AbortProc (3.1)

BOOL CALLBACK AbortProc(hdc, error)
HDC hdc; /* handle of device context */
int error; [* error value */

The AbortProc function is an application-defined callback function that is called when a print job isto be
canceled during spooling.

Parameter Description
hdc | dentifies the device context.
error Specifies whether an error has occurred. This parameter is zero if no error has occurred;

itisSP_ OUTOFDISK if Print Manager is currently out of disk space and more disk
space will become available if the application waits. If this parameter is
SP_OUTOFDISK, the application need not cancel the print job. If it does not cancel the
job, it must yield to Print Manager by calling the PeekM essage or GetMessage function.

Returns
The callback function should return TRUE to continue the print job or FALSE to cancel the print job.

Comments

An application installs this callback function by calling the SetAbortProc function. AbortProc isa
placeholder for the application-defined function name. Theactual name must be exported by including it
in an EXPORTS statement in the application's module-definition file.

See Also
GetMessage, PeekM essage, SetAbortProc

CalwndProc (3.1)

LRESULT CALLBACK CalWndProc(code, wParam, |Param)

int code; [* process-message flag */

WPARAM wParam; I*
current-task flag

/

LPARAM |Param;

* address of structure with message data

/

The CallwndProc function is alibrary-defined callback function that the system calls whenever the
SendMessage function is called. The system passes the message to the callback function before passing the
message to the destination window procedure.

Parameter Description

code Specifies whether the callback function should process the message or call the
CalINextHookEx function. If the code parameter isless than zero, the callback function
should pass the message to CallNextHookEx without further processing.

wParam Specifies whether the message is sent by the current task. This parameter is nonzero if
the message is sent; otherwise, itisNULL.
[Param Points to a structure that contains details about the message. The following shows the
order, type, and description of each member of the structure:
Member Description
[Param Contains the |Param parameter of the message.
wParam Contains the wParam parameter of the message.
uMsg Specifies the message.
hwnd | dentifies the window that will receive the message.
Returns
The callback function should return zero.
Comments

The CalWndProc callback function can examine or modify the message as necessary. Once the function
returns control to the system, the message, with any modifications, is passed on to the window procedure.

This callback function must be in a dynamic-link library.

An application must install the callback function by specifying the WH_CALLWNDPROC filter type and
the procedure-instance address of the callback function in acall to the SetWindowsHookEx function.

CallwWndProc is a placeholder for the library-defined function name. The actual name must be exported by
including it in an EXPORTS statement in the library's modul e-definition file.

See Also
CalINextHookEx, SendMessage, SetWindowsHookEx

CBTProc (3.1)

LRESULT CALLBACK CBTProc(code, wParam, |Param)

int code; /* CBT hook code */

WPARAM wParam; I*
depends on the code parameter

/

LPARAM |Param;

* depends on the code parameter

/

The CBTProc function is a library-defined callback function that the system calls before activating,
creating, destroying, minimizing, maximizing, moving, or sizing a window; before completing a system
command; before removing a mouse or keyboard event from the system message queue; before setting the
input focus; or before synchronizing with the system message queue.

The value returned by the callback function determines whether to allow or prevent one of these
operations.

Parameter Description

code Specifies a computer-based-training (CBT) hook code that identifies the operation about
to be carried out, or avalue less than zero if the callback function should pass the code,
wParam, and |Param parameters to the CallNextHookEx function. The code parameter
can be one of the following:

Code Meaning
HCBT_ACTIVATE Indicates that the system is about to activate awindow.
HCBT_CLICKSKIPPED Indicates that the system has removed a mouse

message from the system message queue. A CBT
application that must install ajournaling playback filter
in response to the mouse message should do so when it
receives this hook code.

HCBT_CREATEWND Indicates that a window is about to be created. The
system calls the callback function before sending the
WM_CREATE or WM_NCCREATE message to the
window. Tf the callback function returns TRUE, the
system destroys the window--the CreateéWindow
function returns NULL, but the WM_DESTROY
message is not sent to the window. Tf the callback
function returns FAL SE, the window is created
normally.

At the time of the HCBT_CREATEWND notification,
the window has been created, but itsfinal size and
position may not have been determined, nor hasits
parent window been established.

It is possible to send messages to the newly created
window, although the window has not yet received
WM_NCCREATE or WM_CREATE messages.

It is possible to change the Z-order of the newly
created window by modifying the hwndlnsertAfter
member of the CBT_CREATEWND structure.

HCBT_DESTROYWND Indicates that awindow is about to be destroyed.

HCBT_KEY SKIPPED Indicates that the system has removed a keyboard
message from the system message queue. A CBT
application that must install ajournaling playback filter
in response to the keyboard message should do so
when it receives this hook code.

HCBT_MINMAX Indicates that awindow is about to be minimized or
maximized.
HCBT_MOVESIZE Indicates that a window is about to be moved or sized.

HCBT_QS Indicates that the system hasretrieved a

WM_QUEUESY NC message from the system

message queue.

HCBT_SETFOCUS Indicates that awindow is about to receive the input
focus.

HCBT_SYSCOMMAND Indicates that a system command is about to be carried

out. Thisalows a CBT application to prevent task
switching by hot keys.

wParam This parameter depends on the code parameter. See the following Comments section for
details.

[Param This parameter depends on the code parameter. See the following Comments section for
details.

Returns

For operations corresponding to the following CBT hook codes, the callback function should return zero to
allow the operation, or 1 to prevent it;

HCBT_ACTIVATE
HCBT_CREATEWND
HCBT_DESTROYWND
HCBT_MINMAX
HCBT_MOVESIZE
HCBT_SYSCOMMAND

The return value isignored for operations corresponding to the following CBT hook codes:
HCBT_CLICKSKIPPED

HCBT_KEY SKIPPED
HCBT_ QS

Comments
The callback function should not install a playback hook except in the situations described in the
preceding list of hook codes.

This callback function must be in a dynamic-link library.

An application must install the callback function by specifying the WH_CBT filter type and the procedure-
instance address of the callback function in acall to the SetWindowsHookEx function.

CBTProc is aplaceholder for the library-defined function name. The actual name must be exported by
including it in an EXPORTS statement in the library's module-definition file.

The following table describes the wParam and |Param parameters for each HCBT __ constant.

Constant wParam [Param
HCBT_ACTIVATE Specifies the handle of thewindow Specifies along pointer to a
about to be activated. CBTACTIVATESTRUCT structure

that contains the handle of the
currently active window and specifies
whether the activation is changing
because of amouse click.

HCBT_CLICKSKIPPED I dentifies the mouse message removedpecifies along pointer to a
from the system message queue. MOUSEHOOKSTRUCT structure that
contains the hit-test code and the
handle of the window for which the
mouse message is intended. For alist
of hit-test codes, see the description of
the WM_NCHITTEST message.
HCBT_CREATEWND Specifies the handle of the new Specifiesalong pointer to a
window. CBT_CREATEWND data structure
that contains initialization parameters
for the window.

HCBT_DESTROYWND Specifies the handle of thewindow This parameter is undefined and
about to be destroyed. should be set to OL.
HCBT_KEY SKIPPED Identifies the virtual key code. Specifies the repeat count, scan code,

key-transition code, previous key state,
and context code. For more

HCBT_MINMAX

HCBT_MOVESIZE

HCBT_QS

HCBT_SETFOCUS

HCBT_SYSCOMMAND

See Also

Specifies the handle of the window
being minimized or maximized.

information, see the description of the
WM_KEYUP or WM_KEYDOWN
message.

The low-order word specifies a show-
window value (SW_) that specifiesthe
operation. For alist of show-window
values, see the description of the
ShowWindow function. The high-
order word is undefined.

Specifies the handle of the window toSpecifies along pointer to a RECT

be moved or sized.

structure that contains the coordinates
of the window.

This parameter is undefined; it shouldThis parameter is undefined and

be set to 0.

Specifies the handle of the window
gaining the input focus.

Specifies a system-command value
(SC_) that specifiesthe
systemcommand. For more
information about system command
values, see the description of the
WM_SY SCOMMAND message.

should be set to OL.

The low-order word specifies the
handle of the window losing the input
focus. The high-order word is
undefined.

If wParam is SC_ HOTKEY, the low-
order word of |Param contains the
handle of the window that task
switching will bring to the foreground.
If wParam isnot SC HOTKEY and a
System-menu command is chosen with
the mouse, the low-order word of
|Param contains the x-coordinate of the
cursor and the high-order word
contains the y-coordinate. If neither of
these conditionsistrue, IParamis
undefined.

CallNextHookEx, SetWindowsHookEx, CBTACTIVATESTRUCT, CBT_CREATEWND, RECT

CPlApplet (3.1)

LONG CALLBACK* CPIApplet(hwndCPI, msg, |Paraml, |Param2)

HWND hwndCPl; /* handle of Control Panel window */

UINT msg; /* message
/

LPARAM I[Parami;

* first message parameter

/

LPARAM [Param2;

* second message parameter

/

The CPIApplet function serves as the entry point for a Control Panel dynamic-link library (DLL). This
function is supplied by the application.

Parameter Description

hwndCH | dentifies the main Control Panel window.

msg Specifies the message being sent to the DLL.

[Paraml Specifies 32 hits of additional message-dependent information.
[Param?2 Specifies 32 bits of additional message-dependent information.
Returns

The return value depends on the message.

Comments

Use the hwndCP! parameter for dialog boxes or other windows that require a handle of a parent window.

*

DdeCallback (3.1)
#include <ddeml.h>

HDDEDATA CALLBACK DdeCallback(type, fmt, hconv, hsz1, hsz2, hData, dwDatal, dwData2)
UINT type; [* transaction type */

UINT fmt; /* clipboard data
format

/

HCONYV hconv;

* handle of conversation

/

HSZ hsz1;

* handle of string

/

HSZ hsz2;

* handle of string

/

HDDEDATA hData;

* handle of global memory object
/

DWORD dwDatal;

* transaction-specific data

/

DWORD dwData2;

* transaction-specific data

/

The DdeCallback function is an application-defined dynamic data exchange (DDE) callback function that
processes DDE transactions sent to the function as aresult of DDE Management Library (DDEML) calls
by other applications.

Parameter Description

type Specifies the type of the current transaction. This parameter consists of a combination of
transaction-class flags and transaction-type flags. The following table describes each of
the transaction classes and provides alist of the transaction typesin each class.

Value Meaning

XCLASS BOOL A DDE callback function should return TRUE
or FALSE when it finishes processing a
transaction that belongs to this class. Following
arethe XCLASS BOOL transaction types:

XTYP_ADVSTART
XTYP_CONNECT

XCLASS DATA A DDE callback function should return a DDE
datahandle, CBR_BLOCK, or NULL when it
finishes processing a transaction that belongsto
this class. Following arethe XCLASS_DATA
transaction types:

XTYP_ADVREQ

XTYP_REQUEST
XTYP_WILDCONNECT

XCLASS FLAGS A DDE callback function should return
DDE_FACK, DDE_FBUSY, or
DDE_FNOTPROCESSED when it finishes
processing a transaction that belongs to this
class. Following arethe XCLASS_FLAGS
transaction types:

XTYP_ADVDATA
XTYP EXECUTE

fmt
hconv
hsz1l

hsz2
hData
dwDatal

dwData2

Returns

XCLASS NOTIFICATION The transaction types that belong to this class
are for notification purposes only. The return
value from the callback function isignored.
Following arethe XCLASS_NOTIFICATION
transaction types:

XTYP_ADVSTOP

XTYP_CONNECT_CONFIRM

XTYP_DISCONNECT

XTYP_ERROR

XTYP_MONITOR

XTYP_REGISTER

XTYP _XACT_COMPLETE

XTYP_UNREGISTER
Specifies the format in which datais to be sent or received.
I dentifies the conversation associated with the current transaction.
Identifies a string. The meaning of this parameter depends on the type of the current
transaction. For more information, see the description of the transaction type.
Identifies a string. The meaning of this parameter depends on the type of the current
transaction. For more information, see the description of the transaction type.
Identifies DDE data. The meaning of this parameter depends on the type of the current
transaction. For more information, see the description of the transaction type.
Specifies transaction-specific data. For more information, see the description of the
transaction type.
Specifies transaction-specific data. For more information, see the description of the
transaction type.

The return value depends on the transaction class.

Comments

The callback function is called asynchronously for transactions that do not involve creating or terminating
conversations. An application that does not frequently accept incoming messages will have reduced DDE
performance because DDEML uses messages to initiate transactions.

An application must register the callback function by specifying its addressin acall to the Ddelnitialize
function. DdeCallback is a placeholder for the application- or library-defined function name. The actual
name must be exported by including it in an EXPORTS statement in the application's module-definition

file.
See Also

DdeEnableCallback, Ddelnitidize

DebugProc (3.1)

LRESULT CALLBACK DebugProc(code, wParam, |Param)

int code; /* hook code */

WPARAM wParam; /
* type of hook about to be called

/

LPARAM |Param;
* address of structure with debugging information
/

The DebugProc function is alibrary-defined callback function that the system calls before calling any
other filter installed by the SetWindowsHookEx function. The system passes information about the filter
about to be called to the DebugProc callback function. The callback function can examine the information
and determine whether to allow the filter to be called.

Parameter Description

code Specifies the hook code. Currently, HC_ACTION isthe only positive valid value. If this
parameter is less than zero, the callback function must call the CallNextHookEx
function without any further processing.

wParam Specifies the task handle of the task that installed the filter about to be called.
[Param Contains along pointer to a DEBUGHOOKINFO structure.
Returns

The callback function should return TRUE to prevent the system from calling another filter. Otherwise, the
callback function must pass the filter information to the CallNextHookEx function.

Comments
An application must install this callback function by specifying the WH_DEBUG filter type and the
procedure-instance address of the callback function in acall to the SetWindowsHookEx function.

CallWndProc is a placeholder for the library-defined function name. The actual name must be exported by
including it in an EXPORTS statement in the library's modul e-definition file.

See Also
CallNextHookEx, SetWindowsHookEx, DEBUGHOOKINFO

DiaogProc (2.x)

BOOL CALLBACK DiaogProc(hwndDlg, msg, wParam, |Param)

HWND hwndDlg; /* handle of dialog box */

UINT msg; /* message */
WPARAM wParam;

* first message parameter

/

LPARAM |Param;

* second message parameter

The DialogProc function is an application-defined callback function that processes messages sent to a
model ess dialog box.

Parameter Description

hwndDlg | dentifies the dialog box.

msg Specifies the message.

wParam Specifies 16 bits of additional message-dependent information.
[Param Specifies 32 bits of additional message-dependent information.
Returns

Except in response to the WM_INITDIALOG message, the dialog box procedure should return nonzero if
it processes the message, and zero if it does not. In response to aWM_INITDIALOG message, the dialog
box procedure should return zero if it calls the SetFocus function to set the focus to one of the controlsin
the dialog box. Otherwise, it should return nonzero, in which case the system will set the focus to the first
control in the dialog box that can be given the focus.

Comments

The dialog box procedure is used only if the dialog box class is used for the dialog box. Thisisthe default
class and is used if no explicit classis given in the dialog box template. Although the dialog box procedure
issimilar to awindow procedure, it must not call the DefWindowProc function to process unwanted
messages. Unwanted messages are processed internalTy by the dialog box window procedure.

DialogProc is a placeholder for the application-defined function name. The actual name must be exported
by including it in an EXPORTS statement in the application's modul e-definition file.

See Also
CreateDialog, CreateDialoglndirect, CreateDial oglndirectParam, CreateDial ogParam, DefWindowProc,
SetfFocus, WM_TNTTDIALOG

DriverProc (3.1)

LRESULT CALLBACK DriverProc(dwDriverldentifier, hDriver, msg, |Paraml, |[Param?2)

DWORD dwDriverldentifier;

HDRVR hDriver;

handle of installable driver

/
UINT msg;

* message
/

LPARAM [Parami,;

* first message parameter
/

LPARAM |Param2;

* second message parameter
/

The DriverProc function processes the specified message.

Parameter
dwDriverldentifier
hDriver

msg

|Paraml
|Param?2

Returns

Description

/* identifiesinstallable driver */

/*

Specifies an identifier of the installable driver.
Identifies the installable driver. This parameter is a unique handle that Windows

assignsto the driver.

Identifies a message that the driver must process. Following are the messages that
Windows or an application can send to an installable driver:

Message
DRV_CLOSE

DRV_CONFIGURE

DRV_DISABLE
DRV_ENABLE

DRV_FREE
DRV_INSTALL

DRV_LOAD
DRV_OPEN
DRV_POWER

DRV_QUERY CONFIGURE

DRV_REMOVE

Description

Notifies the driver that it should decrement
(decrease by one) its usage count and unload
the driver if the count is zero.

Notifies the driver that it should display a
custom-configuration dialog box. (This
message should be sent only if the driver
returns a nonzero value when the
DRV_QUERY CONFIGURE message is
processed.)

Notifies the driver that its allocated memory
is about to be freed.

Notifies the driver that it has been loaded or
reloaded, or that Windows has been enabled.
Notifies the driver that it will be discarded.
Notifies the driver that it has been
successfully installed.

Notifies the driver that it has been
successfully loaded.

Notifies the driver that it is about to be
opened.

Notifies the driver that the device's power
source is about to be turned off or turned on.
Determines whether the driver supports the
DRV_CONFIGURE message. The message
displays aprivate configuration dialog box.
Notifies the driver that it is about to be
removed from the system.

Specifies the first message parameter.
Specifies the second message parameter.

The return value is nonzero if the function is successful. Otherwise, it is zero.

Comments

The DriverProc function is the main function within a Windows installable driver; it is supplied by the
driver devel oper.

When the msg parameter is DRV_OPEN, |Paraml is the string following the driver filename from the
SYSTEM.INI file and IParam2is the value given as the |Param parameter in the call to the OpenDriver
function.

When the msg parameter is DRV _CLOSE, |Param1 and |Param2 are the same values as the |Param1 and
[Param?2 parameters in the call to the CloseDriver function.

See Also
CloseDriver, OpenDriver

EnumChildProc (2.x)

BOOL CALLBACK EnumcChildProc(hwnd, |Param)

HWND hwnd; /* handle of child window */

LPARAM [Param; [* application-defined
value

/

The EnumChildProc function is an application-defined callback function that receives child window
handles as aresult of acall to the EnumChildWindows function.

Parameter Description

hwnd I dentifies a child window of the parent window specified in the EnumChildwWindows
function.

[Param Specifies the application-defined value specified in the EnumChildWindows function.

Returns

The callback function must return nonzero to continue enumeration; to stop enumeration, it must return
zero.

Comments
The callback function can carry out any desired task.

An application must register this callback function by passing its address to the EnumChildWindows
function. The EnumChildProc function is a placeholder for the application-defined function name. The
actual name must be exported by including it in an EXPORTS statement in the application's module-
definition (.DEF) file.

See Also
EnumChildWindows

EnumFontFamProc (3.1)

int CALLBACK EnumFontFamProc(Ipnlf, Ipntm, FontType, |Param)

LOGFONT FAR* Ipnif; [* address of structure with logical-font data */
TEXTMETRIC FAR* Ipntm;

* address of structure with physical-font data

/

int FontType;

* type of font

/

LPARAM |Param;
* address of application-defined data
/

The EnumFontFamProc function is an application-defined callback function that retrieves information
about available fonts.

Parameter Description

[pnlf Pointsto aNEWLOGFONT structure that contains information about the logical
attributes of the font. This structureis locally-defined and is identical to the Windows
LOGFONT structure except for two new members. The NEWLOGFONT structure has
thefollowing form:

struct tagNEWL.OGFONT { /* nlf */
i nt | f Hei ght ;

i nt | f Wdth;

i nt | f Escapenent ;

i nt IfOrientation;

i nt | f Wei ght ;

BYTE Ifltalic;

BYTE | fUnderli ne;

BYTE [fStrikeQut;

BYTE | f Char Set ;

BYTE | fQut Precision;

BYTE [fdipPrecision;

BYTE I[fQuality;

BYTE | fPitchAndFam ly;

BYTE | f FaceNane[LF_FACESI ZE] ;
BYTE |fFull Name[2 * LF_FACESI ZE]; /* TrueType only *

/
BYTE |fStyl e[LF_FACESI ZE] ; /* TrueType only */
} NEW.OGFONT;
The IfFullName and IfStyle members are appended to a LOGFONT structure when a
TrueType font is enumerated in the EnumFontFamProc function.
The IfFullName member is a character array specifying the full name for the font. This
name contains the font name and style name.
The lfStyle member is a character array specifying the style name for the font.

For example, when bold italic Aria®is enumerated, the last three members of the
NEWLOGFONT structure contain the following strings:

IfFaceName = "Arial";

IfFullName = "Arial Bold Italic";

IfStyle="Bold Italic";

See the description of the LOGFONT structure for a description of the other members of
the structure.

[pntm Pointsto aNEWTEXTMETRIC structure that contains information about the physical
attributes of the font, if thefont is a TrueType font. If the font is not a TrueType font,
this parameter pointsto a TEXTMETRIC structure.

FontType Specifies the type of the font. This parameter can be a combination of the following
masks:

DEVICE_FONTTYPE

RASTER_FONTTY PE
TRUETYPE_FONTTYPE

[Param Points to the application-defined data passed by EnumFontFamilies.

Returns
This function must return a nonzero value to continue enumeration; to stop enumeration, it must return
Zero.

Comments

An application must register this callback function by passing its address to the EnumFontFamilies
function. The EnumFontFamProc function is a placeholder for the application-defined function name. The
actual name must be exported by including it in an EXPORTS statement in the application's module-
definition (.DEF) file.

The AND (&) operator can be used with the RASTER_FONTTY PE, DEVICE_FONTTY PE, and
TRUETY PE_FONTTY PE constants to determine the font type. If the RAST ER_FONTTY PE bit is set,
the font is araster font. If the TRUETYPE_FONTTY PE bit is set, the font is a TrueType font. If neither
bit is set, the font is a vector font. A third mask, DEVICE_FONTTYPE, is set when a device (for example,
alaser printer) supports downloading TrueType fonts or when the font is a device-resident font; it is zero
if the device is adisplay adapter, dot-matrix printer, or other raster device. An application can also use the
DEVICE_FONTTY PE mask to distinguish GDI- supplled raster fonts from device-supplied fonts. GDI can
simulate bold, italic, underline, and strikeout attributes for GDI-supplied raster fonts, but not for device-
supplied fonts.

See Also
EnumFontFamilies, EnumFonts, LOGFONT, NEWTEXTMETRIC, OUTLINETEXTMETRIC,

EnumFontsProc (3.1)

int CALLBACK EnumFontsProc(Iplf, Ipntm, FontType, |pData)

LOGFONT FAR* Iplf; [* address of logical-font data structure */
NEWTEXTMETRIC FAR* Ipntm;

* address of physical-font data structure

/

int FontType;
* type of font
/

LPARAM IpData;
* address of application-defined data
/

The EnumFontsProc function is an application-defined callback function that processes font data from the
EnumFonts function.

Parameter Description

Iplf Pointsto a LOGFONT structure that contains information about the logical attributes of
the font.

[pntm Pointsto aNEWTEXTMETRIC structure that contains information about the physical

attributes of thefont, it thefont isa TrueType font. If the font is not a TrueType font,

this parameter pointsto a TEXTMETRIC structure.

The TEXTMETRIC structureisidentical to NEWTEXTMETRIC except that it does not

include theTast four members.
FontType Spa%c!fi es the type of the font. This parameter can be a combination of the following

masks:

DEVICE_FONTTY PE
RASTER_FONTTY PE
TRUETYPE_FONTTY PE

IpData Points to the application-defined data passed by the EnumFonts function.

Returns
This function must return a nonzero value to continue enumeration; to stop enumeration, it must return
zero.

Comments

An application must register this callback function by passing its address to the EnumFonts function. The
EnumFontsProc function is a placeholder for the application-defined function name. The actual name must
be exported by including it in an EXPORTS statement in the application's modul e-definition (.DEF) file.

The AND (&) operator can be used with the RASTER_FONTTY PE, DEVICE_FONTTY PE, and
TRUETYPE_FONTTY PE constants to determine the font type. If the RAST ER_FONTTY PE bit is set,
the font is araster font. If the TRUETYPE_FONTTY PE bit is set, the font is a TrueType font. If neither
bit is set, the font is a vector font. A third mask, DEVICE_FONTTYPE, is set when a device (for example,
alaser printer) supports downloading TrueType fonts or when the font is a device-resident font; it is zero
if the device is adisplay adapter, dot-matrix printer, or other raster device. An application can also use the
DEVICE_FONTTY PE mask to distinguish GDI-supplied raster fonts from device-supplied fonts. GDI can
simulate bold, italic, underline, and strikeout attributes for GDI-supplied raster fonts, but not for device-
supplied fonts.

See Also
EnumFonts, EnumFontFamilies, LOGFONT, NEWTEXTMETRIC, OUTLINETEXTMETRIC,
TEXTMETRIC

EnumMetaFileProc (3.1)

int CALLBACK EnumM etaFileProc(hdc, Ipht, Ipmr, cObj, |Param)
HDC hdc; /* handle of device context
HANDLETABLE FAR* Ipht;

* address of table of object handles

/

METARECORD FAR* |pmr;

* address of metafile record

/

int cObj;

* number of objectsin handle table

/

LPARAM |Param;
* address of application-defined data
/

*/

The EnumMetaFileProc function is an application-defined callback function that processes metafile data

from the EnumM etaFile function.

Parameter Description

hdc I dentifies the special device context that contains the metafile.

Ipht Poi r;’g(slto atable of handles associated with the objects (pens, brushes, and so on) in the
metdfile.

[pmr Points to a metafile record contained in the metafile.

cObj Specifies the number of objects with associated handles in the handle table.

[Param Points to the application-defined data.

Returns

The callback function must return a nonzero value to continue enumeration; to stop enumeration, it must

return zero.

Comments

An application must register this callback function by passing its address to the EnumMetaFile function.

The EnumMetaFileProc function is a placeholder for the application-defined function name. The actual
name must be exported by including it in an EXPORTS statement in the application's module-definition (.

DEF) file,

See Also
EnumMetaFile

EnumObjectsProc (3.1)

int CALLBACK EnumObjectsProc(IpL ogObject, IpData)

void FAR* IpLogObject; /* address of object */

LPARAM IpDatg; I*
address of application-defined data

/

The EnumObjectsProc function is an application-defined callback function that processes object data from
the EnumObjects function.

Parameter Description

IpLogObject Pointsto a LOGPEN or LOGBRUSH structure that contains information about the
attributes of the object.

IpData Points to the application-defined data passed by the EnumObjects function.

Returns

This function must return a nonzero value to continue enumeration; to stop enumeration, it must return
zero.

Comments

An application must register this callback function by passing its address to the EnumObjects function.
The EnumObjectsProc function is a placeholder for the application-supplied function name. The actual
name must be exported by including it in an EXPORTS statement in the application's module-definition (.
DEF) file.

Example
The following example retrieves the number of horizontally hatched brushes and fills LOGBRUSH
structures with information about each of them:

#def i ne MAXBRUSHES 50
GOBJENUMPROC | pPr ocCal | back;

HGLOBAL hgl bl ;
LPBYTE | pbCount Br ush;

| pProcCal | back = (GOBJENUMPROC) MakeProclnstance(
(FARPROC) Callback, hinst);

hgl bl = GlobalAlloc(GMEM_FIXED, si zeof (LOGBRUSH)
* MAXBRUSHES) ; -

| ppbCount Brush = (LPBYTE) GlobalLock(hgl bl);

*| pbCount Brush = 0;

EnumObjects(hdc, OBJ_BRUSH, | pProcCall back,

(LPARANM) | pbCount Brush);
FreeProclnstance((FARPROC) | pProcCal | back);

nt FAR PASCAL Callback(LPLOGBRUSH | pLogBrush, LPBYTE pbDat a)

[
{
/*

The pbData paraneter contains the nunber of horizontally
hat ched brushes; the | pDest parameter is set to followthe
byte reserved for pbData and the LOGBRUSH structures that
have been filled wth brush information.

/

* %k Ok kX

LPLOGBRUSH | pDest =
(LPLOGBRUSH) (pbData + 1 + (*pbData * sizeof (LOGBRUSH)));

if (lIpLogBrush->lbStyle ==
BS HATCHED && /* if horiz hatch */
| pLogBr ush- >l bHat ch == HS_HORIZONTAL) {
*| pDest ++ = *| pLogBrush; /* fills structure with brush info */

(*pbbData) ++; [* increnents brush count*/
i f (*pbData >= MAXBRUSHES)
return O;

}

return 1;

See Also
EnumObjects, FreeProclnstance, Global Alloc, Global L ock, MakeProclnstance, LOGBRUSH, LOGPEN

EnumPropFixedProc (2.X)

BOOL CALLBACK EnumPropFixedProc(hwnd, Ipsz, hData)

HWND hwnd; /* handle of window with property */

LPCSTR Ipsz; /* address of
property string or atom

/

HANDLE hData;
* handle data of property data
/

The EnumPropFixedProc function is an application-defined callback function that receives awindow's
property data as aresult of acall to the EnumProps function.

Parameter Description
hwnd | dentifies the handle of the window that contains the property list.
Ipsz Points to the null-terminated string associated with the property data identified by the

hData parameter. The application specified the string and dataiin a previous call to the
SetProp function. If the application passed an atom instead of a string to SetProp, the
[psz parameter contains the atom in the low-order word and zero in the high-order word.

hData | dentifies the property data.

Returns
The callback function must return TRUE to continue enumeration; it must return FALSE to stop
enumeration.

Comments

Thisform of the property-enumeration callback function should be used in applications and dynamic-link
libraries with fixed data segments and in dynamic libraries with movable data segments that do not contain
astack.

The following restrictions apply to the callback function:

. The callback function must not yield control or do anything that might yield control to other tasks.
. The callback function can call the RemoveProp function. However, RemoveProp can remove only
the property passed to the callback function through the callback function's parameters.

. The callback function should not attempt to add properties.

The EnumPropFixedProc function is a placeholder for the application-defined function name. The actual
name must be exported by including it in an EXPORTS statement in the application's module-definition (.
DEF) file.

See Also
EnumPropM ovableProc, EnumProps, RemoveProp, SetProp

EnumPropMovableProc (2.x)

BOOL CALLBACK EnumPropMovableProc(hwnd, |psz, hData)

HWND hwnd; /* handle of window with property */

LPCSTR Ipsz; /* address of
property string or atom

/

HANDLE hData;
* handle of property data
/

The EnumPropMovableProc function is an application-defined callback function that receives awindow's
property data as aresult of acall to the EnumProps function.

Parameter Description
hwnd | dentifies the handle of the window that contains the property list.
Ipsz Points to the null-terminated string associated with the data identified by the hData

parameter. The application specified the string and datain a previous call to the SetProp
function. If the application passed an atom instead of a string to SetProp, the Ipsz
parameter contains the atom.

hData | dentifies the property data.

Returns
The callback function must return TRUE to continue enumeration; to stop enumeration, it must return
FALSE.

Comments

Thisform of the property-enumeration callback function should be used in applications with movable data
segments and in dynamic libraries whose movable data segments also contain a stack. Thisformis
required since movement of the datawill invalidate any long pointer to a variable on the stack, such asthe
Ipsz parameter. The data segment typically movesif the callback function allocates more space in the local
heap than is currently available.

The following restrictions apply to the callback function:
The callback function must not yield control or do anything that might yield control to other tasks.
The callback function can call the RemoveProp function. However, RemoveProp can remove only

the property passed to the callback function through the callback function's parameters.

The callback function should not attempt to add properties.

The EnumPropM ovableProc function is a placeholder for the application-defined function name. The
actual name must be exported by including it in an EXPORTS statement in the application's module-
definition (.DEF) file.

See Also

EnumPropFixedProc, EnumProps, RemoveProp, SetProp

EnumTaskWndProc (2.X)

BOOL CALLBACK EnumTaskWndProc(hwnd, |Param)

HWND hwnd; /* handle of awindow */

LPARAM [Param; [* application-defined
value

/

The EnumTaskWndProc function is an application-defined callback function that receives the window
handles associated with atask as aresult of a call to the EnumTaskWindows function.

Parameter Description

hwnd | dentifies a window associated with the task specified in the EnumTaskWindows
function.

[Param Specifies the application-defined value specified in the EnumTaskWindows function.

Returns

The callback function must return TRUE to continue enumeration; to stop enumeration, it must return
FALSE.

Comments
The callback function can carry out any desired task.

The EnumTaskWndProc function is a placeholder for the application-defined function name. The actual
name must be exported by including it in an EXPORTS statement in the application's module-definition (.
DEF) file.

See Also
EnumTaskWindows

EnumWindowsProc (2.x)

BOOL CALLBACK EnumwWindowsProc(hwnd, |Param)

HWND hwnd; /* handle of parent window */

LPARAM [Param; [* application-defined
value

/

The EnumWindowsProc function is an application-defined callback function that receives parent window
handles as aresult of acall to the EnumWindows function.

Parameter Description

hwnd | dentifies a parent window.

[Param Specifies the application-defined value specified in the EnumWindows function.
Returns

The callback function must return nonzero to continue enumeration; to stop enumeration, it must return
zero.

Comments
The callback function can carry out any desired task.

The EnumWindowsProc function is a placeholder for the application-defined function name. The actual
name must be exported by including it in an EXPORTS statement in the application's module-definition (.
DEF) file.

See Also

EnumWindows

GetMsgProc (3.1)

LRESULT CALLBACK GetMsgProc(code, wParam, |Param)

int code; [* process-message flag */

WPARAM wParam; /* undefined */
LPARAM |Param;

* pointer to MSG structure

/

The GetM sgProc function is alibrary-defined callback function that the system calls whenever the
GetMessage function has retrieved a message from an application queue. The system passes the retrieved
message to the callback function before passing the message to the destination window procedure.

Parameter Description

code Specifies whether the callback function should process the message or call the
CalINextHookEx function. If this parameter is |ess than zero, the callback function
should pass the message to CallNextHookEx without further processing.

wParam SpecifiesaNULL value.

[Param Points to an MSG structure that contains information about the message.
Returns

The callback function should return zero.

Comments

The GetM sgProc callback function can examine or modify the message as desired. Once the callback
function returns control to the system, the GetM essage function returns the message, with any
modifications, to the application that originally called it. The callback function does not reguire areturn
value.

This callback function must be in a dynamic-link library (DLL).

An application must install the callback function by specifying the WH_GETMESSAGE filter type and
the procedure-instance address of the callback function in acall to the SetWindowsHookEx function.

GetMsgProc is a placeholder for the library-defined function name. The actual name must be exported by
including it in an EXPORTS statement in the library's module-definition (.DEF) file.

See Also
CalINextHookEXx, GetMessage, SetWindowsHookEx

GrayStringProc (2.x)

BOOL CALLBACK GrayStringProc(hdc, IpData, cch)

HDC hdc; /* handle of device context */

LPARAM IpData; /* address of
string to be drawn

/

int cch;

* length of string to be drawn

The GrayStringProc function is an application-defined callback function that draws a string as aresult of a
call to the GrayString function.

Parameter Description

hdc I dentifies a device context with a bitmap of at least the width and height specified by the
cx and cy parameters passed to the GrayString function.

IpData Points to the string to be drawn.

cch Specifiesthe length, in characters, of the string.

Returns

The callback function should return TRUE to indicate success. Otherwise it should return FALSE.

Comments

The callback function must draw an image relative to the coordinates (0,0).

GrayStringProc is a placeholder for the application-defined function name. The actual name must be
exported by including it in an EXPORTS statement in the application's module-definition (.DEF) file.

See Also
GrayString

HardwareProc (3.1)

LRESULT CALLBACK HardwareProc(code, wParam, |Param)

int code; /* hook code */
WPARAM wParam;

* undefined

/

LPARAM |Param;

* address of structure with event information

/

The HardwareProc function is an application-defined callback function that the system calls whenever the
application calls the GetM essage or PeekMessage function and there is a hardware event to process.
Mouse events and keyboard events are not processed by this hook.

Parameter Description

code Specifies whether the callback function should process the message or call the
CalINextHookEx function. If this value is less than zero, the callback function should
pass the message to CallNextHookEx without further processing. If thisvalueis
HC_NOREMOVE, the application is using the PeekM essage function with the
PM_NOREMOVE option, and the message will not be removed from the system queue.

wParam SpecifiesaNULL vaue.
|Param Pointsto aHARDWAREHOOKSTRUCT structure.
Returns

The callback function should return zero to allow the system to process the message; it should be 1 if the
message is to be discarded.

Comments
This callback function should not install a playback hook because the function cannot use the
GetMessageExtral nfo function to get the extrainformation associated with the message.

The callback function must use the Pascal calling convention and must be declared FAR. An application
must install the callback function by specifying the WH_HARDWARE filter type and the procedure-
instance address of the callback function in a call to the SetWindowsHookEx function.

HardwareProc is a placeholder for the library-defined function name. The actual name must be exported
by including it in an EXPORTS statement in the library's module-definition (.DEF) file.

See Also
CallNextHookEx, GetM essageExtral nfo, SetWindowsHookEx, HARDWAREHOOKSTRUCT

Journal PlaybackProc (3.1)

LRESULT CALLBACK Journa PlaybackProc(code, wParam, | Param)

int code; [* process-message flag

WPARAM wParam; I*
undefined

/

LPARAM |Param;

* address of structure for message

/

The Journal PlaybackProc function is a library-defined callback function that alibrary can use to insert
mouse and keyboard messages into the system message queue. Typically, alibrary uses this function to
play back a series of mouse and keyboard messages that were recorded earlier by using the

Journal RecordProc function. Regular mouse and keyboard input is disabled aslong as a
JournalPlaybackProc function isinstalled.

Parameter Description

code Specifies whether the callback function should process the message or call the
CalINextHookEx function. If this parameter is less than zero, the callback function
should pass the message to CallNextHookEx without further processing.

wParam SpecifiesaNULL vaue.

[Param Pointsto an EVENTMSG structure that represents the message being processed by the
callback function.

Returns

The callback function should return a value that represents the amount of time, in clock ticks, that the
system should wait before processing the message. This value can be computed by calculating the
difference between the time members of the current and previous input messages. If the function returns
zero, the message is processed immediately.

Comments

The Journal PlaybackProc function should copy an input message to the |Param parameter. The message
must have been recorded by using a Journal RecordProc callback function, which should not modify the

message.
Once the function returns control to the system, the message continues to be processed. If the code

parameter isHC_SKIP, the filter function should prepare to return the next recorded event message on its
next call.

This callback function should reside in a dynamic-link library.

An application must install the callback function by specifying the WH_JOURNALPLAYBACK filter
type and the procedure-instance address of the callback function in a call to the SetWindowsHookEx
function.

Journal PlaybackProc is a placeholder for the library-defined function name. The actual name must be
exported by including it in an EXPORTS statement in the library's module-definition file.

See Also

CallNextHookEx, JournalRecordProc, SetWindowsHookEx, EVENTMSG

JournalRecordProc (3.1)

LRESULT CALLBACK JournalRecordProc(code, wParam, IParam)

int code; [* process-message flag

WPARAM wParam; I*
undefined

/

LPARAM |Param;

* address of structure for message

/

The Journal RecordProc function is alibrary-defined callback function that records messages that the
system removes from the system message queue. Later, alibrary can use a Journal PlaybackProc function
to play back the messages.

Parameter Description

code Specifies whether the callback function should process the message or call the
CalINextHookEx function. If this parameter is less than zero, the callback function
should pass the message to CallNextHookEx without further processing.

wParam SpecifiesaNULL value.
|Param Points to an MSG structure.
Returns

The callback function should return zero.
Comments

A JournalRecordProc callback function should copy but not modify the messages. After control returnsto
the system, the message continues to be processed. The callback function does not require areturn value.

This callback function must be in a dynamic-link library.

An application must install the callback function by specifying the WH_JOURNALRECORD filter type
and the procedure-instance address of the callback function in a call to the SetWindowsHookEx function.

JournalRecordProc is a placeholder for the library-defined function name. The actual name must be
exported by including it in an EXPORTS statement in the library's module-definition file.

See Also

CalINextHookEX, Journal PlaybackProc, SetWindowsHook Ex

KeyboardProc (3.1)

LRESULT CALLBACK KeyboardProc(code, wParam, |Param)

int code; [* process-message flag */

WPARAM wParam; I*
virtual-key code

/

LPARAM |Param;

* keyboard-message information

/

The KeyboardProc function is alibrary-defined callback function that the system calls whenever the
application calls the GetM essage or PeekMessage function and thereisaWM_KEYUP or
WM_KEYDOWN keyboard message to process.

Parameter Description

code Specifies whether the callback function should process the message or call the
CallNextHookEx function. If thisvalueis HC_NOREMOVE, the application is using
the PeekMessage function with the PM_NOREM OV E option, and the message will not

be removed from the system queue. If this valueisTess than zero, the callback function
should pass the message to CallNextHookEx without further processing.

wParam Specifies the virtual-key code of the given key.

[Param Specifies the repeat count, scan code, extended key, previous key state, context code,
and key-transition state, as shown in the following table. (Bit O is the low-order hit):
Bit Description

0-15 Specifies the repeat count. The value is the number of times the keystrokeis
repeated as aresult of the user holding down the key.

16-23 Specifiesthe scan code. The value depends on the original equipment
manufacturer (OEM).

24 Specifies whether the key is an extended key, such as afunction key or akey
on the numeric keypad. Thevalueis 1 if it isan extended key; otherwise, it is
0

25-26 Not used.
27-28 Used internally by Windows.

29 Specifies the context code. The valueis 1if the ALT key is held down while
the key is pressed; otherwise, the value is 0.

30 Specifies the previous key state. The valueis 1 if the key is down before the
message is sent, or itis O if the key isup.

31 Specifies the key-transition state. The valueis 1 if the key is being released,

oritis0if the key isbeing pressed.

Returns
The callback function should return O if the message should be processed by the system; it should return 1
if the message should be discarded.

Comments
This callback function must be in a dynamic-link library.

An application must install the callback function by specifying the WH_KEY BOARD filter type and the
procedure-instance address of the callback function in acall to the SetWindowsHookEx function.

KeyboardProc is a placeholder for the library-defined function name. The actual name must be exported
by including it in an EXPORTS statement in the library's module-definition file.

See Also

CallNextHookEx, GetM essage, PeekM essage, SetWindowsHookEx

LibMain (2.x)

int CALLBACK LibMain(hinst, wDataSeg, cbHeapSize, |pszCmdLine)
HINSTANCE hinst; /* handle of library instance */
WORD wDataSeg; /* library data

segment
/

WORD cbHeapSize;

* default heap size

/

LPSTR lIpszCmdLine;

* command-line arguments
/

The LibMain function is called by the system to initialize a dynamic-link library (DLL). A DLL must
contain the LibMain function if the library is linked with the file LIBENTRY.OBJ.

Parameter Description
hinst Identifies the instance of the DLL.
wDataSeg Specifiesthe value of the data segment (DS) register.

cbHeapSize Specifies the size of the heap defined in the module-definition file. (The LibEntry
routinein LIBENTRY.OBJ uses this value to initialize the local heap.)

[pszCmdLine Points to a null-terminated string specifying command-line information. This parameter

israrely used by DLLs.
Returns
The function should return 1 if it is successful. Otherwise, it should return O.
Comments

The LibMain function is called by LibEntry, which is called by Windows when the DLL isloaded. The
LibEntry routineis provided in the LIBENTRY.OBJ module. LibEntry initializesthe DLL's heap (if a
HEAPSIZE value is specified in the DLL's modul e-definition file) before calling the LibMain function.

Example
The following example shows atypical LibMain function:

i nt CALLBACK Li bMai n(HINSTANCE hi nst, WORD wDat aSeg, WORD cbHeap,
LPSTR T pszCndLi ne)
{
HGLOBAL hgbl Cl assStruct;
LPWNDCLASS | pd assStruct;
static HINSTANCE hi nstLib;

/* Has the library been initialized yet? */

if (hinstLib == NULL)
hgbl C assStruct = GlobalAlloc(GHND, sizeof (WNDCLASS));
if (hgbl dassStruct T= NULL) {
| pd assStruct = (LPWNDCLASS) GlobalLock(hgbl C assStruct);
if (IpdassStruct = NULL) {

/* Define the class attributes. */

| pd assStruct->style = CS_ HREDRAW | CS_VREDRAW |
CS_DBLCLKS | CS_GLOBALCLASS;

[pd assStruct->l pf nWhdProc = D | WidPr oc;

| pCl assStruct->cbhWdExtra = 0;

| pd assStruct->hlnstance = hinst;

| pd assStruct->hlcon = NULL;

| pd assStruct->hCursor = LoadCursor(NULL, 1DC_ARROW);

| pd assStruct - >hbr Backgr ound =
(HBRUSH) (COLOR_WINDOW + 1);

| pd assStruct->l pszMenuName = NULL;

| pd assStruct->l pszd assNanme = "M/Cl assNane";

hinstLib = (RegisterClass(| pd assStruct)) ?
hi nst : NULL;

GlobalUnlock(hgbl C assStruct);
¥

GlobalFree(hgbl G assStruct);
R

return (hinstLib ? 1 : 0); /* return 1 = success;

See Also
GlobalAlloc, Global Free, GlobalLock, GlobalUnlock, WEP

0 = fail

*/

LineDDAProc (3.1)

void CALLBACK LineDDAProc(xPos, yPos, IpData)

int xPos; /* x-coordinate of current position */

int yPos; [* y-coordinate
of current position

/

LPARAM IpDatg;

* address of application-defined data

/

The LineDDAProc function is an application-defined callback function that processes coordinates from the
LineDDA function.

Parameter Description

xPos Specifies the x-coordinate of the current point.
yPos Specifies the y-coordinate of the current point.
IpData Points to the application-defined data.

Returns

This function does not return avalue.

Comments

An application must register this function by passing its address to the LineDDA function.

LineDDAProc is a placeholder for the application-defined function name. The actual name must be
exported by including it in an EXPORTS statement in the application's module-definition file.

