdb, \brdrdot, \brdrs, \pard

\cell RTF statement (3.1)
\cell

The \cell statement marks the end of a cell in a table. A cell consists of all paragraphs from a preceding \
intbl or \cell statement to the ending \cell statement. Windows Help formats and displays these paragraphs
using the left and right margins of the cell and any current paragraph properties.

Comments
This statement was first supported in the Microsoft Help Compiler version 3.1.

Example
The following example creates a two-column table. The second column contains three separate
paragraphs, each having different paragraph properties:

\cellx2880\cellx5760
\intbl
Alignment\cell
\ql
Left-aligned
\par
\qc
Centered
\par
\qr
Right-aligned\cell
\row \pard
See Also
\cellx, \intbl, \row, \trgaph, \trleft, \trowd

\cellx RTF statement (3.1)
\cellxn

The \cellx statement sets the absolute position of the right edge of a table cell. One \cellx statement must
be given for each cell in the table. The first \cellx statement applies to the left-most cell, the last to the
right-most cell. For each \cellx statement, the specified position applies to the corresponding cell in each
subsequent row of the table up to the next \trowd statement.

Parameter Description
n Specifies the position of the cell's right edge, in twips. The position is relative to the left

edge of the Help window. It is not affected by the current indents.

Comments
A table consists of a grid of cells in columns and rows. Each cell has an explicitly defined right edge; the
position of a cell's left edge is the same as the position of the right edge of the adjacent cell. For the left-
most cell in a row, the left edge position is equal to the Help window's left margin position. Each cell has
a left and right margin between which Windows Help aligns and wraps text. By default, the margin
positions are equal to the left and right edges. The \trgaph and \trleft statements can be used to set different
margins for all cells in a row.

This statement was first supported in the Microsoft Help Compiler version 3.1.

Example
The following example creates a three-column table having two rows. The positions of the right edges of
the three cells are 2, 4, and 6 inches, respectively:

\cellx2880\cellx5760\cellx8640
\intbl
Row 1 Cell 1\cell
Row 1 Cell 2\cell
Row 1 Cell 3\cell
\row
\intbl
Row 2 Cell 1\cell
Row 2 Cell 2\cell
Row 2 Cell 3\cell
\row \pard
See Also
\cell, \intbl, \row, \trgaph, \trleft, \trowd

\cf RTF statement
\cfn

The \cf statement sets the foreground color. The new color applies to all subsequent text up to the next \
plain or \cf statement.

Parameter Description
n Specifies the color number to set as foreground. The number must be an integer number

in the range 1 to the maximum number of colors specified in the color table for the Help
file. If an invalid color number is specified, Windows Help uses the default foreground
color.

Comments
No \plain or \cf statement is required if the \cf statement and subsequent text are enclosed in braces. Braces
limit the scope of a character property statement to the enclosed text only.

If the \cf statement is not given, the default foreground color is the text color set by Control Panel.

Example
The following example displays green text:

{\colortbl;\red0\green255\blue0;}
{\cf1 This text is green.}
See Also
\colortbl

\colortbl RTF statement

{\colortbl
\redr\greeng\blueb;

.

.

.
}

The \colortbl statement creates a color table for the Help file. The color table consists of one or more color
definitions. Each color definition consists of one \red, \green, and \blue statement specifying the amount of
primary color to use to generate the final color. Each color definition must end with a semicolon (;).

Parameter Description
r Specifies the intensity of red in the color. It must be an integer in the range 0 through

255.
g Specifies the intensity of green in the color. It must be an integer in the range 0 through

255.
b Specifies the intensity of blue in the color. It must be an integer in the range 0 through

255.

Comments
Color definitions are implicitly numbered starting at zero. A color definition's implicit number can be used
in the \cf statement to set the foreground color.

The default colors are the window-text and window-background colors set by Control Panel. To override
the default colors, both a \colortbl statement and a \cf statement must be given.

Example
The following example creates a color table containing two color definitions. The first color definition is
empty (only the semicolon is given), so color number 0 always represents the default color. The second
definition specifies green; color number 1 can be used to display green text:

{\colortbl;\red0\green255\blue0;}
See Also
\cf

\deff RTF statement
\deffn

The \deff statement sets the default font number. Windows Help uses the number to set the default font
whenever a \plain statement is given or an invalid font number is given in a \f statement.

Parameter Description
n Specifies the number of the font to be used as the default font. This parameter must be a

valid font number as specified by the \fonttbl statement for the Help file.

Comments
If the \deff statement is not given, the default font number is zero.

See Also
\f, \fonttbl, \plain

emc RTF statement
\{emc module, class, data [, dx, dy]\}

The emc statement allows an external dynamic-link library to paint a window that is embedded in a Help
topic. This statement displays the window in the current line of text. The statement positions the window
as if it were the next character in the line, aligning it on the base line and applying the current paragraph
properties.

Parameter Description
module Specifies the name of the dynamic-link library that paints the embedded window.
class Specifies the name of the registered window class for the embedded window.
data Specifies a string that is passed to the embedded window in its WM_CREATE message.
dx Specifies the suggested width of the embedded window. This parameter is optional.
dy Specifies the suggested height of the embedded window. This parameter is optional.

Comments
Since the emc statement is not a standard RTF statement, the Microsoft Help Compiler relies on the
opening and closing braces, including the backslashes (\), to distinguish the statement from regular text.

See Also
bmr, bml, bmc, eml, emr, \wbitmap

eml RTF statement
\{eml module, class, data [, dx, dy]\}

The eml statement allows an external dynamic-link library to paint a window that is embedded at the left
margin in a Help topic. The first line of subsequent text aligns with the upper-right corner of the window
and subsequent lines wrap along the right edge of the window.

Parameter Description
module Specifies the name of the dynamic-link library that paints the embedded window.
class Specifies the name of the registered window class for the embedded window.
data Specifies a string that is passed to the embedded window in its WM_CREATE message.
dx Specifies the suggested width of the embedded window. This parameter is optional.
dy Specifies the suggested height of the embedded window. This parameter is optional.

Comments
Since the eml statement is not a standard RTF statement, the Microsoft Help Compiler relies on the
opening and closing braces, including the backslashes (\), to distinguish the statement from regular text.

See Also
bmr, bml, bmc, emc, emr, \wbitmap

emr RTF statement
\{emr module, class, data [, dx, dy]\}

The emr statement allows an external dynamic-link library to paint a window that is embedded at the right
margin in a Help topic. The first line of subsequent text aligns with the upper-left corner of the window
and subsequent lines wrap along the left edge of the window.

Parameter Description
module Specifies the name of the dynamic-link library that paints the embedded window.
class Specifies the name of the registered window class for the embedded window.
data Specifies a string that is passed to the embedded window in its WM_CREATE message.
dx Specifies the suggested width of the embedded window. This parameter is optional.
dy Specifies the suggested height of the embedded window. This parameter is optional.

Comments
Since the emr statement is not a standard RTF statement, the Microsoft Help Compiler relies on the
opening and closing braces, including the backslashes (\), to distinguish the statement from regular text.

See Also
bmr, bml, bmc, emc, eml, \wbitmap

\f RTF statement
\fn

The \f statement sets the font. The new font applies to all subsequent text up to the next \plain or \f
statement.

Parameter Description
n Specifies the font number. This parameter must be one of the integer font numbers

defined in the font table for the Help file.

Comments
The \f statement does not set the point size of the font; use the \fs statement instead.

No \plain or \f statement is required if the \f statement and subsequent text are enclosed in braces. Braces
limit the scope of a character property statement to just the enclosed text.

If the \f statement is not given, the default font is defined by the \deff statement (or is zero if no \deff
statement is given).

Example
The following example uses the Arial font to display text:

{\fonttbl {\f0\fswiss Arial;}}
{\f0
This text illustrates the Arial font.}
\par
See Also
\deff, \fonttbl, \fs, \plain

\fi RTF statement
\fin

The \fi statement sets the first-line indent for the paragraph. The new indent applies to the first line of each
subsequent paragraph up to the next \pard statement or \fi statement. The first-line indent is always relative
to the current left indent.

Parameter Description
n Specifies the indent, in twips. This parameter can be either a positive or negative

number.

Comments
If the \fi statement is not given, the first-line indent is zero by default.

Example
The following example uses the first-line indent and a tab stop to make a numbered list:

\tx360\li360\fi-360
1
\tab
Insert the disk in drive A.
\par
2
\tab
Type a:setup and press the ENTER key.
\par
3
\tab
Follow the instructions on the screen.
\par \pard
See Also

\li, \pard

\fldrslt RTF statement
\fldrslt

The \fldrslt statement specifies the most recently calculated result of a field. The Microsoft Help Compiler
interprets the result as text and formats it using the current character and paragraph properties.

Comments
The Help compiler ignores all field statements except the \fldrslt statement. Any text associated with other
field statements is ignored.

\fonttbl RTF statement

{\fonttbl
{\fn\family font-name;}
.
.
.

}

The \fonttbl statement creates a font table for the Help file. The font table consists of one or more font
definitions. Each definition consists of a font number, a font family, and a font name.

Parameter Description
n Specifies the font number. This parameter must be an integer. This number can be used

in subsequent \f statements to set the current font to the specified font. In the font table,
font numbers should start at zero and increase by one for each new font definition.

family Specifies the font family. This parameter must be one of the following:

Value Meaning
fnil Unknown or default fonts (default)
froman Roman, proportionally spaced serif fonts (for example, MS Serif and

Palatino)
fswiss Swiss, proportionally spaced sans serif fonts (for example, Swiss)
fmodern Fixed-pitch serif and sans serif fonts (for example, Courier, Elite, and

Pica)
fscript Script fonts (for example, Cursive)
fdecor Decorative fonts (for example, Old English and ITC Zapf Chancery)
ftech Technical, symbol, and mathematical fonts (for example, Symbol)

font-name Specifies the name of the font. This parameter should specify an available Windows
font.

Comments
If a font with the specified name is not available, Windows Help chooses a font from the specified family.
If no font from the given family exists, Windows Help chooses a font having the same character set as
specified for the Help file.

The \deff statement sets the default font number for the Help file. The default font is set whenever the \
pard statement is given.

See Also

\deff, \f, \fs, \pard

\footnote RTF statement
{n}{\footnote {n} text}

The \footnote statement defines topic-specific information, such as the topic's build tags, context string,
title, browse number, keywords, and execution macros. Every topic must have a context string, at least, to
give the user access to the topic through links.

Parameter Description
n Specifies the footnote character. It can be one of the following:

Value Meaning
* Specifies a build tag. The Microsoft Help Compiler uses build tags to

determine whether it should include the topic in the Help file. The text
parameter can be any combination of characters but must not contain
spaces. Uppercase and lowercase characters are treated as equivalent
characters (case-insensitive). If a topic has build-tag statements, they must
be the first statements in the topic. The Microsoft Help Compiler checks a
topic for build tags if the project file specifies a build expression using the
BUILD option.

Specifies a context string. The text parameter can be any combination of
letters and digits but must not contain spaces. Uppercase and lowercase
characters are treated as equivalent characters (case-insensitive). The
context string can be used with the \v statement in other topics to create
links to this topic.

$ Specifies a topic title. Windows Help uses the topic title to identify the topic
in the Search and History dialog boxes. The text parameter can be any
combination of characters including spaces.

+ Specifies the browse-sequence identifier. Windows Help adds topics having
an identifier to the browse sequence and allows users to view the topics by
using the browse buttons. The text parameter can be a combination of letters
and digits. Windows Help determines the order of topics in the browse
sequence by sorting the identifier alphabetically. If two topics have the same
identifier, Windows Help assumes that the topic that was compiled first is to
be displayed first. Windows Help uses the browse sequence identifier only
if the browse buttons have been enabled by using the BrowseButtons macro.

K Specifies a keyword. Windows Help displays all keywords in the Help file
in the Search dialog box and allows a user to choose a topic to view by
choosing a keyword. The text parameter can be any combination of
characters including spaces. If the first character is the letter K, it must be
preceded with an extra space or a semicolon. More than one keyword can be
given by separating the keywords with semicolons (;). A topic cannot
contain keywords unless it also has a topic title.

! Specifies a Help macro. Windows Help executes the macro when the topic
is displayed. The text parameter can be any Help macro.

If n is any letter (other than K), the footnote specifies an alternative keyword. Windows
applications can search for topics having alternative keywords by using the
HELP_MULTIKEY command with the WinHelp function.

text Specifies the build tag, context string, topic title, browse-sequence number, keyword, or
macro associated with the footnote. This parameter depends on the footnote type as
specified by the n parameter.

Comments
Repetition of the footnote character, n, in the syntax is deliberate.

A topic can have more than one build-tag, context-string, keyword, and help-macro statement, but must
not have more than one topic-title or browse-sequence-number statement.

In print-based documents, the \footnote statement creates a footnote. The footnote is anchored to the
character immediately preceding the \footnote statement.

The characters in a context string must be alphanumeric and can include underscore characters (_) and
periods (.).

The browse sequence string consists of a major sequence string and a minor sequence string, delimited by
a colon:

{+}{\footnote {+} major:minor}

This syntax specifies disjoint sets of ordered browse sequences. The major sequence string determines
which browse sequence a topic belongs to, while the minor sequence string determines its position. Minor
sequence strings are sorted alphabetically, not numerically; to use numbers, they should be preceded with
zeros so that they are all the same length. All topics with browse sequence strings that omit the major
sequence string are placed on the same browse sequence.

A topic cannot have more than one build tag footnote. If a topic has a build tag footnote, it must be the
first thing in that topic. The title, browse sequence, and macro must be in the first paragraph. Context
strings and keywords may appear anywhere; if placed in the middle of a topic, jumps to that context string
or keyword will bring you to the middle of that topic.

Example
The following example defines a topic titled "Short Topic". The context string "topic1" can be used to
create links to this topic. The keywords "example topic" and "short topic" appear in the Search dialog box
and can be used to choose the topic for viewing:

${\footnote Short Topic}
#{\footnote topic1}
K{\footnote example topic;short topic}
This topic has a title, context string, and two keywords.
\par
\page
See Also
\v

\fs RTF statement
\fsn

The \fs statement sets the size of the font. The new font size applies to all subsequent text up to the next \
plain or \fs statement.

Parameter Description
n Specifies the size of the font, in half points.

Comments
The \fs statement does not set the font face; use the \f statement instead.

No \plain or \fs statement is required if the \fs statement and subsequent text are enclosed in braces. Braces
limit the scope of a character property statement to just the enclosed text.

If the \fs statement is not given, the default font size is 24.

Example
The following example sets the size of the font to 10 points:

{\fs20 This line is in 10 point type.}
\par
See Also
\plain, \f

\' RTF statement
\' hh

The \' statement converts the specified hexadecimal number into a character value and inserts the value
into the Help file. The appearance of the character when displayed depends on the character set specified
for the Help file.

Parameter Description
hh Specifies a two-digit hexadecimal value.

Comments
Since the Microsoft Help Compiler does not accept character values greater than 127, the \' statement is
the only way to insert such character values into the Help file.

Example
The following example inserts a trademark in a Help file that uses the \ansi statement to set the character
set:

ABC\'99 is a trademark of the ABC Product Corporation.
See Also
\ansi, \mac, \pc

\i RTF statement
\i

The \i statement starts italic text. The statement applies to all subsequent text up to the next \plain or \i0
statement.

Comments
No \plain or \i0 statement is required if the \i statement and subsequent text are enclosed in braces. Braces
limit the scope of a character property statement to just the enclosed text.

Example
The following example sets "not" to italic:

You must {\i not} save the file without first setting the
Auto option.
See Also
\b, \plain, \scaps

\intbl RTF statement (3.1)
\intbl

The \intbl statement marks subsequent paragraphs as part of a table. The statement applies to all
subsequent paragraphs up to the next \row statement.

Comments
This statement was first supported in Microsoft Help Compiler version 3.1.

Example
The following example creates a three-column table having two rows:

\cellx1440\cellx2880\cellx4320
\intbl
Row 1 Column 1\cell
Row 1 Column 2\cell
Row 1 Column 3\cell \row
\intbl
Row 2 Column 1\cell
Row 2 Column 2\cell
Row 2 Column 3\cell \row \pard
See Also
\cell, \cellx, \row, \trgaph, \trleft, \trowd

\keep RTF statement
\keep

The \keep statement prevents Windows Help from wrapping text to fit the Help window. The statement
applies to all subsequent paragraphs up to the next \pard statement.

Comments
If the text in a paragraph exceeds the width of the Help window, Help displays a horizontal scroll bar.

In print-based documents, the \keep statement keeps paragraphs intact.

See Also
\keepn, \line

\keepn RTF statement
\keepn

The \keepn statement creates a non-scrolling region at the top of the Help window for the given topic. The
\keepn statement applies to all subsequent paragraphs up to the next \pard statement. All paragraphs with
this paragraph property are placed in the non-scrolling region.

Comments
If a \keepn statement is used in a topic, it must be applied to the first paragraph in the topic (and
subsequent paragraphs as needed). The Help compiler displays an error message and does not create a
non-scrolling region if paragraphs are given before the \keepn statement. Only one non-scrolling region
per topic is allowed.

Windows Help formats, aligns, and wraps text in the non-scrolling region just as it does in the rest of the
topic. It separates the non-scrolling region from the rest of the Help window with a horizontal bar.
Windows Help sets the height of the non-scrolling region so that all all paragraphs in the region can be
viewed if the help window is large enough. If the window is smaller than the non-scrolling region, the user
will be unable to view the rest of the topic. For this reason, the non-scrolling region is typically reserved
for a single line of text specifying the name or title of the topic.

In print-based documents, the \keepn statement keeps the subsequent paragraph with the paragraph that
follows it.

See Also
\keep, \page

\li RTF statement
\lin

The \li statement sets the left indent for the paragraph. The indent applies to all subsequent paragraphs up
to the next \pard or \li statement.

Parameter Description
n Specifies the indent, in twips. The value can be either positive or negative.

Comments
If the \li statement is not given, the left indent is zero by default. Windows Help automatically provides a
small left margin so that if no indent is specified the text does not start immediately at the left edge of the
Help window.

Specifying a negative left indent moves the starting point for a line of text to the left of the default left
margin. If the negative indent is large enough, the start of the text may be clipped by the left edge of the
help window.

Example
The following example uses the left indent and a tab stop to make a bulleted list. In this example, font
number 0 is assumed to be the Symbol font:

Use the Auto command to:
\par
\tx360\li360\fi-360
{\f0\'B7}
\tab
Save files automatically
\par
{\f0\'B7}
\tab
Prevent overwriting existing files
\par
{\f0\'B7}
\tab
Create automatic backup files
\par \pard
See Also

\fi, \pard, \ri

\line RTF statement
\line

The \line statement breaks the current line without ending the paragraph. Subsequent text starts on the next
line and is aligned and indented according to the current paragraph properties.

See Also

\par

\mac RTF statement
\mac

The \mac statement sets the Apple Macintosh character set.

See Also
\ansi, \pc

\page RTF statement
\page

The \page statement marks the end of a topic.

Comments
In a print-based document, the \page statement creates a page break.

Example
The following example shows a complete topic:

${\footnote Short Topic}
#{\footnote short_topic}
Most topics in a topic file consist of topic-title and
context-string statements followed by the topic text. Every
topic ends with a {\b \\page} statement.
\par
\page
See Also

\par

\par RTF statement
\par

The \par statement marks the end of a paragraph. The statement ends the current line of text and moves the
current position to the left margin and down by the current line-spacing and space-after-paragraph values.

Comments

The first line of text after a \par, \page, or \sect statement marks the start of a paragraph. When a paragraph
starts, the current position is moved down by the current space-before-paragraph value. Subsequent text is
formatted using the current text alignment, line spacing, and left, right, and first-line indents.

Example
The following example has three paragraphs:

\ql
This paragraph is left-aligned.
\par \pard
\qc
This paragraph is centered.
\par \pard
\qr
This paragraph is right-aligned.
\par
See Also

\line, \pard, \sect

\pard RTF statement
\pard

The \pard statement restores all paragraph properties to default values.

Comments

If the \pard statement appears anywhere before the end of a paragraph (that is, before the \par statement),
the default properties apply to the entire paragraph.

The default paragraph properties are as follows:

Property Default
Alignment Left-aligned
First-line indent 0
Left indent 0
Right indent 0
Space before 0
Space after 0
Line spacing Tallest character
Tab stops None
Borders None
Border style Single-width

See Also

\par

\pc RTF statement
\pc

The \pc statement sets the OEM character set (also known as code page 437).

See Also
\ansi, \mac

\pich RTF statement
\pichn

The \pich statement specifies the height of the picture. This statement must be used in conjunction with a \
pict statement.

Parameter Description
n Specifies the height of the picture, in twips or pixels, depending on the picture type. If

the picture is a metafile, the width is in twips; otherwise, the width is, in pixels.

See Also
\pict, \picw

\pichgoal RTF statement
\pichgoaln

The \pichgoal statement specifies the desired height of a picture. If necessary, Windows Help stretches or
compresses the picture to match the requested height. This statement must be used in conjunction with a \
pict statement.

Parameter Description
n Specifies the desired height, in twips.

Comments
The \pichgoal statement is not supported for metafiles. Applications should use the \pich statement,
instead.

See Also
\pich, \pict, \picwgoal

\picscalex RTF statement
\picscalexn

The \picscalex statement specifies the horizontal scaling value. This statement must be used in conjunction
with a \pict statement.

Parameter Description
n

Specifies the scaling value as a percentage. If this value is greater than 100, the bitmap
or metafile is enlarged.

Comments
If the \picscalex statement is not given, the default scaling value is 100.

See Also
\pict, \picscaley

\picscaley RTF statement
\picscaleyn

The \picscaley statement specifies the vertical scaling value. This statement must be used in conjunction
with a \pict statement.

Parameter Description
n

Specifies the scaling value as a percentage. If this value is greater than 100, the bitmap
or metafile is enlarged.

Comments
If the \picscaley statement is not given, the default scaling value is 100.

See Also
\pict, \picscalex

\pict RTF statement
\pictpicture-statementspicture-data

The \pict statement creates a picture. A picture consists of hexadecimal or binary data representing a
bitmap or metafile.

Parameter Description
picture-statements Specifies one or more statements defining the type of picture, the dimensions of

the picture, and the format of the picture data. It can be a combination of the
following statements:

Statement Descripton
\wbitmap Specifies a Windows bitmap.
\wmetafile Specifies a Windows metafile.
\picw Specifies the picture width.
\pich Specifies the picture height.
\picwgoal Specifies the desired picture width.
\pichgoal Specifies the desired picture height.
\picscalex Specifies the horizontal scaling value.
\picscaley Specifies the vertical scaling value.
\wbmbitspixel Specifies the number of bits per pixel.
\wbmplanes Specifies the number of planes.
\wbmwidthbytes Specifies the bitmap width, in bytes.
\bin Specifies binary picture data.

picture-data Specifies hexadecimal or binary data representing the picture. The picture data
follows the last picture statement.

Comments
If a data format is not specified, the default format is hexadecimal.

See Also
\bin, \pich, \pichgoal, \picscalex, \picscaley, \picw, \picwgoal, \wbitmap, \wbmbitspixel, \wbmplanes, \
wbmwidthbytes, \wmetafile

\picw RTF statement
\picwn

The \picw statement specifies the width of the picture. This statement must be used in conjunction with a \
pict statement.

Parameter Description
n Specifies the width of the picture, in twips or pixels, depending on the picture type. If

the picture is a metafile, the width is in twips; otherwise, the width is in pixels.

See Also
\pict, \pich

\picwgoal RTF statement
\picwgoaln

The \picwgoal statement specifies the desired width of the picture, in twips. If necessary, Windows Help
stretches or compresses the picture to match the requested height. This statement must be used in
conjunction with a \pict statement.

Parameter Description
n Specifies the desired width, in twips.

Comments
The \picwgoal statement is not supported for metafiles. Applications should use the \picw statement,
instead.

See Also
\pict, \picw, \pichgoal

\plain RTF statement
\plain

The \plain statement restores the character properties to default values.

Comments
The default character properties are as follows:

Property Default
Bold Off
Italic Off
Small caps Off
Font 0
Font size 24

See Also
\b, \i, \scaps, \f, \fs

\qc RTF statement
\qc

The \qc statement centers text between the current left and right indents. The statement applies to
subsequent paragraphs up to the next \pard statement or text-alignment statement.

Comments
If a \ql, \qr, or \qc statement is not given, the text is left-aligned by default.

See Also

\pard, \ql, \qr

\ql RTF statement
\ql

The \ql statement aligns text along the left indent. The statement applies to subsequent paragraphs up to
the next \pard statement or text-alignment statement.

Comments
If a \ql, \qr, or \qc statement is not given, the text is left-aligned by default.

See Also

\pard, \qc, \qr

\qr RTF statement
\qr

The \qr statement aligns text along the right indent. The statement applies to subsequent paragraphs up to
the next \pard statement or text-alignment statement.

Comments
If a \ql, \qr, or \qc statement is not given, the text is left-aligned by default.

See Also

\pard, \qc, \ql

\ri RTF statement
\rin

The \ri statement sets the right indent for the paragraph. The indent applies to all subsequent paragraphs up
to the next \pard or \ri statement.

Parameter Description
n Specifies the right indent, in twips. It can be a positive or negative value.

Comments
If the \ri statement is not given, the right indent is zero by default. Windows Help automatically provides a
small right margin so that when no right indent is specified, the text does not end abruptly at the right edge
of the Help window.

Windows Help never displays less than one word for each line in a paragraph even if the right indent is
greater than the width of the window.

Example
In the following example, the right and left indents are set to one inch and the subsequent text is centered
between the indents:

\li1440\ri1440\qc
Microsoft Windows Help\line
Sample File\line
See Also

\li, \pard

\row RTF statement
\row

The \row statement marks the end of a table row. The statement ends the current row and begins a new
row by moving down pass the end of the longest cell in the row. The next \cell statement specifies the text
of the leftmost cell in the next row.

Comments
This statement was first supported in the Microsoft Help Compiler version 3.1.

Example
The following example creates a table having four rows and two columns:

\cellx2880\cellx5760
\intbl
Row 1, Column 1\cell
Row 1, Column 2\cell \row
\intbl
Row 2, Column 1\cell
Row 2, Column 2\cell \row
\intbl
Row 3, Column 1\cell
Row 3, Column 2\cell \row
\intbl
Row 4, Column 1\cell
Row 4, Column 2\cell \row
\par \pard
See Also
\cell, \cellx, \intbl

\rtf RTF statement
\rtfn

The \rtf statement identifies the file as a rich-text format (RTF) file and specifies the version of the RTF
standard used.

Parameter Description
n Specifies the version of the RTF standard used. For the Microsoft Help Compiler

version 3.1, this parameter must be 1.

Comments
The \rtf statement must follow the first open brace in the Help file. A statement specifying the character set
for the file must also follow the \rtf statement.

See Also
\ansi

\sa RTF statement
\san

The \sa statement sets the amount of vertical spacing after a paragraph. The vertical space applies to all
subsequent paragraphs up to the next \pard or \sa statement.

Parameter Description
n Specifies the amount of vertical spacing, in twips.

Comments
If the \sa statement is not given, the vertical spacing after a paragraph is zero by default.

See Also

\sb, \pard

\sb RTF statement
\sbn

The \sb statement sets the amount of vertical spacing before the paragraph. The vertical space applies to all
subsequent paragraphs up to the next \pard statement or \sb statement.

Parameter Description
n Specifies the amount of vertical spacing, in twips.

Comments
If the \sb statement is not given, the vertical spacing before the paragraph is zero by default.

See Also

\sa, \pard

\scaps RTF statement
\scaps

The \scaps statement starts small-capital text. The statement converts all subsequent lowercase letters to
uppercase before displaying the text. This statement applies to all subsequent text up to the next \plain or \
scaps0 statement.

Comments
The \scaps statement does not affect uppercase letters.

No \plain or \scaps0 statement is required if the \scaps statement and subsequent text are enclosed in
braces. Braces limit the scope of a character property statement to just the enclosed text.

The \scaps statement does not reduce the point size of the text. To reduce point size, the \fs statement must
be used.

Example
The following example displays the key name ENTER in small capitals:

Press the {\scaps enter} key to complete the action.
See Also
\fs, \plain

\sect RTF statement
\sect

The \sect statement marks the end of a section and paragraph.

See Also

\par

\sl RTF statement
\sln

The \sl statement sets the amount of vertical space between lines in a paragraph. The vertical space applies
to all subsequent paragraphs up to the next \pard or \sl statement.

Parameter Description
n Specifies the amount of vertical spacing, in twips. If this parameter is a positive value,

Windows Help uses this value if it is greater than the tallest character. Otherwise,
Windows Help uses the height of the tallest character as the line spacing. If this
parameter is a negative value, Windows Help uses the absolute value of the number
even if the tallest character is taller.

Comments
If the \sl statement is not given, Windows Help automatically sets the line spacing by using the tallest
character in the line.

See Also

\pard

\strike RTF statement
\strike

The \strike statement creates a hot spot. The statement is used in conjunction with a \v statement to create
a link to another topic. When the user chooses a hot spot, Windows Help displays the associated topic in
the Help window.

The \strike statement applies to all subsequent text up to the next \plain or \strike0 statement.

Comments
No \plain or \strike0 statement is required if the \strike statement and subsequent text are enclosed in
braces. Braces limit the scope of a character property statement to just the enclosed text.

The \strike statement creates the same type of hot spot as the \uldb statement.

In print-based documents, or whenever it is not followed by \v, the \strike statement creates strikeout text.

Example
The following example creates a hot spot for a topic. When displayed, the hot-spot text, "Hot Spot," is
green and has a solid line under it:

{\strike Hot Spot}{\v Topic}
See Also
\ul, \uldb, \v

\tab RTF statement
\tab

The \tab statement inserts a tab character (ASCII character code 9).

Comments
The tab character (ASCII character code 9) has the same effect as the \tab statement.

See Also
\tqc, \tqr, \tx

\tqc RTF statement
\tqc

The \tqc statement is used with the \tx statement to create a tab stop where text is centered. For example,
the following statement creates a centered tab stop at 2880 twips:

\tqc\tx2880
See Also
\tab, \tqr, \tx

\tqr RTF statement
\tqr

The \tqr statement is used with the \tx statement to create a tab stop where text right-justified. For
example, the following statement creates a right-justified tab stop at 2880 twips:

\tqr\tx2880
See Also
\tab, \tqc, \tx

\trgaph RTF statement (3.1)
\trgaphn

The \trgaph statement specifies the amount of space between text in adjacent cells in a table. For each cell
in the table, Windows Help uses the space to calculate the cell's left and right margins. It then uses the
margins to align and wrap the text in the cell. Windows Help applies the same margin widths to each cell
ensuring that paragraphs in adjacent cells have the specified space between them.

The \trgaph statement applies to cells in all subsequent rows of a table up to the next \trowd statement.

Parameter Description
n Specifies the space, in twips, between text in adjacent cells. If this parameter exceeds the

actual width of the cell, the left and right margins are assumed to be at the same position
in the cell.

Comments
The width of the left margin in the first cell is always equal to the space specified by this statement. The \
trleft statement is typically used to move the left margin to a position similar to the left margins in all other
cells.

This statement was first supported in the Microsoft Help Compiler version 3.1.

Example
The following example creates a three-column table with one-quarter inch space between the text in the
columns:

\trgaph360 \cellx1440\cellx2880\cellx4320
\intbl
Row 1 Column 1\cell
Row 1 Column 2\cell
Row 1 Column 3\cell \row
\intbl
Row 2 Column 1\cell
Row 2 Column 2\cell
Row 2 Column 3\cell \row \pard
See Also
\cell, \cellx, \intbl, \row, \trleft, \trowd

\trleft RTF statement
\trleftn

The \trleft statement sets the position of the left margin for the first (leftmost) cell in a row of a table. This
statement applies to the first cell in all subsequent rows of the table up to the next \trowd statement.

Parameter Description
n Specifies the relative position, in twips, of the left margin. This parameter can be a

positive or negative number. The final position of the left margin is the sum of the
current position and this value.

Comments
This statement was first supported in the Microsoft Help Compiler version 3.1.

Example
The following example creates a three-column table with one-quarter inch space between the text in the
columns. The left margin in the first cell is flush with the left margin of the Help window:

\trgaph360\trleft-360 \cellx1440\cellx2880\cellx4320
\intbl
Row 1 Column 1\cell
Row 1 Column 2\cell
Row 1 Column 3\cell \row
\intbl
Row 2 Column 1\cell
Row 2 Column 2\cell
Row 2 Column 3\cell \row \pard
See Also
\cell, \cellx, \intbl, \row, \trgaph, \trowd

\trowd RTF statement
\trowd

The \trowd statement sets default margins and cell positions for subsequent rows in a table.

Comments
This statement was first supported in the Microsoft Help Compiler version 3.1.

See Also
\cell, \cellx, \intbl, \row, \trgaph, \trleft

\trqc RTF statement
\trqc

The \trqc statement directs Windows Help to dynamically adjust the width of table columns to fit in the
current window.

Comments
In a print-based document, the \trqc statement centers a table row with respect to its containing column.

Windows Help will not resize a table to smaller than the widths specified in the \trqc statement. Therefore,
the table should be created in the smallest size in which it would ever be displayed. All columns in the
table are sized proportionally.

This statement was first supported in the Microsoft Help Compiler version 3.1.

See Also
\trowd, \trql

\trql RTF statement
\trql

The \trql statement aligns the text in each cell of a table row to the left.

Comments
This statement was first supported in the Microsoft Help Compiler version 3.1.

See Also
\trowd, \trqc

\tx RTF statement
\txn

The \tx statement sets the position of a tab stop. The position is relative to the left margin of the Help
window. A tab stop applies to all subsequent paragraphs up the next \pard statement.

Parameter Description
n Specifies the tab stop position, in twips.

Comments
If the \tx statement is not given, tab stops are set at every one-half inch by default.

See Also
\tab, \tqc, \tqr

\ul RTF statement
\ul

The \ul statement creates a link to a pop-up topic. The statement is used in conjunction with a \v statement
to create a link to another topic. When the user chooses the link, Windows Help displays the associated
topic in a pop-up window.

The \ul statement applies to all subsequent text up to the next \plain or \ul0 statement.

Comments
No \plain or \ul0 statement is required if the \ul statement and subsequent text are enclosed in braces.
Braces limit the scope of a character property statement to just the enclosed text.

In print-base documents, or whenever it is not followed by \v, the \ul statement creates a continuous
underline.

Example
The following example creates a pop-up link for a topic. When displayed, the link text, "Popup Link," is
green and has a dotted line under it:

{\ul Popup Link}{\v PopupTopic}
See Also
\strike, \uldb, \v

\uldb RTF statement
\uldb

The \uldb statement creates a hot spot. This statement is used in conjunction with a \v statement to create a
link to another topic. When the user chooses a hot spot, Windows Help displays the associated topic in the
Help window.

The \uldb statement applies to all subsequent text up to the next \plain or \uldb0 statement.

Comments
No \plain or \uldb0 statement is required if the \uldb statement and subsequent text are enclosed in braces.
Braces limit the scope of a character property statement to just the enclosed text.

The \uldb statement creates the same type of hot spot as the \strike statement.

Example
The following example creates a hot spot for a topic. When displayed, the hot-spot text, "Hot Spot," is
green and has a solid line under it:

{\uldb Hot Spot}{\v Topic}
See Also
\strike, \ul, \v

\v RTF statement
{\v context-string}

The \v statement creates a link to the topic having the specified context string. The \v statement is used in
conjunction with the \strike, \ul, and \uldb statements to create hot spots and links to topics.

Parameter Description
context-string Specifies the context string of a topic in the Help file. The string can be any

combination of characters, except spaces, and must also be specified in a context-string
\footnote statement in some topic in the Help file.

Comments
If the context string is preceded by a percent sign (%), Windows Help displays the associated hot spot or
link without applying the standard underline and color. If the context string is preceded by an asterisk (*),
Windows Help displays the associated hot spot or link with an underline but without applying the standard
color.

In print-based documents, the \v statement creates hidden text.

For links or hot spots, the syntax of the \v statement is as follows:

[%|*] context [>secondary-window] [@filename]

In this syntax, secondary-window is the name of the secondary window to jump to. When the secondary
window is not specified, the jump is to the same window as the current help topic is using. To jump to the
main window, specify "main" for this parameter. This parameter may not be used with pop-up windows.

The filename parameter specifies a jump to a topic in a different help file.

For a macro hotspot, the syntax of the \v statement is as follows:

[%|*] ! macro [;macro][;...]

Example
The following example creates a hot spot for the topic having the context string "Topic". Windows Help
applies an underline and the color green the text "Hot Spot" when it displays the topic:

{\uldb Hot Spot}{\v Topic}
See Also
\footnote, \strike, \ul, \uldb

\wbitmap RTF statement
\wbitmapn

The \wbitmap statement sets the picture type to Windows bitmap. This statement must be used in
conjunction with a \pict statement.

Parameter Description
n Specifies the bitmap type. This parameter is zero for a logical bitmap.

Comments
The \wbitmap statement is optional; if a \wmetafile statement is not specified, the picture is assumed to be
a Windows bitmap.

Example
The following example creates a 32-by-8 pixel monochrome bitmap:

{
\pict \wbitmap0\wbmbitspixel1\wbmplanes1\wbmwidthbytes4\picw32\pich8
3FFFFFFC
F3FFFFCF
FF3FFCFF
FFF3CFFF
FFFC3FFF
FFCFF3FF
FCFFFF3F
CFFFFFF3
}
See Also
bmc, bml, bmr, \pict, \wmetafile

\wbmbitspixel RTF statement
\wbmbitspixeln

The \wbmbitspixel statement specifies the number of consecutive bits in the bitmap data that represent a
single pixel. This statement must be used in conjunction with the \pict statement.

Parameter Description
n Specifies the number of bits per pixel.

Comments
If the \wbmbitspixel statement is not given, the default bits per pixel value is 1.

See Also
\pict, \wbitmap, \wbmplanes

\wbmplanes RTF statement
\wbmplanesn

The \wbmplanes statement specifies the number of color planes in the bitmap data. This statement must be
used in conjunction with a \pict statement.

Parameter Description
n Specifies the number of bitmap planes.

Comments
If the \wbmplanes statement is not given, the default number of planes is 1.

See Also
\pict, \wbitmap, \wbmbitspixel

\wbmwidthbytes RTF statement
\wbmwidthbytesn

The \wbmwidthbytes statement specifies the number of bytes in each scan line of the bitmap data. This
statement must be used in conjunction with the \pict statement.

Parameter Description
n Specifies the width of the bitmap, in bytes.

See Also
\pict, \wbitmap

\wmetafile RTF statement
\wmetafilen

The \wmetafile statement sets the picture type to a Windows metafile. This statement must be used in
conjunction with the \pict statement.

Parameter Description
n Specifies the metafile type. This parameter must be 8.

Comments
Windows Help expects the hexadecimal data associated with the picture to represent a valid Windows
metafile. By default, Windows Help sets the MM_ANISOTROPIC mapping mode prior to displaying the
metafile. To ensure that the picture is displayed correctly, the metafile data must either set the window
origin and extents by using the SetWindowOrg and SetWindowExt records or set another mapping mode
by using the SetMapMode record.

Example
The following example creates a picture using a metafile:

{{\pict\wmetafile8\picw2880\pich2880
0100090000034f0000000200090000000000
050000000b0200000000050000000c026400
6400090000001d066200ff00640064000000
000008000000fa0200000200000000000000
040000002d01000005000000140200000000
050000001302640064000500000014020000
64000500000013026400000008000000fa02
00000000000000000000040000002d010100
04000000f00100000300000000004e0dff00
870020000050000020000000000000000000}
\par }
See Also
bmc, bml, bmr, \pict, \wbitmap

AdjustWindowRect (2.x)
void AdjustWindowRect(lprc, dwStyle, fMenu)
RECT FAR* lprc; /* address of client-rectangle structure */
DWORD dwStyle; /*
window styles *
/
BOOL fMenu; /
* menu-present flag *
/

The AdjustWindowRect function computes the required size of the window rectangle based on the desired
client-rectangle size. The window rectangle can then be passed to the CreateWindow function to create a
window whose client area is the desired size.

Parameter Description
lprc Points to a RECT structure that contains the coordinates of the client rectangle.
dwStyle Specifies the window styles of the window whose client rectangle is to be converted.
fMenu Specifies whether the window has a menu.

Returns
This function does not return a value.

Comments
A client rectangle is the smallest rectangle that completely encloses a client area. A window rectangle is
the smallest rectangle that completely encloses the window.

AdjustWindowRect does not take titles and borders into account when computing the size of the client
area. For window styles that include titles and borders, applications must add the title and border sizes
after calling AdjustWindowRect. This function also does not take the extra rows into account when a
menu bar wraps to two or more rows.

See Also
AdjustWindowRectEx, CreateWindowEx

AdjustWindowRectEx (3.0)
void AdjustWindowRectEx(lprc, dwStyle, fMenu, dwExStyle)
RECT FAR* lprc; /* address of client-rectangle structure */
DWORD dwStyle; /*
window styles *
/
BOOL fMenu; /
* menu-present flag *
/
DWORD dwExStyle; /
* extended style *
/

The AdjustWindowRectEx function computes the required size of the rectangle of a window with
extended style based on the desired client-rectangle size. The window rectangle can then be passed to the
CreateWindowEx function to create a window whose client area is the desired size.

Parameter Description
lprc Points to a RECT structure that contains the coordinates of the client rectangle.
dwStyle Specifies the window styles of the window whose client rectangle is to be converted.
fMenu Specifies whether the window has a menu.
dwExStyle Specifies the extended style of the window being created.

Returns
This function does not return a value.

Comments
A client rectangle is the smallest rectangle that completely encloses a client area. A window rectangle is
the smallest rectangle that completely encloses the window.

AdjustWindowRectEx does not take titles and borders into account when computing the size of the client
area. For window styles that include titles and borders, applications must add the title and border sizes
after calling AdjustWindowRectEx. This function also does not take the extra rows into account when a
menu bar wraps to two or more rows.

See Also
AdjustWindowRect, CreateWindowEx

AnsiLower (2.x)
LPSTR AnsiLower(lpsz)
LPSTR lpsz; /* address of string, or specific character */

The AnsiLower function converts a character string to lowercase.

Parameter Description
lpsz Points to a null-terminated string or specifies a single character. If the high-order word

of this parameter is zero, the low-order byte of the low-order word must contain a single
character to be converted.

Returns
The return value points to a converted character string if the function is successful. Otherwise, the return
value is a 32-bit value that contains the converted character in the low-order byte of the low-order word.

Comments
The conversion is made by the language driver for the current language (the one selected by the user at
setup or by using Control Panel). If no language driver has been selected, Windows uses an internal
function.

Example
The following example uses the AnsiLower function to convert two strings to lowercase for a non–case-
sensitive comparison:

/*
* Convert the target string to lowercase, and then
* convert the subject string one character at a time.
*/
AnsiLower(pszTarget);
while (*pszTarget != '\0') {

if (*pszTarget != (char) (DWORD) AnsiLower(
MAKELP(0, *pszSubject)))
return FALSE;
pszTarget = AnsiNext(pszTarget);
pszSubject = AnsiNext(pszSubject);

}
See Also
AnsiLowerBuff, AnsiNext, AnsiUpper

AnsiLowerBuff (3.0)
UINT AnsiLowerBuff(lpszString, cbString)
LPSTR lpszString; /* address of string to convert */
UINT cbString; /* length of string*/

The AnsiLowerBuff function converts a character string in a buffer to lowercase.

Parameter Description
lpszString Points to a buffer containing one or more characters.
cbString Specifies the number of bytes in the buffer identified by the lpszString parameter. If

cbString is zero, the length is 64K (65,536).

Returns
The return value specifies the length of the converted string if the function is successful. Otherwise, it is
zero.

Comments
The language driver makes the conversion for the current language (the one selected by the user at setup or
by using Control Panel). If no language driver has been selected, Windows uses an internal function.

Example
The following example uses the AnsiLowerBuff function to convert two strings to lowercase for a
non–case-sensitive comparison:

AnsiLowerBuff(pszSubject, (UINT) lstrlen(pszSubject));
AnsiLowerBuff(pszTarget, (UINT) lstrlen(pszTarget));
while (*pszTarget != '\0') {

if (*pszTarget != *pszSubject)
return FALSE;
pszTarget = AnsiNext(pszTarget);
pszSubject = AnsiNext(pszSubject);

}
See Also
AnsiLower, AnsiUpper

AnsiNext (2.x)
LPSTR AnsiNext(lpchCurrentChar)
LPCSTR lpchCurrentChar; /* address of current character */

The AnsiNext function moves to the next character in a string.

Parameter Description
lpchCurrentChar Points to a character in a null-terminated string.

Returns
The return value points to the next character in the string or to the null character at the end of the string, if
the function is successful.

Comments
The AnsiNext function can be used to move through strings where each character is a single byte, or
through strings where each character is two or more bytes (such as strings that contain characters from a
Japanese character set).

Example
The following example uses the AnsiNext function to step through the characters in a filename:

/* Find the last backslash. */
for (lpszFile = lpszTemp; *lpszTemp != '\0';

lpszTemp = AnsiNext(lpszTemp)) {
if (*lpszTemp == '\\')
lpszFile = AnsiNext(lpszTemp);

}
See Also
AnsiPrev

AnsiPrev (2.x)
LPSTR AnsiPrev(lpchStart, lpchCurrentChar)
LPCSTR lpchStart; /* address of first character */
LPCSTR lpchCurrentChar; /
* address of current character *
/

The AnsiPrev function moves to the previous character in a string.

Parameter Description
lpchStart Points to the beginning of the string.
lpchCurrentChar Points to a character in a null-terminated string.

Returns
The return value points to the previous character in the string, or to the first character in the string if the
lpchCurrentChar parameter is equal to the lpchStart parameter.

Comments
The AnsiPrev function can be used to move through strings where each character is a single byte, or
through strings where each character is two or more bytes (such as strings that contain characters from a
Japanese character set).

This function can be very slow, because the string must be scanned from the beginning to determine the
previous character. Wherever possible, the AnsiNext function should be used instead of this function.

Example
The following example uses the AnsiNext and AnsiPrev functions to change every occurrence of the
characters '\ &' in a string to a single newline character:

/* Find ampersands. */
for (lpsz = lpszTest; *lpsz != '\0'; lpsz = AnsiNext(lpsz)) {

/* Check the previous character. */
if (*lpsz == '&' &&

*(lpsz2 = AnsiPrev(lpszTest, lpsz)) == '\\') {
lstrcpy(lpsz2, lpsz);
*lpsz2 = '\n';
}

}
See Also
AnsiNext

AnsiUpper (2.x)
LPSTR AnsiUpper(lpszString)
LPSTR lpszString; /* address of string, or specific character */

The AnsiUpper function converts the given character string to uppercase.

Parameter Description
lpszString Points to a null-terminated string or specifies a single character. If the high-order word

of this parameter is zero, the low-order byte of the low-order word must contain a single
character to be converted.

Returns
The return value points to a converted character string if the function parameter is a character string.
Otherwise, the return value is a 32-bit value that contains the converted character in the low-order byte of
the low-order word.

Comments
The language driver makes the conversion for the current language (the one selected by the user at setup or
by using Control Panel). If no language driver is selected, Windows uses an internal function.

Example
The following example uses the AnsiUpper function to convert two strings to uppercase for a non–case-
sensitive comparison:

/*
* Convert the target string to uppercase, and then
* convert the subject string one character at a time.
*/
AnsiUpper(pszTarget);
while (*pszTarget != '\0') {

if (*pszTarget != (char) (DWORD) AnsiUpper(
MAKELP(0, *pszSubject)))
return FALSE;
pszTarget = AnsiNext(pszTarget);
pszSubject = AnsiNext(pszSubject);

}
See Also
AnsiLower, AnsiUpperBuff

AnsiUpperBuff (3.0)
UINT AnsiUpperBuff(lpszString, cbString)
LPSTR lpszString; /* address of string to convert */
UINT cbString; /* length of string*/

The AnsiUpperBuff function converts a character string in a buffer to uppercase.

Parameter Description
lpszString Points to a buffer containing one or more characters.
cbString Specifies the number of bytes in the buffer identified by the lpszString parameter. If

cbString is zero, the length is 64K (65,536).

Returns
The return value specifies the length of the converted string if the function is successful.

Comments
The language driver makes the conversion for the current language (the one selected by the user at setup or
by using Control Panel). If no language driver is selected, Windows uses an internal function.

Example
The following example uses the AnsiUpperBuff function to convert two strings to lowercase for a
non–case-sensitive comparison:

/*
* Convert both the subject and target strings to uppercase before
* comparing.
*/
AnsiUpperBuff(pszSubject, (UINT) lstrlen(pszSubject));
AnsiUpperBuff(pszTarget, (UINT) lstrlen(pszTarget));
while (*pszTarget != '\0') {

if (*pszTarget != *pszSubject)
return FALSE;
pszTarget = AnsiNext(pszTarget);
pszSubject = AnsiNext(pszSubject);

}
See Also
AnsiLower, AnsiUpper

AnyPopup (2.x)
BOOL AnyPopup(void)

The AnyPopup function indicates whether an unowned, visible, top-level pop-up, or overlapped window
exists on the screen. The function searches the entire Windows screen, not just the caller's client area.

Returns
The return value is nonzero if a pop-up window exists, even if the pop-up window is completely covered
by other windows. The return value is zero if no pop-up window exists.

Comments
AnyPopup is a Windows 1.x function and remains for compatibility reasons. It is generally not useful.

This function does not detect unowned pop-up windows or windows that do not have the WS_VISIBLE
style bit set.

See Also
GetLastActivePopup, ShowOwnedPopups

AppendMenu (3.0)
BOOL AppendMenu(hmenu, fuFlags, idNewItem, lpNewItem)
HMENU hmenu; /* handle of menu */
UINT fuFlags; /* menu-item
flags *
/
UINT idNewItem; /
* menu-item identifier *
/
LPCSTR lpNewItem; /
* specifies menu-item content *
/

The AppendMenu function appends a new item to the end of a menu. The application can specify the state
of the menu item by setting values in the fuFlags parameter.

Parameter Description
hmenu Identifies the menu to be changed.
fuFlags Specifies information about the state of the new menu item when it is added to the

menu. This parameter consists of one or more of the values listed in the following
Comments section.

idNewItem Specifies either the command identifier of the new menu item or, if the fuFlags
parameter is set to MF_POPUP, the menu handle of the pop-up menu.

lpNewItem Specifies the content of the new menu item. The interpretation of the lpNewItem
parameter depends on the value of the fuFlags parameter.

Value Menu-item content
MF_STRING Contains a long pointer to a null-terminated string.
MF_BITMAP Contains a bitmap handle in its low-order word.
MF_OWNERDRAW Contains an application-supplied 32-bit value that the

application can use to maintain additional data associated with
the menu item. An application can find this value in the
itemData member of the structure pointed to by the lParam
parameter of the WM_MEASUREITEM and
WM_DRAWITEM messages that are sent when the menu
item is changed or initially displayed.

Returns
The return value is nonzero if the function is successful. Otherwise, it is zero.

Comments
Whenever a menu changes (whether or not the menu is in a window that is displayed), the application
should call the DrawMenuBar function.

Each of the following groups lists flags that are mutually exclusive and cannot be used together:
MF_DISABLED, MF_ENABLED, and MF_GRAYED
MF_BITMAP, MF_STRING, and MF_OWNERDRAW
MF_MENUBARBREAK and MF_MENUBREAK
MF_CHECKED and MF_UNCHECKED

Following are the flags that can be set in the fuFlags parameter:

Value Meaning
MF_BITMAP Uses a bitmap as the item. The low-order word of the lpNewItem

parameter contains the handle of the bitmap.
MF_CHECKED Places a check mark next to the item. If the application has supplied check

mark bitmaps (see the SetMenuItemBitmaps function), setting this flag
displays the "check mark on" bitmap next to the menu item.

MF_DISABLED Disables the menu item so that it cannot be selected, but does not gray it.
MF_ENABLED Enables the menu item so that it can be selected, and restores it from its

grayed state.
MF_GRAYED Disables the menu item so that it cannot be selected, and grays it.

MF_MENUBARBREAK Same as MF_MENUBREAK except that, for pop-up menus, separates the
new column from the old column with a vertical line.

MF_MENUBREAK Places the item on a new line for static menu-bar items. For pop-up menus,
places the item in a new column, with no dividing line between the
columns.

MF_OWNERDRAW Specifies that the item is an owner-drawn item. The window that owns the
menu receives a WM_MEASUREITEM message when the menu is
displayed for the first time to retrieve the height and width of the menu
item. The WM_DRAWITEM message is then sent whenever the owner
window must update the visual appearance of the menu item. This option is
not valid for a top-level menu item.

MF_POPUP Specifies that the menu item has a pop-up menu associated with it. The
idNewItem parameter specifies a handle to a pop-up menu to be associated
with the item. This is used for adding either a top-level pop-up menu or
adding a hierarchical pop-up menu to a pop-up menu item.

MF_SEPARATOR Draws a horizontal dividing line. Can be used only in a pop-up menu. This
line cannot be grayed, disabled, or highlighted. The lpNewItem and
idNewItem parameters are ignored.

MF_STRING Specifies that the menu item is a character string; the lpNewItem parameter
points to the string for the menu item.

MF_UNCHECKED Does not place a check mark next to the item (default). If the application
has supplied check mark bitmaps (see SetMenuItemBitmaps), setting this
flag displays the "check mark off" bitmap next to the menu item.

Example
The following example uses the AppendMenu function to append three items to a floating pop-up menu:

POINT ptCurrent;
HMENU hmenu;
ptCurrent = MAKEPOINT(lParam);
hmenu = CreatePopupMenu();
AppendMenu(hmenu, MF_ENABLED, IDM_ELLIPSE, "Ellipse");
AppendMenu(hmenu, MF_ENABLED, IDM_SQUARE, "Square");
AppendMenu(hmenu, MF_ENABLED, IDM_TRIANGLE, "Triangle");
ClientToScreen(hwnd, &ptCurrent);
TrackPopupMenu(hmenu, TPM_LEFTALIGN, ptCurrent.x,

ptCurrent.y, 0, hwnd, NULL);
See Also
CreateMenu, DeleteMenu, DrawMenuBar, InsertMenu, RemoveMenu, SetMenuItemBitmaps

MF_BITMAP 0x0004

Uses a bitmap as the item. The low-order word of the lpNewItem parameter contains the handle of the
bitmap.

MF_BITMAP 0x0004

MF_CHECKED 0x0008

Places a check mark next to the item. If the application has supplied check mark bitmaps (see the
SetMenuItemBitmaps function), setting this flag displays the "check mark on" bitmap next to the menu
item.

MF_CHECKED 0x0008

MF_DISABLED 0x0002

Disables the menu item so that it cannot be selected, but does not gray it.

MF_DISABLED 0x0002

MF_ENABLED 0x0000

Enables the menu item so that it can be selected, and restores it from its grayed state.

MF_ENABLED 0x0000

MF_GRAYED 0x0001

Disables the menu item so that it cannot be selected, and grays it.

MF_GRAYED 0x0001

MF_MENUBARBREAK 0x0020

Same as MF_MENUBREAK except that, for pop-up menus, separates the new column from the old
column with a vertical line.

MF_MENUBARBREAK 0x0020

MF_MENUBREAK 0x0040

Places the item on a new line for static menu-bar items. For pop-up menus, places the item in a new
column, with no dividing line between the columns.

MF_MENUBREAK 0x0040

MF_OWNERDRAW 0x0100

Specifies that the item is an owner-drawn item. The window that owns the menu receives a
WM_MEASUREITEM message when the menu is displayed for the first time to retrieve the height and
width of the menu item. The WM_DRAWITEM message is then sent whenever the owner window must
update the visual appearance of the menu item. This option is not valid for a top-level menu item.

MF_OWNERDRAW 0x0100

MF_POPUP 0x0010

Specifies that the menu item has a pop-up menu associated with it. The idNewItem parameter specifies a
handle to a pop-up menu to be associated with the item. This is used for adding either a top-level pop-up
menu or adding a hierarchical pop-up menu to a pop-up menu item.

MF_POPUP 0x0010

MF_SEPARATOR 0x0800

Draws a horizontal dividing line. Can be used only in a pop-up menu. This line cannot be grayed, disabled,
or highlighted. The lpNewItem and idNewItem parameters are ignored.

MF_SEPARATOR 0x0800

MF_STRING 0x0000

Specifies that the menu item is a character string; the lpNewItem parameter points to the string for the
menu item.

MF_STRING 0x0000

MF_UNCHECKED 0x0000

Does not place a check mark next to the item (default). If the application has supplied check mark bitmaps
(see SetMenuItemBitmaps), setting this flag displays the "check mark off" bitmap next to the menu item.

MF_UNCHECKED 0x0000

ArrangeIconicWindows (3.0)
UINT ArrangeIconicWindows(hwnd)
HWND hwnd; /* handle of parent window */

The ArrangeIconicWindows function arranges all the minimized (iconic) child windows of a parent
window.

Parameter Description
hwnd Identifies the parent window.

Returns
The return value is the height of one row of icons if the function is successful. Otherwise, it is zero.

Comments
An application that maintains its own minimized child windows can call ArrangeIconicWindows to
arrange icons in a client window. This function also arranges icons on the desktop window, which covers
the entire screen. The GetDesktopWindow function retrieves the window handle of the desktop window.

An application sends the WM_MDIICONARRANGE message to the MDI client window to prompt the
client window to arrange its minimized MDI child windows.

See Also
GetDesktopWindow

BeginDeferWindowPos (3.0)
HDWP BeginDeferWindowPos(cWindows)
int cWindows; /* number of windows */

The BeginDeferWindowPos function returns a handle of an internal structure. The DeferWindowPos
function fills this structure with information about the target position for a window that is about to be
moved. The EndDeferWindowPos function accepts a handle of this structure and instantaneously
repositions the windows by using the information stored in the structure.

Parameter Description
cWindows Specifies the initial number of windows for which to store position information in the

structure. The DeferWindowPos function increases the size of the structure if necessary.

Returns
The return value identifies the internal structure if the function is successful. Otherwise, it is NULL.

Comments
If Windows must increase the size of the internal structure beyond the initial size specified by the
cWindows parameter but cannot allocate enough memory to do so, Windows fails the entire begin/defer/
end window-positioning sequence. By specifying the maximum size needed, an application can detect and
handle failure early in the process.

See Also
DeferWindowPos, EndDeferWindowPos

BeginPaint (2.x)
HDC BeginPaint(hwnd, lpps)
HWND hwnd; /* handle of window to paint */
PAINTSTRUCT FAR* lpps; /
* address of structure with paint information *
/

The BeginPaint function prepares the specified window for painting and fills a PAINTSTRUCT structure
with information about the painting.

Parameter Description
hwnd Identifies the window to be repainted.
lpps Points to the PAINTSTRUCT structure that will receive the painting information.

Returns
The return value is the handle of the device context for the given window if the function is successful.

Comments
The BeginPaint function automatically sets the clipping region of the device context to exclude any area
outside the update region. The update region is set by the InvalidateRect or InvalidateRgn function and by
the system after sizing, moving, creating, scrolling, or any other operation that affects the client area. If the
update region is marked for erasing, BeginPaint sends a WM_ERASEBKGND message to the window.

An application should not call BeginPaint except in response to a WM_PAINT message. Each call to the
BeginPaint function must have a corresponding call to the EndPaint function.

If the caret is in the area to be painted, BeginPaint automatically hides the caret to prevent it from being
erased.

If the window's class has a background brush, BeginPaint will use that brush to erase the background of
the update region before returning.

Example
The following example calls an application-defined function to paint a bar graph in a window's client area
during the WM_PAINT message:

PAINTSTRUCT ps;
case WM_PAINT:

BeginPaint(hwnd, &ps);
.
.
.
EndPaint(hwnd, &ps);
break;

See Also
EndPaint, InvalidateRect, InvalidateRgn, ValidateRect, ValidateRgn, PAINTSTRUCT, RECT,
WM_PAINT, WM_ERASEBKGND

BringWindowToTop (2.x)
BOOL BringWindowToTop(hwnd)
HWND hwnd; /* handle of window */

The BringWindowToTop function brings the given pop-up or child window (including an MDI child
window) to the top of a stack of overlapping windows. In addition, it activates pop-up, top-level, and MDI
child windows. The BringWindowToTop function should be used to uncover any window that is partially
or completely obscured by any overlapping windows.

Parameter Description
hwnd Identifies the pop-up or child window to bring to the top.

Returns
The return value is nonzero if the function is successful. Otherwise, it is zero.

Comments
Calling this function is similar to calling the SetWindowPos function to change a window's position in the
Z-order. The BringWindowToTop function does not make a window a top-level window.

See Also
SetWindowPos

BuildCommDCB (2.x)
int BuildCommDCB(lpszDef, lpdcb)
LPCSTR lpszDef; /* address of device-control string */
DCB FAR* lpdcb; /* address of
device-control block *
/

The BuildCommDCB function translates a device-definition string into appropriate serial device control
block (DCB) codes.

Parameter Description
lpszDef Points to a null-terminated string that specifies device-control information. The string

must have the same form as the parameters used in the MS-DOS mode command.
lpdcb Points to a DCB structure that will receive the translated string. The structure defines the

control settings for the serial-communications device.

Returns
The return value is zero if the function is successful. Otherwise, it is -1.

Example
The following example uses the BuildCommDCB and SetCommState functions to set up COM1 to operate
at 9600 baud, with no parity, 8 data bits, and 1 stop bit:

idComDev = OpenComm("COM1", 1024, 128);
if (idComDev < 0) {

ShowError(idComDev, "OpenComm");
return 0;

}
err = BuildCommDCB("COM1:9600,n,8,1", &dcb);
if (err < 0) {

ShowError(err, "BuildCommDCB");
return 0;

}
err = SetCommState(&dcb);
if (err < 0) {

ShowError(err, "SetCommState");
return 0;

}
Comments
The BuildCommDCB function only fills the buffer. To apply the settings to a port, an application should
use the SetCommState function.

By default, BuildCommDCB specifies XON/XOFF and hardware flow control as disabled. To enable flow
control, an application should set the appropriate members in the DCB structure.

See Also
SetCommState, DCB

CallMsgFilter (2.x)
BOOL CallMsgFilter(lpmsg, nCode)
MSG FAR* lpmsg; /* address of structure with message data */
int nCode; /* processing
code *
/

The CallMsgFilter function passes the given message and code to the current message-filter function. The
message-filter function is an application-specified function that examines and modifies all messages. An
application specifies the function by using the SetWindowsHook function.

Parameter Description
lpmsg Points to an MSG structure that contains the message to be filtered.
nCode Specifies a code used by the filter function to determine how to process the message.

Returns
The return value specifies the state of message processing. It is zero if the message should be processed or
nonzero if the message should not be processed further.

Comments
The CallMsgFilter function is usually called by Windows to let applications examine and control the flow
of messages during internal processing in menus and scroll bars or when moving or sizing a window.

Values given for the nCode parameter must not conflict with any of the MSGF_ and HC_ values passed by
Windows to the message-filter function.

See Also
SetWindowsHook, MSG

CallNextHookEx (3.1)
LRESULT CallNextHookEx(hHook, nCode, wParam, lParam)
HHOOK hHook; /* handle of hook function */
int nCode; /* hook code */
WPARAM wParam; /
* first message parameter *
/
LPARAM lParam; /
* second message parameter *
/

The CallNextHookEx function passes the hook information to the next hook function in the hook chain.

Parameter Description
hHook Identifies the current hook function.
nCode Specifies the hook code to pass to the next hook function. A hook function uses this

code to determine how to process the message sent to the hook.
wParam Specifies 16 bits of additional message-dependent information.
lParam Specifies 32 bits of additional message-dependent information.

Returns
The return value specifies the result of the message processing and depends on the value of the nCode
parameter.

Comments
Calling the CallNextHookEx function is optional. An application can call this function either before or
after completing any processing in its own hook function. If an application does not call CallNextHookEx,
Windows will not call the hook functions that were installed before the application's hook function was
installed.

See Also
SetWindowsHookEx, UnhookWindowsHookEx

CallWindowProc (2.x)
LRESULT CallWindowProc(wndprcPrev, hwnd, uMsg, wParam, lParam)
WNDPROC wndprcPrev; /* instance address of previous procedure */
HWND hwnd; /*
handle of window *
/
UINT uMsg; /
* message *
/
WPARAM wParam; /
* first message parameter *
/
LPARAM lParam; /
* second message parameter *
/

The CallWindowProc function passes message information to the specified window procedure.

Parameter Description
wndprcPrev Specifies the procedure-instance address of the previous window procedure.
hwnd Identifies the window that will receive the message.
uMsg Specifies the message.
wParam Specifies 16 bits of additional message-dependent information.
lParam Specifies 32 bits of additional message-dependent information.

Returns
The return value specifies the result of the message processing and depends on the message sent.

Comments
The CallWindowProc function is used for window subclassing. Normally, all windows with the same class
share the same window procedure. A subclass is a window or set of windows belonging to the same
window class whose messages are intercepted and processed by another window procedure (or
procedures) before being passed to the window procedure of that class.

The SetWindowLong function creates the subclass by changing the window procedure associated with a
particular window, causing Windows to call the new window procedure instead of the previous one. Any
messages not processed by the new window procedure must be passed to the previous window procedure
by calling CallWindowProc. This allows you to create a chain of window procedures.

See Also
SetWindowLong

ChangeClipboardChain (2.x)
BOOL ChangeClipboardChain(hwnd, hwndNext)
HWND hwnd; /* handle of window to remove */
HWND hwndNext; /* handle of next
window *
/

The ChangeClipboardChain function removes the window identified by the hwnd parameter from the
chain of clipboard viewers and makes the window identified by the hwndNext parameter the descendant of
the hwnd parameter's ancestor in the chain.

Parameter Description
hwnd Identifies the window that is to be removed from the chain. The handle must have been

passed to the SetClipboardViewer function.
hwndNext Identifies the window that follows hwnd in the clipboard-viewer chain (this is the handle

returned by the SetClipboardViewer function, unless the sequence was changed in
response to a WM_CHANGECBCHAIN message).

Returns
The return value is nonzero if the function is successful. Otherwise, it is zero.

See Also
SetClipboardViewer, WM_CHANGECBCHAIN

ChangeMenu (2.x)
The Microsoft Windows 3.1 Software Development Kit (SDK) has replaced this function with five
specialized functions, listed as follows:

Function Description
AppendMenu Appends a menu item to the end of a menu.
DeleteMenu Deletes a menu item from a menu, destroying the menu item.
InsertMenu Inserts a menu item into a menu.
ModifyMenu Modifies a menu item in a menu.
RemoveMenu Removes a menu item from a menu but does not destroy the menu item.

Applications written for Windows versions earlier than 3.0 may continue to call ChangeMenu as
previously documented. Applications written for Windows 3.0 and 3.1 should call the new functions.

Example
The following example shows a call to ChangeMenu and how it would be rewritten to call AppendMenu:

ChangeMenu(hMenu, /* handle of menu */
0, /* position parameter not used */
"&White", /* menu-item string */
IDM_PATTERN1, /* menu-item identifier */
MF_APPEND | MF_STRING | MF_CHECKED); /* flags */

AppendMenu(hMenu, /* handle of menu */
MF_STRING | MF_CHECKED, /* flags */
IDM_PATTERN1, /* menu-item identifier */
"&White"); /* menu-item string*/

See Also
AppendMenu, DeleteMenu, InsertMenu, ModifyMenu, RemoveMenu

CheckDlgButton (2.x)
void CheckDlgButton(hwndDlg, idButton, uCheck)
HWND hwndDlg; /* handle of dialog box */
int idButton; /* button-control identifier */
UINT uCheck; /
* check state *
/

The CheckDlgButton function selects (places a check mark next to) or clears (removes a check mark from)
a button control, or it changes the state of a three-state button.

Parameter Description
hwndDlg Identifies the dialog box that contains the button.
idButton Identifies the button to be modified.
uCheck Specifies the check state of the button. If this parameter is nonzero, CheckDlgButton

selects the button; if the parameter is zero, the function clears the button. For a three-
state check box, if uCheck is 2, the button is grayed; if uCheck is 1, it is selected; if
uCheck is 0, it is cleared.

Returns
This function does not return a value.

Comments
The CheckDlgButton function sends a BM_SETCHECK message to the specified button control in the
given dialog box.

See Also
CheckRadioButton, IsDlgButtonChecked, BM_GETCHECK, BM_SETCHECK

CheckMenuItem (2.x)
BOOL CheckMenuItem(hmenu, idCheckItem, uCheck)
HMENU hmenu; /* handle of menu */
UINT idCheckItem; /* menu-item
identifier *
/
UINT uCheck; /
* check state and position *
/

The CheckMenuItem function selects (places a check mark next to) or clears (removes a check mark from)
a specified menu item in the given pop-up menu.

Parameter Description
hmenu Identifies the menu.
idCheckItem Identifies the menu item to be selected or cleared.
uCheck Specifies how to determine the position of the menu item (MF_BYCOMMAND or

MF_BYPOSITION) and whether the item should be selected or cleared
(MF_CHECKED or MF_UNCHECKED). This parameter can be a combination of
these values, which can be combined by using the bitwise OR operator. The values are
described as follows:

Value Meaning
MF_BYCOMMAND Specifies that the idCheckItem parameter gives the menu-

item identifier (MF_BYCOMMAND is the default).
MF_BYPOSITION Specifies that the idCheckItem parameter gives the position

of the menu item (the first item is at position zero).
MF_CHECKED Selects the item (adds check mark).
MF_UNCHECKED Clears the item (removes check mark).

Returns
The return value specifies the previous state of the item--MF_CHECKED or MF_UNCHECKED--if the
function is successful. The return value is -1 if the menu item does not exist.

Comments
The idCheckItem parameter may identify a pop-up menu item as well as a menu item. No special steps are
required to select a pop-up menu item.

Top-level menu items cannot have a check.

A pop-up menu item should be selected by position since it does not have a menu-item identifier
associated with it.

See Also
GetMenuState, SetMenuItemBitmaps

CheckRadioButton (2.x)
void CheckRadioButton(hwndDlg, idFirstButton, idLastButton, idCheckButton)
HWND hwndDlg; /* handle of dialog box */
int idFirstButton; /* identifier of
first radio button in group *
/
int idLastButton; /
* identifier of last radio button in group *
/
int idCheckButton; /
* identifier of radio button to select *
/

The CheckRadioButton function selects (adds a check mark to) a given radio button in a group and clears
(removes a check mark from) all other radio buttons in the group.

Parameter Description
hwndDlg Identifies the dialog box that contains the radio button.
idFirstButton Specifies the identifier of the first radio button in the group.
idLastButton Specifies the identifier of the last radio button in the group.
idCheckButton Specifies the identifier of the radio button to select.

Returns
This function does not return a value.

Comments
The CheckRadioButton function sends a BM_SETCHECK message to the specified radio button control
in the given dialog box.

See Also
CheckDlgButton, IsDlgButtonChecked, BM_GETCHECK, BM_SETCHECK

ChildWindowFromPoint (2.x)
HWND ChildWindowFromPoint(hwndParent, pt)
HWND hwndParent; /* handle of parent window */
POINT pt; /* structure with point
coordinates *
/

The ChildWindowFromPoint function determines which, if any, of the child windows belonging to the
given parent window contains the specified point.

Parameter Description
hwndParent Identifies the parent window.
pt Specifies a POINT structure that defines the client coordinates of the point to be

checked.

Returns
The return value is the handle of the child window (hidden, disabled, or transparent) that contains the
point, if the function is successful. If the given point lies outside the parent window, the return value is
NULL. If the point is within the parent window but is not contained within any child window, the return
value is the handle of the parent window.

Comments
More than one window may contain the given point, but Windows returns the handle only of the first
window encountered that contains the point.

See Also
WindowFromPoint

ClearCommBreak (2.x)
int ClearCommBreak(idComDev)
int idComDev; /* device to be restored */

The ClearCommBreak function restores character transmission and places the communications device in a
nonbreak state.

Parameter Description
idComDev Identifies the communications device to be restored. The OpenComm function returns

this value.

Returns
The return value is zero if the function is successful, or -1 if the idComDev parameter does not identify a
valid device.

Comments
This function clears the communications-device break state set by the SetCommBreak function.

See Also
OpenComm, SetCommBreak

ClientToScreen (2.x)
void ClientToScreen(hwnd, lppt)
HWND hwnd; /* window handle for source coordinates */
POINT FAR* lppt; /*
address of structure with coordinates *
/

The ClientToScreen function converts the client coordinates of a given point on the screen to screen
coordinates.

Parameter Description
hwnd Identifies the window whose client area is used for the conversion.
lppt Points to a POINT structure that contains the client coordinates to be converted.

Returns
This function does not return a value.

Comments
The ClientToScreen function replaces the coordinates in the POINT structure with the screen coordinates.
The screen coordinates are relative to the upper-left corner of the screen.