See Also

LineDDA

LoadProc (2.x)

HGLOBAL CALLBACK LoadProc(hglbMem, hinst, hrsrcReslInfo)

HGLOBAL hglbMem; /* handle of object containing resource */

HINSTANCE hinst; I*
handle of application instance

/

HRSRC hrsrcResInfo;
* handle of aresource
/

The LoadProc function is an application-defined callback function that receives information about a
resource to be locked and can process that information as needed.

Parameter Description

hglbMem | dentifies a memory object that contains aresource. This parameter is NULL if the
resource has not yet been loaded.

hinst Identifies the instance of the module whose executable file contains the resource.

hrsrcResInfo | dentifies the resource. The resource must have been created by using the

FindResource function.

Returns
Thereturn value is a global memory handle for memory that was allocated using the
GMEM_DDESHARE flag in the Global Alloc function.

Comments
If an attempt to lock the memory object identified by the hglbMem parameter fails, this means the
resource has been discarded and must be reloaded.

LoadProc is a placeholder for the application-defined function name. The actual name must be exported by
including it in an EXPORTS statement in the application's module-definition file.

See Also
FindResource, Globa Alloc, SetResourceHandler

MessageProc (3.1)

LRESULT CALLBACK MessageProc(code, wParam, |Param)

int code; [* message type */

WPARAM wParam; I*
undefined

/

LPARAM |Param;

* address of structure with message data

/

The MessageProc function is an application- or library-defined callback function that the system calls after
adialog box, message box, or menu has retrieved a message, but before the message is processed. The
callback function can process or modify the messages.

Parameter Description
code Specifies the type of message being processed. This parameter can be one of the
following values:
Vaue Meaning
MSGF_DIALOGBOX Messages inside a dialog box or message box procedure
are being processed.
MSGF_MENU Keyboard and mouse messages in a menu are being
processed.

If the code parameter is |less than zero, the callback function must pass the message to
CallINextHookEx without further processing and return the value returned by

CallNextHookEX.
wParam SpecifiesaNULL value.
|Param Points to an MSG structure.

Returns

The callback function should return a nonzero value if it processes the message; it should return zero if it
does not process the message.

Comments

The WH_MSGFILTER filter typeisthe only task-specific filter. A task may install thisfilter.

An application must install the callback function by specifying the WH_MSGFILTER filter type and the
procedure-instance address of the callback function in a call to the SetWindowsHookEx function.

MessageProc is a placeholder for the library-defined function name. The actual name must be exported by
including it in an EXPORTS statement in the library's modul e-definition file.

See Also
CallNextHookEx, SetWindowsHookEx, MSG

MouseProc (3.1)

LRESULT CALLBACK MouseProc(code, wParam, |Param)

int code; [* process-message flag */
WPARAM wParam;

* message identifier

/

LPARAM |Param;
* address of MOUSEHOOKSTRUCT structure
/

The MouseProc function is alibrary-defined callback function that the system calls whenever an
application calls the GetM essage or PeekM essage function and there is a mouse message to be processed.

Parameter Description

code Specifies whether the callback function should process the message or call the
CallNextHookEx function. If this value is less than zero, the callback function should
pass the message to CallNextHookEx without further processing. If thisvalueis
HC_NOREMOVE, the application is using a PeekM essage function with the
PM_NOREMOVE option, and the message will not be removed from the system queue.
wParam Specifies the identifier of the mouse message.

[Param Pointsto aMOUSEHOOK STRUCT structure containing information about the mouse.

The callback function should return O to allow the system to process the message; it should return 1 to
discard the message.

Comments
This callback function should not install a Journal PlaybackProc callback function.

An application must install the callback function by specifying the WH_MOUSE filter type and the
procedure-instance address of the callback function in acall to the SetWindowsHookEx function.

MouseProc is a placeholder for the library-defined function name. The actual name must be exported by
including it in an EXPORTS statement in the library's modul e-definition file.

See Also
CallNextHookEx, GetM essage, PeekM essage, SetWindowsHookEx

NotifyProc (2.x)

BOOL CALLBACK NotifyProc(hglbl)
HGLOBAL hglbl; /* handle of global memory object */

The NotifyProc function is a library-defined callback function that the system calls whenever it is about to
discard a global memory object allocated with the GMEM_NOTIFY flag.

Parameter Description
hglbl Identifies the global memory object being discarded.
Returns

The callback function should return nonzero if the system is to discard the memory object, or zero if it
should not.

Comments

The callback function is not necessarily called in the context of the application that owns the routine. For
this reason, the callback function should not assumeiit is using the stack segment of the application. The
callback function should not call any routine that might move memory.

The callback function must be in afixed code segment of a dynamic-link library.

NotifyProc is a placeholder for the application-defined function name. The actual name must be exported
by including it in an EXPORTS statement in the library's modul e-definition statement.

See Also
GlobalNotify

ShellProc (3.1)

LRESULT CALLBACK SshellProc(code, wParam, |Param)

int code; [* processsmessageflag ~ */

WPARAM wParam; [* current-task flag *
/

LPARAM [Param;

* undefined

/

The ShellProc function is alibrary-defined callback function that a shell application can use to receive
useful notifications from the system.

Parameter Description
code Specifies a shell-notification code. This parameter can be one of the following values:
Vaue Meaning
HSHELL_ACTIVATESHELLWINDOW The shell application should activate
its main window.
HSHELL_WINDOWCREATED A top-level, unowned window was

created. The window exists when the
system calls a Shell Proc function.

HSHELL_ WINDOWDESTROYED A top-level, unowned window is
about to be destroyed. The window
still exists when the system callsa
ShellProc function.

wParam Specifies additional information the shell application may need. The interpretation of
this parameter depends on the value of the code parameter, as follows:
code wParam
HSHELL_ACTIVATESHELLWINDOW Not used.
HSHELL_WINDOWCREATED Specifies the handle of the window
being created.
HSHELL_ WINDOWDESTROYED Specifies the handle of the window
being destroyed.
[Param Reserved; not used.
Returns
The return value should be zero.
Comments

An application must install this callback function by specifying the WH_SHELL filter type and the
procedure-instance address of the callback function in acall to the SetWindowsHook function.

ShellProc is a placeholder for the library-defined function name. The actual name must be exported by
including it in an EXPORTS statement in the library's modul e-definition file.

See Also

DefHookProc, SendMessage, SetWindowsHook

SysMsgProc (3.1)

LRESULT CALLBACK SysMsgProc(code, wParam, IParam)

int code; [* message type

WPARAM wParam; /* undefined *
/

LPARAM [Param;

* pointer to an MSG structure

The SysMsgProc function is a library-defined callback function that the system calls after adialog box,
message box, or menu has retrieved a message, but before the message is processed. The callback function
can process or modify messages for any application in the system.

Parameter Description
code Specifies the type of message being processed. This parameter can be one of the
following values:
Value Meaning
MSGF_DIALOGBOX Messages inside a dialog box or message box procedure
are being processed.
MSGF_MENU Keyboard and mouse messages in a menu are being
processed.

If the code parameter is less than zero, the callback function must pass the message to
the CalINextHookEx function without further processing and return the value returned
by CalTNextHOOKEX.

wParam Must be NULL.
[Param Paints to the M SG structure to contain the message. The MSG structure hasthe
following form:

Returns
The return value should be nonzero if the function processes the message. Otherwise, it should be zero.

Comments
This callback function must be in a dynamic-link library (DLL).

An application must install this callback function by specifying the WH_SY SMSGFILTER filter type and
the procedure-instance address of the callback function in acall to the SetWindowsHookEx function.

SysMsgProc is a placeholder for the library-defined function name. The actual name must be exported by
including it in an EXPORTS statement in the library's module-definition file.

See Also

CalINextHookEx, MessageBox, SetWindowsHookEx

TimerProc (2.x)

void CALLBACK TimerProc(hwnd, msg, idTimer, dwTime)

HWND hwnd; /* handle of window for timer messages ~ */
UINT msg; * WM_TIMER
message

/

UINT idTimer;

* timer identifier

/

DWORD dwTime;

* current system time

/

The TimerProc function is an application-defined callback function that processes WM_TIMER messages.

Parameter Description

hwnd | dentifies the window associated with the timer.
msg Specifiesthe WM_TIMER message.

idTimer Specifies the timer's identifier.

dwTime Specifies the current system time.

Returns

This function does not return avalue.

Comments

TimerProc is a placeholder for the application-defined function name. The actual name must be exported
by including it in an EXPORTS statement in the application's modul e-definition file.

See Also

KillTimer, SetTimer, WM_TIMER

WEP (3.0)

int CALLBACK WEP(NEXitType)
int NEXitType; I* type of exit */

The WEP (Windows exit procedure) callback function performs cleanup for a dynamic-link library (DLL)
before the library is unloaded. This function is called by Windows. Although a WEP function was required
for every dynamic-link library in previous versions of the Windows operating system, for version 3.1 the
WEP function is optional. Most dynamic-link libraries use the WEP function.

Parameter Description

nEXitType Specifies whether all of Windows is shutting down or only the individual library. This
parameter can be either WEP_FREE_DLL or WEP_SYSTEM_EXIT.

Returns

The return value should be 1 if the function is successful.

Comments

For Windows version 3.1, WEP is called on the stack of the application that is terminating. This enables
WEP to call Windows functions. In Windows version 3.0, however, WEP is called on a KERNEL stack
that istoo small to process most calls to Windows functions. These calls, including calls to global-
memory functions, should be avoided in a WEP function for Windows 3.0. Callsto MS-DOS functions go
through a KERNEL intercept and can also overflow the stack in Windows 3.0. There is no general reason
to free memory from the global heap in a WEP function, because the kernel frees this kind of memory
automatically.

In some low-memory conditions, WEP can be called before the library initialization function is called and
before the library's DGROUP data-segment group has been created. A WEP function that relies on the
library initialization function should verify that the initialization function has been called. Also, WEP
functions that rely on the validity of DGROUP should check for this. The following procedureis
recommended for dynamic-link librariesin Windows 3.0; for Windows 3.1, only step 3 is necessary.

1 Verify that the data segment is present by using a lar instruction and checking the present bit. This
will indicate whether DS has been loaded. (The DS register dways contains avalid selector.)

2 Set aflagin the data segment when the library initialization is performed. Once the WEP function
has verified that the data segment exists, it should test this flag to determine whether initialization
has occurred.

3 Declare WEP in the EXPORTS section of the module-definition file for the DLL. Followingisan
example declaration:

VWP @ RESI DENTNAME

The keyword RESIDENTNAME makes the name of the function (WEP) resident at all times. (Itis
not necessary to use the ordinal reference 1.) The name listed in the LIBRARY statement of the
module-definition file must be in uppercase letters and must match the name of the DLL file.

Windows calls the WEP function by name when it is ready to remove the DLL. Under low-memory
conditions, it is possible for the DLL's nonresident-name table to be discarded from memory. If this
occurs, Windows must load the table to determine whether a WEP function was declared for the DLL.
Under low-memory conditions, this method could fail, causing afatal exit. Using the RESIDENTNAME
option forces Windows to keep the name entry for WEP in memory whenever the DLL isin use.

In Windows 3.0, WEP must be placed in afixed code segment. If it is placed instead in a discardable
segment, under low-memory conditions Windows must load the WEP segment from disk so that the WEP
function can be called before the DLL is discarded. Under certain low-memory conditions, attempting to
load the segment containing WEP can cause afatal exit. When WEP isin afixed segment, this situation
cannot occur. (Because fixed DLL code is also page-locked, you should minimize the amount of fixed
code.)

If aDLL isexplicitly loaded by calling the LoadLibrary function, its WEP function is called when the
DLL isfreed by acall to the FreeLibrary function. (The FreeLibrary function should not be called from
within a WEP function.) If the DLL isimplicitly loaded, WEP is also called, but some debugging
applications will indicate that the application has been terminated before WEP is called.

The WEP functions of dependent DLLs can be called in any order. This order depends on the order in
which the usage counts for the DLLs reach zero.

See Also

FreeLibrary, LibMain, RegisterClass, UnRegisterClass

WindowProc (2.X)

LRESULT CALLBACK WindowProc(hwnd, msg, wParam, IParam)
HWND hwnd; /* handle of window */

UINT msg; /* message */
WPARAM wParam;

* first message parameter

/

LPARAM |Param;

* second message parameter

/

The WindowProc function is an application-defined callback function that processes messages sent to a
window.

Parameter Description

hwnd | dentifies the window.

msg Specifies the message.

wParam Specifies 16 bits of additional message-dependent information.
[Param Specifies 32 bits of additional message-dependent information.
Returns

Thereturn value is the result of the message processing. The value depends on the message being
processed.

Comments

The WindowProc name is a placeholder for the application-defined function name. The actual name must
be exported by including it in an EXPORTS statement in the application's module-definition file.

See Also

DefWindowProc, RegisterClass, WNDCLASS

WinMain (2.x)

int PASCAL WinMain(hinstCurrent, hinstPrevious, IpCmdLine, nCmdShow)

HINSTANCE hinstCurrent;
HINSTANCE hinstPrevious;
* handle of previousinstance
/

LPSTR IpszCmdLine;

* address of command line

/

int nCmdShow;

* show-window type (open/icon)
/

/* handle of current instance */

The WinMain function is called by the system asthe initial entry point for a Windows application.

Specifies how the window is to be shown. This parameter can be one of the following

Hides the window and passes activation to

Minimizes the specified window and activates
the top-level window in the system'’s list.
Activates and displays awindow. If the window
isminimized or maximized, Windows restores it
toitsoriginal size and position (same as
SW_SHOWNORMAL).

Activates awindow and displaysit inits current

Activates awindow and displaysit asa
maximized window.

Activates awindow and displaysit as an icon.
Displays awindow as an icon. The window that
iscurrently active remains active.

Displays awindow in its current state. The
window that is currently active remains active.

Displays awindow in its most recent size and
position. The window that is currently active

Activates and displays awindow. If the window
is minimized or maximized, Windows restores it
toitsoriginal size and position (same as

Parameter Description
hinstCurrent | dentifies the current instance of the application.
hinstPrevious | dentifies the previous instance of the application.
IpszCmdLine Points to a null-terminated string specifying the command line for the application.
nCmdShow
values:
Value Meaning
SW_HIDE
another window.
SW_MINIMIZE
SW_RESTORE
SW_SHOW
size and position.
SW_SHOWMAXIMIZED
SW_SHOWMINIMIZED
SW_SHOWMINNOACTIVE
SW_SHOWNA
SW_SHOWNOACTIVATE
remains active.
SW_SHOWNORMAL
SW_RESTORE).
Returns

The return value is the return value of the PostQuitMessage function if the function is successful. This
function returns NULL if it terminates before entering the message |oop.

Comments

The WinMain function calls the instance-initialization function and, if no other instance of the program is
running, the application-initialization function. It then performs a message retrieval-and-dispatch loop that
isthe top-level control structure for the remainder of the application's execution. The loop isterminated
when aWM_QUIT message is received, at which time this function exits the application instance by
returning the value passed by the PostQuitM essage function.

Example

The following example uses the WinMain function to initialize the application (if necessary), initialize the
instance, and establish a message loop:

i nt PASCAL W nMai n(HINSTANCE hi nst Current, HINSTANCE hi nst Previ ous,
LPSTR | pszCndLi ne, int nCrdShow)

{
MSG nsg;
if (hinstPrevious == NULL) /* other instances? */
if (!lInitApplication(hinstCurrent)) /* shared itens*/
return FALSE; /* initialization failed */
/* Performinitializations for this instance. */
if (!Initlnstance(hinstCurrent, nCndShow))
return FALSE
/* Get and di spatch nessages until WM QUIT nmessage. */
whi | e (GetMessage(&rsg, NULL, 0, 0))
TranslateMessage(&nsg); /* translates virtual key codes */
DispatchMessage(&rsg); /* dispatches nmessage to w ndow */
I
return (int) nsg.wParam /* return val ue of PostQuitMessage */
See Also

DispatchM essage, GetM essage, PostQuitMessage, TranslateM essage

WordBreakProc (3.1)

int CALLBACK WordBreakProc(lpszEditText, ichCurrentWord, cbEditText, action)

LPSTR IpszEditText; [* address of edit text */

int ichCurrentWord; /* index of starting point *
/

int cbEditText;

* |length of edit text

/

int action;
* action to take

The WordBreakProc function is an application-defined callback function that the system calls whenever a
line of text in amultiline edit control must be broken.

Parameter Description

IpszEditText Points to the text of the edit control.

ichCurrentWord Specifies an index to aword in the buffer of text that identifies the point at which the
function should begin checking for aword break.

CbEditText Specifies the number of bytesin the text.
action Specifies the action to be taken by the callback function. This parameter can be one
of the following values:
Value Action
WB_LEFT L ook for the beginning of aword to the l&ft of the
current position.
WB_RIGHT L ook for the beginning of aword to the right of the
current position.
WB_ISDELIMITER Check whether the character at the current position isa
delimiter.
Returns

If the action parameter specifies WB_ISDELIMITER, the return value is non zero (TRUE) if the character
at the current position isadelimiter, or zero if it is not. Otherwise, the return value is an index to the
begining of aword in the buffer of text.

Comments
A carriage return (CR) followed by alinefeed (LF) must be treated as a single word by the callback
function. Two carriage returns followed by a linefeed also must be treated as a single word.

An application must install the callback function by specifying the procedure-instance address of the
callback functionin a EM_SETWORDBREAKPROC message.

WordBreakProc is a placeholder for the library-defined function name. The actual name must be exported
by including it in an EXPORTS statement in the library's module-definition file.

See Also
SendMessage, EM_SETWORDBREAKPROC

Callback functions (3.1)

Processes a canceled print job

Filters messages sent by the SendMessage function
Allows a CBT application to prevent an operation
Processes messages for a Control Panel DLL
Processes DDEML transactions

Examines databefore it is sent to a hook

Processes messages sent to a model ess dialog box
Processes messages for an installable driver
Receives child window handles during enumeration
Retrieves information about available fonts
Retrieves information about available fonts
Processes metéfile data

Processes object data

Receives enumerated property data for a window
Receives enumerated property data for a window
Processes task window handles during enumeration
Receives parent window handles during enumeration
Filters messages retrieved by the GetM essage function
Outputs text for the GrayString function

Filters nonstandard hardware messages

Places recorded eventsinto the system queue
Records event messages

Filters keyboard messages

Initializes a dynamic-link library

Processes line data

Receives and processes resource information

Filters dialog box, message box, or menu messages
Filters mouse messages

Determines whether to discard a global memory object
Receives notifications from the system

Filters dialog box, message box, or menu messages
Processes WM_TIMER messages

Cleans up and exits adynamic-link library

Processes messages sent to a window

Initializes an application and processes message loop
Determines line breaksin an edit control

CommDIgExtendedError (3.1)

#include commdig.h

DWORD CommDIgExtendedError(void)

The CommDIgExtendedError function identifies the cause of the most recent error to have occurred during
the execution of one of the following common dialog box procedures:

ChooseColor
ChooseFont
FindText
GetFleTitle
GetOpenFileName
GetSaveFileName
PrintDIg
ReplaceText

Returns

Thereturn value is zero if the prior call to acommon dialog box procedure was successful. The return
valueis CDERR_DIALOGFAILURE if the dialog box could not be created. Otherwise, the return valueis
anonzero integer that identifies an error condition.

Comments

Following are the possible CommDIgExtendedError return values and the meaning of each:

Vaue
CDERR_FINDRESFAILURE

CDERR_INITIALIZATION

CDERR_LOADRESFAILURE
CDERR_LOCKRESFAILURE
CDERR_LOADSTRFAILURE
CDERR_MEMALLOCFAILURE
CDERR_MEMLOCKFAILURE

CDERR_NOHINSTANCE

CDERR_NOHOOK

CDERR_NOTEMPLATE

CDERR_REGISTERMSGFAIL

CDERR_STRUCTSIZE

CFERR_NOFONTS
CFERR_MAXLESSTHANMIN

Meaning

Specifies that the common dialog box procedure failed to find
a specified resource.

Specifies that the common dialog box procedure failed during
initialization. This error often occurs when insufficient
memory is available.

Specifies that the common dialog box procedure failed to load
a specified resource.

Specifies that the common dialog box procedure failed to lock
a specified resource.

Specifies that the common dialog box procedure failed to load
aspecified string.

Specifies that the common dialog box procedure was unable to
alocate memory for internal structures.

Specifies that the common dialog box procedure was unable to
lock the memory associated with a handle.

Specifies that the ENABLETEMPLATE flag was set in the
Flags member of a structure for the corresponding common
dialog box but that the application failed to provide a
corresponding instance handle.

Specifies that the ENABLEHOOK flag was set in the Flags
member of a structure for the corresponding common dialog
box but that the application failed to provide a pointer to a
corresponding hook function.

Specifies that the ENABLETEMPLATE flag was set in the
Flags member of a structure for the corresponding common
dialog box but that the application failed to provide a
corresponding template.

Specifies that the Regi sterWindowM essage function returned
an error value when it was called by the common dialog box
procedure.

Specifies asinvalid the IStructSize member of a structure for
the corresponding common dialog box.

Specifies that no fonts exist.

Specifies that the size specified in the nSizeMax member of

the CHOOSEFONT structure is less than the size specified in
the nSizeMin member.

FNERR_BUFFERTOOSMALL
FNERR_INVALIDFILENAME
FNERR_SUBCLASSFAILURE
FRERR_BUFFERLENGTHZERO
PDERR_CREATEICFAILURE

PDERR_DEFAULTDIFFERENT

PDERR_DNDMMISMATCH
PDERR_GETDEVMODEFAIL
PDERR_INITFAILURE
PDERR_LOADDRVFAILURE

PDERR_NODEFAULTPRN
PDERR_NODEVICES
PDERR_PARSEFAILURE

PDERR_PRINTERNOTFOUND

PDERR_RETDEFFAILURE

PDERR_SETUPFAILURE

See Also

Specifies that the buffer for afilenameistoo small. (This
buffer is pointed to by the IpstrFile member of the structure
for acommon dialog box.)

Specifiesthat afilenameisinvalid.

Specifies that an attempt to subclass alist box failed due to
insufficient memory.

Specifies that a member in a structure for the corresponding
common dialog box pointsto an invalid buffer.

Specifies that the PrintDIg function failed when it attempted to
create an informafion context.

Specifies that an application has called the PrintDIg function
with the DN_DEFAULTPRN flag set in the wDefault member
of the DEVNAMES structure, but the printer described by the
other structure members does not match the current default
printer. (This happens when an application stores the
DEVNAMES structure and the user changes the default
printer by using Control Panel.)

To use the printer described by the DEVNAMES structure, the
application should clear the DN_DEFAULTPRN flag and call
the PrintDIg function again. To use the default printer, the
application should replace the DEVNAMES structure (and the
DEVMODE structure, if one exists) with NULL; this selects
the default printer automatically.

Specifies that the datain the DEVMODE and DEVNAMES
structures describes two difféerent printers.

Specifies that the printer driver failed to initialize a
DEVMODE structure. (This error value applies only to printer
driverswritten for Windows versions 3.0 and later.)

Specifies that the PrintDIg function failed during initialization.
Specifiesthat the PrintDIg function failed to load the device
driver for the specified printer.

Specifies that a default printer does not exist.

Specifies that no printer drivers were found.

Specifiesthat the PrintDIg function failed to parse the strings
in the [devices] section of the WINL.INI file.

Specifies that the [devices] section of the WIN.INI file did not
contain an entry for the requested printer.

Specifies that the PD_ RETURNDEFAULT flag was set in the
Flags member of the PRINTDLG structure but that either the
hDevM ode or hDevNames member was nonzero.

Specifies that the PrintDIg function failed to load the required
resources.

ChooseColor, ChooseFont, FindText, GetFileTitle, GetOpenFileName, GetSaveFileName, PrintDlg,

ReplaceText

CDERR_FINDRESFAILURE
Specifies that the common dialog box procedure failed to find a specified resource.

CDERR_INITIALIZATION

Specifies that the common dialog box procedure failed during initialization. This error often occurs when
insufficient memory is available.

CDERR_LOADRESFAILURE
Specifies that the common dialog box procedure failed to load a specified resource.

CDERR_LOCKRESFAILURE
Specifies that the common dialog box procedure failed to lock a specified resource.

CDERR_LOADSTRFAILURE
Specifies that the common dialog box procedure failed to load a specified string.

CDERR_MEMALLOCFAILURE
Specifies that the common dialog box procedure was unable to allocate memory for internal structures.

CDERR_MEMLOCKFAILURE
Specifies that the common dialog box procedure was unable to lock the memory associated with a handle.

CDERR_NOHINSTANCE

Specifies that the ENABLETEMPLATE flag was set in the Flags member of a structure for the
corresponding common dialog box but that the application failed to provide a corresponding instance
handle.

CDERR_NOHOOK

Specifies that the ENABLEHOOK flag was set in the Flags member of a structure for the corresponding
common dialog box but that the application failed to provide a pointer to a corresponding hook function.

CDERR_NOTEMPLATE

Specifiesthat the ENABLETEMPLATE flag was set in the Flags member of a structure for the
corresponding common dialog box but that the application failed to provide a corresponding template.

CDERR_REGISTERMSGFAIL

Specifies that the RegisterWindowM essage function returned an error value when it was called by the
common dialog box procedure.

CDERR_STRUCTSIZE
Specifies asinvalid the | StructSize member of a structure for the corresponding common dialog box.

CFERR_NOFONTS
Specifies that no fonts exist.

CFERR_MAXLESSTHANMIN

Specifies that the size specified in the nSizeMax member of the CHOOSEFONT structure isless than the
size specified in the nSizeMin member.

FNERR_BUFFERTOOSMALL

Specifies that the buffer for afilename istoo small. (This buffer is pointed to by the IpstrFile member of
the structure for acommon dialog box.)

FNERR_INVALIDFILENAME
Specifiesthat afilenameisinvalid.

FNERR_SUBCLASSFAILURE
Specifies that an attempt to subclass a list box failed due to insufficient memory.

FRERR_BUFFERLENGTHZERO

Specifies that a member in a structure for the corresponding common dialog box pointsto an invalid
buffer.

PDERR_CREATEICFAILURE
Specifies that the PrintDIg function failed when it attempted to create an information context.

PDERR_DEFAULTDIFFERENT

Specifies that an application has called the PrintDIg function with the DN_DEFAULTPRN flag set in the
wDefault member of the DEVNAMES structure, but the printer described by the other structure members
does not match the current default printer. (This happens when an application stores the DEVNAMES
structure and the user changes the default printer by using Control Panel.) To use the printer described by
the DEVNAMES structure, the application should clear the DN_DEFAULTPRN flag and call the PrintDlg
function again. To use the default printer, the application should replace the DEVNAMES structure (and
the DEVMODE structure, if one exists) with NULL; this selects the default printer automatically.

PDERR_DNDMMISMATCH
Specifies that the datain the DEVMODE and DEVNAMES structures describes two different printers.

PDERR_GETDEVMODEFAIL

Specifies that the printer driver failed to initialize a DEVMODE structure. (This error value applies only to
printer drivers written for Windows versions 3.0 and Tater.)

PDERR_INITFAILURE
Specifies that the PrintDIg function failed during initialization.

PDERR_LOADDRVFAILURE
Specifies that the PrintDIg function failed to load the device driver for the specified printer.

PDERR_NODEFAULTPRN
Specifiesthat a default printer does not exist.

PDERR_NODEVICES
Specifies that no printer drivers were found.

PDERR_PARSEFAILURE
Specifies that the PrintDIg function failed to parse the strings in the [devices] section of the WINL.INI file.

PDERR_PRINTERNOTFOUND
Specifies that the [devices] section of the WIN.INI file did not contain an entry for the requested printer.

PDERR_RETDEFFAILURE

Specifiesthat the PD_RETURNDEFAULT flag was set in the Flags member of the PRINTDLG structure
but that either the hDevM ode or hDevNames member was nonzero.

PDERR_SETUPFAILURE
Specifies that the PrintDIg function failed to load the required resources.

ChooseColor (3.1)
#include commdig.h

BOOL ChooseColor(Ipcc)
CHOOSECOLOR FAR* Ipcc; [* address of structure with initialization data */

The ChooseColor function creates a system-defined dialog box from which the user can select a color.

Parameter Description

Ipcc Points to a CHOOSECOL OR structure that initially contains information necessary to
initialize the dialog box. When the ChooseColor function returns, this structure contains
information about the user's color selection.

Returns

The return value is nonzero if the function is successful. It is zero if an error occurs, if the user chooses the
Cancel button, or if the user chooses the Close command on the System menu (often called the Control
menu) to close the dialog box.

Errors
Use the CommDIgExtendedError function to retrieve the error value, which may be one of the following:

CDERR_FINDRESFAILURE
CDERR_INITIALIZATION
CDERR_LOCKRESFAILURE
CDERR_LOADRESFAILURE
CDERR_LOADSTRFAILURE
CDERR_MEMALLOCFAILURE
CDERR_MEMLOCKFAILURE
CDERR_NOHINSTANCE
CDERR_NOHOOK
CDERR_NOTEMPLATE
CDERR_STRUCTSIZE

Comments

The dialog box does not support color palettes. The color choices offered by the dialog box are limited to
the system colors and dithered versions of those colors.

If the hook function (to which the IpfnHook member of the CHOOSECOL OR structure points) processes
the WM _CTL COL OR message, this function must return a handle for the brush that should be used to
paint the control background.

Example

The following example initializes a CHOOSECOL OR structure and then creates a col or-selection dialog
box:

/* Col or variables */

CHOOSECOLOR cc;

COLORREF gclr;rCust[16];

int 1;

/* Set the customcolor controls to white. */

for (i =0; i < 16; i+4)
aclrCust[i] = RGB(255, 255, 255);

/* Initialize clr to black. */
clr = RGB(0O, 0, 0);
/* Set all structure fields to zero. */

nenset (&cc, 0, sizeof (CHOOSECOLOR));

/* Initialize the necessary CHOOSECOLOR nenbers. */

cc.l StructSize = si zeof (CHOOSECOLOR) ;
cc. hwvndOwner = hwnd;

cc.rgbResult = clr;

cc. | pCust Col ors = acl rCust;

cc. Fl ags = CC_PREVENTFULLOPEN,

i f (ChooseColor(é&cc))
1% Use cc.rgbResult to select the user-requested color. */
See Also
CHOOSECOLOR
The following shows how the dialog box normally appears:

ChooseFont function (3.1)
#include commdlg.h

BOOL ChooseFont(Ipcf)
CHOOSEFONT FAR*Ipcf; [* address of structure with initidlization data */

The ChooseFont function creates a system-defined dialog box from which the user can select afont, afont

style (such as bold or italic), apoint size, an effect (such as strikeout or underline), and a color.

Parameter Description

Ipcf Pointsto a CHOOSEFONT structure that initially contains information necessary to
initialize the dialog box. When the ChooseFont function returns, this structure contains
information about the user's font selection.

Returns

Thereturn value is nonzero if the function is successful. Otherwise, it is zero.

Errors
Use the CommDIgExtendedError function to retrieve the error value, which may be one of the following:

CDERR_FINDRESFAILURE
CDERR_INITIALIZATION
CDERR_LOCKRESFAILURE
CDERR_LOADRESFAILURE
CDERR_LOADSTRFAILURE
CDERR_MEMALLOCFAILURE
CDERR_MEMLOCKFAILURE
CDERR_NOHINSTANCE
CDERR_NOHOOK
CDERR_NOTEMPLATE
CDERR_STRUCTSIZE
CFERR_MAXLESSTHANMIN
CFERR_NOFONTS

Example
The following example initializesa CHOOSEFONT structure and then displays afont dialog box:

LOGFONT | f;
CHOOSEFONT cf;

/* Set all structure fields to zero. */
nenset (&cf, 0, sizeof (CHOOSEFONT));

cf.1StructSi ze = si zeof (CHOOSEFONT) ;

cf. hwndOamner = hwnd;

cf. Il pLogFont = & f;

cf.Flags = CF_SCREENFONTS | CF_EFFECTS;

cf.rgbCol ors RGB(0, 255, 255); /* light blue */
cf. nFont Type = SCREEN_FONTTYPE;

ChooseFont(&cf) ;
See Also

CHOOSEFONT
The following shows how the dialog box normally appears:

FindText (3.1)
#include commdig.h

HWND FindText(Ipfr)
FINDREPLACE FAR* Ipfr; [* address of structure with initialization data */

The FindText function creates a system-defined model ess dialog box that makes it possible for the user to
find text within a document. The application must perform the search operation.

Parameter Description

Ipfr Points to a FINDREPLACE structure that contains information used to initialize the
dialog box. When the user makes a selection in the dialog box, the system fills this
structure with information about the user's selection and then sends a message to the
application. This message contains a pointer to the FINDREPLA CE structure.

Returns
The return value is the window handle of the dialog box if the function is successful. Otherwise, it is
NULL. An application can use this window handle to communicate with or to close the dialog box.

Errors
Use the CommDIgExtendedError function to retrieve the error value, which may be one of the following
values:

CDERR_FINDRESFAILURE
CDERR_INITIALIZATION
CDERR_LOCKRESFAILURE
CDERR_LOADRESFAILURE
CDERR_LOADSTRFAILURE
CDERR_MEMALLOCFAILURE
CDERR_MEMLOCKFAILURE
CDERR_NOHINSTANCE
CDERR_NOHOOK
CDERR_NOTEMPLATE
CDERR_STRUCTSIZE
FRERR_BUFFERLENGTHZERO

Comments

The dialog box procedure for the Find dialog box passes user requests to the application through special
messages. The |Param parameter of each of these messages contains a pointer to a FINDREPLACE
structure. The procedure sends the messages to the window identified by the hwndOwner member of the
FINDREPLACE structure. An application can register the identifier for these messages by specifying the
"commdlg_FindReplace" string in acall to the RegisterWindowM essage function.

For the TAB key to function correctly, any application that calls the FindText function must also call the
IsDialogM essage function in its main message loop. (The IsDialogM essage function returns a value that
indicates whether messages are intended for the Find dialog box.)

If the hook function (to which the IpfnHook member of the FINDREPLACE structure points) processes
the WM_CTLCOL OR message, this function must return ahandle of the brush that should be used to
paint the control background.

Example

The following example initializes a FINDREPL A CE structure and calls the FindText function to display
the Find dialog box:

FINDREPLACE fr;

/* Set all structure fields to zero. */
nmenset (& r, 0, sizeof (FINDREPLACE));

fr.1StructSize = sizeof (FINDREPLACE) ;
fr. hwndOmer = hwnd;

fr.lpstrFi ndWhat = szFi ndWat;

fr.wki ndwWhat Len = si zeof (szFi ndWhat) ;

hDl g = FindText (& r);

br eak;

In addition to initializing the members of the FINDREPLA CE structure and calling the FindText function,
an application must register the special FINDMSGSTRING message and process messages from the
dialog box.

The following example registers the message by using the RegisterWindowM essage function:

UINT uFi ndRepl aceMsg;
/* Regi ster the FindRepl ace nessage. */

uFi ndRepl aceMsg = RegisterWindowMessage(FI NDVSGSTRI NG) ;

After the application registers the FINDM SGSTRING message, it can process messages by using the
RegisterWindowM essage return value. The following example processes messages for the Find dialog box
and then callsits own SearchFile function to locate the string of text. If the user is closing the dialog box
(that is, if the Flags member of the FINDREPLACE structure is FR_DIALOGTERM), the handle is
invalidated and the procedure returns zero.

LRESULT CALLBACK Mai nWhdPr oc(HWND hwnd, UINT nmsg, WPARAM wPar am
LPARAM | Par am

{
FINDREPLACE FAR* | pfr;

f (msg == uFi ndRepl aceMsg) {
fr = (FINDREPLACE FAR*) | Param
(I pfr->Flags & FR DI ALOGTERM {

NULL;

i
I p
if (I
rEO;

hDl g
retu

}SearchFi le((BOOL) (Ipfr->Flags & FR_
(BOOL) (Ipfr->Flags & FR_MATCHCASE));
return O;
}
See Also
IsDialogM essage, RegisterWindowM essage, ReplaceText, FINDREPLACE

The following shows how the find dialog box appears:

GetFileTitle (3.1)
#include commdlig.h

int GetFileTitle(IpszFile, IpszTitle, chBuf)

LPCSTR IpszFile; /* pointer to filename (including drive and directory) */

LPSTR lpszTitle; /
* address of buffer that receives filename

/

UINT cbBuf;

* length of buffer

/

The GetFileTitle function returnsthe title of the file identified by the IpszFile parameter.

Parameter Description

IpszFile Points to the name and location of an MS-DOSfile.

IpszTitle Points to a buffer into which the function is to copy the name of thefile.

cbBuf Specifies the length, in bytes, of the buffer to which the IpszTitle parameter points.
Returns

Thereturn value is zero if the function is successful. The return value is a negative number if the filename
isinvalid. The return value is a positive integer that specifies the required buffer size, in bytes, if the buffer
to which the |pszTitle parameter pointsistoo small.

Comments
The function returns an error valueif the buffer pointed to by the |pszFile parameter contains any of the
following:

An empty string

A string containing awildcard (*), opening bracket ([), or closing bracket (])

A string that ends with a colon (:), slash mark (/), or backdlash (\)

A string whose length exceeded the length of the buffer

Aninvalid character (for example, a space or unprintable character).

The required buffer sizeincludes the terminating null character.

GetOpenFileName (3.1)
#include commdig.h

BOOL GetOpenFileName(lpofn)
OPENFILENAME FAR* Ipofn; [* address of initialization data structure ~ */

The GetOpenFileName function creates a system-defined dialog box that makes it possible for the user to
select afileto open.

Parameter Description

[pofn Points to an OPENFILENAME structure that contains information used to initialize the
dialog box. When the GetOpenkileName function returns, this structure contains
information about the user's file selection.

Returns
Thereturn value is nonzero if the user selects afileto open. It is zero if an error occurs, if the user chooses
the Cancel button, if the user chooses the Close command on the System menu to close the dialog box, or
if the buffer identified by the IpstrFile member of the OPENFILENAME structure istoo small to contain
the string that specifies the selected file.

Errors
The CommDIgExtendedError function retrieves the error value, which may be one of the following values:

CDERR_FINDRESFAILURE
CDERR_INITIALIZATION
CDERR_LOCKRESFAILURE
CDERR_LOADRESFAILURE
CDERR_LOADSTRFAILURE
CDERR_MEMALLOCFAILURE
CDERR_MEMLOCKFAILURE
CDERR_NOHINSTANCE
CDERR_NOHOOK
CDERR_NOTEMPLATE
CDERR_STRUCTSIZE
FNERR BUFFERTOOSMALL
FNERR_INVALIDFILENAME
FNERR_SUBCLASSFAILURE

Comments

If the hook function (to which the IpfnHook member of the OPENFILENAME structure points) processes
the WM _CTL COL OR message, this function must return ahandle of the brush that should be used to
paint the control background.

Example
The following example copies file-filter strings into a buffer, initializes an OPENFILENAME structure,
and then creates an Open dialog box.

Thefile-filter strings are stored in the resource file in the following form:

STRI NGTABLE
BEG N
IDS_FILTERSTRING "Wite Files(*.WRI)|*.wi|Wrd Files(*.DOC)]|*.
doc| "
END

The replaceable character at the end of the string is used to break the entire string into separate strings,
while still guaranteeing that all the strings are continguous in memory.

OPENFILENAME of n;

char szDir Nane[256] ;

char szFil e[256], szFileTitle[256];

UINT i, cbString;

char chRepl ace; /* string separator for szFilter */
char szFilter[256];

HFEILE hf;

/* Get the systemdirectory name, and store in szDirNanme */

GetSystemDirectory(szDi r Nane, sizeof (szDi rNane));
SzFile[0] = "\0;

if ((cbString = LoadString(hinst, |1DS FILTERSTRI NG
szFilter, sizeof(szFilTter))) == 0) {

ErrorHandl er () ;
return OL,;
chRepl ace = szFilter[cbString - 1]; /* retrieve wildcard */
for (i = 0; szFilter[i] !'="\0"; i++) {
if (szFilter[i] == chRepl ace)
szFilter[i] = "\0";
/* Set all structure menbers to zero. */

menset (&ofn, 0, sizeof (OPENFILENAME));

of n. I Struct Si ze = si zeof (OPENFILENAME) ;
of n. hwndOwner = hwnd,;
ofn.lpstrFilter = szFilter;

ofn.nFilterlndex = 1;

ofn. I pstrFile= szFil e;

of n.nMaxFi |l e = sizeof (szFil e);

ofn.IpstrFileTitle = szFileTitle;

of n.nMaxFil eTitl e = sizeof (szFileTitle);

ofn.lpstrinitialDir = szDi r Nane;

of n. Fl ags = OFN_SHOWHELP | OFN_PATHMUSTEXIST | OFN_FILEMUSTEXIST;

if (GetOpenFil eNanme(&ofn)) {
hf = _lopen(ofn.IpstrFile, OF_READ);

/* Performfile operations. */

el se
Error Handl er () ;

See Also
GetSaveFileName, OPENFILENAME

The following shows how the open dialog box normally appears:

GetSaveFileName (3.1)
#include commdig.h

BOOL GetSaveFileName(lpofn)
OPENFILENAME FAR* |pofn; [* address of initialization data ~ */

The GetSaveFileName function creates a system-defined dialog box that makesit possible for the user to
select afileto save.

Parameter Description
[pofn Points to an OPENFILENAME structure that contains information used to initialize the
dialog box. When the GetSaveFileName function returns, this structure contains

information about the user's file selection.

Returns
Thereturn value is nonzero if the user selects afile to save. It is zero if an error occurs, if the user clicks

the Cancel button, if the user chooses the Close command on the System menu to close the dialog box, or
if the buffer identified by the IpstrFile member of the OPENFILENAME structure istoo small to contain
the string that specifies the selected file.

Errors
The CommDIgExtendedError retrieves the error value, which may be one of the following values:

CDERR_FINDRESFAILURE
CDERR_INITIALIZATION
CDERR_LOCKRESFAILURE
CDERR_LOADRESFAILURE
CDERR_LOADSTRFAILURE
CDERR_MEMALLOCFAILURE
CDERR_MEMLOCKFAILURE
CDERR_NOHINSTANCE
CDERR_NOHOOK
CDERR_NOTEMPLATE
CDERR_STRUCTSIZE
FNERR BUFFERTOOSMALL
FNERR_INVALIDFILENAME
FNERR_SUBCLASSFAILURE

Comments

If the hook function (to which the IpfnHook member of the OPENFILENAME structure points) processes
the WM _CTL COL OR message, this function must return ahandle for the brush that should be used to
paint the control background.

Example
The following example copies file-filter strings (filename extensions) into a buffer, initializes an
OPENFILENAME structure, and then creates a Save As dialog box.

Thefile-filter strings are stored in the resource file in the following form:

STRI NGTABLE
BEG N
IDS_FILTERSTRING "Wite Files(*.WRI)|*.wi|Wrd Files(*.DOC)]|*.
doc| "
END

The replaceable character at the end of the string is used to break the entire string into separate strings,
while still guaranteeing that all the strings are continguous in memory.

OPENFILENAME of n;

char szDir Nane[256] ;

char szFil e[256], szFileTitle[256];

UINT i, cbString;

char chRepl ace; /* string separator for szFilter */
char szFilter[256];

HFILE hf;

/*

* Retrieve the systemdirectory name, and store it in
* szDi r Nane.

*/

GetSystemDirectory(szDi r Nanme, sizeof (szDirName));

if ((cbString = LoadString(hinst, |1DS FILTERSTRI NG

szFilter, sizeof(szFilTter))) == 0) {
ErrorHandl er () ;

return O;
}
chRepl ace = szFilter[cbString - 1]; /* retrieve wldcard */
for (i = 0; szFilter[i] !'="\0"; i++) {

if (szFilter[i] == chRepl ace)

szFilter[i] = "\0";

/* Set all structure nenbers to zero. */

nmenset (&fn, 0, sizeof (OPENFILENAME));

/* Initialize the OPENFILENAME menbers. */

szFile[0] ="'\0";

ofn. | Struct Si ze = si zeof (OPENFILENAME) ;
of n. hwndOmer = hwnd;
ofn.lpstrFilter = szFilter;

ofn. I pstrFile= szFil e;

of n. nMaxFi |l e = sizeof (szFil e);
ofn.lpstrFileTitle = szFileTitle;

of n.nMaxFil eTitle = sizeof (szFileTitle);
ofn.IpstrinitialDir = szDirNaneg;

of n. Fl ags = OFN_SHOWHELP | OFN_OVERWRITEPROMPT;

i f (CetSaveFil eNane(&ofn)) {

/* Performfile operations. */

}

el se
Error Handl er () ;

See Also
GetOpenFileName, OPENFILENAME

The following shows how the save dialog box appears:

PrintDIg function (3.1)
#include commdig.h

BOOL PrintDIg(Ippd)
PRINTDLG FAR* Ippd; [* address of structure withinitialization data ~ */

The PrintDIg function displays a Print dialog box or a Print Setup dialog box. The Print dialog box makes
it possible for the user to specify the properties of a particular print job. The Print Setup dialog box makes
it possible for the user to select additional job properties and configure the printer.

Parameter Description
Ippd Pointsto a PRINTDL G structure that contains information used to initialize the dialog

box. Whenthe PrintDIg function returns, this structure contains information about the
user's selections.

Returns

Thereturn value is nonzero if the function successfully configures the printer. The return valueis zero if
an error occurs, if the user chooses the Cancel button, or if the user chooses the Close command on the
System menu to close the dialog box. (The return valueis also zero if the user chooses the Setup button to
display the Print Setup dialog box, chooses the OK button in the Print Setup dialog box, and then chooses
the Cancel button in the Print dialog box.)

Errors
Use the CommDIgExtendedError function to retrieve the error value, which may be one of the following:

CDERR_FINDRESFAILURE PDERR_CREATEICFAILURE
CDERR_INITIALIZATION PDERR_DEFAULTDIFFERENT
CDERR_LOADRESFAILURE PDERR_DNDMMISMATCH
CDERR_LOADSTRFAILURE PDERR_GETDEVMODEFAIL
CDERR_LOCKRESFAILURE PDERR_INITFAILURE
CDERR_MEMALLOCFAILURE PDERR_LOADDRVFAILURE
CDERR_MEMLOCKFAILURE PDERR_NODEFAULTPRN
CDERR_NOHINSTANCE PDERR_NODEVICES
CDERR_NOHOOK PDERR_PARSEFAILURE
CDERR_NOTEMPLATE PDERR_PRINTERNOTFOUND
CDERR_STRUCTSIZE PDERR_RETDEFFAILURE

PDERR_SETUPFAILURE
Example
The following example initializes the PRINTDL G structure, calls the PrintDIg function to display the Print
dialog box, and prints a sample page of text if the return value is nonzero:
PRINTDLG pd;
/* Set all structure nenmbers to zero. */
nmenset (&pd, O, sizeof (PRINTDLG));
/* Initialize the necessary PRINTDLG structure nembers. */
pd. | Struct Si ze = si zeof (PRINTDLG) ;

pd. hwndOawner = hwnd;
pd. Fl ags = PD_RETURNDC,

/* Print a test page if successful */

if (PrintDlg(&pd) !'= 0)
Escape(pd. hDC, STARTDOC, 8, "Test-Doc", NULL);

/* Print text and rectangle */

TextOut(pd. hDC, 50, 50, "Conmmon Di al og Test Page",

Rectangle(pd. hDC, 50, 90, 625, 105);
Escape(pd. hDC, NEWFRAME, 0, NULL, NULL);
Escape(pd. hDC, ENDDOC, 0, NULL, NULL);
Delef DeleteDC(pd. hDC) ;
DevMode ! = NULL)
GIobaIFree(pd. hDeviMbde) ;
if (pd. hDevNanes ! = NULL)
GlobalFree(pd. hDevNanes) ;
}
el se
ErrorHandl er () ;

See Also
PRINTDLG

The following shows how the print dialog box normally appears:

23);

ReplaceText (3.1)
#include commdig.h

HWND ReplaceText(Ipfr)
FINDREPLACE FAR* Ipfr; [* address of structure with initialization data */

The ReplaceText function creates a system-defined modeless dialog box that makes it possible for the user
to find and replace text within a document. The application must perform the actual find and replace
operations.

Parameter Description

Ipfr Points to a FINDREPLACE structure that contains information used to initialize the
dialog box. When the user makes a selection in the dialog box, the system fills this
structure with information about the user's selection and then sends a message to the
application. This message contains a pointer to the FINDREPLA CE structure.

Returns
Thereturn value is the window handle of the dialog box, or it isNULL if an error occurs. An application
can use this handle to communicate with or to close the dialog box.

Errors
Use the CommDIgExtendedError function to retrieve the error value, which may be one of the following:

CDERR_FINDRESFAILURE
CDERR_INITIALIZATION
CDERR_LOADRESFAILURE
CDERR_LOADSTRFAILURE
CDERR_LOCKRESFAILURE
CDERR_MEMALLOCFAILURE
CDERR_MEMLOCKFAILURE
CDERR_NOHINSTANCE
CDERR_NOHOOK
CDERR_NOTEMPLATE
CDERR_STRUCTSIZE
FRERR_BUFFERLENGTHZERO

Comments

The dialog box procedure for the ReplaceText function passes user requests to the application through
specia messages. The IParam parameter of each of these messages contains a pointer to a
FINDREPLACE structure. The procedure sends the messages to the window identified by the hwndOwner
member of the FINDREPLACE structure. An application can register the identifier for these messages by
specifying the commdlg_FindReplace string in acall to the RegisterWindowM essage function.

For the TAB key to function correctly, any application that calls the ReplaceText function must also call the
IsDialogM essage function in its main message loop. (The IsDialogM essage function returns a value that
indicates whether messages are intended for the Replace dialog box.)

Example

This exampleinitializes a FINDREPL ACE structure and calls the ReplaceText function to display the
Replace dialog box:

FINDREPLACE fr;

char szFindwWhat[256] = ""; /* string to find */
char szRepl aceWth[256] = ""; /* string to replace */

/* Set all structure fields to zero. */

nmenset (& r, 0, sizeof (FINDREPLACE));

fr.lStructSize = sizeof (FINDREPLACE);

fr. hwdOmer = hwnd; -

fr.lpstrFi ndWwhat = szFi ndWat ;

fr.wFi ndWhat Len = si zeof (szFi ndWhat) ;
r.lpstrReplaceWth = szRepl aceWth;

fr.wRepl aceWthLen = sizeof (szRepl aceWth);

hDl g = Repl aceText (&fr);

In addition to initializing the members of the FINDREPLACE structure and calling the ReplaceText
function, an application must register the special FINDMSGSTRING message and process messages from
the dialog box. Refer to the description of the FindText function for an example that shows how an
application registers and processes a message.

See Also
FindText, IsDialogM essage, RegisterWindowMessage, FINDREPLACE

The following shows how the replace dialog box appears:

Common dialog box functions (3.1)
Retrieves error data for common dialog box procedure

ChooseCalor Creates a color-selection dialog box
ChooseFont function Creates a font-selection dialog box
EindText Creates afind-text dialog box
GetFileTitle Retrieves a filename
GetOpenFileName Creates an open-filename dialog box
GetSaveFileName Creates a save-filename dialog box
PrintDIg function Creates a print-text dialog box

ReplaceText Creates a replace-text dialog box

DdeAbandonTransaction (3.1)
#include <ddeml.h>

BOOL DdeAbandonTransaction(idinst, hConv, idTransaction)

DWORD idInst; [* instance identifier */

HCONV hConv; /* handle of

conversation *

DWORD idTransaction;
* transaction identifier
/

The DdeAbandonTransaction function abandons the specified asynchronous transaction and releases all
resources associated with the transaction.

Parameter Description

idinst Specifies the application-instance identifier obtained by a previous call to the
Ddelnnitialize function.

hConv | dentifies the conversation in which the transaction was initiated. If this parameter is
NULL, al transactions are abandoned (the idTransaction parameter isignored).

idTransaction | dentifies the transaction to terminate. If this parameter isNULL, all active
transactions in the specified conversation are abandoned.

Returns

The return value is nonzero if the function is successful. Otherwise, it is zero.

Errors

Use the DdeGetL astError function to retrieve the error value, which may be one of the following:

DMLERR _DLL_NOT_INITIALIZED
DMLERR_INVALIDPARAMETER
DMLERR_NO_ERROR
DMLERR_UNFOUND_QUEUE_ID

Comments

Only a dynamic data exchange (DDE) client application should call the DdeAbandonTransaction function.
If the server application responds o the transaction after the client has called DdeAbandonTransaction, the
system discards the transaction results. This function has no effect on synchronous transactions.

See Also
DdeClientTransaction, DdeGetL astError, Ddelnitialize, DdeQueryConvinfo

DdeAccessData (3.1)

#include <ddeml.h>

BY TE FAR* DdeAccessData(hData, |pcbData)

HDDEDATA hData; /* handle of global memory object */

DWORD FAR* IpchData;
* pointer to variable that receives data length
/

The DdeA ccessData function provides access to the data in the given global memory object. An
application must call the DdeUnaccessData function when it is finished accessing the data in the object.

Parameter Description

hData | dentifies the global memory object to access.

IpcbData Points to a variable that receives the size, in bytes, of the global memory object
identified by the hData parameter. If this parameter isNULL, no size information is
returned.

Returns

The return value points to the first byte of datain the global memory object if the function is successful.
Otherwise, the return valueis NULL.

Errors
Use the DdeGetL astError function to retrieve the error value, which may be one of the following:

DMLERR DLL_NOT_INITIALIZED
DMLERR_INVALIDPARAMETER
DMLERR_NO_ERROR

Comments

If the hData parameter has not been passed to a Dynamic Data Exchange Management Library (DDEML)
function, an application can use the pointer returned by DdeAccessData for read-write access to the giobal
memory object. If hData has already been passed to a DDEML function, the pointer can only be used for
read-only access to the memory object.

Example
The following example uses the DdeA ccessData function to obtain a pointer to a global memory object,
uses the pointer to copy data from the object to alocal buffer, then frees the pointer:

HDDEDATA hDat a;
LPBYTE | pszAdvi seDat a;
DWORD chbDat aLen;

DWORD i ;

char szDat a[128];

| pszAdvi seDat a = DdeAccessDat a(hDat a, &chDat aLen);
for (i = 0; i < cbDatalLen; i++)

szData[i] = *I| pszAdvi seDat a++;
DdeUnaccessData(hDat a) ;

See Also
DdeAddData, DdeCreateDataHandle, DdeFreeDataHandle, DdeGetL astError, DdeUnaccessData

DdeAddData (3.1)
#include <ddeml.h>

HDDEDATA DdeAddData(hData, |pvSrcBuf, chAddData, offObj)

HDDEDATA hData; * handle of global memory object */

void FAR* |pvSrcBuf; /*
address of source buffer

/

DWORD cbAddData;

* length of data

/

DWORD offObyj;

* offset within global memory object
/

The DdeAddData function adds data to the given global memory object. An application can add data
beginning at any offset from the beginning of the object. If new data overlaps data already in the object,
the new data overwrites the old data in the bytes where the overlap occurs. The contents of locations in the
object that have not been written to are undefined.

Parameter Description

hData I dentifies the global memory object that receives additional data.

IpvSrcBuf Points to a buffer containing the data to add to the global memory object.
cbAddData Specifies the length, in bytes, of the data to be added to the global memory object.
of fObj Specifies an offset, in bytes, from the beginning of the global memory object. The

additional datais copied to the object beginning at this offset.

Returns

Thereturn value is a new handle of the global memory object if the function is successful. The new handle
should be used in all referencesto the object. The return valueis zero if an error occurs.

Errors
Use the DdeGetL astError function to retrieve the error value, which may be one of the following:

DMLERR_DLL_NOT_INITIALIZED
DMLERR_INVALIDPARAMETER
DMLERR_MEMORY_ERROR
DMLERR_NO_ERROR

Comments

After adata handle has been used as a parameter in another Dynamic Data Exchange Management Library
(DDEML) function or returned by a DDE callback function, the handle may only be used for read access
to the global memory object identified by the handle.

If the amount of global memory originally allocated is not large enough to hold the added data, the
DdeAddData function will reallocate a global memory object of the appropriate size.

Example
The following example creates a global memory object, uses the DdeAddData function to add data to the
object, and then passes the data to a client with an XTY P_POKE transaction:

DWORD idlnst;/* instance identifier*/

HDDEDATA hddeStrings; /* data handle */

HSZ hszMyltem /[* itemnane string handle */
DWORD of fCbj = 0; /* offset in global object */
char szMyBuf[16]; /* tenporary string buffer */
HCONV hconv; /* conversation handl e*/

DWORD dwResul t; /* transaction results*/

BOOL f AddAString; /* TRUE if strings to add */

/* Create a gl obal nmenory object. */

hddeSt ri ngs = DdeCreateDataHandle(i dl nst, NULL, 0, O,
hszMyl tem —CF_TEXT, 0);

1T a string is available, the application-defined function

I sThereAString() copies it to szMyBuf and returns TRUE. O herw se,
it returns FALSE.
/

* Ok Sk 3k F

while ((fAddAString = IsThereAString())) {
/* Add the string to the global nmenory object. */

DdeAddDat a(hddeSt ri ngs, /* data handl e */

&szMyBuf , /* string buffer */

(DWORD) strlen(szMyBuf) + 1, /* character count */
of f bj) ; /* offset in object */

of fbj = (DWORD) strlen(szMyBuf) + 1; /* adjust offset */
}

/* No nore data to add, so poke it to the server. */
DdeClientTransaction((voi d FAR*) hddeStrings, -1L, hconv, hszMyltem
CF_TEXT, XTYP_POKE, 1000, &dwResult);

See Also
DdeA ccessData, DdeCreateDataHandle, DdeGetL astError, DdeUnaccessData

DdeClientTransaction (3.1)
#include <ddeml.h>

HDDEDATA DdeClientTransaction(IpvData, cbData, hConv, hszltem, uFmt, uType, uTimeout,
[puResult)

void FAR* IpvData; [* address of datato passto server */

DWORD chData; I*

length of data

/

HCONYV hConv;

* handle of conversation

/

HSZ hszltem;

* handle of item-name string

UINT uFmt;
* clipboard data format
/

UINT uTyps;
* transaction type
/

DWORD uTimeout;
* timeout duration

DWORD FAR* IpuResult;
* points to transaction result
/

The DdeClientTransaction function begins a data transaction between a client and a server. Only a
dynamic data exchange (DDE) client application can call this function, and only after establishing a
conversation with the server.

Parameter Description

IpvData Points to the beginning of the data that the client needs to pass to the server.

Optionally, an application can specify the data handle (HDDEDATA) to pass to the
server, in which case the chData parameter should be set to -1. This parameter is
required only if the uType parameter is XTYP_EXECUTE or XTY P_POKE. Otherwise,

this parameter should be NULL.

cbData Specifiesthe length, in bytes, of the data pointed to by the IpvData parameter. A value
of -1 indicates that IpvDatais a data handle that identifies the data being sent.

hConv | dentifies the conversation in which the transaction is to take place.

hszltem | dentifies the data item for which data is being exchanged during the transaction. This

handle must have been created by a previous call to the DdeCreateStringHandle
function. This parameter isignored (and should be set to NULL) if the uType parameter
isXTYP_EXECUTE.

uFmt Specifies the standard clipboard format in which the dataitem is being submitted or
requested. For more information about standard clipboard formats, see the Clipboard
formats topic.

uType Specifies the transaction type. This parameter can be one of the following values:
Value Meaning
XTYP_ADVSTART Begins an advise loop. Any number of distinct advise

loops can exist within a conversation. An application can
ater the advise loop type by combining the
XTYP_ADVSTART transaction type with one or more of
thefollowing TTags:

Value Meaning

XTYPF_NODATA Instructs the server to notify the
client of any data changes
without actually sending the
data. Thisflag givesthe client
the option of ignoring the

notification or requesting the
changed data from the server.

XTYPF_ACKREQ Instructs the server to wait until
the client acknowledges that it
received the previous data item
before sending the next data
item. Thisflag prevents afast
server from sending data faster
than the client can processiit.

XTYP_ADVSTOP Ends an advise loop.
XTYP_EXECUTE Begins an execute transaction.
XTYP_POKE Begins a poke transaction.
XTYP_REQUEST Begins arequest transaction.
uTimeout Specifies the maximum length of time, in milliseconds, that the client will wait for a

response from the server application in a synchronous transaction. This parameter
should be set to TIMEOUT_ASY NC for asynchronous transactions.

[puResult Pointsto a variable that receives the result of the transaction. An application that does
not check the result can set this value to NULL. For synchronous transactions, the low-
order word of this variable will contain any applicable DDE_ flags resulting from the
transaction. This provides support for applications dependent on DDE_APPSTATUS
bits. (It is recommended that applications no longer use these hits because they may not
be supported in future versions of the DDE Management Library.) For asynchronous
transactions, this variable is filled with a unique transaction identifier for use with the
DdeAbandonTransaction function and the XTYP_XACT _COMPLETE transaction.

Returns

The return value is a data handle that identifies the data for successful synchronous transactionsin which
the client expects data from the server. The return value is TRUE for successful asynchronous transactions
and for synchronous transactions in which the client does not expect data. The return value is FALSE for
all unsuccessful transactions.

Errors
Use the DdeGetL astError function to retrieve the error value, which may be one of the following:

DMLERR_ADVACKTIMEOUT
DMLERR_BUSY
DMLERR_DATAACKTIMEOUT
DMLERR_DLL_NOT_INITIALIZED
DMLERR_EXECACKTIMEOUT
DMLERR_INVALIDPARAMETER
DMLERR_MEMORY_ERROR
DMLERR_NO_CONV_ESTABLISHED
DMLERR_NO_ERROR
DMLERR_NOTPROCESSED
DMLERR_POKEACKTIMEOUT
DMLERR_POSTMSG_FAILED
DMLERR_REENTRANCY
DMLERR_SERVER_DIED
DMLERR_UNADVACKTIMEOUT

Comments
When the application is finished using the data handle returned by the DdeClientTransaction function, the
application should free the handle by calling the DdeFreeDataHandl e function.

Transactions can be synchronous or asynchronous. During a synchronous transaction, the
DdeClientTransaction function does not return until the transaction completes successfully or fails.
Synchronous transactions cause the client to enter a modal 1oop while waiting for various asynchronous
events. Because of this, the client application can still respond to user input while waiting on a
synchronous transaction but cannot begin a second synchronous transaction because of the activity
associated with the first. The DdeClientTransaction function failsif any instance of the same task has a
synchronous transaction already in progress.

During an asynchronous transaction, the DdeClientTransaction function returns after the transaction is
begun, passing a transaction identifier for reference. When the server's DDE callback function finishes
processing an asynchronous transaction, the system sends an XTYP_XACT_COMPLETE transaction to

the client. This transaction provides the client with the results of the asynchronous transaction that it
initiated by calling the DdeClientTransaction function. A client application can choose to abandon an
asynchronous transaction by calling the DdeAbandonTransaction function.

Example
The following example reguests an advise loop with a DDE server application:

HCONV hconv;
HSZ hszNow;
HDDEDATA hDat a;
DWORD dwResul t;

hDat a = Dded i ent Transacti on(
(LPBYTE) NULL, /* pass no data to server */

0, /* no data */
hconv, /* conversati on handl e */
hszNow, /* item name */

CF_TEXT, [/* clipboard format */
XTYP_ADVSTART, /* start an advi se | oop */
1000,/ time-out in one second */
&dwResul t) ; /* points to result flags */

See Also
DdeAbandonTransaction, DdeA ccessData, DdeConnect, DdeConnectList, DdeCreateStringHandle

DdeCmpStringHandles (3.1)
#include <ddeml.h>

int DdeCmpStringHandles(hsz1, hsz2)
HSZ hszl, /* handle of first string */
HSZ hsz2; /* handle of second string */

The DdeCmpStringHandles function compares the values of two string handles. The value of astring
handle is not related to the case of the associated string.

Parameter Description

hsz1 Specifies the first string handle.
hsz2 Specifies the second string handle.
Returns

The return value can be one of the following:
Vaue Meaning

-1 The value of hszl is either O or less than the value of hsz2.
0 The values of hszl and hsz2 are equal (both can be 0).

1 The value of hsz2 is either 0 or less than the value of hszl.
Comments

An application that needs to do a case-sensitive comparison of two string handles should compare the
string handles directly. An application should use DdeCompStringHandles for all other comparisons to
preserve the case-sensitive nature of dynamic data exchange (DDE).

The DdeCompStringHandl es function cannot be used to sort string handles a phabetically.

Example
This example compares two service-name string handles and, if the handles are the same, requests a
conversation with the server, then issuesan XTYP_ADV START transaction:

HSZ hszd ock; /* service nanme */

HSZ hszTi e; /* topic nane */

HSZ hszl; /* unknown server*/

HCONV hConv; /* conversation handl e*/
DWORD dwResult; /* result flags */
DWORD i dl nst ; /* instance identifier*/
/*

* Conpare unknown service nane handle with the string handl e
* for the clock application.
*/

if (!DdeCrpStringHandl es(hszl, hszCd ock)) {
/*

* If this is the clock application, start a conversation
*with it and request an advise | oop.

*/
hConv = DdeConnect(i dlnst, hszd ock, hszTime, NULL);
if (hConv T= (HCOW) NULL)
DdeClientTransaction(NULL, 0, hConv, hszNow,
CF_TEXT, XTYP_ADVSTART, 1000, &dwResult);
}
See Also

DdeA ccessData, DdeCreateStringHandle, DdeFreeStringHandle

DdeConnect (3.1)
#include <ddeml.h>

HCONV DdeConnect(idinst, hszService, hszTopic, pCC)

DWORD idInst; /* instance identifier */
HSZ hszService; /
* handle of service-name string

/

HSZ hszTopic;

* handle of topic-name string

/

CONVCONTEXT FAR* pCC;

* address of structure with context data

/

The DdeConnect function establishes a conversation with a server application that supports the specified
service name and topic name pair. If more than one such server exists, the system selects only one.

Parameter Description

idinst Specifies the application-instance identifier obtained by a previous call to the
Ddelnitialize function.

hszService I dentifies the string that specifies the service name of the server application with which

aconversation is to be established. This handle must have been created by a previous
call to the DdeCreateStringHandle function. If this parameter isNULL, a conversation
will be established with any available server.

hszTopic Identifies the string that specifies the name of the topic on which a conversation isto be
established. This handle must have been created by a previous call to the
DdeCreateStringHandle function. If this parameter is NULL, a conversation on any
topic supported by the selected server will be established.

pCC Points to the CONVCONTEXT structure that contai ns conversation-context
information. Tf this parameter is NULL, the server receives the default
CONVCONTEXT structure during the XTYP_CONNECT or XTYP_WILDCONNECT
transaction.

Returns

The return value is the handle of the established conversation if the function is successful. Otherwise, it is
NULL.

Errors
Use the DdeGetL astError function to retrieve the error value, which may be one of the following:

DMLERR_DLL_NOT_INITIALIZED
DMLERR_INVALIDPARAMETER

DMLERR _NO_CONV_ESTABLISHED
DMLERR_NO_ERROR

Comments

The client application should not make assumptions regarding which server will be selected. If an
instance-specific name is specified in the hszService parameter, a conversation will be established only
with the specified instance. | nstance-specific service names are passed to an application's dynamic data
exchange callback function during the XTYP_REGISTER and XTYP_UNREGISTER transactions.

All members of the default CONVCONTEXT structure are set to zero except cb, which specifies the size
of the structure, and iCodePage, which specifies CP_WINANSI (the default code page).

Example

The following example creates a service-name string handle and a topic-name string handle, then attempts
to establish a conversation with a server that supports the service name and topic name. If the attempt fails,
the example retrieves an error value identifying the reason for the failure.

DWORD i dl nst = OL;
HSZ hszd ock;
HSZ hszTi ne;
HCONV hconv;
UINT uError;

hszC ock = DdeCreateStringHandle(idl nst, "C ock", CP_W NANSI)
hszTi ne = DdeCreateStringHandle(i dlnst, "Tinme", CP_WNANSI);

if ((hconv = DdeConnect (
i dl nst, /* instance identifier */
hszd ock, /* server's service nanme */
hszTine, /* topic name*/
NULL)) == NULL) { /* use default CONVCONTEXT */
ukError = DdeGetLastError(idlinst); —

}

See Also
DdeConnectList, DdeCreateStringHandle, DdeDisconnect, DdeDisconnectList, Ddelnitialize,

DdeConnectList (3.1)
#include <ddeml.h>

HCONVLIST DdeConnectList(idInst, hszService, hszTopic, hConvList, pCC)
DWORD idInst; /* instance identifier */
HSZ hszService; /
* handle of service-name string

/

HSZ hszTopic;

* handle of topic-name string

/

HCONVLIST hConvList;

* handle of conversation list

/

CONVCONTEXT FAR* pCC;

* address of structure with context data

The DdeConnectL ist function establishes a conversation with all server applications that support the
specified service/topic name pair. An application can also use this function to enumerate alist of
conversation handles by passing the function an existing conversation handle. During enumeration, the
Dynamic Data Exchange Management Library (DDEML) removes the handles of any terminated
conversations from the conversation list. The resulting conversation list contains the handles of all
conversations currently established that support the specified service name and topic name.

Parameter Description

idinst Specifies the application-instance identifier obtained by a previous call to the
Ddelnitialize function.

hszService I dentifies the string that specifies the service name of the server application with which

aconversation is to be established. If this parameter isNULL, the system will attempt to
establish conversations with all available servers that support the specified topic name.
hszTopic Identifies the string that specifies the name of the topic on which a conversation isto be
established. This handle must have been created by a previous call to the
DdeCreateStringHandle function. If this parameter is NULL, the system will attempt to
establish conversations on all topics supported by the selected server (or servers).

hConvList | dentifies the conversation list to be enumerated. This parameter should be set to NULL
if anew conversation list isto be established.
pCC Points to the CONVCONTEXT structure that contains conversation-context

information. Tf this parameter is NULL, the server receives the default
CONVCONTEXT structure during the XTYP_CONNECT or XTYP_WILDCONNECT
transaction.

Returns
The return value is the handle of a new conversation list if the function is successful. Otherwisg, it is
NULL. The handle of the old conversation list isno longer valid.

Errors
Use the DdeGetL astError function to retrieve the error value, which may be one of the following:

DMLERR_DLL_NOT_INITIALIZED
DMLERR_INVALID PARAMETER
DMLERR_NO_CONV_ESTABLISHED
DMLERR_NO_ERROR

DMLERR_SYS ERROR

Comments

An application must free the conversation-list handle returned by this function, regardless of whether any
conversation handles within the list are active. To free the handle, an application can call the
DdeDisconnectList function.

All members of the default CONVCONTEXT structure are set to zero except cb, which specifies the size
of the structure, and iCodePage, which specifies CP_WINANSI (the default code page).

Example

The following example uses the DdeConnectList function to establish a conversation with all servers that
support the System topic, counts the servers, allocates a buffer for storing the server's service-name string
handles, and then copies the handles to the buffer:

HCONVLI ST hconvList; /* conversation list */
DWORD i dl nst ; /* instance identifier*/

HSZ hszSystem [/* Systemtopic */

HCONV hconv = NULL; [/* conversation handl e*/

CONVINFO ci ; /* hol ds conversation data */
UINT cConv = 0; /* count of conv. handles */
HSZ *pHsz, *aHsz; /* point to string handl es */

/* Connect to all servers that support the Systemtopic. */
hconvLi st = DdeConnect Li st (idlnst, NULL, hszSystem NULL, NULL);
/* Count the number of handles in the conversation list. */

whil e ((hconv = DdeQueryNextServer(hconvLi st, hconv)) != NULL) cConv++

/* Allocate a buffer for the string handles. */

hconv = NULL;
aHsz = (HSZ *) LocalAlloc(LMEM_FIXED, cConv * sizeof (HSZ));

/* Copy the string handles to the buffer. */

pHsz = aHsz;

whi Il e ((hconv = DdeQueryNextServer(hconvLi st, hconv)) != NULL) {
DdeQueryConvInfo(hconv, Q D_SYNC, (PCONVINFO) &ci);
DdeKeepStringHandle(i dl nst, ci.hszSvcPartner);
*pHSz++ = ci.hszSvcPartner;

/* Use the handl es; converse with servers. */

/* Free the nmenory, and term nate conversations. */

LocalFree((HANDLE) aHsz);
DdeDisconnectList(hconvlLi st);

See Also

DdeConnect, DdeCreateStringHandle, DdeDisconnect, DdeDisconnectList, Ddel nitialize,
DdeQueryNextServer, CONVCONTEXT, XTYP_CONNECT

DdeCreateDataHandle (3.1)
#include <ddeml.h>

HDDEDATA DdeCreateDataHandle(idInst, |pvSrcBuf, cbinitData, offSrcBuf, hszltem, uFmt, afCmd)

DWORD idinst;

void FAR* |pvSrcBuf;

[* instance identifier */

* address of source buffer

/

DWORD chinitDatg;
* length of global memory object
/

DWORD offSrcBuf;
* offset from beginning of source buffer

/
HSZ hszltem;

* handle of item-name string

UINT uFmt;

* clipboard data format

/

UINT afCmd;

* creation flags
/

The DdeCreateDataHandle function creates a global memory object and fills the object with the data
pointed to by the IpvSrcBuf parameter. A dynamic data exchange (DDE) application uses this function
during transactions that involve passing data to the partner application.

Parameter
idInst

IpvSrcBuf
chinitData

offSrcBuf

hszltem

uFmt
afCmd

Returns

Description
Specifies the application-instance identifier obtained by a previous call to the
Ddelnitialize function.

Points to a buffer that contains data to be copied to the global memory object. If this
parameter isSNULL, no datais copied to the object.

Specifies the amount, in bytes, of memory to allocate for the global memory object. If
this parameter is zero, the |pvSrcBuf parameter isignored.

Specifies an offset, in bytes, from the beginning of the buffer pointed to by the
IpvSrcBuf parameter. The data beginning at this offset is copied from the buffer to the
global memory object.

Identifies the string that specifies the dataitem corresponding to the global memory
object. This handle must have been created by a previous call to the
DdeCreateStringHandle function. If the data handleisto be used in an
XTYP_EXECUTE transaction, this parameter must be set to NULL.

Specif@s the standard clipboard format of the data.

Specifies the creation flags. This parameter can be HDATA_APPOWNED, which
specifies that the server application that calls the DdeCreateDataHandle function will
own the data handle that this function creates. This makes it possible for the server to
share the data handle with multiple clientsinstead of creating a separate handle for each
request. If thisflag is set, the server must eventually free the shared memory object
associated with this handle by using the DdeFreeDataHandle function. If thisflag is not
set, after the data handle is returned by the server's DDE calTback function or used as a
parameter in another DDE Management Library function, the handle becomesinvalid in
the application that creates the handle.

Thereturn value is adata handle if the function is successful. Otherwise, it is NULL.

Errors

Use the DdeGetL astError function to retrieve the error value, which may be one of the following:

DMLERR_DLL_NOT_INITIALIZED
DMLERR_INVALIDPARAMETER
DMLERR_MEMORY_ERROR
DMLERR_NO_ERROR

Comments
Any locations in the global memory object that are not filled are undefined.

After adata handle has been used as a parameter in another DDEML function or has been returned by a
DDE callback function, the handle may be used only for read access to the global memory object
identified by the handle.

If the application will be adding data to the global memory object (using the DdeAddData function) so that
the object exceeds 64K in length, then the application should specify atotal [ength (cbinitData +
offSrcData) that is equal to the anticipated maximum length of the object. This avoids unnecessary data
copying and memory reallocation by the system.

Example
The following example processes the XTYP_WILDCONNECT transaction by returning a data handle to
an array of HSZPAIR structures--one for each topic name supported:

#define CTOPICS 2

UINT type;

UINT fnt;

HSZPAIR ahp[(CTOPICS + 1)];
HSZ ahszTopi cLi st[CTOPI CS] ;
HSZ hszServ, hszTopi c;

WORD i, j;

if (type == XTYP_WILDCONNECT) {

/*
* Scan the topic list, and create array of HSZPAIR
* structures. -
*/

i =0
for (i = 0; i < CTOPICS; i++)
if (hszTopic == (HSZ) NULL ||
hszTopi ¢ == ahszTopicList[i]) {
ahp[]].hszSvc = hszServ;
ahp[] ++] . hszTopi ¢ = ahszTopicList[i];
}

}

/*
* End the list with an HSZPAIR structure that contains NULL
* string handles as its menbers.
*/

ahp[j].hszSvc = NULL;
ahp[] ++] . hszTopi ¢ = NULL;

/*
Return a handle to a global nenory object containing the
* HSZPAIR structures.

*/
return DdeCreat eDat aHandl e(
idlnst,/* instance identifier*/
&ahp, [* points to HSZPAIR array */
sizeof (HSz) * j, /* Tength of the array*/
0,/* start at the beginning */
NULL, /* no itemnane string*/
fnt, /[* return the sane format */
0); /* let the systemown it */

}

See Also

DdeAccessData, DdeFreeDataHandle, DdeGetData, Ddelnitialize, XTYP_EXECUTE

DdeCreateStringHandle (3.1)
#include <ddeml.h>

HSZ DdeCreateStringHandle(idInst, IpszString, codepage)

DWORD idInst; [* instance identifier */

LPCSTR lpszString; /*
address of null-terminated string

/

int codepage;

* code page

/

The DdeCreateStringHandle function creates a handle that identifies the string pointed to by the IpszString
parameter. A dynamic data exchange (DDE) client or server application can pass the string handle as a
parameter to other DDE Management Library functions.

Parameter Description

idinst Specifies the application-instance identifier obtained by a previous call to the
Ddelnitialize function.

IpszString Points to a buffer that contains the null-terminated string for which ahandleisto be
created. This string may be any length.

codepage Specifies the code page used to render the string. This value should be either

CP_WINANSI or the value returned by the GetK BCodePage function. A value of zero
implies CP_WINANS!.

Returns
Thereturn valueis a string handle if the function is successful. Otherwise, itisNULL.

Errors
Use the DdeGetL astError function to retrieve the error value, which may be one of the following:

DMLERR_INVALIDPARAMETER
DMLERR_NO_ERROR
DMLERR_SYS ERROR

Comments

Two identical strings always correspond to the same string handle. String handles are unique across all
tasks that use the DDEML. That is, when an application creates a handle for a string and another
application creates a handle for an identical string, the string handles returned to both applications are
identical--regardless of case.

The value of astring handleis not related to the case of the string it identifies.

When an application has either created a string handle or received one in the callback function and has
used the DdeK eepStringHandle function to keep it, the application must free that string handle when it is
no longer needed.

An instance-specific string handle is not mappable from string handle to string to string handle again. This
is shown in the following example, in which the DdeQueryString function creates a string from a string
handle and then DdeCreateStringHandl e creates a string handle from that string, but the two handles are
not the same:

DWORD i dl nst ;

DWORD cb;

HSZ hszl nst, hszNew;
PSZ pszlnst;

DdeQueryString(idlnst, hszlnst, pszlnst, cbh, CP_WNANSI);
hszNew = DdeCreat eStringHandl e(idlnst, pszlnst, CP_WNANSI);
/* hszNew !'= hszinst | */

Example

The following example creates a service-name string handle and a topic-name string handle and then
attempts to establish a conversation with a server that supports the service name and topic name. If the
attempt fails, the example obtains an error value identifying the reason for the failure.

DWORD i dl nst = OL;
HSZ hszd ock;
HSZ hszTi ne;
HCONV hconv;
UINT uError;

hszCl ock = DdeCreateStringHandl e(i dlnst, "C ock", CP_W NANSI);
hszTi nme = DdeCreateStringHandl e(idlnst, "Time", CP_WNANSI);

if ((hconv = DdeConnect(
i dl nst, [* instance identifier */

hszd ock, /* server's service nanme */
hszTine, [/* topic name*/
NULL)) == NULL) { /* use default CONVCONTEXT */
ukError = DdeGetLastError(idlnst);
}
See Also

DdeA ccessData, DdeCmpStringHandles, DdeFreeStringHandle, Ddel nitialize, DdeK eepStringHandl e,
DdeQueryString

DdeDisconnect (3.1)
#include <ddeml.h>

BOOL DdeDisconnect(hConv)
HCONYV hConv; /* handle of conversation */

The DdeDisconnect function terminates a conversation started by either the DdeConnect or
DdeConnectList function and invalidates the given conversation handle.

Parameter Description

hConv I dentifies the active conversation to be terminated.

Returns

The return value is nonzero if the function is successful. Otherwise, it is zero.
Errors

Use the DdeGetL astError function to retrieve the error value, which may be one of the following:

DMLERR_DLL_NOT_INITIALIZED
DMLERR_NO_CONV_ESTABLISHED
DMLERR_NO_ERROR

Comments

Any incompl ete transactions started before calling DdeDisconnect are immediately abandoned. The
XTYP_DISCONNECT transaction typeis sent to the dynamic data exchange (DDE) callback function of
the partner in the conversation. Generally, only client applications need to terminate conversations.

See Also
DdeConnect, DdeConnectList, DdeDisconnectList, XTYP_DISCONNECT

DdeDisconnectL.ist (3.1)
#include <ddeml.h>

BOOL DdeDisconnectList(hConvList)
HCONVLIST hConvList; /* handle of conversation list */

The DdeDisconnectList function destroys the given conversation list and terminates all conversations
associated with thelist.

Parameter Description

hConvList | dentifies the conversation list. This handle must have been created by a previous call to
the DdeConnectList function.

Returns

The return value is nonzero if the function is successful. Otherwise, it is zero.

Errors

Use the DdeGetL astError function to retrieve the error value, which may be one of the following:

DMLERR_DLL_NOT_INITIALIZED
DMLERR_INVALIDPARAMETER
DMLERR_NO_ERROR

Comments
An application can use the DdeDisconnect function to terminate individua conversationsin thelist.

See Also
DdeConnect, DdeConnectL ist, DdeDisconnect, XTYP_DISCONNECT

DdeEnableCallback (3.1)
#include <ddeml.h>

BOOL DdeEnableCallback(idInst, hConv, uCmd)

DWORD idInst; [* instance identifier */

HCONV hConv; /* handle of
conversation

UINT uCmd;
* the enable/disable function code
/

The DdeEnableCallback function enables or disables transactions for a specific conversation or for all
conversations that the calling application currently has established.

After disabling transactions for a conversation, the system places the transactions for that conversation in a
transaction queue associated with the application. The application should reenable the conversation as
soon as possible to avoid losing queued transactions.

Parameter Description
idinst Specifies the application-instance identifier obtained by a previous call to the
Ddelnitialize function.
hConv | dentifies the conversation to enable or disable. If this parameter isNULL, the function
affects all conversations.
uCmd Specifies the function code. This parameter can be one of the following values:
Value Meaning
EC ENABLEALL Enables all transactions for the specified conversation.
EC_ENABLEONE Enables one transaction for the specified conversation.
EC_DISABLE Disables all blockable transactions for the specified
conversation.
A server application can disable the following transactions:
XTYP_ADVSTART
XTYP ADVSTOP
XTYP EXECUTE P:EXECU”E
XTYP_REQUEST
A client application can disable the following transactions:
XTYP_ADVDATA
XTYP_XACT_COMPLETE
Returns
The return value is nonzero if the function is successful. Otherwise, it is zero.
Errors

Use the DdeGetL astError function to retrieve the error value, which may be one of the following:

DMLERR_DLL_NOT_INITIALIZED
DMLERR_NO_ERROR
DMLERR_INVALIDPARAMETER

Comments

An application can disable transactions for a specific conversation by returning CBR_BLOCK from its
dynamic data exchange (DDE) callback function. When the conversation is reenabled by using the
DdeEnableCallback function, the system generates the same transaction as was in process when the
conversation was disabled.

See Also
DdeConnect, DdeConnectList, DdeDisconnect, Ddel nitialize

DdeFreeDataHandle (3.1)
#include <ddeml.h>

BOOL DdeFreeDataHandle(hData)
HDDEDATA hData; /* handle of global memory object */

The DdeFreeDataHandl e function frees a global memory object and deletes the data handle associated
with the object.

Parameter Description

hData I dentifies the global memory object to be freed. This handle must have been created by a
previous call to the DdeCreateDataHandl e function or returned by the
DdeClientTransaction function.

Returns
The return value is nonzero if the function is successful. Otherwise, it is zero.

Errors
Use the DdeGetL astError function to retrieve the error value, which may be one of the following:

DMLERR_INVALIDPARAMETER
DMLERR_NO_ERROR

Comments

An application must call DdeFreeDataHandle under the following circumstances:
. To free aglobal memory object that the application allocated by calling the DdeCreateDataHandle
function if the object's data handle was never passed by the application to another Dynamic Data Exchange
Management Library (DDEML) function

. To free a global memory object that the application alocated by specifying the
HDATA_APPOWNED flag in acall to the DdeCreateDataHandl e function
. To free aglobal memory object whose handle the application received from the

DdeClientTransaction function

The system automatically frees an unowned object when its handle is returned by a dynamic data
exchange (DDE) callback function or used as a parameter in a DDEML function.

Example

The following example creates a global memory object containing help information, then frees the object
after passing the object's handle to the client application:

DWORD i dl nst ;
HSZ hszltem
HDDEDATA hDat aHel p;
char szDdeHel p[] = "DDEM. test server help:\r\n"\
"\t The ' Server' (service) and 'Test' (topic) nanes nay change.\r\
n"\
"Itens supported under the 'Test' topic are:\r\n"\
"\t Count:\tThis value increnents on each data change.\r\n"\
"\t Rand:\t This value is changed after each data change. \r\n"\
"\t\tln Runaway node, the above itenms change after a request.\r\
n"\

ge:\tThis is randomy generated text data >64k that the\r\n"\
test client can verify. It is recalculated on each\r\n"\
request. This also verifies huge data poked or executed\r\n"\
fromthe test client.\r\n"\

Hel p:\tThis help information. This data is APPOANED.\r\n";

/* Create gl obal menory object containing help information. */

if (!hDataHel p) {
hDat aHel p = DdeCr eat eDat aHandl e(i dl nst, szDdeHel p,
strlen(szDdeHel p) + 1, 0, hszltem CF_TEXT, HDATA APPOMNED) ;

}

/* Pass help information to client application. */

/* Free the global nmenory object. */
i f (hDataHel p)
DdeFr eeDat aHandl e(hDat aHel p) ;

See Also
DdeA ccessData, DdeCreateDataHandle

DdeFreeStringHandle (3.1)
#include <ddeml.h>

BOOL DdeFreeStringHandle(idInst, hsz)
DWORD idinst; [* instance identifier */
HSZ hsz; /* handle of string */

The DdeFreeStringHandl e function frees a string handle in the calling application.

Parameter Description

idinst Specifies the application-instance identifier obtained by a previous call to the
Ddelnitialize function.

hsz I dentifies the string handle to be freed. This handle must have been created by a
previous call to the DdeCreateStringHandle function.

Returns

The return value is nonzero if the function is successful. Otherwise, it is zero.

Comments

An application can free string handles that it creates with the DdeCreateStringHandle function but should
not free those that the system passed to the application's dynamic data exchange (DDE) callback function
or those returned in the CONVINFO structure by the DdeQueryConvlinfo function.

Example
The following example frees string handles during the XTYP_DISCONNECT transaction:

DWORD i dl nst = OL;
HSZ hszd ock;

HSZ hszTi ne;

HSZ hszNow;

UINT type;

if (type == XTYP_DISCONNECT) {

DdeFreeStri ngHandl e(i dl nst, hszd ock);
DdeFreeSt ri ngHandl e(i dl nst, hszTinme);
DdeFreeSt ri ngHandl e(i dl nst, hszNow) ;

return (HDDEDATA) NULL;

See Also
DdeCmpStringHandles, DdeCreateStringHandle, Ddel nitialize, DdeK eepStringHandle, DdeQueryString

DdeGetData (3.1)
#include <ddeml.h>

DWORD DdeGetData(hData, pDest, cbMax, offSrc)

HDDEDATA hData; /* handle of global memory object */
void FAR* pDest; /* address of
destination buffer

/

DWORD cbMax;

* amount of datato copy

/

DWORD offSrc;

* offset to beginning of data

/

The DdeGetData function copies data from the given global memory object to the specified local buffer.

Parameter Description

hData | dentifies the global memory object that contains the data to copy.

pDest Points to the buffer that receives the data. If this parameter is NULL, the DdeGetData
function returns the amount, in bytes, of data that would be copied to the buffer.

cbMax Specifies the maximum amount, in bytes, of datato copy to the buffer pointed to by the
BDesDt é)érameter. Typically, this parameter specifies the length of the buffer pointed to

y pLESL.
offSrc Specifies an offset within the global memory object. Data is copied from the object

beginning at this offset.

Returns
If the pDest parameter points to a buffer, the return value isthe size, in bytes, of the memory object
associated with the data handle or the size specified in the cbMax parameter, whichever islower.

If the pDest parameter is NULL, the return valueis the size, in bytes, of the memory object associated
with the data handle.

Errors
Use the DdeGetL astError function to retrieve the error value, which may be one of the following:

DMLERR_DLL_NOT_INITIALIZED
DMLERR_INVALID HDDEDATA
DMLERR_INVALIDPARAMETER
DMLERR_NO_ERROR

Example
The following example copies data from a global memory object to alocal buffer and then fillsthe TIME
structure with data from the buffer:

HDDEDATA hbDat a;
char szBuf[32];

typedef struct {
i nt hour;
int mnute;
i nt second;
} TIME;

DdeCet Dat a(hDat a, (LPBYTE) szBuf, 32L, OL);
sscanf (szBuf, "%l: %: %", &nTi ne. hour, &nTi ne.m nute,
&nTi me. second) ;

See Also
DdeA ccessData, DdeCreateDataHandl e, DdeFreeDataHandle

DdeGetL astError (3.1)
#include <ddeml.h>

UINT DdeGetL astError(idlnst)
DWORD idinst;

/* instance identifier

The DdeGetL astError function returns the most recent error value set by the failure of a Dynamic Data
Exchange Management Library (DDEML) function and resets the error value to DMLERR_NO_ERROR.

Parameter Description

idinst Specifies the application-instance identifier obtained by a previous call to the
Ddelnnitialize function.

Returns

Thereturn value is the last error value. Following are the possible DDEML error values:

Value
DMLERR_ADVACKTIMEOUT

DMLERR _BUSY
DMLERR_DATAACKTIMEOUT

DMLERR_DLL_NOT_INITIALIZED

DMLERR_DLL_USAGE

DMLERR_EXECACKTIMEOUT

DMLERR_INVALIDPARAMETER

DMLERR_LOW_MEMORY

DMLERR_MEMORY_ERROR

DMLERR _NO_CONV_ESTABLISHED
DMLERR_NOTPROCESSED
DMLERR_POKEACKTIMEOUT

DMLERR_POSTMSG_FAILED
DMLERR_REENTRANCY

Meaning
A request for a synchronous advise transaction has
timed out.
The response to the transaction caused the
DDE_FBUSY hit to be set.
A request for a synchronous data transaction has timed
out.
A DDEML function was called without first calling the
DdeTnitialize function, or an invalid instance identifier
was passed to a DDEML function.
An application initialized as APPCLASS MONITOR
has attempted to perform a DDE transaction, or an
application initialized as APPCMD_CLIENTONLY has
attempted to perform server transactions.
A reguest for a synchronous execute transaction has
timed out.
A parameter failed to be validated by the DDEML.
Some of the possible causes are as follows:
The application used a data handle initialized with
adifferent item-name handle than that required by
the transaction.
The application used a data handle that was
initialized with a different clipboard data format
than that required by the transaction.
The application used a client-side conversation
handle with a server-side function or vise versa.
The application used a freed data handle or string
handle.
More than one instance of the application used the
same object.
A DDEML application has created a prolonged race
condition (where the server application outruns the
client), causing large amounts of memory to be
consumed.
A memory allocation failed.
A client's attempt to establish a conversation has failed.
A transaction failed.
A request for a synchronous poke transaction has timed
out.
Aninternal call to the PostM essage function has failed.
An application instance with a synchronous transaction
aready in progress attempted to initiate another
synchronous transaction, or the DdeEnableCallback

function was called from within a DDEML callback
function.
DMLERR_SERVER_DIED A server-side transaction was attempted on a
conversation that was terminated by the client, or the
server terminated before completing a transaction.