Example
The following example uses the LOWORD and HIWORD macros and the ClientToScreen function to
convert the mouse position to screen coordinates:

POINT pt;
pt.x = LOWORD(lParam);
pt.y = HIWORD(lParam);
ClientToScreen(hwnd, &pt);
See Also
MapWindowPoints, ScreenToClient

ClipCursor (2.x)
void ClipCursor(lprc)
const RECT FAR* lprc; /* address of structure with rectangle */

The ClipCursor function confines the cursor to a rectangle on the screen. If a subsequent cursor position
(set by the SetCursorPos function or by the mouse) lies outside the rectangle, Windows automatically
adjusts the position to keep the cursor inside.

Parameter Description
lprc Points to a RECT structure that contains the screen coordinates of the upper-left and

lower-right corners of the confining rectangle. If this parameter is NULL, the cursor is
free to move anywhere on the screen.

Returns
This function does not return a value.

Comments
The cursor is a shared resource. An application that has confined the cursor to a given rectangle must free
it before relinquishing control to another application.

See Also
GetClipCursor, GetCursorPos, SetCursorPos, RECT

CloseClipboard (2.x)
BOOL CloseClipboard(void)

The CloseClipboard function closes the clipboard.

Returns
The return value is nonzero if the function is successful. Otherwise, it is zero.

Comments
The CloseClipboard function should be called when a window has finished examining or changing the
clipboard. This lets other applications access the clipboard.

See Also
GetOpenClipboardWindow, OpenClipboard

CloseComm (2.x)
int CloseComm(idComDev)
int idComDev; /* device to close */

The CloseComm function closes the specified communications device and frees any memory allocated for
the device's transmission and receiving queues. All characters in the output queue are sent before the
communications device is closed.

Parameter Description
idComDev Specifies the device to be closed. The OpenComm function returns this value.

Returns
The return value is zero if the function is successful. Otherwise, it is less than zero.

See Also
OpenComm

CloseWindow (2.x)
void CloseWindow(hwnd)
HWND hwnd; /* handle of window to minimize */

The CloseWindow function minimizes (but does not destroy) the given window. To destroy a window, an
application must use the DestroyWindow function.

Parameter Description
hwnd Identifies the window to be minimized.

Returns
This function does not return a value.

Comments
This function has no effect if the hwnd parameter identifies a pop-up or child window.

See Also
DestroyWindow, IsIconic, OpenIcon

CloseDriver (3.1)
LRESULT CloseDriver(hdrvr, lParam1, lParam2)
HDRVR hdrvr; /* handle of installable driver */
LPARAM lParam1; /* driver-
specific data *
/
LPARAM lParam2; /
* driver-specific data *
/

The CloseDriver function closes an installable driver.

Parameter Description
hdrvr Identifies the installable driver to be closed. This parameter must have been obtained by

a previous call to the OpenDriver function.
lParam1 Specifies driver-specific data.
lParam2 Specifies driver-specific data.

Returns
The return value is nonzero if the function is successful. Otherwise, it is zero.

Comments
When an application calls CloseDriver and the driver identified by hdrvr is the last instance of the driver,
Windows calls the DriverProc function three times. On the first call, Windows sets the third DriverProc
parameter, wMessage, to DRV_CLOSE; on the second call, Windows sets wMessage to DRV_DISABLE;
and on the third call, Windows sets wMessage to DRV_FREE. When the driver identified by hdrvr is not
the last instance of the driver, only DRV_CLOSE is sent. The values specified in the lParam1 and lParam2
parameters are passed to the lParam1 and lParam2 parameters of the DriverProc function.

See Also
DriverProc, OpenDriver

CopyCursor (3.1)
HCURSOR CopyCursor(hinst, hcur)
HINSTANCE hinst; /* handle of application instance */
HCURSOR hcur; /* handle of
cursor to copy *
/

The CopyCursor function copies a cursor.

Parameter Description
hinst Identifies the instance of the module that will copy the cursor.
hcur Identifies the cursor to be copied.

Returns
The return value is the handle of the duplicate cursor if the function is successful. Otherwise, it is NULL.

Comments
When it no longer requires a cursor, an application must destroy the cursor, using the DestroyCursor
function.

The CopyCursor function allows an application or dynamic-link library to accept a cursor from another
module. Because all resources are owned by the module in which they originate, a resource cannot be
shared after the module is freed. CopyCursor allows an application to create a copy that the application
then owns.

See Also
CopyIcon, DestroyCursor, GetCursor, SetCursor, ShowCursor

CopyIcon (3.1)
HICON CopyIcon(hinst, hicon)
HINSTANCE hinst; /* handle of application instance */
HICON hicon; /* handle of icon
to copy *
/

The CopyIcon function copies an icon.

Parameter Description
hinst Identifies the instance of the module that will copy the icon.
hicon Identifies the icon to be copied.

Returns
The return value is the handle of the duplicate icon if the function is successful. Otherwise, it is NULL.

Comments
When it no longer requires an icon, an application should destroy the icon, using the DestroyIcon function.

The CopyIcon function allows an application or dynamic-link library to accept an icon from another
module. Because all resources are owned by the module in which they originate, a resource cannot be
shared after the module is freed. CopyIcon allows an application to create a copy that the application then
owns.

See Also
CopyCursor, DestroyIcon, DrawIcon

CopyRect (2.x)
void CopyRect(lprcDst, lprcSrc)
RECT FAR* lprcDst; /* address of struct. for destination rect. */
const RECT FAR* lprcSrc; /
* address of struct. with source rect. *
/

The CopyRect function copies the dimensions of one rectangle to another.

Parameter Description
lprcDst Points to the RECT structure that will receive the dimensions of the source rectangle.
lprcSrc Points to the RECT structure whose dimensions are to be copied.

Returns
This function does not return a value.

See Also
SetRect, RECT

CountClipboardFormats (2.x)
int CountClipboardFormats(void)

The CountClipboardFormats function retrieves the number of different data formats currently in the
clipboard.

Returns
The return value specifies the number of different data formats in the clipboard, if the function is
successful.

See Also
EnumClipboardFormats

CreateCaret (2.x)
void CreateCaret(hwnd, hbmp, nWidth, nHeight)
HWND hwnd; /* handle of owner window */
HBITMAP hbmp; /* handle of
bitmap for caret shape *
/
int nWidth; /
* caret width *
/
int nHeight; /
* caret height *
/

The CreateCaret function creates a new shape for the system caret and assigns ownership of the caret to
the given window. The caret shape can be a line, block, or bitmap.

Parameter Description
hwnd Identifies the window that owns the new caret.
hbmp Identifies the bitmap that defines the caret shape. If this parameter is NULL, the caret is

solid; if the parameter is 1, the caret is gray.
nWidth Specifies the width of the caret in logical units. If this parameter is NULL, the width is

set to the system-defined window-border width.
nHeight Specifies the height of the caret, in logical units. If this parameter is NULL, the height is

set to the system-defined window-border height.

Returns
This function does not return a value.

Comments
If the hbmp parameter contains a bitmap handle, the nWidth and nHeight parameters are ignored; the
bitmap defines its own width and height. (The bitmap handle must have been created by using the
CreateBitmap, CreateDIBitmap, or LoadBitmap function.) If hbmp is NULL or 1, nWidth and nHeight
give the caret's width and height, in logical units; the exact width and height (in pixels) depend on the
window's mapping mode.

The CreateCaret function automatically destroys the previous caret shape, if any, regardless of which
window owns the caret. Once created, the caret is initially hidden. To show the caret, use the ShowCaret
function.

The system caret is a shared resource. A window should create a caret only when it has the input focus or
is active. It should destroy the caret before losing the input focus or becoming inactive.

The system's window-border width or height can be retrieved by using the GetSystemMetrics function,
specifying the SM_CXBORDER and SM_CYBORDER indices. Using the window-border width or height
guarantees that the caret will be visible on a high-resolution screen.

Example
The following example creates a caret, sets its initial position, and then displays the caret:

case WM_SETFOCUS:
CreateCaret(hwndParent, NULL, CARET_WIDTH, CARET_HEIGHT);
SetCaretPos(CARET_XPOS, CARET_YPOS);
ShowCaret(hwndParent);
break;

See Also
CreateBitmap, CreateDIBitmap, DestroyCaret, GetSystemMetrics, LoadBitmap, ShowCaret

CreateCursor (3.0)
HCURSOR CreateCursor(hinst, xHotSpot, yHotSpot, nWidth, nHeight, lpvANDplane, lpvXORplane)
HINSTANCE hinst; /* handle of application instance */
int xHotSpot; /*
horizontal position of hot spot *
/
int yHotSpot; /
* vertical position of hot spot *
/
int nWidth; /
* cursor width *
/
int nHeight; /
* cursor height *
/
const void FAR* lpvANDplane; /
* address of AND mask array *
/
const void FAR* lpvXORplane; /
* address of XOR mask array *
/

The CreateCursor function creates a cursor that has the specified width, height, and bit patterns.

Parameter Description
hinst Identifies the instance of the module that will create the cursor.
xHotSpot Specifies the horizontal position of the cursor hot spot.
yHotSpot Specifies the vertical position of the cursor hot spot.
nWidth Specifies the width, in pixels, of the cursor.
nHeight Specifies the height, in pixels, of the cursor.
lpvANDplane Points to an array of bytes that contains the bit values for the AND mask of the

cursor. These can be the bits of a device-dependent monochrome bitmap.
lpvXORplane Points to an array of bytes that contains the bit values for the XOR mask of the cursor.

These can be the bits of a device-dependent monochrome bitmap.

Returns
The return value is the handle of the cursor if the function is successful. Otherwise, it is NULL.

Comments
The nWidth and nHeight parameters must specify a width and height supported by the current display
driver, since the system cannot create cursors of other sizes. An application can determine the width and
height supported by the display driver by calling the GetSystemMetrics function and specifying the
SM_CXCURSOR or SM_CYCURSOR value.

Before terminating, an application must call the DestroyCursor function to free any system resources
associated with the cursor.

See Also
CreateIcon, DestroyCursor, GetSystemMetrics, SetCursor

CreateDialog (2.x)
HWND CreateDialog(hinst, lpszDlgTemp, hwndOwner, dlgprc)
HINSTANCE hinst; /* handle of application instance */
LPCSTR lpszDlgTemp; /
* address of dialog box template name *
/
HWND hwndOwner; /
* handle of owner window *
/
DLGPROC dlgprc; /
* instance address of dialog box procedure *
/

The CreateDialog function creates a modeless dialog box from a dialog box template resource.

Parameter Description
hinst Identifies an instance of the module whose executable file contains the dialog box

template.
lpszDlgTemp Points to a null-terminated string that names the dialog box template.
hwndOwner Identifies the window that owns the dialog box.
dlgprc Specifies the procedure-instance address of the dialog box procedure. The address

must be created by using the MakeProcInstance function, except when the function and
dialog box procedure are used in a DLL. For more information about the dialog box
procedure, see the description of the DialogProc callback function.

Returns
The return value is the handle of the dialog box that was created, if the function is successful. Otherwise, it
is NULL.

Comments
The CreateWindowEx function is called to create the dialog box. The dialog box procedure then receives a
WM_SETFONT message (if the DS_SETFONT style was specified) and a WM_INITDIALOG message,
and then the dialog box is displayed.

The CreateDialog function returns immediately after creating the dialog box.

To make the dialog box appear in the owner window upon being created, use the WS_VISIBLE style in
the dialog box template.

Use the DestroyWindow function to destroy a dialog box created by the CreateDialog function.

A dialog box can contain up to 255 controls.

Example
The following example creates a modeless dialog box:

HWND hwndDlgFindBox;
DLGPROC dlgprc = (DLGPROC) MakeProcInstance(FindDlgProc, hinst);
hwndDlgFindBox = CreateDialog(hinst, "dlgFindBox", hwndParent, dlgprc)
;
See Also
CreateDialogIndirect, CreateDialogIndirectParam, CreateDialogParam, DestroyWindow,
MakeProcInstance, WM_INITDIALOG

CreateDialogIndirect (2.x)
HWND CreateDialogIndirect(hinst, lpvDlgTmp, hwndOwner, dlgprc)
HINSTANCE hinst; /* handle of application instance */
const void FAR* lpvDlgTmp; /
* address of dialog box template *
/
HWND hwndOwner; /
* handle of owner window *
/
DLGPROC dlgprc; /
* instance address of dialog box procedure *
/

The CreateDialogIndirect function creates a modeless dialog box from a dialog box template in memory.

Parameter Description
hinst Identifies the instance of the module that will create the dialog box.
lpvDlgTmp Points to a global memory object that contains a dialog box template used to create the

dialog box. This template is in the form of a DialogBoxHeader structure. For more
information about this structure, see the Dialog Box Resource topic.

hwndOwner Identifies the window that owns the dialog box.
dlgprc Specifies the procedure-instance address of the dialog box procedure. The address must

be created by using the MakeProcInstance function, except when the function and dialog
box procedure are used in a DLL. For more information, see the description of the
DialogProc callback function.

Returns
The return value is the window handle of the dialog box if the function is successful. Otherwise, it is
NULL.

Comments
The CreateWindowEx function is called to create the dialog box. The dialog box procedure then receives a
WM_SETFONT message (if the DS_SETFONT style was specified) and a WM_INITDIALOG message,
and then the dialog box is displayed.

The CreateDialogIndirect function returns immediately after creating the dialog box.

To make the dialog box appear in the owner window upon being created, use the WS_VISIBLE style in
the dialog box template.

Use the DestroyWindow function to destroy a dialog box created by the CreateDialogIndirect function.

A dialog box can contain up to 255 controls.

Example
The following example uses the CreateDialogIndirect function to create a dialog box from a dialog box
template in memory:

DLGPROC dlgprc = (DLGPROC) MakeProcInstance(DialogProc, hinst);
HWND hdlg;
BYTE FAR* lpbDlgTemp;
.
. /* Allocate global memory and build a dialog box template. */
.
hdlg = CreateDialogIndirect(hinst, lpbDlgTemp, hwndParent, dlgprc);
See Also
CreateDialog, CreateDialogIndirectParam, CreateDialogParam, DestroyWindow, MakeProcInstance,
WM_INITDIALOG, WM_SETFONT

CreateDialogIndirectParam (3.0)
HWND CreateDialogIndirectParam(hinst, lpvDlgTmp, hwndOwner, dlgprc, lParamInit)
HINSTANCE hinst; /* handle of application instance */
const void FAR* lpvDlgTmp; /
* address of dialog box template *
/
HWND hwndOwner; /
* handle of owner window *
/
DLGPROC dlgprc; /
* instance address of dialog box procedure *
/
LPARAM lParamInit; /
* initialization value *
/

The CreateDialogIndirectParam function creates a modeless dialog box from a dialog box template in
memory. Before displaying the dialog box, the function passes an application-defined value to the dialog
box procedure as the lParam parameter of the WM_INITDIALOG message. An application can use this
value to initialize dialog box controls.

Parameter Description
hinst Identifies the instance of the module that will create the dialog box.
lpvDlgTmp Points to a global memory object that contains a dialog box template used to create the

dialog box. This template is in the form of a DialogBoxHeader structure. For more
information about this structure, see the Dialog Box Resource topic.

hwndOwner Identifies the window that owns the dialog box.
dlgprc Specifies the procedure-instance address of the dialog box procedure. The address must

be created by using the MakeProcInstance function, except when the function and dialog
box procedure are used in a DLL. For more information, see the description of the
DialogProc callback function.

lParamInit Specifies the value to pass to the dialog box when processing the WM_INITDIALOG
message.

Returns
The return value is the window handle of the dialog box if the function is successful. Otherwise, it is
NULL.

Comments
The CreateWindowEx function is called to create the dialog box. The dialog box procedure then receives a
WM_SETFONT message (if the DS_SETFONT style was specified) and a WM_INITDIALOG message,
and then the dialog box is displayed.

The CreateDialogIndirectParam function returns immediately after creating the dialog box.

To make the dialog box appear in the owner window upon being created, use the WS_VISIBLE style in
the dialog box template.

Use the DestroyWindow function to destroy a dialog box created by the CreateDialogIndirectParam
function.

A dialog box can contain up to 255 controls.

Example
The following example calls the CreateDialogIndirectParam function to create a modeless dialog box from
a dialog box template in memory. The example uses the lParamInit parameter to send two initialization
parameters, wInitParm1 and wInitParm2, to the dialog box procedure when the WM_INITDIALOG
message is being processed.

#define MEM_LENGTH 100
HGLOBAL hglbDlgTemp;
BYTE FAR* lpbDlgTemp;
DLGPROC dlgprc = (DLGPROC) MakeProcInstance(DialogProc, hinst);
HWND hwndDlg;

/* Allocate a global memory object for the dialog box template. */
hglbDlgTemp = GlobalAlloc(GHND, MEM_LENGTH);

.

. /* Build a DLGTEMPLATE structure in the memory object. */

.
lpbDlgTemp = GlobalLock(hglbDlgTemp);
hwndDlg = CreateDialogIndirectParam(hinst, lpbDlgTemp,

hwndParent, dlgprc, 0);
See Also
CreateDialog, CreateDialogIndirect, CreateDialogParam, DestroyWindow, MakeProcInstance,
WM_INITDIALOG, WM_SETFONT

CreateDialogParam (3.0)
HWND CreateDialogParam(hinst, lpszDlgTemp, hwndOwner, dlgprc, lParamInit)
HINSTANCE hinst; /* handle of application instance */
LPCSTR lpszDlgTemp; /
* address of name of dialog box template *
/
HWND hwndOwner; /
* handle of owner window *
/
DLGPROC dlgprc; /
* instance address of dialog box procedure *
/
LPARAM lParamInit; /
* initialization value *
/

The CreateDialogParam function creates a modeless dialog box from a dialog box template resource.
Before displaying the dialog box, the function passes an application-defined value to the dialog box
procedure as the lParam parameter of the WM_INITDIALOG message. An application can use this value
to initialize dialog box controls.

Parameter Description
hinst Identifies an instance of the module whose executable file contains the dialog box

template.
lpszDlgTemp Points to a null-terminated string that names the dialog box template.
hwndOwner Identifies the window that owns the dialog box.
dlgprc Specifies the procedure-instance address of the dialog box procedure. The address

must be created by using the MakeProcInstance function, except when the function and
dialog box procedure are used in a DLL. For more information about the dialog box
procedure, see the description of the DialogProc callback function.

lParamInit Specifies the value to pass to the dialog box when processing the WM_INITDIALOG
message.

Returns
The return value is the handle of the dialog box that was created, if the function is successful. Otherwise, it
is NULL.

Comments
The CreateWindowEx function is called to create the dialog box. The dialog box procedure then receives a
WM_SETFONT message (if the DS_SETFONT style was specified) and a WM_INITDIALOG message,
and then the dialog box is displayed.

The CreateDialogParam function returns immediately after creating the dialog box.

To make the dialog box appear in the owner window upon being created, use the WS_VISIBLE style in
the dialog box template.

A dialog box can contain up to 255 controls.

Example
The following example uses the CreateDialogParam function to create a modeless dialog box. The
function passes the application-defined flags MIXEDCASE and WHOLEWORD, which will be received
by the dialog box as the lParam parameter of the WM_INITDIALOG message.

HWND hwndChangeBox;
DLGPROC dlgprc = (DLGPROC) MakeProcInstance(ChangeDlgProc, hinst);
hwndChangeBox = CreateDialogParam(hinst, "dlgFindBox",

hwndParent, dlgprc, MIXEDCASE | WHOLEWORD);
See Also
CreateDialog, CreateDialogIndirect, CreateDialogIndirectParam, DestroyWindow, WM_INITDIALOG

CreateIcon (3.0)
HICON CreateIcon(hinst, nWidth, nHeight, bPlanes, bBitsPixel, lpvANDbits, lpvXORbits)
HINSTANCE hinst; /* handle of application instance */
int nWidth; /
* icon width *
/
int nHeight; /
* icon height *
/
BYTE bPlanes; /
* number of planes in XOR mask *
/
BYTE bBitsPixel; /
* number of bits per pixel in XOR mask *
/
const void FAR* lpvANDbits; /
* address of AND mask array *
/
const void FAR* lpvXORbits; /
* address of XOR mask array *
/

The CreateIcon function creates an icon that has the specified width, height, colors, and bit patterns.

Parameter Description
hinst Identifies an instance of the module that will create the icon.
nWidth Specifies the width, in pixels, of the icon.
nHeight Specifies the height, in pixels, of the icon.
bPlanes Specifies the number of planes in the XOR mask of the icon.
bBitsPixel Specifies the number of bits per pixel in the XOR mask of the icon.
lpvANDbits Points to an array of bytes that contains the bit values for the AND mask of the icon.

This array must specify a monochrome mask.
lpvXORbits Points to an array of bytes that contains the bit values for the XOR mask of the icon.

These bits can be the bits of a monochrome or device-dependent color bitmap.

Returns
The return value is the handle of the icon if the function is successful. Otherwise, it is NULL.

Comments
The nWidth and nHeight parameters must specify a width and height supported by the current display
driver, since the system cannot create icons of other sizes. An application can determine the width and
height supported by the display driver by calling the GetSystemMetrics function, specifying the
SM_CXICON or SM_CYICON constant.

Before terminating, an application must call the DestroyIcon function to free system resources associated
with the icon.

See Also
DestroyIcon, GetSystemMetrics

CreateMenu (2.x)
HMENU CreateMenu(void)

The CreateMenu function creates a menu. The menu is initially empty but can be filled with menu items
by using the AppendMenu or InsertMenu function.

Returns
The return value is the handle of the newly created menu if the function is successful. Otherwise, it is
NULL.

Comments
If the menu is not assigned to a window, an application must free system resources associated with the
menu before exiting. An application frees menu resources by calling the DestroyMenu function. Windows
automatically frees resources associated with a menu that is assigned to a window.

Example
The following example creates a main menu and a pop-up menu and associates the pop-up menu with an
item in the main menu:

HMENU hmenu;
HMENU hmenuPopup;
/* Create the main and pop-up menu handles. */
hmenu = CreateMenu();
hmenuPopup = CreatePopupMenu();
/* Create the pop-up menu items. *./
AppendMenu(hmenuPopup, MF_ENABLED | MF_STRING, IDM_NEW,

"&New");
AppendMenu(hmenuPopup, MF_ENABLED | MF_STRING, IDM_SAVE,

"&Save");
AppendMenu(hmenuPopup, MF_ENABLED | MF_STRING, IDM_SAVE_AS,

"&Save As");
/* Add the pop-up menu to the main menu. */
AppendMenu(hmenu, MF_ENABLED | MF_POPUP, (UINT) hmenuPopup,

"&File");
See Also
AppendMenu, DestroyMenu, InsertMenu, SetMenu

CreatePopupMenu (3.0)
HMENU CreatePopupMenu(void)

The CreatePopupMenu function creates an empty pop-up menu.

Returns
The return value is the handle of the newly created menu if the function is successful. Otherwise, it is
NULL.

Comments
An application adds items to the pop-up menu by calling the InsertMenu and AppendMenu functions. The
application can add the pop-up menu to an existing menu or pop-up menu, or it can display and track
selections on the pop-up menu by calling the TrackPopupMenu function.

Before exiting, an application must free system resources associated with a pop-up menu if the menu is not
assigned to a window. An application frees a menu by calling the DestroyMenu function.

Example
The following example creates a main menu and a pop-up menu, and associates the pop-up menu with an
item in the main menu:

HMENU hmenu;
HMENU hmenuPopup;
/* Create the main and pop-up menu handles. */
hmenu = CreateMenu();
hmenuPopup = CreatePopupMenu();
/* Create the pop-up menu items. *./
AppendMenu(hmenuPopup, MF_ENABLED | MF_STRING, IDM_NEW,

"&New");
AppendMenu(hmenuPopup, MF_ENABLED | MF_STRING, IDM_SAVE,

"&Save");
AppendMenu(hmenuPopup, MF_ENABLED | MF_STRING, IDM_SAVE_AS,

"&Save As");
/* Add the pop-up menu to the main menu. */
AppendMenu(hmenu, MF_ENABLED | MF_POPUP, (UINT) hmenuPopup,

"&File");
See Also
AppendMenu, CreateMenu, InsertMenu, SetMenu, TrackPopupMenu

CreateWindow (2.x)
HWND CreateWindow(lpszClassName, lpszWindowName, dwStyle, x, y, nWidth, nHeight,

hwndParent, hmenu, hinst, lpvParam)
LPCSTR lpszClassName; /* address of registered class name */
LPCSTR lpszWindowName; /
* address of window text *
/
DWORD dwStyle; /
* window style *
/
int x; /
* horizontal position of window *
/
int y; /
* vertical position of window *
/
int nWidth; /
* window width *
/
int nHeight; /
* window height *
/
HWND hwndParent; /
* handle of parent window *
/
HMENU hmenu; /
* handle of menu or child-window identifier *
/
HINSTANCE hinst; /
* handle of application instance *
/
void FAR* lpvParam; /
* address of window-creation data *
/

The CreateWindow function creates an overlapped, pop-up, or child window. The CreateWindow function
specifies the window class, window title, window style, and (optionally) the initial position and size of the
window. The CreateWindow function also specifies the window's parent (if any) and menu.

Parameter Description
lpszClassName Points to a null-terminated string specifying the window class. The class name can

be any name registered with the RegisterClass function or any of the predefined
control-class names. (See Control classes).

lpszWindowName Points to a null-terminated string that represents the window name.
dwStyle Specifies the style of window being created. This parameter can be a combination

of the window styles and control styles given in the following Comments section.
x Specifies the initial x-position of the window. For an overlapped or pop-up

window, the x parameter is the initial x-coordinate of the window's upper-left
corner, in screen coordinates. For a child window, x is the x-coordinate of the
upper-left corner of the window in the client area of its parent window.
If this value is CW_USEDEFAULT, Windows selects the default position for the
window's upper-left corner and ignores the y parameter. CW_USEDEFAULT is
valid only for overlapped windows. If CW_USEDEFAULT is specified for a non-
overlapped window, the x and y parameters are set to 0.

y Specifies the initial y-position of the window. For an overlapped window, the y
parameter is the initial y-coordinate of the window's upper-left corner. For a pop-
up window, y is the y-coordinate, in screen coordinates, of the upper-left corner of
the pop-up window. For list-box controls, y is the y-coordinate of the upper-left
corner of the control's client area. For a child window, y is the y-coordinate of the
upper-left corner of the child window. All of these coordinates are for the
window, not the window's client area.

If an overlapped window is created with the WS_VISIBLE style and the x
parameter set to CW_USEDEFAULT, Windows ignores the y parameter.

nWidth Specifies the width, in device units, of the window. For overlapped windows, the
nWidth parameter is either the window's width (in screen coordinates) or
CW_USEDEFAULT. If nWidth is CW_USEDEFAULT, Windows selects a
default width and height for the window (the default width extends from the initial
x-position to the right edge of the screen, and the default height extends from the
initial y-position to the top of the icon area). CW_USEDEFAULT is valid only
for overlapped windows. If CW_USEDEFAULT is specified in nWidth for a non-
overlapped window, nWidth and nHeight are set to 0.

nHeight Specifies the height, in device units, of the window. For overlapped windows, the
nHeight parameter is the window's height in screen coordinates. If the nWidth
parameter is CW_USEDEFAULT, Windows ignores nHeight.

hwndParent Identifies the parent or owner window of the window being created. A valid
window handle must be supplied when creating a child window or an owned
window. An owned window is an overlapped window that is destroyed when its
owner window is destroyed, hidden when its owner is minimized, and that is
always displayed on top of its owner window. For pop-up windows, a handle can
be supplied but is not required. If the window does not have a parent window or is
not owned by another window, the hwndParent parameter must be set to
HWND_DESKTOP.

hmenu Identifies a menu or a child window. This parameter's meaning depends on the
window style. For overlapped or pop-up windows, the hmenu parameter identifies
the menu to be used with the window. It can be NULL, if the class menu is to be
used. For child windows, hmenu identifies the child window and is an integer
value that is used by a dialog box control to notify its parent of events (such as the
EN_HSCROLL message). The child window identifier is determined by the
application and should be unique for all child windows with the same parent
window.

hinst Identifies the instance of the module to be associated with the window.
lpvParam Points to a value that is passed to the window through the CREATESTRUCT

structure referenced by the lParam parameter of the WM_CREATE message. If an
application is calling CreateWindow to create a multiple document interface
(MDI) client window, lpvParam must point to a CLIENTCREATESTRUCT
structure.

Returns
The return value is the handle of the new window if the function is successful. Otherwise, it is NULL.

Comments
For overlapped, pop-up, and child windows, the CreateWindow function sends WM_CREATE,
WM_GETMINMAXINFO, and WM_NCCREATE messages to the window. If the WS_VISIBLE style is
specified, CreateWindow sends the window all the messages required to activate and show the window.

If the window style specifies a title bar, the window title pointed to by the lpszWindowName parameter is
displayed in the title bar. When using CreateWindow to create controls such as buttons, check boxes, and
edit controls, use the lpszWindowName parameter to specify the text of the control.

Before returning, the CreateWindow function sends a WM_CREATE message to the window procedure.

Following are the predefined control classes an application can specify in the lpszClassName parameter:

Class Meaning
BUTTON Designates a small rectangular child window that represents a button the user can turn

on or off by clicking. Button controls can be used alone or in groups, and can either
be labeled or appear without text. Button controls typically change appearance when
the user clicks them.

COMBOBOX Designates a control consisting of a list box and a selection field similar to an edit
control. The list box may be displayed at all times or may be dropped down when the
user selects a pop-up list box next to the selection field.
Depending on the style of the combo box, the user can or cannot edit the contents of
the selection field. If the list box is visible, typing characters into the selection box
will cause the first list box entry that matches the characters typed to be highlighted.
Conversely, selecting an item in the list box displays the selected text in the selection
field.

EDIT Designates a rectangular child window in which the user can type text from the
keyboard. The user selects the control, and gives it the input focus by clicking it or
moving to it by pressing the TAB key. The user can type text when the control
displays a flashing caret. The mouse can be used to move the cursor and select
characters to be replaced, or to position the cursor for inserting characters. The
BACKSPACE key can be used to delete characters.
Edit controls use the variable-pitch System font and display characters from the
Windows character set. Applications compiled to run with earlier versions of
Windows display text with a fixed-pitch System font unless they have been marked
by the Windows 3.0 MARK utility (with the MEMORY FONT option specified). An
application can also send the WM_SETFONT message to the edit control to change
the default font.
Edit controls expand tab characters into as many space characters as are required to
move the cursor to the next tab stop. Tab stops are assumed to be at every eighth
character position.

LISTBOX Designates a list of character strings. This control is used whenever an application
must present a list of names, such as filenames, from which the user can choose. The
user can select a string by pointing to it and clicking. When a string is selected, it is
highlighted and a notification message is passed to the parent window. A vertical or
horizontal scroll bar can be used with a list box control to scroll lists that are too long
for the control window. The list box automatically hides or shows the scroll bar as
needed.

MDICLIENT Designates an MDI client window. The MDI client window receives messages that
control the MDI application's child windows. The recommended style bits are
WS_CLIPCHILDREN and WS_CHILD. To create a scrollable MDI client window
that allows the user to scroll MDI child windows into view, an application can also
use the WS_HSCROLL and WS_VSCROLL styles.

SCROLLBAR Designates a rectangle that contains a scroll box (also called a "thumb") and has
direction arrows at both ends. The scroll bar sends a notification message to its parent
window whenever the user clicks the control. The parent window is responsible for
updating the position, if necessary. Scroll bar controls have the same appearance and
function as scroll bars used in ordinary windows. Unlike scroll bars, however, scroll
bar controls can be positioned anywhere in a window and used whenever needed to
provide scrolling input for a window.
The scroll bar class also includes size box controls (Maximize and Minimize buttons)
. These controls are small rectangles that the user can click to change the size of the
window.

STATIC Designates a simple text field, box, or rectangle that can be used to label, box, or
separate other controls. Static controls take no input and provide no output.

Following are the window styles an application can specify in the dwStyle parameter.

Style Meaning
MDIS_ALLCHILDSTYLES Creates an MDI client window that can have any combination of

window styles. When this style is not specified, an MDI child
window has the WS_MINIMIZE, WS_MAXIMIZE,
WS_HSCROLL, and WS_VSCROLL styles as default settings.

WS_BORDER Creates a window that has a border.
WS_CAPTION Creates a window that has a title bar (implies the WS_BORDER

style). This style cannot be used with the WS_DLGFRAME style.
WS_CHILD Creates a child window. Cannot be used with the WS_POPUP

style.
WS_CHILDWINDOW Same as the WS_CHILD style.
WS_CLIPCHILDREN Excludes the area occupied by child windows when drawing within

the parent window. Used when creating the parent window.
WS_CLIPSIBLINGS Clips child windows relative to each other; that is, when a

particular child window receives a paint message, the
WS_CLIPSIBLINGS style clips all other overlapped child
windows out of the region of the child window to be updated. (If
WS_CLIPSIBLINGS is not specified and child windows overlap, it
is possible, when drawing within the client area of a child window,

to draw within the client area of a neighboring child window.) For
use with the WS_CHILD style only.

WS_DISABLED Creates a window that is initially disabled.
WS_DLGFRAME Creates a window with a double border but no title.
WS_GROUP Specifies the first control of a group of controls in which the user

can move from one control to the next by using the arrow keys. All
controls defined with the WS_GROUP style after the first control
belong to the same group. The next control with the WS_GROUP
style ends the style group and starts the next group (that is, one
group ends where the next begins). Only dialog boxes use this
style.

WS_HSCROLL Creates a window that has a horizontal scroll bar.
WS_MAXIMIZE Creates a window of maximum size.
WS_MAXIMIZEBOX Creates a window that has a Maximize button.
WS_MINIMIZE Creates a window that is initially minimized. For use with the

WS_OVERLAPPED style only.
WS_MINIMIZEBOX Creates a window that has a Minimize button.
WS_OVERLAPPED Creates an overlapped window. An overlapped window has a title

and a border.
WS_OVERLAPPEDWINDOW Creates an overlapped window having the WS_OVERLAPPED,

WS_CAPTION, WS_SYSMENU, WS_THICKFRAME,
WS_MINIMIZEBOX, and WS_MAXIMIZEBOX styles.

WS_POPUP Creates a pop-up window. Cannot be used with the WS_CHILD
style.

WS_POPUPWINDOW Creates a pop-up window that has the WS_BORDER,
WS_POPUP, and WS_SYSMENU styles. The WS_CAPTION
style must be combined with the WS_POPUPWINDOW style to
make the System menu visible.

WS_SYSMENU Creates a window that has a System-menu box in its title bar. Used
only for windows with title bars.

WS_TABSTOP Specifies one of any number of controls through which the user can
move by using the TAB key. The TAB key moves the user to the next
control specified by the WS_TABSTOP style. Only dialog boxes
use this style.

WS_THICKFRAME Creates a window with a thick frame that can be used to size the
window.

WS_VISIBLE Creates a window that is initially visible. This applies to
overlapped, child, and pop-up windows. For overlapped windows,
the y parameter is used as a ShowWindow function parameter.

WS_VSCROLL Creates a window that has a vertical scroll bar.

The following styles may also be specified in the dwStyle parameter when a predfined control is being
created:

Button styles
Combination box styles
Edit control styles
List box styles
Scroll bar styles
Static control styles

Following are the dialog box styles an application can specify in the dwStyle parameter:

Style Meaning
DS_LOCALEDIT Specifies that edit controls in the dialog box will use memory in the

application's data segment. By default, all edit controls in dialog boxes use
memory outside the application's data segment. This feature may be
suppressed by adding the DS_LOCALEDIT flag to the Style command for the
dialog box. If this flag is not used, EM_GETHANDLE and
EM_SETHANDLE messages must not be used, because the storage for the
control is not in the application's data segment. This feature does not affect
edit controls created outside of dialog boxes.

DS_MODALFRAME Creates a dialog box with a modal dialog box frame that can be combined with
a title bar and System menu by specifying the WS_CAPTION and
WS_SYSMENU styles.

DS_NOIDLEMSG Suppresses WM_ENTERIDLE messages that Windows would otherwise send
to the owner of the dialog box while the dialog box is displayed.

DS_SYSMODAL Creates a system-modal dialog box.

See Also
AnsiToOem, GetDialogBaseUnits, ShowWindow, CREATESTRUCT, CLIENTCREATESTRUCT

Windows 3.1 changes

The following control styles have been added:

Value Meaning
ES_READONLY Prevents the user from entering or editing text in the edit control.
ES_WANTRETURN Specifies that a carriage return be inserted when the user presses the

ENTER key while entering text into mulitple-line edit control in a
dialog box. Without this style, pressing the ENTER key has the same
effect as pressing the dialog box's default pushbutton. This style has
no effect on a single-line edit control.

CBS_DISABLENOSCROLL The list box shows a disabled vertical scroll bar when the list box
does not contain enough items to scroll. Without this style, the
scroll bar is hidden when the list box does not contain enough items.

LBS_DISABLENOSCROLL The list box shows a disabled vertical scroll bar when the list box
does not contain enough items to scroll. Without this style, the
scroll bar is hidden when the list box does not contain enough items.

The SS_USERITEM style has been removed.

CreateWindowEx (3.0)
HWND CreateWindowEx(dwExStyle, lpszClassName, lpszWindowName, dwStyle, x, y, nWidth,

nHeight, hwndParent, hmenu, hinst, lpvCreateParams)
DWORD dwExStyle; /* extended window style */
LPCSTR lpszClassName; /
* address of registered class name *
/
LPCSTR lpszWindowName; /
* address of window text *
/
DWORD dwStyle; /
* window style *
/
int x; /
* horizontal position of the window *
/
int y; /
* vertical position of the window *
/
int nWidth; /
* window width *
/
int nHeight; /
* window height *
/
HWND hwndParent; /
* handle of parent window *
/
HMENU hmenu; /
* handle of menu or child-window identifier *
/
HINSTANCE hinst; /
* handle of application instance *
/
void FAR* lpvCreateParams; /
* address of window-creation data *
/

The CreateWindowEx function creates an overlapped, pop-up, or child window with an extended style;
otherwise, this function is identical to the CreateWindow function.

Parameter Description
dwExStyle Specifies the extended style of the window. This parameter can be one of the

following values:

Style Meaning
WS_EX_ACCEPTFILES Specifies that a window created with

this style accepts drag-drop files.
WS_EX_DLGMODALFRAME Designates a window with a double

border that may (optionally) be created
with a title bar by specifying the
WS_CAPTION style flag in the dwStyle
parameter.

WS_EX_NOPARENTNOTIFY Specifies that a child window created by
using this style will not send the
WM_PARENTNOTIFY message to its
parent window when the child window
is created or destroyed.

WS_EX_TOPMOST Specifies that a window created with
this style should be placed above all
non-topmost windows and stay above
them even when the window is

deactivated. An application can use the
SetWindowPos function to add or
remove this attribute.

WS_EX_TRANSPARENT Specifies that a window created with
this style is to be transparent. That is,
any windows that are beneath the
window are not obscured by the
window. A window created with this
style receives WM_PAINT messages
only after all sibling windows beneath it
have been updated.

lpszClassName Points to a null-terminated string containing the name of the window class.
lpszWindowName Points to a null-terminated string containing the name of the window.
dwStyle Specifies the style of the window. For a list of the window styles that can be

specified in this parameter, see the preceding description of the CreateWindow
function.

x Specifies the initial left-side position of the window.
y Specifies the initial top position of the window.
nWidth Specifies the width, in device units, of the window.
nHeight Specifies the height, in device units, of the window.
hwndParent Identifies the parent or owner window of the window to be created.
hmenu Identifies a menu or a child window. The meaning depends on the window style.
hinst Identifies the instance of the module to be associated with the window.
lpvCreateParams Contains any application-specific creation parameters. The window being created

may access this data when the CREATESTRUCT structure is passed to the
window by the WM_NCCREATE and WM_CREATE messages.

Returns
The return value identifies the new window if the function is successful. Otherwise, it is NULL.

Comments
The CreateWindowEx function sends the following messages to the window being created:

WM_NCCREATE
WM_NCCALCSIZE
WM_CREATE

Example
The following example creates a main window that has the WS_EX_TOPMOST extended style, makes the
window visible, and updates the window's client area:

char szClassName[] = "MyClass";
/* Create the main window. */
hwnd = CreateWindowEx(WS_EX_TOPMOST, szClassName, "Grouper",

WS_OVERLAPPEDWINDOW, CW_USEDEFAULT, CW_USEDEFAULT,
CW_USEDEFAULT, CW_USEDEFAULT, NULL, NULL,
hinst, NULL);

/* Make the window visible and update its client area. */
ShowWindow(hwnd, SW_SHOW); /* always show the window */
UpdateWindow(hwnd);
See Also
CreateWindow, SetWindowPos, CREATESTRUCT

Windows 3.1 changes

The following styles may be used for the dwExStyle parameter:

Style Meaning
WS_EX_ACCEPTFILES Specifies that a window created with this style accepts drag-drop

files.
WS_EX_TOPMOST Specifies that a window created with this style should be placed

above all non-topmost windows and stay above them even when the
window is deactivated. An application can use the SetWindowPos
function to add or remove this attribute.

WS_EX_TRANSPARENT Specifies that a window created with this style is to be transparent.
That is, any windows that are beneath the window are not obscured
by the window. A window created with this style receives
WM_PAINT messages only after all sibling windows beneath it have
been updated.

WS_EX_ACCEPTFILES 0x00000010L

Specifies that a window created with this style accepts drag-drop files.

WS_EX_ACCEPTFILES 0x00000010L

WS_EX_DLGMODALFRAME 0x00000001L

Designates a window with a double border that may (optionally) be created with a title bar by specifying
the WS_CAPTION style flag in the dwStyle parameter.

WS_EX_DLGMODALFRAME 0x00000001L

WS_EX_NOPARENTNOTIFY 0x00000004L

Specifies that a child window created by using this style will not send the WM_PARENTNOTIFY
message to its parent window when the child window is created or destroyed.

WS_EX_NOPARENTNOTIFY 0x00000004L

WS_EX_TOPMOST 0x00000008L

Specifies that a window created with this style should be placed above all non-topmost windows and stay
above them even when the window is deactivated. An application can use the SetWindowPos function to
add or remove this attribute.

WS_EX_TOPMOST 0x00000008L

WS_EX_TRANSPARENT 0x00000020L

Specifies that a window created with this style is to be transparent. That is, any windows that are beneath
the window are not obscured by the window. A window created with this style receives WM_PAINT
messages only after all sibling windows beneath it have been updated.

WS_EX_TRANSPARENT 0x00000020L

DefDlgProc (3.0)
LRESULT DefDlgProc(hwndDlg, uMsg, wParam, lParam)
HWND hwndDlg; /* handle of dialog box */
UINT uMsg; /* message */
WPARAM wParam; /
* first message parameter *
/
LPARAM lParam; /
* second message parameter *
/

The DefDlgProc function provides default processing for any Windows messages that a dialog box with a
private window class does not process.

Parameter Description
hwndDlg Identifies the dialog box.
uMsg Specifies the message to be processed.
wParam Specifies 16 bits of additional message-dependent information.
lParam Specifies 32 bits of additional message-dependent information.

Returns
The return value specifies the result of the message processing and depends on the message sent.

Comments
The DefDlgProc function is the window procedure for the DIALOG window class. An application that
creates new window classes that inherit dialog box functionality should use this function. DefDlgProc is
not intended to be called as the default handler for messages within a dialog box procedure, since doing so
will result in recursive execution.

An application creates a dialog box by calling one of the following functions:

Function Description
CreateDialog Creates a modeless dialog box.
CreateDialogIndirect Creates a modeless dialog box.
CreateDialogIndirectParam Creates a modeless dialog box and passes data to it when it is

created.
CreateDialogParam Creates a modeless dialog box and passes data to it when it is

created.
DialogBox Creates a modal dialog box.
DialogBoxIndirect Creates a modal dialog box.
DialogBoxIndirectParam Creates a modal dialog box and passes data to it when it is

created.
DialogBoxParam Creates a modal dialog box and passes data to it when it is

created.

See Also
DefWindowProc

DefDriverProc (3.1)
LRESULT DefDriverProc(dwDriverIdentifier, hdrvr, uMsg, lParam1, lParam2)
DWORD dwDriverIdentifier; /* installable-driver identifier */
HDRVR hdrvr; /* handle of
installable driver *
/
UINT uMsg; /
* message number *
/
LPARAM lParam1; /
* first message parameter *
/
LPARAM lParam2; /
* second message parameter *
/

The DefDriverProc function provides default processing for any messages not processed by an installable
driver.

Parameter Description
dwDriverIdentifier Identifies an installable driver. This parameter must have been obtained by a

previous call to the OpenDriver function.
hdrvr Identifies the installable driver.
uMsg Specifies the message to be processed.
lParam1 Specifies 32 bits of additional message-dependent information.
lParam2 Specifies 32 bits of additional message-dependent information.

Returns
The return value is nonzero if the function is successful. Otherwise, it is zero.

Comments
The DefDriverProc function processes messages that are not handled by the DriverProc function.

See Also
OpenDriver, SendDriverMessage

DeferWindowPos (3.0)
HDWP DeferWindowPos(hdwp, hwnd, hwndInsertAfter, x, y, cx, cy, flags)
HDWP hdwp; /* handle of internal structure */
HWND hwnd; /* handle of
window to position *
/
HWND hwndInsertAfter; /
* placement-order handle *
/
int x; /
* horizontal position *
/
int y; /
* vertical position *
/
int cx; /
* width *
/
int cy; /
* height *
/
UINT flags; /
* window-positioning flags *
/

The DeferWindowPos function updates the given internal structure for the given window. The function
then returns the handle of the updated structure. The EndDeferWindowPos function uses the information
in this structure to change the position and size of a number of windows simultaneously.

Parameter Description
hdwp Identifies an internal structure that contains size and position information for one

or more windows. This structure is returned by the BeginDeferWindowPos
function or by the most recent call to the DeferWindowPos function.

hwnd Identifies the window for which update information is to be stored in the structure.
hwndInsertAfter Identifies a window that will precede the positioned window in the Z-order. This

parameter must be a window handle, or one of the following values:

Value Meaning
HWND_BOTTOM Places the window at the bottom of the Z-order. If

hwnd identifies a topmost window, the window loses
its topmost status; the system places the window at
the bottom of all other windows.

HWND_TOP Places the window at the top of the Z-order.
HWND_TOPMOST Places the window above all non-topmost windows.

The window maintains its topmost position even
when it is deactivated.

HWND_NOTOPMOST Repositions the window to the top of all non-topmost
windows (that is, behind all topmost windows). This
flag has no effect if the window is already a non-
topmost window.

This parameter is ignored if the SWP_NOZORDER flag is set in the flags
parameter.

x Specifies the x-coordinate of the window's upper-left corner.
y Specifies the y-coordinate of the window's upper-left corner.
cx Specifies the window's new width.
cy Specifies the window's new height.
flags Specifies one of eight possible 16-bit values that affect the size and position of the

window. This parameter can be a combination of the following values:

Value Meaning

SWP_DRAWFRAME Draws a frame (defined in the window's class
description) around the window.

SWP_HIDEWINDOW Hides the window.
SWP_NOACTIVATE Does not activate the window.
SWP_NOMOVE Retains current position (ignores the x and y

parameters).
SWP_NOREDRAW Does not redraw changes. If this flag is set, no

repainting of any kind occurs. This applies to the
client area, the non-client area (including the title
and scroll bars), and any part of the parent window
uncovered as a result of the moved window. When
this flag is set, the application must explicitly
invalidate or redraw any parts of the window and
parent window that must be redrawn.

SWP_NOSIZE Retains current size (ignores the cx and cy
parameters).

SWP_NOZORDER Retains current ordering (ignores the
hwndInsertAfter parameter).

SWP_SHOWWINDOW Displays the window.

Returns
The return value is a handle of the updated structure if the function is successful. This handle may differ
from the one passed to the function as the hdwp parameter and should be passed to the next call to
DeferWindowPos or to the EndDeferWindowPos function.

The return value is NULL if insufficient system resources are available for the function to complete
successfully and the repositioning process is terminated.

Comments
If a call to DeferWindowPos fails, the application should abandon the window-positioning operation
without calling the EndDeferWindowPos function.

If the SWP_NOZORDER flag is not specified, Windows places the window identified by the hwnd
parameter in the position following the window identified by the hwndInsertAfter parameter. If
hwndInsertAfter is NULL, Windows places the window identified by hwnd at the top of the list. If
hwndInsertAfter is HWND_BOTTOM, Windows places the window identified by hwnd at the bottom of
the list.

All coordinates for child windows are relative to the upper-left corner of the parent window's client area.

A window can be made a topmost window either by setting the hwndInsertAfter parameter to
HWND_TOPMOST and ensuring that the SWP_NOZORDER flag is not set, or by setting a window's Z-
order so that it is above any existing topmost windows. When a non-topmost window is made topmost, its
owned windows are also made topmost. Its owners are not changed.

If neither SWP_NOACTIVATE nor SWP_NOZORDER is specified (that is, when the application
requests that a window be simultaneously activated and placed in the specified Z-order), the value
specified in hwndInsertAfter is used only in the following circumstances:

Neither HWND_TOPMOST or HWND_NOTOPMOST is specified in the hwndInsertAfter
parameter.

The window specified in the hwnd parameter is not the active window.

An application cannot activate an inactive window without also bringing it to the top of the Z-order.
Applications can change the Z-order of an activated window without restrictions or activate a window and
then move it to the top of the topmost or non-topmost windows.

A topmost window is no longer topmost if it is repositioned to the bottom (HWND_BOTTOM) of the Z-
order or after any non-topmost window. When a topmost window is made non-topmost, the window and
all of its owners, and its owned windows, are also made non-topmost.

A non-topmost window may own a topmost window, but not vice versa. Any window (for example, a
dialog box) owned by a topmost window is itself made topmost to ensure that all owned windows stay
above their owner.

See Also
BeginDeferWindowPos, EndDeferWindowPos

Windows 3.1 changes

If the hwndInsertAfter parameter is HWND_TOPMOST, the system places the window identified by the
hwnd parameter above all non-topmost windows. The window maintains its topmost position even when
the window is deactivated. If the hwndInsertAfter parameter is HWND_BOTTOM and hwnd identifies a
topmost window, the window loses its topmost status--the system places the window at the bottom of all
other windows.

The following window-positioning flags are new for Windows version 3.1:

Value Meaning
HWND_BOTTOM Places the window at the bottom of the Z order. If hwnd identifies a topmost

window, the window loses its topmost status--the system places the window
at the bottom of all other windows.

HWND_TOP Places the window at the top of the Z order.
HWND_TOPMOST Places the window above all non-topmost windows. The window maintains

its topmost position even when the window is deactivated.
HWND_NOTOPMOST Repositions the window to the top of all non-topmost windows (that is,

behind all topmost window).

SWP_DRAWFRAME SWP_FRAMECHANGED

Draws a frame (defined in the window's class description) around the window.

SWP_DRAWFRAME SWP_FRAMECHANGED

SWP_HIDEWINDOW 0x0080

Hides the window.

SWP_HIDEWINDOW 0x0080

SWP_NOACTIVATE 0x0010

Does not activate the window.

SWP_NOACTIVATE 0x0010

SWP_NOMOVE 0x0002

Retains current position (ignores the x and y parameters).

SWP_NOMOVE 0x0002

SWP_NOREDRAW 0x0008

Does not redraw changes. If this flag is set, no repainting of any kind occurs. This applies to the client
area, the non-client area (including the title and scroll bars), and any part of the parent window uncovered
as a result of the moved window. When this flag is set, the application must explicitly invalidate or redraw
any parts of the window and parent window that must be redrawn.

SWP_NOREDRAW 0x0008

SWP_NOSIZE 0x0001

Retains current size (ignores the cx and cy parameters).

SWP_NOSIZE 0x0001

SWP_NOZORDER 0x0004

Retains current ordering (ignores the hwndInsertAfter parameter).

SWP_NOZORDER 0x0004

SWP_SHOWWINDOW 0x0040

Displays the window.

SWP_SHOWWINDOW 0x0040

DefFrameProc (3.0)
LRESULT DefFrameProc(hwnd, hwndMDIClient, uMsg, wParam, lParam)
HWND hwnd; /* handle of frame window */
HWND hwndMDIClient; /*
handle of client window *
/
UINT uMsg; /
* message *
/
WPARAM wParam; /
* first message parameter *
/
LPARAM lParam; /
* second message parameter *
/

The DefFrameProc function provides default processing for any Windows messages that the window
procedure of a multiple document interface (MDI) frame window does not process. All window messages
that are not explicitly processed by the window procedure must be passed to the DefFrameProc function,
not the DefWindowProc function.

Parameter Description
hwnd Identifies the MDI frame window.
hwndMDIClient Identifies the MDI client window.
uMsg Specifies the message to be processed.
wParam Specifies 16 bits of additional message-dependent information.
lParam Specifies 32 bits of additional message-dependent information.

Returns
The return value specifies the result of the message processing and depends on the message sent. If the
hwndMDIClient parameter is NULL, the return value is the same as for the DefWindowProc function.

Comments
Typically, when an application's window procedure does not handle a message, it passes the message to
the DefWindowProc function, which processes the message. MDI applications use the DefFrameProc and
DefMDIChildProc functions instead of DefWindowProc to provide default message processing. All
messages that an application would usually pass to DefWindowProc (such as nonclient messages and
WM_SETTEXT) should be passed to DefFrameProc instead. In addition to handling these messages,
DefFrameProc also handles the following messages:

Message Response
WM_COMMAND The frame window of an MDI application receives the WM_COMMAND message

to activate a particular MDI child window. The window identifier accompanying
this message will identify the MDI child window assigned by Windows, starting
with the first identifier specified by the application when it created the MDI client
window. This value of the first identifier must not conflict with menu-item
identifiers.

WM_MENUCHAR When the user presses the ALT+- key combination, the System menu (often called
Control menu) of the active MDI child window will be selected.

WM_SETFOCUS DefFrameProc passes focus on to the MDI client, which in turn passes the focus on
to the active MDI child window.

WM_SIZE If the frame window procedure passes this message to DefFrameProc, the MDI
client window will be resized to fit in the new client area. If the frame window
procedure sizes the MDI client to a different size, it should not pass the message to
DefWindowProc.

See Also
DefMDIChildProc, DefWindowProc

DefHookProc (2.x)
DWORD DefHookProc(nCode, uParam, dwParam, lphhook)
int nCode; /* process code */
UINT uParam; /* first
message parameter *
/
DWORD dwParam; /
* second message parameter *
/
HHOOK FAR* lphhook; /
* points to address of next hook function *
/

This function is obsolete but has been retained for backward compatibility with Windows versions 3.0 and
earlier. Applications written for Windows version 3.1 should use the CallNextHookEx function.

The DefHookProc function calls the next function in a chain of hook functions. A hook function is a
function that processes events before they are sent to an application's message-processing loop in the
WinMain function. When an application defines more than one hook function by using the
SetWindowsHook function, Windows forms a linked list or hook chain. Windows places functions of the
same type in a chain.

Parameter Description
nCode Specifies a code used by the Windows hook function (also called the message-filter

function) to determine how to process the message.
uParam Specifies 16 bits of additional message-dependent information.
dwParam Specifies 32 bits of additional message-dependent information.
lphhook Points to the variable that contains the procedure-instance address of the previously

installed hook function returned by the SetWindowsHook function.

Returns
The return value specifies the result of the event processing and depends on the event.

Comments
Windows changes the value at the location pointed to by the lphhook parameter after an application calls
the UnhookWindowsHook function. For more information, see the description of the
UnhookWindowsHook function.

See Also
CallNextHookEx, SetWindowsHook, UnhookWindowsHook

DefMDIChildProc (3.0)
LRESULT DefMDIChildProc(hwnd, uMsg, wParam, lParam)
HWND hwnd; /* handle of child window */
UINT uMsg; /* message */
WPARAM wParam; /
* first message parameter *
/
LPARAM lParam; /
* second message parameter *
/

The DefMDIChildProc function provides default processing for any Windows messages that the window
procedure of a multiple document interface (MDI) child window does not process. All window messages
that are not explicitly processed by the window procedure must be passed to the DefMDIChildProc
function, not the DefWindowProc function.

Parameter Description
hwnd Identifies the MDI child window.
uMsg Specifies the message to be processed.
wParam Specifies 16 bits of additional message-dependent information.
lParam Specifies 32 bits of additional message-dependent information.

Returns
The return value specifies the result of the message processing and depends on the message sent.

Comments
This function assumes that the parent of the window identified by the hwnd parameter was created with
the MDICLIENT class.

Typically, when an application's window procedure does not handle a message, it passes the message to
the DefWindowProc function, which processes the message. MDI applications use the DefFrameProc and
DefMDIChildProc functions instead of DefWindowProc to provide default message processing. All
messages that an application would usually pass to DefWindowProc (such as nonclient messages and
WM_SETTEXT) should be passed to DefMDIChildProc instead. In addition to handling these messages,
DefMDIChildProc also handles the following messages:

Message Response
WM_CHILDACTIVATE Performs activation processing when child windows are sized, moved, or

shown. This message must be passed.
WM_GETMINMAXINFO Calculates the size of a maximized MDI child window based on the

current size of the MDI client window.
WM_MENUCHAR Sends the keystrokes to the frame window.
WM_MOVE Recalculates MDI client scroll bars, if they are present.
WM_SETFOCUS Activates the child window if it is not the active MDI child window.
WM_SIZE Performs necessary operations when changing the size of a window,

especially when maximizing or restoring an MDI child window. Failing
to pass this message to DefMDIChildProc will produce highly
undesirable results.

WM_SYSCOMMAND Also handles the next window command.

See Also
DefFrameProc, DefWindowProc

DefWindowProc (2.x)
LRESULT DefWindowProc(hwnd, uMsg, wParam, lParam)
HWND hwnd; /* handle of window */
UINT uMsg; /* type of message *
/
WPARAM wParam; /
* first message parameter *
/
LPARAM lParam; /
* second message parameter *
/

The DefWindowProc function calls the default window procedure. The default window procedure
provides default processing for any window messages that an application does not process. This function
ensures that every message is processed. It should be called with the same parameters as those received by
the window procedure.

Parameter Description
hwnd Identifies the window that received the message.
uMsg Specifies the message.
wParam Specifies 16 bits of additional message-dependent information.
lParam Specifies 32 bits of additional message-dependent information.

Returns
The return value is the result of the message processing and depends on the message sent.

Example
The following example shows a typical window procedure. A switch statement is used to process
individual messages. All messages not processed are passed on to the DefWindowProc function.

LRESULT CALLBACK MainWndProc(hwnd, msg, wParam, lParam)
HWND hwnd; /* handle of window */
UINT msg; /* type of message */
WPARAM wParam; /* additional information */
LPARAM lParam; /* additional information */
{

switch (msg) {
/*
* Process whatever messages you want here and send the
* rest to DefWindowProc.
*/
default:
return (DefWindowProc(hwnd, message, wParam, lParam));

See Also
DefDlgProc

DeleteMenu (3.0)
BOOL DeleteMenu(hmenu, idItem, fuFlags)
HMENU hmenu; /* handle of menu */
UINT idItem; /* menu-item identifier */
UINT fuFlags; /
* menu flags *
/

The DeleteMenu function deletes an item from a menu. If the menu item has an associated pop-up menu,
DeleteMenu destroys the handle of the pop-up menu and frees the memory used by the pop-up menu.

Parameter Description
hmenu Identifies the menu to be deleted.
idItem Specifies the menu item to be deleted, as determined by the fuFlags parameter.
fuFlags Specifies how the idItem parameter is interpreted. This parameter can be one of the

following values:

Value Meaning
MF_BYCOMMAND The idItem parameter specifies the menu-item identifier.
MF_BYPOSITION The idItem parameter specifies the zero-based relative

position of the menu item.

Returns
The return value is nonzero if the function is successful. Otherwise, it is zero.

Comments
Whenever a menu changes (whether or not the menu is in a window that is displayed), the application
should call the DrawMenuBar function.

See Also
AppendMenu, CreateMenu, DrawMenuBar, InsertMenu, RemoveMenu

MF_BYCOMMAND 0x0000

The idItem parameter specifies the menu-item identifier.

MF_BYCOMMAND 0x0000

MF_BYPOSITION 0x0400

The idItem parameter specifies the zero-based relative position of the menu item.

MF_BYPOSITION 0x0400

DestroyCaret (2.x)
void DestroyCaret(void)

The DestroyCaret function destroys the current caret shape, frees the caret from the window that currently
owns it, and removes the caret from the screen if it is visible. The DestroyCaret function checks the
ownership of the caret and destroys the caret only if a window in the current task owns it.

If the caret shape was previously a bitmap, DestroyCaret does not free the bitmap.

Returns
This function does not return a value.

Comments
The caret is a shared resource. If a window has created a caret shape, it should destroy that shape before it
loses the input focus or becomes inactive.

See Also
CreateCaret, HideCaret, ShowCaret

DestroyCursor (3.0)
BOOL DestroyCursor(hcur)
HCURSOR hcur; /* handle of cursor to destroy */

The DestroyCursor function destroys a cursor that was previously created by the CreateCursor or
LoadCursor function and frees any memory that the cursor occupied.

Parameter Description
hcur Identifies the cursor to be destroyed. The cursor must not be in current use.

Returns
The return value is nonzero if the function is successful. Otherwise, it is zero.

See Also
CreateCursor, CreateIcon, DestroyIcon, LoadCursor

DestroyIcon (3.0)
BOOL DestroyIcon(hicon)
HICON hicon; /* handle of icon to destroy */

The DestroyIcon function destroys an icon that was created by the CreateIcon or LoadIcon function and
frees any memory that the icon occupied.

Parameter Description
hicon Identifies the icon to be destroyed.

Returns
The return value is nonzero if the function is successful. Otherwise, it is zero.

See Also
CreateCursor, CreateIcon, DestroyCursor, LoadIcon

DestroyMenu (2.x)
BOOL DestroyMenu(hmenu)
HMENU hmenu; /* handle of menu to destroy */

The DestroyMenu function destroys a menu and frees any memory that the menu occupied.

Parameter Description
hmenu Identifies the menu to be destroyed.

Returns
The return value is nonzero if the function is successful. Otherwise, it is zero.

See Also
CreateMenu

DestroyWindow (2.x)
BOOL DestroyWindow(hwnd)
HWND hwnd; /* handle of window to destroy */

The DestroyWindow function destroys the specified window. The function sends appropriate messages to
the window to deactivate it and remove the input focus. It also destroys the window's menu, flushes the
application queue, destroys outstanding timers, removes clipboard ownership, and breaks the clipboard-
viewer chain (if the window is at the top of the viewer chain). It sends WM_DESTROY and
WM_NCDESTROY messages to the window.

If the given window is the parent of any windows, DestroyWindow automatically destroys these child
windows when it destroys the parent window. The function destroys child windows first, and then the
window itself.

The DestroyWindow function also destroys modeless dialog boxes created by the CreateDialog function.

Parameter Description
hwnd Identifies the window to be destroyed.

Returns
The return value is nonzero if the function is successful. Otherwise, it is zero.

Comments
Applications should always call the DestroyWindow function to destroy their top-level windows before
terminating.

If the window being destroyed is a child window and does not have the WS_NOPARENTNOTIFY style
set, a WM_PARENTNOTIFY message is sent to the parent.

Example
The following example responds to the application-defined menu command IDM_EXIT, and then calls
DestroyWindow to destroy the window:

case IDM_EXIT:
DestroyWindow(hwnd);
return 0;

See Also
CreateDialog, CreateWindow, CreateWindowEx, WM_DESTROY, WM_NCDESTROY,
WM_PARENTNOTIFY

DialogBox (2.x)
int DialogBox(hinst, lpszDlgTemp, hwndOwner, dlgprc)
HINSTANCE hinst; /* handle of application instance */
LPCSTR lpszDlgTemp; /
* address of dialog box template name *
/
HWND hwndOwner; /
* handle of owner window *
/
DLGPROC dlgprc; /
* instance address of dialog box procedure *
/

The DialogBox function creates a modal dialog box from a dialog box template resource.

Parameter Description
hinst Identifies an instance of the module whose executable file contains the dialog box

template.
lpszDlgTemp Points to a null-terminated string that names the dialog box template.
hwndOwner Identifies the window that owns the dialog box.
dlgprc Specifies the procedure-instance address of the dialog box procedure. The address

must be created by using the MakeProcInstance function, except when the function and
dialog box procedure are used in a DLL. For more information about the dialog box
procedure, see the description of the DialogProc callback function.

Returns
The return value specifies the value of the nResult parameter specified in the EndDialog function that is
used to terminate the dialog box. The system processes values returned by the dialog box procedure and
does not return them to the application. The return value is -1 if the function cannot create the dialog box.

Comments
The CreateWindowEx function is called to create the dialog box. The dialog box procedure then receives a
WM_SETFONT message (if DS_SETFONT style was specified) and a WM_INITDIALOG message, and
then the dialog box is displayed.

The DialogBox function does not return control until the dialog box procedure terminates the modal dialog
box by calling the EndDialog function.

A dialog box can contain up to 255 controls.

Example
The following example uses the DialogBox function to create a modal dialog box:

DLGPROC dlgprc;
HWND hwndParent;
case IDM_ABOUT:

dlgprc = (DLGPROC) MakeProcInstance(About, hinst);
DialogBox(hinst, "AboutBox", hwndParent, dlgprc);
FreeProcInstance((FARPROC) dlgprc);
break;

See Also
DialogBoxIndirect, DialogBoxIndirectParam, DialogBoxParam, DialogProc, EndDialog, GetDC,
MakeProcInstance, WM_INITDIALOG

DialogBoxIndirect (2.x)
int DialogBoxIndirect(hinst, hglbDlgTemp, hwndOwner, dlgprc)
HINSTANCE hinst; /* handle of application instance */
HGLOBAL hglbDlgTemp; /
* handle of memory with dialog box template *
/
HWND hwndOwner; /
* handle of owner window *
/
DLGPROC dlgprc; /
* instance address of dialog box procedure *
/

The DialogBoxIndirect function creates a modal dialog box from a dialog box template in memory.

Parameter Description
hinst Identifies the instance of the module that will create the dialog box.
hglbDlgTemp Identifies the global memory object that contains a dialog box template used to create

the dialog box. This template is in the form of a DialogBoxHeader structure. For more
information about this structure, see the Dialog Box Resource topic.

hwndOwner Identifies the window that owns the dialog box.
dlgprc Specifies the procedure-instance address of the dialog box procedure. The address

must be created by using the MakeProcInstance function, except when the function
and dialog box procedure are used in a DLL. For more information about the dialog
box procedure, see the description of the DialogProc callback function.

Returns
The return value is the value of the nResult parameter specified in the EndDialog function that is used to
terminate the dialog box. The system processes values returned by the dialog box procedure and does not
return them to the application. The return value is -1 if the function cannot create the dialog box.

Comments
The CreateWindowEx function is called to create the dialog box. The dialog box procedure then receives a
WM_SETFONT message (if DS_SETFONT style was specified) and a WM_INITDIALOG message, and
then the dialog box is displayed.

The DialogBoxIndirect function does not return control until the dialog box procedure terminates the
modal dialog box by calling the EndDialog function.

A dialog box can contain up to 255 controls.

Example
The following example uses the DialogBoxIndirect function to create a dialog box from a dialog box
template in memory:

#define TEMPLATE_SIZE 100
HGLOBAL hglbDlgTemp;
DLGPROC dlgprc;
int result;
HWND hwndParent;
/* Allocate a global memory object for the dialog box template. */
hglbDlgTemp = GlobalAlloc(GHND, TEMPLATE_SIZE);
.
. /* Build a DLGTEMPLATE structure in the memory object. */
.
dlgprc = (DLGPROC) MakeProcInstance(DialogProc, hinst);
result = DialogBoxIndirect(hinst, hglbDlgTemp, hwndParent, dlgprc);
See Also

DialogBox, DialogBoxIndirectParam, DialogBoxParam, DialogProc, EndDialog, MakeProcInstance,
WM_INITDIALOG

DialogBoxIndirectParam (3.0)
int DialogBoxIndirectParam(hinst, hglbDlgTemp, hwndOwner, dlgprc, lParamInit)
HINSTANCE hinst; /* handle of application instance */
HGLOBAL hglbDlgTemp; /
* handle of memory with dialog box template *
/
HWND hwndOwner; /
* handle of owner window *
/
DLGPROC dlgprc; /
* instance address of dialog box procedure *
/
LPARAM lParamInit; /
* initialization value *
/

The DialogBoxIndirectParam function creates a modal dialog box from a dialog box template in memory.
Before displaying the dialog box, the function passes an application-defined value to the dialog box
procedure as the lParam parameter of the WM_INITDIALOG message. An application can use this value
to initialize dialog box controls.

Parameter Description
hinst Identifies the instance of the module that will create the dialog box.
hglbDlgTemp Identifies the global memory object that contains a dialog box template used to create

the dialog box. This template is in the form of a DialogBoxHeader structure. For more
information about this structure, see the Dialog Box Resource topic.

hwndOwner Identifies the window that owns the dialog box.
dlgprc Specifies the procedure-instance address of the dialog box procedure. The address

must be created by using the MakeProcInstance function, except when the function
and dialog box procedure are used in a DLL. For more information about the dialog
box procedure, see the description of the DialogProc callback function.

lParamInit Specifies a 32-bit value that DialogBoxIndirectParam passes to the dialog box when
the WM_INITDIALOG message is being processed.

Returns
The return value is the value of the nResult parameter specified in the EndDialog function that is used to
terminate the dialog box. The system processes values returned by the dialog box procedure and does not
return them to the application. The return value is -1 if the function cannot create the dialog box.

Comments
The CreateWindowEx function is called to create the dialog box. The dialog box procedure then receives a
WM_SETFONT message (if DS_SETFONT style was specified) and a WM_INITDIALOG message, and
then the dialog box is displayed.

The DialogBoxIndirectParam function does not return control until the dialog box procedure terminates
the modal dialog box by calling the EndDialog function.

A dialog box can contain up to 255 controls.

Example
The following example uses the DialogBoxIndirectParam function to create a modal dialog box from a
dialog box template in memory. The example uses the lParamInit parameter to send two initialization
parameters (wInitParm1 and wInitParm2) to the dialog box procedure when the WM_INITDIALOG
message is being processed.

#define TEMPLATE_SIZE 100
HGLOBAL hglbDlgTemp;
DLGPROC dlgprc;
int result;
HWND hwndParent;
WORD wInitParm1, wInitParm2;
/* Allocate a global memory object for the dialog box template. */

hglbDlgTemp = GlobalAlloc(GHND, TEMPLATE_SIZE);
.
. /* Build a DLGTEMPLATE structure in the memory object. */
.
dlgprc = (DLGPROC) MakeProcInstance(DialogProc, hinst);
result = DialogBoxIndirectParam(hinst, hglbDlgTemp, hwndParent,

dlgprc, (LPARAM) MAKELONG(wInitParm1, wInitParm2));
See Also
DialogBox, DialogBoxIndirect, DialogBoxParam, DialogProc, EndDialog, MakeProcInstance,
WM_INITDIALOG

DialogBoxParam (3.0)
int DialogBoxParam(hinst, lpszDlgTemp, hwndOwner, dlgprc, lParamInit)
HINSTANCE hinst; /* handle of application instance */
LPCSTR lpszDlgTemp; /
* address of dialog box template name *
/
HWND hwndOwner; /
* handle of owner window *
/
DLGPROC dlgprc; /
* instance address of dialog box procedure *
/
LPARAM lParamInit; /
* initialization value *
/

The DialogBoxParam function creates a modal dialog box from a dialog box template resource. Before
displaying the dialog box, the function passes an application-specified value to the dialog box procedure as
the lParam parameter of the WM_INITDIALOG message. An application can use this value to initialize
dialog box controls.

Parameter Description
hinst Identifies an instance of the module whose executable file contains the dialog box

template.
lpszDlgTemp Points to a null-terminated string that names the dialog box template.
hwndOwner Identifies the window that owns the dialog box.
dlgprc Specifies the procedure-instance address of the dialog box procedure. The address

must be created by using the MakeProcInstance function, except when the function and
dialog box procedure are used in a DLL. For more information about the dialog box
procedure, see the description of the DialogProc callback function.

lParamInit Specifies a 32-bit value that DialogBoxParam passes to the dialog box procedure when
creating the dialog box.

Returns
The return value specifies the value of the nResult parameter specified in the EndDialog function that is
used to terminate the dialog box. The system processes values returned by the dialog box procedure and
does not return them to the application. The return value is -1 if the function cannot create the dialog box.

Comments
The CreateWindowEx function is called to create the dialog box. The dialog box procedure then receives a
WM_SETFONT message (if DS_SETFONT style was specified) and a WM_INITDIALOG message, and
then the dialog box is displayed.

The DialogBoxParam function does not return control until the dialog box procedure terminates the modal
dialog box by calling the EndDialog function.

A dialog box can contain up to 255 controls.

Example
The following example uses the DialogBoxParam function to create a modal dialog box. The function
passes the dialog box a pointer to a string when the WM_INITDIALOG message is being processed.

DLGPROC dlgprc;
HWND hwndParent;
PSTR pszFileName;
int result;
case IDM_OPEN:

dlgprc = (DLGPROC) MakeProcInstance(FileOpenProc, hinst);
result = DialogBoxParam(hinst, "FileOpenBox", hwndParent,
dlgprc, MAKELPARAM(pszFileName, 0));
FreeProcInstance((FARPROC) dlgprc);
break;

See Also
DialogBox, DialogBoxIndirect, DialogBoxIndirectParam, DialogProc, EndDialog, MakeProcInstance,
WM_INITDIALOG

DispatchMessage (2.x)
LONG DispatchMessage(lpmsg)
const MSG FAR* lpmsg; /* address of structure with message */

The DispatchMessage function dispatches a message to a window. It is typically used to dispatch a
message retrieved by the GetMessage function.

Parameter Description
lpmsg Points to an MSG structure that contains the message.

The MSG structure must contain valid message values. If the lpmsg parameter points to
a WM_TIMER message and the lParam parameter of the WM_TIMER message is not
NULL, then lParam points to a function that is called instead of the window procedure.

Returns
The return value specifies the value returned by the window procedure. Although its meaning depends on
the message being dispatched, generally the return value is ignored.

Example
The following example shows a typical use of the DispatchMessage function in an application's main
message loop:

MSG msg;
HWND hwnd;
HWND hwndDlgModeless;
HANDLE haccl;
while (GetMessage(&msg, NULL, 0, 0)) {

if ((hwndDlgModeless == NULL ||
!IsDialogMessage(hwndDlgModeless, &msg)) &&
!TranslateAccelerator(hwnd, haccl, &msg)) {
TranslateMessage(&msg);
DispatchMessage(&msg);
}

}
See Also
GetMessage, PeekMessage, PostAppMessage, PostMessage, TranslateMessage, MSG, WM_TIMER

DlgDirList (2.x)
int DlgDirList(hwndDlg, lpszPath, idListBox, idStaticPath, uFileType)
HWND hwndDlg; /* handle of dialog box with list box */
LPSTR lpszPath; /* address of
path or filename string *
/
int idListBox; /
* identifier of list box *
/
int idStaticPath; /
* identifier of static control *
/
UINT uFileType; /
* file attributes to display *
/

The DlgDirList function fills a list box with a file or directory listing. It fills the list box with the names of
all files matching the specified path or filename.

Parameter Description
hwndDlg Identifies the dialog box that contains the list box.
lpszPath Points to a null-terminated string that contains the path or filename. DlgDirList modifies

this string, which should be long enough to contain the modifications. For more
information, see the following Comments section.

idListBox Specifies the identifier of a list box. If this parameter is zero, DlgDirList assumes that no
list box exists and does not attempt to fill one.

idStaticPath Specifies the identifier of the static control used for displaying the current drive and
directory. If this parameter is zero, DlgDirList assumes that no such control is present.

uFileType Specifies the attributes of the filenames to be displayed. This parameter can be a
combination of the following values:

Value Meaning
DDL_READWRITE Read-write data files with no additional attributes.
DDL_READONLY Read-only files.
DDL_HIDDEN Hidden files.
DDL_SYSTEM System files.
DDL_DIRECTORY Directories.
DDL_ARCHIVE Archives.
DDL_POSTMSGS LB_DIR flag. If the LB_DIR flag is set, Windows places the

messages generated by DlgDirList in the application's
queue; otherwise, they are sent directly to the dialog box
procedure.

DDL_DRIVES Drives. If the DDL_DRIVES flag is set, the
DDL_EXCLUSIVE flag is set automatically. Therefore, to
create a directory listing that includes drives and files, the
developer must call DlgDirList twice: once with the
DDL_DRIVES flag set and once with the flags for the rest
of the list.

DDL_EXCLUSIVE Exclusive bit. If the exclusive bit is set, only files of the
specified type are listed; otherwise, files of the specified
type are listed in addition to normal files.

Returns
The return value is nonzero if the function is successful. Otherwise, it is zero.

Comments
If you specify a zero-length string for the lpszPath parameter or if you specify only a directory name but
do not include any filename, the string will be changed to *.*.

The DlgDirList function shows directories enclosed in brackets ([]) and shows drives in the form [-x-],
where x is the drive letter.

The lpszPath parameter has the following form:

[drive:][[\]directory[\directory]...\][filename]

In this example, drive is a drive letter, directory is a valid MS-DOS directory name, and filename is a valid
MS-DOS filename that must contain at least one wildcard. The wildcards are a question mark (?), meaning
match any character, and an asterisk (*), meaning match any number of characters.

If the lpszPath parameter includes a drive or directory name, or both, the current drive and directory are
changed to the specified drive and directory before the list box is filled. The static control identified by the
idStaticPath parameter is also updated with the new drive or directory name, or both.

After the list box is filled, lpszPath is updated by removing the drive or directory portion, or both, of the
path and filename.

DlgDirList sends LB_RESETCONTENT and LB_DIR messages to the list box.

See Also
DlgDirListComboBox, DlgDirSelect, DlgDirSelectComboBox, LB_DIR, LB_RESETCONTENT

DlgDirListComboBox (3.0)
int DlgDirListComboBox(hwndDlg, lpszPath, idComboBox, idStaticPath, uFileType)
HWND hwndDlg; /* handle of dialog box with combo box */
LPSTR lpszPath; /* address of
path or filename string *
/
int idComboBox; /
* identifier of combo box *
/
int idStaticPath; /
* identifier of static control *
/
UINT uFileType; /
* file attributes to display *
/

The DlgDirListComboBox function fills the list box of a combo box with a file or directory listing. It fills
the list box with the names of all files matching the specified path and filename.

Parameter Description
hwndDlg Identifies the dialog box that contains the combo box.
lpszPath Points to a null-terminated string that contains the path and filename. For more

information, see the following Comments section.
idComboBox Specifies the identifier of a combo box in a dialog box. If this parameter is zero,

DlgDirListComboBox assumes that no combo box exists and does not attempt to fill
one.

idStaticPath Specifies the identifier of the static control used for displaying the current drive and
directory. If this parameter is zero, DlgDirListComboBox assumes that no such control
is present.

uFileType Specifies the attributes of the filenames to be displayed. This parameter can be a
combination of the following values:

Value Meaning
DDL_READWRITE Read-write data files with no additional attributes.
DDL_READONLY Read-only files.
DDL_HIDDEN Hidden files.
DDL_SYSTEM System files.
DDL_DIRECTORY Directories.
DDL_ARCHIVE Archives.
DDL_POSTMSGS CB_DIR flag. If the CB_DIR flag is set, Windows places

the messages generated by DlgDirListComboBox in the
application's queue; otherwise, they are sent directly to the
dialog box procedure.

DDL_DRIVES Drives. If the DDL_DRIVES flag is set, the
DDL_EXCLUSIVE flag is set automatically. Therefore, to
create a directory listing that includes drives and files, the
developer must call DlgDirListComboBox twice: once with
the DDL_DRIVES flag set and once with the flags for the
rest of the list.

DDL_EXCLUSIVE Exclusive bit. If the exclusive bit is set, only files of the
specified type are listed; otherwise, files of the specified
type are listed in addition to normal files.

Returns
The return value is nonzero if the function is successful. Otherwise, it is zero.

Comments
The DlgDirListComboBox function shows directories enclosed in brackets ([]) and shows drives in the
form [-x-], where x is the drive letter.

The lpszPath parameter has the following form:

[drive:][[\]directory[\directory]...\][filename]

In this example, drive is a drive letter, directory is a valid MS-DOS directory name, and filename is a valid
MS-DOS filename that must contain at least one wildcard. The wildcards are a question mark (?), meaning
match any character, and an asterisk (*), meaning match any number of characters.

If the lpszPath parameter includes a drive or directory name, or both, the current drive and directory are
changed to the specified drive and directory before the list box is filled. The static control identified by the
idStaticPath parameter is also updated with the new drive or directory name, or both.

After the list box of the combo box is filled, lpszPath is updated by removing the drive or directory
portion, or both, of the path and filename.

DlgDirListComboBox sends CB_RESETCONTENT and CB_DIR messages to the combo box.

See Also
DlgDirList, DlgDirSelect, DlgDirSelectComboBox, CB_DIR, CB_RESETCONTENT

DDL_READWRITE 0x0000

Read-write data files with no additional attributes.

DDL_READWRITE 0x0000

DDL_READONLY 0x0001

Read-only files.

DDL_READONLY 0x0001

DDL_HIDDEN 0x0002

Hidden files.

DDL_HIDDEN 0x0002

DDL_SYSTEM 0x0004

System files.

DDL_SYSTEM 0x0004

DDL_DIRECTORY 0x0010

Directories.

DDL_DIRECTORY 0x0010

DDL_ARCHIVE 0x0020

Archives.

DDL_ARCHIVE 0x0020

DDL_POSTMSGS 0x2000

CB_DIR flag. If the CB_DIR flag is set, Windows places the messages generated by
DlgDirListComboBox in the application's queue; otherwise, they are sent directly to the dialog box
procedure.

DDL_POSTMSGS 0x2000

DDL_DRIVES 0x4000

Drives. If the DDL_DRIVES flag is set, the DDL_EXCLUSIVE flag is set automatically. Therefore, to
create a directory listing that includes drives and files, the developer must call DlgDirListComboBox
twice: once with the DDL_DRIVES flag set and once with the flags for the rest of the list.

DDL_DRIVES 0x4000

DDL_EXCLUSIVE 0x8000

Exclusive bit. If the exclusive bit is set, only files of the specified type are listed; otherwise, files of the
specified type are listed in addition to normal files.

DDL_EXCLUSIVE 0x8000

DlgDirSelect (2.x)
BOOL DlgDirSelect(hwndDlg, lpszPath, idListBox)
HWND hwndDlg; /* handle of dialog box with list box */
LPSTR lpszPath; /*
address of buffer for path or filename string *
/
int idListBox; /
* identifier of list box *
/

The DlgDirSelect function retrieves the current selection from a list box. It assumes that the list box has
been filled by the DlgDirList function and that the selection is a drive letter, a file, or a directory name.

Parameter Description
hwndDlg Identifies the dialog box that contains the list box.
lpszPath Points to a buffer that will receive the selected path or filename. This buffer should be

128 bytes long.
idListBox Specifies the integer identifier of a list box in the dialog box.

Returns
The return value is nonzero if the function is successful. Otherwise, it is zero.

Comments
If the current selection is a directory name or drive letter, DlgDirSelect removes the enclosing brackets
(and hyphens, for drive letters) so that the name or letter is ready to be inserted into a new path or
filename. If there is no selection, the contents of the buffer pointed to by the lpszPath parameter do not
change.

The DlgDirSelect function does not allow more than one filename to be returned from a list box.

The list box must not be a multiple-selection list box. If it is, this function will not return a zero value and
lpszPath will remain unchanged.

DlgDirSelect sends LB_GETCURSEL and LB_GETTEXT messages to the list box.

See Also
DlgDirList, DlgDirListComboBox, DlgDirSelectComboBox, DlgDirSelectEx, LB_GETCURSEL,
LB_GETTEXT

DlgDirSelectEx (2.x)
BOOL DlgDirSelectEx(hwndDlg, lpszPath, cbPath, idListBox)
HWND hwndDlg; /* handle of dialog box with list box */
LPSTR lpszPath; /* address of
buffer for path string *
/
int cbPath; /
* number of bytes in path string *
/
int idListBox; /
* identifier of list box *
/

The DlgDirSelectEx function retrieves the current selection from a list box. The specified list box should
have been filled by the DlgDirList function, and the selection should be a drive letter, a file, or a directory
name.

Parameter Description
hwndDlg Identifies the dialog box that contains the list box.
lpszPath Points to a buffer that receives the selected path or filename.
cbPath Specifies the length, in bytes, of the path or filename pointed to by the lpszPath

parameter. This value should not be larger than 128.
idListBox Specifies the integer identifier of a list box in the dialog box.

Returns
The return value is nonzero if the current list box selection is a directory name. Otherwise, it is zero.

Comments
If the current selection is a directory name or drive letter, DlgDirSelectEx removes the enclosing square
brackets (and hyphens, for drive letters) so that the name or letter is ready to be inserted into a new path or
filename. If there is no selection, the contents of buffer pointed to by the lpszPath parameter do not
change.

The DlgDirSelectEx function does not allow more than one filename to be returned from a list box.

The list box must not be a multiple-selection list box. If it is, this function will not return a zero value and
lpszPath will remain unchanged.

DlgDirSelectEx sends LB_GETCURSEL and LB_GETTEXT messages to the list box.

See Also
DlgDirList, DlgDirListComboBox, DlgDirSelect, DlgDirSelectComboBox, LB_GETCURSEL,
LB_GETTEXT

DlgDirSelectComboBox (3.0)
BOOL DlgDirSelectComboBox(hwndDlg, lpszPath, idComboBox)
HWND hwndDlg; /* handle of dialog box with list box */
LPSTR lpszPath; /*
address of buffer for path or filename string *
/
int idComboBox; /
* identifier of combo box *
/

The DlgDirSelectComboBox function retrieves the current selection from the list box of a combo box. It
assumes that the list box has been filled by the DlgDirListComboBox function and that the selection is a
drive letter, a file, or a directory name.

Parameter Description
hwndDlg Identifies the dialog box that contains the combo box.
lpszPath

Points to a buffer that will receive the selected path or filename. This buffer should be
128 bytes long.

idComboBox Specifies the integer identifier of the combo box in the dialog box.

Returns
The return value is nonzero if the function is successful. Otherwise, it is zero.

Comments
The DlgDirSelectComboBox function does not allow more than one selection to be returned from a combo
box.

If the current selection is a directory name or drive letter, DlgDirSelectComboBox removes the enclosing
brackets (and hyphens, for drive letters) so that the name or letter is ready to be inserted into a new path or
filename. If there is no selection, the contents of buffer pointed to by the lpszPath parameter do not
change.

DlgDirSelectComboBox sends CB_GETCURSEL and CB_GETLBTEXT messages to the combo box.

See Also
DlgDirList, DlgDirListComboBox, DlgDirSelect, DlgDirSelectComboBoxEx, DlgDirSelectEx,
CB_GETCURSEL, CB_GETLBTEXT

Windows 3.1 Changes

The DlgDirSelectComboBox function now works with combo boxes that have the CBS_DROPDOWN or
CBS_DROPDOWNLIST style.

DlgDirSelectComboBoxEx (3.0)
BOOL DlgDirSelectComboBoxEx(hwndDlg, lpszPath, cbPath, idComboBox)
HWND hwndDlg; /* handle of dialog box with list box */
LPSTR lpszPath; /* address of
buffer for path string *
/
int cbPath; /
* number of bytes in path string *
/
int idComboBox; /
* identifier of combo box *
/

The DlgDirSelectComboBoxEx function retrieves the current selection from the list box of a combo box.
The list box should have been filled by the DlgDirListComboBox function, and the selection should be a
drive letter, a file, or a directory name.

Parameter Description
hwndDlg Identifies the dialog box that contains the combo box.
lpszPath Points to a buffer that receives the selected path or filename.
cbPath Specifies the length, in bytes, of the path or filename pointed to by the lpszPath

parameter. This value should not be larger than 128.
idComboBox Specifies the integer identifier of the combo box in the dialog box.

Returns
The return value is nonzero if the current combo box selection is a directory name. Otherwise, it is zero.

Comments
The DlgDirSelectComboBoxEx function does not allow more than one filename to be returned from a
combo box.

If the current selection is a directory name or drive letter, DlgDirSelectComboBoxEx removes the
enclosing square brackets (and hyphens, for drive letters) so that the name or letter is ready to be inserted
into a new path or filename. If there is no selection, the contents of buffer pointed to by the lpszPath
parameter do not change.

DlgDirSelectComboBoxEx sends CB_GETCURSEL and CB_GETLBTEXT messages to the combo box.

See Also
DlgDirList, DlgDirListComboBox, DlgDirSelect, DlgDirSelectEx, DlgDirSelectComboBox,
CB_GETCURSEL, CB_GETLBTEXT

DrawFocusRect (3.0)
void DrawFocusRect(hdc, lprc)
HDC hdc; /* handle of device context */
const RECT FAR* lprc; /
* address of structure with rectangle *
/

The DrawFocusRect function draws a rectangle in the style used to indicate that the rectangle has the
focus.

Parameter Description
hdc Identifies the device context.
lprc Points to a RECT structure that contains the logical coordinates of the rectangle.

Returns
This function does not return a value.

Comments
Because this is an XOR function, calling it a second time and specifying the same rectangle removes the
rectangle from the screen.

The rectangle this function draws cannot be scrolled. To scroll an area containing a rectangle drawn by
this function, call DrawFocusRect to remove the rectangle from the screen, scroll the area, and then call
DrawFocusRect to draw the rectangle in the new position.

See Also
FrameRect, RECT

DrawIcon (2.x)
BOOL DrawIcon(hdc, x, y, hicon)
HDC hdc; /* handle of device context */
int x; /* x-coordinate of upper-left
corner *
/
int y; /
* y-coordinate of upper-left corner *
/
HICON hicon; /
* handle of icon to draw *
/

The DrawIcon function draws an icon on the given device. The DrawIcon function places the icon's
upper-left corner at the specified location.

Parameter Description
hdc Identifies the device context for a window.
x Specifies the logical x-coordinate of the upper-left corner of the icon.
y Specifies the logical y-coordinate of the upper-left corner of the icon.
hicon Identifies the icon to be drawn.

Returns
The return value is nonzero if the function is successful. Otherwise, it is zero.

Comments
The icon resource must have been loaded by using the LoadIcon function. The MM_TEXT mapping mode
must be selected before using this function.

See Also
GetMapMode, LoadIcon, SetMapMode

DrawMenuBar (2.x)
void DrawMenuBar(hwnd)
HWND hwnd; /* handle of window with menu bar to redraw */

The DrawMenuBar function redraws the menu bar of the given window. If a menu bar is changed after
Windows has created the window, an application should call this function to draw the changed menu bar.

Parameter Description
hwnd Identifies the window whose menu must be redrawn.

Returns
This function does not return a value.

DrawText (2.x)
int DrawText(hdc, lpsz, cb, lprc, fuFormat)
HDC hdc; /* handle of device context */
LPCSTR lpsz; /*
address of string to draw *
/
int cb; /
* string length *
/
RECT FAR* lprc; /
* address of structure with formatting dimensions *
/
UINT fuFormat; /
* text-drawing flags *
/

The DrawText function draws formatted text into a given rectangle. It formats text by expanding tabs into
appropriate spaces, aligning text to the left, right, or center of the rectangle, and breaking text into lines
that fit within the rectangle.

The DrawText function uses the device context's selected font, text color, and background color to draw
the text. Unless the DT_NOCLIP format is specified, DrawText clips the text so that the text does not
appear outside the given rectangle. All formatting is assumed to have multiple lines unless the
DT_SINGLELINE format is specified.

Parameter Description
hdc Identifies the device context. This cannot be a metafile device context.
lpsz Points to the string to be drawn. If the cb parameter is -1, the string must be null-

terminated.
cb Specifies the number of bytes in the string. If this parameter is -1, then the lpsz

parameter is assumed to be a long pointer to a null-terminated string and DrawText
computes the character count automatically.

lprc Points to a RECT structure that contains the logical coordinates of the upper-left and
lower-right corners of the rectangle in which the text is to be formatted.

fuFormat Specifies an array of flags that determine how to draw the text. This parameter can be a
combination of the following values:

Value Meaning
DT_BOTTOM Specifies bottom-aligned text. This value must be

combined with DT_SINGLELINE.
DT_CALCRECT Determines the width and height of the rectangle.

If there are multiple lines of text, DrawText will
use the width of the rectangle pointed to by the
lprc parameter and extend the base of the
rectangle to bound the last line of text. If there is
only one line of text, DrawText will modify the
right side of the rectangle so that it bounds the last
character in the line. In either case, DrawText
returns the height of the formatted text but does
not draw the text.

DT_CENTER Centers text horizontally.
DT_EXPANDTABS Expands tab characters. The default number of

characters per tab is eight.
DT_EXTERNALLEADING Includes the font external leading in line height.

Normally, external leading is not included in the
height of a line of text.

DT_LEFT Left-aligns text.
DT_NOCLIP Draws without clipping. DrawText is somewhat

faster when DT_NOCLIP is used.
DT_NOPREFIX Turns off processing of prefix characters.

Normally, DrawText interprets the mnemonic &

as a directive to underscore the character that
follows, and the mnemonic && as a directive to
print a single &. By specifying DT_NOPREFIX,
this processing is turned off.

DT_RIGHT Right-aligns text.
DT_SINGLELINE Specifies single line only. Carriage returns and

linefeeds do not break the line.
DT_TABSTOP Sets tab stops. The high-order byte of the

fuFormat parameter is the number of characters
for each tab. The default number of characters per
tab is eight.

DT_TOP Specifies top-aligned text (single line only).
DT_VCENTER Specifies vertically centered text (single line only)

.
DT_WORDBREAK Specifies word breaking. Lines are automatically

broken between words if a word would extend
past the edge of the rectangle specified by the lprc
parameter. A carriage return–linefeed sequence
will also break the line.

Note that the DT_CALCRECT, DT_EXTERNALLEADING, DT_INTERNAL,
DT_NOCLIP, and DT_NOPREFIX values cannot be used with the DT_TABSTOP
value.

Returns
The return value specifies the height of the text if the function is successful.

Comments
If the selected font is too large for the specified rectangle, the DrawText function does not attempt to
substitute a smaller font.

If the DT_CALCRECT flag is specified, the RECT structure pointed to by the lprc parameter will be
updated to reflect the width and height needed to draw the text.

If the TA_UPDATECP text-alignment flag has been set (see the SetTextAlign function), DrawText will
display text starting at the current position, rather than at the left of the given rectangle. DrawText will not
wrap text when the TA_UPDATECP flag has been set (the DT_WORDBREAK flag will have no effect).

The text color must be set by the SetTextColor function.

See Also
ExtTextOut, SetTextColor, TabbedTextOut, TextOut, RECT

DT_BOTTOM 0x0008

Specifies bottom-aligned text. This value must be combined with DT_SINGLELINE.

DT_BOTTOM 0x0008

DT_CALCRECT 0x0400

Determines the width and height of the rectangle. If there are multiple lines of text, DrawText will use the
width of the rectangle pointed to by the lprc parameter and extend the base of the rectangle to bound the
last line of text. If there is only one line of text, DrawText will modify the right side of the rectangle so
that it bounds the last character in the line. In either case, DrawText returns the height of the formatted text
but does not draw the text.

DT_CALCRECT 0x0400

DT_CENTER 0x0001

Centers text horizontally.

DT_CENTER 0x0001

DT_EXPANDTABS 0x0040

Expands tab characters. The default number of characters per tab is eight.

DT_EXPANDTABS 0x0040

DT_EXTERNALLEADING 0x0200

Includes the font external leading in line height. Normally, external leading is not included in the height of
a line of text.

DT_EXTERNALLEADING 0x0200

DT_LEFT 0x0000

Left-aligns text.

DT_LEFT 0x0000

DT_NOCLIP 0x0100

Draws without clipping. DrawText is somewhat faster when DT_NOCLIP is used.

DT_NOCLIP 0x0100

DT_NOPREFIX 0x0800

Turns off processing of prefix characters. Normally, DrawText interprets the mnemonic & as a directive to
underscore the character that follows, and the mnemonic && as a directive to print a single &. By
specifying DT_NOPREFIX, this processing is turned off.

DT_NOPREFIX 0x0800

DT_RIGHT 0x0002

Right-aligns text.

DT_RIGHT 0x0002

DT_SINGLELINE 0x0020

Specifies single line only. Carriage returns and linefeeds do not break the line.

DT_SINGLELINE 0x0020

DT_TABSTOP 0x0080

Sets tab stops. The high-order byte of the fuFormat parameter is the number of characters for each tab. The
default number of characters per tab is eight.

DT_TABSTOP 0x0080

DT_TOP 0x0000

Specifies top-aligned text (single line only).

DT_TOP 0x0000

DT_VCENTER 0x0004

Specifies vertically centered text (single line only).

DT_VCENTER 0x0004

DT_WORDBREAK 0x0010

Specifies word breaking. Lines are automatically broken between words if a word would extend past the
edge of the rectangle specified by the lprc parameter. A carriage return–linefeed sequence will also break
the line.

DT_WORDBREAK 0x0010

EmptyClipboard (2.x)
BOOL EmptyClipboard(void)

The EmptyClipboard function empties the clipboard and frees handles to data in the clipboard. It then
assigns ownership of the clipboard to the window that currently has the clipboard open.

Returns
The return value is nonzero if the function is successful. Otherwise, it is zero.

Comments
The clipboard must be open when the EmptyClipboard function is called.

See Also
OpenClipboard, WM_DESTROYCLIPBOARD

EnableCommNotification (3.1)
BOOL EnableCommNotification(idComDev, hwnd, cbWriteNotify, cbOutQueue)
int idComDev; /* communications-device identifier */
HWND hwnd; /*
handle of window receiving messages *
/
int cbWriteNotify; /
* number of bytes written before notification *
/
int cbOutQueue; /
* minimum number of bytes in output queue *
/

The EnableCommNotification function enables or disables WM_COMMNOTIFY message posting to the
given window.

Parameter Description
idComDev Specifies the communications device that is posting notification messages to the

window identified by the hwnd parameter. The OpenComm function returns the value
for the idComDev parameter.

hwnd Identifies the window whose WM_COMMNOTIFY message posting will be enabled or
disabled. If this parameter is NULL, EnableCommNotification disables message
posting to the current window.

cbWriteNotify Indicates the number of bytes the COM driver must write to the application's input
queue before sending a notification message. The message signals the application to
read information from the input queue.

cbOutQueue Indicates the minimum number of bytes in the output queue. When the number of bytes
in the output queue falls below this number, the COM driver sends the application a
notification message, signaling it to write information to the output queue.

Returns
The return value is nonzero if the function is successful. Otherwise, it is zero, indicating an invalid COM
port identifier, a port that is not open, or a function not supported by COMM.DRV.

Comments
If an application specifies -1 for the cbWriteNotify parameter, the WM_COMMNOTIFY message is sent
to the specified window for CN_EVENT and CN_TRANSMIT notifications but not for CN_RECEIVE
notifications. If -1 is specified for the cbOutQueue parameter, CN_EVENT and CN_RECEIVE
notifications are sent but CN_TRANSMIT notifications are not.

If a timeout occurs before as many bytes as specified by the cbWriteNotify parameter are written to the
input queue, a WM_COMMNOTIFY message is sent with the CN_RECEIVE flag set. When this occurs,
another message will not be sent until the number of bytes in the input queue falls below the number
specified in the cbWriteNotify parameter. Similarly, a WM_COMMNOTIFY message in which the
CN_RECEIVE flag is set is sent only when the output queue is larger than the number of bytes specified
in the cbOutQueue parameter.

The Windows 3.0 version of COMM.DRV does not support this function.

See Also
WM_COMMNOTIFY

EnableHardwareInput (2.x)
BOOL EnableHardwareInput(fEnableInput)
BOOL fEnableInput; /* for enabling or disabling queuing */

The EnableHardwareInput function enables or disables queuing of mouse and keyboard input.

Parameter Description
fEnableInput Specifies whether to enable or disable queuing of input. If this parameter is TRUE,

keyboard and mouse input are queued. If the parameter is FALSE, keyboard and
mouse input are disabled.

Returns
The return value is nonzero if queuing of input was previously enabled. Otherwise, it is zero.

Comments
This function does not disable input from installable drivers, nor does it disable device drivers.

See Also
GetInputState

EnableMenuItem (2.x)
BOOL EnableMenuItem(hmenu, idEnableItem, uEnable)
HMENU hmenu; /* handle of menu */
UINT idEnableItem; /* menu-item identifier *
/
UINT uEnable; /
* action flag *
/

The EnableMenuItem function enables, disables, or grays (dims) a menu item.

Parameter Description
hmenu Identifies the menu.
idEnableItem Specifies the menu item to be enabled, disabled, or grayed. This parameter can

specify pop-up menu items as well as standard menu items. The interpretation of this
parameter depends on the value of the uEnable parameter.

uEnable Specifies the action to take. This parameter can be MF_DISABLED,
MF_ENABLED, or MF_GRAYED, combined with MF_BYCOMMAND or
MF_BYPOSITION. These values have the following meanings:

Value Meaning
MF_BYCOMMAND Specifies that the idEnableItem parameter gives the menu-

item identifier.
MF_BYPOSITION Specifies that the idEnableItem parameter gives the

position of the menu item (the first item is at position zero)
.

MF_DISABLED Specifies that the menu item is disabled.
MF_ENABLED Specifies that the menu item is enabled.
MF_GRAYED Specifies that the menu item is grayed.

Returns
The return value is 0 if the menu item was previously disabled, 1 if the menu item was previously enabled,
and -1 if the menu item does not exist.

Comments
To disable or enable input to a menu bar, see the WM_SYSCOMMAND message.

The CreateMenu, InsertMenu, ModifyMenu, and LoadMenuIndirect functions can also set the state
(enabled, disabled, or grayed) of a menu item.

Using the MF_BYPOSITION value requires an application to specify the correct menu handle. If the
menu handle of the menu bar is specified, a top-level menu item (an item in the menu bar) is affected. To
set the state of an item in a pop-up or nested pop-up menu by position, an application must specify the
handle of the pop-up menu.

When an application specifies the MF_BYCOMMAND flag, Windows checks all pop-up menu items that
are subordinate to the menu identified by the specified menu handle; therefore, unless duplicate menu
items are present, specifying the menu handle of the menu bar is sufficient.

See Also
CheckMenuItem, HiliteMenuItem, WM_SYSCOMMAND

EnableScrollBar (3.1)
BOOL EnableScrollBar(hwnd, fnSBFlags, fuArrowFlags)
HWND hwnd; /* handle of window or scroll bar */
int fnSBFlags; /* scroll-bar type
flag *
/
UINT fuArrowFlags; /
* scroll-bar arrow flag *
/

The EnableScrollBar function enables or disables one or both arrows of a scroll bar.

Parameter Description
hwnd Identifies a window or a scroll bar, depending on the value of the fnSBFlags

parameter.
fnSBFlags Specifies the scroll bar type. This parameter can be one of the following values:

Value Meaning
SB_BOTH Enables or disables the arrows of the horizontal and vertical scroll

bars associated with the given window. The hwnd parameter
identifies the window.

SB_CTL Identifies the scroll bar as a scroll bar control. The hwnd parameter
must identify a scroll bar control.

SB_HORZ Enables or disables the arrows of the horizontal scroll bar associated
with the given window. The hwnd parameter identifies the window.

SB_VERT Enables or disables the arrows of the vertical scroll bar associated
with the given window. The hwnd parameter identifies the window.

fuArrowFlags Specifies whether the scroll bar arrows are enabled or disabled, and which arrows are
enabled or disabled. This parameter can be one of the following values:

Value Meaning
ESB_ENABLE_BOTH Enables both arrows of a scroll bar.
ESB_DISABLE_LTUP Disables the left arrow of a horizontal scroll bar, or

the up arrow of a vertical scroll bar.
ESB_DISABLE_RTDN Disables the right arrow of a horizontal scroll bar, or

the down arrow of a vertical scroll bar.
ESB_DISABLE_BOTH Disables both arrows of a scroll bar.

Returns
The return value is nonzero if the arrows are enabled or disabled as specified. Otherwise, it is zero,
indicating that the arrows are already in the requested state or that an error occurred.

Example
The following example enables an edit control's vertical scroll bar when the control receives the input
focus, and disables the scroll bar when the control loses the focus:

case EN_SETFOCUS:
EnableScrollBar(hwndMLEdit, SB_VERT, ESB_ENABLE_BOTH);
break;

case EN_KILLFOCUS:
EnableScrollBar(hwndMLEdit, SB_VERT, ESB_DISABLE_BOTH);
break;

See Also
ShowScrollBar

SB_BOTH 3

Enables or disables the arrows of the horizontal and vertical scroll bars associated with the given window.
The hwnd parameter identifies the window.

SB_BOTH 3

SB_CTL 2

Identifies the scroll bar as a scroll bar control. The hwnd parameter must identify a scroll bar control.

SB_CTL 2

SB_HORZ 0

Enables or disables the arrows of the horizontal scroll bar associated with the given window. The hwnd
parameter identifies the window.

SB_HORZ 0

SB_VERT 1

Enables or disables the arrows of the vertical scroll bar associated with the given window. The hwnd
parameter identifies the window.

SB_VERT 1

ESB_ENABLE_BOTH 0x0000

Enables both arrows of a scroll bar.

ESB_ENABLE_BOTH 0x0000

ESB_DISABLE_LTUP ESB_DISABLE_LEFT

Disables the left arrow of a horizontal scroll bar, or the up arrow of a vertical scroll bar.

ESB_DISABLE_LTUP ESB_DISABLE_LEFT

ESB_DISABLE_RTDN ESB_DISABLE_RIGHT

Disables the right arrow of a horizontal scroll bar, or the down arrow of a vertical scroll bar.

ESB_DISABLE_RTDN ESB_DISABLE_RIGHT

ESB_DISABLE_BOTH 0x0003

Disables both arrows of a scroll bar.

ESB_DISABLE_BOTH 0x0003

EnableWindow (2.x)
BOOL EnableWindow(hwnd, fEnable)
HWND hwnd; /* handle of window */
BOOL fEnable; /* flag for
enabling or disabling input *
/

The EnableWindow function enables or disables mouse and keyboard input to the given window or
control. When input is disabled, the window ignores input such as mouse clicks and key presses. When
input is enabled, the window processes all input.

Parameter Description
hwnd Identifies the window to be enabled or disabled.
fEnable Specifies whether to enable or disable the window. If this parameter is TRUE, the

window is enabled. If the parameter is FALSE, the window is disabled.

Returns
The return value is nonzero if the window was previously disabled. Otherwise, the return value is zero.

Comments
If the enabled state of the window is changing, a WM_ENABLE message is sent before this function
returns. If a window is already disabled, all its child windows are implicitly disabled, although they are not
sent a WM_ENABLE message.

A window must be enabled before it can be activated. For example, if an application is displaying a
modeless dialog box and has disabled its main window, the application must enable the main window
before destroying the dialog box. Otherwise, another window will receive the input focus and be activated.
If a child window is disabled, it is ignored when Windows tries to determine which window should receive
mouse messages.

By default, a window is enabled when it is created. An application can specify the WS_DISABLED style
in the CreateWindow or CreateWindowEx function to create a window that is initially disabled. After a
window has been created, an application can use the EnableWindow function to enable or disable the
window.

An application can use this function to enable or disable a control in a dialog box. A disabled control
cannot receive the input focus, nor can a user access it.

Example
The following example enables a Save push button in a dialog box, depending on whether a user-specified
filename exists:

static char szFileName[128];
case WM_INITDIALOG:

/* If a filename is specified, enable the Save push button. */
EnableWindow(GetDlgItem(hdlg, IDOK),
(szFileName[0] == '\0' ? FALSE : TRUE));
return TRUE;

See Also
IsWindowEnabled, WM_ENABLE

EndDeferWindowPos (3.0)
BOOL EndDeferWindowPos(hdwp)
HDWP hdwp; /* handle of internal structure */

The EndDeferWindowPos function simultaneously updates the position and size of one or more windows
in a single screen-refresh cycle.

Parameter Description
hdwp Identifies an internal structure that contains size and position information for one or

more windows. This structure is returned by the BeginDeferWindowPos function or by
the most recent call to the DeferWindowPos function.

Returns
The return value is nonzero if the function is successful. Otherwise, it is zero.

Comments
This function sends the WM_WINDOWPOSCHANGING and WM_WINDOWPOSCHANGED messages
to each window identified in the internal structure.

See Also
BeginDeferWindowPos, DeferWindowPos, WM_WINDOWPOSCHANGED,
WM_WINDOWPOSCHANGING

EndDialog (2.x)
void EndDialog(hwndDlg, nResult)
HWND hwndDlg; /* handle of dialog box */
int nResult; /* value to return */

The EndDialog function hides a modal dialog box and causes the DialogBox function to return.

Parameter Description
hwndDlg Identifies the dialog box to be destroyed.
nResult Specifies the value that is returned to the caller of DialogBox.

Returns
This function does not return a value.

Comments
The EndDialog function is required to complete processing of a modal dialog box created by the
DialogBox function. An application calls EndDialog from within the dialog box procedure.

A dialog box procedure can call EndDialog at any time, even during the processing of the
WM_INITDIALOG message. If the function is called while WM_INITDIALOG is being processed, the
dialog box is hidden before it is shown and before the input focus is set.

EndDialog does not destroy the dialog box immediately. Instead, it sets a flag that directs Windows to
destroy the dialog box when the DialogBox function returns.

See Also
DialogBox, WM_INITDIALOG

EndPaint (2.x)
void EndPaint(hwnd, lpps)
HWND hwnd; /* handle of window */
const PAINTSTRUCT FAR* lpps; /
* address of structure for paint data *
/

The EndPaint function marks the end of painting in the given window. This function is required for each
call to the BeginPaint function, but only after painting is complete.

Parameter Description
hwnd Identifies the window that has been repainted.
lpps Points to a PAINTSTRUCT structure that contains the painting information retrieved by

the BeginPaint function.

Returns
This function does not return a value.

Comments
If the caret was hidden by the BeginPaint function, the EndPaint function restores the caret to the screen.

See Also
BeginPaint, PAINTSTRUCT

EnumChildWindows (2.x)
BOOL EnumChildWindows(hwndParent, wndenmprc, lParam)
HWND hwndParent; /* handle of parent window */
WNDENUMPROC wndenmprc; /
* address of callback function *
/
LPARAM lParam; /
* application-defined value *
/

The EnumChildWindows function enumerates the child windows that belong to the given parent window
by passing the handle of each child window, in turn, to an application-defined callback function.
EnumChildWindows continues until the last child window is enumerated or the callback function returns
zero.

Parameter Description
hwndParent Identifies the parent window whose child windows are to be enumerated.
wndenmprc Specifies the procedure-instance address of the application-supplied callback function.

The address must have been created by using the MakeProcInstance function. For more
information about the callback function, see the description of the EnumChildProc
callback function.

lParam Specifies a 32-bit application-defined value to pass to the callback function.

Returns
The return value is nonzero if the function is successful. Otherwise, it is zero.

Comments
This function does not enumerate top-level windows that belong to the parent window.

If a child window has created child windows of its own, the function enumerates those windows as well.

A child window that is moved or repositioned in the Z-order during the enumeration process will be
properly enumerated. The function will not enumerate a child window that is destroyed before it is
enumerated or that is created during the enumeration process. These measures ensure that the
EnumChildWindows function is reliable even when the application causes odd side effects, whereas an
application that uses a GetWindow loop risks being caught in an infinite loop or referencing a handle to a
window that has been destroyed.

See Also
EnumChildProc, MakeProcInstance

EnumClipboardFormats (2.x)
UINT EnumClipboardFormats(uFormat)
UINT uFormat; /* known clipboard format */

The EnumClipboardFormats function enumerates the formats found in a list of available formats that
belong to the clipboard. Each call to this function specifies a known available format; the function returns
the format that appears next in the list.

Parameter Description
uFormat Specifies a known format. If this parameter is zero, the function returns the first format

in the list.

Returns
The return value specifies the next known clipboard data format if the function is successful. It is zero if
the uFormat parameter specifies the last format in the list of available formats, or if the clipboard is not
open.

Comments
Before it enumerates the formats by using the EnumClipboardFormats function, an application must open
the clipboard by using the OpenClipboard function.

An application puts (or "donates") alternative formats for the same data into the clipboard in the same
order that the enumerator uses when returning them to the pasting application. The pasting application
should use the first format enumerated in the list that it can handle. This gives the donor application an
opportunity to recommend formats that involve the least loss of data.

See Also
CountClipboardFormats, GetClipboardFormatName, GetPriorityClipboardFormat,
IsClipboardFormatAvailable, OpenClipboard, RegisterClipboardFormat

EnumProps (2.x)
int EnumProps(hwnd, prpenmprc)
HWND hwnd; /* handle of window */
PROPENUMPROC prpenmprc; /
* address of callback function *
/

The EnumProps function enumerates all entries in the property list of the given window. It enumerates the
entries by passing them, one by one, to the specified callback function. EnumProps continues until the last
entry is enumerated or the callback function returns zero.

Parameter Description
hwnd Identifies the window whose property list is enumerated.
prpenmprc Specifies the procedure-instance address of the callback function. For more information,

see the descriptions of the EnumPropFixedProc and EnumPropMovableProc callback
functions.

Returns
The return value specifies the last value returned by the callback function. It is -1 if the function did not
find a property to enumerate.

Comments
The form of the callback function depends on whether the application or dynamic-link library (DLL) uses
fixed or movable data segments. If the application or library uses fixed data segments (or if the library uses
movable data segments that do not contain a stack), see the description of the EnumPropFixedProc
callback function. If the application uses movable data segments (or if the library uses movable data
segments that also contain a stack), see the description of the EnumPropMovableProc callback function.

An application's EnumPropFixedProc or EnumPropMovableProc callback function should not add new
properties to a window. If the callback function deletes a window's properties, it should delete only the
property currently being enumerated. The callback function should not delete other properties belonging to
the window; if it does, the enumeration process terminates early.

The address passed in the prpenmprc parameter must be created by using the MakeProcInstance function.

See Also
EnumPropFixedProc, EnumPropMovableProc, GetProp, MakeProcInstance, RemoveProp, SetProp

EnumTaskWindows (2.x)
BOOL EnumTaskWindows(htask, wndenmprc, lParam)
HTASK htask; /* handle of task */
WNDENUMPROC wndenmprc; /
* address of callback function *
/
LPARAM lParam; /
* application-defined value *
/

The EnumTaskWindows function enumerates all windows associated with a given task. (A task is any
program that executes as an independent unit. All applications are executed as tasks, and each instance of
an application is a task.) The function enumerates the windows by passing their handles, one by one, to the
specified callback function. EnumTaskWindows continues until the last entry is enumerated or the
callback function returns zero.

Parameter Description
htask Identifies the task. The task handle must be retrieved by a previous call to the

GetCurrentTask function.
wndenmprc Specifies the procedure-instance address of the callback function. For more information,

see the description of the EnumTaskWndProc callback function.
lParam Specifies a 32-bit application-defined value that is passed to the callback function along

with each window handle.

Returns
The return value is nonzero if the function is successful. Otherwise, it is zero.

Comments
This function enumerates all top-level windows but does not enumerate child windows.

The EnumTaskWindows function is reliable even when the application causes odd side effects, whereas an
application that uses a GetWindow loop risks being caught in an infinite loop or referencing a handle to a
window that has been destroyed.

The address passed in the wndenmprc parameter must be created by using the MakeProcInstance function.

See Also
EnumTaskWndProc, GetCurrentTask

EnumWindows (2.x)
BOOL EnumWindows(wndenmprc, lParam)
WNDENUMPROC wndenmprc; /* address of callback function */
LPARAM lParam; /*
application-defined value *
/

The EnumWindows function enumerates all parent windows on the screen by passing the handle of each
window, in turn, to an application-defined callback function. EnumWindows continues until the last parent
window is enumerated or the callback function returns zero.

Parameter Description
wndenmprc Specifies the procedure-instance address of the callback function. For more information,

see the description of the EnumWindowsProc callback function.
lParam Specifies a 32-bit application-defined value that is passed to the callback function.

Returns
The return value is nonzero if the function is successful. Otherwise, it is zero.

Comments
The EnumWindows function does not enumerate child windows.

EnumWindows is reliable even when the application causes odd side effects, whereas an application that
uses a GetWindow loop risks being caught in an infinite loop or referencing a handle to a window that has
been destroyed.

The address passed as the wndenmprc parameter must be created by using the MakeProcInstance function.

See Also
EnumWindowsProc, MakeProcInstance

EqualRect (2.x)
BOOL EqualRect(lprc1, lprc2)
const RECT FAR* lprc1; /* address of structure with first rectangle */
const RECT FAR* lprc2; /
* address of structure with second rectangle *
/

The EqualRect function determines whether the two given rectangles are equal by comparing the
coordinates of their upper-left and lower-right corners.

Parameter Description
lprc1 Points to a RECT structure that contains the logical coordinates of the first rectangle.
lprc2 Points to a RECT structure that contains the logical coordinates of the second rectangle.

Returns
The return value is nonzero if the two rectangles are identical. Otherwise, it is zero.

See Also
RECT

EscapeCommFunction (2.x)
LONG EscapeCommFunction(idComDev, nFunction)
int idComDev; /* identifies communications device */
int nFunction; /* code of extended
function *
/

The EscapeCommFunction function directs the specified communications device to carry out an extended
function.

Parameter Description
idComDev Specifies the communications device that will carry out the extended function. The

OpenComm function returns this value.
nFunction Specifies the function code of the extended function. It can be one of the following

values:

Value Meaning
CLRDTR Clears the DTR (data-terminal-ready) signal.
CLRRTS Clears the RTS (request-to-send) signal.
GETMAXCOM Returns the maximum COM port identifier supported by the

system. This value ranges from 0x00 to 0x7F, such that 0x00
corresponds to COM1, 0x01 to COM2, 0x02 to COM3, and so on.

GETMAXLPT Returns the maximum LPT port identifier supported by the system.
This value ranges from 0x80 to 0xFF, such that 0x80 corresponds
to LPT1, 0x81 to LPT2, 0x82 to LPT3, and so on.

RESETDEV Resets the printer device if the idComDev parameter specifies an
LPT port. No function is performed if idComDev specifies a COM
port.

SETDTR Sends the DTR (data-terminal-ready) signal.
SETRTS Sends the RTS (request-to-send) signal.
SETXOFF Causes transmission to act as if an XOFF character has been

received.
SETXON Causes transmission to act as if an XON character has been

received.

Returns
The return value is zero if the function is successful. Otherwise, it is less than zero.

ExcludeUpdateRgn (2.x)
int ExcludeUpdateRgn(hdc, hwnd)
HDC hdc; /* handle of device context */
HWND hwnd; /* handle of window */

The ExcludeUpdateRgn function prevents drawing within invalid areas of a window by excluding an
updated region in the window from a clipping region.

Parameter Description
hdc Identifies the device context associated with the clipping region.
hwnd Identifies the window to be updated.

Returns
The return value is SIMPLEREGION (region has no overlapping borders), COMPLEXREGION (region
has overlapping borders), or NULLREGION (region is empty), if the function is successful. Otherwise,
the return value is ERROR (no region is created).

See Also
BeginPaint, GetUpdateRect, GetUpdateRgn, UpdateWindow

ExitWindows (3.0)
BOOL ExitWindows(dwReturnCode, reserved)
DWORD dwReturnCode; /* return or restart code */
UINT reserved; /* reserved; must be
zero *
/

The ExitWindows function can restart Windows, terminate Windows and return control to MS-DOS, or
terminate Windows and restart the system. Windows sends the WM_QUERYENDSESSION message to
notify all applications that a request has been made to restart or terminate Windows. If all applications
"agree" to terminate, Windows sends the WM_ENDSESSION message to all applications before
terminating.

Parameter Description
dwReturnCode Specifies whether Windows should restart, terminate and return control to MS-DOS,

or terminate and restart the system. The high-order word of this parameter should be
zero. The low-order word specifies the return value to be passed to MS-DOS when
Windows terminates. The low-order word can be one of the following values:

Value Meaning
EW_REBOOTSYSTEM Causes Windows to terminate and the system to

restart.
EW_RESTARTWINDOWS Causes Windows to restart.

reserved Reserved; must be zero.

Returns
The return value is zero if one or more applications refuse to terminate. The function does not return a
value if all applications agree to be terminated.

See Also
ExitWindowsExec, WM_ENDSESSION, WM_QUERYENDSESSION

Windows 3.1 changes

An application can restart Windows by specifying a value of EW_RESTARTWINDOWS as the
dwReturnCode parameter of the ExitWindows function. This change is supported in Windows version 3.0
and 3.1.

The EW_REBOOTSYSTEM flag can be specified as the low-order word of the dwReturnCode parameter.
This flag causes Windows to terminate and the system to restart.

EW_REBOOTSYSTEM 0x43

Causes Windows to terminate and the system to restart.

EW_REBOOTSYSTEM 0x43

EW_RESTARTWINDOWS 0x42

Causes Windows to restart.

EW_RESTARTWINDOWS 0x42

ExitWindowsExec (3.0)
BOOL ExitWindowsExec(lpszExe, lpszParams)
LPCSTR lpszExe;
LPCSTR lpszParams;

The ExitWindowsExec function terminates Windows, runs a specified MS-DOS application, and then
restarts Windows.

Parameter Description
lpszExe Points to a null-terminated string specifying the path and filename of the executable file

for the system to run after Windows has been terminated. This string must not be longer
than 128 bytes (including the null terminating character).

lpszParams Points to a null-terminated string specifying any parameters for the executable file
specified by the lpszExe parameter. This string must not be longer than 127 bytes
(including the null terminating character). This value can be NULL.

Returns
The return value is FALSE if the function fails. (The function could fail because of a memory-allocation
error or if one of the applications in the system does not terminate.)

Comments
The ExitWindowsExec function is typically used by installation programs to replace components of
Windows which are active when Windows is running.

See Also
ExitWindows

FillRect (2.x)
int FillRect(hdc, lprc, hbr)
HDC hdc; /* handle of device context */
const RECT FAR* lprc; /
* address of structure with rectangle *
/
HBRUSH hbr; /
* handle of brush *
/

The FillRect function fills a given rectangle by using the specified brush. The FillRect function fills the
complete rectangle, including the left and top borders, but does not fill the right and bottom borders.

Parameter Description
hdc Identifies the device context.
lprc Points to a RECT structure that contains the logical coordinates of the rectangle to be

filled.
hbr Identifies the brush used to fill the rectangle.

Returns
The return value is not used and has no meaning.

Comments
The brush must be created by using either the CreateHatchBrush, CreatePatternBrush, or CreateSolidBrush
function, or retrieved by using the GetStockObject function.

When filling the specified rectangle, the FillRect function does not include the rectangle's right and
bottom sides. Graphics device interface (GDI) fills a rectangle up to, but not including, the right column
and bottom row, regardless of the current mapping mode.

FillRect compares the values of the top, bottom, left, and right members of the specified RECT structure.
If bottom is less than or equal to top, or if right is less than or equal to left, the function does not draw the
rectangle.

See Also
CreateHatchBrush, CreatePatternBrush, CreateSolidBrush, GetStockObject, InvertRect, RECT

FindWindow (2.x)
HWND FindWindow(lpszClassName, lpszWindow)
LPCSTR lpszClassName; /* address of class-name string */
LPCSTR lpszWindow; /
* address of window-name string *
/

The FindWindow function retrieves the handle of the window whose class name and window name match
the specified strings. This function does not search child windows.

Parameter Description
lpszClassName Points to a null-terminated string that contains the window's class name. If this

parameter is NULL, all class names match.
lpszWindow Points to a null-terminated string that specifies the window name (the window's

title). If this parameter is NULL, all window names match.

Returns
The return value is the handle of the window that has the specified class name and window name if the
function is successful. Otherwise, it is NULL.

Example
The following example searches for the main window of Windows Control Panel (CONTROL.EXE) and,
if it does not find it, starts Control Panel:

if (FindWindow("CtlPanelClass", "Control Panel") == NULL)
WinExec("control.exe", SW_SHOWNA);

See Also
EnumWindows, GetWindow, WindowFromPoint

FlashWindow (2.x)
BOOL FlashWindow(hwnd, fInvert)
HWND hwnd; /* handle of window to flash */
BOOL fInvert; /* invert flag */

The FlashWindow function flashes the given window once. Flashing a window means changing the
appearance of its title bar as if the window were changing from inactive to active status or vice versa. (An
inactive title bar changes to an active title bar or an active title bar changes to an inactive title bar.)

Typically, a window is flashed to inform the user that the window requires attention but that it does not
currently have the input focus.

Parameter Description
hwnd Identifies the window to be flashed. The window can be either open or minimized.
fInvert Specifies whether to flash the window or return it to its original state. If this parameter is

TRUE, the window is flashed from one state to the other. If the parameter is FALSE, the
window is returned to its original state (either active or inactive).

Returns
The return value is nonzero if the window was active before the call to the FlashWindow function.
Otherwise, it is zero.

Comments
The FlashWindow function flashes the window only once; for successive flashing, the application should
create a system timer.

The fInvert parameter should be FALSE only when the window is receiving the input focus and will no
longer be flashing; it should be TRUE on successive calls while waiting to get the input focus.

This function always returns nonzero for minimized windows. If the window is minimized, FlashWindow
simply flashes the window's icon; fInvert is ignored for minimized windows.

See Also
MessageBeep

FlushComm (2.x)
int FlushComm(idComDev, fnQueue)
int idComDev; /* communications-device identifier */
int fnQueue; /* queue to flush */

The FlushComm function flushes all characters from the transmission or receiving queue of the specified
communications device.

Parameter Description
idComDev Specifies the communication device to be flushed. The OpenComm function returns this

value.
fnQueue Specifies the queue to be flushed. If this parameter is zero, the transmission queue is

flushed. If the parameter is 1, the receiving queue is flushed.

Returns
The return value is zero if the function is successful. It is less than zero if idComDev is not a valid device
or if fnQueue is not a valid queue. The return value is positive if there is an error for the specified device.
For a list of the possible error values, see the GetCommError function.

See Also
GetCommError, OpenComm

FrameRect (2.x)
int FrameRect(hdc, lprc, hbr)
HDC hdc; /* handle of device context */
const RECT FAR* lprc; /
* address of structure with rectangle *
/
HBRUSH hbr; /
* handle of brush *
/

The FrameRect function draws a border around a rectangle, using the specified brush. The width and
height of the border are always one logical unit.

Parameter Description
hdc Identifies the device context in which to draw the border.
lprc Points to a RECT structure that contains the logical coordinates of the upper-left and

lower-right corners of the rectangle.
hbr Identifies the brush that will be used to draw the border.

Returns
The return value is not used and has no meaning.

Comments
The border drawn by the FrameRect function is in the same position as a border drawn by the Rectangle
function using the same coordinates (if Rectangle uses a pen that is one logical unit wide). The interior of
the rectangle is not filled when an application calls FrameRect.

FrameRect compares the values of the top, bottom, left, and right members of the specified RECT
structure. If bottom is less than or equal to top, or if right is less than or equal to left, FrameRect does not
draw the rectangle.

See Also
CreateHatchBrush, CreatePatternBrush, CreateSolidBrush, DrawFocusRect, RECT

GetActiveWindow (2.x)
HWND GetActiveWindow(void)

The GetActiveWindow function retrieves the window handle of the active window. The active window is
either the top-level window associated with the input focus or the window explicitly made active by the
SetActiveWindow function.

Returns
The return value is the handle of the active window or NULL if no window was active at the time of the
call.

See Also
GetCapture, GetFocus, GetLastActivePopup, SetActiveWindow

GetAsyncKeyState (2.x)
int GetAsyncKeyState(vkey)
int vkey; /* virtual-key code */

The GetAsyncKeyState function determines whether a key is up or down at the time the function is called
and whether the key was pressed after a previous call to the GetAsyncKeyState function.

Parameter Description
vkey Specifies one of 256 possible virtual-key codes.

Returns
The return value specifies whether the key was pressed since the last call to the GetAsyncKeyState
function and whether the key is currently up or down. If the most significant bit is set, the key is down, and
if the least significant bit is set, the key was pressed after a preceding GetAsyncKeyState call.

Comments
If VK_LBUTTON or VK_RBUTTON is specified in the vkey parameter, this function returns the state of
the physical left or right mouse button regardless of whether the SwapMouseButton function has been
used to reverse the meaning of the buttons.

See Also
GetKeyboardState, GetKeyState, SetKeyboardState, SwapMouseButton

GetCapture (2.x)
HWND GetCapture(void)

The GetCapture function retrieves a handle of the window that has the mouse capture. Only one window
has the mouse capture at any given time; this window receives mouse input whether or not the cursor is
within its borders.

Returns
The return value is a handle identifying the window that has the mouse capture if the function is
successful. It is NULL if no window has the mouse capture.

Comments
A window receives the mouse capture when its handle is passed as the hwnd parameter of the SetCapture
function.

See Also
SetCapture

GetCaretBlinkTime (2.x)
UINT GetCaretBlinkTime(void)

The GetCaretBlinkTime function retrieves the caret blink rate. The blink rate is the elapsed time, in
milliseconds, between flashes of the caret.

Returns
The return value specifies the blink rate, in milliseconds, if the function is successful.

See Also
SetCaretBlinkTime

GetCaretPos (2.x)
void GetCaretPos(lppt)
POINT FAR* lppt; /* address of structure to receive coordinates */

The GetCaretPos function retrieves the current position of the caret.

Parameter Description
lppt Points to a POINT structure that receives the client coordinates of the caret's current

position.

Returns
This function does not return a value.

Comments
The caret position is always given in the client coordinates of the window that contains the caret.

See Also
SetCaretPos, POINT

GetClassInfo (3.0)
BOOL GetClassInfo(hinst, lpszClassName, lpwc)
HINSTANCE hinst; /* handle of application instance */
LPCSTR lpszClassName; /
* address of class-name string *
/
WNDCLASS FAR* lpwc; /
* address of structure for class data *
/

The GetClassInfo function retrieves information about a window class. This function is used for creating
subclasses of a given class.

Parameter Description
hinst Identifies the instance of the application that created the class. To retrieve

information about classes defined by Windows (such as buttons or list boxes), set
this parameter to NULL.

lpszClassName Points to a null-terminated string containing the class name. The class name is either
an application-specified name as defined by the RegisterClass function or the name
of a preregistered window class. If the high-order word of this parameter is NULL,
the low-order word is assumed to be a value returned by the
MAKEINTRESOURCE macro used when the class was created.

lpwc Points to a WNDCLASS structure that receives the information about the class.

Returns
The return value is nonzero if the function is successful. Otherwise, it is zero, indicating the function did
not find a matching class.

Comments
The GetClassInfo function does not set the lpszClassName and lpszMenuName members of the
WNDCLASS structure. The menu name is not stored internally and cannot be returned. The class name is
already known, since it is passed to this function. GetClassInfo returns all other members with the values
used when the class was registered.

See Also
GetClassLong, GetClassName, GetClassWord, RegisterClass, MAKEINTRESOURCE, WNDCLASS

GetClassLong (2.x)
LONG GetClassLong(hwnd, offset)
HWND hwnd; /* handle of window */
int offset; /* offset of value to retrieve */

The GetClassLong function retrieves a 32-bit (long) value at the specified offset into the extra class
memory for the window class to which the given window belongs. Extra class memory is reserved by
specifying a nonzero value in the cbClsExtra member of the WNDCLASS structure used with the
RegisterClass function.

Parameter Description
hwnd Identifies the window.
offset Specifies the zero-based byte offset of the value to be retrieved. Valid values are in the

range zero through the number of bytes of class memory minus four (for example, if 12
or more bytes of extra class memory was specified, a value of 8 would be an index to
the third 32-bit integer) or one of the following values:

Value Meaning
GCL_MENUNAME Retrieves a 32-bit pointer to the menu-name string.
GCL_WNDPROC Retrieves a 32-bit pointer to the window procedure.

Returns
The return value is the specified 32-bit value in the extra class memory if the function is successful.
Otherwise, it is zero, indicating the hwnd or offset parameter is invalid.

Comments
To access any extra four-byte values allocated when the window-class structure was created, use a positive
byte offset as the index specified by the offset parameter, starting at 0 for the first four-byte value in the
extra space, 4 for the next four-byte value, and so on.

See Also
GetClassInfo, GetClassName, GetClassWord, RegisterClass, SetClassLong, WNDCLASS

Windows 3.1 changes

Value Meaning
GCL_MENUNAME Retrieves a 32-bit pointer to the menu-name string.

GCL_MENUNAME (-8)

Retrieves a 32-bit pointer to the menu-name string.

GCL_MENUNAME (-8)

GCL_WNDPROC (-24)

Retrieves a 32-bit pointer to the window procedure.

GCL_WNDPROC (-24)

GetClassName (2.x)
int GetClassName(hwnd, lpszClassName, cchClassName)
HWND hwnd; /* handle of window */
LPSTR lpszClassName; /
* address of buffer for class name *
/
int cchClassName; /
* size of buffer *
/

The GetClassName function retrieves the class name of a window.

Parameter Description
hwnd Identifies the window.
lpszClassName Points to a buffer that receives the null-terminated class name string.
cchClassName Specifies the length of the buffer pointed to by the lpszClassName parameter. The

class name string is truncated if it is longer than the buffer.

Returns
The return value is the length, in bytes, of the returned class name, not including the terminating null
character. The return value is zero if the specified window handle is invalid.

GetClassWord (2.x)
WORD GetClassWord(hwnd, offset)
HWND hwnd; /* handle of window */
int offset; /* offset of value to retrieve */

The GetClassWord function retrieves a 16-bit (word) value at the specified offset into the extra class
memory for the window class to which the given window belongs. Extra class memory is reserved by
specifying a nonzero value in the cbClsExtra member of the WNDCLASS structure used with the
RegisterClass function.

Parameter Description
hwnd Identifies the window.
offset Specifies the zero-based byte offset of the value to be retrieved. Valid values are in the

range zero through the number of bytes of class memory minus two (for example, if 10
or more bytes of extra class memory was specified, a value of 8 would be an index to
the fifth 16-bit integer) or one of the following values:

Value Meaning
GCW_CBCLSEXTRA Retrieves the number of bytes of additional class

information. For information about how to access this
memory, see the following Comments section.

GCW_CBWNDEXTRA Retrieves the number of bytes of additional window
information. For information about how to access this
memory, see the following Comments section.

GCW_HBRBACKGROUND Retrieves the handle of the background brush.
GCW_HCURSOR Retrieves the handle of the cursor.
GCW_HICON Retrieves the handle of the icon.
GCW_HMODULE Retrieves the handle of the module.
GCW_STYLE Retrieves the window-class style bits.

Returns
The return value is the 16-bit value in the window's reserved memory, if the function is successful.
Otherwise, it is zero, indicating the hwnd or offset parameter is invalid.

Comments
To access any extra two-byte values allocated when the window-class structure was created, use a positive
byte offset as the index specified by the offset parameter, starting at 0 for the first two-byte value in the
extra space, 2 for the next two-byte value, and so on.

See Also
GetClassInfo, GetClassLong, GetClassName, RegisterClass, SetClassWord, WNDCLASS

GCW_CBCLSEXTRA (-20)

Retrieves the number of bytes of additional class information. For information about how to access this
memory, see the following Comments section.

GCW_CBCLSEXTRA (-20)

GCW_CBWNDEXTRA (-18)

Retrieves the number of bytes of additional window information. For information about how to access this
memory, see the following Comments section.

GCW_CBWNDEXTRA (-18)

GCW_HBRBACKGROUND (-10)

Retrieves the handle of the background brush.

GCW_HBRBACKGROUND (-10)

GCW_HCURSOR (-12)

Retrieves the handle of the cursor.

GCW_HCURSOR (-12)

GCW_HICON (-14)

Retrieves the handle of the icon.

GCW_HICON (-14)

GCW_HMODULE (-16)

Retrieves the handle of the module.

GCW_HMODULE (-16)

GCW_STYLE (-26)

Retrieves the window-class style bits.

GCW_STYLE (-26)

GetClientRect (2.x)
void GetClientRect(hwnd, lprc)
HWND hwnd; /* handle of window */
RECT FAR* lprc; /* address of
structure for rectangle *
/

The GetClientRect function retrieves the client coordinates of a window's client area. The client
coordinates specify the upper-left and lower-right corners of the client area. Because client coordinates are
relative to the upper-left corner of a window's client area, the coordinates of the upper-left corner are (0,
0).

Parameter Description
hwnd Identifies the window whose client coordinates are to be retrieved.
lprc Points to a RECT structure that receives the client coordinates. The left and top

members will be zero. The right and bottom members will contain the width and height
of the window.

Returns
This function does not return a value.

See Also
GetWindowRect, RECT

GetClipboardData (2.x)
HANDLE GetClipboardData(uFormat)
UINT uFormat; /* data format */

The GetClipboardData function retrieves a handle of the current clipboard data having a specified format.
The clipboard must have been opened previously.

Parameter Description
uFormat Specifies the format of the data accessed by this function. For a description of the

possible data formats, see the description of the SetClipboardData function.

Returns
The return value is a handle of the clipboard data in the specified format, if the function is successful.
Otherwise, it is NULL.

Comments
The available formats can be enumerated in advance by using the EnumClipboardFormats function.

The data handle returned by the GetClipboardData function is controlled by the clipboard, not by the
application. The application should copy the data immediately, instead of relying on the data handle for
long-term use. The application should not free the data handle or leave it locked.

Windows supports two formats for text: CF_TEXT (the default Windows text clipboard format) and
CF_OEMTEXT (the format Windows uses for text in non-Windows applications). If you call
GetClipboardData to retrieve data in one text format and the other text format is the only available text
format, Windows automatically converts the text to the requested format before supplying it to your
application.

If the clipboard contains data in the CF_PALETTE (logical color palette) format, the application should
assume that any other data in the clipboard is realized against that logical palette.

See Also
CloseClipboard, EnumClipboardFormats, IsClipboardFormatAvailable, OpenClipboard, SetClipboardData

GetClipboardFormatName (2.x)
int GetClipboardFormatName(uFormat, lpszFormatName, cbMax)
UINT uFormat; /* format to retrieve */
LPSTR lpszFormatName; /*
address of buffer for name *
/
int cbMax; /
* length of name string *
/

The GetClipboardFormatName function retrieves the name of a registered clipboard format.

Parameter Description
uFormat Specifies the registered format to retrieve. This parameter must not specify any of

the predefined clipboard formats.
lpszFormatName Points to a buffer that receives the format name.
cbMax Specifies the maximum length, in bytes, of the format-name string. The format-

name string is truncated if it is longer.

Returns
The return value is the length, in bytes, of the returned format name if the function is successful.
Otherwise, it is zero, indicating the requested format does not exist or is predefined.

See Also
CountClipboardFormats, EnumClipboardFormats, GetPriorityClipboardFormat,
IsClipboardFormatAvailable, RegisterClipboardFormat

GetClipboardOwner (2.x)
HWND GetClipboardOwner(void)

The GetClipboardOwner function retrieves the handle of the window that currently owns the clipboard, if
any.

Returns
The return value identifies the window that owns the clipboard if the function is successful. Otherwise, it
is NULL.

Comments
The clipboard can still contain data even if the clipboard is not currently owned.

See Also
CloseClipboard, GetClipboardData, GetClipboardViewer, OpenClipboard

GetClipboardViewer (2.x)
HWND GetClipboardViewer(void)

The GetClipboardViewer function retrieves the handle of the first window in the clipboard-viewer chain.

Returns
The return value identifies the window currently responsible for displaying the clipboard, if the function is
successful. Otherwise, it is NULL (if there is no viewer, for example).

See Also
CloseClipboard, GetClipboardData, GetClipboardOwner, OpenClipboard

GetClipCursor (3.1)
void GetClipCursor(lprc)
RECT FAR* lprc; /* address of structure for rectangle */

The GetClipCursor function retrieves the screen coordinates of the rectangle to which the cursor has been
confined by a previous call to the ClipCursor function.

Parameter Description
lprc Points to a RECT structure that receives the screen coordinates of the confining

rectangle. The structure receives the dimensions of the screen if the cursor is not
confined to a rectangle.

Returns
This function does not return a value.

See Also
ClipCursor, GetCursorPos, RECT

GetCommError (2.x)
int GetCommError(idComDev, lpStat)
int idComDev; /* communications device identifier */
COMSTAT FAR* lpStat; /
* address of device-status buffer *
/

The GetCommError function retrieves the most recent error value and current status for the specified
device.

When a communications error occurs, Windows locks the communications port until GetCommError
clears the error.

Parameter Description
idComDev Specifies the communications device to be examined. The OpenComm function returns

this value.
lpStat Points to the COMSTAT structure that is to receive the device status. If this parameter is

NULL, the function returns only the error values.

Returns
The return value specifies the error value for the most recent communications-function call to the specified
device, if GetCommError is successful.
Errors

The return value can be a combination of the following values:

Value Meaning
CE_BREAK Hardware detected a break condition.
CE_CTSTO CTS (clear-to-send) timeout. While a character was being transmitted, CTS was

low for the duration specified by the fCtsHold member of the COMSTAT
structure.

CE_DNS Parallel device was not selected.
CE_DSRTO DSR (data-set-ready) timeout. While a character was being transmitted, DSR was

low for the duration specified by the fDsrHold member of COMSTAT.
CE_FRAME Hardware detected a framing error.
CE_IOE I/O error occurred during an attempt to communicate with a parallel device.
CE_MODE Requested mode is not supported, or the idComDev parameter is invalid. If set,

CE_MODE is the only valid error.
CE_OOP Parallel device signaled that it is out of paper.
CE_OVERRUN Character was not read from the hardware before the next character arrived. The

character was lost.
CE_PTO Timeout occurred during an attempt to communicate with a parallel device.
CE_RLSDTO RLSD (receive-line-signal-detect) timeout. While a character was being

transmitted, RLSD was low for the duration specified by the fRlsdHold member
of COMSTAT.

CE_RXOVER Receiving queue overflowed. There was either no room in the input queue or a
character was received after the end-of-file character was received.

CE_RXPARITY Hardware detected a parity error.
CE_TXFULL Transmission queue was full when a function attempted to queue a character.

See Also
OpenComm, COMSTAT

CE_BREAK 0x0010

Hardware detected a break condition.

CE_BREAK 0x0010

CE_CTSTO 0x0020

CTS (clear-to-send) timeout. While a character was being transmitted, CTS was low for the duration
specified by the fCtsHold member of the COMSTAT structure.

CE_CTSTO 0x0020

CE_DNS 0x0800

Parallel device was not selected.

CE_DNS 0x0800

CE_DSRTO 0x0040

DSR (data-set-ready) timeout. While a character was being transmitted, DSR was low for the duration
specified by the fDsrHold member of COMSTAT.

CE_DSRTO 0x0040

CE_FRAME 0x0008

Hardware detected a framing error.

CE_FRAME 0x0008

CE_IOE 0x0400

I/O error occurred during an attempt to communicate with a parallel device.

CE_IOE 0x0400

CE_MODE 0x8000

Requested mode is not supported, or the idComDev parameter is invalid. If set, CE_MODE is the only
valid error.

CE_MODE 0x8000

CE_OOP 0x1000

Parallel device signaled that it is out of paper.

CE_OOP 0x1000

CE_OVERRUN 0x0002

Character was not read from the hardware before the next character arrived. The character was lost.

CE_OVERRUN 0x0002

CE_PTO 0x0200

Timeout occurred during an attempt to communicate with a parallel device.

CE_PTO 0x0200

CE_RLSDTO 0x0080

RLSD (receive-line-signal-detect) timeout. While a character was being transmitted, RLSD was low for
the duration specified by the fRlsdHold member of COMSTAT.

CE_RLSDTO 0x0080

CE_RXOVER 0x0001

Receiving queue overflowed. There was either no room in the input queue or a character was received
after the end-of-file character was received.

CE_RXOVER 0x0001

CE_RXPARITY 0x0004

Hardware detected a parity error.

CE_RXPARITY 0x0004

CE_TXFULL 0x0100

Transmission queue was full when a function attempted to queue a character.

CE_TXFULL 0x0100

GetCommEventMask (2.x)
UINT GetCommEventMask(idComDev, fnEvtClear)
int idComDev; /* communications device identifier */
int fnEvtClear; /* events to clear in the
event word *
/

The GetCommEventMask function retrieves and then clears the event word for a communications device.

Parameter Description
idComDev Specifies the communication device to be examined. The OpenComm function returns

this value.
fnEvtClear Specifies which events are to be cleared in the event word. For a list of the event values,

see the description of the SetCommEventMask function.

Returns
The return value specifies the current event-word value for the specified communications device if the
function is successful. Each bit in the event word specifies whether a given event has occurred; a bit is set
(to 1) if the event has occurred.

Comments
Before the GetCommEventMask function can record the occurrence of an event, an application must
enable the event by using the SetCommEventMask function.

If the communication device event is a line-status or printer error, the application should call the
GetCommError function after calling GetCommEventMask.

See Also
GetCommError, OpenComm, SetCommEventMask

GetCommState (2.x)
int GetCommState(idComDev, lpdcb)
int idComDev; /* communications device identifier */
DCB FAR* lpdcb; /
* address of structure for device control block *
/

The GetCommState function retrieves the device control block for the specified device.

Parameter Description
idComDev Specifies the device to be examined. The OpenComm function returns this value.
lpdcb Points to the DCB structure that is to receive the current device control block. The DCB

structure defines the control settings for the device.

Returns
The return value is zero if the function is successful. Otherwise, it is less than zero.