DMLERR_SYS ERROR Aninternal error has occurred in the DDEML.
DMLERR_UNADVACKTIMEOUT A request to end an advise transaction has timed out.
DMLERR_UNFOUND_QUEUE_ID Aninvalid transaction identifier was passed to a

DDEML function. Once the application has returned
froman XTYP_XACT_COMPLETE callback, the
transaction identifier Tor that callback is no longer valid.

Example
The following example calls the DdeGetL astError function if the DdeCreateDataHandle function fails:

DWORD i dl nst ;

HDDEDATA hddeMyDat a;
HSZPAIR ahszp[2] ;

HSZ hszd ock, hszTi ne;

/* Create string handles. */

hszC ock = DdeCreateStringHandle(idl nst, (LPSTR) "C ock",
CP_W NANST);

hszTi ne = DdeCreateStringHandle(i dl nst, (LPSTR) "Tinme",
CP_W NANST);

/* Copy handl es to an HSZPAIR structure. */

ahszp[0] . hszSvc = hszd ock;
ahszp[0] . hszTopi c = hszTi e;
ahszp[1]. hszSvc = (HSZ) NULL;
ahszp[1] . hszTopic = (HSZ) NULL;

/* Create a gl obal nmenory object. */

hddeMyDat a = DdeCreateDataHandle(i dl nst, ahszp,
si zeof (ahszp), 0, NULL, CF_TEXT, 0);
if (hddeMyData == NULL)

/-k
* Pass error value to application-defined error handling
* function.
*/

Handl eError (DdeGet Last Error (i dlnst));

See Also
Ddelnitialize

Ddelnitialize (3.1)

#include <ddeml.h>

UINT Ddelnitialize(Ipidinst, pfnCallback, afCmd, uRes)

DWORD FAR* Ipidinst; [* address of instance identifier */

PFNCALLBACK pfnCallback;
* address of callback function

/

DWORD afCmd;

* array of command and filter flags

/

DWORD uRes,

* reserved
/

The Ddel nitialize function registers an application with the Dynamic Data Exchange Management Library
(DDEML). An application must call this function before calling any other DDEML function.

Parameter
[pidinst

pfnCallback

afCmd

Description

Points to the application-instance identifier. At initialization, this parameter should point
to OL. If the function is successful, this parameter points to the instance identifier for the
application. This value should be passed as the idInst parameter in all other DDEML
functions that requireit. If an application uses multiple instances of the DDEML

dynamic link library, the application should provide a different callback function for
each instance.

If Ipidinst points to a nonzero value, thisimplies areinitialization of the DDEML. In
this case, Ipidinst must point to avalid application-instance identifier.

Points to the application-defined DDE callback function. This function processes DDE
transactions sent by the system. For more information, see the description of the
DdeCallback callback function.

Specifies an array of APPCMD_and CBF_ flags. The APPCMD _ flags provide special
instructions to the Ddelnitialize function. The CBF_ flags set filters that prevent specific
types of transactions from reaching the callback function. Using these flags enhances the
performance of a DDE application by eliminating unnecessary callsto the callback
function.

This parameter can be a combination of the following flags:

Flag Meaning

APPCLASS MONITOR Makes it possible for the application to
monitor DDE activity in the system.
Thisflagisfor use by DDE
monitoring applications. The
application specifies the types of DDE
activity to monitor by combining one
or more monitor flags with the
APPCLASS_MONITOR flag. For
details, see the following Comments

section.
APPCLASS STANDARD Registers the application as a standard
(nonmonitoring) DDEML application.
APPCMD_CLIENTONLY Prevents the application from

becoming a server ina DDE
conversation. The application can be
only aclient. Thisflag reduces
resource consumption by the DDEML.
It includes the functionality of the
CBF_FAIL_ALLSVRXACTIONS
flag.

APPCMD_FILTERINITS Prevents the DDEML from sending
XTYP_CONNECT and
XTYP_WILDCONNECT transactions
to the application until the application

CBF_FAIL_ALLSVRXACTIONS

CBF_FAIL_ADVISES

CBF_FAIL_CONNECTIONS

CBF_FAIL_EXECUTES

CBF_FAIL_POKES

CBF_FAIL_REQUESTS

CBF_FAIL_SELFCONNECTIONS

CBF_SKIP_ALLNOTIFICATIONS

has created its string handles and
registered its service names or has
turned off filtering by a subsequent
call to the DdeNameService or
Ddelnitialize function. Thisflagis
always in effect when an application
calls Ddelnitialize for thefirst time,
regardless of whether the application
specifies this flag. On subsequent calls
to Ddelnitialize, not specifying this
flag turns off the application’'s service-
name filters; specifying this flag turns
on the application's service-name
filters.

Prevents the callback function from
receiving server transactions. The
system will return
DDE_FNOTPROCESSED to each
client that sends a transaction to this
application. Thisflag is equivaent to
combining all CBF_FAIL_ flags.
Prevents the callback function from
receiving XTYP_ADVSTART and
XTYP_ADVSTOP transactions. The
System will return
DDE_FNOTPROCESSED to each
client that sends an
XTYP_ADVSTART or
XTYP_ADVSTOP transaction to the
server.

Prevents the callback function from
receiving XTYP_CONNECT and

XTYP WILDCONNECT transactions.
Prevents the callback function from
receiving XTYP_EXECUTE
transactions. The system will return
DDE_FNOTPROCESSED to aclient
that sendsan XTYP_EXECUTE
transaction to the server.

Prevents the callback function from
receiving XTY P_POKE transactions.
The system will refurn
DDE_FNOTPROCESSED to aclient
that sendsan XTYP_POKE
transaction to the server.

Prevents the callback function from
receiving XTYP_REQUEST
transactions. The system will return
DDE_FNOTPROCESSED to aclient
that sendsan XTYP_REQUEST
transaction to the server.

Prevents the callback function from
receiving XTYP_CONNECT
transactions from the application's
own instance. This prevents an
application from establishing a DDE
conversation with its own instance. An
application should use thisflag if it
needs to communicate with other
instances of itself but not with itself.

Prevents the callback function from
receiving any notifications. Thisflagis

equivalent combining all CBF_SKIP_
flags.
CBF_SKIP_CONNECT_CONFIRMS Prevents the callback function from
receiving
XTYP_CONNECT_CONFIRM
notifications.
CBF_SKIP_DISCONNECTS Prevents the callback function from
receiving XTYP_DISCONNECT
notifications.
CBF_SKIP_REGISTRATIONS Prevents the callback function from
receiving XTYP_REGISTER
notifications.
CBF_SKIP_UNREGISTRATIONS Prevents the callback function from
receiving XTYP_UNREGISTER
notifications.

uRes Reserved; must be set to OL.

Returns
Thereturn value is one of the following:

DMLERR DLL_USAGE
DMLERR_INVALIDPARAMETER
DMLERR_NO_ERROR
DMLERR_SYS ERROR

Comments
An application that uses multiple instances of the DDEML must not pass DDEML objects between
instances.

A DDE monitoring application should not attempt to perform DDE (establish conversations, issue
transactions, and so on) within the context of the same application instance.

A synchronous transaction will fail withaDMLERR_REENTRANCY error if any instance of the same
task has a synchronous transaction already in progress.

A DDE monitoring application can combine one or more of the following monitor flags with the

APPCLASS MONITOR flag to specify the types of DDE activity to monitor:

Flag Meaning

MF_CALLBACKS Notifies the callback function whenever atransaction is sent to any DDE callback
function in the system. -

MF_CONV Notifies the callback function whenever a conversation is established or
terminated.

MF_ERRORS Notifies the callback function whenever a DDE error occurs.

MF_HSZ_INFO Notifies the callback function whenever a DDE application creates, frees, or

increments the use count of a string handlé or whenever a string handleis freed
asaresult of acall to the DdeUninitialize function.

MF_LINKS Notifies the callback function whenever an advise loop is started or ended.

MF_POSTMSGS Notifies the callback function whenever the system or an application posts a
DDE message.

MF_SENDMSGS Notifies the callback function whenever the system or an application sends a
DDE message.

Example

The following example obtains a procedure-instance address for a DDE callback function, then initializes
the application with the DDEML.

DWORD i dl nst = OL;
FARPROC | pDdePr oc;

| pDdePr oc = MakeProclnstance((FARPROC) DDECallback, hlnst);
if (Ddelnitialize((LPDWORD) & dlnst, (PFNCALLBACK) | pDdeProc,
APPCVD_CLI ENTONLY, OL))
return FALSE;

See Also
DdeClientTransaction, DdeConnect, DdeCreateDataHandle, DdeEnableCallback, DdeNameService,
DdePostAdvise, DdeUninitialize

DdeKeepStringHandle (3.1)
#include <ddeml.h>

BOOL DdeKeepStringHandle(idinst, hsz)
DWORD idInst; [* instance identifier */
HSZ hsz; /* handle of string */

The DdeK eepStringHandl e function increments the usage count (increases it by one) associated with the
given handle. This function makes it possible for an application to save a string handle that was passed to
the application's dynamic data exchange (DDE) callback function. Otherwise, a string handle passed to the
callback function is deleted when the callback function returns.

Parameter Description

idinst Specifies the application-instance identifier obtained by a previous call to the
Ddelnitialize function.

hsz | dentifies the string handle to be saved.

Returns

The return value is nonzero if the function is successful. Otherwise, it is zero.

Example

The following example is a portion of a DDE callback function that increases the usage count and saves a
local copy of two string handles:

HSZ hsz1;

HSZ hsz2;

stati c HSZ hszServer Base;
static HSZ hszServerlnst;
DWORD i dl nst ;

case XTYP_REGISTER:

/* Keep the handles for later use. */

DdeKeepSt ri ngHandl e(i dl nst, hszl);
DdeKeepSt ri ngHandl e(i dl nst, hsz2);
hszServerBase = hszl;
hszServerlnst = hsz2;

/* Finish processing the transaction. */

See Also
DdeCreateStringHandle, DdeFreeStringHandle, Ddel nitialize, DdeQueryString

DdeNameService (3.1)
#include <ddeml.h>

HDDEDATA DdeNameService(idinst, hsz1, hszRes, amed)

DWORD idInst; /* instance identifier

HSZ hsz1, /* handle of service-
name string

HSZ hszRes;

* reserved

/

UINT afCmd;

* service-name flags
/

The DdeNameService function registers or unregisters the service names that a dynamic data exchange
(DDE) server supports. This function causes the system to send XTYP_REGISTER or
XTYP_UNREGISTER transactions to other running DDE Management Library (DDEML) client
applications.

A server application should call this function to register each service name that it supports and to
unregister names that it previously registered but no longer supports. A server should also cal this
function to unregister its service names just before terminating.

Parameter Description

idinst Specifies the application-instance identifier obtained by a previous call to the
Ddelnitialize function.

hsz1 Identifies the string that specifies the service name that the server is registering or

unregistering. An application that is unregistering all of its service names should set this
parameter to NULL.

hszRes Reserved; should be set to NULL.
afCmd Specifies the service-name flags. This parameter can be one of the following values:

Vaue Meaning

DNS REGISTER Registers the given service name.

DNS _UNREGISTER Unregisters the given service name. If the hsz1 parameter
isNULL, all service names registered by the server will be
unregistered.

DNS FILTERON Turns on service-name initiation filtering. Thisfilter

prevents a server from receiving XTYP_CONNECT
transactions for service names that it has not registered.
Thisisthe default setting for thisfilter.
If aserver application does not register any service names,
the application cannot receive XTYP_WILDCONNECT
transactions.
DNS FILTEROFF Turns off service-name initiation filtering. If thisflagis
set, the server will receive an XTYP_CONNECT
transaction whenever another DDE application calls the
DdeConnect function, regardless of the service name.

Returns
The return value is nonzero if the function is successful. Otherwise, it is zero.

Errors
Use the DdeGetL astError function to retrieve the error value, which may be one of the following:

DMLERR_DLL_NOT_INITIALIZED
DMLERR_DLL_USAGE
DMLERR_INVALIDPARAMETER
DMLERR_NO_ERROR

Comments

The service name identified by the hsz1 parameter should be a base name (that is, the name should contain
no instance-specific information). The system generates an instance-specific name and sends it along with

the base name during the XTYP_REGISTER and XTYP_UNREGISTER transactions. The receiving
applications can then connect to the specific application instance.

Example
The following example initializes an application with the DDEML, creates frequently used string handles,
and registers the application's service name:

HSZ hszd ock;

HSZ hszTi ne;

HSZ hszNow;
HINSTANCE hi nst;
DWORD idlnst = OL;
FARPROC | pDdePr oc;

/* Initialize the application for the DDEML. */

| pDdePr oc = MakeProclnstance((FARPROC) DdeCallback, hinst);
if (!Ddelnitialize((LPDWORD) & dlnst, (PFNCALLBACK) | pDdeProc,
APPCVD_FTLTERTNI TS | CBF_FAI L_EXECUTES, O0L)) {

/* Create frequently used string handles. */
hszTi ne = DdeCreateStringHandle(idlinst, "Tinme", CP_WNANSI);

hszNow = DdeCreateStringHandle(i dlnst, "Now', CP_WNANSI);
hszC ock = DdeCreateStringHandle(idl nst, "C ock", CP_W NANSI);

/* Register the service name. */
DdeNaneServi ce(idlnst, hszC ock, (HSZ) NULL, DNS REQ STER);

}
See Also
DdeConnect, DdeConnectList, Ddelnitialize, XTYP_REGISTER, XTYP_UNREGISTER

DdePostAdvise (3.1)
#include <ddeml.h>

BOOL DdePostAdvise(idinst, hszTopic, hszltem)

DWORD idInst; [* instance identifier */

HSZ hszTopic; /* handle of topic-name
string

/

HSZ hszltem;

* handle of item-name string

/

The DdePostAdvise function causes the system to send an XTYP_ADVREQ transaction to the calling
(server) application's dynamic data exchange (DDE) callback function for each client that has an advise
loop active on the specified topic or item name pair. A server application should call this function
whenever the data associated with the topic or item name pair changes.

Parameter Description

idinst Specifies the application-instance identifier obtained by a previous call to the
Ddelnitialize function.

hszTopic Identifies a string that specifies the topic name. To send notifications for all topics with
active advise loops, an application can set this parameter to NULL.

hszltem Identifies a string that specifies the item name. To send notifications for al itemswith
active advise loops, an application can set this parameter to NULL.

Returns

The return value is nonzero if the function is successful. Otherwise, it is zero.

Errors

Use the DdeGetL astError function to retrieve the error value, which may be one of the following:

DMLERR_DLL_NOT_INITIALIZED
DMLERR_DLL_USAGE
DMLERR_NO_ERROR

Comments

A server that has nonenumerable topics or items should set the hszTopic and hszltem parameters to NULL
so that the system will generate transactions for all active advise loops. The server's DDE callback
function returns NULL for any advise loops that do not need to be updated.

If aserver calls DdePostAdvise with a topic/item/format name set that includes the set currently being
handled in a XTYP_ADVREQ callback, a stack overflow may result.

Example

The following example calls the DdePostAdvise function whenever the time changes:

typedef struct { /* tm?*/
i nt hour;
int m nute;
i nt second;

} TINE;

TI ME t nTi ne;
DWORD i dl nst ;
HSZ hszTi ne;
HSZ hszNow;

TI ME t nCur Ti ne;

/* Fill tnCurTine with the current tinme. */

/* Check for any change in second, mnute, or hour. */

if ((tmCurTime.second != tnili ne.second) ||
(tnCurTime. minute !'= tmlime. mnute) ||
(t nCur Ti me. hour I'= tnli me. hour)) {

/* Send the current tine to the clients. */

DdePost Advi se(idl nst, hszTime, hszNow);

See Also
Ddelnitialize, XTYP_ADVREQ

DdeQueryConvinfo (3.1)
#include <ddeml.h>

UINT DdeQueryConvinfo(hConv, idTransaction, |pConvinfo)

HCONYV hConv; /* handle of conversation */
DWORD idTransaction;

* transaction identifier

CONVINFO FAR* IpConvlinfo;
* address of structure with conversation data
/

The DdeQueryConvlinfo function retrieves information about a dynamic data exchange (DDE) transaction
and about the conversation in which the transaction takes place.

Parameter Description
hConv | dentifies the conversation.
idTransaction Specifies the transaction. For asynchronous transactions, this parameter should be a

transaction identifier returned by the DdeClientTransaction function. For synchronous
transactions, this parameter should be QITD_SYNC.

IpConvinfo Points to the CONVINFO structure that will receive information about the transaction
and conversafion. The cb member of the CONVINFO structure must specify the length
of the buffer alocated for the structure.

Returns
The return value is the number of bytes copied into the CONVINFO structure, if the function is successful.
Otherwise, it is zero.

Errors
Use the DdeGetL astError function to retrieve the error value, which may be one of the following:

DMLERR_DLL_NOT_INITIALIZED
DMLERR_NO_CONV_ESTABLISHED
DMLERR_NO_ERROR
DMLERR_UNFOUND_QUEUE_ID

Example
The following example fillsa CONVINFO structure with information about a synchronous conversation
and then obtains the names of the partner application and topic:

DWORD i dl nst ;

HCONV hConv;

CONVINFO ci ;

WORD WErTr or;

char szSvcPartner[32];
char szTopi c[32];

DWORD cchServ, cchTopic;

if (!DdeQueryConvlnfo(hConv, QD SYNC, &ci))
WError = DdeGetLastError(idlnst);

el se {
cchServ = DdeQueryString(idlnst, ci.hszSvcPartnner,
(LPSTR) &szSvcPartner, sizeof(szSvcPartner),
CP_W NANSI) ;
cchTopi ¢ =DdeQueryString(i dlnst, ci.hszTopic,
(LPSTR) &szTopic, sizeof(szTopic),
CP_W NANSI) ;

}

See Also
DdeConnect, DdeConnectList, DdeQueryNextServer, CONVINFO

DdeQueryNextServer (3.1)

#include <ddeml.h>
HCONV DdeQueryNextServer(hConvList, hConvPrev)
HCONVLIST hConvList; /* handle of conversation list */

HCONYV hConvPrev; /*
previous conversation handle

The DdeQueryNextServer function obtains the next conversation handle in the given conversation list.

Parameter Description

hConvList I dentifies the conversation list. This handle must have been created by a previous call to
the DdeConnectL ist function.

hConvPrev | dentifies the conversation handle previously returned by this function. If this parameter

isNULL, this function returns the first conversation handle in the list.

Returns
Thereturn value is the next conversation handle in the list if the list contains any more conversation
handles. Otherwise, itisNULL.

Example
The following example uses the DdeQueryNextServer function to count the number of conversation
handles in a conversation list and to copy the service-name string handles of the serversto alocal buffer:

HCONVLI ST hconvList; /* conversation list */
DWORD i dl nst ; /* instance identifier*/

HSZ hszSystem /* Systemtopic */

HCONV hconv = NULL; [/* conversation handl e*/

CONVINFO ci ; /* hol ds conversation data */
UINT cConv = 0; /* count of conv. handles */
HSZ *pHsz, *aHsz; /[* point to string handl es */

/* Connect to all servers that support the Systemtopic. */

hconvLi st = DdeConnectList(idlnst, NULL, hszSystem NULL, NULL);

/* Count the number of handles in the conversation list. */

whil e ((hconv = DdeQueryNext Server (hconvLi st, hconv)) != NULL) cConv++

/* Allocate a buffer for the string handles. */

hconv = NULL;
aHsz = (HSZ *) LocalAlloc(LMEM_FIXED, cConv * sizeof (HSZ));

/* Copy the string handles to the buffer. */

pHsz = aHsz;

whil e ((hconv = DdeQuer yNext Server (hconvLi st, hconv)) != NULL) {
DdeQueryConvinfo(hconv, Q D_SYNC, (PCONVINFO) &ci);
DdeKeepStringHandle(i dl nst, ci.hszSvcPartner);
*pHSzZ++ = ci.hszSvcPartner;

—

/* Use the handl es; converse with servers. */

/* Free the nmenory, and term nate conversations. */

LocalFree((HANDLE) aHsz);
DdeDisconnectList(hconvlLi st);

See Also
DdeConnectList, DdeDisconnectList

DdeQueryString (3.1)
#include <ddeml.h>

DWORD DdeQueryString(idinst, hsz, Ipsz, cchMax, codepage)

DWORD idingt; [* instance identifier */

HSZ hsz; /* handle of string */
LPSTR Ipsz;

* address of destination buffer

/

DWORD cchMax;

* length of buffer

/

int codepage;
* code page
/

The DdeQueryString function copies text associated with a string handle into a buffer.

The string returned in the buffer is always null-terminated. If the string is longer than (cchMax - 1), only
thefirst (cchMax - 1) characters of the string are copied.

If the Ipsz parameter is NULL, this function obtains the length, in bytes, of the string associated with the
string handle. The length does not include the terminating null character.

Parameter Description

idinst Specifies the application-instance identifier obtained by a previous call to the
Ddelnitialize function.

hsz I dentifies the string to copy. This handle must have been created by a previous call to
the DdeCreateStringHandl e function.

Ipsz Points to a buffer that receives the string. To obtain the length of the string, this
parameter should be set to NULL.

cchMax Specifies the length, in bytes, of the buffer pointed to by the |psz parameter. If the string

islonger than (cchMax - 1), it will be truncated. If the Ipsz parameter is set to NULL,
this parameter isignored.

codepage Specifies the code page used to render the string. This value should be either
CP_WINANSI or the value returned by the GetK BCodePage function.

Returns

The return value is the length, in bytes, of the returned text (not including the terminating null character) if
the Ipsz parameter specified avalid pointer. The return value is the length of the text associated with the
hsz parameter (not including the terminating null character) if the Ipsz parameter specified aNULL
pointer. The return valueisNULL if an error occurs.

Example

The following example uses the DdeQueryString function to obtain a service name and topic name that a
server has registered:

UINT type;

HSZ hsz1;

HSZ hsz2;

char szBaseNane[16];
char szl nst Nane[16] ;

if (type == XTYP_REGISTER) {

/* Copy the base service nane to a buffer. */

DdeQueryString(idlnst, hszl, (LPSTR) &szBaseNane,
si zeof (szBaseNane), CP_W NANSI);

/* Copy the instance-specific service nanme to a buffer. */

DdeQueryString(idlnst, hsz2, (LPSTR) &szl nst Nane,

si zeof (szl nst Nanme), CP_W NANSI) ;
return (HDDEDATA) TRUE;

}

See Also
DdeCmpStringHandles, DdeCreateStringHandle, DdeFreeStringHandle, Ddel nitialize

DdeReconnect (3.1)
#include <ddeml.h>

HCONV DdeReconnect(hConv)
HCONYV hConv; /* handle of conversation to reestablish */

The DdeReconnect function alows a client Dynamic Data Exchange Management Library (DDEML)
application to attempt to reestablish a conversation with a service that has terminated a conversation with
the client. When the conversation is reestablished, the DDEML attempts to reestablish any preexisting
advise loops.

Parameter Description

hConv I dentifies the conversation to be reestablished. A client must have obtained the
conversation handle by a previous call to the DdeConnect function.

Returns
The return value is the handle of the reestablished conversation if the function is successful. The return
valueisNULL if the function fails.

Errors
Use the DdeGetL astError function to retrieve the error value, which may be one of the following:

DMLERR_DLL_NOT_INITIALIZED
DMLERR_INVALIDPARAMETER
DMLERR_NO_CONV_ESTABLISHED
DMLERR_NO_ERROR

Example
The following example shows the context within which an application should call the DdeReconnect
function:

HDDEDATA EXPENTRY DdeCallback(wType, wrFmt, hConv, hszl,
hsz2, hData, dwbDatal, dwData2)
WORD wType; [/* transaction type */

WORD wFnt ; /* clipboard format */

HCONV hConv; /* handle of the conversation */

HSZ hszi,; /* handl e of a string*/

HSZ hsz2; /* handl e of a string*/

HDDEDATA hDat a; /* handl e of a global nmenory object */
DWORD dwDat al; /* transaction-specific data */
DWORD dwDat aZ2; /* transaction-specific data */

BOOL f Aut oReconnect ;

switch (wlype) {
case XTYP_DISCONNECT:
i f (fAutoReconnect)
DdeReconnect (hConv); /* attenpt to reconnect */

return O;

/* Process other transactions. */
}
}
See Also
DdeConnect, DdeDisconnect

DdeSetUserHandle (3.1)
#include <ddeml.h>

BOOL DdeSetUserHandle(hConv,id, hUser)

HCONYV hConv; /* handle of conversation */

DWORD id; /* transaction identifier */
DWORD hUssr;

* gpplication-defined value

/

The DdeSetUserHandl e function associates an application-defined 32-bit value with a conversation handle
and transaction identifier. Thisis useful for smplifying the processing of asynchronous transactions. An
application can use the DdeQueryConvlinfo function to retrieve this value.

Parameter Description
hConv | dentifies the conversation.
id Specifies the transaction identifier of an asynchronous transaction. An application

should set this parameter to QID_SYNC if no asynchronous transaction isto be
associated with the hUser parameter.

hUser Identifies the value to associate with the conversation handle.
Returns

The return value is nonzero if the function is successful. Otherwise, it is zero.
Errors

Use the DdeGetL astError function to retrieve the error value, which may be one of the following:

DMLERR_DLL_NOT_INITIALIZED
DMLERR_INVALIDPARAMETER
DMLERR_NO_ERROR
DMLERR_UNFOUND_QUEUE_ID

See Also
DdeQueryConvinfo

DdeUnaccessData (3.1)
#include <ddeml.h>

BOOL DdeUnaccessData(hData)
HDDEDATA hData; /* handle of global memory object */

The DdeUnaccessData function frees a global memory object. An application must call this function when
it isfinished accessing the object.

Parameter Description

hData | dentifies the global memory object.

Returns

The return value is nonzero if the function is successful. Otherwise, it is zero.
Errors

Use the DdeGetL astError function to retrieve the error value, which may be one of the following:

DMLERR_DLL_NOT_INITIALIZED
DMLERR_INVALIDPARAMETER
DMLERR_NO_ERROR

Example
The following example obtains a pointer to a global memory object, uses the pointer to copy data from the
object to aloca buffer, and then uses the DdeUnaccessData function to free the object:

HDDEDATA hDat a;
LPBYTE | pszAdvi seDat a;
DWORD chDat aLen;
DWORD i ;

char szDat a[128];

| pszAdvi seDat a = DdeAccessData(hDat a, &chDat aLen);
for (i = 0; i < cbbDatalLen; 1++)

szData[i] = *| pszAdvi seDat a++;
DdeUnaccessDat a(hDat a) ;

See Also
DdeAccessData, DdeAddData, DdeCreateDataHandle, DdeFreeDataHandle

DdeUninitialize (3.1)
#include <ddeml.h>

BOOL DdeUninitialize(idinst)
DWORD idInst; /* instance identifier */

The DdeUninitialize function frees all Dynamic Data Exchange Management Library (DDEML) resources
associated with the calling application.

Parameter Description

idinst Specifies the application-instance identifier obtained by a previous call to the
Ddelnitialize function.

Returns

The return value is nonzero if the function is successful. Otherwise, it is zero.

Comments

The DdeUninitialize function terminates any conversations currently open for the application. If the
partner in a conversation failsto terminate its end of the conversation, the system may enter amodal |oop
while it waits for the conversation to terminate. A timeout period is associated with thisloop. If the
timeout period expires before the conversation has terminated, a message box appears that gives the user
the choice of waiting for another timeout period (Retry), waiting indefinitely (Ignore), or exiting the modal
loop (Abort).

An application should wait until its windows are no longer visible and its message loop has terminated
before calling this function.

See Also
DdeDisconnect, DdeDisconnectList, Ddelnitialize

DDE functions (3.1)
DdeAbandonTransaction Abandons an asynchronous transaction

DdeAccessData Accesses a DDE global memory object
DdeAddData Adds datato aDDE global memory object
DdeClientTransaction Begins a DDE datatransaction
DdeCmpStringHandles Comparestwo DDE string handles

DdeConnect Establishes a conversation with a server application
DdeConnectL ist Establishes multiple DDE conversations
DdeCreateDataHandle Creates a DDE data handle
DdeCreateStringHandle Creates a DDE string handle

DdeDisconnect Terminatésa DDE conversation

DdeDisconnectl ist Destroys a DDE conversation list
DdeEnableCallback Enables or disables one or more DDE conversations
DdeFreeDataHandle Frees agloba memory object
DdeFreeStringHandle Frees a DDE string handle

DdeGetData Copies datafrom a global memory object to a buffer
DdeGetl astError Returns an error value set by a DDEML function
Ddelnitialize Registers an application with the DDEML
DdeKeepStringHandle Increments the usage count for a String handle
DdeNameService Registers or unregisters a service name
DdePostAdvise Prompts a server to send advise datato a client
DdeQueryConvinfo Retrievesinformation about a DDE conversation
DdeQueryNextServer Obtains the next handle in a DDE conversation list
DdeQueryString Copies string-handle text into a buffer
DdeReconnect Reestablishes a DDE conversation
DdeSetUserHandle Associates a user-defined handle with a transaction
DdeUnaccessData Frees a DDE global memory object

DdeUninitialize Frees DDEML resources associated with an application

XTYP_ADVDATA (3.1)
#i ncl ude <ddeni . h>

XTYP_ADVDATA

hszTopi ¢ = hsz1;/* handl e of topic-nanme string */
hszltem = hsz2; /* handle of itemnane string */

hDat aAdvi se = hData; /* handl e of the advise data */

A client's DDE callback function can receive this transaction after the client has established an advise loop
with a server. This transaction informs the client that the value of the data item has changed.

Parameter Description

hszTopic Value of hszl. Identifies the topic name.

hszltem Vaue of hsz2. Identifies the item name.

hDataAdvise Value of hData. Identifies the data associated with the topic/item name pair. If the

client specified the XTYPF_NODATA flag when it requested the advise loop, this
parameter isNULL.
Returns

A DDE callback function should return DDE_FACK if it processes this transaction, DDE_FBUSY if itis
to0 busy to process this transaction, or DDE_FNOTPROCESSED if it denies this transaction.

Comments

An application need not free the data handl e obtained during this transaction. If the application needsto
process the data after the callback function returns, however, it must copy the data associated with the data
handle. An application can use the DdeGetData function to copy the data.

See Also

DdeClientTransaction, DdePostAdvise, XTYP_ADVREQ, XTYP_ADVSTART, XTYP_ADVSTOP

XTYP_ADVREQ (3.1)
#i ncl ude <ddeni . h>

XTYP_ADVREQ

hszTopi ¢ = hsz1; /* handl e of topic-name string*/

hszltem = hsz2; /* handle of itemname string */

cAdvReq = LOANORD(dwDat al); /* count of remaining transactions */

The system sends this transaction to a server after the server calls the DdePostAdvise function. This
transaction informs the server that an advise transaction is outstanding on the specified topic/item name
pair and that data corresponding to the topic/item name pair has changed.

Parameter Description

hszTopic Value of hszl. Identifies the topic name.

hszltem Value of hsz2. Identifies the item name that has changed.

cAdvReq Vaue of the low-order word of dwDatal. Specifies the count of XTYP_ADVREQ

transactions that remain to be processed on the same topic/item/format name set, within
the context of the current call to the DdePostAdvise function. If the current
XTYP_ADVREQ transaction is theTast one, the count is zero. A server can use this
count to determine whether to create an HDATA_APPOWNED data handle for the
advise data.

If the DDEML issued the XTYP_ADVREQ transaction because of alate-arriving
DDE_FACK transaction flag from a client, the low-order word is set to
CADV_LATEACK. The DDE_FACK transaction flag arrives late when a server is
sending information faster than a client can processit.

Returns

The server should call the DdeCreateDataHandl e function to create a data handle that identifies the
changed data and then should return the handle. Tf the server is unable to compl ete the transaction, it
should return NULL.

Comments
A server cannot block this transaction type; the CBR_BLOCK return value isignored.

See Also

DdeCreateDataHandle, Ddel nitialize, DdePostAdvise, XTYP_ADVSTART, XTYP_ADVSTOP,

XTYP_ADVSTART (3.1)
#i ncl ude <ddeni . h>

XTYP_ADVSTART

hszTopi ¢ = hsz1;/* handl e of topic-nanme string */

hszltem = hsz2; /* handle of itemnane string */

A server's DDE callback function receives this transaction when a client specifiesXTYP_ADVSTART

for the wType parameter of the DdeClientTransaction function. A client uses this transaction to establish
an advise loop with a server.

Parameter Description

hszTopic Value of hszl. Identifies the topic name.
hszltem Vaue of hsz2. |dentifies the item name.
Returns

To alow an advise loop on the specified topic/item name pair, a server's DDE callback function should
return anonzero value. To deny the advise loop, it should return zero. If the callback function returns a
nonzero value, any subsequent call by the server to the DdePostAdvise function on the same topic/item
name pair will cause the system to send aXTYP_ADVREQ fransaction to the server.

Comments

If aclient requests an advise loop on a topic/item/format name set for which an advise loop is already
established, the DDEML does not create a duplicate advise loop. Instead, the DDEML alters the advise
loop flags (XTYPF_ACKREQ and XTYPF_NODATA) to match the latest request.

If the server application specified the CBF_FAIL_ADVISES flag in the Ddelnitialize function, this
transaction isfiltered.

See Also
DdeClientTransaction, Ddelnitialize, DdePostAdvise, XTYP_ADVREQ, XTYP_ADVSTOP

XTYP_ADVSTOP (3.1)
#i ncl ude <ddeni . h>

XTYP_ADVSTOP
hszTopi ¢ = hsz1;/* handl e of topic-nanme string */
hszltem = hsz2; /* handle of itemnane string */

A server's DDE callback function receives this transaction when a client specifies XTYP_ADVSTOP for
the wType parameter of the DdeClientTransaction function. A client uses this transaction to end an advise
loop with a server.

Parameter Description

hszTopic Value of hszl. Identifies the topic name.
hszltem Value of hsz2. Identifies the item name.
Returns

This transaction does not return a value.

Comments

If the server application specified the CBF_FAIL_ADVISES flag in the Ddel nitialize function, this
transaction isfiltered.

See Also

DdeClientTransaction, Ddelnitialize, DdePostAdvise, XTYP_ADVREQ, XTYP_ADVSTART

XTYP_CONNECT (3.1)
#i ncl ude <ddeni . h>

XTYP_CONNECT

hszTopi ¢ = hsz1; /* handl e of topic-nane string */

hszService = hsz2; /* handle of service-nanme string */

pcc = (CONVCONTEXT FAR *)dwDat al; /* address of CONVCONTEXT structure *
/

f Sanel nst = (BOOL) dwbata2; /* sanme instance flag*/

A server's DDE callback function receives this transaction when a client specifies a service name that the
server supports and atopic namethat is not set to NULL in acall to the DdeConnect function.

Parameter Description

hszTopic Vaue of hszl. Identifies the topic name.

hszService Value of hsz2. Identifies the service name.

pcc Value of dwDatal. Pointsto a CONVCONTEXT data structure that contains context

information for the conversation. Tf the client isnot a DDEML application, this
parameter should be set to zero.

fSamelnst Value of dwData2. Specifies whether the client is the same application instance as the
server. If this parameter is TRUE, the client is the same instance; if this parameter is
FALSE, the client is a different instance.

Returns

To alow the client to establish a conversation on the specified service/topic name pair, a server's DDE
callback function should return a nonzero value. To deny the conversation, it should return zero. 1T the
callback function returns a nonzero value and a conversation is successfully established, the system passes
the conversation handle to the server by issuing an XTYP_CONNECT_CONFIRM transaction to the

server's DDE callback function (unless the server specified the CBF_FAIL_CONNECT _CONFIRMSflag
in the Ddel nitialize function).
Comments

If the server application specified the CBF_FAIL_CONNECTIONS flag in the Ddelnitialize function, this
transaction is filtered.

A server cannot block this transaction type; the CBR_BLOCK return value isignored.

See Also
DdeConnect, Ddelnitialize, CONVCONTEXT, XTYP_CONNECT CONFIRM

XTYP_CONNECT_CONFIRM (3.1)
#i ncl ude <ddeni . h>

XTYP_CONNECT_CONFI RM

hszTopi ¢ = hsz1l; /* handl e of topic-nane string */
hszService = hsz2;/* handl e of service-nane string */
f Sanel nst = (BOOL) dwbata2; /* sanme instance flag */

A server's DDE callback function receives this transaction to confirm that a conversation has been
established with a client and to provide the server with the conversation handle. The system sends this
transaction as aresult of aprevious XTYP_CONNECT or XTYP_WILDCONNECT transaction.

Parameter Description

hszTopic Value of hszl. Identifies the topic name on which the conversation has been established.

hszService Value of hsz2. Identifies the service name on which the conversation has been
established.

fSamelnst Value of dwData2. Specifies whether the client is the same application instance as the

server. If this parameter is a nonzero value, the client is the same instance. If this
parameter is zero, the client is a different instance.

Returns
This transaction does not return avalue.

Comments
If the server application specified the CBF_FAIL_CONFIRMS flag in the Ddel nitialize function, this
transaction is filtered.

A server cannot block this transaction type; the CBR_BLOCK return value isignored.

See Also
DdeConnect, DdeConnectList, Ddelnitialize, XTYP_CONNECT, XTYP_WILDCONNECT

XTYP_DISCONNECT (3.1)
#i ncl ude <ddeni . h>

XTYP_DI SCONNECT
f Sanel nst = (BOOL) dwbata2; /* sane instance flag */

An application's DDE callback function receives this transaction when the application's partner in a

conversation uses the DdeDisconnect function to terminate the conversation.

Parameter Description

fSamelnst Value of dwData2. Specifies whether the partnersin the conversation are the same
application instance. If this parameter is TRUE, the partners are the same instance. If
this parameter is FAL SE, the partners are different instances.

Returns

This transaction does not return avalue.

Comments
If the application specified the CBF_SKIP_DISCONNECTS flag in the Ddel nitialize function, this
transaction isfiltered.

The application can obtain the status of the terminated conversation by calling the DdeQueryConvinfo
function while processing this transaction. The conversation handle becomes invalid after the callback
function returns.

An application cannot block this transaction type; the CBR_BLOCK return valueisignored.

See Also
DdeDisconnect, DdeQueryConvinfo

XTYP_ERROR (3.1)
#i ncl ude <ddeni . h>

XTYP_ERROR
WErr = LONMORD(dwDat al); /* error value */

A DDE callback function receives this transaction when acritical error occurs.

Parameter Description

wErTr Value of dwDatal. Specifiesthe error value. Currently, only the
DMLERR_LOW_MEMORY error valueis supported. It means that memory islow--
advise, poke, or execute data may belost, or the system may fail.

Returns
This transaction does not return a value.

Comments

An application cannot block this transaction type; the CBR_BLOCK return valueisignored. The DDEML
attempts to free memory by remaoving noncritical resources. An application that has blocked conversations
should unblock them.

XTYP_EXECUTE (3.1)
#i ncl ude <ddeni . h>

XTYP_EXECUTE
hszTopi ¢ = hsz1; /* handl e of the topic-nanme string */
hDat aCnd = hbDat a; /* handl e of the command string */

A server's DDE callback function receives this transaction when a client specifies XTYP_EXECUTE for
the wType parameter of the DdeClientTransaction function. A client uses this transaction to send a
command string to the server.

Parameter Description

hszTopic Value of hszl. Identifies the topic name.
hDataCmd Value of hData. Identifies the command string.
Returns

A server's DDE callback function should return DDE_FACK if it processes this transaction,
DDE_FBUSY if it istoo busy to process this transaction, or DDE_FNOTPROCESSED if it denies this
transaction.

Comments
If the server application specified the CBF_FAIL_EXECUTES flag in the Ddel nitialize function, this
transaction isfiltered. -

An application need not free the data handle obtained during this transaction. If the application needs to
process the string after the callback function returns, however, the application must copy the command
string associated with the data handle. An application can use the DdeGetData function to copy the data.
See Also

DdeClientTransaction, Ddelnitialize

XTYP_MONITOR (3.1)
#i ncl ude <ddeni . h>
XTYP_ MONI TOR

hDat aEvent = hData;/* handl e of event data */
fwEvent = dwbData2; /* event flag */

The DDE callback function of a DDE debugging application receives this transaction whenever a DDE
event occurs in the system. An application can receive this transaction only if it specified the
APPCLASS MONITOR flag when it called the Ddel nitialize function.

Parameter Description

hDataEvent Value of hData. Identifies a global memory object that contains information about the
DDE event. The application should use the DdeA ccessData function to obtain a pointer

fo the object.

fwEvent Value of dwData2. Specifies the DDE event. This parameter may be one of the

following values:

Vaue
MF_CALLBACKS

MF_CONV

MF_ERRORS

MF_HSZ_INFO

MF_LINKS

MF_POSTMSGS

MF_SENDMSGS

Returns

Meaning

The system sent a transaction to a DDE callback function. The
global memory object contains a MONCBSTRUCT structure
that provides information about the transaction.

A DDE conversation was established or terminated. The global
memory object contains a MONCONV STRUCT structure that
provides information about the conversation.

A DDE error occurred. The global memory object contains a
MONERRSTRUCT structure that provides information about
the error.

A DDE application created or freed a string handle or
incremented the use count of a string handle, or a string handle
was freed as aresult of acall to the DdeUninitialize function.
The global memory object containsaMONHSZSTRUCT
structure that provides information about the string handle.

A DDE application started or ended an advise loop. The global
memory object contains a MONLINKSTRUCT structure that
provides information about the advise Toop.

The system or an application posted a DDE message. The
global memory object contains a MONMSGSTRUCT structure
that provides information about the message.

The system or an application sent a DDE message. The global
memory object contains a MONMSGSTRUCT structure that
provides information about the message.

The callback function should return zero if it processes this transaction.

See Also

DdeAccessData, Ddel nitialize, MONCBSTRUCT, MONCONVSTRUCT, MONERRSTRUCT,
MONHSZSTRUCT, MONLINKSTRUCT, MONMSGSTRUCT

XTYP_POKE (3.1)
#i ncl ude <ddeni . h>

XTYP_POKE

hszTopi ¢ = hsz1;/* handl e of topic-nanme string */
hszltem = hsz2; /* handle of itemnane string */

hDat aPoke = hDat a; /* handl e of data for server */

A server's DDE callback function receives this transaction when a client specifies XTY P_POKE as the
wType parameter of the DdeClientTransaction function. A client uses this transaction to send unsolicited
datato the server.

Parameter Description

hszTopic Value of hszl. Identifies the topic name.

hszltem Vaue of hsz2. |dentifies the item name.

hDataPoke Vaue of hData. Identifies the data that the client is sending to the server.
Returns

A server's DDE callback function should return DDE_FACK if it processes this transaction,
DDE_FBUSY if it istoo busy to process this transaction, or DDE_FNOTPROCESSED if it denies this
transaction.

Comments
If the server application specified the CBF_FAIL_POKES flag in the Ddel nitialize function, this
transaction isfiltered.

See Also
DdeClientTransaction, Ddelnitialize

XTYP_REGISTER (3.1)
#i ncl ude <ddeni . h>

XTYP_REGQ STER
hszBaseSer vNane hsz1; /* handle of base service-nane string*/
hszl nst Ser vNane hsz2; /* handle of instance service-nane string */

A DDE callback function receives this transaction type whenever aDDEML server application uses the
DdeNameService function to register a service name or whenever anon-DDEML application that supports

the System topic is started.

Parameter Description

hszBaseServName Vaue of hszl. Identifies the base service name being registered.
hszlnstServName Value of hsz2. Identifies the instance-specific service name being registered.
Returns

This transaction does not return avalue.

Comments

If the application specified the CBF_SKIP_REGISTRATIONS flag in the Ddel nitialize function, this
transaction isfiltered.

An application cannot block this transaction type; the CBR_BLOCK return valueisignored.

An application should use the hszBaseServName parameter to add the service nameto the list of servers
available to the user. An application should use the hszlnstServName parameter to identify which
application instance has started.

See Also
Ddelnitialize, DdeNameService, XTYP_UNREGISTER

XTYP_REQUEST (3.1)
#i ncl ude <ddeni . h>

XTYP_REQUEST

hszTopi ¢ = hsz1;/* handl e of topic-nanme string */

hszltem = hsz2; /* handle of itemnane string */

A DDE server callback function receives this transaction when a client specifies XTYP_REQUEST for the

wType parameter of the DdeClientTransaction function. A client uses this transaction to request data from
aserver.

Parameter Description

hszTopic Value of hszl. Identifies the topic name.

hszltem Value of hsz2. Identifies the item name that has changed.
Returns

The server should call the DdeCreateDataHandl e function to create a data handle that identifies the
changed data and then should return the handle. The server should return NULL if it is unable to complete
the transaction. If the server returns NULL, the client receivesa DDE_FNOTPROCESSED
acknowledgment flag.

Comments
If the server application specified the CBF_FAIL_REQUESTS flag in the Ddel nitialize function, this
transaction isfiltered.

If responding to this transaction requires lengthy processing, the server can return CBR_BLOCK to
suspend future transactions on the current conversation and then process the transaction asynchronously.
When the server has finished and the data is ready to passto the client, the server can call the
DdeEnableCallback function to resume the conversation.

See Also
DdeClientTransaction, DdeCreateDataHandle, DdeEnableCallback, Ddel nitialize

XTYP_UNREGISTER (3.1)
#i ncl ude <ddeni . h>

XTYP_UNREG STER
hszBaseSer vNane hsz1; /* handle of base service-nane string*/
hszl nst Ser vNane hsz2; /* handle of instance service-nane string */

A DDE callback function receives this transaction type whenever aDDEML server application uses the
DdeNameService function to unregister a service name or whenever anon-DDEML application that

supports the System topic is terminated.