See Also
OpenComm, SetCommState, DCB

GetCurrentTime (2.x)
DWORD GetCurrentTime(void)

The GetCurrentTime function retrieves the number of milliseconds that have elapsed since Windows was
started.

Returns
The return value is the number of milliseconds that have elapsed since Windows was started, if the
function was successful.

Comments
The GetCurrentTime function is identical to the GetTickCount function. Applications should use the
GetTickCount function, since its name matches more closely with what the function does.

See Also
GetTickCount

GetCursor (3.1)
HCURSOR GetCursor(void)

The GetCursor function retrieves the handle of the current cursor.

Parameter Description
This function has no parameters.

Returns
The return value is the handle of the current cursor if a cursor exists. Otherwise, it is NULL.

See Also
SetCursor

GetCursorPos (2.x)
void GetCursorPos(lppt)
POINT FAR* lppt; /* address of structure for cursor position */

The GetCursorPos function retrieves the screen coordinates of the cursor's current position.

Parameter Description
lppt Points to the POINT structure that receives the cursor position, in screen coordinates.

Returns
This function does not return a value.

Comments
The cursor position is always given in screen coordinates and is not affected by the mapping mode of the
window that contains the cursor.

See Also
ClipCursor, SetCursorPos, POINT

GetDC (2.x)
HDC GetDC(hwnd)
HWND hwnd; /* handle of window */

The GetDC function retrieves the handle of a device context for the client area of the given window. The
device context can be used in subsequent graphics device interface (GDI) functions to draw in the client
area.

The GetDC function retrieves a common, class, or private device context, depending on the class style
specified for the given window. For common device contexts, GetDC assigns default attributes to the
context each time it is retrieved. For class and private contexts, GetDC leaves the previously assigned
attributes unchanged.

Parameter Description
hwnd Identifies the window where drawing will occur. If this parameter is NULL, the function

returns a device context for the screen.

Returns
The return value is a handle of the device context for the given window's client area, if the function is
successful. Otherwise, it is NULL.

Comments
Unless the device context belongs to a window class, the ReleaseDC function must be called to release the
context after drawing. Since only five common device contexts are available at any given time, failure to
release a device context can prevent other applications from accessing a device context. If the hwnd
parameter of the GetDC function is NULL, the first parameter of ReleaseDC should also be NULL.

A device context with special characteristics is returned by the GetDC function if CS_CLASSDC,
CS_OWNDC, or CS_PARENTDC style was specified in the WNDCLASS structure when the class was
registered. For more information about these characteristics, see the description of the WNDCLASS
structure.

See Also
BeginPaint, GetDCEx, GetWindowDC, ReleaseDC, WNDCLASS

GetDCEx (3.1)
HDC GetDCEx(hwnd, hrgnClip, fdwOptions)
register HWND hwnd; /* window where drawing will occur */
HRGN hrgnClip; /*
clipping region that may be combined *
/
DWORD fdwOptions; /
* device-context options *
/

The GetDCEx function retrieves the handle of a device context for the given window. The device context
can be used in subsequent graphics device interface (GDI) functions to draw in the client area.

This function, which is an extension to the GetDC function, gives an application more control over how
and whether a device context for a window is clipped.

Parameter Description
hwnd Identifies the window where drawing will occur.
hrgnClip Identifies a clipping region that may be combined with the visible region of the client

window.
fdwOptions Specifies how the device context is created. This parameter can be a combination of the

following values:

Value Meaning
DCX_CACHE Returns a device context from the cache, rather

than the OWNDC or CLASSDC window.
Essentially overrides CS_OWNDC and
CS_CLASSDC.

DCX_CLIPCHILDREN Excludes the visible regions of all child
windows below the window identified by the
hwnd parameter.

DCX_CLIPSIBLINGS Excludes the visible regions of all sibling
windows above the window identified by the
hwnd parameter.

DCX_EXCLUDERGN Excludes the clipping region identified by the
hrgnClip parameter from the visible region of
the returned device context.

DCX_INTERSECTRGN Intersects the clipping region identified by the
hrgnClip parameter with the visible region of
the returned device context.

DCX_LOCKWINDOWUPDATE Allows drawing even if there is a
LockWindowUpdate call in effect that would
otherwise exclude this window. This value is
used for drawing during tracking.

DCX_PARENTCLIP Uses the visible region of the parent window,
ignoring the parent window's
WS_CLIPCHILDREN and WS_PARENTDC
style bits. This value sets the device context's
origin to the upper-left corner of the window
identified by the hwnd parameter.

DCX_WINDOW Returns a device context corresponding to the
window rectangle rather than the client
rectangle.

Returns
The return value is a handle of the device context for the specified window, if the function is successful.
Otherwise, it is NULL.

Comments
Unless the device context belongs to a window class, the ReleaseDC function must be called to release the
context after drawing. Since only five common device contexts are available at any given time, failure to
release a device context can prevent other applications from accessing a device context.

In order to obtain a cached device context, an application must specify DCX_CACHE. If DCX_CACHE is
not specified and the window is neither CS_OWNDC nor CS_CLASSDC, this function returns NULL.

A device context with special characteristics is returned by the GetDC function if CS_CLASSDC,
CS_OWNDC, or CS_PARENTDC style was specified in the WNDCLASS structure when the class was
registered. For more information about these characteristics, see the description of the WNDCLASS
structure.

See Also
BeginPaint, GetDC, GetWindowDC, ReleaseDC, WNDCLASS

DCX_CACHE 0x00000002L

Returns a device context from the cache, rather than the OWNDC or CLASSDC window. Essentially
overrides CS_OWNDC and CS_CLASSDC.

DCX_CACHE 0x00000002L

DCX_CLIPCHILDREN 0x00000008L

Excludes the visible regions of all child windows below the window identified by the hwnd parameter.

DCX_CLIPCHILDREN 0x00000008L

DCX_CLIPSIBLINGS 0x00000010L

Excludes the visible regions of all sibling windows above the window identified by the hwnd parameter.

DCX_CLIPSIBLINGS 0x00000010L

DCX_EXCLUDERGN 0x00000040L

Excludes the clipping region identified by the hrgnClip parameter from the visible region of the returned
device context.

DCX_EXCLUDERGN 0x00000040L

DCX_INTERSECTRGN 0x00000080L

Intersects the clipping region identified by the hrgnClip parameter with the visible region of the returned
device context.

DCX_INTERSECTRGN 0x00000080L

DCX_LOCKWINDOWUPDATE 0x00000400L

Allows drawing even if there is a LockWindowUpdate call in effect that would otherwise exclude this
window. This value is used for drawing during tracking.

DCX_LOCKWINDOWUPDATE 0x00000400L

DCX_PARENTCLIP 0x00000020L

Uses the visible region of the parent window, ignoring the parent window's WS_CLIPCHILDREN and
WS_PARENTDC style bits. This value sets the device context's origin to the upper-left corner of the
window identified by the hwnd parameter.

DCX_PARENTCLIP 0x00000020L

DCX_WINDOW 0x00000001L

Returns a device context corresponding to the window rectangle rather than the client rectangle.

DCX_WINDOW 0x00000001L

GetDesktopWindow (3.0)
HWND GetDesktopWindow(void)

The GetDesktopWindow function retrieves the handle of the desktop window. The desktop window covers
the entire screen and is the area on top of which all icons and other windows are painted.

Returns
The return value is a handle of the desktop window.

See Also
GetTopWindow, GetWindow

GetDialogBaseUnits (3.0)
DWORD GetDialogBaseUnits(void)

The GetDialogBaseUnits function returns the dialog box base units used by Windows when creating
dialog boxes. An application should use these values to calculate the average width of characters in the
system font.

Returns
The low-order word of the return value contains the width, in pixels, of the current dialog box base-width
unit, if the function is successful (this base unit is derived from the system font); the high-order word of
the return value contains the height, in pixels.

Comments
The values returned represent dialog box base units before being scaled to dialog box units. The dialog
box unit in the x-direction is one-fourth of the width returned by the GetDialogBaseUnits function. The
dialog box unit in the y-direction is one-eighth of the height returned by the function.

To use GetDialogBaseUnits to determine the height and width, in pixels, of a control, given the width (x)
and height (y) in dialog box units and the return value (lDlgBaseUnits), use the following formulas:

(x * LOWORD(lDlgBaseUnits)) / 4
(y * HIWORD(lDlgBaseUnits)) / 8
To avoid rounding problems, perform the multiplication before the division, in case the dialog box base
units are not evenly divisible by four.

Example
The following example calculates tab stops based on the dialog box base units:

HMENU hmenu;
WORD DlgWidthUnits;
WORD TabStopList[4];
case WM_CREATE:

hmenu = LoadMenu(hinst, "TabStopsMenu");
SetMenu(hwnd, hmenu);
DlgWidthUnits = LOWORD(GetDialogBaseUnits()) / 4;
TabStopList[0] = (DlgWidthUnits * 16 * 2);
TabStopList[1] = (DlgWidthUnits * 32 * 2);
TabStopList[2] = (DlgWidthUnits * 58 * 2);
TabStopList[3] = (DlgWidthUnits * 84 * 2);
break;

GetDlgCtrlID (3.0)
int GetDlgCtrlID(hwnd)
HWND hwnd; /* handle of child window */

The GetDlgCtrlID function returns a handle of a child window.

Parameter Description
hwnd Identifies the child window.

Returns
The return value is a handle of the child window if the function is successful. Otherwise, it is NULL.

Comments
This function returns a handle of any child window, not just that of a control in a dialog box.

Since top-level windows do not have an identifier, the GetDlgCtrlID function's return value is invalid if
the hwnd parameter identifies a top-level window.

See Also
GetDlgItem, GetDlgItemInt, GetDlgItemText

GetDlgItem (2.x)
HWND GetDlgItem(hwndDlg, idControl)
HWND hwndDlg; /* handle of dialog box */
int idControl; /* identifier of control */

The GetDlgItem function retrieves the handle of a control that is in the given dialog box.

Parameter Description
hwndDlg Identifies the dialog box that contains the control.
idControl Specifies the identifier of the control to be retrieved.

Returns
The return value is the handle of the given control if the function is successful. Otherwise, it is NULL,
indicating either an invalid dialog box handle or a nonexistent control.

Comments
The GetDlgItem function can be used with any parent-child window pair, not just dialog boxes. As long as
the hwndDlg parameter identifies a parent window and the child window has a unique identifier (as
specified by the hmenu parameter in the CreateWindow function that created the child window),
GetDlgItem returns the handle of the child window.

See Also
CreateWindow, GetDlgCtrlID, GetDlgItemInt, GetDlgItemText, GetWindow

GetDlgItemInt (2.x)
UINT GetDlgItemInt(hwndDlg, idControl, lpfTranslated, fSigned)
HWND hwndDlg; /* handle of dialog box */
int idControl; /*
identifier of control *
/
BOOL FAR* lpfTranslated; /
* address of variable for error flag *
/
BOOL fSigned; /
* signed or unsigned indicator *
/

The GetDlgItemInt function translates the text of a control in the given dialog box into an integer value.

Parameter Description
hwndDlg Identifies the dialog box.
idControl Specifies the identifier of the dialog box control to be translated.
lpfTranslated Points to the Boolean variable that is to receive the translated flag.
fSigned Specifies whether the value to be retrieved is signed.

Returns
The return value specifies the translated value of the dialog box item text if the function is successful.
Since zero is a valid return value, the lpfTranslated parameter must be used to detect errors. If an
application requires a signed return value, it should cast the return value as an int type.

Comments
The function retrieves the text of the given control by sending the control a WM_GETTEXT message. The
function then translates the text by stripping any extra spaces at the beginning of the text and converting
decimal digits. The function stops translating when it reaches the end of the text or encounters a
nonnumeric character. If the fSigned parameter is TRUE, the GetDlgItemInt function checks for a minus
sign (–) at the beginning of the text and translates the text into a signed number. Otherwise, it creates an
unsigned value.

GetDlgItemInt returns zero if the translated number is greater than 32,767 (for signed numbers) or 65,535
(for unsigned numbers). When a error occurs, such as encountering nonnumeric characters and exceeding
the given maximum, GetDlgItemInt copies zero to the location pointed to by the lpfTranslated parameter.
If there are no errors, lpfTranslated receives a nonzero value. If lpfTranslated is NULL, GetDlgItemInt
does not warn about errors.

See Also
GetDlgCtrlID, GetDlgItem, GetDlgItemText

GetDlgItemText (2.x)
int GetDlgItemText(hwndDlg, idControl, lpsz, cbMax)
HWND hwndDlg; /* handle of dialog box */
int idControl; /* identifier of control */
LPSTR lpsz; /
* address of buffer for text *
/
int cbMax; /
* maximum size of string *
/

The GetDlgItemText function retrieves the title or text associated with a control in a dialog box.

Parameter Description
hwndDlg Identifies the dialog box that contains the control.
idControl Specifies the identifier of the control whose title is to be retrieved.
lpsz Points to a buffer that is to receive the control's title or text.
cbMax Specifies the maximum length, in bytes, of the string to be copied to the buffer pointed

to by the lpsz parameter. The string is truncated if it is longer.

Returns
The return value specifies the number of bytes copied to the buffer, not including the terminating null
character, if the function is successful. Otherwise, it is zero.

Comments
The GetDlgItemText function sends a WM_GETTEXT message to the control.

See Also
GetDlgCtrlID, GetDlgItem, GetDlgItemInt, WM_GETTEXT

GetDoubleClickTime (2.x)
UINT GetDoubleClickTime(void)

The GetDoubleClickTime function retrieves the current double-click time for the mouse. A double-click is
a series of two clicks of the mouse button, the second occurring within a specified time after the first. The
double-click time is the maximum number of milliseconds that may occur between the first and second
click of a double-click.

Returns
The return value specifies the current double-click time, in milliseconds.

See Also
GetCapture, SetDoubleClickTime

GetDriverModuleHandle (3.1)
HINSTANCE GetDriverModuleHandle(hdrvr)
HDRVR hdrvr; /* handle of installable driver */

The GetDriverModuleHandle function retrieves the instance handle of a module that contains an
installable driver.

Parameter Description
hdrvr Identifies the installable driver. This parameter must be retrieved by the OpenDriver

function.

Returns
The return value is an instance handle of the driver module if the function is successful. Otherwise, it is
NULL.

See Also
OpenDriver

GetDriverInfo (3.1)
BOOL GetDriverInfo(hdrvr, lpdis)
HDRVR hdrvr; /* handle of installable driver */
DRIVERINFOSTRUCT FAR* lpdis; /
* address of structure for info *
/

The GetDriverInfo function retrieves information about an installable driver.

Parameter Description
hdrvr Identifies the installable driver. This handle must be retrieved by the OpenDriver

function.
lpdis Points to a DRIVERINFOSTRUCT structure that receives the driver information.

Returns
The return value is nonzero if the function is successful. Otherwise, it is zero.

GetFocus (2.x)
HWND GetFocus(void)

The GetFocus function retrieves the handle of the window that currently has the input focus.

Returns
The return value is the handle of the focus window. If no window has the focus, it is NULL.

See Also
GetActiveWindow, GetCapture, SetFocus

GetFreeSystemResources (3.1)
UINT GetFreeSystemResources(fuSysResource)
UINT fuSysResource; /* type of resource to check */

The GetFreeSystemResources function returns the percentage of free space for system resources.

Parameter Description
fuSysResource Specifies the type of resource to be checked. This parameter can be one of the

following values:

Value Meaning
GFSR_SYSTEMRESOURCES Returns the percentage of free space for

system resources.
GFSR_GDIRESOURCES Returns the percentage of free space for GDI

resources. GDI resources include device-
context handles, brushes, pens, regions,
fonts, and bitmaps.

GFSR_USERRESOURCES Returns the percentage of free space for
USER resources. These resources include
window and menu handles.

Returns
The return value specifies the percentage of free space for resources, if the function is successful.

Comments
Since the return value from this function does not guarantee that an application will be able to create a new
object, applications should not use this function to determine whether it will be possible to create an
object.

See Also
GetFreeSpace

GFSR_SYSTEMRESOURCES 0x0000

Returns the percentage of free space for system resources.

GFSR_SYSTEMRESOURCES 0x0000

GFSR_GDIRESOURCES 0x0001

Returns the percentage of free space for GDI resources. GDI resources include device-context handles,
brushes, pens, regions, fonts, and bitmaps.

GFSR_GDIRESOURCES 0x0001

GFSR_USERRESOURCES 0x0002

Returns the percentage of free space for USER resources. These resources include window and menu
handles.

GFSR_USERRESOURCES 0x0002

GetInputState (2.x)
BOOL GetInputState(void)

The GetInputState function determines whether there are mouse clicks or keyboard events in the system
queue that require processing. Keyboard events occur when a user presses one or more keys. The system
queue is the location in which Windows stores mouse and keyboard events.

Returns
The return value is nonzero if the function detects a mouse click or keyboard event in the system queue.
Otherwise, it is zero.

See Also
EnableHardwareInput

GetKeyboardState (2.x)
void GetKeyboardState(lpbKeyState)
BYTE FAR* lpbKeyState; /* address of array to receive virtual-key codes */

The GetKeyboardState function copies the status of the 256 virtual-keyboard keys to the specified buffer.

Parameter Description
lpbKeyState Points to the 256-byte buffer that will receive the virtual-key codes.

Returns
This function does not return a value.

Comments
An application calls the GetKeyboardState function in response to a keyboard-input message. This
function retrieves the state of the keyboard at the time the input message was generated.

If the high-order bit is 1, the key is down; otherwise, it is up. If the low-order bit is 1, the key is toggled. A
toggle key, such as the CAPSLOCK key, is toggled if it has been pressed an odd number of times since the
system was started. The key is untoggled if the low-order bit is 0.

Example
The following example simulates a pressed CTRL key:

BYTE pbKeyState[256];
GetKeyboardState((LPBYTE) &pbKeyState);
pbKeyState[VK_CONTROL] |= 0x80;
SetKeyboardState((LPBYTE) &pbKeyState);
See Also
GetKeyState, SetKeyboardState

GetKeyState (2.x)
int GetKeyState(vkey)
int vkey; /* virtual key */

The GetKeyState function retrieves the state of the specified virtual key. The state specifies whether the
key is up, down, or toggled (on, off--alternating each time the key is pressed).

Parameter Description
vkey Specifies a virtual key. If the requested virtual key is a letter or digit (A through Z, a

through z, or 0 through 9), vkey must be set to the ASCII value of that character. For
other keys, it must be a virtual-key code.

Returns
The return value specifies the state of the given virtual key. If the high-order bit is 1, the key is down;
otherwise, it is up. If the low-order bit is 1, the key is toggled. A toggle key, such as the CAPSLOCK key, is
toggled if it has been pressed an odd number of times since the system was started. The key is untoggled if
the low-order bit is 0.

Comments
An application calls the GetKeyState function in response to a keyboard-input message. This function
retrieves the state of the key at the time the input message was generated.

See Also
GetAsyncKeyState, GetKeyboardState

GetLastActivePopup (3.0)
HWND GetLastActivePopup(hwndOwner)
HWND hwndOwner; /* handle of owner window */

The GetLastActivePopup function determines which pop-up window owned by the given window was
most recently active.

Parameter Description
hwndOwner Identifies the owner window.

Returns
The return value is the handle of most-recently active pop-up window if the function is successful.

Comments
The return value handle will be the same as the handle in the hwndOwner parameter if any of the
following conditions are met:

The window identified by hwndOwner was most recently active.
The window identified by hwndOwner does not own any pop-up windows.
The window identified by hwndOwner is not a top-level window or is owned by another window.

See Also
AnyPopup, GetActiveWindow, ShowOwnedPopups

GetMenu (2.x)
HMENU GetMenu(hwnd)
HWND hwnd; /* handle of window */

The GetMenu function retrieves the handle of the menu associated with the given window.

Parameter Description
hwnd Identifies the window whose menu handle is retrieved.

Returns
The return value is the handle of the menu if the function is successful. It is NULL if the given window
has no menu. It is undefined if the window is a child window.

See Also
GetSubMenu, SetMenu

GetMenuCheckMarkDimensions (3.0)
DWORD GetMenuCheckMarkDimensions(void)

The GetMenuCheckMarkDimensions function returns the dimensions of the default check mark bitmap.
Windows displays this bitmap next to checked menu items. Before calling the SetMenuItemBitmaps
function to replace the default check mark, an application should determine the correct size for the bitmaps
by calling the GetMenuCheckMarkDimensions function.

Returns
The low-order word of the return value contains the width, in pixels, of the default check mark bitmap, if
the function is successful; the high-order word contains the height.

See Also
SetMenuItemBitmaps

GetMenuItemCount (2.x)
int GetMenuItemCount(hmenu)
HMENU hmenu; /* handle of menu */

The GetMenuItemCount function determines the number of items in a pop-up or top-level menu.

Parameter Description
hmenu Identifies the handle of the menu to be examined.

Returns
The return value specifies the number of items in the menu if the function is successful. Otherwise, it is -
1.

Example
The following example initializes the items in a pop-up menu:

WORD wCount;
WORD wItem;
WORD wID;
case WM_INITMENUPOPUP:

wCount = GetMenuItemCount((HMENU) wParam);
for (wItem = 0; wItem < wCount; wItem++) {
wID = GetMenuItemID((HMENU) wParam, wItem);
.
. /* Initialize menu items. */
.
}
break;

See Also
GetMenu, GetMenuItemID, GetSubMenu

GetMenuItemID (2.x)
UINT GetMenuItemID(hmenu, pos)
HMENU hmenu; /* handle of menu */
int pos; /* position of menu item */

The GetMenuItemID function retrieves the identifier for a menu item located at the given position.

Parameter Description
hmenu Identifies the pop-up menu that contains the item whose identifier is to be retrieved.
pos Specifies the zero-based position of the menu item whose identifier is to be retrieved.

Returns
The return value specifies the identifier of the pop-up menu item if the function is successful. If the hmenu
parameter is NULL or if the specified item is a pop-up menu (as opposed to an item within the pop-up
menu), the return value is -1. If the pos parameter corresponds to a SEPARATOR menu item, the return
value is zero.

Example
The following example initializes the items in a pop-up menu:

WORD wCount;
WORD wItem;
WORD wID;
case WM_INITMENUPOPUP:

wCount = GetMenuItemCount((HMENU) wParam);
for (wItem = 0; wItem < wCount; wItem++) {
wID = GetMenuItemID((HMENU) wParam, wItem);
.
. /* Initialize menu items. */
.
}
break;

See Also
GetMenu, GetMenuItemCount, GetSubMenu

GetMenuState (2.x)
UINT GetMenuState(hmenu, idItem, fuFlags)
HMENU hmenu; /* handle of menu */
UINT idItem; /* menu-item identifier */
UINT fuFlags; /
* menu flags *
/

The GetMenuState function retrieves the status flags associated with the specified menu item. If the menu
item is a pop-up menu, this function also returns the number of items in the pop-up menu.

Parameter Description
hmenu Identifies the menu.
idItem Specifies the menu item for which the state is retrieved, as determined by the fuFlags

parameter.
fuFlags Specifies the nature of the idItem parameter. It can be one of the following values:

Value Meaning
MF_BYCOMMAND Specifies the menu-item identifier.
MF_BYPOSITION Specifies the zero-based position of the menu item.

Returns
The return value is -1 if the specified item does not exist. If the idItem parameter identifies a pop-up menu,
the high-order byte of the return value contains the number of items in the pop-up menu, and the low order
byte contains the menu flags associated with the pop-up menu. Otherwise, the return value is a mask
(Boolean OR) of the values from the following list (this mask describes the status of the menu item that
idItem identifies):

Value Meaning
MF_BITMAP Item is a bitmap.
MF_CHECKED Check mark is placed next to item (pop-up menus only).
MF_DISABLED Item is disabled.
MF_ENABLED Item is enabled. Note that the value of this constant is zero; an application

should not test against zero for failure when using this value.
MF_GRAYED Item is disabled and grayed.
MF_MENUBARBREAK Same as MF_MENUBREAK, except for pop-up menus where the new

column is separated from the old column by a vertical dividing line.
MF_MENUBREAK Item is placed on a new line (static menus) or in a new column (pop-up

menus) without separating columns.
MF_SEPARATOR Horizontal dividing line is drawn (pop-up menus only). This line cannot be

enabled, checked, grayed, or highlighted. The idItem and fuFlags
parameters are ignored.

MF_UNCHECKED Check mark is not placed next to item (default). Note that the value of this
constant is zero; an application should not test against zero for failure when
using this value.

Example
The following example retrieves the handle of a pop-up menu, retrieves the checked state of a menu item
in the menu, and then toggles the checked state of the item:

HMENU hmenu;
BOOL fOwnerDraw;
/* Retrieve a handle to the Colors menu. */
hmenu = GetSubMenu(GetMenu(hwnd), ID_COLORS_POS);
/* Retrieve the current state of the item. */
fOwnerDraw = GetMenuState(hmenu, IDM_COLOROWNERDR,

MF_BYCOMMAND) & MF_CHECKED;

/* Toggle the state of the item. */
CheckMenuItem(hmenu, IDM_COLOROWNERDR,

MF_BYCOMMAND | (fOwnerDraw ? MF_UNCHECKED : MF_CHECKED));
See Also
GetMenu, GetMenuItemCount, GetSubMenu

GetMenuString (2.x)
int GetMenuString(hmenu, idItem, lpsz, cbMax, fwFlags)
HMENU hmenu; /* handle of menu */
UINT idItem; /* menu-item identifier */
LPSTR lpsz; /
* address of buffer for label *
/
int cbMax; /
* maximum length of label *
/
UINT fwFlags; /
* menu flags *
/

The GetMenuString function copies the label of a menu item into a buffer.

Parameter Description
hmenu Identifies the menu.
idItem Specifies the menu item whose label is to be copied, as determined by the fwFlags

parameter.
lpsz Points to a buffer that will receive the null-terminated label string.
cbMax Specifies the maximum length, in bytes, of the label string. The label string is truncated

if it is longer.
fwFlags Specifies the nature of the idItem parameter. It can be one of the following values:

Value Meaning
MF_BYCOMMAND Specifies the menu-item identifier.
MF_BYPOSITION Specifies the zero-based position of the menu item.

Returns
The return value is the length, in bytes, of the returned label, if the function is successful. The length does
not include the terminating null character.

Comments
The cbMax parameter should be one larger than the number of characters in the label to accommodate the
null character that terminates the string.

See Also
GetMenu, GetMenuItemID

GetMessage (2.x)
BOOL GetMessage(lpmsg, hwnd, uMsgFilterMin, uMsgFilterMax)
MSG FAR* lpmsg; /* address of structure with message */
HWND hwnd; /* handle of the
window *
/
UINT uMsgFilterMin; /
* first message *
/
UINT uMsgFilterMax; /
* last message *
/

The GetMessage function retrieves a message from the application's message queue and places the
message in a MSG structure. If no message is available, GetMessage yields control to other applications
until a message becomes available.

GetMessage retrieves messages associated only with the given window and within the given range of
message values. The function does not retrieve messages for windows that belong to other applications.

Parameter Description
lpmsg Points to an MSG structure that contains message information from the application's

message queue.
hwnd Identifies the window whose messages are to be retrieved. If this parameter is NULL,

GetMessage retrieves messages for any window that belongs to the application making
the call.

uMsgFilterMin Specifies the integer value of the lowest message value to be retrieved.
uMsgFilterMax Specifies the integer value of the highest message value to be retrieved.

Returns
The return value is nonzero if a message other than WM_QUIT is retrieved. It is zero if the WM_QUIT
message is retrieved.

Comments
The return value is usually used to decide whether to terminate the application's main loop and exit the
program.

The WM_KEYFIRST and WM_KEYLAST constants can be used as filter values to retrieve all messages
related to keyboard input; the WM_MOUSEFIRST and WM_MOUSELAST constants can be used to
retrieve all mouse-related messages. If the uMsgFilterMin and uMsgFilterMax parameters are both zero,
the GetMessage function returns all available messages (without performing any filtering).

In addition to yielding control to other applications when no messages are available, the GetMessage and
PeekMessage functions also yield control when WM_PAINT or WM_TIMER messages for other tasks are
available.

The GetMessage, PeekMessage, and WaitMessage functions are the only ways to let other applications
run. If your application does not call any of these functions for long periods of time, other applications
cannot run.

Example
The following example uses the GetMessage function to retrieve messages from a message queue,
translates virtual-key messages into character messages, and dispatches messages to the appropriate
window procedures:

MSG msg;
while (GetMessage(&msg, (HWND) NULL, 0, 0)) {

TranslateMessage(&msg);
DispatchMessage(&msg);

}
See Also
GetMessageExtraInfo, PeekMessage, PostQuitMessage, SetMessageQueue, WaitMessage, MSG,
WM_PAINT, WM_QUIT, WM_TIMER

GetMessageExtraInfo (3.1)
LONG GetMessageExtraInfo(void)

The GetMessageExtraInfo function retrieves the extra information associated with the last message
retrieved by the GetMessage or PeekMessage function. This extra information may be added to a message
by the driver for a pointing device or keyboard.

Returns
The return value specifies the extra information if the function is successful. The meaning of the extra
information is device-specific.

See Also
GetMessage, hardware_event, PeekMessage

GetMessagePos (2.x)
DWORD GetMessagePos(void)

The GetMessagePos function returns a long value that represents a cursor position, in screen coordinates.
This position is the point occupied by the cursor when the last message retrieved by the GetMessage
function occurred.

Returns
The return value specifies the x- and y-coordinates of the cursor position if the function is successful.

Comments
To retrieve the current position of the cursor instead of the position at the time the last message occurred,
use the GetCursorPos function.

The x-coordinate is in the low-order word of the return value; the y-coordinate is in the high-order word. If
the return value is assigned to a variable, you can use the MAKEPOINT macro to obtain a POINT
structure from the return value. You can also use the LOWORD or HIWORD macro to extract the x- or
the y-coordinate.

See Also
GetCursorPos, GetMessage, GetMessageTime, MAKEPOINT, LOWORD, HIWORD, POINT

GetMessageTime (2.x)
LONG GetMessageTime(void)

The GetMessageTime function returns the message time for the last message retrieved by the GetMessage
function. The time is a long integer that specifies the elapsed time, in milliseconds, from the time the
system was started to the time the message was created (placed in the application queue).

Returns
The return value specifies the message time if the function is successful.

Comments
The return value of the GetMessageTime function does not necessarily increase between subsequent
messages, because the value wraps to zero if the timer count exceeds the maximum value for long integers.

To calculate time delays between messages, verify that the time of the second message is greater than the
time of the first message and then subtract the time of the first message from the time of the second
message.

See Also
GetMessage, GetMessagePos

GetNextDlgGroupItem (2.x)
HWND GetNextDlgGroupItem(hwndDlg, hwndCtrl, fPrevious)
HWND hwndDlg; /* handle of dialog box */
HWND hwndCtrl; /* handle of control */
BOOL fPrevious; /
* direction flag *
/

The GetNextDlgGroupItem function searches for the previous (or next) control within a group of controls
in a dialog box. A group of controls begins with a control with the WS_GROUP style and ends with the
last control that does not contain a WS_GROUP style.

Parameter Description
hwndDlg Identifies the dialog box to be searched.
hwndCtrl Identifies the control to be used as the starting point for the search.
fPrevious Specifies how the function is to search the group of controls in the dialog box. If this

parameter is TRUE, the function searches for the previous control in the group. If this
parameter is FALSE, the function searches for the next control in the group.

Returns
The return value is the window handle of the previous (or next) control in the group, if the function is
successful.

Comments
If the hwndCtrl parameter identifies the last control in the group and the fPrevious parameter is FALSE,
the GetNextDlgGroupItem function returns the window handle of the first control in the group. If
hwndCtrl identifies the first control in the group and fPrevious is TRUE, GetNextDlgGroupItem returns
the window handle of the last control in the group.

Example
The following example sets the check state of a group of radio buttons. It is assumed that the group
contains only radio buttons and no other type of control:

HWND hwndStart, hwndCurrent;
case WM_COMMAND:

switch (HIWORD(lParam)) {
case BN_CLICKED:
/*
* If a radio button was clicked, clear the current
* selection and select the one that was clicked.
*/
hwndStart = GetDlgItem(hdlg, wParam);
if (LOWORD(GetWindowLong(hwndStart,

GWL_STYLE) == BS_RADIOBUTTON)) {
hwndCurrent = hwndStart;
do {
hwndCurrent = GetNextDlgGroupItem(hdlg,

hwndCurrent, TRUE);
SendMessage(hwndCurrent, BM_SETCHECK,

hwndCurrent == hwndStart, 0L);
} while (hwndCurrent != hwndStart);
}
.
. /* Process other notification codes. */
.
}

See Also
GetDlgItem, GetNextDlgTabItem

GetNextDlgTabItem (2.x)
HWND GetNextDlgTabItem(hwndDlg, hwndCtrl, fPrevious)
HWND hwndDlg; /* handle of dialog box */
HWND hwndCtrl; /* handle of known
control *
/
BOOL fPrevious; /
* direction flag *
/

The GetNextDlgTabItem function retrieves the handle of the first control that has the WS_TABSTOP
style that precedes (or follows) the specified control.

Parameter Description
hwndDlg Identifies the dialog box to be searched.
hwndCtrl Identifies the control to be used as the starting point for the search.
fPrevious Specifies how the function is to search the dialog box. If this parameter is TRUE, the

function searches for the previous control in the dialog box. If this parameter is FALSE,
the function searches for the next control in the dialog box.

Returns
The return value is the window handle of the previous (or next) control that has the WS_TABSTOP style,
if the function is successful.

Example
The following example retrieves the handle of the previous control that has the WS_TABSTOP style,
relative to the control that has the input focus:

HWND hdlg;
HWND hwndControl;
hwndControl = GetNextDlgTabItem(hdlg, GetFocus(), TRUE);
See Also
GetDlgItem, GetNextDlgGroupItem

GetNextDriver (3.1)
HDRVR GetNextDriver(hdrvr, fdwFlag)
HDRVR hdrvr; /* handle of installable driver */
DWORD fdwFlag; /* search flag */

The GetNextDriver function enumerates instances of an installable driver.

Parameter Description
hdrvr Identifies the installable driver for which instances should be enumerated. This

parameter must be retrieved by the OpenDriver function. If this parameter is NULL, the
enumeration begins at either the beginning or end of the list of installable drivers
(depending on the setting of the flags in the fdwFlag parameter).

fdwFlag Specifies whether the function should return a handle identifying only the first instance
of a driver and whether the function should return handles identifying the instances of
the driver in the order in which they were loaded. This parameter can be one or more of
the following flags:

Value Meaning
GND_FIRSTINSTANCEONLY Returns a handle identifying the first instance

of an installable driver. When this flag is set,
the function will enumerate only the first
instance of an installable driver, no matter
how many times the driver has been installed.

GND_FORWARD Enumerates subsequent instances of the
driver. (Using this flag has the same effect as
not using the GND_REVERSE flag.)

GND_REVERSE Enumerates instances of the driver as it was
loaded--each subsequent call to the function
returns the handle of the next instance.

Returns
The return value is the instance handle of the installable driver if the function is successful.

GND_FIRSTINSTANCEONLY 0x00000001

Returns a handle identifying the first instance of an installable driver. When this flag is set, the function
will enumerate only the first instance of an installable driver, no matter how many times the driver has
been installed.

GND_FIRSTINSTANCEONLY 0x00000001

GND_FORWARD 0x00000000

Enumerates subsequent instances of the driver. (Using this flag has the same effect as not using the
GND_REVERSE flag.)

GND_FORWARD 0x00000000

GND_REVERSE 0x00000002

Enumerates instances of the driver as it was loaded--each subsequent call to the function returns the handle
of the next instance.

GND_REVERSE 0x00000002

GetNextWindow (2.x)
HWND GetNextWindow(hwnd, uFlag)
HWND hwnd; /* handle of current window */
UINT uFlag; /* direction flag */

The GetNextWindow function searches for the handle of the next (or previous) window in the window
manager's list. The window manager's list contains entries for all top-level windows, their associated child
windows, and the child windows of any child windows. If the given window is a top-level window, the
function searches for the next (or previous) handle of a top-level window. If the given window is a child
window, the function searches for the handle of the next (or previous) child window.

Parameter Description
hwnd Identifies the current window.
uFlag Specifies whether the function should return a handle to the next window or to the

previous window. It can be either of the following values:

Value Meaning
GW_HWNDNEXT Returns a handle of the next window.
GW_HWNDPREV Returns a handle of the previous window.

Returns
The return value is the handle of the next (or previous) window in the window manager's list if the
function is successful.

See Also
GetTopWindow, GetWindow

GetOpenClipboardWindow (3.1)
HWND GetOpenClipboardWindow(void)

The GetOpenClipboardWindow function retrieves the handle of the window that currently has the
clipboard open.

Returns
The return value is the handle of the window that has the clipboard open, if the function is successful.
Otherwise, it is NULL.

See Also
GetClipboardOwner, GetClipboardViewer, OpenClipboard

GetParent (2.x)
HWND GetParent(hwnd)
HWND hwnd; /* handle of window */

The GetParent function retrieves the handle of the given window's parent window (if any).

Parameter Description
hwnd Identifies the window whose parent window handle is to be retrieved.

Returns
The return value is the handle of the parent window if the function is successful. Otherwise, it is NULL,
indicating an error or no parent window.

See Also
SetParent

GetPriorityClipboardFormat (3.0)
int GetPriorityClipboardFormat(lpuPriorityList, cEntries)
UINT FAR* lpuPriorityList; /* address of priority list */
int cEntries; /* count of entries in list *
/

The GetPriorityClipboardFormat function retrieves the first clipboard format in a list for which data exists
in the clipboard.

Parameter Description
lpuPriorityList Points to an integer array that contains a list of clipboard formats in priority order. For

a description of the data formats, see the description of the SetClipboardData function.
cEntries Specifies the number of entries in the priority list. This value must not be greater than

the number of entries in the list.

Returns
The return value is the highest priority clipboard format in the list for which data exists. If no data exists in
the clipboard, the return value is NULL. If data exists in the clipboard that does not match any format in
the list, the return value is -1.

See Also
CountClipboardFormats, EnumClipboardFormats, GetClipboardFormatName,
IsClipboardFormatAvailable, RegisterClipboardFormat, SetClipboardData

GetProp (2.x)
HANDLE GetProp(hwnd, lpsz)
HWND hwnd; /* handle of window */
LPCSTR lpsz; /* atom or address of string *
/

The GetProp function retrieves a data handle from the property list of a window. The character string
pointed to by the lpsz parameter identifies the handle to be retrieved. The string and handle must be added
to the property list by a previous call to the SetProp function.

Parameter Description
hwnd Identifies the window whose property list is to be searched.
lpsz Points to a null-terminated string or an atom that identifies a string. If an atom is given,

it must be a global atom created by a previous call to the GlobalAddAtom function. The
atom, a 16-bit value, must be placed in the low-order word of the lpsz parameter; the
high-order word must be zero.

Returns
The return value is the associated data handle if the property list contains the given string. Otherwise, it is
NULL.

Comments
The value retrieved by the GetProp function can be any 16-bit value useful to the application.

See Also
GlobalAddAtom, RemoveProp, SetProp

GetQueueStatus (3.1)
DWORD GetQueueStatus(fuFlags)
UINT fuFlags; /* queue-status flags */

The GetQueueStatus function returns a value that indicates the type of messages in the queue.

This function is very fast and is typically used inside speed-critical loops to determine whether the
GetMessage or PeekMessage function should be called to process input.

GetQueueStatus returns two sets of information: whether any new messages have been added to the queue
since GetQueueStatus, GetMessage, or PeekMessage was last called, and what kinds of events are
currently in the queue.

Parameter Description
fuFlags Specifies the queue-status flags to be retrieved. This parameter can be a combination of

the following values:

Value Meaning
QS_KEY WM_CHAR message is in the queue.
QS_MOUSE WM_MOUSEMOVE or WM_*BUTTON* message is in

the queue.
QS_MOUSEMOVE WM_MOUSEMOVE message is in the queue.
QS_MOUSEBUTTON WM_*BUTTON* message is in the queue.
QS_PAINT WM_PAINT message is in the queue.
QS_POSTMESSAGE Posted message other than those listed above is in the

queue.
QS_SENDMESSAGE Message sent by another application is in the queue.
QS_TIMER WM_TIMER message is in the queue.

Returns
The high-order word of the return value indicates the types of messages currently in the queue. The low-
order word shows the types of messages added to the queue and are still in the queue since the last call to
the GetQueueStatus, GetMessage, or PeekMessage function.

Comments
The existence of a QS_ flag in the return value does not guarantee that a subsequent call to the
PeekMessage or GetMessage function will return a message. GetMessage and PeekMessage perform some
internal filtering computation that may cause the message to be processed internally. For this reason, the
return value from GetQueueStatus should be considered only a hint as to whether GetMessage or
PeekMessage should be called.

See Also
GetInputState, GetMessage, PeekMessage

QS_KEY 0x0001

WM_CHAR message is in the queue.

QS_KEY 0x0001

QS_MOUSE (QS_MOUSEMOVE | QS_MOUSEBUTTON)

WM_MOUSEMOVE or WM_*BUTTON* message is in the queue.

QS_MOUSE (QS_MOUSEMOVE | QS_MOUSEBUTTON)

QS_MOUSEMOVE 0x0002

WM_MOUSEMOVE message is in the queue.

QS_MOUSEMOVE 0x0002

QS_MOUSEBUTTON 0x0004

WM_*BUTTON* message is in the queue.

QS_MOUSEBUTTON 0x0004

QS_PAINT 0x0020

WM_PAINT message is in the queue.

QS_PAINT 0x0020

QS_POSTMESSAGE 0x0008

Posted message other than those listed above is in the queue.

QS_POSTMESSAGE 0x0008

QS_SENDMESSAGE 0x0040

Message sent by another application is in the queue.

QS_SENDMESSAGE 0x0040

QS_TIMER 0x0010

WM_TIMER message is in the queue.

QS_TIMER 0x0010

GetScrollPos (2.x)
int GetScrollPos(hwnd, fnBar)
HWND hwnd; /* handle of window with scroll bar */
int fnBar; /* scroll bar flags */

The GetScrollPos function retrieves the current position of the scroll box (thumb) of a scroll bar. The
current position is a relative value that depends on the current scrolling range. For example, if the scrolling
range is 0 through 100 and the scroll box is in the middle of the bar, the current position is 50.

Parameter Description
hwnd Identifies a window that has standard scroll bars or a scroll bar control, depending on the

value of the fnBar parameter.
fnBar Specifies the scroll bar to examine. It can be one of the following values:

Value Meaning
SB_CTL Retrieves the position of a scroll bar control. In this case, the hwnd

parameter must be the window handle of a scroll bar control.
SB_HORZ Retrieves the position of a window's horizontal scroll bar.
SB_VERT Retrieves the position of a window's vertical scroll bar.

Returns
The return value specifies the current position of the scroll box in the scroll bar, if the function is
successful. Otherwise, it is zero, indicating that the hwnd parameter is invalid or that the window does not
have a scroll bar.

See Also
GetScrollRange, SetScrollPos, SetScrollRange

GetScrollRange (2.x)
void GetScrollRange(hwnd, fnBar, lpnMinPos, lpnMaxPos)
HWND hwnd; /* handle of window with scroll bar */
int fnBar; /* scroll bar flags */
int FAR* lpnMinPos; /
* receives minimum position *
/
int FAR* lpnMaxPos; /
* receives maximum position *
/

The GetScrollRange function retrieves the current minimum and maximum scroll bar positions for the
given scroll bar.

Parameter Description
hwnd Identifies a window that has standard scroll bars or a scroll bar control, depending on the

value of the fnBar parameter.
fnBar Specifies which scroll bar to retrieve. This parameter can be one of the following values:

Value Meaning
SB_CTL Retrieves the position of a scroll bar control; in this case, the hwnd

parameter must be the handle of a scroll bar control.
SB_HORZ Retrieves the position of a window's horizontal scroll bar.
SB_VERT Retrieves the position of a window's vertical scroll bar.

lpnMinPos Points to the integer variable that receives the minimum position.
lpnMaxPos Points to the integer variable that receives the maximum position.

Returns
This function does not return a value.

Comments
If the given window does not have standard scroll bars or is not a scroll bar control, the GetScrollRange
function copies zero to the lpnMinPos and lpnMaxPos parameters.

The default range for a standard scroll bar is 0 through 100. The default range for a scroll bar control is
empty (both values are zero).

See Also
GetScrollPos, SetScrollPos, SetScrollRange

GetSubMenu (2.x)
HMENU GetSubMenu(hmenu, nPos)
HMENU hmenu; /* handle of menu with pop-up menu */
int nPos; /* position of pop-up
menu *
/

The GetSubMenu function retrieves the handle of a pop-up menu.

Parameter Description
hmenu Identifies the menu with the pop-up menu whose handle is to be retrieved.
nPos Specifies the position in the given menu of the pop-up menu. Position values start at

zero (zero-based) for the first menu item. The pop-up menu's identifier cannot be used
in this function.

Returns
The return value is the handle of the given pop-up menu if the function is successful. Otherwise, it is
NULL, indicating that no pop-up menu exists at the given position.

See Also
CreatePopupMenu, GetMenu

GetSysColor (2.x)
COLORREF GetSysColor(nDspElement)
int nDspElement; /* display element */

The GetSysColor function retrieves the current color of the specified display element. Display elements
are the various parts of a window and the Windows display that appear on the system screen.

Parameter Description
nDspElement Specifies the display element whose color is to be retrieved. This parameter can be one

of the following values:

Value Meaning
COLOR_ACTIVEBORDER Active window border.
COLOR_ACTIVECAPTION Active window title.
COLOR_APPWORKSPACE Background color of multiple

document interface (MDI)
applications.

COLOR_BACKGROUND Desktop.
COLOR_BTNFACE Face shading on push buttons.
COLOR_BTNHIGHLIGHT Selected button in a control.
COLOR_BTNSHADOW Edge shading on push buttons.
COLOR_BTNTEXT Text on push buttons.
COLOR_CAPTIONTEXT Text in title bar, size button, scroll-

bar arrow button.
COLOR_GRAYTEXT Grayed (dimmed) text. This color

is zero if the current display driver
does not support a solid gray color.

COLOR_HIGHLIGHT Background of selected item in a
control.

COLOR_HIGHLIGHTTEXT Text of selected item in a control.
COLOR_INACTIVEBORDER Inactive window border.
COLOR_INACTIVECAPTION Inactive window title.
COLOR_INACTIVECAPTIONTEXT Color of text in an inactive title.
COLOR_MENU Menu background.
COLOR_MENUTEXT Text in menus.
COLOR_SCROLLBAR Scroll-bar gray area.
COLOR_WINDOW Window background.
COLOR_WINDOWFRAME Window frame.
COLOR_WINDOWTEXT Text in windows.

Returns
The return value is a red, green, blue (RGB) color value for the specified display element, if the function is
successful.

Comments
An application can use the GetRValue, GetGValue, and GetBValue macros to extract the various colors
from the return value.

See Also
GetSystemMetrics, SetSysColors, GetRValue, GetGValue, GetBValue

GetSysModalWindow (2.x)
HWND GetSysModalWindow(void)

The GetSysModalWindow function retrieves the handle of the system-modal window, if one is present.

Returns
The return value is the handle of the system-modal window, if one is present. Otherwise, it is NULL.

See Also
SetSysModalWindow

GetSystemDebugState (3.1)
LONG GetSystemDebugState(void)

The GetSystemDebugState function retrieves information about the state of the system. A Windows-
based debugger can use this information to determine whether to enter hard mode or soft mode upon
encountering a breakpoint.

Returns
The return value can be one or more of the following values:

Value Meaning
SDS_MENU Menu is displayed.
SDS_SYSMODAL System-modal dialog box is displayed.
SDS_NOTASKQUEUE Application queue does not exist yet and, therefore, the application cannot

accept posted messages.
SDS_DIALOG Dialog box is displayed.
SDS_TASKLOCKED Current task is locked and, therefore, no other task is permitted to run.

SDS_MENU 0x0001

Menu is displayed.

SDS_MENU 0x0001

SDS_SYSMODAL 0x0002

System-modal dialog box is displayed.

SDS_SYSMODAL 0x0002

SDS_NOTASKQUEUE 0x0004

Application queue does not exist yet and, therefore, the application cannot accept posted messages.

SDS_NOTASKQUEUE 0x0004

SDS_DIALOG 0x0008

Dialog box is displayed.

SDS_DIALOG 0x0008

SDS_TASKLOCKED 0x0010

Current task is locked and, therefore, no other task is permitted to run.

SDS_TASKLOCKED 0x0010

GetSystemMenu (2.x)
HMENU GetSystemMenu(hwnd, fRevert)
HWND hwnd; /* handle of window to own the System menu */
BOOL fRevert; /* reset
flag *
/

The GetSystemMenu function allows the application to access the System menu for copying and
modification.

Parameter Description
hwnd Identifies the window that will own a copy of the System menu.
fRevert Specifies the action to be taken. If this parameter is FALSE, the GetSystemMenu

function returns a handle of a copy of the System menu currently in use. This copy is
initially identical to the System menu, but can be modified.
If the parameter is TRUE, GetSystemMenu resets the System menu back to the
Windows default state. The previous System menu, if any, is destroyed. The return
value is undefined in this case.

Returns
The return value is the handle of a copy of the System menu, if the fRevert parameter is FALSE. If fRevert
is TRUE, the return value is undefined.

Comments
Any window that does not use the GetSystemMenu function to make its own copy of the System menu
receives the standard System menu.

The handle that GetSystemMenu returns can be used with the AppendMenu, InsertMenu, or ModifyMenu
function to change the System menu. The System menu initially contains items identified by various
identifier values such as SC_CLOSE, SC_MOVE, and SC_SIZE. Menu items on the System menu send
WM_SYSCOMMAND messages. All predefined System-menu items have identifier numbers greater than
0xF000. If an application adds commands to the System menu, it should use identifier numbers less than
0xF000.

Windows automatically grays (dims) items on the standard System menu, depending on the situation. The
application can carry out its own checking or graying by responding to the WM_INITMENU message,
which is sent before any menu is displayed.

Example
The following example appends the About item to the System menu:

HMENU hmenu;
hmenu = GetSystemMenu(hwnd, FALSE);
AppendMenu(hmenu, MF_SEPARATOR, 0, (LPSTR) NULL);
AppendMenu(hmenu, MF_STRING, IDM_ABOUT, "About...");
See Also
AppendMenu, InsertMenu, ModifyMenu, WM_INITMENU

GetSystemMetrics (2.x)
int GetSystemMetrics(nIndex)
int nIndex; /* system measurement to retrieve */

The GetSystemMetrics function retrieves the system metrics. The system metrics are the widths and
heights of the various elements displayed by Windows. GetSystemMetrics can also return flags that
indicate whether the current version of the Windows operating system is a debugging version, whether a
mouse is present, or whether the meanings of the left and right mouse buttons have been exchanged.

Parameter Description
nIndex Specifies the system measurement to be retrieved. All measurements are given in pixels.

The system measurement must be one of the following values:

Value Meaning
SM_CXBORDER Width of window frame that cannot be sized.
SM_CYBORDER Height of window frame that cannot be sized.
SM_CYCAPTION Height of window title. This is the title height

plus the height of the window frame that cannot
be sized (SM_CYBORDER).

SM_CXCURSOR Width of cursor.
SM_CYCURSOR Height of cursor.
SM_CXDOUBLECLK Width of the rectangle around the location of the

first click in a double-click sequence. The
second click must occur within this rectangle for
the system to consider the two clicks a double-
click.

SM_CYDOUBLECLK Height of the rectangle around the location of
the first click in a double-click sequence. The
second click must occur within this rectangle for
the system to consider the two clicks a double-
click.

SM_CXDLGFRAME Width of frame when window has the
WS_DLGFRAME style.

SM_CYDLGFRAME Height of frame when window has the
WS_DLGFRAME style.

SM_CXFRAME Width of window frame that can be sized.
SM_CYFRAME Height of window frame that can be sized.
SM_CXFULLSCREEN Width of window client area for a full-screen

window.
SM_CYFULLSCREEN Height of window client area for a full-screen

window (equivalent to the height of the screen
minus the height of the window title).

SM_CXICON Width of icon.
SM_CYICON Height of icon.
SM_CXICONSPACING Width of rectangles the system uses to position

tiled icons.
SM_CYICONSPACING Height of rectangles the system uses to position

tiled icons.
SM_CYKANJIWINDOW Height of Kanji window.
SM_CYMENU Height of single-line menu bar. This is the menu

height minus the height of the window frame
that cannot be sized (SM_CYBORDER).

SM_CXMIN Minimum width of window.
SM_CYMIN Minimum height of window.
SM_CXMINTRACK Minimum tracking width of window.
SM_CYMINTRACK Minimum tracking height of window.
SM_CXSCREEN Width of screen.

SM_CYSCREEN Height of screen.
SM_CXHSCROLL Width of arrow bitmap on a horizontal scroll

bar.
SM_CYHSCROLL Height of arrow bitmap on a horizontal scroll

bar.
SM_CXVSCROLL Width of arrow bitmap on a vertical scroll bar.
SM_CYVSCROLL Height of arrow bitmap on a vertical scroll bar.
SM_CXSIZE Width of bitmaps contained in the title bar.
SM_CYSIZE Height of bitmaps contained in the title bar.
SM_CXHTHUMB Width of scroll box (thumb) on horizontal scroll

bar.
SM_CYVTHUMB Height of scroll box on vertical scroll bar.
SM_DBCSENABLED Nonzero if current version of Windows uses

double-byte characters; otherwise, this value
returns zero.

SM_DEBUG Nonzero if the Windows version is a debugging
version.

SM_MENUDROPALIGNMENT Alignment of pop-up menus. If this value is
zero, the left side of a pop-up menu is aligned
with the left side of the corresponding menu-bar
item. If this value is nonzero, the left side of a
pop-up menu is aligned with the right side of the
corresponding menu-bar item.

SM_MOUSEPRESENT Nonzero if the mouse hardware is installed.
SM_PENWINDOWS Handle of the Pen Windows dynamic-link

library (DLL) if Pen Windows is installed.
SM_SWAPBUTTON Nonzero if the left and right mouse buttons are

swapped.

Returns
The return value specifies the requested system metric if the function is successful.

Comments
System metrics depend on the type of screen and may vary from screen to screen.

See Also
GetSysColor, SystemParametersInfo

Windows 3.1 changes

The following system-metric values have been added:

Value Meaning
SM_CXDOUBLECLK Width (in pixels) of the rectangle around the location of the first

click in a double-click sequence. The second click must occur
within this rectangle for the system to consider the two clicks a
double click.

SM_CYDOUBLECLK Height (in pixels) of the rectangle around the location of the first
click in a double-click sequence. The second click must occur
within this rectangle for the system to consider the two clicks a
double click.

SM_CXICONSPACING Width of the rectangles that the system uses to position tiled icons.
SM_CYICONSPACING Height of the rectangles that the system uses to position tiled icons.
SM_DBCSENABLED Nonzero if current version of Windows uses double-byte

characters; otherwise, returns zero.
SM_MENUDROPALIGHMENT Alignment of popup menus. If this value is 0, the left side of a

popup menu is aligned with the left side of the corresponding
menu-bar item. If this value is nonzero, the left side of a popup
menu is aligned with the right side of the corresponding menu-bar
item.

SM_PENWINDOWS Handle of the Pen Windows dynamic-link library (DLL) if Pen
Windows is installed.

SM_CXBORDER 5

Width of window frame that cannot be sized.

SM_CXBORDER 5

SM_CYBORDER 6

Height of window frame that cannot be sized.

SM_CYBORDER 6

SM_CYCAPTION 4

Height of window title. This is the title height plus the height of the window frame that cannot be sized
(SM_CYBORDER).

SM_CYCAPTION 4

SM_CXCURSOR 13

Width of cursor.

SM_CXCURSOR 13

SM_CYCURSOR 14

Height of cursor.

SM_CYCURSOR 14

SM_CXDOUBLECLK 36

Width of the rectangle around the location of the first click in a double-click sequence. The second click
must occur within this rectangle for the system to consider the two clicks a double-click.

SM_CXDOUBLECLK 36

SM_CYDOUBLECLK 37

Height of the rectangle around the location of the first click in a double-click sequence. The second click
must occur within this rectangle for the system to consider the two clicks a double-click.

SM_CYDOUBLECLK 37

SM_CXDLGFRAME 7

Width of frame when window has the WS_DLGFRAME style.

SM_CXDLGFRAME 7

SM_CYDLGFRAME 8

Height of frame when window has the WS_DLGFRAME style.

SM_CYDLGFRAME 8

SM_CXFRAME 32

Width of window frame that can be sized.

SM_CXFRAME 32

SM_CYFRAME 33

Height of window frame that can be sized.

SM_CYFRAME 33

SM_CXFULLSCREEN 16

Width of window client area for a full-screen window.

SM_CXFULLSCREEN 16

SM_CYFULLSCREEN 17

Height of window client area for a full-screen window (equivalent to the height of the screen minus the
height of the window title).

SM_CYFULLSCREEN 17

SM_CXICON 11

Width of icon.

SM_CXICON 11

SM_CYICON 12

Height of icon.

SM_CYICON 12

SM_CXICONSPACING 38

Width of rectangles the system uses to position tiled icons.

SM_CXICONSPACING 38

SM_CYICONSPACING 39

Height of rectangles the system uses to position tiled icons.

SM_CYICONSPACING 39

SM_CYKANJIWINDOW 18

Height of Kanji window.

SM_CYKANJIWINDOW 18

SM_CYMENU 15

Height of single-line menu bar. This is the menu height minus the height of the window frame that cannot
be sized (SM_CYBORDER).

SM_CYMENU 15

SM_CXMIN 28

Minimum width of window.

SM_CXMIN 28

SM_CYMIN 29

Minimum height of window.

SM_CYMIN 29

SM_CXMINTRACK 34

Minimum tracking width of window.

SM_CXMINTRACK 34

SM_CYMINTRACK 35

Minimum tracking height of window.

SM_CYMINTRACK 35

SM_CXSCREEN 0

Width of screen.

SM_CXSCREEN 0

SM_CYSCREEN 1

Height of screen.

SM_CYSCREEN 1

SM_CXHSCROLL 21

Width of arrow bitmap on a horizontal scroll bar.

SM_CXHSCROLL 21

SM_CYHSCROLL 3

Height of arrow bitmap on a horizontal scroll bar.

SM_CYHSCROLL 3

SM_CXVSCROLL 2

Width of arrow bitmap on a vertical scroll bar.

SM_CXVSCROLL 2

SM_CYVSCROLL 20

Height of arrow bitmap on a vertical scroll bar.

SM_CYVSCROLL 20

SM_CXSIZE 30

Width of bitmaps contained in the title bar.

SM_CXSIZE 30

SM_CYSIZE 31

Height of bitmaps contained in the title bar.

SM_CYSIZE 31

SM_CXHTHUMB 10

Width of scroll box (thumb) on horizontal scroll bar.

SM_CXHTHUMB 10

SM_CYVTHUMB 9

Height of scroll box on vertical scroll bar.

SM_CYVTHUMB 9

SM_DBCSENABLED 42

Nonzero if current version of Windows uses double-byte characters; otherwise, this value returns zero.

SM_DBCSENABLED 42

SM_DEBUG 22

Nonzero if the Windows version is a debugging version.

SM_DEBUG 22

SM_MENUDROPALIGNMENT 40

Alignment of pop-up menus. If this value is zero, the left side of a pop-up menu is aligned with the left
side of the corresponding menu-bar item. If this value is nonzero, the left side of a pop-up menu is aligned
with the right side of the corresponding menu-bar item.

SM_MENUDROPALIGNMENT 40

SM_MOUSEPRESENT 19

Nonzero if the mouse hardware is installed.

SM_MOUSEPRESENT 19

SM_PENWINDOWS 41

Handle of the Pen Windows dynamic-link library (DLL) if Pen Windows is installed.

SM_PENWINDOWS 41

SM_SWAPBUTTON 23

Nonzero if the left and right mouse buttons are swapped.

SM_SWAPBUTTON 23

GetTabbedTextExtent (3.0)
DWORD GetTabbedTextExtent(hdc, lpszString, cChars, cTabs, lpnTabs)
HDC hdc; /* handle of device context */
LPCSTR lpszString; /*
address of string *
/
int cChars; /
* number of characters in string *
/
int cTabs; /
* number of tab positions *
/
int FAR* lpnTabs; /
* address of array of tab positions *
/

The GetTabbedTextExtent function computes the width and height of a character string. If the string
contains one or more tab characters, the width of the string is based upon the specified tab stops.
GetTabbedTextExtent uses the currently selected font to compute the dimensions of the string.

Parameter Description
hdc Identifies the device context.
lpszString Points to a character string.
cChars Specifies the number of characters in the text string.
cTabs Specifies the number of tab-stop positions in the array pointed to by the lpnTabs

parameter.
lpnTabs Points to an array containing the tab-stop positions, in device units. The tab stops must

be sorted in increasing order; the smallest x-value should be the first item in the array.

Returns
The low-order word of the return value contains the string width, in logical units, if the function is
successful; the high-order word contains the string height.

Comments
The current clipping region does not affect the width and height returned by the GetTabbedTextExtent
function.

Since some devices do not place characters in regular cell arrays (that is, they kern the characters), the sum
of the extents of the characters in a string may not be equal to the extent of the string.

If the cTabs parameter is zero and the lpnTabs parameter is NULL, tabs are expanded to eight times the
average character width. If cTabs is 1, the tab stops are separated by the distance specified by the first
value in the array to which lpnTabs points.

Example
The following example uses the LOWORD and HIWORD macros to retrieve the width and height of the
string from the value returned by the GetTabbedTextExtent function:

LPSTR lpszTabbedText = "Column 1\tColumn 2\tTest of TabbedTextOut";
int aTabs[2] = { 150, 300 };
DWORD dwTabExtent;
WORD wStringWidth, wStringHeight;
dwTabExtent = GetTabbedTextExtent(hdc, /* handle of device context */

lpszTabbedText,/* address of text*/
lstrlen(lpszTabbedText), /* number of characters*/
sizeof(aTabs) / sizeof(int), /* number of tabs in array */
aTabs); /* array for tab positions */

wStringWidth = LOWORD(dwTabExtent); /* gets width of string */
wStringHeight = HIWORD(dwTabExtent); /* gets height of string */
See Also
GetTextExtent, TabbedTextOut, HIWORD, LOWORD

GetTickCount (2.x)
DWORD GetTickCount(void)

The GetTickCount function retrieves the number of milliseconds that have elapsed since Windows was
started.

Returns
The return value specifies the number of milliseconds that have elapsed since Windows was started.

Comments
The internal timer will wrap around to zero if Windows is run continuously for approximately 49 days.

The GetTickCount function is identical to the GetCurrentTime function. Applications should use
GetTickCount, because its name matches more closely with what the function does.

Example
The following example calls GetTickCount to determine the number of milliseconds that Windows has
been running, converts the value into seconds, and displays the value in a message box:

char szBuf[255];
sprintf(szBuf, "Windows has been running for %lu seconds\n",

GetTickCount() / 1000L);
MessageBox(hwnd, szBuf, "", MB_OK);

GetTimerResolution (3.1)
DWORD GetTimerResolution(void)

The GetTimerResolution function retrieves the number of microseconds per timer tick.

Returns
The return value is the number of microseconds per timer tick.

See Also
GetTickCount, SetTimer

GetTopWindow (2.x)
HWND GetTopWindow(hwnd)
HWND hwnd; /* handle of parent window */

The GetTopWindow function retrieves the handle of the top-level child window that belongs to the given
parent window. If the parent window has no child windows, this function returns NULL.

Parameter Description
hwnd Identifies the parent window. If this parameter is NULL, the function returns the first

child window of the desktop window.

Returns
The return value is the handle of the top-level child window in a parent window's linked list of child
windows. The return value is NULL if no child windows exist.

See Also
EnumWindows, GetParent, GetWindow, IsChild

GetUpdateRect (2.x)
BOOL GetUpdateRect(hwnd, lprc, fErase)
HWND hwnd; /* handle of window */
RECT FAR* lprc; /*
address of structure for update rectangle *
/
BOOL fErase; /
* erase flag *
/

The GetUpdateRect function retrieves the coordinates of the smallest rectangle that completely encloses
the update region of the given window. If the window was created with the CS_OWNDC style and the
mapping mode is not MM_TEXT, GetUpdateRect gives the rectangle in logical coordinates; otherwise,
GetUpdateRect gives the rectangle in client coordinates. If there is no update region, GetUpdateRect
makes the rectangle empty (sets all coordinates to zero).

Parameter Description
hwnd Identifies the window whose update region is to be retrieved.
lprc Points to the RECT structure that receives the client coordinates of the enclosing

rectangle.
An application can set this parameter to NULL to determine whether an update region
exists for the window. If this parameter is NULL, the GetUpdateRect function returns
nonzero if an update region exists, and zero if one does not. This provides a simple and
efficient means of determining whether a WM_PAINT message resulted from an invalid
area.

fErase Specifies whether to erase the background in the update region. If this parameter is
TRUE and the update region is not empty, the background is erased. To erase the
background, the GetUpdateRect function sends a WM_ERASEBKGND message to the
given window.

Returns
The return value is nonzero if the update region is not empty. Otherwise, it is zero.

Comments
The update rectangle retrieved by the BeginPaint function is identical to that retrieved by the
GetUpdateRect function.

BeginPaint automatically validates the update region, so any call to GetUpdateRect made immediately
after the call to BeginPaint retrieves an empty update region.

See Also
BeginPaint, GetUpdateRgn, InvalidateRect, UpdateWindow, ValidateRect, WM_ERASEBKGND, RECT

Windows 3.1 changes

An application can set the lprc parameter to NULL to determine whether an update region exists for the
window. If this parameter is NULL, GetUpdateRect returns nonzero if an update region exists, and zero if
one does not. This provides a simple and efficient means of determining whether a WM_PAINT message
resulted from an invalid area.

GetUpdateRgn (2.x)
int GetUpdateRgn(hwnd, hrgn, fErase)
HWND hwnd; /* handle of window */
HRGN hrgn; /* handle of region */
BOOL fErase; /
* erase flag *
/

The GetUpdateRgn function retrieves the update region of a window. The coordinates of the update region
are relative to the upper-left corner of the window (that is, they are client coordinates).

Parameter Description
hwnd Identifies the window whose update region is to be retrieved.
hrgn Identifies the update region.
fErase Specifies whether the window background should be erased and whether nonclient areas

of child windows should be drawn. If this parameter is FALSE, no drawing is done.

Returns
The return value is SIMPLEREGION (region has no overlapping borders), COMPLEXREGION (region
has overlapping borders), or NULLREGION (region is empty), if the function is successful. Otherwise,
the return value is ERROR.

Comments
The BeginPaint function automatically validates the update region, so any call to the GetUpdateRgn
function made immediately after the call to BeginPaint retrieves an empty update region.

See Also
BeginPaint, GetUpdateRect, InvalidateRgn, UpdateWindow, ValidateRgn

GetWindow (2.x)
HWND GetWindow(hwnd, fuRel)
HWND hwnd; /* handle of original window */
UINT fuRel; /* relationship flag */

The GetWindow function retrieves the handle of a window that has the specified relationship to the given
window. The function searches the system's list of top-level windows, their associated child windows, the
child windows of any child windows, and any siblings of the owner of a window.

Parameter Description
hwnd Identifies the original window.
fuRel Specifies the relationship between the original window and the returned window. This

parameter can be one of the following values:

Value Meaning
GW_CHILD Identifies the window's first child window.
GW_HWNDFIRST Returns the first sibling window for a child window; otherwise,

it returns the first top-level window in the list.
GW_HWNDLAST Returns the last sibling window for a child window; otherwise,

it returns the last top-level window in the list.
GW_HWNDNEXT Returns the sibling window that follows the given window in

the window manager's list.
GW_HWNDPREV Returns the previous sibling window in the window manager's

list.
GW_OWNER Identifies the window's owner.

Returns
The return value is the handle of the window if the function is successful. Otherwise, it is NULL,
indicating either the end of the system's list or an invalid fuRel parameter.

See Also
EnumWindows, FindWindow

GW_CHILD 5

Identifies the window's first child window.

GW_CHILD 5

GW_HWNDFIRST 0

Returns the first sibling window for a child window; otherwise, it returns the first top-level window in the
list.

GW_HWNDFIRST 0

GW_HWNDLAST 1

Returns the last sibling window for a child window; otherwise, it returns the last top-level window in the
list.

GW_HWNDLAST 1

GW_HWNDNEXT 2

Returns the sibling window that follows the given window in the window manager's list.

GW_HWNDNEXT 2

GW_HWNDPREV 3

Returns the previous sibling window in the window manager's list.

GW_HWNDPREV 3

GW_OWNER 4

Identifies the window's owner.

GW_OWNER 4

GetWindowDC (2.x)
HDC GetWindowDC(hwnd)
HWND hwnd; /* handle of window */

The GetWindowDC function retrieves a device context for the entire window, including title bar, menus,
and scroll bars. A window device context permits painting anywhere in the window, because the origin of
the context is the upper-left corner of the window instead of the client area.

GetWindowDC assigns default attributes to the device context each time it retrieves the context. Previous
attributes are lost.

Parameter Description
hwnd Identifies the window whose device context is to be retrieved.

Returns
The return value is the handle of the device context for the given window, if the function is successful.
Otherwise, it is NULL, indicating an error or an invalid hwnd parameter.

Comments
The GetWindowDC function is intended to be used for special painting effects within a window's
nonclient area. Painting in nonclient areas of any window is not recommended.

The GetSystemMetrics function can be used to retrieve the dimensions of various parts of the nonclient
area, such as the title bar, menu, and scroll bars.

After painting is complete, the ReleaseDC function must be called to release the device context. Failure to
release a window device context will have serious effects on painting requested by applications.

See Also
BeginPaint, GetDC, GetSystemMetrics, ReleaseDC

GetWindowLong (2.x)
LONG GetWindowLong(hwnd, nOffset)
HWND hwnd; /* handle of window */
int nOffset; /* offset of value to retrieve *
/

The GetWindowLong function retrieves a long value at the specified offset into the extra window memory
of the given window. Extra window memory is reserved by specifying a nonzero value in the cbWndExtra
member of the WNDCLASS structure used with the RegisterClass function.

Parameter Description
hwnd Identifies the window.
nOffset Specifies the zero-based byte offset of the value to be retrieved. Valid values are in the

range zero through the number of bytes of extra window memory, minus four (for
example, if 12 or more bytes of extra memory was specified, a value of 8 would be an
index to the third long integer), or one of the following values:

Value Meaning
GWL_EXSTYLE Extended window style
GWL_STYLE Window style
GWL_WNDPROC Long pointer to the window procedure
The following values are also available when the hwnd parameter identifies a dialog
box:

Value Meaning
DWL_DLGPROC Specifies the address of the dialog box procedure.
DWL_MSGRESULT Specifies the return value of a message processed in the dialog

box procedure.
DWL_USER Specifies extra information that is private to the application,

such as handles or pointers.

Returns
The return value specifies information about the given window if the function is successful.

Comments
To access any extra 4-byte values allocated when the window-class structure was created, use a positive
byte offset as the index specified by the nOffset parameter, starting at 0 for the first 4-byte value in the
extra space, 4 for the next 4-byte value, and so on.

See Also
GetWindowWord, SetWindowLong, SetWindowWord

GWL_EXSTYLE (-20)

Extended window style

GWL_EXSTYLE (-20)

GWL_STYLE (-16)

Window style

GWL_STYLE (-16)

GWL_WNDPROC (-4)

Long pointer to the window procedure

GWL_WNDPROC (-4)

DWL_DLGPROC 4

Specifies the address of the dialog box procedure.

DWL_DLGPROC 4

DWL_MSGRESULT 0

Specifies the return value of a message processed in the dialog box procedure.

DWL_MSGRESULT 0

DWL_USER 8

Specifies extra information that is private to the application, such as handles or pointers.

DWL_USER 8

GetWindowPlacement (3.1)
BOOL GetWindowPlacement(hwnd, lpwndpl)
HWND hwnd; /* handle of window */
WINDOWPLACEMENT FAR* lpwndpl; /
* address of structure for position data *
/

The GetWindowPlacement function retrieves the show state and the normal (restored), minimized, and
maximized positions of a window.

Parameter Description
hwnd Identifies the window.
lpwndpl Points to the WINDOWPLACEMENT structure that receives the show state and

position information.

Returns
The return value is nonzero if the function is successful. Otherwise, it is zero.

Comments
The flags member of the WINDOWPLACEMENT structure retrieved by this function is always zero. If
the window identified by the hwnd parameter is maximized, the showCmd member of
WINDOWPLACEMENT is SW_SHOWMAXIMIZED; if the window is minimized, it is
SW_SHOWMINIMIZED; and it is SW_SHOWNORMAL otherwise.