Parameter Description

hszBaseServName Vaue of hszl. Identifies the base service name being unregistered.
hszlnstServName Vaue of hsz2. Identifies the instance-specific service name being unregistered.
Returns

This transaction does not return avalue.

Comments

If the application specified the CBF_SKIP_REGISTRATIONS flag in the Ddel nitialize function, this
transaction isfiltered.

An application cannot block this transaction type; the CBR_BLOCK return valueisignored.

An application should use the hszBaseServName parameter to remove the service name from the list of
servers available to the user. An application should use the hszl nstServName parameter to identify which
application instance has terminated.

See Also
Ddelnitialize, DdeNameService, XTYP_REGISTER

XTYP_WILDCONNECT (3.1)
#i ncl ude <ddeni . h>

XTYP_W LDCONNECT

hszTopi ¢ = hsz1; /* handl e of topic-nane string */

hszService = hsz2; /* handle of service-nanme string */

pcc = (CONVCONTEXT FAR *)dwDat al; /* address of CONVCONTEXT structure *
/

f Sanel nst = (BOOL) dwbata2; /* same-instance flag*/

A server's DDE callback function receives this transaction when a client specifies a service name that is
set to NULL, atopic namethat is set to NULL, or both in a call to the DdeConnect function. This
transaction allows a client to establish a conversation on each of the server's service/topic name pairs that
matches the specified service name and topic name.

Parameter Description

hszTopic Value of hszl. Identifies the topic name. If this parameter isNULL, the client is
reguesting a conversation on all topic names that the server supports.

hszService Value of hsz2. Identifies the service name. If this parameter isNULL, theclient is
requesting a conversation on all service names that the server supports.

pcc Value of dwDatal. Pointsto a CONVCONTEXT data structure that contains context

information for the conversation. Tf the client isnot a DDEML application, this
parameter is set to zero.

fSamelnst Value of dwData2. Specifies whether the client is the same application instance as the
server. If this parameter is TRUE, the client is same instance. If this parameter is
FALSE, the client is a different instance.

Returns

The server should return a data handle that identifies an array of HSZPAIR structures. The array should
contain one structure for each service/topic name pair that matches the service/topic name pair requested
by the client. The array must be terminated by aNULL string handle. The system sends the
XTYP_CONNECT_CONFIRM transaction to the server to confirm each conversation and to pass the
conversation handles to the server. If the server specified the CBF_SKIP_CONNECT_CONFIRMSflagin
the Ddel nitialize function, it cannot receive these confirmations.

Torefusethe XTYP_WILDCONNECT transaction, the server should return NULL.

Comments
If the server application specified the CBF_FAIL_CONNECTIONS flag in the Ddel nitialize function, this
transaction isfiltered.

A server cannot block this transaction type; the CBR_BLOCK return code is ignored.

See Also
DdeConnect, Ddelnitialize, CONVCONTEXT, XTYP_CONNECT CONFIRM

XTYP_XACT_COMPLETE (3.1)
#i ncl ude <ddeni . h>

XTYP_XACT_COWPLETE
hszTopic = hsz1; [/* handl e of topic-nane string */

hszltem = hsz2; /* handle of itemnane string */
hDat aXact hDat a;/* handl e of transaction data */
dwXact| D = dwDat al; /* transaction identifier */
fwStatus = dwbat a2; /* status flag */

A DDE client callback function receives this transaction when an asynchronous transaction, initiated by a
call to the DdeClientTransaction function, has concluded.

Parameter
hszTopic
hszltem
hDataX act

dwXactlD
fwStatus

Returns

Description

Vaue of hszl. Identifies the topic name involved in the completed transaction.

Value of hsz2. Identifies the item name involved in the completed transaction.

Vaue of hData. |dentifies the datainvolved in the completed transaction, if applicable.
If the transaction was successful but involved no data, this parameter is TRUE. If the
transaction was unsuccessful, this parameter isNULL.

Value of dwDatal. Contains the transaction identifier of the completed transaction.
Value of dwData2. Contains any applicable DDE _ status flags in the low-order word.
This provides support for applications dependent on DDE_APPSTATUS hits. It is

recommended that applications no longer use these bits--future versions of the DDEML
may not support them.

This transaction does not return avalue.

Comments

An application need not free the data handl e obtained during this transaction. If the application needsto
process the data after the callback function returns, however, the application must copy the data associated
with the data handle. An application can use the DdeGetData function to copy the data.

See Also

DdeClientTransaction

DDE transactions

Passes advise datato aclient

Prompts a server to send advise datato aclient
Establishes an advise loop with a server

Ends an advise loop with a server

Requests a DDE conversation with a client
Confirms a DDE conversation with a client
Terminatesa DDE conversation

Notifiesa DDEML application of acritical error
Executes a server command

Informs a DDE debugging application of a DDE event
Sends unsolicited datato a server

Registers a service name

Requests data from a server

Unregisters a service name

Requests multiple DDE conversations

Confirms completion of an asynchronous transaction

DragAcceptFiles (3.1)
#include shellapi.h
void DragA cceptFiles(hwnd, fAccept)
HWND hwnd; /* handle of the registering window */
BOOL fAccept; /* flag

for whether dropped files are accepted
/

The DragA cceptFiles function registers whether a given window accepts dropped files.

Parameter Description
hwnd | dentifies the window registering whether it accepts dropped files.
fAccept Specifies whether the window specified by the hwnd parameter accepts dropped files.

An application should set this value to TRUE to accept dropped files or FALSE to
discontinue accepting dropped files.

Returns
This function does not return avaue.

Comments
When an application calls DragAcceptFiles with fAccept set to TRUE, Windows File Manager

(WINFILE.EXE) sends the specified window a WM_DROPFILES message each time the user drops afile
in that window.

See Also
WM_DROPFILES

DragFinish (3.1)
#include shellapi.h

void DragFinish(hDrop)
HDROP hDrop; /* handle of memory to free */

The DragFinish function releases memory that Windows allocated for use in transferring filenames to the
application.

Parameter Description

hDrop Identifies the internal data structure that describes dropped files. This handle is passed to
the application in the wParam parameter of the WM _DROPFILES message.

Returns

This function does not return avalue.

See Also

WM_DROPFILES

DragQueryFile (3.1)

#include shellapi.h

UINT DragQueryFile(hDrop, iFile, IpszFile, cb)

HDROP hDrop; /* handle of structure for dropped files */
UINT iFile;

to query

/

LPSTR IpszFileg;

* address of buffer for returned filename
/

UINT cb;

* size of buffer for filename

/

The DragQueryFile function retrieves the number of dropped files and their filenames.
Parameter Description

/* index of file

hDrop Identifies the internal data structure containing filenames for the dropped files. This
handle is passed to the application in the wParam parameter of the WM_DROPFILES

message.

iFile

IpszFile

cb
Returns

Specifies the index of the fileto query. Theindex of thefirst fileis 0. If the value of the
iFile parameter is -1, DragQueryFile returns the number of files dropped. If the value of
the iFile parameter is between zero and the total number of files dropped,
DragQueryFile copies the filename corresponding to that value to the buffer pointed to
by the IpszFile parameter.

Points to a null-terminated string that contains the filename of a dropped file when the
function returns. If this parameter is NULL and the iFile parameter specifies the index
for the name of adropped file, DragQueryFile returns the required size, in bytes, of the
buffer for that filename.

Specifiesthe size, in bytes, of the IpszFile buffer.

When the function copies a filename to the IpszFile buffer, the return value is the number of bytes copied.
If the iFile parameter is OxFFFF, the return value is the number of dropped files. If iFile is between zero
and the total number of dropped files and if IpszFileis NULL, the return value is the required size of the

IpszFile buffer.

See Also

DragQueryPoint, WM_DROPFILES

DragQueryPoint (3.1)
#include shellapi.h

BOOL DragQueryPoint(hDrop, Ippt)

HDROP hDrop; /* handle of structure for dropped file */
POINT FAR* Ippt;

* address of structure for cursor coordinates

The DragQueryPoint function retrieves the window coordinates of the cursor when afileis dropped.

Parameter Description

hDrop Identifies the internal data structure that describes the dropped file. This structureis
returned in the wParam parameter of the WM _DROPFIL ES message.

[ppt Pointsto a POINT structure that the function fills with the coordinates of the position at
which the cursor was located when the file was dropped.

Returns

Thereturn value is nonzero if the file is dropped in the client area of the window. Otherwise, it is zero.

Comments

The DragQueryPoint function fillsthe POINT structure with the coordinates of the position at which the
cursor was located when the user released the left mouse button. The window for which coordinates are
returned is the window that received the WM _DROPFILES message.

See Also
DragQueryFile, POINT, WM_DROPFILES

Drag-drop functions (3.1)

DragAcceptFiles Registers whether a window accepts dropped files
DragFinish Releases memory allocated for dropping files
DragQueryFile Retrieves the filename of a dropped file
DragQueryPaint Retrieves the mouse position when afileis dropped

FMExtensionProc (3.1)
#include <wfext.n>

HMENU FAR PASCAL FMExtensionProc(hwnd, wMsg, |Param)

HWND hwnd,; [* handle of the extension window */

WORD wMsg; /* menu-item identifier or
message

/

LONG |Param;
* additional message information
/

The FM ExtensionProc function, an application-defined callback function, processes menu commands and
messages sent to a File Manager extension dynamic-link library (DLL).

Parameter Description

hwnd I dentifies the File Manager window. An extension DLL should use this handle to
specify the parent for any dialog boxes or message boxes that the DLL may display and
to send request messages to File Manager.

wMsg Specifies the message. This parameter may be one of the following values:
Value Meaning
1-99 Identifier for the menu item that the user
selected.
FMEVENT_INITMENU User selected the extension's menu.
FMEVENT_LOAD File Manager is loading the extension DLL.
FMEVENT_SELCHANGE Selection in File Manager's directory window,
or Search Results window, changed.
FMEVENT_UNLOAD File Manager is unloading the extension DLL.
FMEVENT_USER_REFRESH User chose the Refresh command from the
Window menu.
[Param Specifies 32 bits of additional message-dependent information.
Returns

The callback function should return the result of the message processing. The actual return value depends
on the message that is processed.

Comments

Whenever File Manager calls the FM ExtensionProc function, it waits to refresh its directory windows (for
changesin the file system) until after the function returns. This allows the extension to perform large
numbers of file operations without excessive repainting by the File Manager. The extension does not need
to send the FM_REFRESH_WINDOWS message to notify File Manager to repaint its windows.

See Also
FM_REFRESH WINDOWS, FMS LOAD

UndeleteFile
#include <wfext.h>

int CALLBACK UndeleteFile(hwndParent, |pszDir)

HWND hwndParent; /* handle of File Manager window */

LPSTR lpszDir; /* address of
name of initial directory

The UndeleteFile function is an application-defined callback function that File Manager calls when the
user chooses the Undelete command from the File Manager File menu.

Parameter Description

hwndParent | dentifies the File Manager window. An "undelete”" dynamic-link library (DLL) should
use this handle to specify the parent window for any dialog box or message box the DLL
may display.

IpszDir Points to a null-terminated string that contains the name of theinitial directory.

Returns

The return valueis one of the following, if the function is successful:

Value Meaning

-l An error occurred.

IDOK A file was undeleted. File Manager will repaint its windows.

IDCANCEL No file was undel eted.

File Manager Extension Functions (3.1)
EMExtensionProc Processes messages for a File Manager extension
UndeleteFile Processes the File Manager Undel ete command

FMEVENT_INITMENU

The FMEVENT _INITMENU message is sent to an extension dynamic-link library (DLL) when the user
selects the menu for the extension from File Manager's menu bar. The extension can use this notification
to initialize menu items in the menu.

Parameter Description

[Param Specifies the menu handle in the high-order word. The low-order word specifies the
deltavalue for the menu item.

Returns

This message does not return avalue.

Comments

An extension receives this message only when the user selects the top-level menu. If the extension
contains submenus, it must initialize them at the same time as the top-level menu.

See Also

FM ExtensionProc

FMEVENT_LOAD

The FMEVENT_LOAD message is sent to an extension dynamic-link library (DLL) when File Manager is
loading the DLL.

Parameter Description

[Param Pointsto an FMS_L OAD structure that specifies the menu-item deltavalue. An
extension DLL should save the menu-item delta value and fill the other structure
members with information about the extension.

Returns
This message does not return avalue.

Comments

An application should fill the dwSize, szMenuName, and hMenu members. It should also save the value of
the wMenuDelta member and use it to identify menu items when modifying the menu. For more
information, see the description of the FMS_L OAD structure.

See Also
FMExtensionProc, FMS LOAD

FMEVENT_SELCHANGE

The FMEVENT_SEL CHANGE message is sent to an extension dynamic-link library (DLL) when the user
selects afilenamein File Manager's directory window or Search Results window.

Parameter Description
[Param Not used.

Returns

This message does not return avalue.
Comments

Changesin the tree half of the directory window do not produce this message.

Because the user can change the selection many times, the extension DLL must return promptly after
processing this message to avoid slowing the selection process for the user.

See Also
FMExtensionProc, FMEVENT_UNLOAD

FMEVENT_UNLOAD

The FMEVENT_UNLOAD messageis sent to an extension dynamic-link library (DLL) when File
Manager isunloading the DLL.

Parameter Description
[Param Not used.

Returns

This message does not return avalue.
Comments

The hwnd and hMenu values passed with the FMEVENT_LOAD and FMEVENT_INITMENU messages
may not be valid at the time of this message.

See Also
FMExtensionProc, FMEVENT INITMENU, FMEVENT _LOAD

FMEVENT_USER_REFRESH

The FMEVENT_USER_REFRESH message is sent to an extension dynamic-link library (DLL) when the
user invokes File Manager's Refresh command in the Window menu. The extension can use this
notification to update its menu.

Parameter Description
[Param Not used.

Returns

This message does not return avalue.
See Also

FMExtensionProc

FM_GETDRIVEINFO

A File Manager extension sends an FM_GETDRIVEINFO message to retrieve drive information from the
active File Manager window.

Parameter Description

wParam Not used.

[Param Pointsto an FMS_GETDRIVEINFO structure that receives drive information.
Returns

Thereturn value is always nonzero.

Comments

If a-1isreturned in the dwTota Space or dwFreeSpace members of the FMS GETDRIVEINFO structure,
the extension library must compute the value or values.

See Also
FMExtensionProc, FMS GETDRIVEINFO

FM_GETFILESEL

A File Manager extension sends an FM_GETFILESEL message to retrieve information about a selected
file from the active File Manager window (either the directory window or the Search Results window).

Parameter Description

wParam Specifies the zero-based index of the selected file to retrieve.

[Param Pointsto an FMS _GETFILESEL structure that receives information about the selection.
Returns

The return value is the zero-based index of the selected file that was retrieved.

Comments

An extension can use the FM_GETSEL COUNT message to obtain the count of selected files.

The szName member of the FMS_GETFILESEL structure consists of an OEM character string. Before
displaying this string, an extension should use the OemToAns function to convert the string to a Windows
ANSI character string. If astring isto be passed to thefile sysStem (MS-DOS), an extension should not
convert it.

See Also

FMExtensionProc, FM_GETFILESELLFN, FM_GETSELCOUNT, FM_GETSELCOUNTLEFN,
OemToAns, FMS GETFILESEL

FM_GETFILESELLFN

A File Manager extension sends an FM_GETFILESELLFN message to retrieve information about a
selected file from the active File Manager window (either the directory window or the Search Results
window). The selected file can have along filename.

Parameter Description

wParam Specifies the zero-based index of the selected file to retrieve.

[Param Pointsto an FMS GETFILESEL structure that receives information about the selection.
Returns

Thereturn value is the zero-based index of the selected file that was retrieved.

Comments

Only extensions that support long filenames (for example, network-aware extensions) should use this
message.
An extension can use the FM_GETSEL COUNT message to obtain the count of selected files.

The szName member of the FMS_GETFILESEL structure consists of an OEM character string. Before
displaying this string, an extension should use the OemToAns function to convert the string to a Windows
ANSI character string. If astring isto be passed to thefile sysStem (MS-DOS), an extension should not
convert it.

See Also

FMExtensionProc, FM_GETFILESEL, FM_GETSELCOUNT, FM_GETSELCOUNTLEN, OemToAns,
FMS GETFILESEL

FM_GETFOCUS

A File Manager extension sendsa FM_GETFOCUS message to retrieve the type of the File Manager
window that has the input focus.

Parameter Description
wParam Not used.
|Param Not used.
Returns

The return value indicates the type of File Manager window that has input focus. It can have one of the
following values:

Vaue Meaning

FMFOCUS DIR Directory portion of a directory window
FMFOCUS TREE Tree portion of adirectory window
FMFOCUS DRIVES Drive bar of adirectory window

FMFOCUS_SEARCH Search Results window

FM_GETSELCOUNT

A File Manager extension sendsa FM_GETSEL COUNT message to retrieve a count of the selected files
in the directory or the Search Results window, depending on which is the active window.

Parameter Description

wParam Not used.

|Param Not used.

Returns

The return value is the number of selected files.
See Also

FM_GETFILESEL, FM_GETFILESELLFN, FM_GETSELCOUNTLFN

FM_GETSELCOUNTLFN

A File Manager extension sends an FM_GETSEL COUNTLFN message to retrieve the number of selected
filesin the directory or the Search Results window, depending on which is the active window. The count
includes files that have long filenames.

Parameter Description

wParam Not used.

|Param Not used.

Returns

The return value is the number of selected files.
Comments

Only extensions that support long filenames (for example, network-aware extensions) should use this
message.

See Also

FM_GETFILESEL, FM_GETFILESELLFN, FM_GETSELCOUNT

FM_REFRESH_WINDOWS

A File Manager extension sends an FM_REFRESH_WINDOWS message to cause File Manager to
repaint either its active window or all of its windows.

Parameter Description

wParam Specifies whether File Manager repaints its active window or all of itswindows. If this
parameter is nonzero, File Manager repaints al of itswindows. If this parameter is zero,
File Manager repaints only its active window.

[Param Not used.

Returns

This message does not return a meaningful value.
Comments

File system changes caused by an extension are automatically detected by File Manager. An extension
should use this message only in situations where drive connections are made or canceled.

See Also
FMExtensionProc

FM_RELOAD_EXTENSIONS

A File Manager extension (or another application) sends an FM_RELOAD_EXTENSIONS message to
cause File Manager to reload all extension dynamic-link libraries (DLLS) listed in the [AddOns] section of
the WINFILE.INI file.

Parameter Description

wParam Not used.

[Param Not used.

Returns

This message does not return a meaningful value.
Comments

Other applications can use the PostM essage function to send this message to File Manager. To obtain the
appropriate File Manager window handle, an application can specify "WFS_Frame" as the |pszClassName
parameter in a call to the Findwindow function.

See Also
FindWindow, FM ExtensionProc, PostM essage

File Manager Extension Messages (3.1)
EMEVENT INITMENU

EM_GETEFII FSFI
EM_GFTFIl ESFI | EN

Retrieves drive data from active window

Retrieves data about a selected file

Retrieves data about a selected file

Retrieves the type of the File Manager focus window
Retrieves the count of selected files

Retrieves the count of selected files

Repaints File Manager's windows

Reloads File Manager extension DLLs

AbortDoc (3.1)

int AbortDoc(hdc)
HDC hdc; /* handle of device context */

The AbortDoc function terminates the current print job and erases everything drawn since the last call to
the StartDoc function. This function replaces the ABORTDOC printer escape for Windows version 3.1.

Parameter Description

hdc | dentifies the device context for the print jaob.

Returns

Thereturn value is greater than or equal to zero if the function is successful. Otherwise, it is less than zero.
Comments

Applications should call the AbortDoc function to terminate a print job because of an error or if the user
chooses to cancel the job. To end a successful print job, an application should use the EndDoc function.

If Print Manager was used to start the print job, calling the AbortDoc function erases the entire spool job--
the printer receives nothing. If Print Manager was not used to start the print job, the data may have been
sent to the printer before AbortDoc was called. In this case, the printer driver would have reset the printer
(when possible) and closed the print job.

See Also
EndDoc, SetAbortProc, StartDoc

AddFontResource (2.x)

int AddFontResource(lpszFilename)
LPCSTR IpszFilename; [* address of filename */

The AddFontResource function adds a font resource to the Windows font table. Any application can then
use the font.

Parameter Description

|pszFilename Points to a character string that names the font resource file or that contains a handle of
aloaded module. If this parameter points to afont resource filename, it must be avalid
MS-DOS filename, including an extension, and the string must be null-terminated. The
system passes this string to the LoadL ibrary function if the font resource must be
loaded.

Returns
The return value specifies the number of fonts added if the function is successful. Otherwiseg, it is zero.

Comments

Any application that adds or removes fonts from the Windows font table should send a
WM_FONTCHANGE message to all top-level windows in the system by using the SendM essage function
with the hwnd parameter set to OxFFFF.

When font resources added by using AddFontResource are no longer needed, you should remove them by
using the RemoveFontResource function.

Example

The following example uses the AddFontResource function to add a font resource from afile, notifies
other applications by using the SendM essage function, then removes the font resource by using the
RemoveFontResource function:

AddFont Resource("fontres.fon");
SendMessage(HWND BROADCAST, WM _FONTCHANGE, 0, 0);

/* Work with the font. */

i f (I'?emoveFontResource(fontres.fon"))

SendMessage(HWND_BROADCAST, WM_FONTCHANGE, 0, 0);
return TRUE;

el se
return FALSE;

See Also
LoadLibrary, RemoveFontResource, SendM essage

AnimatePalette (3.0)

void AnimatePal ette(hpal, i Start, cEntries, |ppe)

HPALETTE hpal; /* handle of palette */

UINT iStart; /
* first palette entry to animate

/

UINT cEntries;

* number of entriesin palette

/

const PALETTEENTRY FAR* Ippe;
* address of color structure

/

The AnimatePalette function replaces entries in the specified logical palette. An application does not have
to update the client areawhen it calls AnimatePal ette, because Windows maps the new entriesinto the
system palette immediately.

Parameter Description

hpal Identifies the logical palette.

iStart Specifies the first entry in the palette to be animated.

cEntries Specifies the number of entries in the palette to be animated.

Ippe Points to the first member of an array of PALETTEENTRY structures. These palette
entries will replace the palette entries identified by the iStart and cEntries parameters.

Returns

This function does not return avalue.

Comments

The AnimatePal ette function can change an entry in alogical palette only when the PC_RESERVED flag
is set in the corresponding pal PaletteEntry member of the LOGPALETTE structure that defines the current
logical palette.

Example

The following example initializes a LOGPALETTE structure and an array of PALETTEENTRY
structures, uses the CreatePal ette function to refrieve a handle of alogical palette, and then uses the
AnimatePal ette funcfion to map the entries into the system palette:

#defi ne NUMENTRI ES 128
HPALETTE hpal ;
PALETTEENTRY ape[NUMENTRI ES] ;

pl gpl = (LOGPALETTE*) LocalAlloc(LPTR,
si zeof (LOGPALETTE) + cColors * sizeof (PALETTEENTRY));

pl gpl - >pal NunEntries = cCol ors;
pl gpl - >pal Ver si on = 0x300;

for (i =0, red =0, green = 127, blue = 127; i < NUMENTRI ES;
i++, red += 1, green += 1, blue += 1) {
ape[i].peRed =
pl gpl - >pal Pal Entry[i]. peRed = LOBYTE(red);
ape[i].peGeen =
p! gpl - >pal Pal Entry[i].peG een = LOBYTE(green);
ape[i].peBlue =
p! gpl - >pal Pal Entry[i]. peBl ue = LOBYTE(bl ue);
apel[i].peFl ags =
pl gpl - >pal Pal Entry[i]. peFl ags = PC_RESERVED

}

hpal = CreatePalette(pl gpl);

LocalFree((HLOCAL) plgpl);

Ani mat ePal ette(hpal, 0, NUMENTRIES, (PALETTEENTRY FAR*) &ape);

See Also

CreatePalette, LOGPALETTE, PALETTEENTRY

Arc (2.x)

BOOL Arc(hdc, nLeftRect, nTopRect, nRightRect, nBottomRect, nX StartArc, nY StartArc, nXEndArc,
nY EndArc)
HDC hdc; * handle of device context */
int nLeftRect; /
* x-coordinate upper-left corner bounding rectangle
/
int nTopRect;
* y-coordinate upper-left corner bounding rectangle
/

int nRightRect;

* x-coordinate lower-right corner bounding rectangle
/

int nBottomRect;

* y-coordinate lower-right corner bounding rectangle
/

int nX StartArc;
* x-coordinate arc starting point

int nY StartArc;
* y-coordinate arc starting point
/

int nXEndArc;

* x-coordinate arc ending point
/

int nY EndArc;

* y-coordinate arc ending point

The Arc function draws an elliptical arc.

Parameter Description

hdc I dentifies the device context.

nL eftRect Specifies the logical x-coordinate of the upper-left corner of the bounding rectangle.

nTopRect Specifies the logical y-coordinate of the upper-left corner of the bounding rectangle.

nRightRect Specifies the logical x-coordinate of the lower-right corner of the bounding rectangle.

nBottomRect Specifiesthe logical y-coordinate of the lower-right corner of the bounding rectangle.

nXStartArc Specifies the logical x-coordinate of the point that defines the arc's starting point. This
point need not lie exactly on the arc.

nY StartArc Specifies the logical y-coordinate of the point that defines the arc's starting point. This
point need not lie exactly on the arc.

nXEndArc Specifies the logical x-coordinate of the point that defines the arc's endpoint. This point
need not lie exactly on the arc.

nY EndArc Specifies the logical y-coordinate of the point that defines the arc's endpoint. This point
need not lie exactly on the arc.

Returns

The return value is nonzero if the function is successful. Otherwise, it is zero.

Comments

The arc drawn by using the Arc function is a segment of the ellipse defined by the specified bounding
rectangle. The starting point of the arc is the point at which aray drawn from the center of the bounding
rectangle through the specified starting point intersects the ellipse. The end point of the arc is the point at
which aray drawn from the center of the bounding rectangle through the specified end point intersects the
ellipse. The arc is drawn in a counterclockwise direction. Since an arc is not a closed figure, it is not filled.

Both the width and the height of arectangle must be greater than 2 units and less than 32,767 units.

Example
The following example uses a RECT structure to store the points defining the bounding rectangle and uses
POINT structures to store the coordinates that specify the beginning and end of the arc:

HDC hdc;

RECT rc = { 10, 10, 180, 140 };
POINT ptStart = { 12, 12 };
POINT ptEnd = { 128, 135 };

Arc(hdc, rc.left, rc.top, rc.right, rc.bottom
ptStart.x, ptStart.y, ptEnd.x, ptEnd.y);

See Also
Chord, POINT, RECT

BitBlt (2.x)

BOOL BitBlt(hdcDest, nXDest, nY Dest, nWidth, nHeight, hdcSrc, nXSrc, nY Src, dwRop)

HDC hdcDest;
int nXDest;
corner destination rectangle

/

int nY Dest;

* upper-left corner destination rectangle
/

int nWidth;
* bitmap width
/

int nHeight;
* bitmap height
/

HDC hdcSrc;

* handle of source device context
/

int nXSrc;

* upper-left corner source bitmap
/

int nY Src;
* upper-left corner source bitmap
/

DWORD dwRop;
* raster operation for copy
/

/* handle of destination device context */

[* upper-left

The BitBIt function copies a bitmap from a specified device context to a destination device context.

Parameter
hdcDest
nXDest
nY Dest
nWidth
nHeight
hdcSrc

Description

| dentifies the destination device context.

Specifiesthe logical x-coordinate of the upper-left corner of the destination rectangle.
Specifiesthe logical y-coordinate of the upper-left corner of the destination rectangle.
Specifies the width, in logical units, of the destination rectangle and source bitmap.
Specifies the height, in logical units, of the destination rectangle and source bitmap.

| dentifies the device context from which the bitmap will be copied. This parameter must

be NULL if the dwRop parameter specifies a raster operation that does not include a
source. This parameter can specify a memory device context.

nxXSrc
nY Src
dwRop

Specifiesthe logical x-coordinate of the upper-left corner of the source bitmap.
Specifiesthelogica y-coordinate of the upper-left corner of the source bitmap.
Specifies the raster operation to be performed. Raster operation codes define how the

graphics device interface (GDI) combines colorsin output operations that involve a
current brush, a possible source bitmap, and a destination bitmap. This parameter can be

one of the following:
Code
BLACKNESS
DSTINVERT
MERGECOPY

MERGEPAINT

Description
Turns all output black.
Inverts the destination bitmap.

Combines the pattern and the source bitmap by using the
Boolean AND operator.

Combines the inverted source bitmap with the destination
bitmap by using the Boolean OR operator.

Copies the inverted source bitmap to the destination.

Inverts the result of combining the destination and source
bitmaps by using the Boolean OR operator.

Copies the pattern to the destination bitmap.

Combines the destination bitmap with the pattern by using the
Boolean XOR operator.

PATPAINT Combines the inverted source bitmap with the pattern by using
the Boolean OR operator. Combines the result of this
operation with the destination bitmap by using the Boolean

OR operator.
SRCAND Combines pixels of the destination and source bitmaps by
using the Boolean AND operator.
SRCCOPY Copies the source bitmap to the destination bitmap.
SRCERASE Inverts the destination bitmap and combines the result with the
source bitmap by using the Boolean AND operator.
SRCINVERT Combines pixels of the destination and source bitmaps by
using the Boolean XOR operator.
SRCPAINT Combines pixels of the destination and source bitmaps by
using the Boolean OR operator.
WHITENESS Turns al output white.
Returns
Thereturn value is nonzero if the function is successful. Otherwise, it is zero.
Comments

An application that uses the BitBIt function to copy pixels from one window to another window or from a
source rectangle in awindow into atarget rectangle in the same window should set the

CS BYTEALIGNWINDOW or CS BYTEALIGNCLIENT flag when registering the window classes. By
aligning the windows or client areas on byte boundaries, the application can ensure that the BitBIt
operations occur on byte-aligned rectangles. BitBlt operations on byte-aligned rectangles are considerably
faster than BitBIt operations on rectangles that are not byte-aligned.

GDI transforms the nWidth and nHeight parameters, once by using the destination device context, and
once by using the source device context. If the resulting extents do not match, GDI uses the StretchBlt
function to compress or stretch the source bitmap as necessary. If destination, source, and pattern bitmaps
do not have the same color format, the BitBIt function converts the source and pattern bitmaps to match
the destination. The foreground and background colors of the destination bitmap are used in the
conversion.

When the BitBIt function converts a monochrome bitmap to color, it sets white bits (1) to the background
color and black bits (0) to the foreground color. The foreground and background colors of the destination
device context are used. To convert color to monochrome, BitBIt sets pixels that match the background
color to white and sets all other pixels to black. BitBIt uses the foreground and background colors of the
source (color) device context to convert from color to monochrome.

The foreground color isthe current text color for the specified device context, and the background color is
the current background color for the specified device context.

Not all devices support the BitBIt function. An application can determine whether a device supports BitBIt
by calling the GetDeviceCaps function and specifying the RASTERCAPS index.

Example

The following example loads a bitmap, retrievesits dimensions, and displaysit in a window:

HDC hdc, hdcMenory;
HBI TMAP hbnpMyBi t map, hbnmpd d;
BITMAP bm

hbnpMyBi t map = LoadBitmap(hi nst, "MBitmp");
GetObject(hbnpMyBi tmap, si zeof (BITMAP), &bm;

hdc = GetDC(hwnd);
hdcMenory = CreateCompatibleDC(hdc);

hbnpd d = SelectObject(hdcMenory, hbnpMBit map);

BitBlt(hdc, O, 0, bmbnmWNdth, bm bnHei ght, hdcMenory, 0, 0, SRCCOPY);
SelectObject(hdcMenory, hbmpd d);

DeleteDC(hdcMenory);
ReleaseDC(hwnd, hdc);

See Also

GetDeviceCaps, PatBlt, SetTextColor, StretchBlt, StretchDIBits

BLACKNESS 0x00000042L
Turns all output black.

BLACKNESS 0x00000042L

DSTINVERT 0x00550009L
Inverts the destination bitmap.

DSTINVERT 0x00550009L

MERGECOPY 0x00CO00CAL
Combines the pattern and the source bitmap by using the Boolean AND operator.

MERGECOPY 0x00COO00OCAL

MERGEPAINT 0x00BB0226L
Combines the inverted source bitmap with the destination bitmap by using the Boolean OR operator.

MERGEPAINT 0x00BB0226L

NOTSRCCOPY 0x00330008L
Copies the inverted source bitmap to the destination.

NOTSRCCOPY (0x00330008L

NOTSRCERASE 0x001100A6L
Inverts the result of combining the destination and source bitmaps by using the Boolean OR operator.

NOTSRCERASE 0x001100A6L

PATCOPY 0x00F00021L
Copies the pattern to the destination bitmap.

PATCOPY 0x00F00021L

PATINVERT 0x005A0049L
Combines the destination bitmap with the pattern by using the Boolean X OR operator.

PATINVERT 0x005A0049L

PATPAINT OxOOFBOAOSL

Combines the inverted source bitmap with the pattern by using the Boolean OR operator. Combines the
result of this operation with the destination bitmap by using the Boolean OR operator.

PATPAINT OxOOFBOAOSL

SRCAND 0x008800C6L
Combines pixels of the destination and source bitmaps by using the Boolean AND operator.

SRCAND 0x008800C6L

SRCCOPY 0x00CC0020L
Copies the source bitmap to the destination bitmap.

SRCCOPY 0x00CC0020L

SRCERASE 0x00440328L

Inverts the destination bitmap and combines the result with the source bitmap by using the Boolean AND
operator.

SRCERASE 0x00440328L

SRCINVERT 0x00660046L
Combines pixels of the destination and source bitmaps by using the Boolean XOR operator.

SRCINVERT 0x00660046L

SRCPAINT OxO0EE0086L
Combines pixels of the destination and source bitmaps by using the Boolean OR operator.

SRCPAINT OxO0EE0086L

WHITENESS 0x00FF0062L
Turns al output white.

WHITENESS 0x00FF0062L

Chord (2.x)

BOOL Chord(hdc, nLeftRect, nTopRect, nRightRect, nBottomRect, nXStartLine, nY StartLine,
nXEndLine, nY EndLine)

HDC hdc; * handle of device context */

int nLeftRect;

* x-coordinate upper-left corner bounding rectangle

/

int nTopRect;

* y-coordinate upper-left corner bounding rectangle

/

int nRightRect;

* x-coordinate lower-right corner bounding rectangle
/

int nBottomRect;

* y-coordinate lower-right corner bounding rectangle
/

int nX StartLine;
* x-coordinate line-segment starting point
/

int nY StartLine;
* y-coordinate line-segment starting point
/

int nXEndLine;

* x-coordinate line-segment ending point
/

int nY EndLine;

* y-coordinate line-segment ending point
/

The Chord function draws a chord (a closed figure bounded by the intersection of an ellipse and aline
segment).

Parameter Description

hdc | dentifies the device context.

nLeftRect Specifies the logical x-coordinate of the upper-left corner of the bounding rectangle.
nTopRect Specifies the logical y-coordinate of the upper-left corner of the bounding rectangle.
nRightRect Specifiesthe logical x-coordinate of the lower-right corner of the bounding rectangle.
nBottomRect Specifiesthe logical y-coordinate of the lower-right corner of the bounding rectangle.
nXStartLine Specifies the logical x-coordinate of the starting point of the line segment.

nY StartLine Specifiesthe logical y-coordinate of the starting point of the line segment.
nXEndLine Specifies the logical x-coordinate of the ending point of the line segment.
nYEndLine Specifies the logical y-coordinate of the ending point of the line segment.

Returns

Thereturn value is nonzero if the function is successful. Otherwise, it is zero.

Comments

The (nLeftRect, nTopRect) and (nRightRect, nBottomRect) parameter combinations specify the upper-left
and lower-right corners, respectively, of arectangle bounding the ellipse that is part of the chord. The
(nXStartLine, nY StartLine) and (NXEndLine, nY EndLine) parameter combinations specify the endpoints
of alinethat intersects the ellipse. The chord is drawn by using the selected pen and isfilled by using the
selected brush.

The figure the Chord function draws extends up to but does not include the right and bottom coordinates.
This means that the height of the figure is determined as follows:

nBottomRect - nTopRect

The width of the figureis determined similarly:
nRightRect - nLeftRect

Example

The following example uses a RECT structure to store the points defining the bounding rectangle and uses
POINT structures to store the coordinates that specify the beginning and end of the chord:

HDC hdc;

RECT rc = { 10, 10, 180, 140 };
POINT ptStart = { 12, 12 };
POINT ptEnd = { 128, 135 };

Chord(hdc, rc.left, rc.top, rc.right, rc.bottom
ptStart.x, ptStart.y, ptEnd.x, ptEnd.y);

See Also
Arc, POINT, RECT

CloseMetaFile (2.x)

HMETAFILE CloseM etaFile(hdc)
HDC hdc; /* handle of device context */

The CloseM etaFile function closes a metafile device context and creates a handle of a metafile. An
application can use this handle to play the metafile.

Parameter Description

hdc I dentifies the metafile device context to be closed.

Returns

The return value is the handle of the metafile if the function is successful. Otherwise, it isNULL.
Comments

If ametafile handle created by using the CloseMetaFile function is no longer needed, you should remove it
(using the DeleteMetaFile function).

Example
The following example creates a device-context handle of a memory metafile, draws alinein the device
context, retrieves a handle of the metéfile, plays the metéfile, and finally deletes the metafile.

HDC hdcMet a;
HVETAFI LE hnf ;

hdcMet a = CreateMetaFile(NULL);
MoveTo(hdcMeta, 10, 10);

LineTo(hdcMeta, 100, 100);

hnf = O oseMet aFi |l e(hdchMet a) ;
PlayMetaFile(hdc, hnf);
DeleteMetaFile(hnf);

See Also
CreateMetaFile, DeleteMetaFile, PlayMetaFile

CombineRgn (2.x)

int CombineRgn(hrgnDest, hrgnSrcl, hrgnSrc2, fCombineM ode)
HRGN hrgnDest; /* handle of region to receive combined regions */
HRGN hrgnSrci;

* handle of first source region

/

HRGN hrgnSrc2;

* handle of second source region

/

int fCombineMode;

* mode for combining regions

/

The CombineRgn function creates a new region by combining two existing regions.

Parameter Description

hrgnDest Identifies an existing region that will be replaced by the new region.
hrgnSrcl Identifies an existing region.

hrgnSrc2 Identifies an existing region.

fCombineM ode Specifies the operation to use when combining the two source regions. This
parameter can be any one of the following values:

Vaue Meaning

RGN _AND Uses overlapping areas of both regions (intersection).

RGN_COPY Creates a copy of region 1 (identified by the hrgnSrcl parameter).

RGN DIFE Creates aregion consisting of the areas of region 1 (identified by
hrgnSrcl) that are not part of region 2 (identified by the hrgnSrc2
parameter).

RGN _OR Combines all of both regions (union).

RGN XOR Combines both regions but removes overlapping aress.

Returns

The return value specifies that the resulting region has overlapping borders (COMPLEXREGION), is
empty (NULLREGION), or has no overlapping borders (SIMPLEREGION), if the function is successful.
Otherwise, the return value is ERROR.

Comments
The size of aregionislimited to 32,000 by 32,000 logical units or 64K of memory, whichever issmaller.

The CombineRgn function replaces the region identified by the hrgnDest parameter with the combined
region. To use CombineRgn most efficiently, hrgnDest should be atrivial region, as shown in the
following example.

Example

The following example creates two source regions and an empty destination region, uses the CombineRgn
function to create a complex region, selects the region into a device context, and then uses the PaintRgn
function to display the region:

HDC hdc;
HRGN hrgnDest, hrgnSrcl, hrgnSrc2;

hrgnDest = CreateRectRgn(0, 0, 0, 0);
hrgnSrcl = CreateRectRgn(10, 10, 110, 110);
hrgnSrc2 = CreateRectRgn(90, 90, 200, 150);

Conbi neRgn(hrgnDest, hrgnSrcl, hrgnSrc2, RGN OR);
SelectObject(hdc, hrgnDest);

PaintRgn(hdc, hrgnDest);

See Also

CreateRectRgn, PaintRgn

RGN_AND 1
Uses overlapping areas of both regions (intersection).

RGN_AND 1

RGN_COPY 5
Creates a copy of region 1 (identified by the hrgnSrc1 parameter).

RGN_COPY 5

RGN_DIFF 4

Creates aregion consisting of the areas of region 1 (identified by hrgnSrcl) that are not part of region 2
(identified by the hrgnSrc2 parameter).

RGN_DIFF 4

RGN_OR 2
Combines all of both regions (union).

RGN_OR 2

RGN_XOR 3
Combines both regions but removes overlapping areas.

RGN_XOR 3

CopyMetaFile (2.x)

HMETAFILE CopyMetaFile(hmfSrc, IpszFile)

HMETAFILE hmfSrc; /* handle of metafile to copy */

LPCSTR IpszFile; /*
address of name of copied metéfile

/

The CopyMetaFile function copies a source metafile to a specified file and returns a handle of the new
metafile.

Parameter Description

hmfSrc | dentifies the source metafile to be copied.

IpszFile Points to a null-terminated string that specifies the filename of the copied metéfile. If
thisvalueisNULL, the source metafile is copied to a memory metédfile.

Returns

The return value is the handle of the new metafile if the function is successful. Otherwise, it isNULL.

Example

The following example copies a metafile to a specified file, plays the copied metefile, retrieves a handle of
the copied metafile, changes the position at which the metafile is played 200 logical units to the right, and
then plays the metafile at the new location:

HANDLE hnf, hnf Source, hnfd d;
LPSTR | pszFilel = "M-Test";

hnf = CopyMet aFi | e(hnf Source, | pszFilel);
PlayMetaFile(hdc, hnf);
DeleteMetaFile(hnf);

hnf O d = GetMetaFile(l pszFilel);

SetWindowOrg(hdc, -200, 0);
PlTayMetaFile(hdc, hnfd d);

DeleteMetaFile(hnf Sour ce) ;
DeleteMetaFile(hnf A d);

See Also
GetMetaFile, PlayMetaFile, SetWindowOrg

CreateBitmap (2.x)

HBITMAP CreateBitmap(nWidth, nHeight, cbPlanes, chBits, |pvBits)

int nWidth; /* bitmap width */
int nHeight; [* bitmap
height

/

UINT cbPlanes;

* number of color planes

/

UINT cbBits;

* number of bits per pixel

/

const void FAR* |pvBits;
* address of array with bitmap bits
/

The CreateBitmap function creates a device-dependent memory bitmap that has the specified width,
height, and bit pattern.

Parameter Description

nWidth Specifies the width, in pixels, of the bitmap.

nHeight Specifies the height, in pixels, of the bitmap.

cbPlanes Specifies the number of color planesin the bitmap. The number of bits per planeisthe
product of the plane's width, height, and bits per pixel (nWidth " nHeight " cbBits).

chBits Specifies the number of color bits per display pixel.

IpvBits Pointsto an array of short integers that contains the initial bitmap bit values. If this

parameter isNULL, the new bitmap is|eft uninitialized.

Returns
The return value is the handle of the bitmap if the function is successful. Otherwise, it isNULL.

Comments

The bitmap created by the CreateBitmap function can be selected as the current bitmap for a memory
device context by using the SelectObject function.

For a color bitmap, either the cbPlanes or cbBits parameter should be set to 1. If both of these parameters
are set to 1, CreateBitmap creates a monochrome bitmap.

Although a bitmap cannot be copied directly to adisplay device, the BitBIt function can copy it from a
memory device context (in which it is the current bitmap) to any compatible device context, including a
screen device context.

When it has finished using a bitmap created by CreateBitmap, an application should select the bitmap out
of the device context and then remove the bitmap by using the DeleteObject function.

Example
The following example uses the CreateBitmap function to create a bitmap with a zigzag pattern and then
uses the PatBIt function to fill the client areawith that pattern:

HDC hdc;

HBI TMAP hbnp;

HBRUSH hbr, hbr Previ ous;
RECT rc;

int azigzag[] = { OxFF, OxF7, OxEB, OxDD, OxBE, Ox7F, OxFF, OxFF };

hbnp = CreateBitmap(8, 8, 1, 1, aZigzag);
hbr = CreatePatternBrush(hbmp);

hdc = GetDC(hwnd);

UnrealizeObject(hbr);

hbrPrevi ous = SelectObject(hdc, hbr);
GetClientRect(hwnd, &rc);

PatBlIt(hdc, rc.left, rc.top,
rc.right - rc.left, rc.bottom- rc.top, PATCOPY);

SelectObject(hdc, hbrPrevious);
ReleaseDC(hwnd, hdc);

DeleteObject(hbr);
DeletelObject(hbnp);

See Also
BitBIt, CreateBitmapl ndirect, CreateCompatibleBitmap, CreateDIBitmap, CreateDiscardableBitmap,

DeleteObject, SelectObject

CreateBitmaplndirect (2.x)

HBITMAP CreateBitmapl ndirect(Ipbm)
BITMAP FAR* Ipbm; [* address of structure with bitmap information ~ */

The CreateBitmaplndirect function creates a bitmap that has the width, height, and bit pattern specified in
aBITMAP structure.

Parameter Description

[pbm Pointsto a BITMAP structure that contains information about the bitmap.
Returns

Thereturn value is the handle of the bitmap if the function is successful. Otherwise, it isNULL.
Comments

Large bitmaps cannot be displayed on a display device by copying them directly to the device context for
that device. Instead, applications should create a memory device context that is compatible with the
display device, select the bitmap as the current bitmap for the memory device context, and then use a
function such as BitBlIt or StretchBIt to copy it from the memory device context to the display device
context. (The PatBIt function can copy the bitmap for the current brush directly to the display device
context.)

When an application has finished using the bitmap created by the CreateBitmapl ndirect function, it should
select the bitmap out of the device context and then delete the bitmap by using the DeleteObject function.