See Also
SetWindowPlacement, WINDOWPLACEMENT

GetWindowRect (2.x)
void GetWindowRect(hwnd, lprc)
HWND hwnd; /* handle of window */
RECT FAR* lprc; /
* address of structure for window coordinates *
/

The GetWindowRect function retrieves the dimensions of the bounding rectangle of a given window. The
dimensions are given in screen coordinates, relative to the upper-left corner of the display screen, and
include the title bar, border, and scroll bars, if present.

Parameter Description
hwnd Identifies the window.
lprc Points to a RECT structure that receives the screen coordinates of the upper-left and

lower-right corners of the window.

Returns
This function does not return a value.

Example
The following example calls the GetWindowRect function to retrieve the dimensions of the desktop
window, and uses the dimensions to create a window that fills the right third of the desktop window:

RECT rc;
WORD wWidth;
GetWindowRect(GetDesktopWindow(), &rc);
/* Set the width to be 1/3 of the desktop window's width. */
wWidth = (rc.right - rc.left) / 3;
/* Create a main window for this application instance. */
hwndFrame = CreateWindow("MyClass", "My Title", WS_OVERLAPPEDWINDOW,

rc.right - wWidth, /* horizontal position */
0, /* vertical position */
wWidth, /* width*/
rc.bottom, /* height */
(HWND) NULL, (HMENU) NULL, hinst, (LPSTR) NULL);

See Also
GetClientRect, MoveWindow, SetWindowPos, RECT

GetWindowTask (2.x)
HTASK GetWindowTask(hwnd)
HWND hwnd; /* handle of window */

The GetWindowTask function searches for the handle of a task associated with a window. A task is any
program that executes as an independent unit. All applications are executed as tasks. Each instance of an
application is a task.

Parameter Description
hwnd Identifies the window for which to retrieve a task handle.

Returns
The return value is the handle of the task associated with a particular window, if the function is successful.
Otherwise, it is NULL.

See Also
EnumTaskWindows, GetCurrentTask

GetWindowText (2.x)
int GetWindowText(hwnd, lpsz, cbMax)
HWND hwnd; /* handle of window */
LPSTR lpsz; /* address of buffer for
text *
/
int cbMax; /
* maximum number of bytes to copy *
/

The GetWindowText function copies text of the given window's title bar (if it has one) into a buffer. If the
given window is a control, the text within the control is copied.

Parameter Description
hwnd Identifies the window or control containing the title bar or text.
lpsz Points to a buffer that will receive the title bar or text.
cbMax Specifies the maximum number of characters to copy to the buffer. The title bar or text

is truncated if it is longer than the number of characters specified in cbMax.

Returns
The return value specifies the length, in bytes, of the copied string, not including the terminating null
character. It is zero if the window has no title bar, the title bar is empty, or the hwnd parameter is invalid.

Comments
This function causes a WM_GETTEXT message to be sent to the given window or control.

See Also
GetWindowTextLength, WM_GETTEXT

GetWindowTextLength (2.x)
int GetWindowTextLength(hwnd)
HWND hwnd; /* handle of window with text */

The GetWindowTextLength function retrieves the length, in bytes, of the text in the given window's title
bar. If the window is a control, the length of the text within the control is retrieved.

Parameter Description
hwnd Identifies the window or control.

Returns
The return value specifies the text length, in bytes, not including any null terminating character, if the
function is successful. Otherwise, it is zero.

Comments
This function causes the WM_GETTEXTLENGTH message to be sent to the given window or control.

See Also
GetWindowText, WM_GETTEXT, WM_GETTEXTLENGTH

GetWindowWord (2.x)
WORD GetWindowWord(hwnd, nOffset)
HWND hwnd; /* handle of window */
int nOffset; /* offset of value to retrieve *
/

The GetWindowWord function retrieves a word value at the specified offset into the extra window
memory of the given window. Extra window memory is reserved by specifying a nonzero value in the
cbWndExtra member of the WNDCLASS structure used with the RegisterClass function.

Parameter Description
hwnd Identifies the window.
nOffset Specifies the zero-based byte offset of the value to be retrieved. Valid values are in the

range zero through the number of bytes of extra window memory, minus two (for
example, if 10 or more bytes of extra memory was specified, a value of 8 would be an
index to the fifth integer), or one of the following values:

Value Meaning
GWW_HINSTANCE Specifies the instance handle of the module that owns the

window.
GWW_HWNDPARENT Specifies the handle of the parent window, if any. The

SetParent function changes the parent window of a child
window. An application should not call the
SetWindowWord function to change the parent of a child
window.

GWW_ID Specifies the identifier of the child window.

Returns
The return value specifies information about the given window if the function is successful.

Comments
To access any extra two-byte values allocated when the window-class structure was created, use a positive
byte offset as the index specified by the nOffset parameter, starting at 0 for the first two-byte value in the
extra space, 2 for the next two-byte value, and so on.

See Also
GetWindowLong, SetParent, SetWindowLong, SetWindowWord

GWW_HINSTANCE (-6)

Specifies the instance handle of the module that owns the window.

GWW_HINSTANCE (-6)

GWW_HWNDPARENT (-8)

Specifies the handle of the parent window, if any. The SetParent function changes the parent window of a
child window. An application should not call the SetWindowWord function to change the parent of a child
window.

GWW_HWNDPARENT (-8)

GWW_ID (-12)

Specifies the identifier of the child window.

GWW_ID (-12)

GlobalAddAtom (2.x)
ATOM GlobalAddAtom(lpszString)
LPCSTR lpszString; /* address of string to add */

The GlobalAddAtom function adds a string to the system atom table and returns a unique value identifying
the string.

Parameter Description
lpszString Points to the null-terminated string to be added. The case of the first string added is

preserved and returned by the GlobalGetAtomName function. Strings that differ only in
case are considered identical.

Returns
The return value identifies the string if the function is successful. Otherwise, it is zero.

Comments
If the string exists already in the system atom table, the atom for the existing string will be returned and
the atom's reference count will be incremented (increased by one). The string associated with the atom
will not be deleted from memory until its reference count is zero. For more information, see the
description of the GlobalDeleteAtom function.

Global atoms are not deleted automatically when the application terminates. For every call to the
GlobalAddAtom function, there must be a corresponding call to the GlobalDeleteAtom function.

Example
The following example adds the string "This is a global atom" to the system atom table:

ATOM atom;
char szMsg[80];
atom = GlobalAddAtom("This is a global atom");
if (atom == 0)

MessageBox(hwnd, "GlobalAddAtom failed", "",
MB_ICONSTOP);

else {
wsprintf(szMsg, "GlobalAddAtom returned %u", atom);
MessageBox(hwnd, szMsg, "", MB_OK);

}
See Also
AddAtom, GlobalDeleteAtom, GlobalGetAtomName

GlobalDeleteAtom (2.x)
ATOM GlobalDeleteAtom(atm)
ATOM atm; /* atom to delete */

The GlobalDeleteAtom function decrements (decreases by one) the reference count of a global atom. If the
atom's reference count reaches zero, the string associated with the atom is removed from the system atom
table.

Parameter Description
atm Identifies the atom to be deleted.

Returns
The return value is zero if the function is successful. The return value is equal to the atm parameter if the
function failed to decrement the reference count for the specified atom.

Comments
An atom's reference count specifies the number of times the string has been added to the atom table. The
GlobalAddAtom function increments (increases by one) the reference count each time it is called with a
string that already exists in the system atom table.

The only way to ensure that an atom has been deleted from the atom table is to call this function
repeatedly until it fails. When the count is decremented to zero, the next GlobalFindAtom or
GlobalDeleteAtom function call will fail.

Example
The following example repeatedly calls the GlobalDeleteAtom function to decrement the reference count
for the atom until the atom is deleted and the GlobalDeleteAtom function does not return zero:

int cRef;
ATOM atom;
char szMsg[80];
for (cRef = 0; ((atom = GlobalFindAtom("This is a global atom")) != 0)
;

cRef++)
GlobalDeleteAtom(atom);

wsprintf(szMsg, "reference count was %d", cRef);
MessageBox(hwnd, szMsg, "GlobalDeleteAtom", MB_OK);
See Also
DeleteAtom, GlobalAddAtom, GlobalFindAtom

GlobalFindAtom (2.x)
ATOM GlobalFindAtom(lpszString)
LPCSTR lpszString; /* address of string to find */

The GlobalFindAtom function searches the system atom table for the specified character string and
retrieves the global atom associated with that string. (A global atom is an atom that is available to all
Windows applications.)

Parameter Description
lpszString Points to the null-terminated character string to search for.

Returns
The return value identifies the global atom associated with the given string, if the function is successful.
Otherwise, if the string is not in the table, the return value is zero.

Example
The following example repeatedly calls the GlobalFindAtom function to retrieve the atom associated with
the string "This is a global atom". The example uses the GlobalDeleteAtom function to decrement
(decrease by one) the reference count for the atom until the atom is deleted and GlobalFindAtom returns
zero.

int cRef;
ATOM atom;
char szMsg[80];
for (cRef = 0; ((atom = GlobalFindAtom("This is a global atom")) != 0)
;

cRef++)
GlobalDeleteAtom(atom);

wsprintf(szMsg, "reference count was %d", cRef);
MessageBox(hwnd, szMsg, "GlobalDeleteAtom", MB_OK);
See Also
FindAtom, GlobalAddAtom, GlobalDeleteAtom

GlobalGetAtomName (2.x)
UINT GlobalGetAtomName(atom, lpszBuffer, cbBuffer)
ATOM atom; /* atom identifier */
LPSTR lpszBuffer; /* address of
buffer for atom string *
/
int cbBuffer; /
* size of buffer *
/

The GlobalGetAtomName function retrieves a copy of the character string associated with the given
global atom. (A global atom is an atom that is available to all Windows applications.)

Parameter Description
atom Identifies the global atom associated with the character string to be retrieved.
lpszBuffer Points to the buffer for the character string.
cbBuffer Specifies the size, in bytes, of the buffer.

Returns
The return value specifies the number of bytes copied to the buffer, not including the null-terminating
character, if the function is successful.

Example
The following example uses the GlobalGetAtomName function to retrieve the character string associated
with a global atom:

char szBuf[80];
GlobalGetAtomName(atGlobal, szBuf, sizeof(szBuf));
MessageBox(hwnd, szBuf, "GlobalGetAtomName", MB_OK);
See Also
GetAtomName

GrayString (2.x)
BOOL GrayString(hdc, hbr, gsprc, lParam, cch, x, y, cx, cy)
HDC hdc; /* handle of device context */
HBRUSH hbr; /
* handle of brush for graying *
/
GRAYSTRINGPROC gsprc; /
* address of callback function *
/
LPARAM lParam; /
* address of application-defined data *
/
int cch; /
* number of characters to output *
/
int x; /
* horizontal position *
/
int y; /
* vertical position *
/
int cx; /
* width *
/
int cy; /
* height *
/

The GrayString function draws gray (dim) text at the given location by writing the text in a memory
bitmap, graying the bitmap, and then copying the bitmap to the display. The function grays the text
regardless of the selected brush and background. GrayString uses the font currently selected for the given
device context.

Parameter Description
hdc Identifies the device context.
hbr Identifies the brush to be used for graying.
gsprc Specifies the procedure-instance address of the application-supplied callback function

that will draw the string. The address must be created by the MakeProcInstance
function. For more information about the callback function, see the description of the
GrayStringProc callback function.
If this parameter is NULL, the system uses the TextOut function to draw the string, and
the lParam parameter is assumed to be a long pointer to the character string to be output.

lParam Points to data to be passed to the output function. If the gsprc parameter is NULL, the
lParam parameter must point to the string to be output.

cch Specifies the number of characters to be output. If this parameter is zero, the GrayString
function calculates the length of the string (assuming that the lParam parameter is a
pointer to the string). If cch is -1 and the function pointed to by the gsprc parameter
returns zero, the image is shown but not grayed.

x Specifies the logical x-coordinate of the starting position of the rectangle that encloses
the string.

y Specifies the logical y-coordinate of the starting position of the rectangle that encloses
the string.

cx Specifies the width, in logical units, of the rectangle that encloses the string. If this
parameter is zero, the GrayString function calculates the width of the area, assuming the
lParam parameter is a pointer to the string.

cy Specifies the height, in logical units, of the rectangle that encloses the string. If this
parameter is zero, the GrayString function calculates the height of the area, assuming the
lParam parameter is a pointer to the string.

Returns

The return value is nonzero if the function is successful. It is zero if either the TextOut function or the
application-supplied output function returns zero, or if there is insufficient memory to create a memory
bitmap for graying.

Comments
An application must select the MM_TEXT mapping mode before using this function.

If TextOut cannot handle the string to be output (for example, if the string is stored as a bitmap), the gsprc
parameter must point to a callback function that will draw the string.

An application can draw grayed strings on devices that support a solid gray color without calling the
GrayString function. The system color COLOR_GRAYTEXT is the solid-gray system color used to draw
disabled text. The application can call the GetSysColor function to retrieve the color value of
COLOR_GRAYTEXT. If the color is other than zero (black), the application can call the SetTextColor
function to set the text color to the color value and then draw the string directly. If the retrieved color is
black, the application must call GrayString to gray the text.

See Also
GetSysColor, MakeProcInstance, SetTextColor, TextOut

hardware_event (3.1)

extrn hardware_event :far
mov ax, Msg ; message
mov cx, ParamL ; low-order word of lParam of the message
mov dx, ParamH ; high-order word of lParam of the message
mov si, hwnd ; handle of the destination window
mov di, wParam ; wParam of the message
cCall hardware_event
The hardware_event function places a hardware-related message into the system message queue. This
function allows a driver for a non-standard hardware device to place a message into the queue.

Parameter Description
Msg Specifies the message to place in the system message queue.
ParamL Specifies the low-order word of the lParam parameter of the message.
lParamH Specifies the high-order word of the lParam parameter of the message.
hwnd Identifies the window to which the message is directed. This parameter also becomes the

low-order word of the dwExtraInfo parameter associated with the message. An
application can determine the value of this parameter by calling the
GetMessageExtraInfo function.

wParam Specifies the wParam parameter of the message.

Returns
The return value is nonzero if the function is successful. Otherwise, it is zero.

Comments
An application should not use this function to place keyboard or mouse messages into the system message
queue.

An application may only call the hardware_event function from an assembly language routine. The
application must declare the function as follows:

extrn hardware_event :far
If the application includes CMACROS.INC, the application can declare the function as follows:

extrnFP hardware_event.
See Also
GetMessageExtraInfo, MOUSEHOOKSTRUCT

HideCaret (2.x)
void HideCaret(hwnd)
HWND hwnd; /* handle of window with caret */

The HideCaret function hides the caret by removing it from the screen. Although the caret is no longer
visible, it can be displayed again by using the ShowCaret function. Hiding the caret does not destroy its
current shape.

Parameter Description
hwnd Identifies the window that owns the caret. This parameter can be set to NULL to specify

indirectly the window in the current task that owns the caret.

Returns
This function does not return a value.

Comments
The HideCaret function hides the caret only if the given window owns the caret. If the hwnd parameter is
NULL, the function hides the caret only if a window in the current task owns the caret.

Hiding is cumulative. If HideCaret has been called five times in a row, ShowCaret must be called five
times before the caret will be shown.

See Also
CreateCaret, ShowCaret

HiliteMenuItem (2.x)
BOOL HiliteMenuItem(hwnd, hmenu, idHiliteItem, fuHilite)
HWND hwnd; /* handle of window with menu */
HMENU hmenu; /* handle of
menu *
/
UINT idHiliteItem; /
* menu-item identifier *
/
UINT fuHilite; /
* highlight flags *
/

The HiliteMenuItem function highlights or removes the highlighting from a top-level (menu-bar) menu
item.

Parameter Description
hwnd Identifies the window that contains the menu.
hmenu Identifies the top-level menu that contains the item to be highlighted.
idHiliteItem Specifies the menu item to be highlighted, as determined by the fuHilite parameter.
fuHilite Specifies whether the menu item is highlighted or the highlight is removed. It can be a

combination of the MF_HILITE or MF_UNHILITE value with the
MF_BYCOMMAND or MF_BYPOSITION value. These values have the following
meanings:

Value Meaning
MF_BYCOMMAND Menu-item identifier is specified by the idHiliteItem

parameter (the default interpretation).
MF_BYPOSITION Zero-based position of the menu item is specified by the

idHiliteItem parameter.
MF_HILITE Menu item is highlighted. If this value is not given,

highlighting is removed from the menu item.
MF_UNHILITE Highlighting is removed from the menu item.

Returns
The return value is nonzero if the function is successful. Otherwise, it is zero.

Comments
The MF_HILITE and MF_UNHILITE flags can be used only with the HiliteMenuItem function; they
cannot be used with the ModifyMenu function.

See Also
CheckMenuItem, EnableMenuItem, ModifyMenu

InflateRect (2.x)
void InflateRect(lprc, xAmt, yAmt)
RECT FAR* lprc; /* address of rectangle */
int xAmt; /* amount to
increase or decrease width *
/
int yAmt; /
* amount to increase or decrease height *
/

The InflateRect function increases or decreases the width and height of a rectangle. The InflateRect
function adds xAmt units to the left and right ends of the rectangle and adds yAmt units to the top and
bottom. The xAmt and yAmt parameters are signed values; positive values increase the width and height,
and negative values decrease them.

Parameter Description
lprc Points to the RECT structure that increases or decreases in size.
xAmt Specifies the amount to increase or decrease the rectangle width. It must be negative to

decrease the width.
yAmt Specifies the amount to increase or decrease the rectangle height. It must be negative to

decrease the height.

Returns
This function does not return a value.

Comments
The width and height of a rectangle must not be greater than 32,767 units or less than -32,768 units.

See Also
IntersectRect, OffsetRect, UnionRect, RECT

InSendMessage (2.x)
BOOL InSendMessage(void)

The InSendMessage function specifies whether the current window procedure is processing a message that
was sent from another task by a call to the SendMessage function.

Returns
The return value is nonzero if the window procedure is processing a message sent to it from another task
by the SendMessage function. Otherwise, the return value is zero.

Comments
Applications use the InSendMessage function to determine how to handle errors that occur when an
inactive window processes messages. For example, if the active window uses the SendMessage function to
send a request for information to another window, the other window cannot become active until it returns
control from the SendMessage call. The only method an inactive window has to inform the user of an error
is to create a message box.

See Also
PostAppMessage, SendMessage

InsertMenu (3.0)
BOOL InsertMenu(hmenu, idItem, fuFlags, idNewItem, lpNewItem)
HMENU hmenu; /* handle of menu */
UINT idItem; /
* menu item that new menu item is to precede *
/
UINT fuFlags; /
* menu flags *
/
UINT idNewItem; /
* item identifier or pop-up menu handle *
/
LPCSTR lpNewItem; /
* item content *
/

The InsertMenu function inserts a new menu item into a menu, moving other items down the menu. The
function also sets the state of the menu item.

Parameter Description
hmenu Identifies the menu to be changed.
idItem Specifies the menu item before which the new menu item is to be inserted, as

determined by the fuFlags parameter.
fuFlags Specifies how the idItem parameter is interpreted and information about the state of the

new menu item when it is added to the menu. This parameter consists of a combination
of one of the following values and the values listed in the Comments section.

Value Meaning
MF_BYCOMMAND The idItem parameter specifies the menu-item identifier.
MF_BYPOSITION The idItem parameter specifies the zero-based position of the

menu item. If idItem is -1, the new menu item is appended to
the end of the menu.

idNewItem Specifies either the identifier of the new menu item or, if fuFlags is set to MF_POPUP,
the menu handle of the pop-up menu.

lpNewItem Specifies the contents of the new menu item. If fuFlags is set to MF_STRING (the
default value), this parameter points to a null-terminated string. If fuFlags is set to
MF_BITMAP instead, lpNewItem contains a bitmap handle in its low-order word. If
fuFlags is set to MF_OWNERDRAW, lpNewItem specifies an application-defined 32-
bit value, which the application can use to maintain additional data associated with the
menu item. This 32-bit value is available to the application in the itemData member of
the structure pointed to by the lParam parameter of the WM_MEASUREITEM and
WM_DRAWITEM messages. These messages are sent when the menu item is initially
displayed or is changed.

Returns
The return value is nonzero if the function is successful. Otherwise, it is zero.

Comments
If the active multiple document interface (MDI) child window is maximized and an application inserts a
pop-up menu into the MDI application's menu by calling this function and specifying the
MF_BYPOSITION flag, the menu is inserted one position farther left than expected. This occurs because
the System menu of the active MDI child window is inserted into the first position of the MDI frame
window's menu bar. To avoid this behavior, the application must add 1 to the position value that would
otherwise be used. An application can use the WM_MDIGETACTIVE message to determine whether the
currently active child window is maximized.

Whenever a menu changes (whether or not the menu is in a window that is displayed), the application
should call the DrawMenuBar function.

Each of the following groups lists flags that should not be used together:
MF_BYCOMMAND and MF_BYPOSITION
MF_DISABLED, MF_ENABLED, and MF_GRAYED
MF_BITMAP, MF_STRING, MF_OWNERDRAW, and MF_SEPARATOR

MF_MENUBARBREAK and MF_MENUBREAK
MF_CHECKED and MF_UNCHECKED

The following list describes the flags that may be set in the fuFlags parameter:

Value Meaning
MF_BITMAP Uses a bitmap as the item. The low-order word of the lpNewItem

parameter contains the handle of the bitmap.
MF_BYCOMMAND Specifies that the idItem parameter gives the menu-item identifier (default)

.
MF_BYPOSITION Specifies that the idItem parameter gives the position of the menu item

rather than the menu-item identifier.
MF_CHECKED Places a check mark next to (selects) the menu item. If the application has

supplied check-mark bitmaps (see the SetMenuItemBitmaps function),
setting this flag displays the check-mark bitmap next to the menu item.

MF_DISABLED Disables the menu item so that it cannot be selected, but does not gray
(dim) it.

MF_ENABLED Enables the menu item so that it can be selected, and restores it from its
grayed state.

MF_GRAYED Disables the menu item so that it cannot be selected, and grays it.
MF_MENUBARBREAK Same as MF_MENUBREAK except, for pop-up menus, separates the new

column from the old column by using a vertical line.
MF_MENUBREAK Places the menu item on a new line for static menu-bar items. For pop-up

menus, places the menu item in a new column, with no dividing line
between the columns.

MF_OWNERDRAW Specifies that the item is an owner-drawn item. The window that owns the
menu receives a WM_MEASUREITEM message (when the menu is
displayed for the first time) to retrieve the height and width of the menu
item. The WM_DRAWITEM message is then sent to the owner whenever
the owner must update the visual appearance of the menu item. This option
is not valid for a top-level menu item.

MF_POPUP Specifies that the menu item has a pop-up menu associated with it. The
idNewItem parameter specifies a handle of a pop-up menu to be associated
with the item. Use the MF_OWNERDRAW flag to add either a top-level
pop-up menu or a hierarchical pop-up menu to a pop-up menu item.

MF_SEPARATOR Draws a horizontal dividing line. You can use this flag in a pop-up menu.
This line cannot be grayed, disabled, or highlighted. Windows ignores the
lpNewItem and idNewItem parameters.

MF_STRING Specifies that the menu item is a character string; the lpNewItem parameter
points to the string for the item.

MF_UNCHECKED Does not place a check mark next to the item (default value). If the
application has supplied check-mark bitmaps (see SetMenuItemBitmaps),
setting this flag displays the check-mark-off bitmap next to the menu item.

See Also
AppendMenu, CreateMenu, DrawMenuBar, RemoveMenu, SetMenuItemBitmaps,
DRAWITEMSTRUCT, MEASUREITEMSTRUCT, WM_DRAWITEM, WM_MDIGETACTIVE,
WM_MEASUREITEM

IntersectRect (2.x)
BOOL IntersectRect(lprcDst, lprcSrc1, lprcSrc2)
RECT FAR* lprcDst; /* address of structure for intersection */
const RECT FAR* lprcSrc1; /
* address of structure with 1st rectangle *
/
const RECT FAR* lprcSrc2; /
* address of structure with 2nd rectangle *
/

The IntersectRect function calculates the intersection of two source rectangles and places the coordinates
of the intersection rectangle into the destination rectangle. If the rectangles do not intersect, an empty
rectangle (0, 0, 0, 0) is placed into the destination rectangle.

Parameter Description
lprcDst Points to a RECT structure that receives the intersection of the rectangles pointed to by

the lprcSrc1 and lprcSrc2 parameters.
lprcSrc1 Points to the RECT structure that contains the first source rectangle.
lprcSrc2 Points to the RECT structure that contains the second source rectangle.

Returns
The return value is nonzero if the rectangles intersect. Otherwise, it is zero.

See Also
InflateRect, SubtractRect, UnionRect, RECT

InvalidateRect (2.x)
void InvalidateRect(hwnd, lprc, fErase)
HWND hwnd; /* handle of window with changed update region */
const RECT FAR* lprc; /
* address of structure with rectangle *
/
BOOL fErase; /
* erase-background flag *
/

The InvalidateRect function adds a rectangle to a window's update region. The update region represents
the client area of the window that must be redrawn.

Parameter Description
hwnd Identifies the window whose update region has changed.
lprc Points to a RECT structure that contains the client coordinates of the rectangle to be

added to the update region. If the lprc parameter is NULL, the entire client area is added
to the update region.

fErase Specifies whether the background within the update region is to be erased when the
update region is processed. It this parameter is TRUE, the background is erased when
the BeginPaint function is called. If this parameter is FALSE, the background remains
unchanged.

Returns
This function does not return a value.

Comments
The invalidated areas accumulate in the update region until the region is processed when the next
WM_PAINT message occurs, or until the region is validated by using the ValidateRect or ValidateRgn
function.

Windows sends a WM_PAINT message to a window whenever its update region is not empty and there
are no other messages in the application queue for that window.

If the fErase parameter is TRUE for any part of the update region, the background is erased in the entire
region, not just in the given part.

See Also
BeginPaint, InvalidateRgn, ValidateRect, ValidateRgn, RECT, WM_PAINT

InvalidateRgn (2.x)
void InvalidateRgn(hwnd, hrgn, fErase)
HWND hwnd; /* handle of window with changed update region */
HRGN hrgn; /*
handle of region to add *
/
BOOL fErase; /
* erase-background flag *
/

The InvalidateRgn function adds a region to a window's update region. The update region represents the
client area of the window that must be redrawn.

Parameter Description
hwnd Identifies the window whose update region has changed.
hrgn Identifies the region to be added to the update region. The region is assumed to have

client coordinates. If this parameter is NULL, the entire client area is added to the
update region.

fErase Specifies whether the background within the update region is to be erased when the
update region is processed. If this parameter is TRUE, the background is erased when
the BeginPaint function is called. If the parameter is FALSE, the background remains
unchanged.

Returns
This function does not return a value.

Comments
The invalidated regions accumulate in the update region until the region is processed when the next
WM_PAINT message occurs, or until the region is validated by using the ValidateRect or ValidateRgn
function.

Windows sends a WM_PAINT message to a window whenever its update region is not empty and there
are no other messages in the application queue for that window.

If the fErase parameter is TRUE for any part of the update region, the background is erased in the entire
region, not just in the given part.

See Also
BeginPaint, InvalidateRect, ValidateRect, ValidateRgn, WM_PAINT

InvertRect (2.x)
void InvertRect(hdc, lprc)
HDC hdc; /* handle of device context */
const RECT FAR* lprc; /
* address of structure with rectangle *
/

The InvertRect function inverts a rectangular area. Inversion is a logical NOT operation and flips the bits
of each pixel.

Parameter Description
hdc Identifies the device context.
lprc Points to a RECT structure that contains the logical coordinates of the rectangle to be

inverted.

Returns
This function does not return a value.

Comments
On monochrome screens, the InvertRect function makes white pixels black and black pixels white. On
color screens, the inversion depends on how colors are generated for the screen. Calling InvertRect twice,
specifying the same rectangle, restores the display to its previous colors.

The InvertRect function compares the values of the top, bottom, left, and right members of the specified
rectangle. If bottom is less than or equal to top, or if right is less than or equal to left, the function does not
draw the rectangle.

See Also
FillRect, RECT

IsCharAlpha (3.0)
BOOL IsCharAlpha(chTest)
char chTest; /* character to test */

The IsCharAlpha function determines whether a character is in the set of language-defined alphabetic
characters.

Parameter Description
chTest Specifies the character to be tested.

Returns
The return value is nonzero if the character is in the set of alphabetic characters. Otherwise, it is zero.

Comments
The language driver for the current language (the language the user selected at setup or by using Control
Panel) determines whether the character is in the set. If no language has been set, Windows uses an
internal function.

Example
The following example uses the IsCharAlpha function to find the first nonalphabetic character in a string:

for (lpszNon = lpsz; IsCharAlpha(*lpszNon);
lpszNon = AnsiNext(lpszNon));

See Also
IsCharAlphaNumeric

IsCharAlphaNumeric (3.0)
BOOL IsCharAlphaNumeric(chTest)
char chTest; /* character to test */

The IsCharAlphaNumeric function determines whether a character is in the set of language-defined
alphabetic or numeric characters.

Parameter Description
chTest Specifies the character to be tested.

Returns
The return value is nonzero if the character is in either the set of alphabetic characters or the set of numeric
characters. Otherwise, it is zero.

Comments
The language driver for the current language (the language the user selected at setup or by using Control
Panel) determines whether the character is in the set. If no language driver is selected, Windows uses an
internal function.

Example
The following example uses the IsCharAlphaNumeric function to find the first nonalphanumeric character
in a string:

for (lpszNon = lpsz; IsCharAlphaNumeric(*lpszNon);
lpszNon = AnsiNext(lpszNon));

See Also
IsCharAlpha

IsCharLower (3.0)
BOOL IsCharLower(chTest)
char chTest; /* character to test */

The IsCharLower function determines whether a character is in the set of language-defined lowercase
characters.

Parameter Description
chTest Specifies the character to be tested.

Returns
The return value is nonzero if the character is lowercase. Otherwise, it is zero.

Comments
The language driver for the current language (the language selected at setup or by using Control Panel)
determines whether the character is in the set. If no language driver is selected, Windows uses an internal
function.

Example
The following example uses the IsCharLower function to find the first lowercase character in a string:

/* Look through string for a lowercase character. */
for (lpszLower = lpsz;

!IsCharLower(*lpszLower) && lpszLower != '\0';
lpszLower = AnsiNext(lpszLower));

/* Return NULL if no lowercase character is found. */
if (lpszLower == '\0')

lpszLower = NULL;
See Also
IsCharUpper

IsCharUpper (3.0)
BOOL IsCharUpper(chTest)
char chTest; /* character to test */

The IsCharUpper function determines whether a character is in the set of language-defined uppercase
characters.

Parameter Description
chTest Specifies the character to be tested.

Returns
The return value is nonzero if the character is uppercase. Otherwise, it is zero.

Comments
The language driver for the current language (the language the user selected at setup or by using Control
Panel) determines whether the character is in the set. If no language driver is selected, Windows uses an
internal function.

Example
The following example uses the IsCharUpper function to find the first uppercase character in a string:

/* Look through the string for an uppercase character. */
for (lpszUpper = lpsz;

!IsCharUpper(*lpszUpper) && lpszUpper != '\0';
lpszUpper = AnsiNext(lpszUpper));

/* Return NULL if no uppercase character is found. */
if (lpszUpper == '\0')

lpszUpper = NULL;
See Also
IsCharLower

IsChild (2.x)
BOOL IsChild(hwndParent, hwndChild)
HWND hwndParent; /* handle of parent window */
HWND hwndChild; /* handle of child
window *
/

The IsChild function tests whether a given window is a child or other direct descendant of a given parent
window. A child window is the direct descendant of a given parent window if that parent window is in the
chain of parent windows leading from the original pop-up window to the child window.

Parameter Description
hwndParent Identifies the parent window.
hwndChild Identifies the child window to be tested.

Returns
The return value is nonzero if the child window is a descendant of the parent window. Otherwise, it is
zero.

See Also
SetParent

IsClipboardFormatAvailable (2.x)
BOOL IsClipboardFormatAvailable(uFormat)
UINT uFormat; /* registered clipboard format */

The IsClipboardFormatAvailable function specifies whether data of a certain format exists on the
clipboard.

Parameter Description
uFormat Specifies a registered clipboard format. For information about clipboard formats, see the

description of the SetClipboardData function.

Returns
The return value is nonzero if data of the specified format is on the clipboard. Otherwise, the return value
is zero.

Comments
This function is typically called during processing of the WM_INITMENU or WM_INITMENUPOPUP
message to determine whether the clipboard contains data that the application can paste. If such data is
present, the application typically enables the Paste command (in its Edit menu).

See Also
CountClipboardFormats, EnumClipboardFormats, GetClipboardFormatName,
GetPriorityClipboardFormat, RegisterClipboardFormat, SetClipboardData, WM_INITMENU,
WM_INITMENUPOPUP

IsDialogMessage (2.x)
BOOL IsDialogMessage(hwndDlg, lpmsg)
HWND hwndDlg; /* handle of dialog box */
MSG FAR* lpmsg; /*
address of structure with message *
/

The IsDialogMessage function determines whether the specified message is intended for the given
modeless dialog box and, if it is, processes the message.

Parameter Description
hwndDlg Identifies the dialog box.
lpmsg Points to an MSG structure that contains the message to be checked.

Returns
The return value is nonzero if the message has been processed. Otherwise, it is zero.

Comments
Although IsDialogMessage is intended for modeless dialog boxes, it can be used with any window that
contains controls, enabling such windows to provide the same keyboard selection as in a dialog box.

When IsDialogMessage processes a message, it checks for keyboard messages and converts them into
selection commands for the corresponding dialog box. For example, the TAB key, when pressed, selects the
next control or group of controls, and the DOWN ARROW key, when pressed, selects the next control in a
group.

If a message is processed by IsDialogMessage, it must not be passed to the TranslateMessage or
DispatchMessage function. This is because IsDialogMessage performs all necessary translating and
dispatching of messages.

IsDialogMessage sends WM_GETDLGCODE messages to the dialog box procedure to determine which
keys should be processed.

IsDialogMessage can send DM_GETDEFID and DM_SETDEFID messages to the window. These
messages are defined in the WINDOWS.H header file as WM_USER and WM_USER+1, so conflicts are
possible with application-defined messages having the same values.

See Also
DispatchMessage, SendDlgItemMessage, TranslateMessage, MSG, WM_GETDLGCODE

IsDlgButtonChecked (2.x)
UINT IsDlgButtonChecked(hwndDlg, idButton)
HWND hwndDlg; /* handle of dialog box */
int idButton; /* button identifier */

The IsDlgButtonChecked function determines whether a button has a check mark next to it and whether a
three-state button is grayed, checked, or neither.

Parameter Description
hwndDlg Identifies the dialog box that contains the button.
idButton Specifies the identifier of the button.

Returns
The return value is nonzero if the specified button is checked, 0 if it is not, or -1 if the hwndDlg parameter
is invalid. For three-state buttons, the return value is 2 if the button is grayed, 1 if the button is checked, 0
if it is unchecked, or -1 if hwndDlg is invalid.

Comments
The IsDlgButtonChecked function sends a BM_GETCHECK message to the button.

See Also
CheckDlgButton, CheckRadioButton, BM_GETCHECK

IsIconic (2.x)
BOOL IsIconic(hwnd)
HWND hwnd; /* handle of window */

The IsIconic function determines whether the given window is minimized (iconic).

Parameter Description
hwnd Identifies the window.

Returns
The return value is nonzero if the window is minimized. Otherwise, it is zero.

See Also
CloseWindow, IsZoomed

IsMenu (3.1)
BOOL IsMenu(hmenu)
HMENU hmenu; /* handle of menu */

The IsMenu function determines whether the given handle is a menu handle.

Parameter Description
hmenu Identifies the handle to be tested.

Returns
The return value is zero if the handle is definitely not a menu handle. A nonzero return value does not
guarantee that the handle is a menu handle, however; for nonzero return values, the application should
conduct further tests to verify the handle.

Comments
An application should use this function only to ensure that a given handle is not a menu handle.

See Also
CreateMenu, CreatePopupMenu, DestroyMenu, GetMenu

IsRectEmpty (2.x)
BOOL IsRectEmpty(lprc)
const RECT FAR* lprc; /* address of structure with rectangle */

The IsRectEmpty function determines whether the specified rectangle is empty. A rectangle is empty if its
width or height is zero, or if both are zero.

Parameter Description
lprc Points to a RECT structure that contains the coordinates of the rectangle.

Returns
The return value is nonzero if the rectangle is empty. Otherwise, it is zero.

Example
The following example uses the IsRectEmpty function to determine whether a rectangle is empty and then
displays a message box giving the status of the rectangle:

RECT rc;
if (IsRectEmpty((LPRECT) &rc))

MessageBox(hwnd, "Rectangle is empty.",
"Rectangle Status", MB_OK);

else
MessageBox(hwnd, "Rectangle is not empty.",
"Rectangle Status", MB_OK);

See Also
RECT

IsWindow (2.x)
BOOL IsWindow(hwnd)
HWND hwnd; /* handle of window */

The IsWindow function determines whether the given window handle is valid.

Parameter Description
hwnd Identifies a window.

Returns
The return value is nonzero if the window handle is valid. Otherwise, it is zero.

See Also
IsWindowEnabled, IsWindowVisible

IsWindowEnabled (2.x)
BOOL IsWindowEnabled(hwnd)
HWND hwnd; /* handle of window to test */

The IsWindowEnabled function determines whether the given window is enabled for mouse and keyboard
input.

Parameter Description
hwnd Identifies the window.

Returns
The return value is nonzero if the window is enabled. Otherwise, it is zero.

Comments
A child window receives input only if it is both enabled and visible.

See Also
EnableWindow, IsWindowVisible

IsWindowVisible (2.x)
BOOL IsWindowVisible(hwnd)
HWND hwnd; /* handle of window to test */

The IsWindowVisible function determines the visibility state of the given window.

Parameter Description
hwnd Identifies the window.

Returns
The return value is nonzero if the specified window is visible on the screen (has the WS_VISIBLE style
bit set). The return value is zero if the window is not visible. Because the return value reflects the value of
the window's WS_VISIBLE flag, it may be nonzero even if the window is totally obscured by other
windows.

Comments
A window possesses a visibility state indicated by the WS_VISIBLE style bit. When this style bit is set,
the window is displayed and subsequent drawing into the window is displayed as long as the window has
the style bit set.

Any drawing to a window that has the WS_VISIBLE style will not be displayed if the window is covered
by other windows or is clipped by its parent window.

See Also
ShowWindow

IsZoomed (2.x)
BOOL IsZoomed(hwnd)
HWND hwnd; /* handle of window */

The IsZoomed function determines whether the given window is maximized.

Parameter Description
hwnd Identifies the window.

Returns
The return value is nonzero if the window is maximized. Otherwise, it is zero.

See Also
IsIconic

KillTimer (2.x)
BOOL KillTimer(hwnd, idTimer)
HWND hwnd; /* handle of window that installed timer */
UINT idTimer; /* timer
identifier *
/

The KillTimer function removes the specified timer. Any pending WM_TIMER messages associated with
the timer are removed from the message queue.

Parameter Description
hwnd Identifies the window associated with the timer to be removed. This must be the same

value passed as the hwnd parameter of the SetTimer function that created the timer.
idTimer Identifies the timer to be removed. If the application called SetTimer with the hwnd

parameter set to NULL, this parameter must be the timer identifier returned by
SetTimer. If the hwnd parameter of SetTimer was a valid window handle, this parameter
must be the value of the idTimer parameter passed to SetTimer.

Returns
The return value is nonzero if the function is successful. It is zero if the KillTimer function could not find
the specified timer.

See Also
SetTimer, WM_TIMER

LoadAccelerators (2.x)
HACCEL LoadAccelerators(hinst, lpszTableName)
HINSTANCE hinst; /* handle of module to load from */
LPCSTR lpszTableName; /
* address of table name *
/

The LoadAccelerators function loads the specified accelerator table.

Parameter Description
hinst Identifies an instance of the module whose executable file contains the accelerator

table to be loaded.
lpszTableName Points to a null-terminated string that names the accelerator table to be loaded.

Returns
The return value is the handle of the loaded accelerator table if the function is successful. Otherwise, it is
NULL.

Comments
If the accelerator table has not yet been loaded, the function loads it from the given executable file.

Accelerator tables loaded from resources are freed automatically when the application terminates.

LoadBitmap (2.x)
HBITMAP LoadBitmap(hinst, lpszBitmap)
HINSTANCE hinst; /* handle of application instance */
LPCSTR lpszBitmap; /*
address of bitmap name *
/

The LoadBitmap function loads the specified bitmap resource from the given module's executable file.

Parameter Description
hinst Identifies the instance of the module whose executable file contains the bitmap to be

loaded.
lpszBitmap Points to a null-terminated string that contains the name of the bitmap resource to be

loaded. Alternatively, this parameter can consist of the resource identifier in the low-
order word and zero in the high-order word. The MAKEINTRESOURCE macro can be
used to create this value.

Returns
The return value is the handle of the specified bitmap if the function is successful. Otherwise, it is NULL.

Comments
If the bitmap pointed to by lpszBitmap does not exist or if there is insufficient memory to load the bitmap,
the function fails.

The application must call the DeleteObject function to delete each bitmap handle returned by the
LoadBitmap function. This also applies to the following predefined bitmaps.

An application can use the LoadBitmap function to access the predefined bitmaps used by Windows. To
do so, the application must set the hinst parameter to NULL and the lpszBitmap parameter to one of the
following values:

OBM_BTNCORNERS OBM_OLD_RESTORE
OBM_BTSIZE OBM_OLD_RGARROW
OBM_CHECK OBM_OLD_UPARROW
OBM_CHECKBOXES OBM_OLD_ZOOM
OBM_CLOSE OBM_REDUCE
OBM_COMBO OBM_REDUCED
OBM_DNARROW OBM_RESTORE
OBM_DNARROWD OBM_RESTORED
OBM_DNARROWI OBM_RGARROW
OBM_LFARROW OBM_RGARROWD
OBM_LFARROWD OBM_RGARROWI
OBM_LFARROWI OBM_SIZE
OBM_MNARROW OBM_UPARROW
OBM_OLD_CLOSE OBM_UPARROWD
OBM_OLD_DNARROW OBM_UPARROWI
OBM_OLD_LFARROW OBM_ZOOM
OBM_OLD_REDUCE OBM_ZOOMD

Bitmap names that begin with OBM_OLD represent bitmaps used by Windows versions earlier than 3.0.

The bitmaps identified by OBM_DNARROWI, OBM_LFARROWI, OBM_RGARROWI, and
OBM_UPARROWI are new for Windows 3.1. These bitmaps are not found in device drivers for previous
versions of Windows.

Note that for an application to use any of the OBM_ constants, the constant OEMRESOURCE must be
defined before the WINDOWS.H header file is included.

The following shows the appearance of each of the OBM_ bitmaps.

See Also
DeleteObject

Windows 3.1 changes

The following bitmaps have been added:

OBM_UPARROWI
OBM_DNARROWI
OBM_RGARROWI
OBM_LFARROWI

LoadCursor (2.x)
HCURSOR LoadCursor(hinst, pszCursor)
HINSTANCE hinst; /* handle of application instance */
LPCSTR pszCursor; /
* cursor-name string or cursor resource identifier *
/

The LoadCursor function loads the specified cursor resource from the executable file associated with the
given application instance.

Parameter Description
hinst Identifies an instance of the module whose executable file contains the cursor to be

loaded.
pszCursor Points to a null-terminated string that contains the name of the cursor resource to be

loaded. Alternatively, this parameter can consist of the resource identifier in the low-
order word and zero in the high-order word. The MAKEINTRESOURCE macro can be
used to create this value.

Returns
The return value is the handle of the newly loaded cursor if the function is successful. Otherwise, it is
NULL.

Comments
The function loads the cursor resource only if it has not been loaded; otherwise, it retrieves a handle of the
existing resource. The LoadCursor function returns a valid cursor handle only if the pszCursor parameter
points to a cursor resource. If pszCursor points to any type of resource other than a cursor (such as an icon)
, the return value will not be NULL, even though it is not a valid cursor handle.

An application can use the LoadCursor function to access the predefined cursors used by Windows. To do
this, the application must set the hinst parameter to NULL and the pszCursor parameter to one the
following values:

Value Meaning
IDC_ARROW Standard arrow cursor.
IDC_CROSS Crosshair cursor.
IDC_IBEAM Text I-beam cursor.
IDC_ICON Empty icon.
IDC_SIZE A square with a smaller square inside its lower-right corner.
IDC_SIZENESW Double-pointed cursor with arrows pointing northeast and southwest.
IDC_SIZENS Double-pointed cursor with arrows pointing north and south.
IDC_SIZENWSE Double-pointed cursor with arrows pointing northwest and southeast.
IDC_SIZEWE Double-pointed cursor with arrows pointing west and east.
IDC_UPARROW Vertical arrow cursor.
IDC_WAIT Hourglass cursor.

It is not necessary to destroy these system cursors. An application should use the DestroyCursor function
to destroy any private cursors it loads.

See Also
DestroyCursor, SetCursor, ShowCursor, MAKEINTRESOURCE

IDC_ARROW MAKEINTRESOURCE(32512)

Standard arrow cursor.

IDC_ARROW MAKEINTRESOURCE(32512)

IDC_CROSS MAKEINTRESOURCE(32515)

Crosshair cursor.

IDC_CROSS MAKEINTRESOURCE(32515)

IDC_IBEAM MAKEINTRESOURCE(32513)

Text I-beam cursor.

IDC_IBEAM MAKEINTRESOURCE(32513)

IDC_ICON MAKEINTRESOURCE(32641)

Empty icon.

IDC_ICON MAKEINTRESOURCE(32641)

IDC_SIZE MAKEINTRESOURCE(32640)

A square with a smaller square inside its lower-right corner.

IDC_SIZE MAKEINTRESOURCE(32640)

IDC_SIZENESW MAKEINTRESOURCE(32643)

Double-pointed cursor with arrows pointing northeast and southwest.

IDC_SIZENESW MAKEINTRESOURCE(32643)

IDC_SIZENS MAKEINTRESOURCE(32645)

Double-pointed cursor with arrows pointing north and south.

IDC_SIZENS MAKEINTRESOURCE(32645)

IDC_SIZENWSE MAKEINTRESOURCE(32642)

Double-pointed cursor with arrows pointing northwest and southeast.

IDC_SIZENWSE MAKEINTRESOURCE(32642)

IDC_SIZEWE MAKEINTRESOURCE(32644)

Double-pointed cursor with arrows pointing west and east.

IDC_SIZEWE MAKEINTRESOURCE(32644)

IDC_UPARROW MAKEINTRESOURCE(32516)

Vertical arrow cursor.

IDC_UPARROW MAKEINTRESOURCE(32516)

IDC_WAIT MAKEINTRESOURCE(32514)

Hourglass cursor.

IDC_WAIT MAKEINTRESOURCE(32514)

LoadIcon (2.x)
HICON LoadIcon(hinst, pszIcon)
HINSTANCE hinst; /* handle of application instance */
LPCSTR pszIcon; /
* icon-name string or icon resource identifier *
/

The LoadIcon function loads the specified icon resource from the executable file associated with the given
application instance.

Parameter Description
hinst Identifies an instance of the module whose executable file contains the icon to be

loaded. This parameter must be NULL when a system icon is being loaded.
pszIcon Points to a null-terminated string that contains the name of the icon resource to be

loaded. Alternatively, this parameter can consist of the resource identifier in the low-
order word and zero in the high-order word. The MAKEINTRESOURCE macro can be
used to create this value.

Returns
The return value is the handle of the newly loaded icon if the function is successful. Otherwise, it is
NULL.

Comments
This function loads the icon resource only if it has not been loaded; otherwise, it retrieves a handle of the
existing resource.

An application can use the LoadIcon function to access the predefined icons used by Windows. To do this,
the application must set the hinst parameter to NULL and the pszIcon parameter to one of the following
values:

Value Meaning
IDI_APPLICATION Default application icon.
IDI_ASTERISK Asterisk (used in informative messages).
IDI_EXCLAMATION Exclamation point (used in warning messages).
IDI_HAND Hand-shaped icon (used in serious warning messages).
IDI_QUESTION Question mark (used in prompting messages).

It is not necessary to destroy these system icons. An application should use the DestroyIcon function to
destroy any private icons it loads.

The following shows all of the system icons.

sysico

See Also
DestroyIcon, DrawIcon, MAKEINTRESOURCE

IDI_APPLICATION MAKEINTRESOURCE(32512)

Default application icon.

IDI_APPLICATION MAKEINTRESOURCE(32512)

IDI_ASTERISK MAKEINTRESOURCE(32516)

Asterisk (used in informative messages).

IDI_ASTERISK MAKEINTRESOURCE(32516)

IDI_EXCLAMATION MAKEINTRESOURCE(32515)

Exclamation point (used in warning messages).

IDI_EXCLAMATION MAKEINTRESOURCE(32515)

IDI_HAND MAKEINTRESOURCE(32513)

Hand-shaped icon (used in serious warning messages).

IDI_HAND MAKEINTRESOURCE(32513)

IDI_QUESTION MAKEINTRESOURCE(32514)

Question mark (used in prompting messages).

IDI_QUESTION MAKEINTRESOURCE(32514)

LoadMenu (2.x)
HMENU LoadMenu(hinst, lpszMenuName)
HINSTANCE hinst; /* handle of application instance */
LPCSTR lpszMenuName; /
* menu-name string or menu resource identifier *
/

The LoadMenu function loads the specified menu resource from the executable file associated with the
given application instance.

Parameter Description
hinst Identifies an instance of the module whose executable file contains the menu to be

loaded.
lpszMenuName Points to a null-terminated string that contains the name of the menu resource to be

loaded. Alternatively, this parameter can consist of the resource identifier in the low-
order word and zero in the high-order word. The MAKEINTRESOURCE macro can
be used to create this value.

Returns
The return value is the handle of the menu resource if the function is successful. Otherwise, it is NULL.

Comments
Before exiting, an application must free system resources associated with a menu if the menu is not
assigned to a window. An application frees a menu by calling the DestroyMenu function.

Example
The following example loads a menu resource, and then assigns the menu to a window:

HMENU hmenu;
hmenu = LoadMenu(hinst, "ColorMenu");
SetMenu(hwnd, hmenu);
See Also
DestroyMenu, LoadMenuIndirect, SetMenu, MAKEINTRESOURCE

LoadMenuIndirect (2.x)
HMENU LoadMenuIndirect(lpmith)
const void FAR* lpmith; /* address of menu template */

The LoadMenuIndirect function loads the specified menu template in memory. A menu template is a
header followed by a collection of one or more MENUITEMTEMPLATE structures, each of which may
contain one or more menu items and pop-up menus.

Parameter Description
lpmith Points to a menu template, which consists of a menu-template header and one or more

menu item templates. The menu template header consists of a
MENUITEMTEMPLATEHEADER structure.
Each menu item template consists of a MENUITEMTEMPLATE structure.

Returns
The return value is the handle of a menu if the function is successful. Otherwise, it is NULL.

Comments
Before exiting, an application must free system resources associated with a menu if the menu is not
assigned to a window. An application frees a menu by calling the DestroyMenu function.

Example
The following example retrieves a menu handle for a menu template resource that has been loaded into
memory, gives the menu handle to a window, and then unlocks and frees the resource:

HRSRC hrsrcResInfo;
HGLOBAL hglbResMenu;
char FAR* lpResMenu;
HMENU hmenu;
case IDM_NEWMENU:

hrsrcResInfo = FindResource(hinst, "DynaMenu", RT_MENU);
hglbResMenu = LoadResource(hinst, hrsrcResInfo);
lpResMenu = LockResource(hglbResMenu);
hmenu = LoadMenuIndirect(lpResMenu);
DestroyMenu(GetMenu(hwnd));
SetMenu(hwnd, hmenu);
UnlockResource(hglbResMenu);
FreeResource(hglbResMenu);
break;

See Also
DestroyMenu, LoadMenu, SetMenu, MENUITEMTEMPLATE

LoadString (2.x)
int LoadString(hinst, idResource, lpszBuffer, cbBuffer)
HINSTANCE hinst; /* handle of module containing string resource */
UINT idResource; /
* resource identifier *
/
LPSTR lpszBuffer; /
* address of buffer for resource *
/
int cbBuffer; /
* size of buffer *
/

The LoadString function loads the specified string resource.

Parameter Description
hinst Identifies an instance of the module whose executable file contains the string resource to

be loaded.
idResource Specifies the integer identifier of the string to be loaded.
lpszBuffer Points to the buffer that will receive the null-terminated string.
cbBuffer Specifies the buffer size, in bytes. The buffer should be large enough for the string and

its terminating null character. The string is truncated if it is longer than the number of
bytes specified.

Returns
The return value specifies the number of bytes copied into the buffer, if the function is successful. It is
zero if the string resource does not exist.

LockInput (3.1)
BOOL LockInput(hReserved, hwndInput, fLock)
HANDLE hReserved; /* reserved, must be NULL */
HWND hwndInput; /*
handle of window to receive all input *
/
BOOL fLock; /
* the lock/unlock flag *
/

The LockInput function locks input to all tasks except the current one, if the fLock parameter is TRUE.
The given window is made system modal; that is, it will receive all input. If fLock is FALSE, LockInput
unlocks input and restores the system to its unlocked state.

Parameter Description
hReserved This parameter is reserved and must be NULL.
hwndInput Identifies the window that is to receive all input. This window must be in the current

task. If fLock is FALSE, this parameter should be NULL.
fLock Indicates whether to lock or unlock input. A value of TRUE locks input; a value of

FALSE unlocks input.

Returns
The return value is nonzero if the function is successful. Otherwise, it is zero.

Comments
Before entering hard mode, a Windows-based debugger calls LockInput, specifying TRUE for the fLock
parameter. This action saves the current global state. To exit hard mode, the debugger calls LockInput,
specifying FALSE for fLock. This restores the global state to the conditions that existed when the
debugger entered hard mode. A debugger must restore the global state before exiting. Calls to LockInput
cannot be nested.

See Also
DirectedYield

LockWindowUpdate (3.1)
BOOL LockWindowUpdate(hwndLock)
HWND hwndLock; /* handle of window */

The LockWindowUpdate function disables or reenables drawing in the given window. A locked window
cannot be moved. Only one window can be locked at a time.

Parameter Description
hwndLock Identifies the window in which drawing will be disabled. If this parameter is NULL,

drawing in the locked window is enabled.

Returns
The return value is nonzero if the function is successful. It is zero if a failure occurs or if the
LockWindowUpdate function has been used to lock another window.

Comments
If an application with a locked window (or any locked child windows) calls the GetDC, GetDCEx, or
BeginPaint function, the called function returns a device context whose visible region is empty. This will
occur until the application unlocks the window by calling LockWindowUpdate, specifying a value of
NULL for hwndLock.

While window updates are locked, the system keeps track of the bounding rectangle of any drawing
operations to device contexts associated with a locked window. When drawing is reenabled, this bounding
rectangle is invalidated in the locked window and its child windows to force an eventual WM_PAINT
message to update the screen. If no drawing has occurred while the window updates were locked, no area
is invalidated.

The LockWindowUpdate function does not make the given window invisible and does not clear the
WS_VISIBLE style bit.

lstrcmp (3.0)
int lstrcmp(lpszString1, lpszString2)
LPCSTR lpszString1; /* address of first string */
LPCSTR lpszString2; /* address of
second string *
/

The lstrcmp function compares two character strings. The comparison is case-sensitive.

Parameter Description
lpszString1 Points to the first null-terminated string to be compared.
lpszString2 Points to the second null-terminated string to be compared.

Returns
The return value is less than zero if the string specified in lpszString1 is less than the string specified in
lpszString2, is greater than zero if lpszString1 is greater than lpszString2, and is zero if the two strings are
equal.

Comments
The lstrcmp function compares two strings by checking the first characters against each other, the second
characters against each other, and so on, until it finds an inequality or reaches the ends of the strings. The
function returns the difference of the values of the first unequal characters it encounters. For example,
lstrcmp determines that "abcz" is greater than "abcdefg" and returns the difference of "z" and "d".

The language driver for the language selected by the user determines which string is greater (or whether
the strings are the same). If no language driver is selected, Windows uses an internal function. With the
Windows United States language functions, uppercase characters have lower values than lowercase
characters.

With a double-byte character set (DBCS) version of Windows, this function can compare two DBCS
strings.

Both strings must be less than 64K in size.

See Also
lstrcmpi

lstrcmpi (3.0)
int lstrcmpi(lpszString1, lpszString2)
LPCSTR lpszString1; /* address of first string */
LPCSTR lpszString2; /* address of
second string *
/

The lstrcmpi function compares the two strings. The comparison is not case-sensitive.

Parameter Description
lpszString1 Points to the first null-terminated string to be compared.
lpszString2 Points to the second null-terminated string to be compared.

Returns
The return value is less than zero if the string specified in lpszString1 is less than the string specified in
lpszString2, is greater than zero if lpszString1 is greater than lpszString2, and is zero if the two strings are
equal.

Comments
The lstrcmpi function compares two strings by checking the first characters against each other, the second
characters against each other, and so on, until it finds an inequality or reaches the ends of the strings. The
function returns the difference of the values of the first unequal characters it encounters. For example,
lstrcmpi determines that "abcz" is greater than "abcdefg" and returns the difference of "z" and "d".

The language driver for the language selected by the user determines which string is greater (or whether
the strings are the same). If no language driver is selected, Windows uses an internal function.

With a double-byte character set (DBCS) version of Windows, this function can compare two DBCS
strings.

Both strings must be less than 64K in size.

See Also
lstrcmp

MapDialogRect (2.x)
void MapDialogRect(hwndDlg, lprc)
HWND hwndDlg; /* handle of dialog box */
RECT FAR* lprc; /* address of
structure with rectangle *
/

The MapDialogRect function converts (maps) the specified dialog box units to screen units (pixels).

Parameter Description
hwndDlg Identifies a dialog box. This dialog box must have been created by using the

CreateDialog or DialogBox function.
lprc Points to a RECT structure that contains the dialog box coordinates to be converted.

Returns
This function does not return a value.

Comments
The MapDialogRect function converts the dialog box units of a rectangle to screen units. Dialog box units
are defined in terms of the current dialog base unit, which is derived from the average width and height of
characters in the font used for dialog box text. Typically, dialog boxes use the System font, but an
application can specify a different font by using the DS_SETFONT style in the resource-definition file.

One horizontal unit is one-fourth of the dialog box base width unit, and one vertical unit is one-eighth of
the dialog box base height unit. The GetDialogBaseUnits function retrieves the dialog box base units in
pixels.

See Also
CreateDialog, DialogBox, GetDialogBaseUnits, RECT

MessageBeep (2.x)
void MessageBeep(uAlert)
UINT uAlert; /* alert level */

The MessageBeep function plays a waveform sound corresponding to a given system alert level. The
sound for each alert level is identified by an entry in the [sounds] section of the WIN.INI initialization file.

Parameter Description
uAlert Specifies the alert level. This parameter can be one of the following values:

Value Meaning
-1 Produces a standard beep sound by using the

computer speaker.
MB_ICONASTERISK Plays the sound identified by the SystemAsterisk

entry in the [sounds] section of WIN.INI.
MB_ICONEXCLAMATION Plays the sound identified by the

SystemExclamation entry in the [sounds] section
of WIN.INI.

MB_ICONHAND Plays the sound identified by the SystemHand
entry in the [sounds] section of WIN.INI.

MB_ICONQUESTION Plays the sound identified by the SystemQuestion
entry in the [sounds] section of WIN.INI.

MB_OK Plays the sound identified by the SystemDefault
entry in the [sounds] section of WIN.INI.

Returns
This function does not return a value.

Comments
MessageBeep returns control to the caller after queuing the sound and plays the sound asynchronously.

If it cannot play the specified alert sound, MessageBeep attempts to play the system default sound. If it
cannot play the system default sound, the function produces a standard beep sound by using the computer
speaker.

The user can disable the warning beep by using the Windows Control Panel application Sounds.

See Also
FlashWindow, MessageBox

Windows 3.1 changes

The MessageBeep function for Windows version 3.0 and earlier did not accept values for the uAlert
parameter.

MessageBox (2.x)
int MessageBox(hwndParent, lpszText, lpszTitle, fuStyle)
HWND hwndParent; /* handle of parent window */
LPCSTR lpszText; /* address of text
in message box *
/
LPCSTR lpszTitle; /
* address of title of message box *
/
UINT fuStyle; /
* style of message box *
/

The MessageBox function creates, displays, and operates a message-box window. The message box
contains an application-defined message and title, plus any combination of the predefined icons and push
buttons described in the fuStyle parameter.

Parameter Description
hwndParent Identifies the parent window of the message box to be created. If this parameter is

NULL, the message box will have no parent window.
lpszText Points to a null-terminated string containing the message to be displayed.
lpszTitle Points to a null-terminated string to be used for the dialog box title. If this parameter is

NULL, the default title Error is used.
fuStyle Specifies the contents and behavior of the dialog box. This parameter can be a

combination of the following values:

Value Meaning
MB_ABORTRETRYIGNORE The message box contains three push buttons:

Abort, Retry, and Ignore.
MB_APPLMODAL The user must respond to the message box before

continuing work in the window identified by the
hwndParent parameter. However, the user can
move to the windows of other applications and
work in those windows. MB_APPLMODAL is
the default if neither MB_SYSTEMMODAL nor
MB_TASKMODAL is specified.

MB_DEFBUTTON1 The first button is the default. Note that the first
button is always the default unless
MB_DEFBUTTON2 or MB_DEFBUTTON3 is
specified.

MB_DEFBUTTON2 The second button is the default.
MB_DEFBUTTON3 The third button is the default.
MB_ICONASTERISK Same as MB_ICONINFORMATION.
MB_ICONEXCLAMATION An exclamation-point icon appears in the message

box.
MB_ICONHAND Same as MB_ICONSTOP.
MB_ICONINFORMATION An icon consisting of a lowercase letter "I" in a

circle appears in the message box.
MB_ICONQUESTION A question-mark icon appears in the message box.
MB_ICONSTOP A stop-sign icon appears in the message box.
MB_OK The message box contains one push button: OK.
MB_OKCANCEL The message box contains two push buttons: OK

and Cancel.
MB_RETRYCANCEL The message box contains two push buttons:

Retry and Cancel.
MB_SYSTEMMODAL All applications are suspended until the user

responds to the message box. Unless the
application specifies MB_ICONHAND, the
message box does not become modal until after it

is created; consequently, the parent window and
other windows continue to receive messages
resulting from its activation. System-modal
message boxes are used to notify the user of
serious, potentially damaging errors that require
immediate attention (for example, running out of
memory).

MB_TASKMODAL Same as MB_APPLMODAL except that all the
top-level windows belonging to the current task
are disabled if the hwndParent parameter is
NULL. This flag should be used when the calling
application or library does not have a window
handle available but still needs to prevent input to
other windows in the current application without
suspending other applications.

MB_YESNO The message box contains two push buttons: Yes
and No.

MB_YESNOCANCEL The message box contains three push buttons:
Yes, No, and Cancel.

Returns
The return value is zero if there is not enough memory to create the message box. Otherwise, it is one of
the following menu-item values returned by the dialog box:

Value Meaning
IDABORT Abort button was selected.
IDCANCEL Cancel button was selected.
IDIGNORE Ignore button was selected.
IDNO No button was selected.
IDOK OK button was selected.
IDRETRY Retry button was selected.
IDYES Yes button was selected.

If a message box has a Cancel button, the IDCANCEL value will be returned if either the ESC key is
pressed or the Cancel button is selected. If the message box has no Cancel button, pressing ESC has no
effect.

Comments
When a system-modal message box is created to indicate that the system is low on memory, the strings
pointed to by the lpszText and lpszTitle parameters should not be taken from a resource file, because an
attempt to load the resource may fail.

When an application calls the MessageBox function and specifies the MB_ICONHAND and
MB_SYSTEMMODAL flags for the fuStyle parameter, Windows displays the resulting message box
regardless of available memory. When these flags are specified, Windows limits the length of the
message-box text to three lines. Windows does not automatically break the lines to fit in the message box,
however, so the message string must contain carriage returns to break the lines at the appropriate places.

If a message box is created while a dialog box is present, use the handle of the dialog box as the
hwndParent parameter. The hwndParent parameter should not identify a child window, such as a control in
a dialog box.

Following are the various system icons that can be used in a message box:

See Also
FlashWindow, MessageBeep

MB_ABORTRETRYIGNORE 0x0002

The message box contains three push buttons: Abort, Retry, and Ignore.

MB_ABORTRETRYIGNORE 0x0002

MB_APPLMODAL 0x0000

The user must respond to the message box before continuing work in the window identified by the
hwndParent parameter. However, the user can move to the windows of other applications and work in
those windows. MB_APPLMODAL is the default if neither MB_SYSTEMMODAL nor
MB_TASKMODAL is specified.

MB_APPLMODAL 0x0000

MB_DEFBUTTON1 0x0000

The first button is the default. Note that the first button is always the default unless MB_DEFBUTTON2
or MB_DEFBUTTON3 is specified.

MB_DEFBUTTON1 0x0000

MB_DEFBUTTON2 0x0100

The second button is the default.

MB_DEFBUTTON2 0x0100

MB_DEFBUTTON3 0x0200

The third button is the default.

MB_DEFBUTTON3 0x0200

MB_ICONASTERISK 0x0040

Same as MB_ICONINFORMATION.

MB_ICONASTERISK 0x0040

MB_ICONEXCLAMATION 0x0030

An exclamation-point icon appears in the message box.

MB_ICONEXCLAMATION 0x0030

MB_ICONHAND 0x0010

Same as MB_ICONSTOP.

MB_ICONHAND 0x0010

MB_ICONINFORMATION MB_ICONASTERISK

An icon consisting of a lowercase letter "I" in a circle appears in the message box.

MB_ICONINFORMATION MB_ICONASTERISK

MB_ICONQUESTION 0x0020

A question-mark icon appears in the message box.

MB_ICONQUESTION 0x0020

MB_ICONSTOP MB_ICONHAND

A stop-sign icon appears in the message box.

MB_ICONSTOP MB_ICONHAND

MB_OK 0x0000

The message box contains one push button: OK.

MB_OK 0x0000

MB_OKCANCEL 0x0001

The message box contains two push buttons: OK and Cancel.

MB_OKCANCEL 0x0001

MB_RETRYCANCEL 0x0005

The message box contains two push buttons: Retry and Cancel.

MB_RETRYCANCEL 0x0005

MB_SYSTEMMODAL 0x1000

All applications are suspended until the user responds to the message box. Unless the application specifies
MB_ICONHAND, the message box does not become modal until after it is created; consequently, the
parent window and other windows continue to receive messages resulting from its activation. System-
modal message boxes are used to notify the user of serious, potentially damaging errors that require
immediate attention (for example, running out of memory).

MB_SYSTEMMODAL 0x1000

MB_TASKMODAL 0x2000

Same as MB_APPLMODAL except that all the top-level windows belonging to the current task are
disabled if the hwndParent parameter is NULL. This flag should be used when the calling application or
library does not have a window handle available but still needs to prevent input to other windows in the
current application without suspending other applications.

MB_TASKMODAL 0x2000

MB_YESNO 0x0004

The message box contains two push buttons: Yes and No.

MB_YESNO 0x0004

MB_YESNOCANCEL 0x0003

The message box contains three push buttons: Yes, No, and Cancel.

MB_YESNOCANCEL 0x0003

IDABORT 3

Abort button was selected.

IDABORT 3

IDCANCEL 2

Cancel button was selected.

IDCANCEL 2

IDIGNORE 5

Ignore button was selected.

IDIGNORE 5

IDNO 7

No button was selected.

IDNO 7

IDOK 1

OK button was selected.

IDOK 1

IDRETRY 4

Retry button was selected.

IDRETRY 4

IDYES 6

Yes button was selected.

IDYES 6

MapWindowPoints (3.1)
void MapWindowPoints(hwndFrom, hwndTo, lppt, cPoints)
HWND hwndFrom; /* handle of window to be mapped from */
HWND hwndTo; /
* handle of window to be mapped to *
/
POINT FAR* lppt; /
* address of structure array with points to map *
/
UINT cPoints; /
* number of structures in array *
/

The MapWindowPoints function converts (maps) a set of points from a coordinate space relative to one
window to a coordinate space relative to another window.

Parameter Description
hwndFrom Identifies the window from which points are converted. If this parameter is NULL or

HWND_DESKTOP, the points are assumed to be in screen coordinates.
hwndTo Identifies the window to which points are converted. If this parameter is NULL or

HWND_DESKTOP, the points are converted to screen coordinates.
lppt Points to an array of POINT structures that contain the set of points to be converted.

This parameter can also point to a RECT structure, in which case the cPoints parameter
should be set to 2.

cPoints Specifies the number of POINT structures in the array pointed to by the lppt parameter.

Returns
This function does not return a value.

See Also
ClientToScreen, ScreenToClient

ModifyMenu (3.0)
BOOL ModifyMenu(hmenu, idItem, fuFlags, idNewItem, lpNewItem)
HMENU hmenu; /* handle of menu */
UINT idItem; /* menu-item identifier *
/
UINT fuFlags; /
* menu-item flags *
/
UINT idNewItem; /
* new menu-item identifier *
/
LPCSTR lpNewItem; /
* menu-item content *
/

The ModifyMenu function changes an existing menu item.

Parameter Description
hmenu Identifies the menu to change.
idItem Specifies the menu item to change, as determined by the fuFlags parameter. When the

fuFlags parameter is MF_BYCOMMAND, the idItem parameter specifies the menu-
item identifier. When the fuFlags parameter is MF_BYPOSITION, the idItem parameter
specifies the zero-based position of the menu item.

fuFlags Specifies how the idItem parameter is interpreted and information about the changes to
be made to the menu item. It consists of one or more values listed in the following
Comments section.

idNewItem Specifies either the identifier of the modified menu item or, if fuFlags is set to
MF_POPUP, the menu handle of the pop-up menu.

lpNewItem Specifies the content of the changed menu item. If fuFlags is set to MF_STRING (the
default), lpNewItem is a long pointer to a null-terminated string. If fuFlags is set to
MF_BITMAP instead, lpNewItem contains a bitmap handle in its low-order word. If
fuFlags is set to MF_OWNERDRAW, lpNewItem specifies an application-defined 32-
bit value that the application can use to maintain additional data associated with the
menu item. This 32-bit value is available to the application in the itemData member of
the MEASUREITEMSTRUCT or DRAWITEMSTRUCT structure pointed to by the
lParam parameter of the WM_MEASUREITEM or WM_DRAWITEM message. These
messages are sent when the menu item is initially displayed or is changed.

Returns
The return value is nonzero if the function is successful. Otherwise, it is zero.

Comments
If the ModifyMenu function replaces a pop-up menu associated with the menu item, it destroys the old
pop-up menu and frees the memory used by the pop-up menu.

Whenever a menu changes (whether or not it is in a window that is displayed), the application should call
DrawMenuBar. To change the attributes of existing menu items, it is much faster to use the
CheckMenuItem and EnableMenuItem functions.

Each of the following groups lists flags that should not be used together:
MF_BYCOMMAND and MF_BYPOSITION
MF_DISABLED, MF_ENABLED, and MF_GRAYED
MF_BITMAP, MF_STRING, MF_OWNERDRAW, and MF_SEPARATOR
MF_MENUBARBREAK and MF_MENUBREAK
MF_CHECKED and MF_UNCHECKED

The following list describes the flags that may be set in the fuFlags parameter:

Value Meaning
MF_BITMAP Uses a bitmap as the menu item. The low-order word of the lpNewItem

parameter contains the handle of the bitmap.
MF_BYCOMMAND Specifies that the idItem parameter gives the menu-item identifier. This is

the default if neither MF_BYCOMMAND nor MF_POSITION is set.

MF_BYPOSITION Specifies that the idItem parameter gives the position of the menu item to
be changed rather than the menu-item identifier.

MF_CHECKED Places a check mark next to the menu item. If the application has supplied
check-mark bitmaps (see SetMenuItemBitmaps), setting this flag displays
the check-mark bitmap next to the menu item.

MF_DISABLED Disables the menu item so that it cannot be selected, but does not gray
(dim) it.

MF_ENABLED Enables the menu item so that it can be selected and restores it from its
grayed state.

MF_GRAYED Disables the menu item so that it cannot be selected and grays it.
MF_MENUBARBREAK Same as MF_MENUBREAK except, for pop-up menus, separates the new

column from the old column with a vertical line.
MF_MENUBREAK Places the menu item on a new line for static menu-bar items. For pop-up

menus, this flag places the item in a new column, with no dividing line
between the columns.

MF_OWNERDRAW Specifies that the menu item is an owner-drawn item. The window that
owns the menu receives a WM_MEASUREITEM message when the menu
is displayed for the first time to retrieve the height and width of the menu
item. The WM_DRAWITEM message is then sent whenever the owner
must update the visual appearance of the menu item. This option is not
valid for a top-level menu item.

MF_POPUP Specifies that the item has a pop-up menu associated with it. The
idNewItem parameter specifies a handle of a pop-up menu to be associated
with the menu item. Use this flag for adding either a top-level pop-up menu
or a hierarchical pop-up menu to a pop-up menu item.

MF_SEPARATOR Draws a horizontal dividing line. This line cannot be grayed, disabled, or
highlighted. You can use this flag only in a pop-up menu. The lpNewItem
and idNewItem parameters are ignored.

MF_STRING Specifies that the menu item is a character string; the lpNewItem parameter
points to the string for the menu item.

MF_UNCHECKED Does not select (place a check mark next to) the menu item. No check mark
is the default condition if neither MF_CHECKED nor MF_UNCHECKED
is set. If the application has supplied check-mark bitmaps (see the
SetMenuItemBitmaps function), setting this flag displays the "check mark
off" bitmap next to the menu item.

See Also
CheckMenuItem, DrawMenuBar, EnableMenuItem, SetMenuItemBitmaps

MoveWindow (2.x)
BOOL MoveWindow(hwnd, nLeft, nTop, nWidth, nHeight, fRepaint)
HWND hwnd; /* handle of window */
int nLeft; /* left coordinate */
int nTop; /* top
coordinate *
/
int nWidth; /
* width *
/
int nHeight; /
* height *
/
BOOL fRepaint; /
* repaint flag *
/

The MoveWindow function changes the position and dimensions of a window. For top-level windows, the
position and dimensions are relative to the upper-left corner of the screen. For child windows, they are
relative to the upper-left corner of the parent window's client area.

Parameter Description
hwnd Identifies the window to be changed.
nLeft Specifies the new position of the left side of the window.
nTop Specifies the new position of the top of the window.
nWidth Specifies the new width of the window.
nHeight Specifies the new height of the window.
fRepaint

Specifies whether the window is to be repainted. If this parameter is TRUE, the window
receives a WM_PAINT message as usual. If this parameter is FALSE, no repainting of
any kind occurs. This applies to the client area, the non-client area (including the title
and scroll bars), and any part of the parent window uncovered as a result of the moved
window. When this parameter is FALSE, the application must explicitly invalidate or
redraw any parts of the window and parent window that must be redrawn.

Returns
The return value is nonzero if the function is successful. Otherwise, it is zero.

Comments
The MoveWindow function sends a WM_GETMINMAXINFO message to the window being moved,
giving it an opportunity to modify the default values for the largest and smallest possible windows. If the
MoveWindow parameters exceed these values, they will be replaced by the minimum or maximum values
specified in the WM_GETMINMAXINFO message.

Example
The following example changes the dimensions of a child window in response to a WM_SIZE message. In
this example, the child window would always fill the client area of the parent window.

case WM_SIZE:
MoveWindow(hwndChild, 0, 0, LOWORD(lParam), HIWORD(lParam),
TRUE);
break;

See Also
ClientToScreen, GetWindowRect, ScreenToClient, SetWindowPos, WM_GETMINMAXINFO,
WM_SIZE

Windows 3.1 changes

For Windows version 3.0 applications, the MoveWindow function always paints the frame and erases the
background of top-level windows, regardless of the setting of the fRepaint parameter.

OffsetRect (2.x)
void OffsetRect(lprc, x, y)
RECT FAR* lprc; /* address of structure with rectangle */
int x; /* horizontal offset *
/
int y; /
* vertical offset *
/

The OffsetRect function moves the given rectangle by the specified offsets.

Parameter Description
lprc Points to a RECT structure that contains the coordinates of the rectangle to be moved.
x Specifies the amount to move left or right. It must be negative to move left.
y Specifies the amount to move up or down. It must be negative to move up.

Returns
This function does not return a value.

Comments
The coordinate values of a rectangle must not be greater than 32,767 or less than -32,768. The x and y
parameters must be chosen carefully to prevent invalid rectangles.

See Also
InflateRect, IntersectRect, UnionRect, RECT

OpenClipboard (2.x)
BOOL OpenClipboard(hwnd)
HWND hwnd; /* handle of window to associate ownership with */

The OpenClipboard function opens the clipboard. Other applications will not be able to modify the
clipboard until the CloseClipboard function is called.

Parameter Description
hwnd Identifies the window to be associated with the open clipboard.

Returns
The return value is nonzero if the function is successful. It is zero if another application or window has the
clipboard opened.

Comments
The window identified by the hwnd parameter will not become the owner of the clipboard until the
EmptyClipboard function is called.

See Also
CloseClipboard, EmptyClipboard

OpenComm (2.x)
int OpenComm(lpszDevControl, cbInQueue, cbOutQueue)
LPCSTR lpszDevControl; /* address of device-control information */
UINT cbInQueue; /
* size of receiving queue *
/
UINT cbOutQueue; /
* size of transmission queue *
/

The OpenComm function opens a communications device.

Parameter Description
lpszDevControl Points to a null-terminated string that specifies the device in the form COMn or

LPTn, where n is the device number.
cbInQueue Specifies the size, in bytes, of the receiving queue. This parameter is ignored for LPT

devices.
cbOutQueue Specifies the size, in bytes, of the transmission queue. This parameter is ignored for

LPT devices.

Returns
The return value identifies the open device if the function is successful. Otherwise, it is less than zero.
Errors

If the function fails, it may return one of the following error values:

Value Meaning
IE_BADID The device identifier is invalid or unsupported.
IE_BAUDRATE The device's baud rate is unsupported.
IE_BYTESIZE The specified byte size is invalid.
IE_DEFAULT The default parameters are in error.
IE_HARDWARE The hardware is not available (is locked by another device).
IE_MEMORY The function cannot allocate the queues.
IE_NOPEN The device is not open.
IE_OPEN The device is already open.

If this function is called with both queue sizes set to zero, the return value is IE_OPEN if the device is
already open or IE_MEMORY if the device is not open.

Comments
Windows allows COM ports 1 through 9 and LPT ports 1 through 3. If the device driver does not support a
communications port number, the OpenComm function will fail.

The communications device is initialized to a default configuration. The SetCommState function should be
used to initialize the device to alternate values.

The receiving and transmission queues are used by interrupt-driven device drivers. LPT ports are not
interrupt driven--for these ports, the cbInQueue and cbOutQueue parameters are ignored and the queue
size is set to zero.

Example
The following example uses the OpenComm function to open communications port 1:

idComDev = OpenComm("COM1", 1024, 128);
if (idComDev < 0) {

ShowError(idComDev, "OpenComm");
return 0;

}
err = BuildCommDCB("COM1:9600,n,8,1", &dcb);
if (err < 0) {

ShowError(err, "BuildCommDCB");
return 0;

}

err = SetCommState(&dcb);
if (err < 0) {

ShowError(err, "SetCommState");
return 0;

}
See Also
CloseComm, SetCommState

IE_BADID (-1)

The device identifier is invalid or unsupported.

IE_BADID (-1)

IE_BAUDRATE (-12)

The device's baud rate is unsupported.

IE_BAUDRATE (-12)

IE_BYTESIZE (-11)

The specified byte size is invalid.

IE_BYTESIZE (-11)

IE_DEFAULT (-5)

The default parameters are in error.

IE_DEFAULT (-5)

IE_HARDWARE (-10)

The hardware is not available (is locked by another device).

IE_HARDWARE (-10)

IE_MEMORY (-4)

The function cannot allocate the queues.

IE_MEMORY (-4)

IE_NOPEN (-3)

The device is not open.

IE_NOPEN (-3)

IE_OPEN (-2)

The device is already open.

IE_OPEN (-2)

OpenDriver (3.1)
HDRVR OpenDriver(lpDriverName, lpSectionName, lParam)
LPCSTR lpDriverName; /* address of driver name */
LPCSTR lpSectionName; /
* address of .INI file section name *
/
LPARAM lParam; /
* address of driver-specific information *
/

The OpenDriver function performs necessary initialization operations such as setting members in
installable-driver structures to their default values.

Parameter Description
lpDriverName Points to a null-terminated string that specifies the name of an installable driver.
lpSectionName Points to a null-terminated string that specifies the name of a section in the

SYSTEM.INI file.
lParam Specifies driver-specific information.

Returns
The return value is a handle of the installable driver, if the function is successful. Otherwise it is NULL.

Comments
The string to which lpDriverName points must be identical to the name of the installable driver as it
appears in the SYSTEM.INI file.

If the name of the installable driver appears in the [driver] section of the SYSTEM.INI file, the string
pointed to by lpSectionName should be NULL. Otherwise this string should specify the name of the
section in SYSTEM.INI that contains the driver name.

When an application opens a driver for the first time, Windows calls the DriverProc function with the
DRV_LOAD, DRV_ENABLE, and DRV_OPEN messages. When subsequent instances of the driver are
opened, only DRV_OPEN is sent.

The value specified in the lParam parameter is passed to the lParam2 parameter of the DriverProc
function.

See Also
CloseDriver, DriverProc

OpenIcon (2.x)
BOOL OpenIcon(hwnd)
HWND hwnd; /* handle of window */

The OpenIcon function activates and displays a minimized window. Windows restores the window to its
original size and position.

Parameter Description
hwnd Identifies the window.

Returns
The return value is nonzero if the function is successful. Otherwise, it is zero.

Comments
Using OpenIcon is the same as specifying the SW_SHOWNORMAL flag in a call to the ShowWindow
function.

See Also
CloseWindow, IsIconic, ShowWindow

PeekMessage (2.x)
BOOL PeekMessage(lpmsg, hwnd, uFilterFirst, uFilterLast, fuRemove)
MSG FAR* lpmsg; /* address of structure for message */
HWND hwnd; /* handle of
filter window *
/
UINT uFilterFirst; /
* first message *
/
UINT uFilterLast; /
* last message *
/
UINT fuRemove; /
* removal flags *
/

The PeekMessage function checks the application's message queue for a message and places the message
(if any) in the specified MSG structure.

Parameter Description
lpmsg Points to an MSG structure that will receive message information from the application's

message queue.
hwnd Identifies the window whose messages are to be examined.
uFilterFirst Specifies the value of the first message in the range of messages to be examined.
uFilterLast Specifies the value of the last message in the range of messages to be examined.
fuRemove Specifies how messages are handled. This parameter can be a combination of the

following values (PM_NOYIELD can be combined with either PM_NOREMOVE or
PM_REMOVE):

Value Meaning
PM_NOREMOVE Messages are not removed from the queue after processing by

PeekMessage.
PM_NOYIELD Prevents the current task from halting and yielding system

resources to another task.
PM_REMOVE Messages are removed from the queue after processing by

PeekMessage.

Returns
The return value is nonzero if a message is available. Otherwise, it is zero.

Comments
Unlike the GetMessage function, the PeekMessage function does not wait for a message to be placed in
the queue before returning. PeekMessage yields control to other tasks, unless the PM_NOYIELD flag is
set. However, if there is a WM_TIMER message pending, PeekMessage will yield regardless of the
PM_NOYIELD flag.

PeekMessage retrieves only messages associated with the window identified by the hwnd parameter, or
any of its children as specified by the IsChild function, and within the range of message values given by
the uFilterFirst and uFilterLast parameters. If hwnd is NULL, PeekMessage retrieves messages for any
window that belongs to the application making the call. (PeekMessage does not retrieve messages for
windows that belong to other applications.) If uFilterFirst and uFilterLast are both zero, PeekMessage
returns all available messages (no range filtering is performed).

The WM_KEYFIRST and WM_KEYLAST flags can be used as filter values to retrieve all key messages;
the WM_MOUSEFIRST and WM_MOUSELAST flags can be used to retrieve all mouse messages.

PeekMessage does not remove WM_PAINT messages from the queue. The messages remain in the queue
until processed. The GetMessage, PeekMessage, and WaitMessage functions yield control to other
applications. These calls provide the only way to let other applications run. If your application does not
call any of these functions for long periods of time, other applications cannot run.

As long as an application is in a PeekMessage loop, Windows cannot become idle. Therefore, an
application should not remain in a PeekMessage loop after the application's background processing has
completed.

When an application uses the PeekMessage function without removing the message and then calls the
WaitMessage function, WaitMessage does not return until the message is received. Applications that use
the PeekMessage function should remove any retrieved messages from the queue before calling
WaitMessage.

Example
The following example checks the message queue for keystrokes that have special meaning to the
application. Note that the CheckSpecialKeys function is application-defined.

MSG msg;
BOOL fRetVal = TRUE;
while (PeekMessage(&msg, NULL, 0, 0, PM_REMOVE)) {

if (msg.message == WM_QUIT)
fRetVal = FALSE;
if (CheckSpecialKeys(&msg)) /* application defined */
continue;
TranslateMessage(&msg);
DispatchMessage(&msg);

}
return fRetVal;
See Also
GetMessage, IsChild, PostAppMessage, SetMessageQueue, WaitMessage

Corrections

Previous documentation incorrectly stated that a -1 could be used for the hwnd parameter. This parameter
can only be NULL or a valid window handle.

PM_NOREMOVE 0x0000

Messages are not removed from the queue after processing by PeekMessage.

PM_NOREMOVE 0x0000

PM_NOYIELD 0x0002

Prevents the current task from halting and yielding system resources to another task.

PM_NOYIELD 0x0002

PM_REMOVE 0x0001

Messages are removed from the queue after processing by PeekMessage.

PM_REMOVE 0x0001

PostAppMessage (2.x)
BOOL PostAppMessage(htask, uMsg, wParam, lParam)
HTASK htask; /* handle of task to receive message */
UINT uMsg; /* message to
post *
/
WPARAM wParam; /
* first message parameter *
/
LPARAM lParam; /
* second message parameter *
/

The PostAppMessage function posts (places) a message in the message queue of the given application
(task) and then returns without waiting for the application to process the message. The application to
which the message is posted retrieves the message by calling the GetMessage or PeekMessage function.
The hwnd member of the returned MSG structure is NULL.

Parameter Description
htask Identifies the task to which the message is posted. The GetCurrentTask function returns

this handle.
uMsg Specifies the type of message to be posted.
wParam Specifies 16 bits of additional message-dependent information.
lParam Specifies 32 bits of additional message-dependent information.

Returns
The return value is nonzero if the function is successful. Otherwise, it is zero.

See Also
GetCurrentTask, GetMessage, PeekMessage, PostMessage, MSG

PostMessage (2.x)
BOOL PostMessage(hwnd, uMsg, wParam, lParam)
HWND hwnd; /* handle of the destination window */
UINT uMsg; /* message to
post *
/
WPARAM wParam; /
* first message parameter *
/
LPARAM lParam; /
* second message parameter *
/

The PostMessage function posts (places) a message in a window's message queue and then returns without
waiting for the corresponding window to process the message. Messages in a message queue are retrieved
by calls to the GetMessage or PeekMessage function.

Parameter Description
hwnd Identifies the window to which the message will be posted. If this parameter is

HWND_BROADCAST, the message will be posted to all top-level windows, including
disabled or invisible unowned windows.

uMsg Specifies the message to be posted.
wParam Specifies 16 bits of additional message-dependent information.
lParam Specifies 32 bits of additional message-dependent information.

Returns
The return value is nonzero if the function is successful. Otherwise, it is zero.

Comments
An application should never use the PostMessage function to post a message to a control.

If the message is being posted to another application, and the wParam or lParam parameters are used to
pass a handle or pointer to a global memory object, the memory should be allocated by the GlobalAlloc
function, using the GMEM_SHARE flag.

The PostMessage function fails if the message queue for the receiving application is full. This is especially
likely if an application posts several messages without allowing the receiving task to run. The
GetMessage, PeekMessage, and WaitMessage functions yield control to other applications.

See Also
GetMessage, PeekMessage, PostAppMessage, SendDlgItemMessage, SendMessage

Windows 3.1 changes

In Windows 3.0, specifying a window handle of -1 would not send the message to disabled or invisible
unowned windows. In Windows 3.1, if a window handle of HWND_BROADCAST (-1) is specified, the
message is sent to diabled or invisible unowned windows.

PostQuitMessage (2.x)
void PostQuitMessage(nExitCode)
int nExitCode; /* exit code */

The PostQuitMessage function posts a message to Windows indicating that an application is requesting to
terminate execution (quit). This function is typically used in response to a WM_DESTROY message.

Parameter Description
nExitCode Specifies an application-defined exit code. It must be the wParam parameter of the

WM_QUIT message.

Returns
This function does not return a value.

Comments
The PostQuitMessage function posts a WM_QUIT message to the application and returns immediately;
the function simply indicates to the system that the application will request to quit some time in the future.

When the application receives the WM_QUIT message, it should exit the message loop in the main
function and return control to Windows.

See Also
GetMessage, WM_DESTROY, WM_QUIT

PtInRect (2.x)
BOOL PtInRect(lprc, pt)
const RECT FAR* lprc; /* address of structure with rectangle */
POINT pt; /* structure with
point *
/

The PtInRect function determines whether the specified point lies within a given rectangle. A point is
within a rectangle if it lies on the left or top side or is within all four sides. A point on the right or bottom
side is considered outside the rectangle.

Parameter Description
lprc Points to a RECT structure that contains the specified rectangle.
pt Specifies a POINT structure that contains the specified point.

Returns
The return value is nonzero if the point lies within the given rectangle. Otherwise, it is zero.

See Also
EqualRect, IsRectEmpty, POINT, RECT

QuerySendMessage (3.1)
BOOL QuerySendMessage(hreserved1, hreserved2, hreserved3, lpMessage)
HANDLE hreserved1;
HANDLE hreserved2;
HANDLE hreserved3;
LPMSG lpMessage; /* address of
structure for message *
/

The QuerySendMessage function determines whether a message sent by SendMessage originated from
within the current task. If the message is an intertask message, QuerySendMessage puts it into the
specified MSG structure.

Parameter Description
hreserved1 Reserved; must be NULL.
hreserved2 Reserved; must be NULL.
hreserved3 Reserved; must be NULL.
lpMessage Specifies the MSG structure in which to place an intertask message.

Returns
The return value is zero if the message originated within the current task. Otherwise, it is nonzero.

Comments
If the Windows debugger is entering soft mode, the application being debugged should reply to intertask
messages by using the ReplyMessage function.

The NULL parameters are reserved for future use.

See Also
SendMessage, ReplyMessage, MSG

ReadComm (2.x)
int ReadComm(idComDev, lpvBuf, cbRead)
int idComDev; /* identifier of device to read from */
void FAR* lpvBuf; /* address of
buffer for read bytes *
/
int cbRead; /
* number of bytes to read *
/

The ReadComm function reads up to a specified number of bytes from the given communications device.

Parameter Description
idComDev Specifies the communications device to be read from. The OpenComm function returns

this value.
lpvBuf Points to the buffer for the read bytes.
cbRead Specifies the number of bytes to be read.

Returns
The return value is the number of bytes read, if the function is successful. Otherwise, it is less than zero
and its absolute value is the number of bytes read.

For parallel I/O ports, the return value is always zero.

Comments
When an error occurs, the cause of the error can be determined by using the GetCommError function to
retrieve the error value and status. Since errors can occur when no bytes are present, if the return value is
zero, the GetCommError function should be used to ensure that no error occurred.

The return value is less than the number specified by the cbRead parameter only if the number of bytes in
the receiving queue is less than that specified by cbRead. If the return value is equal to cbRead, additional
bytes may be queued for the device. If the return value is zero, no bytes are present.

See Also
GetCommError, OpenComm

RealizePalette (3.0)
UINT RealizePalette(hdc)
HDC hdc; /* handle of device context */

The RealizePalette function maps palette entries from the current logical palette to the system palette.

Parameter Description
hdc Identifies the device context containing a logical palette.

Returns
The return value indicates how many entries in the logical palette were mapped to different entries in the
system palette. This represents the number of entries that this function remapped to accommodate changes
in the system palette since the logical palette was last realized.

Comments
A logical color palette acts as a buffer between color-intensive applications and the system, allowing an
application to use as many colors as necessary without interfering with either its own displayed color or
with colors displayed by other windows. When a window has the input focus and calls the RealizePalette
function, Windows ensures that the window will display all the requested colors (up to the maximum
number simultaneously available on the screen) and Windows displays additional colors by matching them
to available colors. In addition, Windows matches the colors requested by inactive windows that call
RealizePalette as closely as possible to the available colors. This significantly reduces undesirable changes
in the colors displayed in inactive windows.

Example
The following example uses the SelectPalette function to select a palette into a device context and then
calls the RealizePalette function to map the colors to the system palette:

HPALETTE hpal, hPalPrevious;
hdc = GetDC(hwnd);
hPalPrevious = SelectPalette(hdc, hpal, FALSE);
if (RealizePalette(hdc) == NULL)

MessageBox(hwnd, "Can't realize palette", "Error", MB_OK);
ReleaseDC(hwnd, hdc);
See Also
SelectPalette, WM_PALETTECHANGED

RedrawWindow (3.1)
BOOL RedrawWindow(hwnd, lprcUpdate, hrgnUpdate, fuRedraw)
HWND hwnd; /* handle of window */
const RECT FAR* lprcUpdate; /
* address of structure with update rect. *
/
HRGN hrgnUpdate; /
* handle of update region *
/
UINT fuRedraw; /
* redraw flags *
/

The RedrawWindow function updates the specified rectangle or region in the given window's client area.

Parameter Description
hwnd Identifies the window to be redrawn. If this parameter is NULL, the desktop window is

updated.
lprcUpdate Points to a RECT structure containing the coordinates of the update rectangle. This

parameter is ignored if the hrgnUpdate parameter contains a valid region handle.
hrgnUpdate Identifies the update region. If both the hrgnUpdate and lprcUpdate parameters are

NULL, the entire client area is added to the update region.
fuRedraw Specifies one or more redraw flags. This parameter can be a combination of flags:

The following flags are used to invalidate the window:

Value Meaning
RDW_ERASE Causes the window to receive a

WM_ERASEBKGND message when the window
is repainted. The RDW_INVALIDATE flag must
also be specified; otherwise, RDW_ERASE has no
effect.

RDW_FRAME Causes any part of the non-client area of the
window that intersects the update region to receive
a WM_NCPAINT message. The
RDW_INVALIDATE flag must also be specified;
otherwise, RDW_FRAME has no effect. The
WM_NCPAINT message is typically not sent
during the execution of the RedrawWindow
function unless either RDW_UPDATENOW or
RDW_ERASENOW is specified.

RDW_INTERNALPAINT Causes a WM_PAINT message to be posted to the
window regardless of whether the window contains
an invalid region.

RDW_INVALIDATE Invalidate lprcUpdate or hrgnUpdate (only one may
be non-NULL). If both are NULL, the entire
window is invalidated.

The following flags are used to validate the window:

Value Meaning
RDW_NOERASE Suppresses any pending WM_ERASEBKGND

messages.
RDW_NOFRAME Suppresses any pending WM_NCPAINT

messages. This flag must be used with
RDW_VALIDATE and is typically used with
RDW_NOCHILDREN. This option should be
used with care, as it could cause parts of a
window from painting properly.

RDW_NOINTERNALPAINT Suppresses any pending internal WM_PAINT
messages. This flag does not affect
WM_PAINT messages resulting from invalid
areas.

RDW_VALIDATE Validates lprcUpdate or hrgnUpdate (only one
may be non-NULL). If both are NULL, the
entire window is validated. This flag does not
affect internal WM_PAINT messages.

The following flags control when repainting occurs. No painting is performed by the
RedrawWindow function unless one of these bits is specified.

Value Meaning
RDW_ERASENOW Causes the affected windows (as specified by the

RDW_ALLCHILDREN and RDW_NOCHILDREN flags)
to receive WM_NCPAINT and WM_ERASEBKGND
messages, if necessary, before the function returns.
WM_PAINT messages are deferred.

RDW_UPDATENOW Causes the affected windows (as specified by the
RDW_ALLCHILDREN and RDW_NOCHILDREN flags)
to receive WM_NCPAINT, WM_ERASEBKGND, and
WM_PAINT messages, if necessary, before the function
returns.

By default, the windows affected by the RedrawWindow function depend on whether
the specified window has the WS_CLIPCHILDREN style. The child windows of
WS_CLIPCHILDREN windows are not affected; however, non-WS_CLIPCHILDREN
windows are recursively validated or invalidated until a WS_CLIPCHILDREN window
is encountered. The following flags control which windows are affected by the
RedrawWindow function:

Value Meaning
RDW_ALLCHILDREN Includes child windows, if any, in the repainting

operation.
RDW_NOCHILDREN Excludes child windows, if any, from the repainting

operation.

Returns
The return value is nonzero if the function is successful. Otherwise, it is zero.

Comments
When the RedrawWindow function is used to invalidate part of the desktop window, the desktop window
does not receive a WM_PAINT message. To repaint the desktop, an application should use the
RDW_ERASE flag to generate a WM_ERASEBKGND message.

See Also
GetUpdateRect, GetUpdateRgn, InvalidateRect, InvalidateRgn, UpdateWindow, WM_ERASEBKGND,
WM_PAINT

RDW_ERASE 0x0004

Causes the window to receive a WM_ERASEBKGND message when the window is repainted. The
RDW_INVALIDATE flag must also be specified; otherwise, RDW_ERASE has no effect.

RDW_ERASE 0x0004

RDW_FRAME 0x0400

Causes any part of the non-client area of the window that intersects the update region to receive a
WM_NCPAINT message. The RDW_INVALIDATE flag must also be specified; otherwise,
RDW_FRAME has no effect. The WM_NCPAINT message is typically not sent during the execution of
the RedrawWindow function unless either RDW_UPDATENOW or RDW_ERASENOW is specified.

RDW_FRAME 0x0400

RDW_INTERNALPAINT 0x0002

Causes a WM_PAINT message to be posted to the window regardless of whether the window contains an
invalid region.

RDW_INTERNALPAINT 0x0002

RDW_INVALIDATE 0x0001

Invalidate lprcUpdate or hrgnUpdate (only one may be non-NULL). If both are NULL, the entire window
is invalidated.

RDW_INVALIDATE 0x0001

RDW_NOERASE 0x0020

Suppresses any pending WM_ERASEBKGND messages.

RDW_NOERASE 0x0020

RDW_NOFRAME 0x0800

Suppresses any pending WM_NCPAINT messages. This flag must be used with RDW_VALIDATE and
is typically used with RDW_NOCHILDREN. This option should be used with care, as it could cause parts
of a window from painting properly.

RDW_NOFRAME 0x0800

RDW_NOINTERNALPAINT 0x0010

Suppresses any pending internal WM_PAINT messages. This flag does not affect WM_PAINT messages
resulting from invalid areas.

RDW_NOINTERNALPAINT 0x0010

RDW_VALIDATE 0x0008

Validates lprcUpdate or hrgnUpdate (only one may be non-NULL). If both are NULL, the entire window
is validated. This flag does not affect internal WM_PAINT messages.

RDW_VALIDATE 0x0008

RDW_ERASENOW 0x0200

Causes the affected windows (as specified by the RDW_ALLCHILDREN and RDW_NOCHILDREN
flags) to receive WM_NCPAINT and WM_ERASEBKGND messages, if necessary, before the function
returns. WM_PAINT messages are deferred.

RDW_ERASENOW 0x0200

RDW_UPDATENOW 0x0100

Causes the affected windows (as specified by the RDW_ALLCHILDREN and RDW_NOCHILDREN
flags) to receive WM_NCPAINT, WM_ERASEBKGND, and WM_PAINT messages, if necessary, before
the function returns.

RDW_UPDATENOW 0x0100

RDW_ALLCHILDREN 0x0080

Includes child windows, if any, in the repainting operation.

RDW_ALLCHILDREN 0x0080

RDW_NOCHILDREN 0x0040

Excludes child windows, if any, from the repainting operation.

RDW_NOCHILDREN 0x0040

RegisterClass (2.x)
ATOM RegisterClass(lpwc)
const WNDCLASS FAR* lpwc; /* address of structure with class data */

The RegisterClass function registers a window class for subsequent use in calls to the CreateWindow or
CreateWindowEx function.

Parameter Description
lpwc Points to a WNDCLASS structure. The structure must be filled with the appropriate

class attributes before being passed to the function.

Returns
The return value is an atom that uniquely identifies the class being registered. For Windows versions 3.0
and earlier, the return value is nonzero if the function is successful or zero if an error occurs.

Comments
An application cannot register a global class if either a global class or a task-specific class already exists
with the given name.

An application can register a task-specific class with the same name as a global class. The task-specific
class overrides the global class for the current task only. A task cannot register two local classes with the
same name. However, two different tasks can register task-specific classes using the same name.

Example
The following example registers a window class, then creates a window of that class:

WNDCLASS wc;
HINSTANCE hinst;
char szMyClass[] = "MyClass";
HWND hwndMyWindow;
/* Register the window class. */
wc.style = 0;
wc.lpfnWndProc = MyWndProc;
wc.cbClsExtra = 0;
wc.cbWndExtra = 0;
wc.hInstance= hinst;
wc.hIcon = LoadIcon(hinst, "MyIcon");
wc.hCursor = LoadCursor(NULL, IDC_ARROW);
wc.hbrBackground = (HBRUSH) (COLOR_WINDOW + 1);
wc.lpszMenuName = NULL;
wc.lpszClassName = szMyClass;
if (!RegisterClass(&wc))

return FALSE;
/* Create the window. */
hwndMyWindow = CreateWindow(szMyClass, "MyApp",

WS_OVERLAPPED | WS_SYSMENU, CW_USEDEFAULT, 0,
CW_USEDEFAULT, 0, NULL, NULL,
hinst, NULL);

See Also
CreateWindow, CreateWindowEx, GetClassInfo, GetClassName, UnregisterClass, WindowProc,
WNDCLASS

Windows 3.1 changes

The RegisterClass function returns an atom that uniquely identifies the class being registered. For
Windows version 3.0 and earlier, the return value is nonzero if the function is successful or zero if an error
occurs.

RegisterClipboardFormat (2.x)
UINT RegisterClipboardFormat(lpszFormatName)
LPCSTR lpszFormatName; /* address of name string */

The RegisterClipboardFormat function registers a new clipboard format. The registered format can be
used in subsequent clipboard functions as a valid format in which to render data, and it will appear in the
clipboard's list of formats.

Parameter Description
lpszFormatName Points to a null-terminated string that names the new format.

Returns
The return value indicates the newly registered format. If the identical format name has been registered
before, even by a different application, the format's reference count is incremented (increased by one) and
the same value is returned as when the format was originally registered. The return value is zero if the
format cannot be registered.

Comments
The format value returned by the RegisterClipboardFormat function is within the range 0xC000 through
0xFFFF.

See Also
CountClipboardFormats, EnumClipboardFormats, GetClipboardFormatName,
GetPriorityClipboardFormat, IsClipboardFormatAvailable

RegisterWindowMessage (2.x)
UINT RegisterWindowMessage(lpsz)
LPCSTR lpsz; /* address of message string */

The RegisterWindowMessage function defines a new window message that is guaranteed to be unique
throughout the system. The returned message value can be used when calling the SendMessage or
PostMessage function.

Parameter Description
lpsz Points to a null-terminated string that specifies the message to be registered.

Returns
The return value is an unsigned short integer in the range 0xC000 through 0xFFFF if the message is
successfully registered. Otherwise, the return value is 0.

Comments
RegisterWindowMessage is typically used to register messages for communicating between two
cooperating applications.

If two different applications register the same message string, the applications return the same message
value. The message remains registered until the Windows session ends.

Use the RegisterWindowMessage function only when more than one application must process the same
message. For sending private messages within a window class, an application can use any integer in the
range WM_USER through 0x7FFF. (Messages in this range are private to a window class, not to an
application. For example, such predefined control classes as BUTTON, EDIT, LISTBOX, and
COMBOBOX may use values in this range.)

See Also
PostAppMessage, PostMessage, SendMessage

ReleaseCapture (2.x)
void ReleaseCapture(void)

The ReleaseCapture function releases the mouse capture and restores normal input processing. A window
with the mouse capture receives all mouse input regardless of the position of the cursor.

Returns
This function does not return a value.

Comments
An application calls this function after calling the SetCapture function.

See Also
SetCapture

ReleaseDC (2.x)
int ReleaseDC(hwnd, hdc)
HWND hwnd; /* handle of window with device context */
HDC hdc; /* handle of device
context *
/

The ReleaseDC function releases the given device context, freeing it for use by other applications.

Parameter Description
hwnd Identifies the window whose device context is to be released.
hdc Identifies the device context to be released.

Returns
The return value is 1 if the function is successful. Otherwise, it is 0.

Comments
The effect of ReleaseDC depends on the type of device context. It frees only common and window device
contexts. It has no effect on class or private device contexts.

The application must call the ReleaseDC function for each call to the GetWindowDC function and for
each call to the GetDC function that retrieves a common device context.

See Also
BeginPaint, EndPaint, GetDC, GetWindowDC

RemoveMenu (3.0)
BOOL RemoveMenu(hmenu, idItem, fuFlags)
HMENU hmenu; /* handle of menu */
UINT idItem; /* menu item to delete */
UINT fuFlags; /
* menu flags *
/

The RemoveMenu function deletes a menu item with an associated pop-up menu from a menu but does
not destroy the handle of the pop-up menu, allowing the menu to be reused. Before calling this function,
an application should call the GetSubMenu function to retrieve the pop-up menu handle.

Parameter Description
hmenu Identifies the menu to be changed.
idItem Specifies the menu item to be removed, as determined by the fuFlags parameter.
fuFlags Specifies how the idItem parameter is to be interpreted. This parameter can be one of the

following values:

Value Meaning
MF_BYCOMMAND The idItem parameter specifies the menu-item identifier.
MF_BYPOSITION The idItem parameter specifies the zero-based position of the

menu item.

Returns
The return value is nonzero if the function is successful. Otherwise it is zero.

Comments
Whenever a menu changes (whether or not it is in a window that is displayed), the application should call
the DrawMenuBar function.

See Also
AppendMenu, CreateMenu, DeleteMenu, DrawMenuBar, GetSubMenu, InsertMenu

RemoveProp (2.x)
HANDLE RemoveProp(hwnd, lpsz)
HWND hwnd; /* handle of window */
LPCSTR lpsz; /* atom or address of string *
/

The RemoveProp function removes an entry from the property list of the given window. The RemoveProp
function returns a data handle so that the application can free the data associated with the handle.

Parameter Description
hwnd Identifies the window whose property list is to be changed.
lpsz Points to a null-terminated string or an atom that identifies a string. If an atom is given,

it must be a global atom created by a previous call to the GlobalAddAtom function. The
atom, a 16-bit value, must be placed in the low-order word of this parameter; the high-
order word must be zero.

Returns
The return value is the handle of the given string if the function is successful. Otherwise, it is NULL--for
example, if the string cannot be found in the given property list.

Comments
An application can remove only those properties it has added. It should not remove properties added by
other applications or by Windows itself.

An application must free the data handles associated with entries removed from a property list. The
application should remove only those properties it added to the property list.

See Also
GetProp, GlobalAddAtom

ReplyMessage (2.x)
void ReplyMessage(lResult)
LRESULT lResult; /* message-dependent reply */

The ReplyMessage function is used to reply to a message sent through the SendMessage function without
returning control to the function that called SendMessage.

Parameter Description
lResult Specifies the result of the message processing. The possible values depend on the

message sent.

Returns
This function does not return a value.

Comments
By calling this function, the window procedure that receives the message allows the task that called
SendMessage to continue to run as though the task that received the message had returned control. The
task that calls ReplyMessage also continues to run.

Usually, a task that calls SendMessage to send a message to another task will not continue running until
the window procedure that Windows calls to receive the message returns. However, if a task that is called
to receive a message must perform some type of operation that might yield control (such as calling the
MessageBox or DialogBox function), Windows could be deadlocked, as when the sending task must run
and process messages but cannot because it is waiting for SendMessage to return. An application can
avoid this problem if the task receiving the message calls ReplyMessage before performing any operation
that could cause the task to yield.

The ReplyMessage function has no effect if the message was not sent through the SendMessage function
or if the message was sent by the same task.

See Also
DialogBox, MessageBox, SendMessage

ScreenToClient (2.x)
void ScreenToClient(hwnd, lppt)
HWND hwnd; /* window handle for source coordinates */
POINT FAR* lppt; /*
address of structure with coordinates *
/

The ScreenToClient function converts the screen coordinates of a given point on the screen to client
coordinates.

Parameter Description
hwnd Identifies the window whose client area is to be used for the conversion.
lppt Points to a POINT structure that contains the screen coordinates to be converted.

Returns
This function does not return a value.

Comments
The ScreenToClient function replaces the screen coordinates in the POINT structure with client
coordinates. The new coordinates are relative to the upper-left corner of the given window's client area.

Example
The following example uses the GetWindowRect function to retrieve the screen coordinates for a specified
window, calls the ScreenToClient function to convert the upper-left and lower-right corners of the window
rectangle to client coordinates, and then reports the results in a message box:

RECT rc; /* window's screen coordinates */
POINT ptUpperLeft; /* client coordinate of upper left */
POINT ptLowerRight; /* client coordinate of lower right */
char szText[128]; /* char buffer for wsprintf */
GetWindowRect(hwnd, &rc);
ptUpperLeft.x = rc.left;
ptUpperLeft.y = rc.top;
ptLowerRight.x = rc.right;
ptLowerRight.y = rc.bottom;
ScreenToClient(hwnd, &ptUpperLeft);
ScreenToClient(hwnd, &ptLowerRight);
wsprintf(szText,

"S: (%d,%d)-(%d,%d) --> C: (%d,%d)-(%d,%d)",
rc.left, rc.top, rc.right, rc.bottom,
ptUpperLeft.x, ptUpperLeft.y, ptLowerRight.x, ptLowerRight.y);

MessageBox(hwnd, szText, "ScreenToClient", MB_OK);
See Also
ClientToScreen, MapWindowPoints, POINT

ScrollDC (2.x)
BOOL ScrollDC(hdc, dx, dy, lprcScroll, lprcClip, hrgnUpdate, lprcUpdate)
HDC hdc; /* handle of device context */
int dx; /*
horizontal scroll units *
/
int dy; /
* vertical scroll units *
/
const RECT FAR* lprcScroll; /
* address of scrolling rectangle *
/
const RECT FAR* lprcClip; /
* address of clipping rectangle *
/
HRGN hrgnUpdate; /
* handle of scrolling region *
/
RECT FAR* lprcUpdate; /
* address of structure for update rect. *
/

The ScrollDC function scrolls a rectangle of bits horizontally and vertically.

Parameter Description
hdc Identifies the device context that contains the bits to be scrolled.
dx Specifies the number of horizontal scroll units.
dy Specifies the number of vertical scroll units.
lprcScroll Points to the RECT structure that contains the coordinates of the scrolling rectangle.
lprcClip Points to the RECT structure that contains the coordinates of the clipping rectangle.

When this rectangle is smaller than the original one pointed to by the lprcScroll
parameter, scrolling occurs only in the smaller rectangle.

hrgnUpdate Identifies the region uncovered by the scrolling process. The ScrollDC function defines
this region; it is not necessarily a rectangle.

lprcUpdate Points to the RECT structure that receives the coordinates of the rectangle that bounds
the scrolling update region. This is the largest rectangular area that requires repainting.
The values in the structure when the function returns are in client coordinates, regardless
of the mapping mode for the given device context.

Returns
The return value is nonzero if the function is successful. Otherwise, it is zero.

Comments
If the lprcUpdate parameter is NULL, Windows does not compute the update rectangle. If both the
hrgnUpdate and lprcUpdate parameters are NULL, Windows does not compute the update region. If
hrgnUpdate is not NULL, Windows assumes that it contains a valid handle of the region uncovered by the
scrolling process (defined by the ScrollDC function).

When the ScrollDC function returns, the values in the structure pointed to by the lprcUpdate parameter are
in client coordinates. This allows applications to use the update region in a call to the InvalidateRgn
function, if required.

An application should use the ScrollWindow function when it is necessary to scroll the entire client area of
a window; otherwise, it should use ScrollDC.

See Also
InvalidateRgn, ScrollWindow, ScrollWindowEx, RECT

ScrollWindow (2.x)
void ScrollWindow(hwnd, dx, dy, lprcScroll, lprcClip)
HWND hwnd; /* handle of window to scroll */
int dx; /*
amount of horizontal scrolling *
/
int dy; /
* amount of vertical scrolling *
/
const RECT FAR* lprcScroll; /
* address of structure with scroll rect. *
/
const RECT FAR* lprcClip; /
* address of structure with clip rect. *
/

The ScrollWindow function scrolls the contents of a window's client area.

Parameter Description
hwnd Identifies the window to be scrolled.
dx Specifies the amount, in device units, of horizontal scrolling. This parameter must be a

negative value to scroll to the left.
dy Specifies the amount, in device units, of vertical scrolling. This parameter must be a

negative value to scroll up.
lprcScroll Points to a RECT structure that specifies the portion of the client area to be scrolled. If

this parameter is NULL, the entire client area is scrolled. The caret is repositioned if the
cursor rectangle intersects the scroll rectangle.

lprcClip Points to a RECT structure that specifies the clipping rectangle to scroll. This structure
takes precedence over the rectangle pointed to by the lprcScroll parameter. Only bits
inside this rectangle are scrolled. Bits outside this rectangle are not affected even if they
are in the lprcScroll rectangle. If this parameter is NULL, no clipping is performed on
the scroll rectangle.

Returns
This function does not return a value.

Comments
If the caret is in the window being scrolled, ScrollWindow automatically hides the caret to prevent it from
being erased, then restores the caret after the scroll is finished. The caret position is adjusted accordingly if
the caret rectangle intersects the scroll rectangle.

The area uncovered by the ScrollWindow function is not repainted, but it is combined into the window's
update region. The application will eventually receive a WM_PAINT message notifying it that the region
needs repainting. To repaint the uncovered area at the same time the scrolling is done, call the
UpdateWindow function immediately after calling ScrollWindow.

If the lprcScroll parameter is NULL, the positions of any child windows in the window are offset by the
amount specified by the dx and dy parameters, and any invalid (unpainted) areas in the window are also
offset. ScrollWindow is faster when lprcScroll is NULL.

If the lprcScroll parameter is not NULL, the positions of child windows are not changed and invalid areas
in the window are not offset. To prevent updating problems when lprcScroll is not NULL, call the
UpdateWindow function to repaint the window before calling ScrollWindow.

See Also
ScrollDC, ScrollWindowEx, UpdateWindow, RECT

ScrollWindowEx (3.1)
int ScrollWindowEx(hwnd, dx, dy, lprcScroll, lprcClip, hrgnUpdate, lprcUpdate, fuScroll)
HWND hwnd; /* handle of window to scroll */
int dx; /*
amount of horizontal scrolling *
/
int dy; /
* amount of vertical scrolling *
/
const RECT FAR* lprcScroll; /
* address of structure with scroll rect. *
/
const RECT FAR* lprcClip; /
* address of structure with clip rect. *
/
HRGN hrgnUpdate; /
* handle of update region *
/
RECT FAR* lprcUpdate; /
* address of structure for update rect. *
/
UINT fuScroll; /
* scrolling flags *
/

The ScrollWindowEx function scrolls the contents of a window's client area. This function is similar to
the ScrollWindow function, with some additional features.

Parameter Description
hwnd Identifies the window to be scrolled.
dx Specifies the amount, in device units, of horizontal scrolling. This parameter must be a

negative value to scroll to the left.
dy Specifies the amount, in device units, of vertical scrolling. This parameter must be a

negative value to scroll up.
lprcScroll Points to a RECT structure that specifies the portion of the client area to be scrolled. If

this parameter is NULL, the entire client area is scrolled.
lprcClip

Points to a RECT structure that specifies the clipping rectangle to scroll. This structure
takes precedence over the rectangle pointed to by the lprcScroll parameter. Only bits
inside this rectangle are scrolled. Bits outside this rectangle are not affected even if they
are in the lprcScroll rectangle. If this parameter is NULL, no clipping is performed on
the scroll rectangle.

hrgnUpdate Identifies the region that is modified to hold the region invalidated by scrolling. This
parameter may be NULL.

lprcUpdate Points to a RECT structure that will receive the boundaries of the rectangle invalidated
by scrolling. This parameter may be NULL.

fuScroll Specifies flags that control scrolling. This parameter can be one of the following values:

Value Meaning
SW_ERASE When specified with SW_INVALIDATE, erases the

newly invalidated region by sending a
WM_ERASEBKGND message to the window.

SW_INVALIDATE Invalidates the region identified by the hrgnUpdate
parameter after scrolling.

SW_SCROLLCHILDREN Scrolls all child windows that intersect the rectangle
pointed to by lprcScroll by the number of pixels
specified in the dx and dy parameters. Windows sends
a WM_MOVE message to all child windows that
intersect lprcScroll, even if they do not move. The

caret is repositioned when a child window is scrolled
and the cursor rectangle intersects the scroll rectangle.

Returns
The return value is SIMPLEREGION (rectangular invalidated region), COMPLEXREGION
(nonrectangular invalidated region; overlapping rectangles), or NULLREGION (no invalidated region), if
the function is successful. Otherwise, the return value is ERROR.

Comments
If SW_INVALIDATE and SW_ERASE are not specified, ScrollWindowEx does not invalidate the area
that is scrolled away from. If either of these flags is set, ScrollWindowEx invalidates this area. The area is
not updated until the application calls the UpdateWindow function, calls the RedrawWindow function
(specifying RDW_UPDATENOW or RDW_ERASENOW), or retrieves the WM_PAINT message from
the application queue.

If the window has the WS_CLIPCHILDREN style, the returned areas specified by hrgnUpdate and
lprcUpdate represent the total area of the scrolled window that must be updated, including any areas in
child windows that need qupdating.

If the SW_SCROLLCHILDREN flag is specified, Windows will not properly update the screen if part of a
child window is scrolled. The part of the scrolled child window that lies outside the source rectangle will
not be erased and will not be redrawn properly in its new destination. Use the DeferWindowPos function
to move child windows that do not lie completely within the lprcScroll rectangle. The cursor is
repositioned if the SW_SCROLLCHILDREN flag is set and the caret rectangle intersects the scroll
rectangle.

All input and output coordinates (for lprcScroll, lprcClip, lprcUpdate, and hrgnUpdate) are assumed to be
in client coordinates, regardless of whether the window has the CS_OWNDC or CS_CLASSDC class
style. Use the LPtoDP and DPtoLP functions to convert to and from logical coordinates, if necessary.

See Also
RedrawWindow, ScrollDC, ScrollWindow, UpdateWindow, RECT

SW_ERASE 0x0004

When specified with SW_INVALIDATE, erases the newly invalidated region by sending a
WM_ERASEBKGND message to the window.

SW_ERASE 0x0004

SW_INVALIDATE 0x0002

Invalidates the region identified by the hrgnUpdate parameter after scrolling.

SW_INVALIDATE 0x0002

SW_SCROLLCHILDREN 0x0001

Scrolls all child windows that intersect the rectangle pointed to by lprcScroll by the number of pixels
specified in the dx and dy parameters. Windows sends a WM_MOVE message to all child windows that
intersect lprcScroll, even if they do not move. The caret is repositioned when a child window is scrolled
and the cursor rectangle intersects the scroll rectangle.

SW_SCROLLCHILDREN 0x0001

SelectPalette (3.0)
HPALETTE SelectPalette(hdc, hpal, fPalBack)
HDC hdc; /* handle of device context */
HPALETTE hpal; /*
handle of palette *
/
BOOL fPalBack; /
* flag for forcing palette to background *
/

The SelectPalette function selects the specified logical palette into the given device context. The selected
palette replaces the previous palette for that device context.

Parameter Description
hdc Identifies the device context.
hpal Identifies the logical palette to be selected.
fPalBack Specifies whether the logical palette is always to be a background palette. If this

parameter is nonzero, the selected palette is always a background palette. If this
parameter is zero and the device context is attached to a window, the logical palette is a
foreground palette when the window has the input focus. (The device context is attached
to a window if it was obtained by using the GetDC function or if the window-class style
is CS_OWNDC.)

Returns
The return value is the handle of the previous logical palette for the given device context, if the function is
successful. Otherwise, it is NULL.

Comments
An application can select a logical palette into more than one device context. However, changes to a
logical palette will affect all device contexts for which it is selected. If an application selects a palette into
more than one device context, the device contexts must all belong to the same physical device.

Example
The following example calls the SelectPalette function to select a logical palette into a device context and
then calls the RealizePalette function to change the palette size:

HPALETTE hpal, hPalPrevious;
hdc = GetDC(hwnd);
hPalPrevious = SelectPalette(hdc, hpal, FALSE);
if (RealizePalette(hdc) == NULL)

MessageBox(hwnd, "Can't realize palette", "Error", MB_OK);
ReleaseDC(hwnd, hdc);
See Also
CreatePalette, GetDC, RealizePalette

SendDlgItemMessage (2.x)
LRESULT SendDlgItemMessage(hwndDlg, idDlgItem, uMsg, wParam, lParam)
HWND hwndDlg; /* handle of dialog box */
int idDlgItem; /* identifier of dialog box
item *
/
UINT uMsg; /
* message *
/
WPARAM wParam; /
* first message parameter *
/
LPARAM lParam; /
* second message parameter *
/

The SendDlgItemMessage function sends a message to a control in a dialog box.

Parameter Description
hwndDlg Identifies the dialog box that contains the control.
idDlgItem Specifies the identifier of the dialog item that will receive the message.
uMsg Specifies the message to be sent.
wParam Specifies 16 bits of additional message-dependent information.
lParam Specifies 32 bits of additional message-dependent information.

Returns
The return value specifies the result of the message processing and depends on the message sent.

Comments
The SendDlgItemMessage function does not return until the message has been processed.

Using SendDlgItemMessage is identical to retrieving a handle of the given control and calling the
SendMessage function.

See Also
PostMessage, SendMessage

SendDriverMessage (3.1)
LRESULT SendDriverMessage(hdrvr, msg, lParam1, lParam2)
HDRVR hdrvr; /* handle of installable driver */
UINT msg; /* message */
LPARAM lParam1; /
* first message parameter *
/
LPARAM lParam2; /
* second message parameter *
/

The SendDriverMessage function sends the specified message to the given installable driver.

Parameter Description
hdrvr Identifies the installable driver.
msg Specifies the message that the driver must process. The following messages should

never be sent by an application directly to the driver; they are sent only by the system:

DRV_CLOSE
DRV_DISABLE
DRV_ENABLE
DRV_EXITAPPLICATION
DRV_EXITSESSION
DRV_FREE
DRV_LOAD
DRV_OPEN

lParam1 Specifies 32 bits of additional message-dependent information.
lParam2 Specifies 32 bits of additional message-dependent information.

Returns
The return value is nonzero if the function is successful. Otherwise, it is zero.

See Also
DefDriverProc

SendMessage (2.x)
LRESULT SendMessage(hwnd, uMsg, wParam, lParam)
HWND hwnd; /* handle of destination window */
UINT uMsg; /* message to send *
/
WPARAM wParam; /
* first message parameter *
/
LPARAM lParam; /
* second message parameter *
/

The SendMessage function sends the specified message to the given window or windows. The function
calls the window procedure for the window and does not return until that window procedure has processed
the message. This is in contrast to the PostMessage function, which places (posts) the message in the
window's message queue and returns immediately.

Parameter Description
hwnd Identifies the window to which the message will be sent. If this parameter is

HWND_BROADCAST, the message will be sent to all top-level windows, including
disabled or invisible unowned windows.

uMsg Specifies the message to be sent.
wParam Specifies 16 bits of additional message-dependent information.
lParam Specifies 32 bits of additional message-dependent information.

Returns
The return value specifies the result of the message processing and depends on the message sent.

Comments
If the message is being sent to another application and the wParam or lParam parameter is used to pass a
handle or pointer to global memory, the memory should be allocated by the GlobalAlloc function using the
GMEM_SHARE flag.

Example
The following example calls the SendMessage function to send an EM_SETSEL message to a multiline
edit control, telling it to select all the text. It then calls SendMessage to send a WM_COPY message to
copy the selected text to the clipboard.

SendMessage(hwndMle, EM_SETSEL, 0, MAKELONG(0, -1));
SendMessage(hwndMle, WM_COPY, 0, 0L);
See Also
InSendMessage, PostMessage, SendDlgItemMessage

Windows 3.1 changes

In Windows 3.0, specifying a window handle of -1 would not send the message to disabled or invisible
unowned windows. In Windows 3.1, if a window handle of HWND_BROADCAST (-1) is specified, the
message is sent to disabled or invisible unowned windows.

SetActiveWindow (2.x)
HWND SetActiveWindow(hwnd)
HWND hwnd; /* handle of window to activate */

The SetActiveWindow function makes the specified top-level window the active window.

Parameter Description
hwnd Identifies the top-level window to be activated.

Returns
The return value identifies the window that was previously active, if the function is successful.

Comments
The SetActiveWindow function should be used with care, since it allows an application to arbitrarily take
over the active window and input focus. Normally, Windows takes care of all activation.

See Also
GetActiveWindow, SetCapture, SetFocus

SetCapture (2.x)
HWND SetCapture(hwnd)
HWND hwnd; /* handle of window to receive all mouse messages */

The SetCapture function sets the mouse capture to the specified window. With the mouse capture set to a
window, all mouse input is directed to that window, regardless of whether the cursor is over that window.
Only one window can have the mouse capture at a time.

Parameter Description
hwnd Identifies the window that is to receive all mouse messages.

Returns
The return value is the handle of the window that previously received all mouse input, if the function is
successful. It is NULL if there is no such window.

Comments
When the window no longer requires all mouse input, the application should call the ReleaseCapture
function so that other windows can receive mouse input.

See Also
ReleaseCapture

SetCaretBlinkTime (2.x)
void SetCaretBlinkTime(uMSeconds)
UINT uMSeconds; /* blink rate in milliseconds */

The SetCaretBlinkTime function sets the caret blink rate. The blink rate is the elapsed time, in
milliseconds, between caret flashes.

Parameter Description
uMSeconds Specifies the new blink rate, in milliseconds.

Returns
This function does not return a value.

Comments
The caret flashes on or off every uMSeconds milliseconds. One complete flash (off-on) takes twice
uMSeconds milliseconds.

The caret is a shared resource. A window should set the caret blink rate only if it owns the caret. It should
restore the previous rate before it loses the input focus or becomes inactive.

See Also
GetCaretBlinkTime

SetCaretPos (2.x)
void SetCaretPos(x, y)
int x; /* horizontal position */
int y; /* vertical position */

The SetCaretPos function sets the position of the caret.

Parameter Description
x Specifies the new x-coordinate, in client coordinates, of the caret.
y Specifies the new y-coordinate, in client coordinates, of the caret.

Returns
This function does not return a value.

Comments
The SetCaretPos function moves the caret only if it is owned by a window in the current task. SetCaretPos
moves the caret whether or not the caret is hidden.

The caret is a shared resource. A window should not move the caret if it does not own the caret.

See Also
GetCaretPos

SetClassLong (2.x)
LONG SetClassLong(hwnd, nIndex, nVal)
HWND hwnd; /* handle of window */
int nIndex; /* index of value to change *
/
LONG nVal; /
* new value *
/

The SetClassLong function sets a long value at the specified offset into the extra class memory for the
window class to which the specified window belongs. Extra class memory is reserved by specifying a
nonzero value in the cbClsExtra member of the WNDCLASS structure used with the RegisterClass
function.

Parameter Description
hwnd Identifies the window.
nIndex Specifies the zero-based byte offset of the long value to change. Valid values are in the

range zero through the number of bytes of class memory, minus four. (For example, if
12 or more bytes of extra class memory were specified, a value of 8 would be an index
to the third long integer.) This parameter can also be GCL_WNDPROC, which sets a
new long pointer to the window procedure.

nVal Specifies the replacement value.

Returns
The return value is the previous value of the specified long integer, if the function is successful. Otherwise,
it is zero.

Comments
If the SetClassLong function and GCL_WNDPROC index are used to set a window procedure, the
specified window procedure must have the window-procedure form and be exported in the module-
definition file. For more information, see the description of the RegisterClass function.

Calling SetClassLong with the GCL_WNDPROC index creates a subclass of the window class that affects
all windows subsequently created by using the class.

Applications should not call SetClassLong with the GCL_MENUNAME value.

To access any extra 4-byte values allocated when the window-class structure was created, use a positive
byte offset as the index specified by the nIndex parameter, starting at 0 for the first 4-byte value in the
extra space, 4 for the next 4-byte value, and so on.

See Also
GetClassLong, RegisterClass, SetClassWord, WNDCLASS

SetClassWord (2.x)
WORD SetClassWord(hwnd, nIndex, wNewWord)
HWND hwnd; /* handle of window */
int nIndex; /* index of value to change *
/
WORD wNewWord; /
* new value *
/

The SetClassWord function sets a word value at the specified offset into the extra class memory for the
window class to which the given window belongs. Extra class memory is reserved by specifying a nonzero
value in the cbClsExtra member of the WNDCLASS structure used with the RegisterClass function.

Parameter Description
hwnd Identifies the window.
nIndex Specifies the zero-based byte offset of the word value to change. Valid values are in the

range zero through the number of bytes of class memory, minus two (for example, if 10
or more bytes of extra class memory were specified, a value of 8 would be an index to
the fifth integer), or one of the following values:

Value Meaning
GCW_HBRBACKGROUND Sets a new handle of a background brush.
GCW_HCURSOR Sets a new handle of a cursor.
GCW_HICON Sets a new handle of an icon.
GCW_STYLE Sets a new style bit for the window class.

wNewWord Specifies the replacement value.

Returns
The return value is the previous value of the specified word, if the function is successful. Otherwise, it is
zero.

Comments
The SetClassWord function should be used with care. For example, it is possible to change the background
color for a class by using SetClassWord, but this change does not cause all windows belonging to the class
to be repainted immediately. Applications should not attempt to set the class word values of any class
attribute except those listed for the nIndex parameter.

To access any extra 2-byte values allocated when the window-class structure was created, use a positive
byte offset as the index specified by the nIndex parameter, starting at 0 for the first 2-byte value in the
extra space, 2 for the next 2-byte value, and so on.

See Also
GetClassWord, RegisterClass, SetClassLong, WNDCLASS

SetClipboardData (2.x)
HANDLE SetClipboardData(uFormat, hData)
UINT uFormat; /* clipboard format */
HANDLE hData; /* data handle */

The SetClipboardData function sets the data in the clipboard. The application must have called the
OpenClipboard function before calling the SetClipboardData function.

Parameter Description
uFormat Specifies the format of the data. It can be any one of the system-defined formats or a

format registered by the RegisterClipboardFormat function. For a list of system-defined
formats, see the following Comments section.

hData Identifies the data to be placed in the clipboard. For all formats except CF_BITMAP and
CF_PALETTE, this parameter must be a handle of the memory allocated by the
GlobalAlloc function. For CF_BITMAP format, the hData parameter is a bitmap handle
(see the description of the LoadBitmap function). For the CF_PALETTE format, hData
is a palette handle (see the description of the CreatePalette function).
If this parameter is NULL, the owner of the clipboard will be sent a
WM_RENDERFORMAT message when it must supply the data.

Returns
The return value is a handle of the data, if the function is successful. Otherwise, it is NULL.

Comments
If the hData parameter contains a handle of the memory allocated by the GlobalAlloc function, the
application must not use this handle once it has called the SetClipboardData function.

Following are the system-defined clipboard formats:

Value Meaning
CF_BITMAP The data is a bitmap.
CF_DIB The data is a memory object containing a BITMAPINFO structure

followed by the bitmap data.
CF_DIF The data is in Data Interchange Format (DIF).
CF_DSPBITMAP The data is a bitmap representation of a private format. This data is

displayed in bitmap format in lieu of the privately formatted data.
CF_DSPMETAFILEPICT The data is a metafile representation of a private data format. This data

is displayed in metafile-picture format in lieu of the privately
formatted data.

CF_DSPTEXT The data is a textual representation of a private data format. This data
is displayed in text format in lieu of the privately formatted data.

CF_METAFILEPICT The data is a metafile (see the description of the METAFILEPICT
structure.

CF_OEMTEXT The data is an array of text characters in the OEM character set. Each
line ends with a carriage return–linefeed (CR-LF) combination. A
null character signals the end of the data.

CF_OWNERDISPLAY The data is in a private format that the clipboard owner must display.
CF_PALETTE The data is a color palette.
CF_PENDATA The data is for the pen extensions to the Windows operating system.
CF_RIFF The data is in Resource Interchange File Format (RIFF).
CF_SYLK The data is in Microsoft Symbolic Link (SYLK) format.
CF_TEXT The data is an array of text characters. Each line ends with a carriage

return–linefeed (CR-LF) combination. A null character signals the
end of the data.

CF_TIFF The data is in Tag Image File Format (TIFF).
CF_WAVE The data describes a sound wave. This is a subset of the CF_RIFF data

format; it can be used only for RIFF WAVE files.

Private data formats in the range CF_PRIVATEFIRST through CF_PRIVATELAST are not automatically
freed when the data is removed from the clipboard. Data handles associated with these formats should be
freed upon receiving a WM_DESTROYCLIPBOARD message.

Private data formats in the range CF_GDIOBJFIRST through CF_GDIOBJLAST will be automatically
removed by a call to the DeleteObject function when the data is removed from the clipboard.

If Windows Clipboard is running, it will not update its window to show the data placed in the clipboard by
the SetClipboardData until after the CloseClipboard function is called.

See Also
CloseClipboard, GlobalAlloc, OpenClipboard, GetClipboardData, RegisterClipboardFormat,
BITMAPINFO, WM_RENDERFORMAT

SetClipboardViewer (2.x)
HWND SetClipboardViewer(hwnd)
HWND hwnd; /* handle of clipboard viewer */

The SetClipboardViewer function adds the given window to the chain of windows that are notified (by
means of the WM_DRAWCLIPBOARD message) whenever the contents of the clipboard are changed.

Parameter Description
hwnd Identifies the window to receive clipboard-viewer chain messages.

Returns
The return value is the handle of the next window in the clipboard-viewer chain, if the function is
successful.

Comments
Applications should save this handle in static memory and use it when responding to clipboard-viewer
chain messages.

Windows that are part of the clipboard-viewer chain must respond to WM_CHANGECBCHAIN,
WM_DRAWCLIPBOARD, and WM_DESTROY messages.

To remove itself from the clipboard-viewer chain, an application must call the ChangeClipboardChain
function.

See Also
ChangeClipboardChain, GetClipboardViewer, WM_CHANGECBCHAIN, WM_DESTROY,
WM_DRAWCLIPBOARD

SetCommBreak (2.x)
int SetCommBreak(idComDev)
int idComDev; /* device to suspend */

The SetCommBreak function suspends character transmission and places the communications device in a
break state.

Parameter Description
idComDev Specifies the communications device to be suspended. The OpenComm function returns

this value.

Returns
The return value is zero if the function is successful. Otherwise, it is less than zero.

Comments
The communications device remains suspended until the application calls the ClearCommBreak function.

See Also
ClearCommBreak, OpenComm

SetCommEventMask (2.x)
UINT FAR* SetCommEventMask(idComDev, fuEvtMask)
int idComDev; /* device to enable */
UINT fuEvtMask; /* events to enable */

The SetCommEventMask function enables events in the event word of the specified communications
device.

Parameter Description
idComDev Specifies the communications device to be enabled. The OpenComm function returns

this value.
fuEvtMask Specifies which events are to be enabled. This parameter can be any combination of the

following values:

Value Meaning
EV_BREAK Set when a break is detected on input.
EV_CTS Set when the CTS (clear-to-send) signal changes state.
EV_CTSS Set to indicate the current state of the CTS signal.
EV_DSR Set when the DSR (data-set-ready) signal changes state.
EV_ERR Set when a line-status error occurs. Line-status errors are

CE_FRAME, CE_OVERRUN, and CE_RXPARITY.
EV_PERR Set when a printer error is detected on a parallel device. Errors are

CE_DNS, CE_IOE, CE_LOOP, and CE_PTO.
EV_RING Set to indicate the state of ring indicator during the last modem

interrupt.
EV_RLSD Set when the RLSD (receive-line-signal-detect) signal changes

state.
EV_RLSDS Set to indicate the current state of the RLSD signal.
EV_RXCHAR Set when any character is received and placed in the receiving

queue.
EV_RXFLAG Set when the event character is received and placed in the

receiving queue. The event character is specified in the device's
control block.

EV_TXEMPTY Set when the last character in the transmission queue is sent.

Returns
The return value is a pointer to the event word for the specified communications device, if the function is
successful. Each bit in the event word specifies whether a given event has occurred. A bit is 1 if the event
has occurred.

Comments
Only enabled events are recorded. The GetCommEventMask function retrieves and clears the event word.

See Also
GetCommEventMask, OpenComm

EV_BREAK 0x0040

Set when a break is detected on input.

EV_BREAK 0x0040

EV_CTS 0x0008

Set when the CTS (clear-to-send) signal changes state.

EV_CTS 0x0008

EV_CTSS 0x0400

Set to indicate the current state of the CTS signal.

EV_CTSS 0x0400

EV_DSR 0x0010

Set when the DSR (data-set-ready) signal changes state.

EV_DSR 0x0010

EV_ERR 0x0080

Set when a line-status error occurs. Line-status errors are CE_FRAME, CE_OVERRUN, and
CE_RXPARITY.

EV_ERR 0x0080

EV_PERR 0x0200

Set when a printer error is detected on a parallel device. Errors are CE_DNS, CE_IOE, CE_LOOP, and
CE_PTO.

EV_PERR 0x0200

EV_RING 0x0100

Set to indicate the state of ring indicator during the last modem interrupt.

EV_RING 0x0100

EV_RLSD 0x0020

Set when the RLSD (receive-line-signal-detect) signal changes state.

EV_RLSD 0x0020

EV_RLSDS 0x1000

Set to indicate the current state of the RLSD signal.

EV_RLSDS 0x1000

EV_RXCHAR 0x0001

Set when any character is received and placed in the receiving queue.

EV_RXCHAR 0x0001

EV_RXFLAG 0x0002

Set when the event character is received and placed in the receiving queue. The event character is specified
in the device's control block.

EV_RXFLAG 0x0002

EV_TXEMPTY 0x0004

Set when the last character in the transmission queue is sent.

EV_TXEMPTY 0x0004

SetCommState (2.x)
int SetCommState(lpdcb)
const DCB FAR* lpdcb; /* address of device control block */

The SetCommState function sets a communications device to the state specified by a device control block.

Parameter Description
lpdcb Points to a DCB structure that contains the desired communications settings for the

device. The Id member of the DCB structure must identify the device.

Returns
The return value is zero if the function is successful. Otherwise, it is less than zero.

Example
The following example uses the BuildCommDCB and SetCommState functions to set up COM1 at 9600
baud, no parity, 8 data bits, and 1 stop bit:

idComDev = OpenComm("COM1", 1024, 128);
if (idComDev < 0) {

ShowError(idComDev, "OpenComm");
return 0;

}
err = BuildCommDCB("COM1:9600,n,8,1", &dcb);
if (err < 0) {

ShowError(err, "BuildCommDCB");
return 0;

}
err = SetCommState(&dcb);
if (err < 0) {

ShowError(err, "SetCommState");
return 0;

}
Comments
This function reinitializes all hardware and controls as defined by the DCB structure, but it does not empty
transmission or receiving queues.

See Also
GetCommState, DCB

SetCursor (2.x)
HCURSOR SetCursor(hcur)
HCURSOR hcur; /* handle of cursor */

The SetCursor function changes the given cursor.

Parameter Description
hcur Identifies the cursor resource. The resource must have been loaded by using the

LoadCursor function. If this parameter is NULL, the cursor is removed from the screen.

Returns
The return value is the handle of the previous cursor, if the function is successful. It is NULL if there is no
previous cursor.

Comments
The cursor is set only if the new cursor is different from the previous cursor; otherwise, the function
returns immediately. The function is quite fast if the new cursor is the same as the old.

The cursor is a shared resource. A window should set the cursor only when the cursor is in the window's
client area or when the window is capturing all mouse input. In systems without a mouse, the window
should restore the previous cursor before the cursor leaves the client area or before the window
relinquishes control to another window.

Any application that must set the cursor while it is in a window must ensure that the class cursor for the
given window's class is set to NULL. If the class cursor is not NULL, the system restores the previous
shape each time the mouse is moved.

Example
The following example sets the hourglass cursor during a time-consuming operation and restores the
cursor afterward:

HCURSOR hcurSave;
/* Set the cursor to the hourglass and save the previous cursor. */
hcurSave = SetCursor(LoadCursor(NULL, IDC_WAIT));

.

. /* Perform some time-consuming operation */

.
/* Restore the previous cursor. */
SetCursor(hcurSave);
See Also
GetCursor, LoadCursor, ShowCursor, WM_SETCURSOR

SetCursorPos (2.x)
void SetCursorPos(x, y)
int x; /* horizontal position */
int y; /* vertical position */

The SetCursorPos function sets the position, in screen coordinates, of the cursor. If the new coordinates
are not within the screen rectangle set by the most recent ClipCursor function, Windows automatically
adjusts the coordinates so that the cursor stays within the rectangle.

Parameter Description
x Specifies the new x-coordinate, in screen coordinates, of the cursor.
y Specifies the new y-coordinate, in screen coordinates, of the cursor.

Returns
This function does not return a value.

Comments
The cursor is a shared resource. A window should move the cursor only when the cursor is in its client
area.

See Also
ClipCursor, GetCursorPos

SetDlgItemInt (2.x)
void SetDlgItemInt(hwndDlg, idControl, uValue, fSigned)
HWND hwndDlg; /* handle of dialog box */
int idControl; /* identifier of control *
/
UINT uValue; /
* value to set *
/
BOOL fSigned; /
* signed or unsigned indicator *
/

The SetDlgItemInt function sets the text of a given control in a dialog box to the string representation of a
specified integer value.

Parameter Description
hwndDlg Identifies the dialog box that contains the control.
idControl Specifies the control to be changed.
uValue Specifies the integer value used to generate the item text.
fSigned Specifies whether the uValue parameter is signed or unsigned. If this parameter is

TRUE, uValue is signed. If this parameter is TRUE and uValue is less than zero, a
minus sign is placed before the first digit in the string. If this parameter is FALSE,
uValue is unsigned.

Returns
This function does not return a value.

Comments
SetDlgItemInt sends a WM_SETTEXT message to the given control.

See Also
GetDlgItemInt, SetDlgItemText, WM_SETTEXT

SetDlgItemText (2.x)
void SetDlgItemText(hwndDlg, idControl, lpsz)
HWND hwndDlg; /* handle of dialog box */
int idControl; /* identifier of control */
LPCSTR lpsz; /
* text to set *
/

The SetDlgItemText function sets the title or text of a control in a dialog box.

Parameter Description
hwndDlg Identifies the dialog box that contains the control.
idControl Identifies the control whose text is to be set.
lpsz Points to the null-terminated string that contains the text to be copied to the control.

Returns
This function does not return a value.

Comments
The SetDlgItemText function sends a WM_SETTEXT message to the given control.

See Also
GetDlgItemText, SetDlgItemInt, WM_SETTEXT

SetDoubleClickTime (2.x)
void SetDoubleClickTime(uInterval)
UINT uInterval; /* double-click interval */

The SetDoubleClickTime function sets the double-click time for the mouse. A double-click is a series of
two clicks of the mouse button, the second occurring within a specified time after the first. The double-
click time is the maximum number of milliseconds that may occur between the first and second clicks of a
double-click.

Parameter Description
uInterval Specifies the number of milliseconds that can occur between double-clicks.

Returns
This function does not return a value.

Comments
If the uInterval parameter is zero, Windows uses the default double-click time of 500 milliseconds.

The SetDoubleClickTime function alters the double-click time for all windows in the system.

See Also
GetDoubleClickTime

SetFocus (2.x)
HWND SetFocus(hwnd)
HWND hwnd; /* handle of window to receive focus */

The SetFocus function sets the input focus to the given window. All subsequent keyboard input is directed
to this window. The window, if any, that previously had the input focus loses it.

Parameter Description
hwnd Identifies the window to receive the keyboard input. If this parameter is NULL,

keystrokes are ignored.

Returns
The return value identifies the window that previously had the input focus, if the function is successful. It
is NULL if there is no such window or if the specified handle is invalid.

Comments
The SetFocus function sends a WM_KILLFOCUS message to the window that loses the input focus and a
WM_SETFOCUS message to the window that receives the input focus. It also activates either the window
that receives the focus or the parent of the window that receives the focus.

If a window is active but does not have the focus (that is, no window has the focus), any key pressed will
produce the WM_SYSCHAR, WM_SYSKEYDOWN, or WM_SYSKEYUP message. If the VK_MENU
key is also pressed, the lParam parameter of the message will have bit 30 set. Otherwise, the messages that
are produced do not have this bit set.

See Also
GetActiveWindow, GetFocus, SetActiveWindow, SetCapture, WM_KILLFOCUS, WM_SETFOCUS,
WM_SYSCHAR, WM_SYSKEYDOWN, WM_SYSKEYUP

SetKeyboardState (2.x)
void SetKeyboardState(lpbKeyState)
BYTE FAR* lpbKeyState; /* address of array with virtual-key codes */

The SetKeyboardState function copies a 256-byte array of keyboard key states into the Windows
keyboard-state table.