If the BITMAP structure pointed to by the Ipbm parameter has been filled in by using the GetObject
function, the bits of the bitmap are not specified, and the bitmap is uninitialized. To initialize the bitmap,
an application can use a function such as BitBIt or SetDIBits to copy the bits from the bitmap identified by
the first parameter of GetObject to the bitmap creafed by CreateBitmaplndirect.

Example

The following example assigns values to the members of a BITMAP structure and then calls the
CreateBitmapl ndirect function to create a bitmap handle:

BITMAP bm
HBI TMAP hbm

int azigzag[] = { OxFF, OxF7, OxEB, OxDD, OxBE, Ox7F, OxFF, OxFF };

bm bmlype = 0O;

bm bmWdth = 8;

bm brmHei ght = 8;

bm bmW dt hBytes = 2;
bm bnPl anes = 1;

bm bnBi t sPi xel = 1;
bm bnmBits = aZi gzag;

hbm = Creat eBi t mapl ndi rect (&m ;

See Also

BitBIt, CreateBitmap, CreateCompatibleBitmap, CreateDIBitmap, CreateDiscardableBitmap,
DéleteOhject, GetOhject, BITMAP

CreateBrushindirect (2.x)

HBRUSH CreateBrushindirect(Iplb)
LOGBRUSH FAR* Iplb; /* address of structure with brush attributes ~ */

The CreateBrushlndirect function creates a brush that has the style, color, and pattern specified in a
LOGBRUSH structure. The brush can subsequently be selected as the current brush for any device.

Parameter Description

Iplb Pointsto aLOGBRUSH structure that contains information about the brush.
Returns

The return value is the handle of the brush if the function is successful. Otherwise, it isNULL.
Comments

A brush created by using a monochrome (one plane, one bit per pixel) bitmap is drawn by using the
current text and background colors. Pixels represented by a bit set to 0 are drawn with the current text
color, and pixels represented by abit set to 1 are drawn with the current background color.

When it has finished using a brush created by CreateBrushlndirect, an application should select the brush
out of the device context in which it was used and then remove the brush by using the DeleteObject
function.

Example

The following example creates a hatched brush with red diagonal hatch marks and uses that brush to fill a
rectangle:

LOGBRUSH | b;

HBRUSH hbr, hbra d;

| b. | bStyl e = BS_HATCHED,

| b. | bCol or = RGB(255, 0, 0);
| b. | bHat ch = HS_BDIAGONAL;

hbr = CreateBrushl ndirect (& b);
hbrd d = SelectObject(hdc, hbr);
Rectangle(hdc, 0, 0, 100, 100);

See Also
CreateDIBPatternBrush, CreatePatternBrush, CreateSolidBrush, DeleteObject, GetStockObject,
SdlectOnject, LOGBRUSH, RGB

CreateCompatibleBitmap (2.x)

HBITMAP CreateCompatibleBitmap(hdc, nWidth, nHeight)

HDC hdc; /* handle of device context */

int nWidth; /* bitmap width */

int nHeight; I*
bitmap height

/

The CreateCompatibleBitmap function creates a bitmap that is compatible with the given device.

Parameter Description

hdc | dentifies the device context.

nWidth Specifies the width, in bits, of the bitmap.
nHeight Specifies the height, in bits, of the bitmap.
Returns

Thereturn value is the handle of the bitmap if the function is successful. Otherwise, it isNULL.

Comments

The bitmap created by the CreateCompatibleBitmap function has the same number of color planes or the
same bits-per-pixel format as the given device. It can be selected as the current bitmap for any memory
device that is compatible with the one identified by hdc.

If hdc identifies amemory device context, the bitmap returned has the same format as the currently
selected bitmap in that device context. A memory device context isamemory object that represents a
screen surface. It can be used to prepare images in memory before copying them to the screen surface of
the compatible device.

When amemory device context is created, the graphics device interface (GDI) automatically selects a
monochrome stock bitmap for it. -

Since a color memory device context can have either color or monochrome bitmaps selected, the format of
the bitmap returned by the CreateCompatibleBitmap function is not aways the same; however, the format
of acompatible bitmap for a non— memory device context is alwaysin the format of the device.

When it has finished using a bitmap created by CreateCompatibleBitmap, an application should select the
bitmap out of the device context and then remove the bitmap by using the Del eteObject function.

Example

The following example shows a function named DuplicateBitmap that accepts the handle of a bitmap,
duplicates the bitmap, and returns a handle of the duplicate. This function uses the CreateCompatibleDC
function to create source and destination device contexts and then uses the GetObject function to retrieve
the dimensions of the source bitmap. The CreateCompatibleBitmap function uses these dimensionsto
create a new bitmap. When each bitmap has been selected into a device context, the BitBIt function copies
the bits from the source bitmap to the new bitmap. (Although an application could use the GetDIBits and
SetDIBits functions to duplicate a bitmap, the method illustrated in this example is much faster.)

HBI TMAP PASCAL Dupl i cat eBi t map(HBI TMAP hbnpSr c)
{
HBI TMAP hbnpd dSrc, hbnmpQ dDest, hbnpNew;
HDChdcSrc, hdcDest;
BITMAP bnp;

hdcSrc = CreateCompatibleDC(NULL);
hdcDest = CreateCompatibleDC(hdcSrc);

GetObject(hbnpSrc, sizeof (BITMAP), &bmp);
hbnmpd dSrc = SelectObject(hdcSrc, hbnpSrc);

hbnpNew = Cr eat eConpati bl eBi t map(hdcSrc, bnp. bmA dt h,
bnp. bntHei ght) ;

hbnpd dDest = SelectObject(hdcDest, hbnpNew);

BitBlt(hdcDest, 0, 0, bnp.bnWdth, bnp.bnHeight, hdcSrc, 0, O,
SRCCOPY) ;

SelectObject(hdcDest, hbnmpQ dDest);
SelectObject(hdcSrc, hbnpd dSrc);

DeleteDC(hdcDest) ;
DeleteDC(hdcSrc);

return hbrpNew;
}
See Also
CreateBitmap, CreateBitmaplndirect, CreateDIBitmap, DeleteObject

CreateCompatibleDC (2.x)

HDC CreateCompatibleDC(hdc)
HDC hdc; /* handle of device context */

The CreateCompatibleDC function creates a memory device context that is compatible with the given
device.

An application must select a bitmap into a memory device context to represent a screen surface. The
device context can then be used to prepare images in memory before copying them to the screen surface of
the compatible device.

Parameter Description

hdc | dentifies the device context. If this parameter isNULL, the function creates a memory
device context that is compatible with the system screen.

Returns

Thereturn value is the handle of the new memory device context if the function is successful. Otherwise, it
isNULL.

Comments

The CreateCompatibleDC function can be used only to create compatible device contexts for devices that
support raster operations. To determine whether a device supports raster operations, an application can call
the GetDeviceCaps function with the RC_BITBLT index.

GDI output functions can be used with a memory device context only if a bitmap has been created and

Selected into that context.

When it has finished using a device context created by CreateCompatibleDC, an application should free
the device context by calling the DeleteDC function. All objects selected into the device context after it
was created should be selected out and replaced with the original objects before the device context is
removed.

Example
The following example loads a bitmap named Dog, uses the CreateCompatibleDC function to create a
memory device context that is compatible with the screen, selects the bitmap into the memory device
context, and then uses the BitBIt function to move the bitmap from the memory device context to the
screen device context:

HDC hdc, hdcMenory;
HBI TMAP hbnpMyBi t map, hbnmpd d;
BITMAP bm

hbnpMyBi t map = LoadBitmap(hi nst, "MBitmp");
GetObject(hbnpMyBi tmap, si zeof (BITMAP), &bm;

hdc = GetDC(hwnd);
hdcMenory = Creat eConpati bl eDC(hdc) ;
hbnpd d = SelectObject(hdcMenory, hbnpMBit map);

BitBlt(hdc, O, 0, bmbnmWNdth, bm bnHei ght, hdcMenory, 0, 0, SRCCOPY);
SelectObject(hdcMenory, hbnmpd d);

DeleteDC(hdcMenory);
ReleaseDC(hwnd, hdc);

See Also
DeleteDC, GetDeviceCaps

CreateDC (2.x)
#include <print.h>

HDC CreateDC(IpszDriver, IpszDevice, |pszOutput, [pvinitData)

LPCSTR |pszDriver; [* address of driver name */
LPCSTR IpszDevice; /
* address of device name

/

LPCSTR IpszOutput;

* address of filename or port name

/

const void FAR* |pvinitData;

* address of initialization data

/

The CreateDC function creates a device context for the given device.

Parameter Description

IpszDriver Points to a null-terminated string that specifies the MS-DOS filename (without
extension) of the device driver (for example, Epson).

IpszDevice Points to a null-terminated string that specifies the name of the specific deviceto be

supported (for example, Epson FX-80). This parameter is used if the module supports
more than one device.

[pszOutput Points to a null-terminated string that specifies the MS-DOS filename or device name
for the physical output medium (file or output port).
IpvinitData Pointsto a DEVMODE structure that contains device-specific initialization information

for the device driver. The ExtDeviceMode function retrieves this structure already filled
in for agiven device. ThelpvinitData parameter must be NULL if the device driver isto
use the default initialization (if any) specified by the user through Windows Control
Panel.

Returns

Thereturn value is the handle of the device context for the specified device if the function is successful.
Otherwise, itisNULL.

Comments
The PRINT.H header fileisrequired if the DEVMODE structureis used.

Device contexts created by using the CreateDC function must be deleted by using the DeleteDC function.
All objects selected into the device context after it was created should be selected out and replaced with
the original objects before the device context is del eted.

MS-DOS device names follow MS-DOS conventions; an ending colon (:) is recommended, but optional.
Windows strips the terminating colon so that a device name ending with a colon is mapped to the same
port as the same name without a colon. The driver and port names must not contain leading or trailing
Spaces.

Example

The following example uses the CreateDC function to create a device context for a printer, using
information returned by the PrintDIg function in a PRINTDL G structure:

PRI NTDLG pd;

HDC hdc;

LPDEVNAMES | pDevNarnes;
LPSTR I pszDri ver Nane;
LPSTR | pszDevi ceNane;
LPSTR | pszPort Nane;

/*
* PrintD g displays the conmon di al og box for printing. The
PRI NTDLG structure should be initialized with appropriate val ues.

*

PrintD g(&pd);
| pDevNanes = (LPDEVNAMES) GloballLock(pd. hDevNares) ;

(LPSTR) | pDevNanes + | pDevNanes->wDriver f f set;

| pszDevi ceNane (LPSTR) | pDevNanes + | pDevNanes->wDevi ceS f set ;

| pszPor t Nane (LPSTR) | pDevNanes + | pDevNanes->wQut put Of f set ;
GlobalUnlock(pd. hDevNanes) ;

hdc = CreateDC(| pszDri ver Nane, | pszDevi ceNanme, | pszPortNane, NULL);

See Also
Createl C, DeleteDC, ExtDeviceMode, PrintDlg, DEVMODE, PRINTDLG

| pszDri ver Nane

CreateDIBitmap (3.0)

HBITMAP CreateDIBitmap(hdc, Ipbmih, dwlinit, IpvBits, Ipbmi, fnColorUse)
HDC hdc; /* handle of device context */
BITMAPINFOHEADER FAR* |pbmih;

* address of structure with header

/

DWORD dwlnit;

* CBM_INIT toinitialize bitmap

/

const void FAR* |pvBits;

* address of array with bitmap values

/

BITMAPINFO FAR* Ipbmi;

* address of structure with bitmap data

/

UINT fnColorUse;

* RGB or paette indices

/

The CreateDIBitmap function creates a device-specific memory bitmap from a device-independent bitmap
(DIB) specification and optionally sets bits in the bitmap.

Parameter Description

hdc | dentifies the device context.

[pbmih Pointsto aBITMAPINFOHEADER structure that describes the size and format of the
device-independent bitmap.

dwlnit Specifies whether the memory bitmap isinitiaized. If thisvalueis CBM_INIT, the
function initializes the bitmap with the bits specified by the IpvBits and |pbmi
parameters.

IpvBits Points to a byte array that containsthe initial bitmap values. The format of the bitmap

values depends on the biBitCount member of the BITMAPINFOHEADER structure
identified by the Ipbmi parameter.

[pbmi Points to a BITMAPINFO structure that describes the dimensions and color format of
the IpvBits parameter. The BITMAPINFO structure contains a BITMAPINFOHEADER
structure and an array of RGBQUAD structures specifying the colorsin the bitmap.

fnColorUse Specifies whether the bmiColors member of the BITMAPINFO structure contains
explicit red, green, blue (RGB) values or indicesinto the currently realized logical
palette. The fnColorUse parameter must be one of the following values:

Vaue Meaning

DIB_PAL_COL ORS The color table consists of an array of 16-bit indices into
the currently realized logical palette.

DIB RGB_COIl ORS The color table contains literal RGB values.

Returns
The return value is the handle of the bitmap if the function is successful. Otherwise, it isNULL.

When it has finished using a bitmap created by CreateDIBitmap, an application should select the bitmap
out of the device context and then remove the bitmap by using the Del eteObject function.

Example
The following example initializes an array of bits and an array of RGBQUAD structures, allocates

memory for the bitmap header and color table, fills in the required members of a BITMAPINFOHEADER
structure, and calls the CreateDIBitmap function to create a handle of the bitmap:

HANDLE hl oc;

PBI TMAPI NFO pbm ;

HBI TMAP hbm

BYTE aBits[] = { 0x00, 0x00, 0x00, 0x00, /* bottomrow */

0x01, Ox12, 0x22, 0x11,
0x01, Ox12, 0x22, 0x11,
0x02, 0x20, 0x00, 0x22,

0x02, 0x20, 0x20, 0x22,
0x02, 0x20, 0x00, 0x22,
0x01, Ox12, 0x22, 0x11,
0x01, 0Ox12, 0x22, O0x11 }; [/* top row */

RGBQUAD argbq[] = {{ 255, 0, 0, O}, /* blue */
, 255, 0, 01}, /* green */
{ 0, 0, 255, 0 }}; /* red =/

hl oc = LocalAlloc(LMEM ZEROINIT | LMEM_MOVEABLE,
si zeof (BITWAPINFOHEADER) (si zeof (RGBQUAD) * 16));

pbm (PBI TMAPTNFO) LocalTock(hl oc) ;

pbm - >bm Header. bi Si ze = si zeof (BITMAPINFOHEADER) ;
pbm - >bm Header. bi Wdth = 8,
pbm - >bm Header. bi Hei ght = 8;
pbm - >bm Header. bi Pl anes = 1;
pbm - >bm Header. bi Bi t Count = 4;
pbm - >bm Header . bi Conpressi on = Bl _RGB;

mencpy(pbm - >bm Col ors, argbq, sizeof (RGBQUAD) * 3);

hbm = CreateDl Bi t map(hdcLocal , (BITMAPINFOHEADER FAR*) pbm, CBM.INIT,
aBits, pbm, DIB _RGB _COLORS);
LocalFree(hl oc);

/* Use the bitmap handle. */

Del efeObj ect(hbm;

See Also
CreateBitmap, CreateBitmapl ndirect, CreateCompatibleBitmap, CreateDiscardableBitmap, DeleteObject,

DIB_PAL_COLORS 1
The color table consists of an array of 16-bit indices into the currently realized logical palette.

DIB_PAL_COLORS 1

DIB_RGB_COLORS 0
The color table contains literal RGB values.

DIB_RGB_COLORS 0

CreateDIBPatternBrush (3.0)

HBRUSH CreateD|BPatternBrush(hglbDIBPacked, fnCol orSpec)

HGLOBAL hglbDIBPacked; /* handle of device-independent bitmap */

UINT fnColorSpec; /
* type of color table

/

The CreateD|BPatternBrush function creates a brush that has the pattern specified by a device-
independent bitmap (DIB). The brush can subsequently be selected for any device that supports raster
operations.

Parameter Description

hglbDIBPacked Identifies aglobal memory object containing a packed device-independent bitmap.
A packed DIB consists of a BITMAPINFO structure immediately followed by the
array of bytesthat define the pixels of the bitmap.

fnColorSpec Specifies whether the bmiColors member(s) of the BITMAPINFO structure
contain explicit red, green, blue (RGB) values or indices into the currently realized
logical palette. This parameter must be one of the following values:

Value Meaning
DIB_PAL_COLORS The color table consists of an array of 16-bit indices
into the currently realized logical palette.
DIB_RGB_COLORS The color table contains literal RGB values.
Returns
The return value is the handle of the brush if the function is successful. Otherwise, it isNULL.
Comments

To retrieve the handle identified by the hglbDIBPacked parameter, an application calls the Global Alloc
function to allocate a global memory object and then fills the memory with the packed DIB.

Bitmaps used as fill patterns should be 8 pixels by 8 pixels. If such abitmap islarger, Windows creates a
fill pattern using only the bits corresponding to the first 8 rows and 8 columns of pixelsin the upper-left
corner of the bitmap.

When an application selects atwo-color DIB pattern brush into a monochrome device context, Windows
ignores the colors specified in the DIB and instead displays the pattern brush, using the current text and
background colors of the device context. Pixels mapped to the first color (at offset 0 in the DIB color
table) of the DIB are displayed using the text color, and pixels mapped to the second color (at offset 1in
the color table) are displayed using the background color.

When it has finished using a brush created by CreateDIBPatternBrush, an application should remove the
brush by using the DeleteObject function.

Example

The following example retrieves a bitmap named DIBit from the application's resource file, uses the
bitmap to create a pattern brush in acall to the CreateDIBPatternBrush function, selects the brush into a
device context, and fills a rectangle by using the new brush:

HRSRC hrsrc;
HGLOBAL hgl bl ;
HBRUSH hbr, hbrd d;

hrsrc = FindResource(hinst, "DIBit", RT_BITMAP);
hgl bl = ToadResource(hi nst, hrsrc);
LockResource(hgl'bl);

hbr = CreateDl BPatternBrush(hgl bl, DIB RGB_COLORS);
hbrd d = SelectObject(hdc, hbr);
Rectangle(hdc, 10, 10, 100, 100);
UnTockResource(hgl bl) ;

See Also

CreatePatternBrush, DeleteObject, FindResource, GetDeviceCaps, GlobalAlloc, LoadResource,

LockResource, SelectObject, SetBkColor, SetfTextColor, UnlockResource, BITMAPINFO

CreateDiscardableBitmap (2.x)

HBITMAP CreateDiscardableBitmap(hdc, nWidth, nHeight)

HDC hdc; /* handle of device context */

int nWidth; /* bitmap width */

int nHeight; I*
bitmap height

/

The CreateDiscardableBitmap function creates a discardable bitmap that is compatible with the given
device. The bitmap has the same number of color planes or the same bits-per-pixel format as the device.
An application can select this bitmap as the current bitmap for a memory device that is compatible with
the one identified by the hdc parameter.

Parameter Description

hdc | dentifies the device context.

nWidth Specifies the width, in bits, of the bitmap.
nHeight Specifies the height, in bits, of the bitmap.
Returns

The return value is the handle of the bitmap if the function is successful. Otherwise, it isNULL.

Comments

Windows can discard a bitmap created by this function only if an application has not selected it into a
device context. If Windows discards the bitmap when it is not selected and the application later attemptsto
select it, the SelectObject function will return zero.

Applications should use the DeleteObject function to delete the handle returned by the
CreateDiscardableBitmap function, even if Windows has discarded the bitmap.

See Also
CreateBitmap, CreateBitmaplndirect, CreateDIBitmap, DeleteObject

CreateEllipticRgn (2.x)
HRGN CreateEllipticRgn(nL eftRect, nTopRect, nRightRect, nBottomRect)

int nLeftRect; * x-coordinate upper-left corner bounding rectangle */

int NnTopRect;

* y-coordinate upper-left corner bounding rectangle

/

int nRightRect;

* x-coordinate lower-right corner bounding rectangle

/

int nBottomRect;

* y-coordinate lower-right corner bounding rectangle

/

The CreateEllipticRgn function creates an dlliptical region.

Parameter Description

nL eftRect Specifies the logical x-coordinate of the upper-left corner of the bounding rectangle of
the ellipse.

nTopRect Specifies the logical y-coordinate of the upper-left corner of the bounding rectangle of
the dllipse.

nRightRect Specifies the logical x-coordinate of the lower-right corner of the bounding rectangle of
the dlipse.

nBottomRect Specifiesthe logical y-coordinate of the lower-right corner of the bounding rectangle of

the dlipse.
Returns

Thereturn value is the handle of the region if the function is successful. Otherwise, itisNULL.

Comments

The size of aregionislimited to 32,767 by 32,767 logical units or 64K of memory, whichever issmaller.
When it has finished using a region created by using the CreateEllipticRgn function, an application should

remove it by using the DeleteObject function.

See Also
CreateEllipticRgnindirect, DeleteObject, PaintRgn

CreateEllipticRgnindirect (2.x)

HRGN CreateEllipticRgnindirect(lprc)
const RECT FAR* lprc; [* address of structure with bounding rectangle */

The CreateEllipticRgnl ndirect function creates an elliptical region.

Parameter Description

Iprc Pointsto a RECT structure that contains the logical coordinates of the upper-left and
lower-right corners of the bounding rectangle of the ellipse.

Returns

Thereturn value is the handle of the region if the function is successful. Otherwise, itisNULL.

Comments

The size of aregionislimited to 32,767 by 32,767 logical units or 64K of memory, whichever issmaller.

When it has finished using a region created by CreateEllipticRgnlndirect, an application should remove
the region by using the DeleteObject function.

Example

The following example assigns values to the members of a RECT structure, usesthe
CreateEllipticRgnindirect function to create an elliptical region, selects the region into a device context,
and then uses the PaintRgn function to display the region:

HDC hdc;
RECT rc;

HRGN hr gn;
SetRect(& c, 10, 10, 200, 50);

hrgn = CreateEl lipticRgnlndirect(&c);
SelectObject(hdc, hrgn);

PaintRgn(hdc, hrgn);
See Also
CreateEllipticRgn, DeleteObject, PaintRgn, RECT

CreateFont (2.x)

HFONT CreateFont(nHeight, nWidth, nEscapement, nOrientation, fnWeight, fbitalic, fobUnderline,

int nHeight;

int nNWidth;
width

/

int NEscapement;

fbStrikeOut, fbCharSet, fbOutputPrecision, fbClipPrecision, fbQuality,
fbPitchAndFamily, |pszFace)
[* font height */
[* character

* escapement of line of text
/

int nOrientation;

* angle of base line and x-axis
/

int fnWeight;

* font weight

/

BYTE fbltalic;

* flag for italic attribute
/

BYTE fbUnderling;

* flag for underline attribute

/
BY TE fbStrikeOut;

* flag for strikeout attribute

/
BY TE fbCharSet;
* character set

BY TE fbOutputPrecision;

* output precision
/

BYTE fbClipPrecision;
* clipping precision
/

BYTE fbQuality;
* output quality
/

BY TE fbPitchAndFamily;

* pitch and family
/
LPCSTR |pszFace;

* address of typeface name
/

The CreateFont function creates alogical font that has the specified characteristics. The logical font can
subsequently be selected as the font for any device.

Parameter
nHeight

nWidth

Description

Specifies the requested height, in logical units, for the font. If this parameter is
greater than zero, it specifies the cell height of the font. If it isless than zero, it
specifies the character height of the font. (Character height is the cell height
minus the internal leading. Applications that specify font height in points
typically use a negative number for this member.) If this parameter is zero, the
font mapper uses a default height. The font mapper chooses the largest physical
font that does not exceed the requested size (or the smallest font, if al the fonts
exceed the requested size). The absolute value of the nHeight parameter must not
exceed 16,384 after it is converted to device units.

Specifies the average width, in logical units, of charactersin the font. If this

parameter is zero, the font mapper chooses a " closest match" default width for
the specified font height. (The default width is chosen by matching the aspect

nEscapement

nOrientation

fnWeight

fbltalic
fbUnderline
fbStrikeOut
fbCharSet

fbOutputPrecision

ratio of the device against the digitization aspect ratio of the available fonts. The
closest match is determined by the absolute value of the difference.)

Specifiesthe angle, in tenths of degrees, between the escapement vector and the
x-axis of the screen surface. The escapement vector is the line through the origins
of thefirst and last characters on aline. The angle is measured counterclockwise
from the x-axis.

Specifiesthe angle, in tenths of degrees, between the base line of a character and
the x-axis. The angle is measured in a counterclockwise direction from the x-
axis for left-handed coordinate systems (that is, MM_TEXT, in which the y-
direction is down) and in a clockwise direction from the x-axis for right-handed
coordinate systems (in which the y-direction is up).

Specifies the font weight. This parameter can be one of the following values:

Constant Vaue
FW_DONTCARE 0
FW_THIN 100
FW_EXTRALIGHT 200
FW_ULTRALIGHT 200
FW_LIGHT 300
FW_NORMAL 400
FW_REGULAR 400
FW_MEDIUM 500
FW_SEMIBOLD 600
FW_DEMIBOLD 600
FW_BOLD 700
FW_EXTRABOLD 800
FW_ULTRABOLD 800
FW_BLACK 900
FW_HEAVY 900

The appearance of the font depends on the typeface. Some fonts have only
FW_NORMAL, FW_REGULAR, and FW_BOLD weights. If
FW_DONTCARE is specified, a default weight is used.

Specifiesanitalic font if set to nonzero.

Specifies an underlined font if set to nonzero.

Specifies a strikeout font if set to nonzero.

Specifies the character set of the font. The following values are predefined:

Constant Vaue
ANSI_CHARSET 0
DEFAULT_CHARSET 1
SYMBOL_CHARSET 2
SHIFTJ'S CHARSET 128
OEM_CHARSET 255

The DEFAULT_CHARSET value is not used by the font mapper. An application
can use this value to allow the name and size of afont to fully describe the
logical font. If the specified font name does not exist, afont from any character
set can be substituted for the specified font; to avoid unexpected results,
applications should use the DEFAULT_CHARSET value sparingly.

The OEM character set is system-dependent.

Fonts with other character sets may exist in the system. If an application uses a
font with an unknown character set, it should not attempt to translate or interpret
strings that are to be rendered with that font.

Specifies the requested output precision. The output precision defines how
closely the output must match the requested font's height, width, character
orientation, escapement, and pitch. This parameter can be one of the following
values:

OUT_CHARACTER_PRECIS

fbClipPrecision

fbQuality

fbPitchAndFamily

OUT_DEFAULT_PRECIS
OUT_DEVICE_PRECIS
OUT_RASTER_PRECIS
OUT_STRING_PRECIS
OUT_STROKE_PRECIS
OUT_TT_PRECIS

Applications can use the OUT_DEVICE_PRECIS, OUT_RASTER_PRECIS,
and OUT_TT_PRECIS values to control how the font mapper chooses a font
when the system contains more than one font with a given name. For example, if
a system contained a font named Symbol in raster and TrueType form,
specifying OUT_TT_PRECIS would force the font mapper to choose the
TrueType version. (Specifying OUT_TT_PRECIS forces the font mapper to
choose a TrueType font whenever the specified font name matches a device or
raster font, even when there is no TrueType font of the same name.)

Specifies the requested clipping precision. The clipping precision defines how to
clip charactersthat are partially outside the clipping region. This parameter can
be one of the following values:

CLIP_CHARACTER_PRECIS
CLIP_DEFAULT_PRECIS
CLIP_ENCAPSULATE
CLIP_LH_ANGLES
CLIP_MASK
CLIP_STROKE_PRECIS
CLIP_TT_ALWAYS

To use an embedded read-only font, applications must specify
CLIP_ENCAPSULATE.

To achieve consistent rotation of device, TrueType, and vector fonts, an
application can use the OR operator to combinethe CLIP_LH_ANGLES value
with any of the other fbClipPrecision values. If the CLIP_| LH_ANGLESHhit is
set, the rotation for all fonts is dependent on whether the orientation of the
coordinate system isleft-handed or right-handed. If CLIP_LH_ANGLES s not
set, device fonts always rotate counterclockwise, but the rotation of other fontsis
dependent on the orientation of the coordinate system. (For more information
about the orientation of coordinate systems, see the description of the
nOrientation parameter.)

Specifies the output quality of the font, which defines how carefully the graphics
deviceinterface (GDI) must attempt to match the attributes of alogical font to
those of a physical font. This parameter can be one of the following values:

Vaue Meaning
DEFAULT_QUALITY Appearance of the font does not matter.
DRAFT_QUALITY Appearance of the font is less important than

when the PROOF_QUALITY valueis used. For
GDI raster fonts, scaling is enabled. Bold, italic,
underline, and strikeout fonts are synthesized if
necessary.

PROOF _QUALITY Character quality of the font is more important
than exact matching of the logical-font attributes.
For GDI raster fonts, scaling is disabled and the
font'cfosest in size is chosen. Bald, italic,
underline, and strikeout fonts are synthesized if
necessary.

Specifies the pitch and family of the font. The two low-order bits specify the

pitch of the font and can be one of the following values:

DEFAULT_PITCH
FIXED_PITCH
VARIABLE_PITCH

Applications can set bit 2 (0x04) of the IfPitchAndFamily member to choose a
TrueType font.

The four high-order bits specify the font family and can be one of the following

values:

Vaue Meaning

FF_DECORATIVE Novelty fonts. Old English is an example.

FF_DONTCARE Don't care or don't know.

FF_MODERN Fonts with constant stroke width, with or without
serifs. Pica, Elite, and Courier New are examples.

FF_ROMAN Fonts with variabl e stroke width and with serifs.
Times New Roman and New Century Schoolbook
are examples.

FF_SCRIPT Fonts designed to look like handwriting. Script and
Cursive are examples.

FF_SWISS Fonts with variable stroke width and without serifs.

MS Sans Serif isan example.

An application can specify avalue for the fbPitchAndFamily parameter by using
the Boolean OR operator to join a pitch constant with afamily constant.

Font families describe the ook of afont in a general way. They are intended for
specifying fonts when the exact typeface requested is not available.

IpszFace Points to a null-terminated string that specifies the typeface name of the font. The
length of this string must not exceed LF_FACESIZE - 1. The EnumFontFamilies
function can be used to enumerate the typeface names of all currently avallable
fonts. If this parameter isNULL, GDI uses a device-dependent typeface.

Returns
Thereturn value is the handle of the logical font if the function is successful. Otherwise, itisNULL.

Comments
The CreateFont function creates the handle of alogical font. The font mapper uses thislogical font to find
the closest match from the fonts available in GDI's pool of physical fonts.

Applications can use the default settings for most of these parameters when creating alogical font. The
parameters that should always be given specific values are nHeight and IpszFace. If nHeight and |pszFace
are not set by the application, the logical font that is created is device-dependent.

Fonts created by using the CreateFont function must be selected out of any device context in which they
were used and then removed by using the DeleteObject function.

Example
The following example sets the mapping mode to MM_TWIPS and then uses the CreateFont function to
create an 18-point logical font:

HFONT hfont, hfontd d;
i nt MapMbdePrevious, iPtSize = 18;
PSTR pszFace = "Ms Serif";

MapModePr evi ous = SetMapMode(hdc, MM TW PS);
hfont = CreateFont(-i1PtSize * 20, 0, 0, 0, O, /* specify pt size */
o, 00 00 O, O, 0, 0, 0, pszFace); /* and face name only */

hf ontd d = SelectObject(hdc, hfont);

TextOut(hdc, 100, -500, pszFace, strlen(pszFace));
SetMapMode(hdc, MapMbdePrevi ous);
SefectObject(hdc, hfontd d);

DeletelUbject(hfont);

See Also
CreateFontIndirect, DeleteObject, EnumFontFamilies

CreateFontIndirect (2.x)

HFONT CreateFontlndirect(Iplf)
const LOGFONT FAR* Iplf; [* address of struct. with font attributes */

The CreateFontIndirect function creates alogical font that has the characteristics given in the specified
structure. The font can subsequently be selected as the current font for any device.

Parameter Description

Iplf Pointsto aLOGFONT structure that defines the characteristics of the logical font.
Returns

Thereturn value is the handle of the logical font if the function is successful. Otherwise, itisNULL.
Comments

The CreateFontIndirect function creates alogical font that has the characteristics specified in the
LOGFONT structure. When the font is selected by using the SelectObject function, the graphics device
interface (GDI) font mapper attempts to match the logical font with an existing physical font. If it cannot
find an exact match for the logical font, the font mapper provides an aternative whose characteristics
match as many of the requested characteristics as possible.

Fonts created by using the CreateFontIndirect function must be selected out of any device context in which
they were used and then removed by using the DeleteObject function.

Example

The following example uses the CreateFontlndirect function to retrieve the handle of alogical font. The
NPtSize and pszFace parameters are passed to the function containing this code. The MulDiv and
GetDeviceCaps functions are used to convert the specified point size into the correct point size for the
MM_TEXT mapping mode on the current device.

HFONT hfont, hfontd d;
PLOGFONT plf = (PLOGFONT) LocalAlloc(LPTR, sizeof (LOGFONT));

pl f->IfHeight = -MulDiv(nPtSi ze, GetDeviceCaps(hdc, LOGPI XELSY), 72);
strcpy(pl f->I f FaceName, pszFace);

hf ont = CreateFontlIndirect(plf);
hfontd d = SelectObject(hdc, hfont);

TextOut(hdc, 10, 50, pszFace, strlen(pszFace));

LocalFree((HLOCAL) plf);
SefectObject(hdc, hfontd d);
DeleteObject(hfont);

See Also

CreateFont, DeleteObject

CreateHatchBrush (2.x)

HBRUSH CreateHatchBrush(fnStyle, clrref)
int fnStyle; /* hatch style of brush */
COLORREF clrref; [* color of brush */

The CreateHatchBrush function creates a brush that has the specified hatched pattern and color. The brush
can subsequently be selected as the current brush for any device.

Parameter Description
fnStyle Specifies the hatch style of the brush. This parameter can be one of the following values:
Vaue Meaning
HS BDIAGONAIL 45-degree upward hatch (left to right)
HS CROSS Horizontal and vertical crosshatch
HS DIAGCROSS 45-degree crosshatch
HS FDIAGONAI 45-degree downward hatch (l€ft to right)
HS HORIZONTAI Horizontal hatch
HS VERTICAL Vertical hatch
clrref Specifies the foreground color of the brush (the color of the hatches).
Returns

The return value is the handle of the brush if the function is successful. Otherwise, it isNULL.

[
5,/‘./4/.(/- ted hyShdifHada@AIBrush function, it should

ujf&%dﬁ_a pte it by using the DeleteObject function.

Comments

When an applicéikan HERRTHBTAdng t

sefect therbrush out of the device context

i

=
N
n
b
B

ng iIHSr & IOREEWE how the h britBezRi@aSvhen used to fill arectangle:

HS_FDIAGONAL HS_DIAGCROSS

Example
The following example creates a hatched brush with green diagonal hatch marks and uses that brush to fill
arectangle:

HBRUSH hbr, hbrd d;

hbr = Creat eHat chBrush(HS _FDIAGONAL, RGB(0, 255, 0));
hbrd d = SelectObject(hdc, hbr);
Rectangle(hdc, 0, 0, 100, 100);

See Also
CreateBrushindirect, CreateDI BPatternBrush, CreatePatternBrush, CreateSolidBrush, Del eteObject,
SdlectOnject, RGB

HS BDIAGONAL 3
45-degree upward hatch (left to right)

HS BDIAGONAL 3

HS CROSS 4
Horizontal and vertical crosshatch

HS_CROSS 4

HS DIAGCROSS 5
45-degree crosshatch

HS_DIAGCROSS 5

HS FDIAGONAL 2
45-degree downward hatch (left to right)

HS FDIAGONAL 2

HS HORIZONTAL 0
Horizontal hatch

HS HORIZONTAL O

HS VERTICAL 1
Vertical hatch

HS VERTICAL 1

CreatelC (2.X)

HDC Createl C(IpszDriver, IpszDevice, |pszOutput, [pvinitData)
LPCSTR IpszDriver; [* address of driver name */
LPCSTR IpszDevice;

* address of device name

/

LPCSTR IpszOutput;

* address of filename or port name

/

const void FAR* |pvinitData;

* address of initialization data

/

The Createl C function creates an information context for the specified device. The information context
provides afast way to get information about the device without creating a device context.

Parameter Description

IpszDriver Points to a null-terminated string that specifies the MS-DOS filename (without
extension) of the device driver (for example, EPSON).

IpszDevice Points to a null-terminated string that specifies the name of the specific deviceto be

supported (for example, EPSON FX-80). This parameter is used if the module supports
more than one device.

[pszOutput Points to a null-terminated string that specifies the MS-DOS filename or device name
for the physical output medium (file or port).

IpvinitData Pointsto a DEVMODE structure that contains, initially, device-specific information
necessary to initialize the device driver. The ExtDeviceMode function retrieves this
structure filled in for a given device. The IpvinitData parameter must be NULL if the
device driver isto use the default initialization information (if any) specified by the user
through Windows Control Panel.

Returns
The return value is the handle of an information context for the given device if the function is successful.
Otherwise, itisNULL.

Comments
The PRINT.H header file isrequired if the DEVMODE structureis used.

MS-DOS device names follow MS-DOS conventions; an ending colon (:) is recommended, but optional.
Windows strips the terminating colon so that a device name ending with a colon is mapped to the same
port as would be the same name without a colon.

The driver and port names must not contain leading or trailing spaces.
GDI output functions cannot be used with information contexts.

When it has finished using an information context created by Createl C, an application should remove the
information context by using the DeleteDC function.

Example

The following example uses the Createl C function to create an information context for the display and
then uses the GetDCOrg function to retrieve the origin for the information context:

HDC hdcl G
DWORD dwOri gi n;

hdcl C = Createl C("DlI SPLAY", NULL, NULL, NULL);
dwOri gi n = GetDCOrg(hdcl C);
DeleteDC(hdcl C);

See Also
CreateDC, DeleteDC, ExtDeviceMode, DEVMODE

CreateMetaFile (2.x)

HDC CreateM etaFile(IpszFile)
LPCSTR IpszFile; [* address of metefilename */

The CreateM etaFile function creates a metafile device context.

Parameter Description

IpszFile Points to a null-terminated string that specifies the MS-DOS filename of the metafile to
create. If this parameter isNULL, a device context for amemory metéfile is returned.

Returns

The return value is the handle of the metafile device context if the function is successful. Otherwise, it is
NULL.

Comments
When it has finished using a metafile device context created by CreateMetaFile, an application should
closeit by using the CloseM etaFile function.

Example

The following example uses the CreateM etaFile function to create the handle of a device context for a
memory metafile, draws aline in that device context, retrieves a handle of the metafile by calling the
CloseMetaFile function, plays the metafile by using the PlayMetaFile function, and finally deletes the
metafile by using the DeleteM etaFil e function:

HDC hdcMet a;
HVETAFI LE hnf ;

hdcMeta = CreateMetaFil e(NULL) ;
MoveTo(hdcMeta, 10, 10);

LineTo(hdcMeta, 100, 100);

hnf = CloseMetaFile(hdcMeta);
PlayMetaFile(hdc, hnf);
DeleteMetaFile(hnf);

See Also
DeleteMetaFile

CreatePalette (3.0)

HPALETTE CreatePal ette(Iplgpl)
const LOGPALETTE FAR* Iplgpl; [* address of LOGPALETTE structure */

The CreatePal ette function creates alogical color palette.

Parameter Description

Iplgpl Pointsto a LOGPALETTE structure that contains information about the colorsin the
logical palette.

Returns

Thereturn value is the handle of the logical paletteif the function is successful. Otherwise, itisNULL.

Comments

When it has finished using a palette created by CreatePalette, an application should remove the pal ette by
using the DeleteObject function.

Example
The following example initializes a LOGPALETTE structure and an array of PALETTEENTRY
structures, and then uses the CreatePalette function to retrieve a handle of alogical palette:

#defi ne NUMENTRI ES 128
HPALETTE hpal ;
PALETTEENTRY ape[NUMENTRI ES] ;

pl gpl = (LOGPALETTE*) LocalAlloc(LPTR,
si zeof (LOGPALETTE) + cCol ors * sizeof (PALETTEENTRY));

pl gpl - >pal NunEntries = cCol ors;
p! gpl - >pal Ver si on = 0x300;

for (i =0, red =0, green = 127, blue = 127; i < NUMENTRI ES;
i++, red += 1, green += 1, blue += 1) {
ape[i].peRed =
pl gpl - >pal Pal Entry[i].peRed = LOBYTE(red);
ape[i].peGeen =
pl gpl - >pal Pal Entry[i]. peGreen = LOBYTE(green);
ape[i].peBlue =
p! gpl - >pal Pal Entry[i]. peBl ue = LOBYTE(bl ue);
ape[i].peFlags =
pl gpl - >pal Pal Entry[i]. peFl ags = PC_RESERVED

}
hpal = CreatePal ette(plgpl);
LocalFree((HLOCAL) plgpl);

/* Use the palette handle. */

Del eteObject(hpal);

See Also
DeleteObject

CreatePatternBrush (2.x)

HBRUSH CreatePatternBrush(hbmp)
HBITMAP hbmp; /* handle of bitmap */

The CreatePatternBrush function creates a brush whose pattern is specified by a bitmap. The brush can
subsequently be selected for any device that supports raster operations.

Parameter Description

hbmp | dentifies the bitmap.

Returns

The return value is the handle of the brush if the function is successful. Otherwise, it isNULL.
Comments

The bitmap identified by the hbmp parameter istypically created by using the CreateBitmap,
CreateBitmapl ndirect, CreateCompatibleBitmap, or LoadBitmap function.

Bitmaps used as fill patterns should be 8 pixels by 8 pixels. If the bitmap is larger, Windows will use the
bits corresponding to only the first 8 rows and 8 columns of pixelsin the upper-left corner of the bitmap.

An application can use the DeleteObject function to remove a pattern brush. This does not affect the
associated bitmap, which meansthe bitmap can be used to create any number of pattern brushes. In any
case, when the brush is no longer needed, the application should remove it by using DeleteObject.

A brush created by using a monochrome bitmap (one color plane, one bit per pixel) isdrawn using the
current text and background colors. Pixels represented by a bit set to 0 are drawn with the current text
color, and pixels represented by a bit set to 1 are drawn with the current background color.

Example

The following example loads a bitmap named Pattern, uses the bitmap to create a pattern brush in a call to
the CreatePatternBrush function, selects the brush into a device context, and fills a rectangle by using the
new brush:

HBI TMAP hbnp;
HBRUSH hbr, hbrd d;

hbnp = LoadBitmap(hi nst, "Pattern");
hbr = CreatePatternBrush(hbmp);
hbrd d = SelectObject(hdc, hbr);
Rectangle(hdc, 10, 10, 100, 100);

See Also
CreateBitmap, CreateBitmaplndirect, CreateCompatibleBitmap, CreateDIBPatternBrush, DeleteObject,
GetDeviceCaps, LoadBitmap, SelectObject, SetBkColor, SetTextColor

CreatePen (2.x)

HPEN CreatePen(fnPenStyle, nWidth, clrref)

int fnPenStyle; [* style of pen */

int nWidth;

COLORREF clrref;

* color of pen
/

/* width of pen */

The CreatePen function creates a pen having the specified style, width, and color. The pen can
subsequently be selected as the current pen for any device.

Parameter
fnPenStyle

nWidth

clrref
Returns

Description

Specifies the pen style. This parameter can be one of the following values:

Vaue

Meaning

Creates a solid pen.

Creates a dashed pen. (Valid only when the pen width is
1)

Creates adotted pen. (Valid only when the pen width is 1.
)

Creates a pen with alternating dashes and dots. (Valid
only when the pen width is 1.)

Creates a pen with alternating dashes and double dots.
(Valid only when the pen widthis 1.)

Creates anull pen.

Creates a pen that draws a line inside the frame of closed
shapes produced by graphics device interface (GDI)
output functions that specify a bounding rectangle (for
example, the Ellipse, Rectangle, RoundRect, Pie, and
Chord functions). When this styleis used with GDI output
functions that do not specify a bounding rectangle (for
example, the LineTo function), the drawing area of the
penis not limited by aframe.

Specifies the width, in logical units, of the pen. If thisvalueis zero, the width in device
unitsis always one pixel, regardless of the mapping mode.

Specifies the color of the pen.

Thereturn value is the handle of the pen if the function is successful. Otherwise, it iSNULL.

Comments

Pens whossg

PS_INSIDE

1f 2 nen ha
H-a-per-nas

width is greater than one pixel always have the PS_ NULL, PS _SOLID, or
FRR& ESpll¢D

the PS_INSIDEFRAME style and a color that does not match a color in the logical color table,

—the-pen isdrawn with adithered color. The PS_SOLID pen style cannot be used to create a pen with a
| dlthered co‘or P PSP INSIDEFRAME isidentical to PS_SOLID if the pen width is less than or

| equdl t

When_lt has finished using a pen created by CreatePen, an application should remove the pen by using the

DeI eteObj ect fulgglqﬂDT

—T he fellewnng illustration shows how the various system pens appear when used to draw arectangle.

P5_DASHDOT

P5_DASHDOTDOT

Example
The following example uses the CreatePen function to create a solid blue pen 6 units wide, selects the pen
into a device context, and then uses the pen to draw arectangle:

HPEN hpen, hpend d;

hpen = CreatePen(PS_SOLID, 6, RGB(0, 0, 255));
hpend d = SelectObject(hdc, hpen);

Rectangle(hdc, 10, 10, 100, 100);
SelectObject(hdc, hpend d);
DeletelObject(hpen);

See Also
CreatePenindirect, DeleteObject, Ellipse, Rectangle, RoundRect, RGB

PS SOLID 0
Creates a solid pen.

PS SOLID 0

PS DASH 1
Creates a dashed pen. (Valid only when the pen widthis 1.)

PS DASH 1

PS DOT 2
Creates a dotted pen. (Valid only when the pen widthis 1.)

PS DOT 2

PS DASHDOT 3
Creates a pen with aternating dashes and dots. (VValid only when the pen widthis 1.)