Parameter Description
lpbKeyState Points to a 256-byte array that contains keyboard key states.

Returns
This function does not return a value.

Comments
In many cases, an application should call the GetKeyboardState function first to initialize the 256-byte
array. The application should then change the desired bytes.

SetKeyboardState sets the LEDs and BIOS flags for the NUMLOCK, CAPSLOCK, and SCROLL LOCK keys
according to the toggle state of the VK_NUMLOCK, VK_CAPITAL, and VK_SCROLL entries of the
array.

For more information, see the description of the GetKeyboardState function.

Example
The following example simulates the pressing of the CTRL key:

BYTE pbKeyState[256];
GetKeyboardState((LPBYTE) &pbKeyState);
pbKeyState[VK_CONTROL] |= 0x80;
SetKeyboardState((LPBYTE) &pbKeyState);
See Also
GetKeyboardState

SetMenu (2.x)
BOOL SetMenu(hwnd, hmenu)
HWND hwnd; /* handle of window */
HMENU hmenu; /* handle of menu */

The SetMenu function sets the given window's menu to the specified menu.

Parameter Description
hwnd Identifies the window whose menu is to be changed.
hmenu Identifies the new menu. If this parameter is NULL, the window's current menu is

removed.

Returns
The return value is nonzero if the function is successful. Otherwise, it is zero.

Comments
The SetMenu function causes the window to be redrawn to reflect the menu change.

SetMenu will not destroy a previous menu. An application should call the DestroyMenu function to
accomplish this task.

Example

HMENU hmenu;
hmenu = LoadMenu(hinst, "My Menu");
SetMenu(hwnd, hmenu);
See Also
DestroyMenu, LoadMenu, LoadMenuIndirect

SetMenuItemBitmaps (3.0)
BOOL SetMenuItemBitmaps(hmenu, idItem, fuFlags, hbmUnchecked, hbmChecked)
HMENU hmenu; /* handle of menu */
UINT idItem; /* menu-item
identifier *
/
UINT fuFlags; /
* menu-item flags *
/
HBITMAP hbmUnchecked; /
* handle of unchecked bitmap *
/
HBITMAP hbmChecked; /
* handle of checked bitmap *
/

The SetMenuItemBitmaps function associates the given bitmaps with a menu item. Whether the menu
item is checked or unchecked, Windows displays the appropriate check-mark bitmap next to the menu
item.

Parameter Description
hmenu Identifies the menu.
idItem Specifies the menu item to be changed, as determined by the fuFlags parameter.
fuFlags Specifies how the idItem parameter is interpreted. This parameter can be one of the

following values:

Value Meaning
MF_BYCOMMAND The idItem parameter specifies the menu-item identifier

(default value).
MF_BYPOSITION The idItem parameter specifies the zero-based position of

the menu item.
hbmUnchecked Identifies the check-mark bitmap to display when the menu item is not checked.
hbmChecked Identifies the check-mark bitmap to display when the menu item is checked.

Returns
The return value is nonzero if the function is successful. Otherwise, it is zero.

Comments
If either the hbmUnchecked or the hbmChecked parameter is NULL, Windows displays nothing next to
the menu item for the corresponding attribute. If both parameters are NULL, Windows uses the default
check mark when the item is checked and removes the check mark when the item is unchecked.

When the menu is destroyed, these bitmaps are not destroyed; the application must destroy them.

The GetMenuCheckMarkDimensions function retrieves the dimensions of the default check mark used for
menu items. The application should use these values to determine the appropriate size for the bitmaps
supplied with this function.

See Also
GetMenuCheckMarkDimensions

SetMessageQueue (2.x)
BOOL SetMessageQueue(cMsg)
int cMsg; /* size of message queue */

The SetMessageQueue function creates a new message queue. It is particularly useful in applications that
require a queue that contains more than eight messages (the maximum size of the default queue).

Parameter Description
cMsg Specifies the maximum number of messages that the new queue may contain. This value

must not be larger than 120.

Returns
The return value is nonzero if the function is successful. If the value specified in the cMsg parameter is
larger than 120, the return value is nonzero but the message queue is not created. The return value is zero
if an error occurs.

Comments
The function must be called from an application's WinMain function before any windows are created and
before any messages are sent. The SetMessageQueue function destroys the old queue, along with
messages it might contain.

If the return value is zero, the application has no queue, because the SetMessageQueue function deletes the
original queue before attempting to create a new one. The application must continue calling
SetMessageQueue with a smaller queue size until the function returns nonzero.

See Also
GetMessage, PeekMessage

SetParent (2.x)
HWND SetParent(hwndChild, hwndNewParent)
HWND hwndChild; /* handle of window whose parent is changing */
HWND hwndNewParent; /
* handle of new parent window *
/

The SetParent function changes the parent window of the given child window.

Parameter Description
hwndChild Identifies the child window.
hwndNewParent Identifies the new parent window.

Returns
The return value is the handle of the previous parent window, if the function is successful.

Comments
If the window identified by the hwndChild parameter is visible, Windows performs the appropriate
redrawing and repainting.

See Also
GetParent, IsChild

SetProp (2.x)
BOOL SetProp(hwnd, lpsz, hData)
HWND hwnd; /* handle of window */
LPCSTR lpsz; /* atom or address of
string *
/
HANDLE hData; /
* handle of data *
/

The SetProp function adds a new entry or changes an existing entry in the property list of the given
window. The function adds a new entry to the list if the given character string does not exist already in the
list. The new entry contains the string and the handle. Otherwise, the function replaces the string's current
handle with the given handle.

Parameter Description
hwnd Identifies the window whose property list receives the new entry.
lpsz Points to a null-terminated string or an atom that identifies a string. If this parameter is

an atom, it must be a global atom created by a previous call to the GlobalAddAtom
function. The atom, a 16-bit value, must be placed in the low-order word of lpsz; the
high-order word must be zero.

hData Identifies data to be copied to the property list. The data handle can identify any 16-bit
value useful to the application.

Returns
The return value is nonzero if the data handle and string are added to the property list. Otherwise, it is
zero.

Comments
Before destroying a window (that is, before processing the WM_DESTROY message), an application
must remove all entries it has added to the property list. The RemoveProp function must be used to remove
entries from a property list.

See Also
GetProp, GlobalAddAtom, RemoveProp

SetRect (2.x)
void SetRect(lprc, nLeft, nTop, nRight, nBottom)
RECT FAR* lprc; /* address of structure with rectangle to set */
int nLeft; /* left side *
/
int nTop; /
* top side *
/
int nRight; /
* right side *
/
int nBottom; /
* bottom side *
/

The SetRect function sets rectangle coordinates. The action of this function is equivalent to assigning the
left, top, right, and bottom arguments to the appropriate members of the RECT structure.

Parameter Description
lprc Points to the RECT structure that contains the rectangle to be set.
nLeft Specifies the x-coordinate of the upper-left corner.
nTop Specifies the y-coordinate of the upper-left corner.
nRight Specifies the x-coordinate of the lower-right corner.
nBottom Specifies the y-coordinate of the lower-right corner.

Returns
This function does not return a value.

Comments
The width of the rectangle, specified by the absolute value of nRight - nLeft, must not exceed 32,767
units. This limit also applies to the height of the rectangle.

See Also
CopyRect, SetRectEmpty

SetRectEmpty (2.x)
void SetRectEmpty(lprc)
RECT FAR* lprc; /* address of struct. with rectangle to set to empty */

The SetRectEmpty function creates an empty rectangle (all coordinates set to zero).

Parameter Description
lprc Points to the RECT structure that contains the rectangle to be set to empty.

Returns
This function does not return a value.

See Also
CopyRect, SetRect, RECT

SetScrollPos (2.x)
int SetScrollPos(hwnd, fnBar, nPos, fRepaint)
HWND hwnd; /* handle of window with scroll bar */
int fnBar; /* scroll bar flag */
int nPos; /
* new position of scroll box *
/
BOOL fRepaint; /
* redraw flag *
/

The SetScrollPos function sets the position of a scroll box (thumb) and, if requested, redraws the scroll bar
to reflect the new position of the scroll box.

Parameter Description
hwnd Identifies the window whose scroll bar is to be set.
fnBar Specifies the scroll bar to be set. This parameter can be one of the following values:

Value Meaning
SB_CTL Sets the position of the scroll box in a scroll bar. In this case, the hwnd

parameter must be the handle of a scroll bar.
SB_HORZ Sets the position of the scroll box in a window's horizontal scroll bar.
SB_VERT Sets the position of the scroll box in a window's vertical scroll bar.

nPos Specifies the new position of the scroll box. It must be within the scrolling range.
fRepaint Specifies whether the scroll bar should be repainted to reflect the new scroll box

position. If this parameter is TRUE, the scroll bar is repainted. If it is FALSE, the scroll
bar is not repainted.

Returns
The return value is the previous position of the scroll box, if the function is successful. Otherwise, it is
zero.

Comments
Setting the fRepaint parameter to FALSE is useful whenever the scroll bar will be redrawn by a
subsequent call to another function.

See Also
GetScrollPos, GetScrollRange, ScrollWindow, SetScrollRange

SetScrollRange (2.x)
void SetScrollRange(hwnd, fnBar, nMin, nMax, fRedraw)
HWND hwnd; /* handle of window with scroll bar */
int fnBar; /* scroll bar flag */
int nMin; /
* minimum scrolling position *
/
int nMax; /
* maximum scrolling position *
/
BOOL fRedraw; /
* redraw flag *
/

The SetScrollRange function sets minimum and maximum position values for the given scroll bar. It can
also be used to hide or show standard scroll bars.

Parameter Description
hwnd Identifies a window or a scroll bar, depending on the value of the fnBar parameter.
fnBar Specifies the scroll bar to be set. This parameter can be one of the following values:

Value Meaning
SB_CTL Sets the range of a scroll bar. In this case, the hwnd parameter must be

the handle of a scroll bar.
SB_HORZ Sets the range of a window's horizontal scroll bar.
SB_VERT Sets the range of a window's vertical scroll bar.

nMin Specifies the minimum scrolling position.
nMax Specifies the maximum scrolling position.
fRedraw Specifies whether the scroll bar should be redrawn to reflect the change. If this

parameter is TRUE, the scroll bar is redrawn. If it is FALSE, the scroll bar is not
redrawn.

Returns
This function does not return a value.

Comments
An application should not call this function to hide a scroll bar while processing a scroll-bar notification
message.

If the call to SetScrollRange immediately follows the call to the SetScrollPos function, the fRedraw
parameter in SetScrollPos should be zero, to prevent the scroll bar from being drawn twice.

The default range for a standard scroll bar is 0 through 100. The default range for a scroll bar control is
empty (both the nMin and nMax values are zero). The difference between the values specified by the nMin
and nMax parameters must not be greater than 32,767.

See Also
GetScrollPos, GetScrollRange, ScrollWindow, SetScrollPos

SetSysColors (2.x)
void SetSysColors(cDspElements, lpnDspElements, lpdwRgbValues)
int cDspElements; /* number of elements to change */
const int FAR* lpnDspElements; /
* address of array of elements *
/
const COLORREF FAR* lpdwRgbValues; /
* address of array of RGB values *
/

The SetSysColors function sets the system colors for one or more display elements. Display elements are
the various parts of a window and the Windows background that appear on the screen.

The SetSysColors function sends a WM_SYSCOLORCHANGE message to all windows to inform them
of the change in color. It also directs Windows to repaint the affected portions of all currently visible
windows.

Parameter Description
cDspElements Specifies the number of display elements in the array pointed to by the

lpnDspElements parameter.
lpnDspElements Points to an array of integers that specify the display elements to be changed. For a

list of possible display elements, see the following Comments section.
lpdwRgbValues Points to an array of unsigned long integers that contains the new RGB (red-green-

blue) color value for each display element in the array pointed to by the
lpnDspElements parameter.

Returns
This function does not return a value.

Comments
The SetSysColors function changes the current Windows session only. The new colors are not saved when
Windows terminates.

Following are the display elements that may be used in the lpnDspElements array:

Value Meaning
COLOR_ACTIVEBORDER Active window border.
COLOR_ACTIVECAPTION Active window title.
COLOR_APPWORKSPACE Background color of multiple document interface

(MDI) applications.
COLOR_BACKGROUND Desktop.
COLOR_BTNFACE Face shading on push buttons.
COLOR_BTNHIGHLIGHT Selected button in a control.
COLOR_BTNSHADOW Edge shading on push buttons.
COLOR_BTNTEXT Text on push buttons.
COLOR_CAPTIONTEXT Text in title bar, size button, scroll-bar arrow button.
COLOR_GRAYTEXT Grayed (dimmed) text. This color is zero if the current

display driver does not support a solid gray color.
COLOR_HIGHLIGHT Background of selected item in a control.
COLOR_HIGHLIGHTTEXT Text of selected item in a control.
COLOR_INACTIVEBORDER Inactive window border.
COLOR_INACTIVECAPTION Inactive window title.
COLOR_INACTIVECAPTIONTEXT Color of text in an inactive title.
COLOR_MENU Menu background.
COLOR_MENUTEXT Text in menus.
COLOR_SCROLLBAR Scroll-bar gray area.
COLOR_WINDOW Window background.
COLOR_WINDOWFRAME Window frame.
COLOR_WINDOWTEXT Text in windows.

Example
The following example changes the window background to black and the text in the window to green:

int aiDspElements[2];
DWORD aRgbValues[2];
aiDspElements[0] = COLOR_WINDOW;
aRgbValues[0] = RGB(

0x00, /* red */
0x00, /* green */
0x00); /* blue */

aiDspElements[1] = COLOR_WINDOWTEXT;
aRgbValues[1] = RGB(

0x00, /* red */
0xff, /* green */
0x00); /* blue */

SetSysColors(2, aiDspElements, aRgbValues);
See Also
GetSysColor, WM_SYSCOLORCHANGE

Windows 3.1 changes

The following constants have been added:

Value Meaning
COLOR_BTNHIGHLIGHT Selected button in a control.
COLOR_INACTIVECAPTIONTEXT Color of text in an inactive caption.

COLOR_ACTIVEBORDER 10

Active window border.

COLOR_ACTIVEBORDER 10

COLOR_ACTIVECAPTION 2

Active window title.

COLOR_ACTIVECAPTION 2

COLOR_APPWORKSPACE 12

Background color of multiple document interface (MDI) applications.

COLOR_APPWORKSPACE 12

COLOR_BACKGROUND 1

Desktop.

COLOR_BACKGROUND 1

COLOR_BTNFACE 15

Face shading on push buttons.

COLOR_BTNFACE 15

COLOR_BTNHIGHLIGHT 20

Selected button in a control.

COLOR_BTNHIGHLIGHT 20

COLOR_BTNSHADOW 16

Edge shading on push buttons.

COLOR_BTNSHADOW 16

COLOR_BTNTEXT 18

Text on push buttons.

COLOR_BTNTEXT 18

COLOR_CAPTIONTEXT 9

Text in title bar, size button, scroll-bar arrow button.

COLOR_CAPTIONTEXT 9

COLOR_GRAYTEXT 17

Grayed (dimmed) text. This color is zero if the current display driver does not support a solid gray color.

COLOR_GRAYTEXT 17

COLOR_HIGHLIGHT 13

Background of selected item in a control.

COLOR_HIGHLIGHT 13

COLOR_HIGHLIGHTTEXT 14

Text of selected item in a control.

COLOR_HIGHLIGHTTEXT 14

COLOR_INACTIVEBORDER 11

Inactive window border.

COLOR_INACTIVEBORDER 11

COLOR_INACTIVECAPTION 3

Inactive window title.

COLOR_INACTIVECAPTION 3

COLOR_INACTIVECAPTIONTEXT 19

Color of text in an inactive title.

COLOR_INACTIVECAPTIONTEXT 19

COLOR_MENU 4

Menu background.

COLOR_MENU 4

COLOR_MENUTEXT 7

Text in menus.

COLOR_MENUTEXT 7

COLOR_SCROLLBAR 0

Scroll-bar gray area.

COLOR_SCROLLBAR 0

COLOR_WINDOW 5

Window background.

COLOR_WINDOW 5

COLOR_WINDOWFRAME 6

Window frame.

COLOR_WINDOWFRAME 6

COLOR_WINDOWTEXT 8

Text in windows.

COLOR_WINDOWTEXT 8

SetSysModalWindow (2.x)
HWND SetSysModalWindow(hwnd)
HWND hwnd; /* handle of window to become system modal */

The SetSysModalWindow function makes the given window the system-modal window.

Parameter Description
hwnd Identifies the window to be made system modal.

Returns
The return value is the handle of the window that was previously the system-modal window, if the
function is successful.

Comments
If another window is made the active window (for example, the system-modal window creates a dialog
box that becomes the active window), the active window becomes the system-modal window. When the
original window becomes active again, it is once again the system-modal window. To end the system-
modal state, destroy the system-modal window.

If a WH_JOURNALRECORD hook is in place when SetSysModalWindow is called, the hook is called
with a hook code of HC_SYSMODALON (for turning on the system-modal window) or
HC_SYSMODALOFF (for turning off the system-modal window).

See Also
GetSysModalWindow

SetTimer (2.x)
UINT SetTimer(hwnd, idTimer, uTimeout, tmprc)
HWND hwnd; /* handle of window for timer messages */
UINT idTimer; /* timer
identifier *
/
UINT uTimeout; /
* time-out duration *
/
TIMERPROC tmprc; /
* instance address of timer procedure *
/

The SetTimer function installs a system timer. A time-out value is specified, and every time a time-out
occurs, the system posts a WM_TIMER message to the installing application's message queue or passes
the message to an application-defined TimerProc callback function.

Parameter Description
hwnd Identifies the window to be associated with the timer. If the tmprc parameter is NULL,

the window procedure associated with this window receives the WM_TIMER messages
generated by the timer. If this parameter is NULL, no window is associated with the
timer.

idTimer Specifies a nonzero timer identifier. If the hwnd parameter is NULL, this parameter is
ignored.

uTimeout Specifies the time-out value, in milliseconds.
tmprc Specifies the procedure-instance address of the callback function that processes the

WM_TIMER messages. If this parameter is NULL, the WM_TIMER messages are
placed in the application's message queue and the hwnd member of the MSG structure
contains the window handle specified in hwnd. For more information, see the
description of the TimerProc callback function.

Returns
The return value is the identifier of the new timer if hwnd is NULL and the function is successful. An
application passes this value to the KillTimer function to kill the timer. The return value is nonzero if
hwnd is a valid window handle and the function is successful. Otherwise, the return value is zero.

Comments
Timers are a limited global resource; therefore, it is important that an application check the value returned
by the SetTimer function to verify that a timer is available.

The tmprc parameter must specify a procedure-instance address of the callback function, and the callback
function must be exported in the application's module-definition file. A procedure-instance address can be
created by using the MakeProcInstance function. The callback function must use the Pascal calling
convention and must be declared as FAR.

Example
The following example installs a system timer. The system will pass WM_TIMER messages generated by
the timer to the "MyTimerProc" callback function.

TIMERPROC lpfnMyTimerProc;
lpfnMyTimerProc = (TIMERPROC) MakeProcInstance(MyTimerProc, hinst);
SetTimer(hwnd, ID_MYTIMER, 5000, lpfnMyTimerProc);
See Also
KillTimer, MakeProcInstance, TimerProc, MSG, WM_TIMER

SetWindowLong (2.x)
LONG SetWindowLong(hwnd, nOffset, nVal)
HWND hwnd; /* handle of window */
int nOffset; /* offset of value to set */
LONG nVal; /
* new value *
/

The SetWindowLong function places a long value at the specified offset into the extra window memory of
the given window. Extra window memory is reserved by specifying a nonzero value in the cbWndExtra
member of the WNDCLASS structure used with the RegisterClass function.

Parameter Description
hwnd Identifies the window.
nOffset Specifies the zero-based byte offset of the value to change. Valid values are in the range

zero through the number of bytes of extra window memory, minus four (for example, if
12 or more bytes of extra memory were specified, a value of 8 would be an index to the
third long integer), or one of the following values:

Value Meaning
GWL_EXSTYLE Extended window style
GWL_STYLE Window style
GWL_WNDPROC Long pointer to the window procedure
The following values are also available when the hwnd parameter identifies a dialog
box:

Value Meaning
DWL_DLGPROC Specifies the address of the dialog box procedure.
DWL_MSGRESULT Specifies the return value of a message processed in the dialog

box procedure.
DWL_USER Specifies extra information that is private to the application,

such as handles or pointers.
nVal Specifies the long value to place in the window's reserved memory.

Returns
The return value is the previous value of the specified long integer, if the function is successful. Otherwise,
it is zero.

Comments
If the SetWindowLong function and the GWL_WNDPROC index are used to set a new window
procedure, that procedure must have the window-procedure form and be exported in the module-
definition file of the application. For more information, see the description of the RegisterClass function.

Calling SetWindowLong with the GCL_WNDPROC index creates a subclass of the window class used to
create the window. An application should not attempt to create a window subclass for standard Windows
controls such as combo boxes and buttons.

An application should not use this function to set the WS_DISABLE style for a window. Instead, the
application should use the EnableWindow function.

To access any extra 4-byte values allocated when the window-class structure was created, use a positive
byte offset as the index specified by the nOffset parameter, starting at 0 for the first 4-byte value in the
extra space, 4 for the next 4-byte value, and so on.

An application can use the DWL_MSGRESULT value to return values from a dialog box procedure's
window procedure. Typically, a dialog box procedure must return TRUE in order for a value to be
returned to the sender of the message. Some messages, however, return a value in the Boolean return value
of the dialog box procedure. The following messages return values in the return value of the dialog box
procedure:

WM_CHARTOITEM
WM_COMPAREITEM
WM_CTLCOLOR
WM_INITDIALOG

WM_QUERYDRAGICON
WM_VKEYTOITEM

Example
The following example shows how to use the SetWindowLong function with the DWL_MSGRESULT
value to return a value from a dialog box procedure. Applications often include a switch statement to
handle the messages that return values in the Boolean return value of the dialog box procedure, even when
the dialog box procedure does not process these messages. This practice makes it easy to revise the dialog
box procedure to handle the message and has a negligible effect on speed and memory.

BOOL CALLBACK MyDlgProc(hwndDlg, msg, wParam, lParam)
HWND hwndDlg;
UINT msg;
WPARAM wParam;
LPARAM lParam;
{

BOOL fProcessed = FALSE;
LRESULT lResult;
/*

* To return a value for a specific message, set lResult to the
* return value and fProcessed to TRUE.
*/

switch (msg) {
.
. /* process messages */
.
case WM_QUERYENDSESSION:
/*
* Example: Do not allow the system to terminate
* while the dialog box is displayed.
*/
fProcessed = TRUE;
lResult = (LRESULT) (UINT) FALSE;
break;
default:
break;
}
if (fProcessed) {
switch (msg) {
case WM_CTLCOLOR:
case WM_COMPAREITEM:
case WM_VKEYTOITEM:
case WM_CHARTOITEM:
case WM_QUERYDRAGICON:
case WM_INITDIALOG:
return (BOOL) LOWORD(lResult);
default:
SetWindowLong(hwndDlg, DWL_MSGRESULT, (LPARAM) lResult);
}
}
return fProcessed;

}
See Also
EnableWindow, GetWindowLong, RegisterClass, SetWindowWord

SetWindowPlacement (3.1)
BOOL SetWindowPlacement(hwnd, lpwndpl)
HWND hwnd; /* handle of the window */
const WINDOWPLACEMENT FAR* lpwndpl; /
* address of position data *
/

The SetWindowPlacement function sets the show state and the normal (restored), minimized, and
maximized positions for a window.

Parameter Description
hwnd Identifies the window.
lpwndpl Points to a WINDOWPLACEMENT structure that specifies the new show state and

positions.

Returns
The return value is nonzero if the function is successful. Otherwise, it is zero.

See Also
GetWindowPlacement, WINDOWPLACEMENT

SetWindowPos (2.x)
BOOL SetWindowPos(hwnd, hwndInsertAfter, x, y, cx, cy, fuFlags)
HWND hwnd; /* handle of window */
HWND hwndInsertAfter; /*
placement-order handle *
/
int x; /
* horizontal position *
/
int y; /
* vertical position *
/
int cx; /
* width *
/
int cy; /
* height *
/
UINT fuFlags; /
* window-positioning flags *
/

The SetWindowPos function changes the size, position, and Z-order of child, pop-up, and top-level
windows. These windows are ordered according to their appearance on the screen; the window on top
receives the highest rank and is the first window in the Z-order.

Parameter Description
hwnd Identifies the window to be positioned.
hwndInsertAfter Identifies the window to precede the positioned window in the Z-order. This

parameter must be a window handle or one of the following values:

Value Meaning
HWND_BOTTOM Places the window at the bottom of the Z-order. If

hwnd identifies a topmost window, the window loses
its topmost status; the system places the window at
the bottom of all other windows.

HWND_TOP Places the window at the top of the Z-order.
HWND_TOPMOST Places the window above all non-topmost windows.

The window maintains its topmost position even
when it is deactivated.

HWND_NOTOPMOST Repositions the window to the top of all non-topmost
windows (that is, behind all topmost windows). This
flag has no effect if the window is already a non-
topmost window.

See the following Comments section for rules about how this parameter is used.
x Specifies the new position of the left side of the window.
y Specifies the new position of the top of the window.
cx Specifies the new width of the window.
cy Specifies the new height of the window.
fuFlags Specifies the window sizing and positioning options. This parameter can be a

combination of the following values:

Value Meaning
SWP_DRAWFRAME Draws a frame (defined in the window's class

description) around the window.
SWP_HIDEWINDOW Hides the window.
SWP_NOACTIVATE Does not activate the window. If this flag is not set,

the window is activated and moved to the top of
either the topmost or non-topmost group

(depending on the setting of the hwndInsertAfter
parameter).

SWP_NOMOVE Retains the current position (ignores the x and y
parameters).

SWP_NOSIZE Retains the current size (ignores the cx and cy
parameters).

SWP_NOREDRAW Does not redraw changes. If this flag is set, no
repainting of any kind occurs. This applies to the
client area, the non-client area (including the title
and scroll bars), and any part of the parent window
uncovered as a result of the moved window. When
this flag is set, the application must explicitly
invalidate or redraw any parts of the window and
parent window that must be redrawn.

SWP_NOZORDER Retains the current ordering (ignores the
hwndInsertAfter parameter).

SWP_SHOWWINDOW Displays the window.

Returns
The return value is nonzero if the function is successful. Otherwise, it is zero.

Comments
If the SWP_SHOWWINDOW or the SWP_HIDEWINDOW flags are set, the window cannot be moved or
sized.

All coordinates for child windows are client coordinates (relative to the upper-left corner of the parent
window's client area).

A window can be made a topmost window either by setting the hwndInsertAfter parameter to
HWND_TOPMOST and ensuring that the SWP_NOZORDER flag is not set, or by setting a window's Z-
order so that it is above any existing topmost windows. When a non-topmost window is made topmost, its
owned windows are also made topmost. Its owners are not changed.

If neither SWP_NOACTIVATE nor SWP_NOZORDER is specified (that is, when the application
requests that a window be simultaneously activated and placed in the specified Z-order), the value
specified in hwndInsertAfter is used only in the following circumstances:

Neither HWND_TOPMOST or HWND_NOTOPMOST is specified in the hwndInsertAfter
parameter.

The window specified in the hwnd parameter is not the active window.

An application cannot activate an inactive window without also bringing it to the top of the Z-order.
Applications can change the Z-order of an activated window without restrictions or activate a window and
then move it to the top of the topmost or non-topmost windows.

A topmost window is no longer topmost if it is repositioned to the bottom (HWND_BOTTOM) of the Z-
order or after any non-topmost window. When a topmost window is made non-topmost, all of its owners
and its owned windows are also made non-topmost windows.

A non-topmost window may own a topmost window, but not vice versa. Any window (for example, a
dialog box) owned by a topmost window is itself made a topmost window, to ensure that all owned
windows stay above their owner.

Example
The following example sets the size of a window equal to one-fourth the size of the desktop and then
positions the window in the upper-left corner of the desktop:

RECT rect;
GetWindowRect(GetDesktopWindow(), &rect);
SetWindowPos(hwnd, (HWND) NULL, 0, 0,

rect.right / 2, rect.bottom / 2,
SWP_NOZORDER | SWP_NOACTIVATE);

See Also
BringWindowToTop, GetWindowRect, MoveWindow

Windows 3.1 changes

If the hwndInsertAfter parameter is HWND_TOPMOST, the system places the window identified by the
hwnd parameter above all non-topmost windows. The window maintains its topmost position even when
the window is deactivated. If the hwndInsertAfter parameter is HWND_BOTTOM and hwnd identifies a
topmost window, the window loses its topmost status--the system places the window at the bottom of all
other windows.

The following window-positioning flags are new for Windows version 3.1:

Value Meaning
HWND_BOTTOM Places the window at the bottom of the Z-order. If hwnd identifies a topmost

window, the window loses its topmost status--the system places the window
at the bottom of all other windows.

HWND_TOP Places the window at the top of the Z-order.
HWND_TOPMOST Places the window above all non-topmost windows. The window maintains

its topmost position even when the window is deactivated.
HWND_NOTOPMOST Repositions the window to the top of all non-topmost windows (that is,

behind all topmost window).

HWND_BOTTOM

Places the window at the bottom of the Z-order. If hwnd identifies a topmost window, the window loses its
topmost status; the system places the window at the bottom of all other windows.

HWND_TOP

Places the window at the top of the Z-order.

HWND_TOPMOST

Places the window above all non-topmost windows. The window maintains its topmost position even
when it is deactivated.

HWND_NOTOPMOST

Repositions the window to the top of all non-topmost windows (that is, behind all topmost windows). This
flag has no effect if the window is already a non-topmost window.

SetWindowsHook (2.x)
HHOOK SetWindowsHook(idHook, hkprc)
int idHook; /* type of hook to install */
HOOKPROC hkprc; /
* filter function procedure-instance address *
/

The SetWindowsHook function is obsolete but has been retained for backward compatibility with
Windows versions 3.0 and earlier. Applications written for Windows version 3.1 should use the
SetWindowsHookEx function.

The SetWindowsHook function installs an application-defined hook function into a hook chain.

Parameter Description
idHook Specifies the type of hook to be installed. This parameter can be one of the following

values:

Value Meaning
WH_CALLWNDPROC Installs a window-procedure filter. For more

information, see the description of the CallWndProc
callback function.

WH_CBT Installs a computer-based training (CBT) filter. For
more information, see the description of the
CBTProc callback function.

WH_DEBUG Installs a debugging filter. For more information,
see the description of the DebugProc callback
function.

WH_GETMESSAGE Installs a message filter. For more information, see
the description of the GetMsgProc callback
function.

WH_HARDWARE Installs a nonstandard hardware-message filter. For
more information, see the description of the
HardwareProc callback function.

WH_JOURNALPLAYBACK Installs a journaling playback filter. For more
information, see the description of the
JournalPlaybackProc callback function.

WH_JOURNALRECORD Installs a journaling record filter. For more
information, see the description of the
JournalRecordProc callback function.

WH_KEYBOARD Installs a keyboard filter. For more information, see
the description of the KeyboardProc callback
function.

WH_MOUSE Installs a mouse-message filter. For more
information, see the description of the MouseProc
callback function.

WH_MSGFILTER Installs a message filter. For more information, see
the description of the MessageProc callback
function.

WH_SHELL Installs a shell-application filter. For more
information, see the description of the ShellProc
callback function.

WH_SYSMSGFILTER Installs a system-wide message filter. For more
information, see the description of the SysMsgProc
callback function.

hkprc Specifies the procedure-instance address of the application-defined hook procedure to be
installed.

Returns
The return value is a handle of the installed hook, if the function is successful. Otherwise, it is NULL.

Comments

Before terminating, an application must call the UnhookWindowsHook function to free system resources
associated with the hook.

The WH_CALLWNDPROC hook affects system performance. It is supplied for debugging purposes only.

The system hooks are a shared resource. Installing a hook affects all applications. Most hook functions
must be in libraries. The only exception is WH_MSGFILTER, which is task-specific. System hooks
should be restricted to special-purpose applications or to use as a development aid during debugging of an
application. Libraries that no longer need the hook should remove the filter function.

To install a filter function, the SetWindowsHook function must receive a procedure-instance address of the
function and the function must be exported in the library's module-definition file. A task must use the
MakeProcInstance function to get a procedure-instance address. A dynamic-link library can pass the
procedure address directly.

See Also
DefHookProc, GetProcAddress, MakeProcInstance, MessageBox, PeekMessage, PostMessage,
SendMessage, SetWindowsHookEx, UnhookWindowsHook

Windows 3.1 changes

This function returns an HHOOK value for Windows 3.1. Prior to Windows 3.1 it returned a HOOKPROC
value.

The following new hook types have been added:

Value Meaning
WH_CBT Installs a Computer-Based Training (CBT) filter. For more information, see the

description of the CBTProc callback function.
WH_DEBUG Installs a debugging filter. For more information, see the description of the

DebugProc callback function.
WH_HARDWARE Installs a non-standard hardware-message filter. For more information, see the

description of the HardwareProc callback function.
WH_MOUSE Installs a mouse-message filter. For more information, see the description of the

MouseProc callback function.
WH_SHELL Installs a shell-application filter. For more information, see the description of the

ShellProc callback function.

WH_CALLWNDPROC 4

Installs a window-procedure filter. For more information, see the description of the CallWndProc callback
function.

WH_CALLWNDPROC 4

WH_CBT 5

Installs a computer-based training (CBT) filter. For more information, see the description of the CBTProc
callback function.

WH_CBT 5

WH_DEBUG 9

Installs a debugging filter. For more information, see the description of the DebugProc callback function.

WH_DEBUG 9

WH_GETMESSAGE 3

Installs a message filter. For more information, see the description of the GetMsgProc callback function.

WH_GETMESSAGE 3

WH_HARDWARE 8

Installs a nonstandard hardware-message filter. For more information, see the description of the
HardwareProc callback function.

WH_HARDWARE 8

WH_JOURNALPLAYBACK 1

Installs a journaling playback filter. For more information, see the description of the JournalPlaybackProc
callback function.

WH_JOURNALPLAYBACK 1

WH_JOURNALRECORD 0

Installs a journaling record filter. For more information, see the description of the JournalRecordProc
callback function.

WH_JOURNALRECORD 0

WH_KEYBOARD 2

Installs a keyboard filter. For more information, see the description of the KeyboardProc callback function.

WH_KEYBOARD 2

WH_MOUSE 7

Installs a mouse-message filter. For more information, see the description of the MouseProc callback
function.

WH_MOUSE 7

WH_MSGFILTER (-1)

Installs a message filter. For more information, see the description of the MessageProc callback function.

WH_MSGFILTER (-1)

WH_SHELL 10

Installs a shell-application filter. For more information, see the description of the ShellProc callback
function.

WH_SHELL 10

WH_SYSMSGFILTER 6

Installs a system-wide message filter. For more information, see the description of the SysMsgProc
callback function.

WH_SYSMSGFILTER 6

SetWindowsHookEx (3.1)
HHOOK SetWindowsHookEx(idHook, hkprc, hinst, htask)
int idHook; /* type of hook to install */
HOOKPROC hkprc; /
* procedure-instance address of filter function *
/
HINSTANCE hinst; /
* handle of application instance *
/
HTASK htask; /
* task to install the hook for *
/

The SetWindowsHookEx function installs an application-defined hook function into a hook chain. This
function is an extended version of the SetWindowsHook function.

Parameter Description
idHook Specifies the type of hook to be installed. This parameter can be one of the following

values:

Value Meaning
WH_CALLWNDPROC Installs a window-procedure filter. For more

information, see the description of the CallWndProc
callback function.

WH_CBT Installs a computer-based training (CBT) filter. For
more information, see the description of the
CBTProc callback function.

WH_DEBUG Installs a debugging filter. For more information,
see the description of the DebugProc callback
function.

WH_GETMESSAGE Installs a message filter. For more information, see
the description of the GetMsgProc callback
function.

WH_HARDWARE Installs a nonstandard hardware-message filter. For
more information, see the description of the
HardwareProc callback function.

WH_JOURNALPLAYBACK Installs a journaling playback filter. For more
information, see the description of the
JournalPlaybackProc callback function.

WH_JOURNALRECORD Installs a journaling record filter. For more
information, see the description of the
JournalRecordProc callback function.

WH_KEYBOARD Installs a keyboard filter. For more information, see
the description of the KeyboardProc callback
function.

WH_MOUSE Installs a mouse-message filter. For more
information, see the description of the MouseProc
callback function.

WH_MSGFILTER Installs a message filter. For more information, see
the description of the MessageProc callback
function.

WH_SHELL Installs a shell-application filter. For more
information, see the description of the ShellProc
callback function.

WH_SYSMSGFILTER Installs a system-wide message filter. For more
information, see the description of the SysMsgProc
callback function.

hkprc Specifies the procedure-instance address of the application-defined hook procedure to be
installed.

hinst Identifies the instance of the module containing the hook function.

htask Identifies the task for which the hook is to be installed. If this parameter is NULL, the
installed hook function has system scope and may be called in the context of any
process or task in the system.

Returns
The return value is a handle of the installed hook, if the function is successful. The application or library
must use this handle to identify the hook when it calls the CallNextHookEx and UnhookWindowsHookEx
functions. The return value is NULL if an error occurs.

Comments
An application or library can use the GetCurrentTask or GetWindowTask function to obtain task handles
for use in hooking a particular task.

Hook procedures used with SetWindowsHookEx must be declared as follows:

DWORD CALLBACK HookProc(code, wParam, lParam)
int code;
WPARAM wParam;
LPARAM lParam;
{

if (...)
return CallNextHookEx(hhook, code, wParam, lParam);

}
Chaining to the next hook procedure (that is, calling the CallNextHookProc function) is optional. An
applicaiton or library can call the next hook procedure either before or after any processing in its own
hook procedure.

Before terminating, an application must call the UnhookWindowsHookEx function to free system
resources associated with the hook.

Some hooks may be set with system scope only, and others may be set only for a specific task, as shown in
the following list:

Hook Scope
WH_CALLWNDPROC Task or system
WH_CBT Task or system
WH_DEBUG Task or system
WH_GETMESSAGE Task or system
WH_HARDWARE Task or system
WH_JOURNALRECORD System only
WH_JOURNALPLAYBACK System only
WH_KEYBOARD Task or system
WH_MOUSE Task or system
WH_MSGFILTER Task or system
WH_SYSMSGFILTER System only

For a given hook type, task hooks are called first, then system hooks.

The WH_CALLWNDPROC hook affects system performance. It is supplied for debugging purposes only.

The system hooks are a shared resource. Installing one affects all applications. All system hook functions
must be in libraries. System hooks should be restricted to special-purpose applications or to use as a
development aid during debugging of an application. Libraries that no longer need the hook should
remove the filter function.

It is a good idea for several reasons to use task hooks rather than system hooks: They do not incur a
system-wide overhead in applications that are not affected by the call (or that ignore the call); they do not
require packaging the hook-procedure implementation in a separate dynamic-link library; they will
continue to work even when future versions of Windows prevent applications from installing system-wide
hooks for security reasons.

To install a filter function, the SetWindowsHookEx function must receive a procedure-instance address of
the function and the function must be exported in the library's module-definition file. Libraries can pass
the procedure address directly. Tasks must use the MakeProcInstance function to get a procedure-instance
address. Dynamic-link libraries must use the GetProcAddress function to get a procedure-instance address.

For a given hook type, task hooks are called first, then system hooks.

The WH_SYSMSGFILTER hooks are called before the WH_MSGFILTER hooks. If any of the
WH_SYSMSGFILTER hook functions return TRUE, the WH_MSGFILTER hooks are not called.

See Also
CallNextHookEx, GetProcAddress, MakeProcInstance, MessageBox, PeekMessage, PostMessage,
SendMessage, UnhookWindowsHookEx

SetWindowText (2.x)
void SetWindowText(hwnd, lpsz)
HWND hwnd; /* handle of window */
LPCSTR lpsz; /* address of string */

The SetWindowText function sets the given window's title to the specified text.

Parameter Description
hwnd Identifies the window or control whose text is to be set.
lpsz Points to a null-terminated string to be used as the new title or control text.

Returns
This function does not return a value.

Comments
This function causes a WM_SETTEXT message to be sent to the given window or control.

If the window specified by the hwnd parameter is a control, the text within the control is set. If the
specified window is a list-box control created with WS_CAPTION style, however, SetWindowText will
set the caption for the control, not for the list-box entries.

Example
The following example sets a window title:

char szBuf[64];
char szFileName[64];
wsprintf((LPSTR) szBuf, "PrntFile - %s", (LPSTR) szFileName);
SetWindowText(hwnd, (LPSTR) szBuf);
See Also
GetWindowText, WM_SETTEXT

SetWindowWord (2.x)
WORD SetWindowWord(hwnd, nOffset, nVal)
HWND hwnd; /* handle of window */
int nOffset; /* offset of value to set */
WORD nVal; /
* new value *
/

The SetWindowWord function places a word value at the specified offset into the extra window memory
of the given window. Extra window memory is reserved by specifying a nonzero value in the cbWndExtra
member of the WNDCLASS structure used with the RegisterClass function.

Parameter Description
hwnd Identifies the window.
nOffset Specifies the zero-based byte offset of the value to change. Valid values are in the range

zero through the number of bytes of extra window memory, minus two (for example, if
10 or more bytes of extra memory were specified, a value of 8 would be an index to the
fifth integer), or one of the following values:

Value Meaning
GWW_HINSTANCE Specifies the instance handle of the module that owns the

window.
GWW_ID Specifies the identifier of the child window.

nVal Specifies the word value to be placed in the window's reserved memory.

Returns
The return value is the previous value of the specified word, if the function is successful. Otherwise, it is
zero.

Comments
To access any extra 2-byte values allocated when the window-class structure was created, use a positive
byte offset as the index specified by the nOffset parameter, starting at 0 for the first 2-byte value in the
extra space, 2 for the next 2-byte value, and so on.

An application should call the SetParent function, not the SetWindowWord function, to change the parent
of a child window.

See Also
GetWindowLong, GetWindowWord, RegisterClass, SetParent, SetWindowLong

ShowCaret (2.x)
void ShowCaret(hwnd)
HWND hwnd; /* handle of window with caret */

The ShowCaret function shows the caret on the screen at the caret's current position. Once shown, the
caret begins flashing automatically.

Parameter Description
hwnd Identifies the window that owns the caret. This parameter can be set to NULL to

indirectly specify the window in the current task that owns the caret.

Returns
This function does not return a value.

Comments
The ShowCaret function shows the caret only if it has a current shape and has not been hidden two or
more times consecutively. If the given window does not own the caret, the caret is not shown. If the hwnd
parameter is NULL, the ShowCaret function shows the caret only if it is owned by a window in the current
task.

Hiding the caret is cumulative. If the HideCaret function has been called five times consecutively,
ShowCaret must be called five times to show the caret.

The caret is a shared resource. A window should show the caret only when it has the input focus or is
active.

See Also
CreateCaret, GetActiveWindow, GetFocus, HideCaret

ShowCursor (2.x)
int ShowCursor(fShow)
BOOL fShow; /* cursor visibility flag */

The ShowCursor function shows or hides the cursor.

Parameter Description
fShow Specifies whether the display count is incremented or decremented (increased or

decreased by one). If this parameter is TRUE, the display count is incremented;
otherwise, it is decremented.

Returns
The return value specifies the new display count, if the function is successful.

Comments
A cursor show-level count is kept internally. It is incremented by a show operation and decremented by a
hide operation. The cursor is visible only if the count is greater than or equal to zero. If a mouse exists, the
initial setting of the cursor show level is zero; otherwise, it is -1.

The cursor is a shared resource. A window that hides the cursor should show it before the cursor leaves its
client area or before the window relinquishes control to another window.

See Also
SetCursor

ShowOwnedPopups (2.x)
void ShowOwnedPopups(hwnd, fShow)
HWND hwnd; /* handle of window */
BOOL fShow; /* window visibility flag */

The ShowOwnedPopups function shows or hides all pop-up windows owned by the given window.

Parameter Description
hwnd Identifies the window that owns the pop-up windows to be shown or hidden.
fShow Specifies whether pop-up windows are to be shown or hidden. If this parameter is

TRUE, all hidden pop-up windows are shown. If this parameter is FALSE, all visible
pop-up windows are hidden.

Returns
This function does not return a value.

See Also
IsWindowVisible, ShowWindow

ShowScrollBar (2.x)
void ShowScrollBar(hwnd, fnBar, fShow)
HWND hwnd; /* handle of window with scroll bar */
int fnBar; /* scroll-bar flag */
BOOL fShow; /
* scroll-bar visibility flag *
/

The ShowScrollBar function shows or hides a scroll bar.

Parameter Description
hwnd Identifies a scroll bar or a window that contains a scroll bar in its nonclient area,

depending on the value of the fnBar parameter. If fnBar is SB_CTL, hwnd identifies a
scroll bar. If fnBar is SB_HORZ, SB_VERT, or SB_BOTH, hwnd identifies a window
that has a scroll bar in its nonclient area.

fnBar Specifies whether the scroll bar is a control or part of a window's nonclient area. If the
scroll bar is part of the nonclient area, fnBar also indicates whether the scroll bar is
positioned horizontally, vertically, or both. This parameter can be one of the following
values:

Value Meaning
SB_BOTH Specifies the window's horizontal and vertical scroll bars.
SB_CTL Specifies that the hwnd parameter identifies a scroll bar control.
SB_HORZ Specifies the window's horizontal scroll bar.
SB_VERT Specifies the window's vertical scroll bar.

fShow Specifies whether the scroll bar is shown or hidden. If this parameter is TRUE, the scroll
bar is shown; otherwise, it is hidden.

Returns
This function does not return a value.

Comments
An application should not call this function to hide a scroll bar while processing a scroll-bar notification
message.

See Also
GetScrollPos, GetScrollRange, ScrollWindow, SetScrollPos, SetScrollRange

ShowWindow (2.x)
BOOL ShowWindow(hwnd, nCmdShow)
HWND hwnd; /* handle of window */
int nCmdShow; /* window visibility flag */

The ShowWindow function sets the given window's visibility state.

Parameter Description
hwnd Identifies the window.
nCmdShow Specifies how the window is to be shown. This parameter can be one of the following

values:

Value Meaning
SW_HIDE Hides the window and passes activation to another

window.
SW_MINIMIZE Minimizes the specified window and activates the

top-level window in the system's list.
SW_RESTORE Activates and displays a window. If the window is

minimized or maximized, Windows restores it to
its original size and position (same as
SW_SHOWNORMAL).

SW_SHOW Activates a window and displays it in its current
size and position.

SW_SHOWMAXIMIZED Activates a window and displays it as a maximized
window.

SW_SHOWMINIMIZED Activates a window and displays it as an icon.
SW_SHOWMINNOACTIVE Displays a window as an icon. The window that is

currently active remains active.
SW_SHOWNA Displays a window in its current state. The

window that is currently active remains active.
SW_SHOWNOACTIVATE Displays a window in its most recent size and

position. The window that is currently active
remains active.

SW_SHOWNORMAL Activates and displays a window. If the window is
minimized or maximized, Windows restores it to
its original size and position (same as
SW_RESTORE).

Returns
The return value is nonzero if the window was previously visible. It is zero if the window was previously
hidden.

Comments
The ShowWindow function must be called only once per application using the nCmdShow parameter from
the WinMain function. Subsequent calls to ShowWindow must use one of the values listed in the
preceding list, instead of the one specified by the nCmdShow parameter from WinMain.

See Also
IsWindowVisible, ShowOwnedPopups, WM_SHOWWINDOW

SubtractRect (3.1)
BOOL SubtractRect(lprcDest, lprcSource1, lprcSource2)
RECT FAR* lprcDest; /* pointer to destination rectangle */
const RECT FAR* lprcSource1; /
* pointer to rect. to subtract from *
/
const RECT FAR* lprcSource2; /
* pointer to rect. to subtract *
/

The SubtractRect function retrieves the coordinates of a rectangle by subtracting one rectangle from
another.

Parameter Description
lprcDest Points to the RECT structure to receive the dimensions of the new rectangle.
lprcSource1 Points to the RECT structure from which a rectangle is to be subtracted.
lprcSource2 Points to the RECT structure that is to be subtracted from the rectangle pointed to by the

lprcSource1 parameter.

Returns
The return value is nonzero if the function is successful. Otherwise, it is zero.

Comments
The rectangle specified by the lprcSource2 parameter is subtracted from the rectangle specified by
lprcSource1 only when the rectangles intersect completely in either the x- or y-direction. For example, if
lprcSource1 were (10,10, 100,100) and lprcSource2 were (50,50, 150,150), the rectangle pointed to by
lprcDest would contain the same coordinates as lprcSource1 when the function returned. If lprcSource1
were (10,10, 100,100) and lprcSource2 were (50,10, 150,150), however, the rectangle pointed to by
lprcDest would contain the coordinates (10,10, 50,100) when the function returned.

See Also
IntersectRect, UnionRect, RECT

SwapMouseButton (2.x)
BOOL SwapMouseButton(fSwap)
BOOL fSwap; /* reverse or restore buttons */

The SwapMouseButton function reverses the meaning of left and right mouse buttons.

Parameter Description
fSwap Specifies whether the button meanings are reversed or restored. If this parameter is

TRUE, the left button generates right-button mouse messages and the right button
generates left-button messages. If this parameter is FALSE, the buttons are restored to
their original meanings.

Returns
The return value specifies the meaning of the mouse buttons immediately before the function is called. It is
nonzero if the meaning was reversed. Otherwise, it is zero.

Comments
Button swapping is provided as a convenience to people who use the mouse with their left hands. The
SwapMouseButton function is usually called by Control Panel only. Although an application is free to call
the function, the mouse is a shared resource and reversing the meaning of the mouse button affects all
applications.

Example
The following example swaps the mouse buttons, depending on the check state of a check box:

BOOL fSwap;
fSwap = (BOOL) SendDlgItemMessage(hdlg, IDD_SWAP,

BM_GETCHECK, 0, 0L);
SwapMouseButton(fSwap);

SystemParametersInfo (3.1)
BOOL SystemParametersInfo(uAction, uParam, lpvParam, fuWinIni)
UINT uAction; /* system parameter to query or set */
UINT uParam; /* depends on
system parameter *
/
void FAR* lpvParam; /
* depends on system parameter *
/
UINT fuWinIni; /
* WIN.INI update flag *
/

The SystemParametersInfo function queries or sets system-wide parameters. This function can also update
the WIN.INI file while setting a parameter.

Parameter Description
uAction Specifies the system-wide parameter to query or set. This parameter can be one of the

following values:

Value Meaning
SPI_GETBEEP Retrieves a BOOL value that

indicates whether the warning beep
is on or off.

SPI_GETBORDER Retrieves the border multiplying
factor that determines the width of a
window's sizing border.

SPI_GETFASTTASKSWITCH Determines whether fast task
switching is on or off.

SPI_GETGRIDGRANULARITY Retrieves the current granularity
value of the desktop sizing grid.

SPI_GETICONTITLELOGFONT Retrieves the logical-font
information for the current icon-title
font.

SPI_GETICONTITLEWRAP Determines whether icon-title
wrapping is on or off.

SPI_GETKEYBOARDDELAY Retrieves the keyboard repeat-delay
setting.

SPI_GETKEYBOARDSPEED Retrieves the keyboard repeat-speed
setting.

SPI_GETMENUDROPALIGNMENT Determines whether pop-up menus
are left-aligned or right-aligned
relative to the corresponding menu-
bar item.

SPI_GETMOUSE Retrieves the mouse speed and the
mouse threshold values, which
Windows uses to calculate mouse
acceleration.

SPI_GETSCREENSAVEACTIVE Retrieves a BOOL value that
indicates whether screen saving is on
or off.

SPI_GETSCREENSAVETIMEOUT Retrieves the screen-saver time-out
value.

SPI_ICONHORIZONTALSPACING Sets the width, in pixels, of an icon
cell.

SPI_ICONVERTICALSPACING Sets the height, in pixels, of an icon
cell.

SPI_LANGDRIVER Forces the user to load a new
language driver.

SPI_SETBEEP Turns the warning beep on or off.
SPI_SETBORDER Sets the border multiplying factor

that determines the width of a
window's sizing border.

SPI_SETDESKPATTERN Sets the current desktop pattern to
the value specified in the Pattern
entry in the WIN.INI file or to the
pattern specified by the lpvParam
parameter.

SPI_SETDESKWALLPAPER Specifies the filename that contains
the bitmap to be used as the desktop
wallpaper.

SPI_SETDOUBLECLKHEIGHT Sets the height of the rectangle
within which the second click of a
double-click must fall for it to be
registered as a double-click.

SPI_SETDOUBLECLICKTIME Sets the double-click time for the
mouse. The double-click time is the
maximum number of milliseconds
that may occur between the first and
second clicks of a double-click.

SPI_SETDOUBLECLKWIDTH Sets the width of the rectangle within
which the second click of a double-
click must fall for it to be registered
as a double-click.

SPI_SETFASTTASKSWITCH Turns fast task switching on or off.
SPI_SETGRIDGRANULARITY Sets the granularity of the desktop

sizing grid.
SPI_SETICONTITLELOGFONT Sets the font that is used for icon

titles.
SPI_SETICONTITLEWRAP Turns icon-title wrapping on or off.
SPI_SETKEYBOARDDELAY Sets the keyboard repeat-delay

setting.
SPI_SETKEYBOARDSPEED Sets the keyboard repeat-speed

setting.
SPI_SETMENUDROPALIGNMENT Sets the alignment value of pop-up

menus.
SPI_SETMOUSE Sets the mouse speed and the x and y

mouse-threshold values.
SPI_SETMOUSEBUTTONSWAP Swaps or restores the meaning of the

left and right mouse buttons.
SPI_SETSCREENSAVEACTIVE Sets the state of the screen saver.
SPI_SETSCREENSAVETIMEOUT Sets the screen-saver time-out value.

uParam Depends on the uAction parameter. For more information, see the following Comments
section.

lpvParam Depends on the uAction parameter. For more information, see the following Comments
section.

fuWinIni
If a system parameter is being set, specifies whether the WIN.INI file is updated, and if
so, whether the WM_WININICHANGE message is broadcast to all top-level windows
to notify them of the change. This parameter can be a combination of the following
values:

Value Meaning
SPIF_UPDATEINIFILE Writes the new system-wide parameter

setting to the WIN.INI file.
SPIF_SENDWININICHANGE Broadcasts the WM_WININICHANGE

message if the WIN.INI file is updated. This
flag has no effect if SPIF_UPDATEINIFILE
is not specified.

Returns
The return value is nonzero if the function is successful. Otherwise, it is zero.

Comments
The SystemParameterInfo function is intended for applications, such as Control Panel, that allow the user
to customize the Windows environment.

The following table describes the uParam and lpvParam parameters for each SPI_ constant:

Constant uParam lpvParam
SPI_GETBEEP 0 Points to a BOOL

variable that receives
TRUE if the beep is on,
FALSE if it is off.

SPI_GETBORDER 0 Points to an integer
variable that receives the
border multiplying
factor.

SPI_GETFASTTASKSWITCH 0 Points to a BOOL
variable that receives
TRUE if fast task
switching is on, FALSE
if it is off.

SPI_GETGRIDGRANULARITY 0 Points to an integer
variable that receives the
grid-granularity value.

SPI_GETICONTITLELOGFONT Size of LOGFONT structure Points to a LOGFONT
structure that receives
the logical-font
information.

SPI_GETICONTITLEWRAP 0 Points to a BOOL
variable that receives
TRUE if wrapping is on,
FALSE if wrapping is
off.

SPI_GETKEYBOARDDELAY 0 Points to an integer
variable that receives the
keyboard repeat-delay
setting.

SPI_GETKEYBOARDSPEED 0 Points to a WORD
variable that receives the
current keyboard repeat-
speed setting.

SPI_GETMENUDROPALIGNMENT 0 Points to a BOOL
variable that receives
TRUE if pop-up menus
are right-aligned,
FALSE if they are left-
aligned.

SPI_GETMOUSE 0 Points to an integer array
name lpiMouse, where
lpiMouse[0] receives the
WIN.INI entry
MouseThreshold1,
lpiMouse[1] receives the
entry MouseThreshold2,
and lpiMouse[2]
receives the entry
MouseSpeed.

SPI_GETSCREENSAVEACTIVE 0 Points to a BOOL
variable that receives
TRUE if the screen saver
is active, FALSE if it is

not.
SPI_GETSCREENSAVETIMEOUT 0 Points to an integer

variable that receives the
screen-saver time-out
value, in milliseconds.

SPI_ICONHORIZONTALSPACING New width, in pixels, for horizontal
spacing of icons

Is NULL if the icon cell
width, in pixels, is
returned in uParam. If
this value is a pointer to
an integer, the current
horizontal spacing is
returned in that variable
and uParam is ignored.

SPI_ICONVERTICALSPACING New height, in pixels, for vertical
spacing of icons

Is NULL if the icon cell
height, in pixels, is
returned in uParam. If
this value is a pointer to
an integer, the current
vertical spacing is
returned in that variable
and uParam is ignored.

SPI_LANGDRIVER 0 Points to a string
containing the new
language driver
filename. The
application should make
sure that all other
international settings
remain consistent when
changing the language
driver.

SPI_SETBEEP TRUE = turn the beep on; FALSE =
turn the beep off

Is NULL.

SPI_SETBORDER Border multiplying factor Is NULL.
SPI_SETDESKPATTERN 0 or -1 Specifies the desktop

pattern. If this value is
NULL and the uParam
parameter is -1, the
value is reread from the
WIN.INI file. This value
can also be a null-
terminated string
(LPSTR) containing a
sequence of 8 numbers
that represent the new
desktop pattern; for
example, "170 85 170 85
170 85 170 85"
represents a 50% gray
pattern.

SPI_SETDESKWALLPAPER 0 Points to a string that
specifies the name of the
bitmap file.

SPI_SETDOUBLECLKHEIGHT Double-click height, in pixels Is NULL.
SPI_SETDOUBLECLICKTIME Double-click time, in milliseconds Is NULL.
SPI_SETDOUBLECLKWIDTH Double-click width, in pixels Is NULL.
SPI_SETFASTTASKSWITCH TRUE = turn on fast task switching;

FALSE = turn it off
Is NULL.

SPI_SETGRIDGRANULARITY Grid granularity
SPI_SETICONTITLELOGFONT Size of the LOGFONT structure Points to a LOGFONT

structure that defines the

font to use for icon titles.
If uParam is set to zero
and lParam is set to
NULL, Windows uses
the icon-title font and
spacings that were in
effect when Windows
was started.

SPI_SETICONTITLEWRAP TRUE = turn wrapping on; FALSE =
turn wrapping off

Is NULL.

SPI_SETKEYBOARDDELAY Keyboard-delay setting Is NULL.
SPI_SETKEYBOARDSPEED Repeat-speed setting Is NULL.
SPI_SETMENUDROPALIGNMENT TRUE = right-alignment; FALSE =

left-alignment
Is NULL.

SPI_SETMOUSE 0 Points to an integer array
named lpiMouse, where
lpiMouse[0] receives the
WIN.INI entry
xMouseThreshold,
lpiMouse[1] receives the
entry yMouseThreshold,
and lpiMouse[2]
receives the entry
MouseSpeed.

SPI_SETMOUSEBUTTONSWAP TRUE = reverse the meaning of the
left and right mouse buttons; FALSE =
restore the buttons to their original
meanings

Is NULL.

SPI_SETSCREENSAVEACTIVE TRUE = activate screen saving;
FALSE = deactivate screen saving

Is NULL.

SPI_SETSCREENSAVETIMEOUT Idle time-out duration, in seconds,
before screen is saved

Is NULL.

Example
The following example retrieves the value for the DoubleClickSpeed entry from the WIN.INI file and uses
the value to initialize an edit control. In this example, while the WM_COMMAND message is being
processed, the user-specified value is retrieved from the edit control and used to set the double-click time.

char szBuf[32];
int iResult;
case WM_INITDIALOG:

/* Initialize edit control to the current double-click time. */
iResult = GetProfileInt("windows",
"DoubleClickSpeed", 550);
itoa(iResult, szBuf, 10);
SendDlgItemMessage(hdlg, IDD_DCLKTIME, WM_SETTEXT, 0,
(DWORD) (LPSTR) szBuf);
.
. /* Initialize any other controls. */
.
return 0;

case WM_COMMAND:
switch(wParam) {
case IDOK:
/* Set double-click time to a user-specified value. */

SendDlgItemMessage(hdlg, IDD_DCLKTIME, WM_GETTEXT,
sizeof(szBuf), (DWORD) (LPSTR) szBuf);
SystemParametersInfo(SPI_SETDOUBLECLICKTIME, atoi(szBuf),
(LPVOID) NULL, SPIF_UPDATEINIFILE |
SPIF_SENDWININICHANGE);
.
. /* Set any other system-wide parameters. */
.
EndDialog(hdlg, TRUE);
return TRUE;
}
return 0;

See Also
WM_WININICHANGE

SPI_GETBEEP 1

Retrieves a BOOL value that indicates whether the warning beep is on or off.

SPI_GETBEEP 1

SPI_GETBORDER 5

Retrieves the border multiplying factor that determines the width of a window's sizing border.

SPI_GETBORDER 5

SPI_GETFASTTASKSWITCH 35

Determines whether fast task switching is on or off.

SPI_GETFASTTASKSWITCH 35

SPI_GETGRIDGRANULARITY 18

Retrieves the current granularity value of the desktop sizing grid.

SPI_GETGRIDGRANULARITY 18

SPI_GETICONTITLELOGFONT 31

Retrieves the logical-font information for the current icon-title font.

SPI_GETICONTITLELOGFONT 31

SPI_GETICONTITLEWRAP 25

Determines whether icon-title wrapping is on or off.

SPI_GETICONTITLEWRAP 25

SPI_GETKEYBOARDDELAY 22

Retrieves the keyboard repeat-delay setting.

SPI_GETKEYBOARDDELAY 22

SPI_GETKEYBOARDSPEED 10

Retrieves the keyboard repeat-speed setting.

SPI_GETKEYBOARDSPEED 10

SPI_GETMENUDROPALIGNMENT 27

Determines whether pop-up menus are left-aligned or right-aligned relative to the corresponding menu-
bar item.

SPI_GETMENUDROPALIGNMENT 27

SPI_GETMOUSE 3

Retrieves the mouse speed and the mouse threshold values, which Windows uses to calculate mouse
acceleration.

SPI_GETMOUSE 3

SPI_GETSCREENSAVEACTIVE 16

Retrieves a BOOL value that indicates whether screen saving is on or off.

SPI_GETSCREENSAVEACTIVE 16

SPI_GETSCREENSAVETIMEOUT 14

Retrieves the screen-saver time-out value.

SPI_GETSCREENSAVETIMEOUT 14

SPI_ICONHORIZONTALSPACING 13

Sets the width, in pixels, of an icon cell.

SPI_ICONHORIZONTALSPACING 13

SPI_ICONVERTICALSPACING 24

Sets the height, in pixels, of an icon cell.

SPI_ICONVERTICALSPACING 24

SPI_LANGDRIVER 12

Forces the user to load a new language driver.

SPI_LANGDRIVER 12

SPI_SETBEEP 2

Turns the warning beep on or off.

SPI_SETBEEP 2

SPI_SETBORDER 6

Sets the border multiplying factor that determines the width of a window's sizing border.

SPI_SETBORDER 6

SPI_SETDESKPATTERN 21

Sets the current desktop pattern to the value specified in the Pattern entry in the WIN.INI file or to the
pattern specified by the lpvParam parameter.

SPI_SETDESKPATTERN 21

SPI_SETDESKWALLPAPER 20

Specifies the filename that contains the bitmap to be used as the desktop wallpaper.

SPI_SETDESKWALLPAPER 20

SPI_SETDOUBLECLKHEIGHT 30

Sets the height of the rectangle within which the second click of a double-click must fall for it to be
registered as a double-click.

SPI_SETDOUBLECLKHEIGHT 30

SPI_SETDOUBLECLICKTIME 32

Sets the double-click time for the mouse. The double-click time is the maximum number of milliseconds
that may occur between the first and second clicks of a double-click.

SPI_SETDOUBLECLICKTIME 32

SPI_SETDOUBLECLKWIDTH 29

Sets the width of the rectangle within which the second click of a double-click must fall for it to be
registered as a double-click.

SPI_SETDOUBLECLKWIDTH 29

SPI_SETFASTTASKSWITCH 36

Turns fast task switching on or off.

SPI_SETFASTTASKSWITCH 36

SPI_SETGRIDGRANULARITY 19

Sets the granularity of the desktop sizing grid.

SPI_SETGRIDGRANULARITY 19

SPI_SETICONTITLELOGFONT 34

Sets the font that is used for icon titles.

SPI_SETICONTITLELOGFONT 34

SPI_SETICONTITLEWRAP 26

Turns icon-title wrapping on or off.

SPI_SETICONTITLEWRAP 26

SPI_SETKEYBOARDDELAY 23

Sets the keyboard repeat-delay setting.

SPI_SETKEYBOARDDELAY 23

SPI_SETKEYBOARDSPEED 11

Sets the keyboard repeat-speed setting.

SPI_SETKEYBOARDSPEED 11

SPI_SETMENUDROPALIGNMENT 28

Sets the alignment value of pop-up menus.

SPI_SETMENUDROPALIGNMENT 28

SPI_SETMOUSE 4

Sets the mouse speed and the x and y mouse-threshold values.

SPI_SETMOUSE 4

SPI_SETMOUSEBUTTONSWAP 33

Swaps or restores the meaning of the left and right mouse buttons.

SPI_SETMOUSEBUTTONSWAP 33

SPI_SETSCREENSAVEACTIVE 17

Sets the state of the screen saver.

SPI_SETSCREENSAVEACTIVE 17

SPI_SETSCREENSAVETIMEOUT 15

Sets the screen-saver time-out value.

SPI_SETSCREENSAVETIMEOUT 15

SPIF_UPDATEINIFILE 0x0001

Writes the new system-wide parameter setting to the WIN.INI file.

SPIF_UPDATEINIFILE 0x0001

SPIF_SENDWININICHANGE 0x0002

Broadcasts the WM_WININICHANGE message if the WIN.INI file is updated. This flag has no effect if
SPIF_UPDATEINIFILE is not specified.

SPIF_SENDWININICHANGE 0x0002

TabbedTextOut (3.0)
LONG TabbedTextOut(hdc, xPosStart, yPosStart, lpszString, cbString, cTabStops, lpnTabPositions,

nTabOrigin)
HDC hdc; /* handle of device context */
int xPosStart; /* x-
coordinate of starting position *
/
int yPosStart; /
* y-coordinate of starting position *
/
LPCSTR lpszString; /
* address of string *
/
int cbString; /
* number of characters in string *
/
int cTabStops; /
* number of tabs in array *
/
int FAR* lpnTabPositions; /
* address of array with tab positions *
/
int nTabOrigin; /
* x-coordinate for tab expansion *
/

The TabbedTextOut function writes a character string at the specified location, expanding tabs to the
values specified in the array of tab-stop positions. The function writes text in the currently selected font.

Parameter Description
hdc Identifies the device context.
xPosStart Specifies the logical x-coordinate of the starting point of the string.
yPosStart Specifies the logical y-coordinate of the starting point of the string.
lpszString Points to the character string to be drawn.
cbString Specifies the number of characters in the string.
cTabStops Specifies the number of values in the array of tab-stop positions.
lpnTabPositions Points to an array containing the tab-stop positions, in device units. The tab stops

must be sorted in increasing order; the smallest x-value should be the first item in
the array.

nTabOrigin Specifies the logical x-coordinate of the starting position from which tabs are
expanded.

Returns
The return value is the dimensions of the string, in logical units, if the function is successful. The low-
order word contains the string width; the high-order word contains the string height. Otherwise, the return
value is zero.

Comments
If the cTabStops parameter is zero and the lpnTabPositions parameter is NULL, tabs are expanded to eight
times the average character width.

If cTabStops is 1, the tab stops are separated by the distance specified by the first value in the
lpnTabPositions array.

If the lpnTabPositions array contains more than one value, a tab stop is set for each value in the array, up
to the number specified by cTabStops.

The nTabOrigin parameter allows an application to call the TabbedTextOut function several times for a
single line. If the application calls TabbedTextOut more than once with the nTabOrigin set to the same
value each time, the function expands all tabs relative to the position specified by nTabOrigin.

By default, the current position is not used or updated by the TabbedTextOut function. If an application
must update the current position when calling TabbedTextOut, it can call the SetTextAlign function with
the wFlags parameter set to TA_UPDATECP. When this flag is set, Windows ignores the xPosStart and

yPosStart parameters on subsequent calls to the TabbedTextOut function, using the current position
instead.

Example
The following example expands tabs from the same x-coordinate as the string's starting point:

LPSTR lpszTabbedText = "Column 1\tColumn 2\tTest of TabbedTextOut";
int aTabs[2] = { 150, 300 };
int iStartXPos = 100;
int iStartYPos = 100;
TabbedTextOut(hdc,/* handle of device context */

iStartXPos, iStartYPos, /* starting coordinates */
lpszTabbedText, /* address of text */
lstrlen(lpszTabbedText),/* number of characters */
sizeof(aTabs) / sizeof(int), /* number of tabs in array */
aTabs, /* array for tab positions */
iStartXPos); /* x-coord. for tab expanding */

See Also
GetTabbedTextExtent, SetTextAlign, SetTextColor, TextOut

TrackPopupMenu (3.0)
BOOL TrackPopupMenu(hmenu, fuFlags, x, y, nReserved, hwnd, lprc)
HMENU hmenu; /* handle of menu */
UINT fuFlags; /*
screen-position and mouse-button flags *
/
int x; /
* horizontal screen position *
/
int y; /
* vertical screen position *
/
int nReserved; /
* reserved *
/
HWND hwnd; /
* handle of owner window *
/
const RECT FAR* lprc; /
* address of structure with rectangle *
/

The TrackPopupMenu function displays the given floating pop-up menu at the specified location and
tracks the selection of items on the pop-up menu. A floating pop-up menu can appear anywhere on the
screen.

Parameter Description
hmenu Identifies the pop-up menu to be displayed. The application retrieves this handle by

calling the CreatePopupMenu function to create a new pop-up menu or by calling the
GetSubMenu function to retrieve the handle of a pop-up menu associated with an
existing menu item.

fuFlags Specifies the screen-position and mouse-button flags. The screen-position flag can be
one of the following:

Value Meaning
TPM_CENTERALIGN Centers the pop-up menu horizontally relative to the

coordinate specified by the x parameter.
TPM_LEFTALIGN Positions the pop-up menu so that its left side is aligned

with the coordinate specified by the x parameter.
TPM_RIGHTALIGN Positions the pop-up menu so that its right side is aligned

with the coordinate specified by the x parameter.
The mouse-button flag can be one of the following:

Value Meaning
TPM_LEFTBUTTON Causes the pop-up menu to track the left mouse button.
TPM_RIGHTBUTTON Causes the pop-up menu to track the right mouse button

instead of the left.
x Specifies the horizontal position, in screen coordinates, of the pop-up menu. Depending

on the value of the fuFlags parameter, the menu can be left-aligned, right-aligned, or
centered relative to this position.

y Specifies the vertical position, in screen coordinates, of the top of the menu on the
screen.

nReserved Reserved; must be zero.
hwnd Identifies the window that owns the pop-up menu. This window receives all

WM_COMMAND messages from the menu. The window will not receive
WM_COMMAND messages until TrackPopupMenu returns.

lprc Points to a RECT structure that contains the screen coordinates of a rectangle in which
the user can click without dismissing the pop-up menu. If this parameter is NULL, the
pop-up menu is dismissed if the user clicks outside the pop-up menu.

Returns

The return value is nonzero if the function is successful. Otherwise, it is zero.

Example
The following example creates and tracks a pop-up menu when the user clicks the left mouse button:

POINT ptCurrent;
HMENU hmenu;
ptCurrent = MAKEPOINT(lParam);
hmenu = CreatePopupMenu();
AppendMenu(hmenu, MF_ENABLED, IDM_ELLIPSE, "Ellipse");
AppendMenu(hmenu, MF_ENABLED, IDM_SQUARE, "Square");
AppendMenu(hmenu, MF_ENABLED, IDM_TRIANGLE, "Triangle");
ClientToScreen(hwnd, &ptCurrent);
TrackPopupMenu(hmenu, TPM_LEFTALIGN, ptCurrent.x,

ptCurrent.y, 0, hwnd, NULL);
See Also
CreatePopupMenu, GetSubMenu, RECT

Windows 3.1 changes

Applications receive WM_COMMAND messages from the pop-up menu after the TrackPopupMenu
function returns. For earlier versions of Windows, applications received WM_COMMAND before
TrackPopupMenu returned.

The seventh parameter to the TrackPopupMenu function is no longer reserved:

Parameter Description
lprc Points to a RECT structure that contains the screen coordinates of a rectangle within

which the user can click without dismissing the pop-up menu. If this parameter is
NULL, the pop-up menu is dismissed if the user clicks outside the pop-up menu.

The following constants have been added:

TPM_CENTERALIGN
TPM_LEFTALIGN
TPM_RIGHTALIGN
TPM_RIGHTBUTTON

TPM_CENTERALIGN 0x0004

Centers the pop-up menu horizontally relative to the coordinate specified by the x parameter.

TPM_CENTERALIGN 0x0004

TPM_LEFTALIGN 0x0000

Positions the pop-up menu so that its left side is aligned with the coordinate specified by the x parameter.

TPM_LEFTALIGN 0x0000

TPM_RIGHTALIGN 0x0008

Positions the pop-up menu so that its right side is aligned with the coordinate specified by the x parameter.

TPM_RIGHTALIGN 0x0008

TPM_LEFTBUTTON 0x0000

Causes the pop-up menu to track the left mouse button.

TPM_LEFTBUTTON 0x0000

TPM_RIGHTBUTTON 0x0002

Causes the pop-up menu to track the right mouse button instead of the left.

TPM_RIGHTBUTTON 0x0002

TranslateAccelerator (2.x)
int TranslateAccelerator(hwnd, haccl, lpmsg)
HWND hwnd; /* handle of window */
HACCEL haccl; /
* handle of accelerator table *
/
MSG FAR* lpmsg; /
* address of structure with message information *
/

The TranslateAccelerator function processes accelerator keys for menu commands. The function translates
WM_KEYUP and WM_KEYDOWN messages to WM_COMMAND or WM_SYSCOMMAND
messages if there is an entry for the accelerator key in the application's accelerator table.

Parameter Description
hwnd Identifies the window whose messages are to be translated.
haccl Identifies an accelerator table (loaded by using the LoadAccelerators function).
lpmsg Points to an MSG structure retrieved by a call to the GetMessage or PeekMessage

function. The structure contains message information from the application's message
queue.

Returns
The return value is nonzero if the message is translated. Otherwise, it is zero.

Comments
The high-order word of the lParam parameter of the WM_COMMAND or WM_SYSCOMMAND
message contains the value 1, to differentiate the message from messages sent by menus or controls.

WM_COMMAND or WM_SYSCOMMAND messages are sent directly to the window, rather than being
posted to the application queue. The TranslateAccelerator function does not return until the message is
processed.

Accelerator keystrokes that are defined to select items from the System menu are translated into
WM_SYSCOMMAND messages; all other accelerator keystrokes are translated into WM_COMMAND
messages.

When TranslateAccelerator returns a nonzero value (meaning that the message is translated), the
application should not process the message again by using the TranslateMessage function.

Keystrokes in accelerator tables need not correspond to menu items.

If the accelerator keystroke does correspond to a menu item, the application is sent WM_INITMENU and
WM_INITMENUPOPUP messages, just as if the user were trying to display the menu. However, these
messages are not sent if any of the following conditions are present:

The window is disabled.
The menu item is disabled.
The accelerator keystroke does not correspond to an item on the System menu and the window is

minimized.
A mouse capture is in effect (for more information, see the description of the SetCapture function)

.

If the window is the active window and there is no keyboard focus (generally the case if the window is
minimized), WM_SYSKEYUP and WM_SYSKEYDOWN messages are translated instead of
WM_KEYUP and WM_KEYDOWN messages.

If an accelerator keystroke that corresponds to a menu item occurs when the window that owns the menu is
minimized, no WM_COMMAND message is sent. However, if an accelerator keystroke that does not
match any of the items on the window's menu or the System menu occurs, a WM_COMMAND message
is sent, even if the window is minimized.

See Also
GetMessage, LoadAccelerators, PeekMessage, SetCapture, MSG

TranslateMDISysAccel (3.0)
BOOL TranslateMDISysAccel(hwndClient, lpmsg)
HWND hwndClient; /* handle of parent MDI client window */
MSG FAR* lpmsg; /*
address of structure with message data *
/

The TranslateMDISysAccel function processes accelerator keystrokes for the given multiple document
interface (MDI) child window. The function translates WM_KEYUP and WM_KEYDOWN messages to
WM_SYSCOMMAND messages.

Parameter Description
hwndClient Identifies the parent MDI client window.
lpmsg Points to an MSG structure retrieved by a call to the GetMessage or PeekMessage

function. The structure contains message information from the application's message
queue.

Returns
The return value is nonzero if the function is successful. Otherwise, it is zero.

Comments
The high-order word of the lParam parameter of the WM_SYSCOMMAND message contains the value 1,
to differentiate the message from messages sent by menus or controls.

See Also
GetMessage, PeekMessage, MSG, WM_SYSCOMMAND

TranslateMessage (2.x)
BOOL TranslateMessage(lpmsg)
const MSG FAR* lpmsg; /* address of MSG structure */

The TranslateMessage function translates virtual-key messages into character messages, as follows:
WM_KEYDOWN/WM_KEYUP combinations produce a WM_CHAR or WM_DEADCHAR

message.
WM_SYSKEYDOWN/WM_SYSKEYUP combinations produce a WM_SYSCHAR or

WM_SYSDEADCHAR message.

The character messages are posted to the application's message queue, to be read the next time the
application calls the GetMessage or PeekMessage function.

Parameter Description
lpmsg Points to an MSG structure retrieved by a call to the GetMessage or PeekMessage

function. The structure contains message information from the application's message
queue.

Returns
The return value is nonzero if the message is WM_KEYDOWN, WM_KEYUP, WM_SYSKEYDOWN,
or WM_SYSKEYUP, regardless of whether the key that was pressed or released generates a WM_CHAR
message. Otherwise, the return value is zero.

Comments
The TranslateMessage function does not modify the message pointed to by the lpmsg parameter.

TranslateMessage produces WM_CHAR messages only for keys that are mapped to ASCII characters by
the keyboard driver.

An application should not call TranslateMessage if the application processes virtual-key messages for
some other purpose. For instance, an application should not call TranslateMessage if the
TranslateAccelerator function returns nonzero.

See Also
GetMessage, PeekMessage, TranslateAccelerator

TransmitCommChar (2.x)
int TransmitCommChar(idComDev, chTransmit)
int idComDev; /* communications device */
char chTransmit; /* character to transmit *
/

The TransmitCommChar function places the specified character at the head of the transmission queue for
the specified device.

Parameter Description
idComDev Specifies the communications device to transmit the character. The OpenComm

function returns this value.
chTransmit Specifies the character to be transmitted.

Returns
The return value is zero if the function is successful. It is less than zero if the character cannot be
transmitted.

Comments
The TransmitCommChar function cannot be called repeatedly if the device is not transmitting. Once
TransmitCommChar places a character in the transmission queue, the character must be transmitted before
the function can be called again. TransmitCommChar returns an error if the previous character has not yet
been sent.

Example
The following example uses the TransmitCommChar function to send characters from the keyboard to the
communications port:

case WM_CHAR:
ch = (char)wParam;
TransmitCommChar(idComDev, ch);
/* Add a linefeed for every carriage return. */
if (ch == 0x0d)
TransmitCommChar(idComDev, 0x0a);
break;

See Also
OpenComm, WriteComm

UngetCommChar (2.x)
int UngetCommChar(idComDev, chUnget)
int idComDev; /* communications device */
char chUnget; /* character to place in queue *
/

The UngetCommChar function places the specified character back in the receiving queue. The next read
operation will return this character first.

Parameter Description
idComDev Specifies the communications device that will receive the character. The OpenComm

function returns this value.
chUnget Specifies the character to be placed in the receiving queue.

Returns
The return value is zero if the function is successful. Otherwise, it is less than zero.

Comments
Consecutive calls to the UngetCommChar function are not permitted. The character placed in the queue
must be read before this function can be called again.

UnhookWindowsHook (2.x)
BOOL UnhookWindowsHook(idHook, hkprc)
int idHook; /* type of hook function to remove */
HOOKPROC hkprc; /
* hook function procedure-instance address *
/

The UnhookWindowsHook function is obsolete but has been retained for backward compatibility with
Windows versions 3.0 and earlier. Applications written for Windows version 3.1 should use the
UnhookWindowsHookEx function.

The UnhookWindowsHook function removes an application-defined hook function from a chain of hook
functions. A hook function processes events before they are sent to an application's message loop in the
WinMain function.

Parameter Description
idHook Specifies the type of function to be removed. This parameter can be one of the following

values:

Value Meaning
WH_CALLWNDPROC Removes a window-procedure filter. For more

information, see the description of the CallWndProc
callback function.

WH_CBT Removes a computer-based training (CBT) filter.
For more information, see the description of the
CBTProc callback function.

WH_DEBUG Removes a debugging filter. For more information,
see the description of the DebugProc callback
function.

WH_GETMESSAGE Removes a message filter. For more information,
see the description of the GetMsgProc callback
function.

WH_HARDWARE Removes a nonstandard hardware-message filter.
For more information, see the description of the
HardwareProc callback function.

WH_JOURNALPLAYBACK Removes a journaling playback filter. For more
information, see the description of the
JournalPlaybackProc callback function.

WH_JOURNALRECORD Removes a journaling record filter. For more
information, see the description of the
JournalRecordProc callback function.

WH_KEYBOARD Removes a keyboard filter. For more information,
see the description of the KeyboardProc callback
function.

WH_MOUSE Removes a mouse-message filter. For more
information, see the description of the MouseProc
callback function.

WH_MSGFILTER Removes a message filter. For more information,
see the description of the MessageProc callback
function.

WH_SYSMSGFILTER Removes a system-wide message filter. For more
information, see the description of the SysMsgProc
callback function.

hkprc Specifies the procedure-instance address of the application-defined filter function to
remove.

Returns
The return value is nonzero if the function is successful. Otherwise, it is zero.

Comments

The UnhookWindowsHook function calls the hook chain, causing the hook function to receive a negative
value for the idHook parameter. The hook function must then call the DefHookProc function, which
removes the hook function from the chain.

See Also
SetWindowsHook

Windows 3.1 changes

The following new hook types have been added:

Value Meaning
WH_CBT Removes a Computer-Based Training (CBT) filter.
WH_DEBUG Removes a debugging filter.
WH_HARDWARE Removes a non-standard hardware-message filter.
WH_MOUSE Removes a mouse-message filter.

UnhookWindowsHookEx (3.1)
BOOL UnhookWindowsHookEx(hhook)
HHOOK hhook; /* handle of hook function to remove */

The UnhookWindowsHookEx function removes an application-defined hook function from a chain of
hook functions. A hook function processes events before they are sent to an application's message loop in
the WinMain function.

Parameter Description
hhook Identifies the hook function to be removed. This is the value returned by the

SetWindowsHookEx function when the hook was installed.

Returns
The return value is nonzero if the function is successful. It is zero if the hook cannot be found.

Comments
The UnhookWindowsHookEx function must be used in combination with the SetWindowsHookEx
function.

Example
The following example uses the UnhookWindowsHookEx function to remove a message filter that was
used to provide context-sensitive help for a dialog box:

DLGPROC lpfnAboutProc;
HOOKPROC lpfnFilterProc;
HHOOK hhook;
case IDM_ABOUT:

lpfnAboutProc = (DLGPROC) MakeProcInstance(About, hinst);
lpfnFilterProc = (HOOKPROC) MakeProcInstance(FilterFunc, hinst);
hhook = SetWindowsHookEx(WH_MSGFILTER, lpfnFilterProc,
hinst, (HTASK) NULL);
DialogBox(hinst, "AboutBox", hwnd, lpfnAboutProc);
UnhookWindowsHookEx(hhook);
FreeProcInstance((FARPROC) lpfnFilterProc);
FreeProcInstance((FARPROC) lpfnAboutProc);
break;

See Also
CallNextHookEx, SetWindowsHookEx

UnionRect (2.x)
BOOL UnionRect(lprcDst, lprcSrc1, lprcSrc2)
RECT FAR* lprcDst; /* address of structure for union */
const RECT FAR* lprcSrc1; /
* address of structure with 1st rect. *
/
const RECT FAR* lprcSrc2; /
* address of structure with 2nd rect. *
/

The UnionRect function creates the union of two rectangles. The union is the smallest rectangle that
contains both source rectangles.

Parameter Description
lprcDst Points to a RECT structure to receive a rectangle containing the rectangles pointed to by

the lprcSrc1 and lprcSrc2 parameters.
lprcSrc1 Points to a RECT structure that contains the first source rectangle.
lprcSrc2 Points to a RECT structure that contains the second source rectangle.

Returns
The return value is nonzero if the function is successful--that is, if the lprcDst parameter contains a
nonempty rectangle. It is zero if the rectangle is empty or an error occurs.

Comments
Windows ignores the dimensions of an empty rectangle--that is, a rectangle that has no height or no width.

See Also
InflateRect, IntersectRect, OffsetRect, SubtractRect, RECT

UnregisterClass (3.0)
BOOL UnregisterClass(lpszClassName, hinst)
LPCSTR lpszClassName; /* address of class-name string */
HINSTANCE hinst; /*
handle of application instance *
/

The UnregisterClass function removes a window class, freeing the storage required for the class.

Parameter Description
lpszClassName

Points to a null-terminated string containing the class name. This class name must
have been registered by a previous call to the RegisterClass function with a valid
hInstance member of the WNDCLASS structure. Predefined classes, such as dialog
box controls, cannot be unregistered.

hinst Identifies the instance of the module that created the class.

Returns
The return value is nonzero if the function successful. It is zero if the class could not be found or if a
window exists that was created with the class.

Comments
Before calling this function, an application should destroy all windows that were created with the specified
class.

See Also
RegisterClass, WNDCLASS

UpdateWindow (2.x)
void UpdateWindow(hwnd)
HWND hwnd; /* handle of window */

The UpdateWindow function updates the client area of the given window by sending a WM_PAINT
message to the window if the update region for the window is not empty. The function sends a
WM_PAINT message directly to the window procedure of the given window, bypassing the application
queue. If the update region is empty, no message is sent.

Parameter Description
hwnd Identifies the window to be updated.

Returns
This function does not return a value.

See Also
ExcludeUpdateRgn, GetUpdateRect, GetUpdateRgn, InvalidateRect, InvalidateRgn, WM_PAINT

ValidateRect (2.x)
void ValidateRect(hwnd, lprc)
HWND hwnd; /* handle of window */
const RECT FAR* lprc; /
* address of structure with validation rect. *
/

The ValidateRect function validates the client area within the given rectangle by removing the rectangle
from the update region of the given window.

Parameter Description
hwnd Identifies the window whose update region is to be modified.
lprc Points to a RECT structure that contains the client coordinates of the rectangle to be

removed from the update region. If this parameter is NULL, the entire client area is
removed.

Returns
This function does not return a value.

Comments
The BeginPaint function automatically validates the entire client area. Neither the ValidateRect nor the
ValidateRgn function should be called if a portion of the update region needs to be validated before the
next WM_PAINT message is generated.

Windows continues to generate WM_PAINT messages until the current update region is validated.

See Also
BeginPaint, InvalidateRect, InvalidateRgn, ValidateRgn, RECT, WM_PAINT

ValidateRgn (2.x)
void ValidateRgn(hwnd, hrgn)
HWND hwnd; /* handle of window */
HRGN hrgn; /* handle of valid region */

The ValidateRgn function validates the client area within the given region by removing the region from
the current update region of the specified window.

Parameter Description
hwnd Identifies the window whose update region is to be modified.
hrgn Identifies a region that defines the area to be removed from the update region. If this

parameter is NULL, the entire client area is removed.

Returns
This function does not return a value.

Comments
The given region must have been created by a region function. The region coordinates are assumed to be
client coordinates.

The BeginPaint function automatically validates the entire client area. Neither the ValidateRect nor the
ValidateRgn function should be called if a portion of the update region must be validated before the next
WM_PAINT message is generated.

See Also
BeginPaint, InvalidateRect, InvalidateRgn, ValidateRect, WM_PAINT

WaitMessage (2.x)
void WaitMessage(void)

The WaitMessage function yields control to other applications when an application has no other tasks to
perform. The WaitMessage function suspends the application and does not return until a new message is
placed in the application's queue.

Returns
This function does not return a value.

Comments
The WaitMessage function normally returns immediately if there is a message in the queue. If an
application has used the PeekMessage function but not removed the message, however, WaitMessage does
not return until the message is received. Applications that use the PeekMessage function should remove
any retrieved messages from the queue before calling WaitMessage.

The GetMessage, PeekMessage, and WaitMessage functions yield control to other applications. Using
these functions is the only way to allow other applications to run. Applications that do not call any of these
functions for long periods prevent other applications from running.

See Also
GetMessage, PeekMessage

WindowFromPoint (2.x)
HWND WindowFromPoint(pt)
POINT pt; /* structure with point */

The WindowFromPoint function retrieves the handle of the window that contains the specified point.

Parameter Description
pt Specifies a POINT structure that defines the screen coordinates of the point to be

checked.

Returns
The return value is the handle of the window in which the point lies, if the function is successful. The
return value is NULL if no window exists at the specified point.

Comments
The WindowFromPoint function does not retrieve the handle of a hidden, disabled, or transparent window,
even if the point is within the window. An application should use the ChildWindowFromPoint function for
a nonrestrictive search.

See Also
ChildWindowFromPoint

WinHelp (3.0)
BOOL WinHelp(hwnd, lpszHelpFile, fuCommand, dwData)
HWND hwnd; /* handle of window requesting help */
LPCSTR lpszHelpFile; /*
address of directory-path string *
/
UINT fuCommand; /
* type of help *
/
DWORD dwData; /
* additional data *
/

The WinHelp function starts Windows Help (WINHELP.EXE) and passes optional data indicating the
nature of the help requested by the application. The application specifies the name and, where required, the
path of the help file that the Help application is to display.

Parameter Description
hwnd Identifies the window requesting Help. The WinHelp function uses this handle to keep

track of which applications have requested Help.
lpszHelpFile Points to a null-terminated string containing the path, if necessary, and the name of the

help file that the Help application is to display.
The filename may be followed by an angle bracket (>) and the name of a secondary
window if the topic is to be displayed in a secondary window rather than in the primary
window. The name of the secondary window must have been defined in the
[WINDOWS] section of the Help project (.HPJ) file.

fuCommand Specifies the type of help requested. For a list of possible values and how they affect
the value to place in the dwData parameter, see the following Comments section.

dwData Specifies additional data. The value used depends on the value of the fuCommand
parameter. For a list of possible values, see the following Comments section.

Returns
The return value is nonzero if the function is successful. Otherwise, it is zero.

Comments
Before closing the window that requested the help, the application must call WinHelp with fuCommand
set to HELP_QUIT. Until all applications have done this, Windows Help does not terminate.

The following table shows the possible values for the fuCommand parameter and the corresponding
formats of the dwData parameter:

fuCommand dwData Action
HELP_CONTEXT An unsigned long integer containing

the context number for the topic.
Displays Help for a particular topic
identified by a context number that has
been defined in the [MAP] section of the
.HPJ file.

HELP_CONTENTS Ignored; applications should set to 0L.Displays the Help contents topic as
defined by the Contents option in the
[OPTIONS] section of the .HPJ file.

HELP_SETCONTENTS An unsigned long integer containing
the context number for the topic
theapplication wants to designate as
the Contents topic.

Determines which Contents topic Help
should display when a user presses the F1
key.

HELP_CONTEXTPOPUP An unsigned long integer containing
the context number for a topic.

Displays in a pop-up window a particular
Help topic identified by a context number
that has been defined in the [MAP]
section of the .HPJ file.

HELP_KEY A long pointer to a string that contains
a keyword for the desired topic.

Displays the topic found in the keyword
list that matches the keyword passed in
the dwData parameter if there is one
exact match. If there is more than one
match, displays the Search dialog box

with the topics listed in the Go To list
box.

HELP_PARTIALKEY A long pointer to a string that contains
a keyword for the desired topic.

Displays the topic found in the keyword
list that matches the keyword passed in
the dwData parameter if there is one
exact match. If there is more than one
match, displays the Search dialog box
with the topics found listed in the Go To
list box. If there is no match, displays the
Search dialog box. If you just want to
bring up the Search dialog box without
passing a keyword (the third result), you
should use a long pointer to an empty
string.

HELP_MULTIKEY A long pointer to the
MULTIKEYHELP structure, as
defined inWINDOWS.H. This
structure specifies the table footnote
character and the keyword.

Displays the Help topic identified by a
keyword in an alternate key word table.

HELP_COMMAND A long pointer to a string that contains
a Help macro to be executed.

Executes a Help macro.

HELP_SETWINPOS A long pointer to the HELPWININFO
structure, as defined in WINDOWS.
H. Thisstructure specifies the size and
position of the primary Help window
or a secondary window to be
displayed.

Displays the Help window if it is
minimized or in memory, and positions it
according to the data passed.

HELP_FORCEFILE Ignored; applications should set to 0L.Ensures that WinHelp is displaying the
correct Help file. If the correct Help file
is currently displayed, there is no action.
If the incorrect Help file is displayed,
WinHelp opens the correct file.

HELP_HELPONHELP Ignored; applications should set to 0L.Displays the Contents topic of the
designated Using Help file.

HELP_QUIT Ignored; applications should set to 0L.Informs the Help application that Help is
no longer needed. If no other applications
have asked for Help, Windows closes the
Help application.

See Also
MULTIKEYHELP, Creating Help Files

Windows 3.1 changes

The following constants have been added:

HELP_SETCONTENTS (used to be HELP_SETINDEX)
HELP_FORCEFILE
HELP_PARTIALKEY
HELP_CONTENTS (used to be HELP_INDEX)
HELP_POPUPID

WNetAddConnection (3.1)
UINT WNetAddConnection(lpszNetPath, lpszPassword, lpszLocalName)
LPSTR lpszNetPath; /* address of network device */
LPSTR lpszPassword; /*
address of password *
/
LPSTR lpszLocalName; /
* address of local device *
/

The WNetAddConnection function redirects the specified local device (either a disk drive or a printer port)
to the given shared device or remote server.

Parameter Description
lpszNetPath Points to a null-terminated string specifying the shared device or remote server.
lpszPassword Points to a null-terminated string specifying the network password for the given

device or server.
lpszLocalName Points to a null-terminated string specifying the local drive or device to be

redirected. All lpszLocalName strings (such as LPT1) are case-independent. Only
the drive names A through Z and the device names LPT1 through LPT3 are used.

Returns
The return value is one of the following:

Value Meaning
WN_SUCCESS The function was successful.
WN_NOT_SUPPORTED The function was not supported.
WN_OUT_OF_MEMORY The system was out of memory.
WN_NET_ERROR An error occurred on the network.
WN_BAD_POINTER The pointer was invalid.
WN_BAD_NETNAME The network resource name was invalid.
WN_BAD_LOCALNAME The local device name was invalid.
WN_BAD_PASSWORD The password was invalid.
WN_ACCESS_DENIED A security violation occurred.
WN_ALREADY_CONNECTED The local device was already connected to a remote resource.

See Also
WNetCancelConnection, WNetGetConnection

WN_SUCCESS 0x0000

The function was successful.

WN_SUCCESS 0x0000

WN_NOT_SUPPORTED 0x0001

The function was not supported.

WN_NOT_SUPPORTED 0x0001

WN_OUT_OF_MEMORY 0x000B

The system was out of memory.

WN_OUT_OF_MEMORY 0x000B

WN_NET_ERROR 0x0002

An error occurred on the network.

WN_NET_ERROR 0x0002

WN_BAD_POINTER 0x0004

The pointer was invalid.

WN_BAD_POINTER 0x0004

WN_BAD_NETNAME 0x0032

The network resource name was invalid.

WN_BAD_NETNAME 0x0032

WN_BAD_LOCALNAME 0x0033

The local device name was invalid.

WN_BAD_LOCALNAME 0x0033

WN_BAD_PASSWORD 0x0006

The password was invalid.

WN_BAD_PASSWORD 0x0006

WN_ACCESS_DENIED 0x0007

A security violation occurred.

WN_ACCESS_DENIED 0x0007

WN_ALREADY_CONNECTED 0x0034

The local device was already connected to a remote resource.

WN_ALREADY_CONNECTED 0x0034

WNetCancelConnection (3.1)
UINT WNetCancelConnection(lpszName, fForce)
LPSTR lpszName; /* address of device or resource */
BOOL fForce; /* forced closure
flag *
/

The WNetCancelConnection function cancels a network connection.

Parameter Description
lpszName Points to the name of the redirected local device (such as LPT1 or D:).
fForce Specifies whether any open files or open print jobs on the device should be closed

before the connection is canceled. If this parameter is FALSE and there are open files or
jobs, the connection should not be canceled and the function should return the
WN_OPEN_FILES error value.

Returns
The return value is one of the following:

Value Meaning
WN_SUCCESS The function was successful.
WN_NOT_SUPPORTED The function was not supported.
WN_OUT_OF_MEMORY The system was out of memory.
WN_NET_ERROR An error occurred on the network.
WN_BAD_POINTER The pointer was invalid.
WN_BAD_VALUE The lpszName parameter was not a valid local device or network name.
WN_NOT_CONNECTED The lpszName parameter was not a redirected local device or currently

accessed network resource.
WN_OPEN_FILES Files were open and the fForce parameter was FALSE. The connection

was not canceled.

See Also
WNetAddConnection, WNetGetConnection

WNetGetConnection (3.1)
UINT WNetGetConnection(lpszLocalName, lpszRemoteName, cbRemoteName)
LPSTR lpszLocalName; /* address of local device name */
LPSTR lpszRemoteName; /
* address of remote device name *
/
UINT FAR* cbRemoteName; /
* max. number of bytes in buffer *
/

The WNetGetConnection function returns the name of the network resource associated with the specified
redirected local device.

Parameter Description
lpszLocalName Points to a null-terminated string specifying the name of the redirected local

device.
lpszRemoteName Points to the buffer to receive the null-terminated name of the remote network

resource.
cbRemoteName Points to a variable specifying the maximum number of bytes the buffer pointed

to by lpszRemoteName can hold. The function sets this variable to the number of
bytes copied to the buffer.

Returns
The return value is one of the following:

Value Meaning
WN_SUCCESS The function was successful.
WN_NOT_SUPPORTED The function was not supported.
WN_OUT_OF_MEMORY The system was out of memory.
WN_NET_ERROR An error occurred on the network.
WN_BAD_POINTER The pointer was invalid.
WN_BAD_VALUE The szLocalName parameter was not a valid local device.
WN_NOT_CONNECTED The szLocalName parameter was not a redirected local device.
WN_MORE_DATA The buffer was too small.

See Also
WNetAddConnection, WNetCancelConnection

WriteComm (2.x)
int WriteComm(idComDev, lpvBuf, cbWrite)
int idComDev; /* identifier of comm. device */
const void FAR* lpvBuf; /*
address of data buffer *
/
int cbWrite; /
* number of bytes to write *
/

The WriteComm function writes to the specified communications device.

Parameter Description
idComDev Specifies the device to receive the bytes. The OpenComm function returns this value.
lpvBuf Points to the buffer that contains the bytes to be written.
cbWrite Specifies the number of bytes to be written.

Returns
The return value specifies the number of bytes written, if the function is successful. The return value is
less than zero if an error occurs, making the absolute value of the return value the number of bytes written.

Comments
To determine what caused an error, use the GetCommError function to retrieve the error value and status.

For serial ports, the WriteComm function deletes data in the transmission queue if there is not enough
room in the queue for the additional bytes. Before calling WriteComm, applications should check the
available space in the transmission queue by using the GetCommError function. Also, applications should
use the OpenComm function to set the size of the transmission queue to an amount no smaller than the size
of the largest expected output string.

See Also
GetCommError, OpenComm, TransmitCommChar

wvsprintf (3.0)
int wvsprintf(lpszOutput, lpszFormat, lpvArglist)
LPSTR lpszOutput; /* address of output destination */
LPCSTR lpszFormat; /
* address of format string *
/
const void FAR* lpvArglist; /
* address of array of arguments *
/

The wvsprintf function formats and stores a series of characters and values in a buffer. The items pointed
to by the argument list are converted according to the corresponding format specification in the format
string.

Parameter Description
lpszOutput Points to a null-terminated string to receive the string formatted as specified in the

lpszFormat parameter.
lpszFormat Points to a null-terminated string that contains the format-control string. In addition to

the standard ASCII characters, a format specification for each argument appears in this
string. For more information about the format specification, see the description of the
wsprintf function.

lpvArglist Points to an array of 16-bit values, each of which specifies an argument for the format-
control string. The number, type, and interpretation of the arguments depend on the
corresponding format-control character sequences specified in the lpszFormat
parameter. Each character or 16-bit integer (%c, %d, %x, %i) requires one word in
lpvArglist. Long integers (%ld, %li, %lx) require two words, the low-order word of the
integer followed by the high-order word. A string (%s) requires two words, the offset
followed by the segment (which together make up a far pointer).

Returns
The return value is the number of bytes stored in the lpszOutput string, not counting the terminating null
character, if the function is successful.

See Also
wsprintf

User functions
AdjustWindowRect Computes required size of a window rectangle
AdjustWindowRectEx Computes required size of a window rectangle
AnsiLower Converts a string to lowercase
AnsiLowerBuff Converts a string buffer to lowercase
AnsiNext Moves to the next character in a string
AnsiPrev Moves to the previous character in a string
AnsiUpper Converts a string to uppercase
AnsiUpperBuff Converts a string buffer to uppercase
AnyPopup Indicates if pop-up or overlapped window exists
AppendMenu Appends a new item to a menu
ArrangeIconicWindows Arranges minimized child windows
BeginDeferWindowPos Creates a window-positioning structure
BeginPaint Prepares a window for painting
BringWindowToTop Uncovers an overlapped window
BuildCommDCB Translates a device-definition string to a DCB
CallMsgFilter Passes a message to a message-filter function
CallNextHookEx Passes hook information down the hook chain
CallWindowProc Passes a message to a window procedure
ChangeClipboardChain Removes a window from the clipboard-viewer chain
ChangeMenu Not used in Windows 3.1
CheckDlgButton Changes a check mark by a dialog box button
CheckMenuItem Changes a check mark by a menu item
CheckRadioButton Places a check mark by a radio button
ChildWindowFromPoint Determines the child window containing a point
ClearCommBreak Restores character transmission
ClientToScreen Converts a client point to screen coordinates
ClipCursor Confines the cursor to a specified rectangle
CloseClipboard Closes the clipboard
CloseComm Closes a communications device
CloseWindow Minimizes a window
CloseDriver Closes an installable driver
CopyCursor Copies a cursor
CopyIcon Copies an icon
CopyRect Copies the dimensions of a rectangle
CountClipboardFormats Returns the number of clipboard formats
CreateCaret Creates a new shape for the system caret
CreateCursor Creates a cursor with the specified dimensions
CreateDialog Creates a modeless dialog box
CreateDialogIndirect Creates modeless dialog box from memory template
CreateDialogIndirectParam Creates modeless dialog box from memory template
CreateDialogParam Creates a modeless dialog box
CreateIcon Creates an icon with the specified dimensions
CreateMenu Creates a menu
CreatePopupMenu Creates a pop-up menu
CreateWindow Creates a window
CreateWindowEx Creates a window
DefDlgProc Does default window message processing
DefDriverProc Calls the default installable-driver procedure
DeferWindowPos Updates a multiple window-positioning structure
DefFrameProc Does default MDI frame window message processing
DefHookProc Calls the next function in a hook-function chain
DefMDIChildProc Does default MDI child window message processing
DefWindowProc Calls the default window procedure
DeleteMenu Deletes an item from a menu
DestroyCaret Destroys the current caret
DestroyCursor Destroys a cursor
DestroyIcon Destroys an icon
DestroyMenu Destroys a menu
DestroyWindow Destroys a window
DialogBox Creates a modal dialog box
DialogBoxIndirect Creates modal dialog box from memory template
DialogBoxIndirectParam Creates modal dialog box from memory template
DialogBoxParam Creates a modal dialog box

DispatchMessage Dispatches a message to a window
DlgDirList Fills a directory list box
DlgDirListComboBox Fills a directory list box
DlgDirSelect Retrieves a selection from a directory list box
DlgDirSelectEx Retrieves a selection from a directory list box
DlgDirSelectComboBox Retrieves a selection from a directory list box
DlgDirSelectComboBoxEx Retrieves a selection from a directory list box
DrawFocusRect Draws a rectangle in the focus style
DrawIcon Draws an icon in the specified device context
DrawMenuBar Redraws the menu bar
DrawText Draws the formatted text in a rectangle
EmptyClipboard Empties the clipboard and frees the data handles
EnableCommNotification Enables or disables WM_COMMNOTIFY posting
EnableHardwareInput Controls mouse and keyboard input queuing
EnableMenuItem Enables, disables, or grays a menu item
EnableScrollBar Enables or disables scroll-bar arrows
EnableWindow Sets the window-enable state
EndDeferWindowPos Updates position and size of multiple windows
EndDialog Hides a modal dialog box
EndPaint Marks the end of painting in specified window
EnumChildWindows Passes child-window handles to a callback
EnumClipboardFormats Returns available clipboard formats
EnumProps Passes property-list entries to a callback
EnumTaskWindows Passes task's window handles to a callback
EnumWindows Passes parent-window handles to a callback
EqualRect Determines whether two rectangles are equal
EscapeCommFunction Passes an extended function to a device
ExcludeUpdateRgn Excludes updated region from clipping region
ExitWindows Restarts or terminates Windows
ExitWindowsExec Terminates Windows and runs MS-DOS application
FillRect Fills a rectangle with the specified brush
FindWindow Returns window handle for class and window name
FlashWindow Flashes a window once
FlushComm Flushes a transmit or receiving queue
FrameRect Draws a window border with a specified brush
GetActiveWindow Retrieves the handle of the active window
GetAsyncKeyState Determines the key state
GetCapture Returns the handle for the mouse-capture window
GetCaretBlinkTime Returns the caret blink rate
GetCaretPos Returns the current caret position
GetClassInfo Returns window-class information
GetClassLong Returns a window-class long value
GetClassName Returns a window-class name
GetClassWord Returns a window-class word value
GetClientRect Returns client area coordinates of window
GetClipboardData Returns a handle to the current clipboard data
GetClipboardFormatName Returns the registered clipboard format name
GetClipboardOwner Returns the clipboard owner window handle
GetClipboardViewer Returns first clipboard-viewer window handle
GetClipCursor Returns cursor-confining rectangle coordinates
GetCommError Returns the communications-device status
GetCommEventMask Retrieves the device event mask
GetCommState Reads the communications-device status
GetCurrentTime Returns the elapsed time since Windows started
GetCursor Returns the current cursor handle
GetCursorPos Returns the current cursor position
GetDC Returns the window device-context handle
GetDCEx Retrieves the device-context handle
GetDesktopWindow Returns desktop window handle
GetDialogBaseUnits Returns the dialog box base units
GetDlgCtrlID Returns the handle of a child window
GetDlgItem Returns dialog box control handle
GetDlgItemInt Translates dialog box text into an integer
GetDlgItemText Retrieves dialog box control text

GetDoubleClickTime Returns mouse double-click time
GetDriverModuleHandle Retrieves an installable-driver instance handle
GetDriverInfo Retrieves installable-driver data
GetFocus Returns the current focus window handle
GetFreeSystemResources Returns percentage of free system-resource space
GetInputState Returns mouse and keyboard status
GetKeyboardState Returns the status of virtual-keyboard keys
GetKeyState Returns the specified virtual-key state
GetLastActivePopup Determines most recently active pop-up window
GetMenu Returns the menu handle for a specified window
GetMenuCheckMarkDimensions Returns the default check mark bitmap dimensions
GetMenuItemCount Returns the number of items in a menu
GetMenuItemID Returns a menu-item identifier
GetMenuState Returns status flags for the specified menu item
GetMenuString Copies a menu-item label into a buffer
GetMessage Retrieves a message from the message queue
GetMessageExtraInfo Retrieves information about a hardware message
GetMessagePos Returns the cursor position for the last message
GetMessageTime Returns the time for the last message
GetNextDlgGroupItem Returns handle of next or previous group control
GetNextDlgTabItem Returns next or previous WS_TABSTOP control
GetNextDriver Enumerates installable-driver instances
GetNextWindow Returns next or previous window manager window
GetOpenClipboardWindow Returns handle to window that opened clipboard
GetParent Returns the parent window handle
GetPriorityClipboardFormat Returns the first clipboard format
GetProp Returns data handle from window property list
GetQueueStatus Determines the queued message type
GetScrollPos Returns the current scroll-bar thumb position
GetScrollRange Returns minimum and maximum scroll-bar positions
GetSubMenu Returns the pop-up menu handle
GetSysColor Returns the display-element color
GetSysModalWindow Returns the system-modal window handle
GetSystemDebugState Returns system-state information to a debugger
GetSystemMenu Provides access to the System menu
GetSystemMetrics Retrieves the system metrics
GetTabbedTextExtent Determines the dimensions of a tabbed string
GetTickCount Returns amount of time Windows has been running
GetTimerResolution Retrieves the timer resolution
GetTopWindow Returns handle for top child of given window
GetUpdateRect Returns the window update region dimensions
GetUpdateRgn Returns the window update region
GetWindow Returns the specified window handle
GetWindowDC Returns the window device context
GetWindowLong Returns long value from extra window memory
GetWindowPlacement Returns window show state and min/max position
GetWindowRect Retrieves window screen coordinates
GetWindowTask Returns the task associated with a window
GetWindowText Copies the window title-bar text to a buffer
GetWindowTextLength Returns the length of window title bar text
GetWindowWord Returns a word value from extra window memory
GlobalAddAtom Adds a string to the system atom table
GlobalDeleteAtom Decrements the reference count of a global atom
GlobalFindAtom Retrieves string atom from global atom table
GlobalGetAtomName Retrieves a global atom string
GrayString Draws gray text at the specified location
hardware_event Places a hardware message in the system queue
HideCaret Removes the caret from the screen
HiliteMenuItem Changes the highlight of a top-level menu item
InflateRect Changes the rectangle dimensions
InSendMessage Determines if a window is processing SendMessage
InsertMenu Inserts a new item in a menu
IntersectRect Calculates a rectangle intersection
InvalidateRect Adds a rectangle to the update region

InvalidateRgn Adds a region to the update region
InvertRect Inverts a rectangular region
IsCharAlpha Determines if a character is alphabetic
IsCharAlphaNumeric Determines is a character is alphanumeric
IsCharLower Determines if a character is lowercase
IsCharUpper Determines if a character is uppercase
IsChild Determines if a window is a child window
IsClipboardFormatAvailable Determines availability of data in given fromat
IsDialogMessage Determines if a message is for a dialog box
IsDlgButtonChecked Determines the state of a button control
IsIconic Determines if a window is minimized
IsMenu Determines if a menu handle is valid
IsRectEmpty Determines whether a rectangle is empty
IsWindow Determines if a window handle is valid
IsWindowEnabled Determines if a window accepts user input
IsWindowVisible Determines the visibility state of a window
IsZoomed Determines if a window is maximized
KillTimer Removes a timer
LoadAccelerators Loads an accelerator table
LoadBitmap Loads a bitmap resource
LoadCursor Loads a cursor resource
LoadIcon Loads an icon resource
LoadMenu Loads a menu resource
LoadMenuIndirect Obtains a menu handle for a menu template
LoadString Loads a string resource
LockInput Locks input to all tasks except the current one
LockWindowUpdate Disables or reenables drawing in a window
lstrcmp Compares two character strings
lstrcmpi Compares two character strings
MapDialogRect Maps dialog box units to pixels
MessageBeep Generates a beep
MessageBox Creates a message box window
MapWindowPoints Converts points to another coordinate system
ModifyMenu Changes an existing menu item
MoveWindow Changes the position and dimensions of a window
OffsetRect Moves a rectangle by an offset
OpenClipboard Opens the clipboard
OpenComm Opens a communications device
OpenDriver Opens an installable driver
OpenIcon Activates a minimized window
PeekMessage Checks the message queue
PostAppMessage Posts a message to an application
PostMessage Places a message in a window message queue
PostQuitMessage Tells Windows that an application is terminating
PtInRect Determines if a point is in a rectangle
QuerySendMessage Determines if a message originated within a task
ReadComm Reads from a communications device
RealizePalette Maps entries from logical to system palette
RedrawWindow Updates a client rectangle or region
RegisterClass Registers a window class
RegisterClipboardFormat Registers a new clipboard format
RegisterWindowMessage Defines a new and unique window message
ReleaseCapture Releases mouse capture
ReleaseDC Frees a device context
RemoveMenu Deletes a menu item and pop-up menu
RemoveProp Removes a property-list entry
ReplyMessage Replies to SendMessage
ScreenToClient Converts a screen point to client coordinates
ScrollDC Scrolls a rectangle horizontally and vertically
ScrollWindow Scrolls a window client area
ScrollWindowEx Scrolls a window client area
SelectPalette Selects a palette into a device context
SendDlgItemMessage Sends a message to a dialog box control
SendDriverMessage Sends a message to an installable driver

SendMessage Sends a message to a window
SetActiveWindow Makes a top-level window active
SetCapture Sets the mouse capture to a window
SetCaretBlinkTime Sets the caret blink rate
SetCaretPos Sets the caret position
SetClassLong Sets a long value in extra class memory
SetClassWord Sets a word value in extra class memory
SetClipboardData Sets the data in the clipboard
SetClipboardViewer Adds a window to the clipboard-viewer chain
SetCommBreak Suspends character transmission
SetCommEventMask Enables events in a device event mask
SetCommState Sets the communications-device state
SetCursor Changes the mouse cursor
SetCursorPos Sets mouse-cursor position in screen coordinates
SetDlgItemInt Converts an integer to a dialog box text string
SetDlgItemText Sets dialog box title or item text
SetDoubleClickTime Sets the mouse double-click time
SetFocus Sets the input focus to a window
SetKeyboardState Sets the keyboard state table
SetMenu Sets the menu for a window
SetMenuItemBitmaps Associates bitmaps with a menu item
SetMessageQueue Creates a new message queue
SetParent Changes a child's parent window
SetProp Adds or changes a property-list entry
SetRect Sets rectangle dimensions
SetRectEmpty Creates an empty rectangle
SetScrollPos Sets scroll-bar thumb position
SetScrollRange Sets minimum and maximum scroll-bar positions
SetSysColors Sets one or more system colors
SetSysModalWindow Makes a window the system-modal window
SetTimer Installs a system timer
SetWindowLong Sets a long value in extra window memory
SetWindowPlacement Sets window show state and min/max position
SetWindowPos Sets window size, position, and order
SetWindowsHook Installs a hook function
SetWindowsHookEx Installs a hook function
SetWindowText Sets text in a caption title or control window
SetWindowWord Sets a word value in extra window memory
ShowCaret Shows (unhides) the caret
ShowCursor Shows or hides the mouse cursor
ShowOwnedPopups Shows or hides pop-up windows
ShowScrollBar Shows or hides a scroll bar
ShowWindow Sets the window visibility state
SubtractRect Creates rect from difference of two rects
SwapMouseButton Reverses the meaning of the mouse buttons
SystemParametersInfo Queries or sets system-wide parameters
TabbedTextOut Writes a tabbed character string
TrackPopupMenu Displays and tracks a pop-up menu
TranslateAccelerator Processes menu command keyboard accelerators
TranslateMDISysAccel Processes MDI keyboard accelerators
TranslateMessage Translates virtual-key messages
TransmitCommChar Places a character in the transmission queue
UngetCommChar Puts character back in receiving queue
UnhookWindowsHook Removes a filter function
UnhookWindowsHookEx Removes a function from the hook chain
UnionRect Creates the union of two rectangles
UnregisterClass Removes a window class
UpdateWindow Updates a window client area
ValidateRect Removes a rectangle from the update region
ValidateRgn Removes a region from the update region
WaitMessage Suspends an application and yields control
WindowFromPoint Returns handle of window containing point
WinHelp Invokes Windows Help
WNetAddConnection Adds network connections

WNetCancelConnection Removes network connections
WNetGetConnection Lists network connections
WriteComm Writes to a communications device
wvsprintf Formats a string

GetFileResource (3.1)
#include ver.h

BOOL GetFileResource(lpszFileName, lpszResType, lpszResID, dwFileOffset, dwResLen, lpvData)
LPCSTR lpszFileName; /* address of buffer for filename */
LPCSTR lpszResType; /
* address of buffer for resource type *
/
LPCSTR lpszResID; /
* address of buffer for resource ID *
/
DWORD dwFileOffset; /
* resource offset in file *
/
DWORD dwResLen; /
* size of resource buffer *
/
void FAR* lpvData; /
* address of buffer for resource copy *
/

The GetFileResource function copies the specified resource from the specified file into the specified
buffer. To obtain the appropriate buffer size, the application can call the GetFileResourceSize function
before calling GetFileResource.

Parameter Description
lpszFileName Points to the buffer that contains the name of the file containing the resource.
lpszResType Points to a value that is created by using the MAKEINTRESOURCE macro with the

numbered resource type. This value is typically VS_FILE_INFO.
lpszResID Points to a value that is created by using the MAKEINTRESOURCE macro with the

numbered resource identifier. This value is typically VS_VERSION_INFO.
dwFileOffset Specifies the offset of the resource within the file. The GetFileResourceSize function

returns this value. If this parameter is NULL, the GetFileResource function searches
the file for the resource.

dwResLen Specifies the buffer size, in bytes, identified by the lpvData parameter. The
GetFileResourceSize function returns the buffer size required to hold the resource. If
the buffer is not large enough, the resource data is truncated to the size of the buffer.

lpvData Points to the buffer that will receive a copy of the resource. If the buffer is not large
enough, the resource data is truncated.

Returns
The return value is nonzero if the function is successful. Otherwise, it is zero, indicating the function could
not find the file, could not find the resource, or produced an MS-DOS error. The GetFileResource function
returns no information about the type of error that occurred.

Comments
If the dwFileOffset parameter is zero, the GetFileResource function determines the location of the resource
by using the lpszResType and lpszResID parameters.

If dwFileOffset is not zero, GetFileResource assumes that dwFileOffset is the return value of
GetFileResourceSize and, therefore, ignores lpszResType and lpszResID.

See Also
GetFileResourceSize

GetFileResourceSize (3.1)
#include ver.h

DWORD GetFileResourceSize(lpszFileName, lpszResType, lpszResID, lpdwFileOffset)
LPCSTR lpszFileName; /* address of buffer for filename */
LPCSTR lpszResType; /
* address of buffer for resource type *
/
LPCSTR lpszResID; /
* address of buffer for resource ID *
/
DWORD FAR *lpdwFileOffset; /
* address of resource offset in file *
/

The GetFileResourceSize function searches the specified file for the resource of the specified type and
identifier.

Parameter Description
lpszFileName Points to the buffer that contains the name of the file in which to search for the

resource.
lpszResType Points to a value that is created by using the MAKEINTRESOURCE macro with the

numbered resource type. This value is typically VS_FILE_INFO.
lpszResID Points to a value that is created by using the MAKEINTRESOURCE macro with the

numbered resource identifier. This value is typically VS_VERSION_INFO.
lpdwFileOffset Points to a 16-bit value that the GetFileResourceSize function fills with the offset to

the resource within the file.

Returns
The return value is the size of the resource, in bytes. The return value is NULL if the function could not
find the file, the file does not have any resources attached, or the function produced an MS-DOS error. The
GetFileResourceSize function returns no information about the type of error that occurred.

See Also
GetFileResource

GetFileVersionInfo (3.1)
#include ver.h

BOOL GetFileVersionInfo(lpszFileName, handle, cbBuf, lpvData)
LPCSTR lpszFileName; /* address of buffer for filename */
DWORD handle; /* file-
version information *
/
DWORD cbBuf; /
* size of buffer *
/
void FAR* lpvData; /
* address of buffer for file-version info *
/

The GetFileVersionInfo function returns version information about the specified file. The application must
call the GetFileVersionInfoSize function before calling GetFileVersionInfo to obtain the appropriate
handle if the handle is not NULL.

Parameter Description
lpszFileName Points to the buffer that contains the name of the file.
handle Identifies the file-version information. The GetFileVersionInfoSize function returns

this handle, or it may be NULL. If the handle parameter is NULL, the
GetFileVersionInfo function searches the file for the version information.

cbBuf Specifies the buffer size, in bytes, identified by the lpvData parameter. The
GetFileVersionInfoSize function returns the buffer size required to hold the file-
version information. If the buffer is not large enough, the file-version information is
truncated to the size of the buffer.

lpvData Points to the buffer that will receive the file-version information. This parameter is
used by a subsequent call to the VerQueryValue function.

Returns
The return value is nonzero if the function is successful. Otherwise, it is zero, indicating the file does not
exist or the handle parameter is invalid. The GetFileVersionInfo function returns no information about the
type of error that occurred.

Comments
The file version information is organized in a VERSIONINFO statement.

Currently, the GetFileVersionInfo function recognizes only version-information created by Microsoft
Resource Compiler (RC).

See Also
GetFileVersionInfoSize, VerQueryValue, VERSIONINFO

GetFileVersionInfoSize (3.1)
#include ver.h

DWORD GetFileVersionInfoSize(lpszFileName, lpdwHandle)
LPCSTR lpszFileName; /* address of buffer for filename */
DWORD FAR *lpdwHandle; /
* address of handle for info *
/

The GetFileVersionInfoSize function determines whether it can obtain version information from the
specified file. If version information is available, GetFileVersionInfoSize returns the size of the buffer
required to hold the version information. It also returns a handle that can be used in a subsequent call to
the GetFileVersionInfo function.

Parameter Description
lpszFileName Points to the buffer that contains the name of the file.
lpdwHandle Points to a 32-bit value that the GetFileVersionInfoSize function fills with the handle

to the file-version information. The GetFileVersionInfo function can use this handle.

Returns
The return value is the buffer size, in bytes, required to hold the version information if the function is
successful. The return value is NULL if the function could not find the file, could not find the version
information, or produced an MS-DOS error. The GetFileVersionInfoSize function returns no information
about the type of error that occurred.

Comments
The file version information is organized in a VERSIONINFO statement.

See Also
GetFileVersionInfo, VERSIONINFO

GetSystemDir (3.1)
#include ver.h

UINT GetSystemDir(lpszWinDir, lpszBuf, cbBuf)
LPCSTR lpszWinDir; /* address of Windows directory */
LPSTR lpszBuf; /* address of
buffer for path *
/
int cbBuf; /
* size of buffer *
/

The GetSystemDir function retrieves the path of the Windows system directory. This directory contains
such files as Windows libraries, drivers, and fonts.

GetSystemDir is used by MS-DOS applications that set up Windows applications; it exists only in the
static-link version of the File Installation library. Windows applications should use the
GetSystemDirectory function to determine the Windows directory.

Parameter Description
lpszWinDir Points to the Windows directory retrieved by a previous call to the GetWindowsDir

function.
lpszBuf Points to the buffer that is to receive the null-terminated string containing the path.
cbBuf Specifies the size, in bytes, of the buffer pointed to by the lpszBuf parameter.

Returns
The return value is the length of the string copied to the buffer, in bytes, including the terminating null
character, if the function is sucessful. If the return value is greater than the cbBuf parameter, the return
value is the size of the buffer required to hold the path. The return value is zero if the function fails.

Comments
An application must call the GetWindowsDir function before calling the GetSystemDir function to obtain
the correct lpszWinDir value.

The path that this function retrieves does not end with a backslash unless the Windows system directory is
the root directory. For example, if the system directory is named WINDOWS\SYSTEM on drive C, the
path of the system directory retrieved by this function is C:\WINDOWS\SYSTEM.

See Also
GetSystemDirectory, GetWindowsDir

GetWindowsDir (3.1)
#include ver.h

UINT GetWindowsDir(lpszAppDir, lpszPath, cbPath)
LPCSTR lpszAppDir; /* address of Windows directory */
LPSTR lpszPath; /* address of
buffer for path *
/
int cbPath; /
* size of buffer for path *
/

The GetWindowsDir function retrieves the path of the Windows directory. This directory contains such
files as Windows applications, initialization files, and help files.

GetWindowsDir is used by MS-DOS applications that set up Windows applications; it exists only in the
static-link version of the File Installation library. Windows applications should use the
GetWindowsDirectory function to determine the Windows directory.

Parameter Description
lpszAppDir Specifies the current directory in a search for Windows files. If the Windows directory is

not on the path, the application must prompt the user for its location and pass that string
to the GetWindowsDir function in the lpszAppDir parameter.

lpszPath Points to the buffer that will receive the null-terminated string containing the path.
cbPath Specifies the size, in bytes, of the buffer pointed to by the lpszPath parameter.

Returns
The return value is the length of the string copied to the lpszPath parameter, including the terminating null
character, if the function is successful. If the return value is greater than the cbPath parameter, it is the size
of the buffer required to hold the path. The return value is zero if the function fails.

Comments
The path that this function retrieves does not end with a backslash unless the Windows directory is the root
directory. For example, if the Windows directory is named WINDOWS on drive C, the path retrieved by
this function is C:\WINDOWS. If Windows is installed in the root directory of drive C, the path retrieved
is C:\.

After the GetWindowsDir function locates the Windows directory, it caches the location for use by
subsequent calls to the function.

See Also
GetSystemDir, GetWindowsDirectory

VerFindFile (3.1)
#include ver.h

UINT VerFindFile(flags, lpszFilename, lpszWinDir, lpszAppDir, lpszCurDir, lpuCurDirLen,
lpszDestDir, lpuDestDirLen)

UINT flags; /* source-file flags */
LPCSTR lpszFilename; /
* address of buffer for file *
/
LPCSTR lpszWinDir; /
* address of Windows directory *
/
LPCSTR lpszAppDir; /
* address of application directory *
/
LPSTR lpszCurDir; /
* address of buffer for current directory *
/
UINT FAR* lpuCurDirLen; /
* address of buffer size for directory *
/
LPSTR lpszDestDir; /
* address of buffer for dest. directory *
/
UINT FAR* lpuDestDirLen; /
* address of size for dest. directory *
/

The VerFindFile function determines where to install a file based on whether it locates another version of
the file in the system. The values VerFindFile returns are used in a subsequent call to the VerInstallFile
function.

Parameter Description
flags Contains a bitmask of flags. This parameter can be VFFF_ISSHAREDFILE, which

indicates that the source file may be shared by multiple applications. VerFindFile uses
this information to determine where the file should be copied. All other values are
reserved for future use.

lpszFilename Points to a null-terminated string specifying the name of the file to be installed. This
name should include only the filename and extension, not a path.

lpszWinDir Points to a null-terminated string specifying the Windows directory. This string is
returned by the GetWindowsDir function. The dynamic-link library (DLL) version of
VerFindFile ignores this parameter.

lpszAppDir Points to a null-terminated string specifying the drive letter and directory where the
installation program is installing a set of related files. If the installation program is
installing an application, this is the directory where the application will reside. This
directory will also be the application's working directory unless you specify
otherwise.

lpszCurDir Points to a buffer that receives the path to a current version of the file being installed.
The path is a null-terminated string. If a current version is not installed, the buffer will
contain the source directory of the file being installed. The buffer must be at least
_MAX_PATH bytes long.

lpuCurDirLen Points to a null-terminated string specifying the length, in bytes, of the buffer pointed
to by lpszCurDir. On return, lpuCurDirLen contains the size, in bytes, of the data
returned in lpszCurDir, including the terminating null character. If the buffer is too
small to contain all the data, lpuCurDirLen will be greater than the actual size of the
buffer.

lpszDestDir Points to a buffer that receives the path to the installation directory recommended by
VerFindFile. The path is a null-terminated string. The buffer must be at least
_MAX_PATH bytes long.

lpuDestDirLen Points to the length, in bytes, of the buffer pointed to by lpszDestDir. On return,
lpuDestDirLen contains the size, in bytes, of the data returned in lpszDestDir,

including the terminating null character. If the buffer is too small to contain all the
data, lpuDestDirLen will be greater than the actual size of the buffer.

Returns
The return value is a bitmask that indicates the status of the file, if the function is successful. This value
may be one or more of the following:

Error Meaning
VFF_CURNEDEST Indicates that the currently installed version of the file is not in the

recommended destination.
VFF_FILEINUSE Indicates that Windows is using the currently installed version of the file;

therefore, the file cannot be overwritten or deleted.
VFF_BUFFTOOSMALL Indicates that at least one of the buffers was too small to contain the

corresponding string. An application should check the lpuCurDirLen and
lpuDestDirLen parameters to determine which buffer was too small.

All other values are reserved for future use.

Comments
The dynamic-link library (DLL) version of VerFindFile searches for a copy of the specified file by using
the OpenFile function. In the LIB version, the function searches for the file in the Windows directory, the
system directory, and then the directories specified by the PATH environment variable.

VerFindFile determines the system directory from the specified Windows directory, or it searches the path.

If the flags parameter indicates that the file is private to this application (not VFFF_ISSHAREDFILE),
VerFindFile recommends installing the file in the application's directory. Otherwise, if the system is
running a shared copy of Windows, the function recommends installing the file in the Windows directory.
If the system is running a private copy of Windows, the function recommends installing the file in the
system directory.

See Also
VerInstallFile

VerInstallFile (3.1)
#include ver.h

DWORD VerInstallFile(flags, lpszSrcFilename, lpszDestFilename, lpszSrcDir, lpszDestDir, lpszCurDir,
lpszTmpFile, lpwTmpFileLen)

UINT flags; /* source-file flags */
LPCSTR lpszSrcFilename; /
* address of source filename *
/
LPCSTR lpszDestFilename; /
* address of destination filename *
/
LPCSTR lpszSrcDir; /
* address of buffer for source dir. name *
/
LPCSTR lpszDestDir; /
* address of buffer for dest. dir. name *
/
LPCSTR lpszCurDir; /
* address of buffer for preexisting dir. *
/
LPSTR lpszTmpFile; /
* address of buffer for temp. filename *
/
UINT FAR* lpwTmpFileLen; /
* address of buffer for temp. file size *
/

The VerInstallFile function attempts to install a file based on information returned from the VerFindFile
function. VerInstallFile decompresses the file with the LZCopy function and checks for errors, such as
outdated files.

Parameter Description
flags Contains a bitmask of flags. This parameter can be a combination of the

following values:

Value Meaning
VIFF_FORCEINSTALL Installs the file regardless of mismatched

version numbers. The function will check
only for physical errors during installation.
If flags includes VIFF_FORCEINSTALL and
lpszTmpFileLen is not a pointer to zero,
VerInstallFile will skip all version checks of
the temporary file and the destination file and
rename the temporary file to the name
specified by lpszSrcFilename, as long as the
temporary file exists in the destination
directory, the destination file is not in use,
and the user has privileges to delete the
destination file and rename the temporary
file. The return value from VerInstallFile
should be checked for any errors.

VIFF_DONTDELETEOLD Installs the file without deleting the
previously installed file, if the previously
installed file is not in the destination
directory. If the previously installed file is in
the destination directory, VerInstallFile
replaces it with the new file upon successful
installation.

All other values are reserved for future use.
lpszSrcFilename Points to the name of the file to be installed. This is the filename in the directory

pointed to by lpszSrcDir; the filename should include only the filename and
extension, not a path. VerInstallFile opens the source file by using the

LZOpenFile function. This means it can handle both files as specified and files
that have been compressed and renamed by using the /r option with COMPRESS.
EXE.

lpszDestFilename Points to the name VerInstallFile will give the new file upon installation. This
filename may be different than the filename in the directory pointed to by
lpszSrcFilename. The new name should include only the filename and extension,
not a path.

lpszSrcDir Points to a buffer that contains the directory name where the new file is found.
lpszDestDir Points to a buffer that contains the directory name where the new file should be

installed. The VerFindFile function returns this value in the lpszDestDir
parameter.

lpszCurDir Points to a buffer that contains the directory name where the preexisting version
of this file is found. VerFindFile returns this value in the lpszCurDir parameter. If
the filename specified in lpszDestFilename already exists in the lpszCurDir
directory and flags does not include VIFF_DONTDELETEOLD, the existing file
will be deleted. If lpszCurDir is a pointer to NULL, a previous version of the file
does not exist on the system.

lpszTmpFile Points to a buffer that should be empty upon the initial call to VerInstallFile. The
function fills the buffer with the name of a temporary copy of the source file. The
buffer must be at least _MAX_PATH bytes long.

lpwTmpFileLen Points to the length of the buffer pointed to by lpszTmpFile. On return,
lpwTmpFileLen contains the size, in bytes, of the data returned in lpszTmpFile,
including the terminating null character. If the buffer is too small to contain all
the data, lpwTmpFileLen will be greater than the actual size of the buffer.
If flags includes VIFF_FORCEINSTALL and lpwTmpFileLen is not a pointer to
zero, VerInstallFile will rename the temporary file to the name specified by
lpszSrcFilename.

Returns
The return value is a bitmask that indicates exceptions, if the function is successful. This value may be one
or more of the following:

Value Meaning
VIF_TEMPFILE Indicates that the temporary copy of the new file is in the

destination directory. The cause of failure is reflected in other
flags. Applications should always check whether this bit is set
and delete the temporary file, if required.

VIF_MISMATCH Indicates that the new and preexisting files differ in one or more
attributes. This error can be overridden by calling VerInstallFile
again with the VIFF_FORCEINSTALL flag.

VIF_SRCOLD Indicates that the file to install is older than the preexisting file.
This error can be overridden by calling VerInstallFile again with
the VIFF_FORCEINSTALL flag.

VIF_DIFFLANG Indicates that the new and preexisting files have different
language or code-page values. This error can be overridden by
calling VerInstallFile again with the VIFF_FORCEINSTALL
flag.

VIF_DIFFCODEPG Indicates that the new file requires a code page that cannot be
displayed by the currently running version of Windows. This
error can be overridden by calling VerInstallFile with the
VIFF_FORCEINSTALL flag.

VIF_DIFFTYPE Indicates that the new file has a different type, subtype, or
operating system than the preexisting file. This error can be
overridden by calling VerInstallFile again with the
VIFF_FORCEINSTALL flag.

VIF_WRITEPROT Indicates that the preexisting file is write-protected. The
installation program should reset the read-only bit in the
destination file before proceeding with the installation.

VIF_FILEINUSE Indicates that the preexisting file is in use by Windows and
cannot be deleted.

VIF_OUTOFSPACE Indicates that the function cannot create the temporary file due
to insufficient disk space on the destination drive.

VIF_ACCESSVIOLATION Indicates that a create, delete, or rename operation failed due to
an access violation.

VIF_SHARINGVIOLATION Indicates that a create, delete, or rename operation failed due to
a sharing violation.

VIF_CANNOTCREATE Indicates that the function cannot create the temporary file. The
specific error may be described by another flag.

VIF_CANNOTDELETE Indicates that the function cannot delete the destination file or
cannot delete the existing version of the file located in another
directory. If the VIF_TEMPFILE bit is set, the installation failed
and the destination file probably cannot be deleted.

VIF_CANNOTRENAME Indicates that the function cannot rename the temporary file but
already deleted the destination file.

VIF_OUTOFMEMORY Indicates that the function cannot complete the requested
operation due to insufficient memory. Generally, this means the
application ran out of memory attempting to expand a
compressed file.

VIF_CANNOTREADSRC Indicates that the function cannot read the source file. This could
mean that the path was not specified properly, that the file does
not exist, or that the file is a compressed file that has been
corrupted. To distinguish these conditions, use LZOpenFile to
determine whether the file exists. (Do not use the OpenFile
function, because it does not correctly translate filenames of
compressed files.) Note that VIF_CANNOTREADSRC does not
cause either the VIF_ACCESSVIOLATION or
VIF_SHARINGVIOLATION bit to be set.

VIF_CANNOTREADDST Indicates that the function cannot read the destination (existing)
files. This prevents the function from examining the file's
attributes.

VIF_BUFFTOOSMALL Indicates that the lpszTmpFile buffer was too small to contain
the name of the temporary source file. On return,
lpwTmpFileLen contains the size of the buffer required to hold
the filename.

All other values are reserved for future use.

Comments
VerInstallFile is designed for use in an installation program. This function copies a file (specified by
lpszSrcFilename) from the installation disk to a temporary file in the destination directory. If necessary,
VerInstallFile expands the file by using the functions in LZEXPAND.DLL.

If a preexisting copy of the file exists in the destination directory, VerInstallFile compares the version
information of the temporary file to that of the preexisting file. If the preexisting file is more recent than
the new version, or if the files' attributes are significantly different, VerInstallFile returns one or more
error values. For example, files with different languages would cause VerInstallFile to return
VIF_DIFFLANG.

VerInstallFile leaves the temporary file in the destination directory. If all of the errors are recoverable, the
installation program can override them by calling VerInstallFile again with the VIFF_FORCEINSTALL
flag. In this case, lpszSrcFilename should point to the name of the temporary file. Then, VerInstallFile
deletes the preexisting file and renames the temporary file to the name specified by lpszSrcFilename. If the
VIF_TEMPFILE bit indicates that a temporary file exists and the application does not force the installation
by using the VIFF_FORCEINSTALL flag, the application must delete the temporary file.

If an installation program attempts to force installation after a nonrecoverable error, such as
VIF_CANNOTREADSRC, VerInstallFile will not install the file.

See Also
VerFindFile

VerLanguageName (3.1)
#include ver.h

UINT VerLanguageName(uLang, lpszLang, cbLang)
UINT uLang; /* Microsoft language identifier */
LPSTR lpszLang; /*
address of buffer for language string *
/
UINT cbLang; /
* size of buffer *
/

The VerLanguageName function converts the specified binary Microsoft language identifier into a text
representation of the language.

Parameter Description
uLang Specifies the binary Microsoft language identifier. For example, VerLanguageName

translates 0x040A into Castilian Spanish. If VerLanguageName does not recognize the
identifier, the lpszLang parameter will point to a default string, such as "Unknown
language". For a complete list of the language identifiers supported by Windows, see the
following Comments section.

lpszLang Points to the buffer to receive the null-terminated string representing the language
specified by the uLang parameter.

cbLang Indicates the size of the buffer, in bytes, pointed to by lpszLang.

Returns
The return value is the length of the string that represents the language identifier, if the function is
successful. This value does not include the null character at the end of the string. If this value is greater
than cbLang, the string was truncated to cbLang. The return value is zero if an error occurs. Unknown
uLang values do not produce errors.

Comments
Typically, an installation application uses this function to translate a language identifier returned by the
VerQueryValue function. The text string may be used in a dialog box that asks the user how to proceed in
the event of a language conflict.

Windows supports the following language identifiers:

Value Language
0x0401 Arabic
0x0402 Bulgarian
0x0403 Catalan
0x0404 Traditional Chinese
0x0405 Czech
0x0406 Danish
0x0407 German
0x0408 Greek
0x0409 U.S. English
0x040A Castilian Spanish
0x040B Finnish
0x040C French
0x040D Hebrew
0x040E Hungarian
0x040F Icelandic
0x0410 Italian
0x0411 Japanese
0x0412 Korean
0x0413 Dutch
0x0414 Norwegian - Bokmål
0x0415 Polish

0x0416 Brazilian Portuguese
0x0417 Rhaeto-Romanic
0x0418 Romanian
0x0419 Russian
0x041A Croato-Serbian (Latin)
0x041B Slovak
0x041C Albanian
0x041D Swedish
0x041E Thai
0x041F Turkish
0x0420 Urdu
0x0421 Bahasa
0x0804 Simplified Chinese
0x0807 Swiss German
0x0809 U.K. English
0x080A Mexican Spanish
0x080C Belgian French
0x0810 Swiss Italian
0x0813 Belgian Dutch
0x0814 Norwegian - Nynorsk
0x0816 Portuguese
0x081A Serbo-Croatian (Cyrillic)
0x0C0C Canadian French
0x100C Swiss French

VerQueryValue (3.1)
#include ver.h

BOOL VerQueryValue(lpvBlock, lpszSubBlock, lplpBuffer, lpcb)
const void FAR* lpvBlock; /* address of buffer for version resource */
LPCSTR lpszSubBlock; /
* address of value to retrieve *
/
VOID FAR* FAR* lplpBuffer; /
* address of buffer for version pointer *
/
UINT FAR* lpcb; /
* address of version-value length buffer *
/

The VerQueryValue function returns selected version information from the specified version-information
resource. To obtain the appropriate resource, the GetFileVersionInfo function must be called before
VerQueryValue.

Parameter Description
lpvBlock Points to the buffer containing the version-information resource returned by the

GetFileVersionInfo function.
lpszSubBlock Points to a zero-terminated string specifying which version-information value to

retrieve. The string consists of names separated by backslashes (\) and can have one of
the following forms:

Form Description
\ Specifies the root block. The

function retrieves a pointer to
the VS_FIXEDFILEINFO
structure for the version-
information resource.

\VarFileInfo\Translation Specifies the translation table
in the variable information
block. The function retrieves a
pointer to an array of language
and character-set identifiers.
An application uses these
identifiers to create the name
of an language-specific block
in the version-information
resource.

\StringFileInfo\lang-charset\string-name Specifies a value in a
language-specific block. The
lang-charset name is a
concatenation of a language
and character-set identifier
pair found in the translation
table for the resource. The
lang-charset name must be
specified as a hexadecimal
string. The string-name name
is one of the predefined strings
described in the following
Comments section.

lplpBuffer Points to a buffer that receives a pointer to the version-information value.
lpcb Points to a buffer that receives the length, in bytes, of the version-information value.

Returns
The return value is nonzero if the specified block exists and version information is available. If lpcb is
zero, no value is available for the specified version-information name. The return value is zero if the
specified name does not exist or the resource pointed to by lpvBlock is not valid.

Comments
The string-name in the lpszSubBlock parameter can be one of the following predefined names:

Name Value
Comments Specifies additional information that should be displayed for diagnostic

purposes.
CompanyName Specifies the company that produced the file--for example, "Microsoft

Corporation" or "Standard Microsystems Corporation, Inc.". This string is
required.

FileDescription Specifies a file description to be presented to users. This string may be
displayed in a list box when the user is choosing files to install--for example,
"Keyboard Driver for AT-Style Keyboards" or "Microsoft Word for
Windows". This string is required.

FileVersion Specifies the version number of the file--for example, "3.10" or "5.00.RC2".
This string is required.

InternalName Specifies the internal name of the file, if one exists--for example, a module
name if the file is a dynamic-link library. If the file has no internal name, this
string should be the original filename, without extension. This string is
required.

LegalCopyright Specifies all copyright notices that apply to the file. This should include the
full text of all notices, legal symbols, copyright dates, and so on--for example,
"Copyright Microsoft Corporation 1990-1991". This string is optional.

LegalTrademarks Specifies all trademarks and registered trademarks that apply to the file. This
should include the full text of all notices, legal symbols, trademark numbers,
and so on--for example, "Windows(TM) is a trademark of Microsoft
Corporation". This string is optional.

OriginalFilename Specifies the original name of the file, not including a path. This information
enables an application to determine whether a file has been renamed by a user.
The format of the name depends on the file system for which the file was
created. This string is required.

PrivateBuild Specifies information about a private version of the file--for example, "Built
by TESTER1 on \TESTBED". This string should be present only if the
VS_FF_PRIVATEBUILD flag is set in the dwFileFlags member of the
VS_FIXEDFILEINFO structure of the root block.

ProductName Specifies the name of the product with which the file is distributed--for
example, "Microsoft Windows". This string is required.

ProductVersion Specifies the version of the product with which the file is distributed--for
example, "3.10" or "5.00.RC2". This string is required.

SpecialBuild Specifies how this version of the file differs from the standard version--for
example, "Private build for TESTER1 solving mouse problems on M250 and
M250E computers". This string should be present only if the
VS_FF_SPECIALBUILD flag is set in the dwFileFlags member of the
VS_FIXEDFILEINFO structure in the root block.

Example
The following example loads the version information for a dynamic-link library and retrieves the company
name:

BYTE abData[512];
DWORD handle;
DWORD dwSize;
LPBYTE lpBuffer;
char szName[512];
dwSize = GetFileVersionInfoSize("c:\\dll\\sample.dll", &handle));
GetFileVersionInfo("c:\\dll\\sample.dll", handle, dwSize, abData));
VerQueryValue(abData, "\\VarFileInfo\\Translation", &lpBuffer, &dwSize)
);
if (dwSize!=0) {

wsprintf(szName, "\\StringFileInfo\\%8lx\\CompanyName", &lpBuffer)
;

VerQueryValue(abData, szName, &lpBuffer, &dwSize);
}
See Also
GetFileVersionInfo, VS_FIXEDFILEINFO

Version Functions (3.1)
GetFileResource Copies a resource into a buffer
GetFileResourceSize Returns the size of a resource
GetFileVersionInfo Returns version information about a specified file
GetFileVersionInfoSize Returns the size of version information for a file
GetSystemDir Returns the path of the Windows system subdirectory
GetWindowsDir Returns the path of the Windows directory
VerFindFile Determines where to install a file
VerInstallFile Installs a file and checks for errors
VerLanguageName Converts a binary language identifier into a string
VerQueryValue Returns version information about a block