PS DASHDOT 3

PS DASHDOTDOT 4
Creates a pen with aternating dashes and double dots. (Valid only when the pen widthis 1.)

PS DASHDOTDOT 4

PS NULL 5
Creates anull pen.

PS NULL 5

PS_INSIDEFRAME 6

Creates a pen that draws a line inside the frame of closed shapes produced by graphics device interface
(GDI) output functions that specify a bounding rectangle (for example, the Ellipse, Rectangle, RoundRect,
Pie,;and Chord functions). When this style is used with GDI output functionsthat do not specify a
bounding rectangle (for example, the LineTo function), the drawing area of the pen is not limited by a
frame.

PS_INSIDEFRAME 6

CreatePenindirect (2.x)

HPEN CreatePenlndirect(Iplgpn)
LOGPEN FAR* Iplgpn; [* address of structure with pen data ~ */

The CreatePenindirect function creates a pen that has the style, width, and color given in the specified
structure.

Parameter Description

Iplgpn Points to the LOGPEN structure that contains information about the pen.
Returns

Thereturn value is the handle of the pen if the function is successful. Otherwise, it isSNULL.
Comments

Pens whose width is greater than 1 pixel always havethe PS NULL, PS SOLID, or PS INSIDEFRAME
style.

If apen hasthe PS INSIDEFRAME style and a color that does not match a color in the logical color table,
the pen is drawn with adithered color. The PS_INSIDEFRAME styleisidentical to PS SOLID if the pen
width isless than or equal to 1.

When it has finished using a pen created by CreatePenlIndirect, an application should remove the pen by
using the DeleteObject function.

Example

The following example fills a LOGPEN structure with values defining a solid red pen 10 logical units
wide, uses the CreatePenl ndirect function to create this pen, selects the pen into a device context, and then
uses the pen to draw arectangle:

LOGPEN | p;

HPEN hpen, hpend d;

| p.l opnStyle = PS SOLID;

[p.l opnWdth.x = 10;

| p.l opnWdth.y = O; [* y-di mension not used */
| p. 1 opnCol or = RGB(255, 0, 0);

hpen = Creat ePenl ndirect (& p);
hpend d = SelectObject(hdc, hpen);
Rectangle(hdc, 10, 10, 100, 100);
See Also

CreatePen, DeleteObject, LOGPEN, RGB

CreatePolygonRgn (2.x)

HRGN CreatePolygonRgn(lppt, cPoints, fnPolyFillMode)

const POINT FAR* Ippt; [* address of array of points */

int cPoints; /* number of
pointsin array

/

int fnPolyFillIMode;
* polygon-filling mode
/

The CreatePolygonRgn function creates a polygonal region. The system closes the polygon automatically,
if necessary, by drawing aline from the last vertex to the first.

Parameter Description

[ppt Points to an array of POINT structures. Each structure specifies the x-coordinate and
y-coordinate of one vertex of the polygon.

cPoints Specifies the number of POINT structures in the array pointed to by the Ippt
parameter.

fnPolyFillMode Specifies the polygon-filling mode. This value may be either ALTERNATE or
WINDING.

Returns

Thereturn value is the handle of the region if the function is successful. Otherwise, it isNULL.

Comments
The size of aregionislimited to 32,767 by 32,767 logical units or 64K of memory, whichever issmaller.

When the polygon-filling mode is ALTERNATE, the system fills the area between odd-numbered and
even-numbered polygon sides on each scan line. That is, the system fills the area between the first and
second side, between the third and fourth side, and so on.

When the polygon-filling mode is WINDING, the system uses the direction in which afigure was drawn
to determine whether to fill an area. Each line segment in a polygon is drawn in either aclockwise or a
counterclockwise direction. Whenever an imaginary line drawn from an enclosed area to the outside of a
figure passes through a clockwise line segment, the system increments a count (increases it by one); when
the line passes through a counterclockwise line segment, the system decrements the count. The areais
filled if the count is nonzero when the line reaches the outside of the figure.

When it has finished using a region created by CreatePolygonRgn, an application should remove the
region by using the DeleteObject function.

Example

The following examplefills an array of POINT structures with the coordinates of afive-pointed star, uses
thisarray in acall to the CreatePolygonRgn function, selects the region into a device context, and then
uses the PaintRgn function to display the region:

HDC hdc;
HRGN hr gn;
POINT apts[5] = {{ 200, 10 1},
00, 200 },
100, 100 },
{ 300, 100 },
{ 100, 200 }};

hrgn = Creat ePol ygonRgn(apt s, /* array of points */
si zeof (apts) / sizeof (POINT),/* nunber of points */
ALTERNATE) ; /* alternate node */

SelectObject(hdc, hrgn);

PaintRgn(hdc, hrgn);

See Also

CreatePolyPolygonRgn, DeleteObject, Polygon, SetPolyFillMode, POINT

CreatePolyPolygonRgn (3.0)

HRGN CreatePolyPolygonRgn(Ippt, IpnPolyCount, clntegers, fnPolyFillM ode)
const POINT FAR* Ippt; /* address of structure of points */
const int FAR* IpnPolyCount;

* address of array of vertex data

/

int clntegers;

* number of integersin array

/

int fnPolyFillIMode;

* polygon-filling mode
/

The CreatePolyPolygonRgn function creates a region consisting of a series of closed polygons. The
polygons may be digoint, or they may overlap.

Parameter Description

[ppt Pointsto an array of POINT structures that define the vertices of the polygons. Each
polygon must be explicitly closed, because the system does not close them
automatically. The polygons are specified consecutively.

[pnPolyCount Pointsto an array of integers. The first integer specifies the number of verticesin the
first polygon in the array pointed to by the Ippt parameter, the second integer
specifies the number of vertices in the second polygon, and so on.

clntegers Specifies the total number of integersin the array pointed to by the |pnPolyCount
parameter.

fnPolyFillMode Specifies the polygon-filling mode. This value may be either ALTERNATE or
WINDING.

Returns

Thereturn value is the handle of the region if the function is successful. Otherwise, itisNULL.

Comments
The size of aregionislimited to 32,767 by 32,767 logical units or 64K of memory, whichever is smaller.

When the polygon-filling mode is ALTERNATE, the system fills the area between odd-numbered and
even-numbered polygon sides on each scan line. That is, the system fills the area between the first and
second side, between the third and fourth side, and so on.

When the polygon-filling mode is WINDING, the system uses the direction in which a figure was drawn
to determine whether to fill an area. Each line segment in a polygon is drawn in either a clockwise or a
counterclockwise direction. Whenever an imaginary line drawn from an enclosed area to the outside of a
figure passes through a clockwise line segment, the system increments a count (increases it by one); when
the line passes through a counterclockwise line segment, the system decrements the count. The areais
filled if the count is nonzero when the line reaches the outside of the figure.

When it has finished using a region created by CreatePolyPolygonRgn, an application should remove the
region by using the DeleteObject function.

Example

The following examplefills an array of POINT structures with the coordinates of afive-pointed star and a
rectangle, usesthis array in acall to the CreaiePolyPolygonRgn function, selects the region into adevice
context, and then uses the PaintRgn function to display the region:

HDC hdc;

HRGN hr gn;

i nt aVert|ces[2] ={ 6, 51},

POINT apt s[11] {{ 200 10 1},
{300, 200
{ 100, 100 }
{ 300, 100 }

{ 100, 200 }

{ 200, 10 }

{ }

—

/* Star figure, manually closed */

10, 150

{ 350, 150 },

{ 350, 170 }, /* Rectangle, manually cl osed */
{ 10, 170 },

{ 10, 150 }};

hrgn = Creat ePol yPol ygonRgn(apt s, /* array of points*/
aVerti ces, /* array of vertices */
si zeof (aVertices) / sizeof(int), /* integers in vertex array */
ALTERNATE); /* alternate node */

SelectObject(hdc, hrgn);

PaintRgn(hdc, hrgn);

See Also

CreatePolygonRgn, DeleteObject, PolyPolygon, SetPolyFillMode, POINT

CreateRectRgn (2.x)

HRGN CreateRectRgn(nLeftRect, nTopRect, nRightRect, nBottomRect)

int nLeftRect; /* x-coordinate upper-left corner of region */

int NTopRect; [* y-coordinate
upper-left corner of region

/

int nRightRect;

* x-coordinate lower-right corner of region
/

int nBottomRect;

* y-coordinate lower-right corner of region
/

The CreateRectRgn function creates a rectangular region.

Parameter Description

nL eftRect Specifiesthe logical x-coordinate of the upper-left corner of the region.
nTopRect Specifiesthe logical y-coordinate of the upper-left corner of the region.
nRightRect Specifies the logical x-coordinate of the lower-right corner of the region.

nBottomRect Specifies the logical y-coordinate of the lower-right corner of the region.

Returns
Thereturn value is the handle of arectangular region if the function is successful. Otherwise, itisNULL.

Comments
The size of aregionislimited to 32,767 by 32,767 logical units or 64K of memory, whichever is smaller.

When it has finished using a region created by CreateRectRgn, an application should remove the region by
using the DeleteObject function.

Example
The following example uses the CreateRectRgn function to create a rectangular region, selects the region
into a device context, and then uses the PaintRgn function to display the region:

HDC hdc;
HRGN hr gn;

hrgn = CreateRect Rgn(10, 10, 110, 110);
SelectObject(hdc, hrgn);

PaintRgn(hdc, hrgn);

See Also

CreateRectRgnlndirect, CreateRoundRectRgn, DeleteObject, PaintRgn

CreateRectRgnindirect (2.x)

HRGN CreateRectRgnlIndirect(lprc)
const RECT FAR* lprc; [* address of structure with region */

The CreateRectRgnlIndirect function creates a rectangular region by using a RECT structure.

Parameter Description

Iprc Pointsto a RECT structure that contains the logical coordinates of the upper-left and
lower-right corners of the region.

Returns

Thereturn value is the handle of the rectangular region if the function is successful. Otherwise, itis
NULL.

Comments
The size of aregionislimited to 32,767 by 32,767 logical units or 64K of memory, whichever is smaller.

When it has finished using aregion created by CreateRectRgnlIndirect, an application should remove the
region by using the DeleteObject function.

Example

The following example assigns values to the members of a RECT structure, uses the
CreateRectRgnlndirect function to create a rectangular region, selects the region into a device context, and
then uses the PaintRgn function to display the region:

RECT rc;

HRGN hr gn;
SetRect(& c, 10, 10, 200, 50);

hrgn = CreateRect Rgnlndirect(&c);
SelectObject(hdc, hrgn);

PaintRgn(hdc, hrgn);
See Also
CreateRectRgn, CreateRoundRectRgn, DeleteObject, PaintRgn, RECT

CreateRoundRectRgn (3.0)

HRGN CreateRoundRectRgn(nL eftRect, nTopRect, nRightRect, nBottomRect, nWidthEllipse,
nHeightEllipse)

int nLeftRect; [* x-coordinate upper-left corner of region */

int nTopRect; [* y-coordinate

upper-left corner of region

/

int nRightRect;
* x-coordinate lower-right corner of region
/

int nBottomRect;
* y-coordinate lower-right corner of region
/

int NWidthEllipse;
* height of ellipse for rounded corners
/

int nHeightEllipse;
* width of ellipse for rounded corners
/

The CreateRoundRectRgn function creates a rectangular region with rounded corners.

Parameter Description

nLeftRect Specifiesthe logical x-coordinate of the upper-left corner of the region.
nTopRect Specifiesthelogical y-coordinate of the upper-left corner of the region.
nRightRect Specifiesthe logical x-coordinate of the lower-right corner of the region.
nBottomRect Specifies the logical y-coordinate of the lower-right corner of the region.

nWidthEllipse Specifies the width of the ellipse used to create the rounded corners.
nHeightEllipse Specifies the height of the ellipse used to create the rounded corners.

Returns
The return value is the handle of the region if the function is successful. Otherwise, itisNULL.

Comments
The size of aregionislimited to 32,767 by 32,767 logical units or 64K of memory, whichever issmaller.

When it has finished using aregion created by CreateRoundRectRgn, an application should remove the
region by using the DeleteObject function.

Example
The following example uses the CreateRoundRectRgn function to create aregion, selectsthe regioninto a
device context, and then uses the PaintRgn function to display the region:

HRGN hr gn;
int nEllipWdth = 10;
int nEllipHeight = 30;

hrgn = Creat eRoundRect Rgn(10, 10, 110, 110,
nEl I'i pWdth, nEllipHeight);

SelectObject(hdc, hrgn);

PaintRgn(hdc, hrgn);

See Also

CreateRectRgn, CreateRectRgnindirect, DeleteObject, PaintRgn

CreateScal ableFontResource (3.1)

BOOL CreateScal ableFontResource(fHidden, IpszResourceFile, [pszFontFile, IpszCurrentPath)
UINT fHidden; [* flag for read-only embedded font */
LPCSTR IpszResourceFile;

* address of filename of font resource

/

LPCSTR IpszFontFile;

* address of filename of scalable font

/

LPCSTR IpszCurrentPath;

* address of path to font file

/

The CreateScal ableFontResource function creates afont resource file for the specified scalable font file.

Parameter Description

fHidden Specifies whether the font is a read-only embedded font. This parameter can be
one of the following values:
Value Meaning
0 The font has read-write permission.

1 The font has read-only permission and should be hidden from other
applications in the system. When thisflag is set, the font is not
enumerated by the EnumFonts or EnumFontFamilies function.

IpszResourceFile Points to a null-terminated string specifying the name of the font resource file that
this function creates.
IpszFontFile Points to a null-terminated string specifying the scalable font file this function

uses to create the font resource file. This parameter must specify either the
filename and extension or afull path and filename, including drive and filename

extension.

IpszCurrentPath Points to a null-terminated string specifying either the path to the scalable font file
specified in the IpszFontFile parameter or NULL, if IpszFontFile specifies afull
path.

Returns

The return value is nonzero if the function is successful. Otherwise, it is zero.

Comments

An application must use the CreateScal ableFontResource function to create afont resource file before
installing an embedded font. Font resource files for fonts with read-write permission should use the .FOT
filename extension. Font resource files for read-only fonts should use a different extension (for example, .
FOR) and should be hidden from other applications in the system by specifying 1 for the fHidden
parameter. The font resource files can be installed by using the AddFontResource function.

When the |pszFontFile parameter specifies only afilename and extension, the |pszCurrentPath parameter
must specify a path. When the |pszFontFile parameter specifies afull path, the |pszCurrentPath parameter
must be NULL or apointer to NULL.

When only afilename and extension is specified in the |pszFontFile parameter and a path is specified in
the IpszCurrentPath parameter, the string in |pszFontFile is copied into the .FOT file asthe .TTF file that
belongs to this resource. When the AddFontResource function is called, the system assumes that the . TTF
file has been copied into the SY STEM directory (or into the main Windows directory in the case of a
network installation). The .TTF file need not be in this directory when the CreateScal abl eFontResource
function is called, because the IpszCurrentPath parameter contains the directory information. A resource
created in this manner does not contain absolute path information and can be used in any Windows
installation.

When a path is specified in the |pszFontFile parameter and NULL is specified in the IpszCurrentPath
parameter, the string in IpszFontFile is copied into the .FOT file. In this case, when the AddFontResource
functionis called, the . TTF file must be at the location specified in the |pszFontFile parameter when the
CreateScal ableFontResource function was called; the IpszCurrentPath parameter is not needed. A resource
created in this manner contains absol ute references to paths and drives and will not work if the . TTFfileis
moved to a different location.

The CreateScal ableFontResource function supports only TrueType scalable fonts.

Example
The following example shows how to create a TrueType font file in the SY STEM directory of the
Windows startup directory:

Creat eScal abl eFont Resource(0, "c:\\wi ndows\\system\font.fot",
"font.ttr", "c:\\w ndows\\systent);

AddFontResource("c:\\w ndows\\system\font.fot");
The following example shows how to create a TrueType font file in a specified directory:

Cr eat eScal abl eFont Resource(0, "c:\\w ndows\\system\font.fot",
"c:\\fontdir\\font.ttr", NULL);

AddFontResource("c:\\w ndows\\system\font.fot");
The following example shows how to work with a standard embedded font:

HFONT hf ont ;
/* Extract .TTF file into C\MYDI R FONT. TTR */
Cr eat eScal abl eFont Resource(0, "font.fot", "c:\\mydir\\font.ttr", NULL)

AddFontResource("font.fot");

hfont = CreateFont(..., CLIP_DEFAULT PRECIS, ..., "FONT");
. /* Use the font. */
DelefeObject(hf ont) ;

RemoveFontResource("font.fot");

/* Delete C:\MYDIR FONT. FOT and C:\MYDI R\FONT. TTR. */

The following example shows how to work with aread-only embedded font:

HFONT hf ont ;

/* Extract.TTF file into C\MD R FONT. TTR. */

Cr eat eScal abl eFont Resource(1, "font.for™, "c:\\mydir\\font.ttr", NULL)

AddFontResource("font.for");

hf ont = CreateFont(..., CLIP_EMBEDDED, ..., "FONT");
. /* Use the font. */
DelefeObject(hf ont) ;

RemoveFontResource("font.for");

/* Delete C:\MYDI RN FONT. FOR and C:\ MYDI R\ FONT. TTR. */

See Also
AddFontResource

CreateSolidBrush (2.x)

HBRUSH CreateSolidBrush(clrref)
COLORREF clrref; /* brush color */

The CreateSolidBrush function creates a brush that has a specified solid color. The brush can subsequently
be selected as the current brush for any device.

Parameter Description

clrref Specifies the color of the brush.

Returns

The return value is the handle of the brush if the function is successful. Otherwise, it isNULL.
Comments

When an application has finished using the brush created by CreateSolidBrush, it should select the brush
out of the device context and then remove it by using the DeleteObject function.

Example
The following example uses the CreateSolidBrush function to create a green brush, selects the brush into a
device context, and then uses the brush to fill arectangle:

HBRUSH hbr d d;
HBRUSH hbr ;

hbr = CreateSol i dBrush(RGB(0, 255, 0));

hbrd d = SelectObject(hdc, hbr);

Rectangle(hdc, 10, 10, 100, 100);

See Also

CreateBrushlndirect, CreateDIBPatternBrush, CreateHatchBrush, CreatePatternBrush, DeleteObject, RGB

DeleteDC (2.x)

BOOL DeleteDC(hdc)
HDC hdc; /* handle of device context */

The DeleteDC function deletes the given device context.

Parameter Description

hdc I dentifies the device context.

Returns

The return value is nonzero if the function is successful. Otherwise, it is zero.
Comments

If the hdc parameter identifies the last device context for a given device, the device is notified and all
storage and system resources used by the device are rel eased.

An application must not delete a device context whose handle was retrieved by calling the GetDC
function. Instead, the application must call the ReleaseDC function to free the device context.

An application should not call DeleteDC if the application has selected objects into the device context.
Objects must be selected out of the device context beforeit is deleted.

Example
The following example uses the CreateDC function to create a device context for a printer and then calls
the DeleteDC function when the device context is no longer needed:

/* Retrieves a device context for a printer. */

hdcPrinter = CreateDC(| pDriverName, | pDeviceNane, | pQutput,
| plnitData);

/* Use the device context. */

/* Delete the device context. */

Del et eDC(hdcPrinter);

See Also
CreateDC, GetDC, ReleaseDC

DeleteMetaFile (2.x)

BOOL DeleteMetaFile(hmf)
HMETAFILE hmf; /* handle of metefile */

The DeleteM etaFile function invalidates the given metafile handle.

Parameter Description

hmf | dentifies the metafile to be deleted.

Returns

The return value is nonzero if the function is successful. Otherwise, it is zero.
Comments

The DeleteMetaFile function does not destroy a metafile that is saved on disk. After calling
DeleteMetaFile, an application can retrieve anew handle of a disk-based metafile by calling the
GetMetaFile function.

Example

The following example uses the CreateM etaFil e function to create the handle of a memory metafile device
context, draws aline in that device context, refrieves a handle of the metafile by calling the CloseMetaFile
function, plays the metafile by using the PlayMetaFile function, and finally deletes the metafile by using
DeleteMetakile:

HDC hdcMet a;
HVETAFI LE hnf ;

hdcMet a = CreateMetaFile(NULL);
MoveTo(hdcMeta, 10, 10);

CineTo(hdcMeta, 100, 100);

hnf = CloseMetaFile(hdcMet a) ;
PlayMetaFile(hdc, hnf);
Del'eteMetaFi | e(hnf);

See Also
CreateMetaFile, GetMetaFile

DeleteObject (2.x)

BOOL DeleteObject(hgdiobyj)
HGDIOBJ hgdiobj; /* handle of object to delete */

The DeleteObject function del etes an object from memory by freeing all system storage associated with
the object. (Objects include pens, brushes, fonts, bitmaps, regions, and pal ettes.)

Parameter Description

hgdiobj Identifies a pen, brush, font, bitmap, region, or palette.
Returns

Thereturn value is nonzero if the function is successful. Otherwisg, it is zero.
Comments

After the object is deleted, the handle given in the hgdiobj parameter is no longer valid.
An application should not delete an object that is currently selected into a device context.

When a pattern brush is deleted, the bitmap associated with the brush is not deleted. The bitmap must be
deleted independently.

Example

The following example creates a pen, selectsit into a device context, and uses the pen to draw arectangle.

To delete the pen, the original pen is selected back into the device context and the Del eteObject function is
called.

HPEN hpen, hpend d;

hpen = CreatePen(PS_SOLID, 6, RGB(0, 0, 255));
hpend d = SelectObject(hdc, hpen);

Rectangle(hdc, 10, 10, 100, 100);
SelectObject(hdc, hpend d);
Del et eoj ect (hpen) ;

See Also
SelectObject, RGB

DeviceCapabilities (3.0)

#include <print.h>

DWORD DeviceCapabilities(lpszDevice, |pszPort, fwCapability, IpszOutput Ipdm)
*/

LPSTR IpszDevice,

LPSTR IpszPort;

address of port-name string

/

WORD fwCapability;
* device capability to query

/

LPSTR IpszOutput;
* address of the output
/

LPDEVMODE Ipdm;
* address of structure with device data

/

[/* address of device-name string

/*

The DeviceCapabilities function retrieves the capabilities of the printer device driver.

Parameter
IpszDevice

[pszPort

fwCapability

Description

Points to a null-terminated string that contains the name of the printer device, such as

PCL/HP LaserJet.

Points to a null-terminated string that contains the name of the port to which the device

is connected, such as LPT1.

Specifies the capabilities to query. This parameter can be one of the following values:

Value
DC BINNAMES

Meaning

Copies an array containing alist of the names of
the paper bins. Thisarray isin the form char
PaperNames| cBinMax][cchBinName] where
cchBinName is 24. If the IpszOutput parameter is
NULL, the return value is the number of bin
entries required. Otherwise, the return value is the
number of bins copied.

Retrieves alist of available bins. The function
copiesthelist to the IpszOutput parameter as a
WORD array. If [pszOutput isNULL, the
function returns the number of supported bins to
allow the application the opportunity to alocate a
buffer with the correct size. For more information
about these bins, see the description of the
dmDefaultSource member of the DEVMODE
structure.

Returns the number of copiesthe device can
print.
Returns the version number of the printer driver.

Returns the level of duplex support. The function
returns 1 if the printer is capable of duplex
printing. Otherwise, the return value is zero.

Returns alist of available resolutions. If
IpszOutput is NULL, the function returns the
number of available resolution configurations.
Resolutions are represented by pairs of LONG
integers representing the horizontal and vertical
resolutions (specified in dots per inch).

Returns the number of bytes required for the
device-specific portion of the DEVMODE
structure for the printer driver.

Returns the dmFields member of the printer
driver's DEVMODE structure. The dmFields
member indicates which fields in the device-
independent portion of the structure are supported
by the printer driver.

Returns alist of files that also need to be loaded
when adriver isinstalled. If the IpszOutput
parameter is NULL, the function returns the
number of files. Otherwise, IpszOutput points to
an array of filenames in the form char
[chFileName, 64]. Each filenameisanull-
terminated string.

Returns a POINT structure containing the
maximum paper size that the dmPaperLength and
dmPaperWidth members of the printer driver's
DEVMODE structure can specify.

Returns a POINT structure containing the
minimum paper size that the dmPaperLength and
dmPaperWidth members of the printer driver's
DEVMODE structure can specify.

Returns the relationship between portrait and
landscape orientations for adevice, in terms of
the number of degrees that portrait orientation is
rotated counterclockwise to produce landscape
orientation. The return value can be one of the

following:

Value Meaning

0 No landscape orientation.

20 Portrait is rotated 90 degreesto

produce landscape. (For example,
Hewlett-Packard PCL printers.)

270 Portrait is rotated 270 degrees to
produce landscape. (For example,
dot-matrix printers.)

Retrieves alist of supported paper names--for

example, Letter or Legal. If the IpszOutput

parameter is NULL, the function returns the
number of paper sizes available. Otherwise,

[pszOutput pointsto an array for the paper names

in the form char[cPaperNames, 64]. Each paper

nameis a null-terminated string.

Retrieves alist of supported paper sizes. The
function copiesthe list to IpszOutput as a WORD
array and returns the number of entriesin the
array. If IpszOutput is NULL, the function returns
the number of supported paper sizesto allow the
application the opportunity to allocate a buffer
with the correct size. For more information on
paper sizes, see the description of the
dmPaperSize member of the DEVMODE
structure.

Copies the dimensions of al supported paper
sizes, in tenths of amillimeter, to an array of
POINT structures pointed to by the IpszOutput
parameter. The width (x-dimension) and length
(y-dimension) of apaper size are returned asiif
the paper werein the DMORIENT_PORTRAIT
orientation.

Returns the dmSize member of the printer
driver's DEVMODE structure.

Retrieves the abilities of the driver to use

TrueType fonts. The return value can be one or
more of the following:
Value Meaning

DCTT_BITMAP Deviceis capable of
printing TrueType
fonts as graphics. (For
example, dot-matrix
and PCL printers.)

DCTT_DOWNLOAD Deviceis capable of
downloading
TrueType fonts. (For
example, PCL and
PostScript printers.)

DCTT_SUBDEV Deviceis capable of
substituting device
fontsfor TrueType
fonts. (For example,
PostScript printers.)

For DC_TRUETY PE, the |pszOutput parameter

should be NULL.
DC VERSION Returns the specification version to which the
printer driver conforms.
[pszOutput Pointsto an array of bytes. The format of the array depends on the setting of the

fwCapability parameter. If [pszOutput is zero, DeviceCapabilities returns the number of
bytes required for the output data.

[pdm Pointsto a DEVMODE structure. If this parameter isNULL, DeviceCapabilities
retrieves the current default initialization values for the specified printer driver.
Otherwise, the function retrieves the values contained in the structure to which Ipdm
points.

Returns
Thereturn value, if the function is successful, depends on the setting of the fwCapability parameter. The
return valueis-1 if the function fails.

Comments
This function is supplied by the printer driver. To use the DeviceCapabilities function, an application must
retrieve the address of the function by calling the LoadLibrary and GetProcAddress functions, and it must

include the PRINT.H file.

DeviceCapabilitiesis not supported by all printer drivers. If the GetProcAddress function returns NULL,
DeviceCapabilitiesis not supported.

See Also
GetProcAddress, LoadLibrary

Changes
The following index values have been added for Windows version 3.1:

DC_COPIES
DC_ENUMRESOLUTIONS
DC_FILEDEPENDENCIES
DC_ORIENTATION
DC_PAPERNAMES
DC_TRUETYPE

DCTT _BITMAP
DCTT_DOWNLOAD
DCTT_SUBDEV

Corrections
Changed the type of the last argument |pdm from LPFNDEVMODE to LPDEVMODE.

DC_BINNAMES 12

Copies an array containing alist of the names of the paper bins. This array isin the form char
PaperNames] cBinMax][cchBinName] where cchBinName is 24. If the |pszOutput parameter isNULL, the
return value is the number of bin entries required. Otherwise, the return value is the number of bins copied.

DC_BINNAMES 12

DC BINS 6

Retrieves alist of available bins. The function copiesthe list to the |pszOutput parameter as a WORD
array. If IpszOutput is NULL, the function returns the number of supported binsto allow the application
the opportunity to allocate a buffer with the correct size. For more information about these bins, see the
description of the dmDefaultSource member of the DEVMODE structure.

DC BINS 6

DC_COPIES 18
Returns the number of copies the device can print.

DC_COPIES 18

DC DRIVER 11
Returns the version number of the printer driver.

DC_DRIVER 11

DC_DUPLEX 7

Returns the level of duplex support. The function returns 1 if the printer is capable of duplex printing.
Otherwise, the return valueis zero.

DC_DUPLEX 7

DC_ENUMRESOLUTIONS 13

Returns alist of available resolutions. If IpszOutput is NULL, the function returns the number of available
resolution configurations. Resolutions are represented by pairs of LONG integers representing the
horizontal and vertical resolutions (specified in dots per inch).

DC_ENUMRESOLUTIONS 13

DC_EXTRA 9

Returns the number of bytes required for the device-specific portion of the DEVMODE structure for the
printer driver.

DC_EXTRA 9

DC_FIELDS 1

Returns the dmFields member of the printer driver's DEVMODE structure. The dmFields member
indicates which fields in the device-independent portion of the Structure are supported by the printer
driver.

DC_FIELDS 1

DC_FILEDEPENDENCIES 14

Returns alist of filesthat aso need to be loaded when adriver isinstalled. If the [pszOutput parameter is
NULL, the function returns the number of files. Otherwise, IpszOutput points to an array of filenamesin
the form char[chFileName, 64]. Each filename is a null-terminated string.

DC_FILEDEPENDENCIES 14

DC_MAXEXTENT 5

Returns a POINT structure containing the maximum paper size that the dmPaperL ength and
dmPaperWidth members of the printer driver's DEVMODE structure can specify.

DC_MAXEXTENT 5

DC_MINEXTENT 4

Returns a POINT structure containing the minimum paper size that the dmPaperL ength and
dmPaperWidth members of the printer driver's DEVMODE structure can specify.

DC_MINEXTENT 4

DC_ORIENTATION 17

Returns the relationship between portrait and landscape orientations for a device, in terms of the number of
degrees that portrait orientation is rotated counterclockwise to produce landscape orientation. The return

value can be one of the following:

DC_ORIENTATION 17

DC_PAPERNAMES 16

Retrieves alist of supported paper names--for example, Letter or Legal. If the |pszOutput parameter is
NULL, the function returns the number of paper sizes available. Otherwise, IpszOutput points to an array
for the paper names in the form char[cPaperNames, 64]. Each paper name is a null-terminated string.

DC_PAPERNAMES 16

DC_PAPERS 2

Retrieves alist of supported paper sizes. The function copies the list to |pszOutput as a WORD array and
returns the number of entriesin the array. If IpszOutput is NULL, the function returns the number of
supported paper sizes to allow the application the opportunity to allocate a buffer with the correct size. For
more information on paper sizes, see the description of the dmPaperSize member of the DEVMODE
structure.

DC_PAPERS 2

DC_PAPERSIZE 3

Copies the dimensions of all supported paper sizes, in tenths of amillimeter, to an array of POINT
structures pointed to by the IpszOutput parameter. The width (x-dimension) and length (y-dimension) of a
paper size arereturned asif the paper were in the DMORIENT_PORTRAIT orientation.

DC_PAPERSIZE 3

DC _SIZE 8
Returns the dmSize member of the printer driver's DEVMODE structure.

DC_SIZE 8

DC_TRUETYPE 15

Retrieves the abilities of the driver to use TrueType fonts. The return value can be one or more of the
following:

DC_TRUETYPE 15

For
DC_TRUETY PE, the IpszOutput parameter should be NULL.

DC VERSION 10
Returns the specification version to which the printer driver conforms.

DC_VERSION 10

DeviceMode (2.x)

void DeviceMode(hwnd, hModule, IpszDevice, |pszOutput)

HWND hwnd; /* handle of window owning dialog box */
HANDLE hModule; I*
handle of printer-driver module

/

LPSTR IpszDevice;

* address of string for device name

/

LPSTR lpszOutput;

* address of string for output name

/

The DeviceMode function sets the current printing modes for a specified device by using a dialog box to
prompt for those modes. An application calls DeviceMaode to alow the user to change the printing modes
of the corresponding device. DeviceM ode copies the mode information to the environment block that is
associated with the device and maintained by the graphics device interface (GDI).

The ExtDeviceMode function provides a superset of the functionality of the DeviceM ode function; new
applications should use ExtDeviceMode instead of DeviceM ode whenever possible. (Applications can use
the DM_IN_PROMPT constant with ExtDeviceM ode to duplicate the functionality of DeviceMode.)

Parameter Description

hwnd | dentifies the window that will own the dialog box.

hModule I dentifies the printer-driver module. The application should retrieve this handle by
calling either the GetModuleHandle or LoadL ibrary function.

IpszDevice Points to a null-terminated string that specifies the name of the specific deviceto be
supported (for example, Epson FX-80). The device name is the same as the name passed
to the CreateDC function.

[pszOutput Points to a null-terminated string that specifies the MS-DOS filename or device name

for the physical output medium (file or output port). The output name is the same as the
name passed to the CreateDC function.

Returns
This function does not return avalue.

Comments

The DeviceMode function is part of the printer's device driver, not part of GDI. To call thisfunction, an
application must load the printer driver by calling the LoadLibrary function and retrieve the address of the
function by using the GetProcAddress function. The application can then use the address to set up the
printer.

DeviceModeis not supported by all printer drivers. If the GetProcAddress function returns NULL,
DeviceMode s not supported.

See Also
CreateDC, ExtDeviceMode, GetModuleHandle, LoadL ibrary

DPtoLP (2.x)

BOOL DPtoL P(hdc, Ippt, cPoints)

HDC hdc; /* handle of device context */

POINT FAR* lppt; /* address of
array with points

/

int cPaints;
* number of pointsin array
/

The DPtoL P function converts device coordinates (points) into logical coordinates.

Parameter Description

hdc I dentifies the device context.

[ppt Pointsto an array of POINT structures. Each coordinate in each structure is mapped into
thelogical coordinate system for the current device context.

cPoints Specifies the number of pointsin the array.

Returns

The return value is nonzero if the function is successful. Otherwise, it is zero.

Comments

The conversion depends on the current mapping mode and the settings of the origins and extents for the
device's window and viewport.

Example

The following example sets the mapping mode to MM_L OENGLISH, and then calls the DPtoL P function
to convert the coordinates of arectangle into logical coordinates:

RECT rc;

SetMapMode(hdc, MV LOENGLI SH) ;
SetRect(&c, 100, 100, 200, 200);
DPtoLP(hdc, (LPPOINT) &c, 2);
See Also

LPtoDP, POINT

Ellipse (2.x)

BOOL Ellipse(hdc, nLeftRect, nTopRect, nRightRect, nBottomRect)

HDC hdc; /* handle of device context */
int nLeftRect;

* x-coordinate upper-left corner bounding rectangle

/

int NnTopRect;

* y-coordinate upper-left corner bounding rectangle

/

int nRightRect;
* x-coordinate lower-right corner bounding rectangle
/

int nBottomRect;
* y-coordinate lower-right corner bounding rectangle
/

The Ellipse function draws an ellipse. The center of the ellipseis the center of the specified bounding
rectangle. The ellipse is drawn by using the current pen, and itsinterior isfilled by using the current brush.

If either the width or the height of the bounding rectangle is zero, the function does not draw the ellipse.

Parameter Description

hdc | dentifies the device context.

nLeftRect Specifies the logical x-coordinate of the upper-left corner of the bounding rectangle.
nTopRect Specifies the logical y-coordinate of the upper-left corner of the bounding rectangle.
nRightRect Specifiesthe logical x-coordinate of the lower-right corner of the bounding rectangle.
nBottomRect Specifiesthe logical y-coordinate of the lower-right corner of the bounding rectangle.
Returns

The return value is nonzero if the function is successful. Otherwise, it is zero.

Comments

The figure drawn by this function extends up to but does not include the right and bottom coordinates.
This means that the height of the figure is determined as follows:

nBottomRect - nTopRect

Similarly, the width of the figure is determined as follows:

nRightRect - nLeftRect

Both the width and the height of a rectangle must be greater than 2 units and less than 32,767 units.

See Also
Arc, Chord, RECT

EndDoc (3.1)

int EndDoc(hdc)
HDC hdc; /* handle of device context */

The EndDoc function ends a print job. This function replaces the ENDDOC printer escape for Windows
version 3.1.

Parameter Description

hdc | dentifies the device context for the print jaob.

Returns

Thereturn value is greater than or equal to zero if the function is successful. Otherwise, it is less than zero.
Comments

An application should call the EndDoc function immediately after finishing a successful print job. To
terminate a print job because of an error or if the user chooses to cancel the job, an application should call
the AbortDoc function.

Do not use the EndDoc function inside metafiles.

See Also
AbortDoc, Escape, StartDoc

EndPage (3.1)

int EndPage(hdc)
HDC hdc; /* handle of device context */

The EndPage function signals the device that the application has finished writing to a page. This function
istypically used to direct the driver to advance to a new page.

This function replaces the NEWFRAME printer escape for Windows 3.1. Unlike NEWFRAME, this
function is always called after printing a page.

Parameter Description

hdc | dentifies the device context for the print job.

Returns

Thereturn value is greater than or equal to zero if the function is successful. Otherwise, it is an error value.

Errors

If the function fails, it returns one of the following error values:

Vaue Meaning

SP_EFRROR Generd error.

SP_APPABORT Job was terminated because the application's print-canceling function returned
zero.

SP_USFRABORT LEJ)s(eé)termi nated the job by using Windows Print Manager (PRINTMAN.

SP_QUTOEDISK Not enough disk space is currently available for spooling, and no more space

will become available.
SP_OQUTOEMEMORY Not enough memory isavailable for spooling.
Comments
The ResetDC function can be used to change the device mode, if necessary, after calling the EndPage
function.
See Also
Escape, ResetDC, StartPage

SP_ERROR (-1)
General error.

SP_ERROR (-1)

SP_APPABORT (-2)
Job was terminated because the application's print-canceling function returned zero.

SP_APPABORT (-2)

SP_USERABORT (-3)
User terminated the job by using Windows Print Manager (PRINTMAN.EXE).

SP_USERABORT (-3)

SP_OUTOFDISK (-4)
Not enough disk space is currently available for spooling, and no more space will become available.

SP_OUTOFDISK (-4)

SP_OUTOFMEMORY (-5)
Not enough memory is available for spooling.

SP_OUTOFMEMORY (-5)

EnumFontFamilies (3.1)

int EnumFontFamilies(hdc, IpszFamily, fntenmprc, [Param)

HDC hdc; /* handle of device context */
LPCSTR IpszFamily; /
* address of font-family name

/

FONTENUMPROC fntenmprc;

* address of callback function

/

LPARAM |Param;

* gpplication-defined data

/

The EnumFontFamilies function enumerates the fontsin a specified font family that are available on a
given device. EnumFontFamilies continues until there are no more fonts or the callback function returns
zero.

Parameter Description
hdc | dentifies the device context.
IpszFamily Points to a null-terminated string that specifies the family name of the desired fonts. If

this parameter isNULL, the EnumFontFamilies function selects and enumerates one
font from each available font family.

fntenmprc Specifies the procedure-instance address of the application-defined callback function.
The address must be created by the MakeProcl nstance function. For more information
about the callback function, see the description of the EnumFontFamProc callback
function.

[Param Specifies a 32-bit application-defined value that is passed to the callback function along
with the font information.

Returns
The return value specifies the last value returned by the callback function, if the function is successful.
This value depends on which font families are available for the given device.

Comments

The EnumFontFamilies function differs from the EnumFonts function in that it retrieves the style names
associated with a TrueType font. Using EnumFontFamilies, an application can retrieve information about
unusual font styles (for example, Outline) that cannot be enumerated by using the EnumFonts function.
Applications should use EnumFontFamilies instead of EnumFonts.

For each font having the font name specified by the |pszFamily parameter, the EnumFontFamilies function
retrieves information about that font and passes it to the function pointed to by the fntenmprc parameter.
The application-supplied callback function can process the font information, as necessary.

Example

The following example uses the MakeProcl nstance function to create a pointer to the callback function for
the EnumFontFamilies function. The FreeProclnstance function is called when enumeration is compl ete.
Because the second parameter is NULL, EnumFontFamilies enumerates one font from each family that is
available in the given device context. The aFontCount variable pointsto an array that is used inside the
callback function.

FONTENUMPROC | pEnuntantal | Back;
int aFontCount[] ={ 0, 0, 0 };

| pEnuntantal | Back = (FONTENUMPROC) MakeProclnstance(

(FARPROC) EnuntantCal | Back, hApplnstance);
Enuntont Fam | i es(hdc, NULL, | pEnunfFantal | Back, (LPARAM) aFont Count);
FreeProclnstance((FARPROC) | pEnunfantCal | Back) ;

See Also
EnumFonts, EnumFontFamProc, LOGFONT, TEXTMETRIC

EnumFonts (2.x)

int EnumFonts(hdc, IpszFace, fntenmprc, [Param)

HDC hdc; /* handle of device context */
LPCSTR |pszFace; /*
address of font name

/

FONTENUMPROC fntenmprc;

* address of callback function

/

LPARAM |Param;

* gpplication-defined data

/

The EnumFonts function enumerates the fonts available for a given device. This function is provided for
backwards compatibility with earlier versions of Windows; current applications should use the
EnumFontFamilies function.

EnumFonts continues until there are no more fonts or the callback function returns zero.

Parameter Description
hdc | dentifies the device context.
IpszFace Points to a null-terminated string that specifies the names of the requested fonts. If this

parameter is NULL, the EnumFonts function randomly selects and enumerates one font
from each available typeface.
fntenmprc Specifies the procedure-instance address of the application-defined callback function.
The address must be created by the MakeProcl nstance function. For more information
about the callback function, see the description of the EnumFontsProc callback function.
[Param Specifies a 32-bit application-defined value that is passed to the callback function along
with the font information.

Returns
The return value specifies the last value returned by the callback function and is defined by the user.

Comments

The EnumFonts function retrieves information about the specified font and passesit to the function
pointed to by the fntenmprc parameter. The application-supplied callback function can process the font
information, as necessary.

If the deviceis capable of text transformations (scaling, italicizing, and so on), only the base font will be
enumerated. The user must know the device's text-transformation abilities to determine which additional
fonts are available directly from the device. The graphics device interface (GDI) can simulate the bold,
italic, underlined, and strikeout attributes for any GDI-based font. -

The EnumFonts function enumerates fonts from the GDI internal table only. This does not include fonts
that are generated by a device, such asfonts that are transformations of fonts from the internal table. The
GetDeviceCaps function can be used to determine which transformations a device can perform. This
information is available by using the TEXTCAPS index.

GDI can scale GDI-based raster fonts by oneto five units horizontally and one to eight units vertically,
unfess PROOF_QUALITY isbeing used.

Example

The following example uses the MakeProcl nstance function to create a pointer to the callback function for
the EnumFonts function. The FreeProclnstance function is called when enumeration is complete. Because
the second parameter is " Arial™, EnumFonts enumerates the Arial fonts available in the given device
context. The cAria variable is passed to the callback function.

FONTENUMPROC | pEnuntont sCal | Back;
int cArial = 0;

| pEnunfont sCal | Back = (FONTENUMPROC) MakeProclnstance(

(FARPROC) Enuntont sCal I Back, hApplnstance);
Enunfont s(hdc, "Arial", |pEnunfFontsCall Back, (LPARAM) &cArial);
FreeProclnstance((FARPROC) | pEnunfont sCal | Back);

See Also

EnumFontFamilies, EnumFontsProc

EnumMetaFile (2.x)

BOOL EnumMetaFile(hdc, hmf, mfenmprc, |Param)

HDC hdc; /* handle of device context */
HLOCAL hmf; /* handle of
metafile

/

MFENUMPROC mfenmprc;

* address of callback function

/

LPARAM |Param;

* gpplication-defined data

/

The EnumM etaFile function enumerates the metafile records in a given metafile. EnumM etakile continues
until there are no more graphics device interface (GDI) calls or the callback function returns zero.

Parameter Description
hdc I dentifies the device context associated with the metafile.
hmf Identifies the metafile.

Note: The HLOCAL type for this parameter isincorrect in the WINDOWS.H file. The
type of this parameter is actually HMETAFILE. Developers should cast this
parameter to an HLOCAL type to avoid compiler warnings.

mfenmprc Specifies the procedure-instance address of the application-supplied callback function.
The address must be created by using the MakeProclnstance function. For more
information about the callback function, seethe description of the EnumM etaFileProc
callback function.

[Param Specifies a 32-bit application-defined value that is passed to the callback function along
with the metafile information.

Returns
The return value is nonzero if the callback function enumerates all the GDI calls in a metafile. Otherwise,
itiszero.

Comments

The EnumM etaFile function retrieves metafile records and passes them to a callback function. An
application can modify the metafile record inside the callback function. The application can also use the
PlayM etaFileRecord function inside the callback function; thisis useful for very large metafiles, when
using the PlayMetaFile function might be time-consuming.

Example

The following example creates a dashed green pen and passes it to the callback function for the
EnumMetaFile function. If the first element in the array of object handlesis ahandle, that handleis
replaced by the handle of the green pen before the PlayMetaFileRecord function is called. (For this
example, it is assumed that the table of object handles contains only one handle and that it is the handle of
apen.)

MFENUMPROC | pEnum\et aPr oc;
HPEN hpenG een;

| pEnunmivet aProc = (MFENUMPROC) MakeProclnstance(
(FARPROC) EnumMetaFileProc, hApplnstance);
hpenGreen = CreatePen(PS DASH, 1, RGB(0, 255, 0));
EnumMet aFi | eChdc, hnf, | pEnunmvet aProc, (LPARAM) &hpenG een);
FreeProclnstance((FARPROC) | pEnumvet aPr oc);

DeletelObject(hpenG een);

i nt FAR PASCAL EnumMetaFileProc(HDC hdc, HANDLETABLE FAR* | pHTabl e,
METARECORD FARF TpMFR, int cObj, BYTE FARF T pdi ent Dat a)
{

i f (IpHTabl e->o0bj ectHandl e[0] != 0)
| pHTabl e- >obj ect Handl e[0] = *(HPEN FAR *) | pC i entDat a;
PlayMetaFileRecord(hdc, | pHTable, | pMFR, coj);

return 1;

See Also
EnumM etaFileProc, MakeProclnstance, PlayM etaFile, PlayMetaFileRecord

EnumObjects (2.x)

int EnumObjects(hdc, fnObjectType, goenmprc, |Param)

HDC hdc; /* handle of device context */
int fnObjectType; /* type
of object

/

GOBJENUMPROC goenmprc;

* address of callback function

/

LPARAM |Param;

* gpplication-defined data

/

The EnumObjects function enumerates the pens and brushes available in the given device context. For
each object of agiven type, the callback function is called with the information for that object.
EnumObjects continues until there are no more objects or the callback function returns zero.

Parameter Description
hdc | dentifies the device context.
fnObjectType Specifies the object type. This parameter can be one of the following values:
Value Meaning
OBRJ BRUSH Specifiesabrush.
0OBJ PEN Specifies a pen.
goenmprc Specifies the procedure-instance address of the application-supplied callback function.

The address must be created by the MakeProclnstance function. For more information
about the callback function, see the description of the EnumObjectsProc callback

function.
[Param Specifies a 32-bit application-defined value that is passed to the callback function.
Returns
The return value specifies the last value returned by the callback function and is defined by the user.
Example

The following example retrieves the number of horizontally hatched brushes and fills LOGBRUSH
structures with information about each of them:

#def i ne MAXBRUSHES 50
GOBJENUMPROC | pPr ocCal | back;

HGLOBAL hgl bl ;
LPBYTE | pbCount Br ush;

| pProccCal | back = (GOBJENUMPROC) MakeProclnstance(
(FARPROC) Cal I back, hinst);

hgl bl = GlobalAlloc(GMEM_FIXED, si zeof (LOGBRUSH)
* 0 - —_—

| pbCount Brush = (LPBYTE) GlobalLock(hglbl);

*| pbCount Brush = 0;

Enunmbj ect s(hdc, 0BJ BRUSH, | pProccCall back,
(LPARAM) | pbCount Br ush) ;

FreeProclnstance((FARPROC) | pProcCal | back) ;

nt FAR PASCAL Cal | back(LPLOGBRUSH | pLogBrush, LPBYTE pbDat a)

A——

/*
The pbData paramneter contains the nunmber of horizontally
hat ched brushes; the | pDest paranmeter is set to followthe
byte reserved for pbData and the LOGBRUSH structures that
have been filled with brush informtion.
/

* Ok k¥ X

LPLOGBRUSH | pDest =
(LPLOGBRUSH) (pbData + 1 + (*pbData * sizeof (LOGBRUSH)));

if (1pLogBrush->IbStyle ==
BS HATCHED && /* if horiz hatch */
| pLogBr ush- >l bHat ch == HS_HORIZONTAL) {
*| pDest ++ = *| pLogBrush; /* fills structure with brush info */
(*pbData) ++; [/* increnents brush count*/
if (*pbData >= MAXBRUSHES)
return O;

}

return 1;

}
See Also

EnumObj ectsProc, FreeProclnstance, Global Alloc, GlobalLock, MakeProclnstance, LOGBRUSH,
LOGPEN

OBJ BRUSH 2
Specifies a brush.

OBJ BRUSH 2

OBJ PEN 1
Specifies a pen.

OBJ PEN 1

EqualRgn (2.x)

BOOL EqualRgn(hrgnSrcl, hrgnSrc2)

HRGN hrgnSrci; /* handle of first region to test for equality */

HRGN hrgnSrc2; /*
handle of second region to test for equality

/

The Equal Rgn function determines whether two given regions are identical.

Parameter Description

hrgnSrcl Identifies the first region.

hrgnSrc2 I dentifies the second region.

Returns

The return value is nonzero if the two regions are equal. Otherwise, it is zero.
Example

The following example uses the EqualRgn function to test the equality of aregion against two other
regions. In this case, hrgn2 isidentical to hrgnl, but hrgn3 is not identical to hrgnl.

BOOL f Equal ;

HRGN hrgnl, hrgn2, hrgns3;

LPSTR | pszEqual = "Regi ons are equal .";

LPSTR | pszNot Equal = "Regi ons are not equal.";

hrgnl = CreateRectRgn(10, 10, 110, 110); /* 1 and 2 identical */
hrgn2 = CreateRectRgn(10, 10, 110, 110);

hrgn3 = CreateRectRgn(100, 100, 210, 210); /* same di nensions */

f Equal = Equal Rgn(hrgnl, hrgn2);
i f (fEqual)
TextOut(hdc, 10, 10, I|pszEqual, |strlen(lpszEqual));
el se
TextOut(hdc, 10, 10, | pszNot Equal, Istrlen(l pszNotEqual));

f Equal = Equal Rgn(hrgnl, hrgn3);
i f (fEqual)

TextOut(hdc, 10, 30, |pszEqual, |strlen(lpszEqual));
el se

TextOut(hdc, 10, 30, |pszNot Equal, Istrlen(lpszNotEqual));

DeleteObject(hrgnl);
DeleteObject(hr gn2)
DeletelObject(hrgn3);

Escape (2.x)

int Escape(hdc, nEscape, cblnput, IpszinData, |pvOutData)
HDC hdc; /* handle of device context
int NEscape;

escape function

/

int cblnput;

* size of structure for input

/

LPCSTR IpszInData;

* address of structure for input
/

void FAR* |pvOutData;

* address of structure for output
/

*/
[* specifies

The Escape function allows applications to access capabilities of a particular device that are not directly
available through the graphics device interface (GDI). Escape calls made by an application are translated

and sent to the driver.

Parameter Description

hdc | dentifies the device context.

nEscape Specifies the escape function to be performed.

cblnput Specifies the number of bytes of data pointed to by the |pszlnData parameter.
IpszinData Points to the input structure required for the specified escape.

IpvOutData Points to the structure that receives output from this escape. This parameter should be

NULL if no datais returned.
Returns

The return value specifies the outcome of the function. It is greater than zero if the function is successful,
except for the QUERY ESCSUPPORT printer escape, which checks for implementation only. The return
valueis zero if the escapeis not implemented. A return value less than zero indicates an error.

Errors

If the function fails, the return value is one of the following:

Vaue Meaning

SP_ERROR General error.

SP_OUTOFDISK Not enough disk spaceis currently available for spooling, and no more space

will become available.

SP_OUTOFMEMORY Not enough memory is available for spooling.
SP_USERABORT User terminated the job through Print Manager.

Changes
Windows version 3.1 introduces six new functions that supersede some printer escapes:

Function Description

AbortDac Terminates a print job. Supersedes the ABORTDOC escape.

EndDac Ends a print job. Supersedes the ENDDOC escape.

EndPage Ends a page. Supersedes the NEWFRAME escape. Unlike NEWFRAME, this
function is always called after printing a page.

SetAbortPrac Sets the abort function for a print job. Supersedes the SETABORTPROC escape.

StartDac Starts a print job. Supersedes the STARTDOC escape.

StartPage Prepares printer driver to receive data.

The ResetDC function is also new for Windows version 3.1. ResetDC updates a device context, alowing
such new functionality as changing the paper orientation or paper bin within asingle print job. This ability
was not supported by an escape in previous versions of Windows.

For acomplete list of the printer escapes under Windows version 3.0, and how support has changed for
Windows 3.1, see the Printer escapes topic.

Printer escapes

Escape
ABORTDOC

BANDINFO

BEGIN_PATH
CLIP_TO_PATH

DEVICEDATA

DRAFTMODE

DRAWPATTERNRECT
ENABLEDUPLEX

ENABLEPAIRKERNING
ENABLERELATIVEWIDTHS
ENDDOC

END_PATH

ENUMPAPERBINS
ENUMPAPERMETRICS
EPSPRINTING
EXT_DEVICE_CAPS

EXTTEXTOUT

FLUSHOUTPUT
GETCOLORTABLE
GETEXTENDEDTEXTMETRICS

GETEXTENTTABLE

GETFACENAME

GETPAIRKERNTABLE

Description

Superseded by the AbortDoc function in Windows
version 3.1. -

Obsolete in Windows version 3.1. Because all printer
driversfor Windows version 3.1 and later set the text flag
in every band, this escape is useful only for older printer
drivers.

No changes for Windows version 3.1. Thisescapeis
specific to PostScript printers.

No changes for Windows version 3.1. Thisescapeis
specific to PostScript printers.

Superseded in Windows version 3.1. Applications should
use the PASSTHROUGH escape to achieve the same
functionality.

Superseded in Windows version 3.1. Applications can
achieve the same functionality by setting the
dmPrintQuality member of the DEVMODE structure to
DMRES _DRAFT and passing this structure to the
CreateDC function.

No changes for Windows version 3.1.

Superseded in Windows version 3.1. Applications can
achieve the same functionality by setting the dmDuplex
member of the DEVMODE structure and passing this
structure to the CreaieDC function.

No changes for Windows version 3.1.

No changes for Windows version 3.1.

Superseded by the EndDoc function in Windows version
3.1

No changes for Windows version 3.1. Thisescapeis
specific to PostScript printers.

Superseded in Windows version 3.1. Applications can use
the DeviceCapabilities function to achieve the same
functionality.

Superseded in Windows version 3.1. Applications can use
the DeviceCapabilities function to achieve the same
functiondity.

No changes for Windows version 3.1. Thisescapeis
specific to PostScript printers.

Superseded in Windows version 3.1. Applications can use
the GetDeviceCaps function to achieve the same
functionality. Thisescape is specific to PostScript
printers.

Superseded in Windows version 3.1. Applications can use
the ExtTextOut function to achieve the same
functionality. This escapeis not supported by the version
3.1 PCL driver.

Removed for Windows version 3.1.

Removed for Windows version 3.1.

No changes for Windows version 3.1. Support for this
escape may change in future versions of Windows.
Superseded in Windows version 3.1. Applications can use
the GetCharWidth function to achieve the same
functionality. This escape is not supported by the version
3.1 PCL or PSCRIPT drivers.

No changes for Windows version 3.1. Thisescapeis
specific to PostScript printers.

No changes for Windows version 3.1.

GETPHY SPAGESIZE
GETPRINTINGOFFSET
GETSCALINGFACTOR

GETSETPAPERBINS

GETSETPAPERMETRICS

GETSETPAPERORIENT

GETSETSCREENPARAMS
GETTECHNOLOGY

GETTRACKKERNTABLE
GETVECTORBRUSHSIZE
GETVECTORPENSIZE

MFCOMMENT
NEWFRAME

NEXTBAND

PASSTHROUGH
QUERY ESCAPESUPPORT
RESTORE_CTM

SAVE _CTM

SELECTPAPERSOURCE

SETABORTPROC

SETALLJUSTVALUES

SET_ARC_DIRECTION

SET_BACKGROUND_COLOR

No changes for Windows version 3.1. Support for this
escape may change in future versions of Windows.

No changes for Windows version 3.1. Support for this
escape may change in future versions of Windows.

No changes for Windows version 3.1. Support for this
escape may change in future versions of Windows.

Superseded in Windows version 3.1. Applications can
achieve the same functionality by calling the
DeviceCapabilities function to find the number of paper
bins, calling the ExtDeviceMode function to find the
current bin, and then sefting the dmDefaultSource
member of the DEVMODE structure and passing this
structure to the CreaieDC function.
GETSETPAPERBINS changes the paper bin only for the
current device context. A new device context will use the
system-default paper bin until the bin is explicitly
changed for that device context.

Obsolete in Windows version 3.1. Applications can use
the DeviceCapabilities and ExtDeviceM ode functions to
achieve the same functionality.

Obsolete in Windows version 3.1. Applications can
achieve the same functionality by setting the
dmOrientation member of the DEVMODE structure and
passing this structure to the CreateDC function. This
escape is not supported by the Windows 3.1 PCL driver.
No changes for Windows version 3.1.

No changes for Windows version 3.1. Support for this
escape may change in future versions of Windows. This
escape is not supported by the Windows 3.1 PCL driver.
No changes for Windows version 3.1.

No changes for Windows version 3.1. Support for this
escape may change in future versions of Windows.

No changes for Windows version 3.1. Support for this
escape may change in future versions of Windows.

No changes for Windows version 3.1.

No changes for Windows version 3.1. Applications
should use the StartPage and EndPage functions instead

of this escape. Support for this escape may changein
future versions of Windows.

No changes for Windows version 3.1. Support for this
escape may change in future versions of Windows.

No changes for Windows version 3.1.

No changes for Windows version 3.1.

No changes for Windows version 3.1. Thisescapeis
specific to PostScript printers.

No changes for Windows version 3.1. Thisescapeis
specific to PostScript printers.

Obsolete in Windows version 3.1. Applications can
achieve the same functionality by using the
DeviceCapabilities function.

Superseded in Windows version 3.1 by the SetAbortProc
function.

No changes for Windows version 3.1. Support for this
escape may change in future versions of Windows. This
escape is not supported by the Windows 3.1 PCL driver.
No changes for Windows version 3.1. Thisescapeis
specific to PostScript printers.

No changes for Windows version 3.1. Applications
should use the SetBkColor function instead of this escape.

SET_BOUNDS
SETCOLORTABLE

SETCOPY COUNT

SETKERNTRACK
SETLINECAP

SETLINEJOIN
SETMITERLIMIT
SET_POLY_MODE

SET_SCREEN_ANGLE
SET_SPREAD
STARTDOC

TRANSFORM_CTM

Support for this escape may change in future versions of
Windows.

No changes for Windows version 3.1. This escapeis
specific to PostScript printers.

No changes for Windows version 3.1. Support for this
escape may change in future versions of Windows.
Superseded in Windows version 3.1. An application
should call the DeviceCapabilities function, specifying
DC_COPIES for the nindex parameter, to find the
maximum number of copies the device can make. Then
the application can set the number of copies by passing to
the CreateDC function a pointer to the DEVMODE
structure.

No changes for Windows version 3.1.

No changes for Windows version 3.1. Thisescapeis
specific to PostScript printers.

No changes for Windows version 3.1. This escapeis
specific to PostScript printers.

No changes for Windows version 3.1. This escapeis
specific to PostScript printers.

No changes for Windows version 3.1. This escapeis
specific to PostScript printers.

No changes for Windows version 3.1.

No changes for Windows version 3.1.

Superseded in Windows version 3.1. An application
should call the StartDoc function instead of this escape.
No changes for Windows version 3.1. Thisescapeis
specific to PostScript printers.

ExcludeClipRect (2.X)

int ExcludeClipRect(hdc, nLeftRect, nTopRect, nRightRect, nBottomRect)

HDC hdc; /¥ handle of device context */

int nLeftRect; [* x-
coordinate top-left corner of rectangle

/

int NnTopRect;

* y-coordinate top-left corner of rectangle

int nRightRect;
* x-coordinate bottom-right corner of rectangle
/

int nBottomRect;
* y-coordinate bottom-right corner of rectangle

The ExcludeClipRect function creates a new clipping region that consists of the existing clipping region
minus the specified rectangle.

Parameter Description

hdc I dentifies the device context.

nL eftRect Specifies the logical x-coordinate of the upper-left corner of the rectangle.
nTopRect Specifiesthe logical y-coordinate of the upper-left corner of the rectangle.
nRightRect Specifies the logical x-coordinate of the lower-right corner of the rectangle.
nBottomRect Specifies the logical y-coordinate of the lower-right corner of the rectangle.
Returns

Thereturn value is SIMPLEREGION (region has no overlapping borders), COMPLEXREGION (region
has overlapping borders), or NULLREGION (region is empty), if the function is successful. Otherwise,
the return value is ERROR (no region is created).

Comments
The width of the rectangle, specified by the absolute value of nRightRect - nLeftRect, must not exceed 32,
767 units. Thislimit applies to the height of the rectangle as well.

Example

The following example uses the ExcludeClipRect function to create a clipping region in the shape of a
framethat is 20 units wide. The frameis painted red when the FillRect function is used to paint the client
area

RECT rc;
HRGN hr gn;
HBRUSH hbr Red;

GetClientRect(hwnd, &rc);
hrgn = CreateRectRgn(10, 10, 110, 110);
SelectCTipRgn(hdc, hrgn);

Excl uded i pRect (hdc, 30, 30, 90, 90);

hbr Red = CreateSolidBrush(RGB(255, 0, 0));
FillRect(hdc, & c, hbrRed);

DeleteObject(hbr Red)
DeleteObject(hrgn);

See Also
CombineRgn

ExtDeviceMode (3.0)
#include <print.h>

int ExtDeviceMode(hwnd, hDriver, IpdmOutput, IpszDevice, |pszPort, Ipdmlnput IpszProfile, fwMode)
*/

HWND hwnd;

/* handle of window

HANDLE hDrlver,

* handle of driver
/

LPDEVMODE IpdmOQutput;
* address of structure for driver output

/

LPSTR IpszDevice;
* gtring for name of device

/
LPSTR IpszPort;

* gtring for name of port

LPDEVMODE Ipdminput;
* address of structure for driver input

/

LPSTR IpszProfile;
* gtring for profile filename
/

WORD fwMode;

* operations mask
/

The ExtDeviceM ode function retrieves or modifies device initiaization information for a given printer
driver or displays a driver-supplied dialog box for configuring the printer driver. Printer drivers that
support device Initialization by applications export ExtDeviceM ode so that applications can call it.

Parameter
hwnd

hDriver
[pdmOutput
IpszDevice
[pszPort
[pdml nput

IpszProfile

fwMode

Description
Identifies awindow. If the application calls the ExtDeviceMode function to display a
dialog box, the specified window is the parent window of the dialog box.

| dentifies the device-driver module. The GetModuleHandle function or LoadL ibrary
function returns a module handle.

Points to a DEVMODE structure. The driver writes the initialization information
supplied inthe TpdmInput parameter to this structure.

Points to a null-terminated string that contains the name of the printer device--for
example, PCL/HP LaserJet.

Points to a null-terminated string that contains the name of the port to which the device
is connected--for example, LPT1.

Points to a DEVMODE structure that suppliesinitialization information to the printer
driver.

Points to a null-terminated string that contains the name of the initialization file, where
initialization information is recorded and read from. If this parameter isNULL, WIN.
INI isthe default initialization file.

Specifies amask of values that determines the operations the function performs. If this
parameter is zero, the ExtDeviceM ode function returns the number of bytes required by
the printer driver's DEVMODE structure. Otherwise, the fwMode parameter can be one
or more of the following values (to change the print settings, the application must
specify at least one input value and one output value):

Value Meaning

DM_IN_BUFFER Input value. Before prompting, copying, or updating, this
value merges the printer driver's current print settings with
the settings in the DEVMODE structure identified by the
[pdmlInput parameter. The Structure is updated only for
those members indicated by the application in the dmFields
member. Thisvalue is also defined asDM_MODIFY.

DM_IN_PROMPT Input value. This value presents the printer driver's Print
Setup dialog box and then changes the settingsin the

printer's DEVMODE structure to values specified by the
user. Thisvalueisaso defined as DM_PROMPT.

DM_OUT BUFFER Output value. This value writes the printer driver's current
print settings (including private data) to the DEVMODE
structure identified by the |pdmOutput parameter. The
calling application must alocate a buffer sufficiently large
to contain the information. If this bit is clear, I[pdmOutput
canbe NULL. Thisvaueisalso defined asDM_COPY.

DM_OUT DEFAULT Output value. This value updates graphics device interface
(GDI)'s current printer environment and the WIN.INI file,
using the contents of the printer driver's DEVMODE
structure. Avoid using this value, because it permanently
changes the print settings for all applications. Thisvalueis
also defined as DM_UPDATE.

Returns

If the fwMode parameter is zero, the return value is the size of the buffer required to contain the printer
driver initialization data. (Note that this buffer can be larger than a DEVMODE structure, if the printer
driver appends private data to the structure.) If the function displaystheinitiaization dialog box, the return
valueiseither IDOK or IDCANCEL, depending on which button the user selects. If the function does not
display the dialog box and is successful, the return value is IDOK. The return value isless than zero if the
function fails.

Comments

The ExtDeviceMode function is part of the printer's device driver and not part of GDI. To use this
function, an application must retrieve the address of the function by calling the LoadLibrary and
GetProcAddress functions, and it must include the header file PRINT.H. The application can then use the
address to set up the printer.

ExtDeviceMode is not supported by all printer drivers. If the GetProcAddress function returns NULL,
ExtDeviceMode is not supported.

To make changes to print settings that are local to the application, an application should call the
ExtDeviceMode function, specifying the DM_OUT BUFFER value; modify the returned DEVMODE
structure; and then pass the modified DEVMODE structure back to ExtDeviceMode, specifying
DM_IN_BUFFER and DM_OUT_BUFFER (combined by using the OR operator). The DEVMODE
structure returned by this second call to ExtDeviceMode can be used as an argument in acall to the
CreateDC function.

Any call to ExtDeviceMode must set either DM_OUT_BUFFER or DM_OUT_DEFAULT.

An application can set the fwMode parameter to DM_OUT BUFFER to obtain a DEVMODE structure
filled with the printer driver's initialization data. The application can then pass this structure to the
CreateDC function to set a private environment for the printer device context.

See Also
CreateDC, DeviceMode, GetModuleHandle, GetProcAddress, LoadLibrary, DEVMODE

DM_IN_BUFFER DM_MODIFY

Input value. Before prompting, copying, or updating, this value merges the printer driver's current print
settings with the settings in the DEVMODE structure identified by the Ipdminput parameter. The structure
is updated only for those membersindicated by the application in the dmFields member. Thisvalueisaso
defined as DM_MODIFY.

DM_IN_BUFFER DM_MODIFY

DM_IN_PROMPT DM_PROMPT

Input value. This value presents the printer driver's Print Setup dialog box and then changes the settingsin
the printer's DEVMODE structure to values specified by the user. Thisvalueis also defined as
DM_PROMPT.

DM_IN_PROMPT DM_PROMPT

DM_OUT_BUFFER DM_COPY
Output value. This value writes the printer driver's current print settings (including private data) to the
DEVMODE structure identified by the IpdmOutput parameter. The calling application must allocate a
buffer sufficiently large to contain the information. If this bit is clear, [pdmOutput can be NULL. This
valueis also defined as DM_COPY.

DM_OUT_BUFFER DM_COPY

DM_OUT_DEFAULT DM_UPDATE

Output value. This value updates graphics device interface (GDI)'s current printer environment and the
WIN.INI file, using the contents of the printer driver's DEVMODE structure. Avoid using this value,
because it permanently changes the print settings for all applications. This valueis also defined as
DM_UPDATE.

DM_OUT_DEFAULT DM_UPDATE

ExtFloodFill (3.0)

BOOL ExtFloodFill(hdc, nX Start, nY Start, clrref, fuFill Type)

HDC hdc; /* handle of device context */

int nXStart; [* x-coordinate
where filling begins

/

int nY Start;

* y-coordinate where filling begins
/

COLORREF clrref;

* color of fill

/

UINT fuFill Type;
* fill type
/

The ExtFloodFill function fills an area of the screen surface by using the current brush. The type of flood
fill specified determines which part of the screen isfilled.

Parameter Description

hdc | dentifies the device context.

nX Start Specifies the logical x-coordinate at which to begin filling.

nY Start Specifiesthe logical y-coordinate at which to begin filling.

clrref Specifies the color of the boundary or areato be filled. The interpretation of this
parameter depends on the value of the fuFill Type parameter.

fuFill Type Specifies the type of flood fill to be performed. It must be one of the following values:
Value Meaning
ELOQDFIL | BORDER Fill areais bounded by the color specified by the clrref

parameter. This styleisidentical to the filling
performed by the FloodFill function.

FLOODFILL SURFACE Fill areais defined by the color specified by the clrref
parameter. Filling continues outward in all directions
aslong asthe color is encountered. This styleis useful
for filling areas that have multicolored boundaries.

Returns

Thereturn value is nonzero if the function is successful. It is zero if the filling cannot be completed, if the
given point has the boundary color specified by the clrref parameter (if FLOODFILLBORDER was
requested), if the given point does not have the color specified by clrref (if FLOODFILL SURFACE was
requested), or if the point is outside the clipping region.

Comments
Only memory device contexts and devices that support raster-display technology support the ExtFloodFill
function.

If the fuFill Type parameter is the FLOODFILLBORDER value, the areais assumed to be completely
bounded by the color specified by the clrref parameter. The ExtFloodFill function begins at the
coordinates specified by the nXStart and nY Start parameters and fillsin all directions to the color
boundary.

If fuFillTypeis FLOODFILL SURFACE, ExtFloodFill begins at the coordinates specified by nXStart and
nY Start and continuesin all directions, filling all adjacent areas containing the color specified by clrref.

See Also
FloodFill, GetDeviceCaps

FLOODFILLBORDER 0

Fill areais bounded by the color specified by the clrref parameter. This styleisidentical to the filling
performed by the FloodFill function.

FLOODFILLBORDER 0

FLOODFILLSURFACE 1

Fill areais defined by the color specified by the clrref parameter. Filling continues outward in all
directions as long as the color is encountered. This style is useful for filling areas that have multicolored
boundaries.

FLOODFILLSURFACE 1

ExtTextOut (2.X)

BOOL ExtTextOut(hdc, nX Start, nY Start, fuOptions, |prc, IpszString, chtrmg, IpDx)

HDC hdc; /* handle of device context

int nX Start; [* x-coordinate
of starting position

/

int nY Start;
* y-coordinate of starting position

UINT fuOptions;
* rectangle type
/

const RECT FAR* lprc;

* address of structure with rectangle
/

LPCSTR lpszString;

* address of string

/

UINT cbString;

* number of bytesin string

/

int FAR* IpDx;
* gpacing between character cells

The ExtTextOut function writes a character string within arectangular region, using the currently selected
font. The rectangular region can be opaque (filled by using the current background color as set by the
SetBkColor function), and it can be a clipping region.

Parameter Description
hdc | dentifies the device context.
nX Start Specifies the logical x-coordinate at which the string begins.
nY Start Specifiesthe logical y-coordinate at which the string begins.
fuOptions Sglecifiesthe rectangle type. This parameter can be one, both, or neither of the following
values:
Value Meaning
ETO _CLIPPED Text is clipped to the rectangle.
ETO_OPAQUE Current background color fills the rectangle. (An application can
set and query the current background color by using the
SetBkColor and GetBkColor functions.)
Iprc Pointsto a RECT structure that determines the dimensions of the rectangle.
IpszString Points to the specified character string.
cbString Specifies the number of bytesin the string.
[pDx Points to an array of values that indicate the distance, in logical units, between origins of

adjacent character cells. The nth element in the array specifies the number of logical
units that separate the origin of the nth item in the string from the origin of itemn + 1. If
this parameter is NULL, ExtTextOut uses the default spacing between characters.
Otherwise, the array contains the number of elements specified in the cbString

parameter.
Returns
The return value is nonzero if the function is successful. Otherwise, it is zero.
Comments

If the fuOptions parameter is zero and the Iprc parameter is NULL, the ExtTextOut function writes text to
the device context without using a rectangular region.

By default, the current position is not used or updated by ExtTextOut. If an application needs to update the
current position when it calls ExtTextOut, the application can call the SetTextAlign function with the
wHlags parameter set to TA_UPDATECP. When thisflag is set, Windows ignores the nX Start and nY Start
parameters on subsequent calls to ExtTextOut, using the current position instead. When an application

uses TA_UPDATECP to update the current position, ExtTextOut sets the current position either to the end
of the previousline of text or to the position specified by the last element of the array pointed to by the

IpDX parameter, whichever is greater.
Example

The following example uses the ExtTextOut function to clip text to arectangular region defined by a

RECT structure:
RECT rc;
SetRect(& c, 90, 190, 250, 220);

Ext Text Qut (hdc, 100, 200, /* x and y coordinates */
ETO_CLIPPED, /* clips text to rectangle */
& c, [* address of RECT structure */
"Test of ExtTextQut function.", /* string to wite
28, [/* characters in string */
(LPINT) NULL); /* default character spacing */

See Also

*/

GetBkColor, SetBkColor, SetTextAlign, SetTextColor, TabbedTextOut, TextOut, RECT

ETO_CLIPPED 0x0004
Text is clipped to the rectangle.

ETO_CLIPPED 0x0004

ETO_OPAQUE 0x0002

Current background color fills the rectangle. (An application can set and query the current background
color by using the SetBkColor and GetBkColor functions.)

ETO_OPAQUE 0x0002

FillRgn (2.x)

BOOL FillRgn(hdc, hrgn, hbr)

HDC hdc; /* handle of device context */

HRGN hrgn; /* handle of region */
HBRUSH hbr;

* handle of brush

/

The FillRgn function fills the given region by using the specified brush.

Parameter Description

hdc | dentifies the device context.

hrgn Identifies the region to be filled. The coordinates for the given region are specified in
device units.

hbr I dentifies the brush to be used to fill the region.

Returns

The return value is nonzero if the function is successful. Otherwise, it is zero.

Example

The following example uses a blue brush to fill arectangular region. Note that it is not necessary to select
the brush into the device context before using it to fill the region.

HRGN hr gn;
HBRUSH hBr ush;

hrgn = CreateRectRgn(10, 10, 110, 110);
SelectObject(hdc, hrgn);

hBrush = CreateSolidBrush(RGB(0, 0, 255));

Fil | Rgn(hdc, hrgn, hBrush);

DeleteObject(hrgn);

See Also
CreateBrushindirect, CreateDIBPatternBrush, CreateHatchBrush, CreatePatternBrush, CreateSolidBrush,
PaintRgn

FloodFill (2.x)

BOOL FloodFill(hdc, nX Start, nY Start, clrref)
HDC hdc; /* handle of device context
int nX Start;

position

/

int nY Start;

* y-coordinate of starting position

/

COLORREF clrref;

* color of fill boundary

/

*/
[* x-coordinate of starting

The FloodFill function fills an area of the screen surface by using the current brush. The areaiis assumed to
be bounded as specified by the clrref parameter. The FloodFill function begins at the point specified by the
nXStart and nY Start parameters and continuesin all directions to the color boundary.

Parameter Description

hdc | dentifies the device context.

nX Start Specifies the logical x-coordinate at which to begin filling.
nY Start Specifiesthelogical y-coordinate at which to begin filling.
clrref Specifies the color of the boundary.

Returns

Thereturn value is nonzero if the function is successful. Otherwise, it is zero, indicating that the filling
cannot be completed, that the given point has the boundary color specified by clrref, or that the point is

outside the clipping region.
Comments

Only memory device contexts and devices that support raster-display technology support the FloodFill

function.

See Also
ExtFloodFill, GetDeviceCaps

FrameRgn (2.x)

BOOL FrameRgn(hdc, hrgn, hbr, nWidth, nHeight)

HDC hdc; /* handle of device context */

HRGN hrgn; /* handle of region */
HBRUSH hbr;

* handle of brush

/

int nWidth;

* width of region frame

/

int nHeight;
* height of region frame
/

The FrameRgn function draws a border around the given region, using the specified brush.

Parameter Description

hdc I dentifies the device context.

hrgn I dentifies the region to be enclosed in a border.

hbr | dentifies the brush to be used to draw the border.

nWidth Specifies the width, in device units, of vertical brush strokes.
nHeight Specifies the height, in device units, of horizontal brush strokes.
Returns

Thereturn value is nonzero if the function is successful. Otherwise, it is zero.
Example

The following example uses a blue brush to frame a rectangular region. Note that it is not necessary to
select the brush or the region into the device context.

HRGN hr gn;
HBRUSH hBr ush;
int Wdth =5, Height = 2;

hrgn = CreateRectRgn(10, 10, 110, 110);
hBrush = CreateSolidBrush(RGB(0, 0, 255));

FrameRgn(hdc, hrgn, hBrush, Wdth, Height);

DeleteObject(hr gn) ;
DeleteObject(hBrush);

See Also
FillRgn, PaintRgn

GetAspectRatioFilter (2.x)

DWORD GetA spectRatioFilter(hdc)
HDC hdc; /* handle of device context */

The GetAspectRatioFilter function retrieves the setting for the current aspect-ratio filter. The aspect ratio
isthe ratio formed by a device's pixel width and height. Information about a device's aspect ratio is used
in the creation, selection, and display of fonts. Windows provides a special filter, the aspect-ratio filter, to
select fonts designed for a particular aspect ratio from al of the available fonts. The filter uses the aspect
ratio specified by the SetMapperFlags function.

Parameter Description
hdc | dentifies the device context that contains the specified aspect ratio.
Returns

The low-order word of the return val ue contains the x-coordinate of the aspect ratio if the function is
successful; the high-order word contains the y-coordinate.

See Also
SetMapperFlags

GetAspectRatioFilterEx (3.1)

BOOL GetAspectRatioFilterEx(hdc, |pAspectRatio)
HDC hdc;
SIZE FAR* IpAspectRatio;

The GetAspectRatioFilterEx function retrieves the setting for the current aspect-ratio filter. The aspect
ratio istheratio formed by a device's pixel width and height. Information about a device's aspect ratio is
used in the creation, selection, and displaying of fonts. Windows provides a specidl filter, the aspect-ratio
filter, to select fonts designed for a particular aspect ratio from all of the available fonts. The filter uses the
aspect ratio specified by the SetMapperFlags function.

Parameter Description

hdc I dentifies the device context that contains the specified aspect ratio.
IpAspectRatio Pointer to a SIZE structure where the current aspect ratio filter will be returned.
Returns

Thereturn value is nonzero if the function is successful. Otherwise, it is zero.

See Also

SetMapperFlags

GetBitmapBits (2.x)

LONG GetBitmapBits(hbm, cbBuffer, IpvBits)

HBITMAP hbm; /* handle of bitmap */

LONG cbBuffer; /* number of
bytes to copy to buffer

/

void FAR* IpvBits;

* address of buffer for bitmap bits
/

The GetBitmapBits function copies the bits of the specified bitmap into a buffer.

Parameter Description

hbm | dentifies the bitmap.

cbBuffer Specifies the number of bytes to be copied.

IpvBits Points to the buffer that is to receive the bitmap. The bitmap is an array of bytes. This

array conforms to a structure in which horizontal scan lines are multiples of 16 bits.

Returns

The return value specifies the number of bytesin the bitmap if the function is successful. It is zero if there
isan error.

Comments

An application can use the GetObject function to determine the number of bytes to copy into the buffer
pointed to by the IpvBits parameter.

See Also
GetObject, SetBitmapBits

GetBitmapDimension (2.x)

DWORD GetBitmapDimension(hbm)
HBITMAP hbm; /* handle of bitmap */

The GetBitmapDimension function returns the width and height of the specified bitmap. The height and
width is assumed to have been set by the SetBitmapDimension function.

Parameter Description
hbm | dentifies the bitmap.
Returns

The low-order word of the return value contains the bitmap width, in tenths of a millimeter, if the function
is successful; the high-order word contains the height. If the bitmap width and height have not been set by
using the SetBitmapDimension function, the return valueis zero.

See Also

SetBitmapDimension

GetBitmapDimensionEx (2.X)

BOOL GetBitmapDimensionEx(hBitmap, IpDimension)

HBITMAP hBitmap; /* handle of bitmap */
SIZE FAR* IpDimension;

* address of dimension structure

/

The GetBitmapDimensionEx function returns the dimensions of the bitmap previously set by the
SetBitmapDimensionEx function. If no dimensions have been set, a default of 0,0 will be returned.

Parameter Description

hBitmap | dentifies the bitmap.

[pDimension Pointsto a SIZE structure to which the dimensions are returned.
Returns

The return value is nonzero if the function is successful. Otherwise, it is zero.

See Also

SetBitmapDimensionEx, SIZE

GetBkColor (2.x)

COL ORREF GetBkColor(hdc)
HDC hdc; /* handle of device context */

The GetBkColor function returns the current background color.

Parameter Description
hdc I dentifies the device context.
Returns

Thereturn valueis an RGB (red, green, blue) color value if the function is successful.

Comments

If the background mode is OPAQUE, the system uses the background color to fill the gapsin styled lines,
the gaps between hatched linesin brushes, and the background in character cells. The system aso usesthe
background color when converting bitmaps between color and monochrome device contexts.

Example
The following example uses the GetBkColor function to determine whether the current background color
iswhite. If it is, the SetBkColor function setsit to red.

DWORD dwBackCol or;

dwBackCol or = Get BkCol or (hdc);

i f (dwBackCol or == RGB(255, 255, 255)) { /* if color is white */
SetBkColor(hdc, RGB(255, 0, 0));/* sets color to red */
extOut(hdc, 100, 200, "SetBkColor test.", 16);

}

See Also
GetBkMode, SetBkColor, SetBkMode, RGB

GetBkMode (2.x)

int GetBkM ode(hdc)
HDC hdc; /* handle of device context */

The GetBkM ode function returns the background mode. The background mode defines whether the system
removes existing background colors on the drawing surface before drawing text, hatched brushes, or any
pen style that isnot asolid line.

Parameter Description
hdc I dentifies the device context.
Returns

The return value specifies the current background mode if the function is successful. It can be OPAQUE,
TRANSPARENT, or TRANSPARENT1.

Example

The following example determines the current background mode by calling the GetBkMode function. If
the mode is OPAQUE, the SetBkMode function setsit to TRANSPARENT.

i nt nBackMode;

nBackMbde = Cet BkMbde(hdc);

i f (nBackMbde == OPAQUE) {
TextOut(hdc, 90, 100, "This background node is OPAQUE.", 31);
SetBkMode(hdc, TRANSPARENT) ;

}

See Also
GetBkColor, SetBkColor, SetBkM ode

GetBoundsRect (3.1)

UINT GetBoundsRect(hdc, IprcBounds, flags)

HDC hdc; /* handle of device context */
RECT FAR* IprcBounds;

* address of structure for bounding rectangle

/

UINT flags;

* gpecifies whether to clear rectangle

/

The GetBoundsRect function returns the current accumulated bounding rectangle for the specified device
context.

Parameter Description

hdc I dentifies the device context to return the bounding rectangle for.

[prcBounds Points to a buffer that will receive the current bounding rectangle. The rectangleis
returned in logical coordinates.

flags Specifies whether the bounding rectangle to be cleared after it is returned. This
parameter can be DCB_RESET, to clear the rectangle. Otherwise, it should be zero.

Returns

The return valueis DBC_SET if the bounding rectangle is not empty. Otherwiseitis DCB_RESET.

See Also

SetBoundsRect

GetBrushOrg (2.x)

DWORD GetBrushOrg(hdc)
HDC hdc; /* handle of device context */

The GetBrushOrg function retrieves the origin, in device coordinates, of the brush currently selected for
the given device context.

Parameter Description
hdc I dentifies the device context.
Returns

The low-order word of the return value contains the current x-coordinate of the brush, in device
coordinates, if the function is successful; the high-order word contains the y-coordinate.

Comments
Theinitia brush originis at the coordinates (0,0) in the client area. The return value specifies these
coordinates in device units relative to the origin of the desktop window.

Example

The following example uses the LOWORD and HIWORD macros to extract the x- and y-coordinate of the
current brush from the return value of the GetBrushOrg function:

DWORD dwBr Or g;
WORD wXBr Org, wYBrOrg;

dwBr Org = Get BrushOrg(hdc);
wXBr Org = LOWORD(dwBr Or g) ;
wWYBr O g = HIWORD(dwBr Or g) ;
See Also

GetBrushOrgEX, SelectObject, SetBrushOrg, HIWORD, LOWORD

GetBrushOrgEx (3.1)

BOOL GetBrushOrgEx(hDC, IpPoint)

HDC hDC; /* handle of device context */

POINT FAR* IpPoint; /
* address of structure for brush origin

/

The GetBrushOrgEXx function retrieves the current brush origin for the given device context.

Parameter Description

hDC | dentifies the device context.

[pPoint Pointsto a POINT structure to which the device coordinates of the brush origin are to be
returned.

Returns

The return value is nonzero if the function is successful. Otherwise, it is zero.

Comments

Theinitia brush originis at the coordinate (0,0).

See Also

GetBrushOrg, SetBrushOrg

GetCharABCWidths (3.1)

BOOL GetCharABCWidths(hdc, uFirstChar, uLastChar, Ipabc)

HDC hdc; /* handle of device context

UINT uFirstChar; [* first character
in range to query

/

UINT uLastChar;

* |ast character in range to query

/

LPABC Ipabc;

* address of ABC width structures
/

The GetCharABCWidths function retrieves the widths of consecutive characters in a specified range from
the current TrueType font. The widths are returned in logical units. This function succeeds only with
TrueType fonts.

Parameter Description

hdc | dentifies the device context.

uFirstChar Specifies the first character in the range of characters from the current font for which
character widths are returned.

uLastChar Specifiesthe last character in the range of characters from the current font for which
character widths are returned.

[pabc Pointsto an array of ABC structures that receive the character widths when the function

returns. This array must contain at least as many ABC structures as there are characters
in the range specified by the uFirstChar and uL astChar parameters.

Returns
The return value is nonzero if the function is successful. Otherwise, it is zero.

Comments

The TrueType rasterizer provides ABC character spacing after a specific point size has been selected. "A"
spacing is the distance that is added to the current position before placing the glyph. "B" spacing is the
width of the black part of the glyph. "C" spacing is added to the current position to account for the white
space to the right of the glyph. The total advanced widthisgivenby A + B + C.

When the GetCharABCWidths function retrieves negative "A" or "C" widths for a character, that character
includes underhangs or overhangs.

To convert the ABC widths to font design units, an application should create a font whose height (as
specified in theTfHeight member of the LOGFONT structure) is equal to the value stored in the
ntmSizeEM member of the NEWTEXTMETRIC Structure. (The value of the ntmSizeEM member can be
retrieved by calling the EnumFontFamilies function.)

The ABC widths of the default character are used for characters that are outside the range of the currently
selected Tont.

To retrieve the widths of characters in non-TrueType fonts, applications should use the GetCharWidth
function.

See Also
EnumFontFamilies, GetCharWidth, ABC, OUTLINETEXTMETRIC

GetCharWidth (2.x)

BOOL GetCharWidth(hdc, uFirstChar, uLastChar, IpnWidths)

HDC hdc; /* handle of device context */

UINT uFirstChar; [* first character
in range to query

/

UINT uLastChar;

* |ast character in range to query
/

int FAR* |pnWidths;

* address of buffer for widths

/

The GetCharWidth function retrieves the widths of individual charactersin arange of consecutive
charactersin the current font.

Parameter Description

hdc | dentifies the device context.

uFirstChar Specifiesthe first character in a group of consecutive charactersin the current font.

uLastChar Specifiesthe last character in agroup of consecutive charactersin the current font.

IpnWidths Points to a buffer that receives the width values for a group of consecutive charactersin
the current font.

Returns

Thereturn value is nonzero if the function is successful. Otherwise, it is zero.

Comments

If acharacter in the group of consecutive characters does not exist in a particular font, it will be assigned
the width value of the default character.

Example

The following example uses the GetCharWidth function to retrieve the widths of the characters from
through "'S" and displays the total number of widths retrieved in a message box:

HDC hdc;

WORD wTot al Val ues;

WORD wFi r st Char, wLast Char;
i nt | nfoBuffer[256];

char szMessage[30];

wFi r st Char

WORD) 'I"';
wLast Char

= (

= (WORD) 'S';

hdc = GetDC(hwnd) ;

if (GetCharWdth(hdc, wFirstChar, wLastChar, (int FAR*) InfoBuffer)) {
wTot al Val ues = wLast Char - wFirstChar + 1;
wsprintf(szMessage, "Total values received: %", wrlotal Val ues);
MessageBox(hwnd, szMessage, "Get CharWdth", MB_OK);

el se
MessageBox(hwnd, "Get CharWdth was unsuccessful ", "ERROR ",
M 0

ReleaseDC(hwnd, hdc);

See Also
GetCharABCWidths

GetClipBox (2.x)

int GetClipBox(hdc, Iprc)

HDC hdc; /* handle of device context */

RECT FAR* lprc; /* address of
structure with rectangle

/

The GetClipBox function retrieves the dimensions of the smallest rectangle that completely contains the
current clipping region.

Parameter Description

hdc I dentifies the device context.

Iprc Points to the RECT structure that receives the logical coordinates of the rectangle.
Returns

Thereturn value is SIMPLEREGION (region has no overlapping borders), COMPLEXREGION (region
has overlapping borders), or NULLREGION (region is empty), if the function is successful. Otherwise,
the return value is ERROR.

See Also
GetBoundsRect, GetRgnBox, GetTextExtent, SelectClipRgn, RECT

GetCurrentPosition (2.x)

DWORD GetCurrentPosition(hdc)
HDC hdc; /* handle of device context */

The GetCurrentPosition function retrieves the logical coordinates of the current position. The current
position is set by using the MoveT o function.

Parameter Description
hdc I dentifies the device context.
Returns

The low-order word of the return value contains the logical x-coordinate of the current position if the
function is successful; the high-order word contains the logical y-coordinate.

See Also

GetCurrentPositionEx, LineTo, MoveTo

GetCurrentPositionEx (3.1)

BOOL GetCurrentPositionEx(hdc, IpPoint)
HDC hdc;
POINT FAR* IpPoint;

The GetCurrentPositionEx function retrieves the current position in logical coordinates.

Parameter Description

hdc | dentifies the device context to get the current position from.

[pPoint Pointsto a POINT structure that gets filled with the current position.
Returns

The return value is nonzero if the function is successful, zero if thereis an error.

See Also

GetCurrentPosition

GetDCOrg (2.X)

DWORD GetDCOrg(hdc)
HDC hdc; /* handle of device context */

The GetDCOrg function retrieves the coordinates of the final translation origin for the device context. This
origin specifies the offset used by Windows to translate device coordinates into client coordinates for
pointsin an application's window. The final translation origin is relative to the physical origin of the
screen.

Parameter Description
hdc Identifies the device context whose origin is to be retrieved.
Returns

The low-order word of the return value contains the x-coordinate of the final trandation origin, in device
coordinates, if the function is successful; the high-order word contains the y-coordinate.

Example

The following example uses the Createl C function to create an information context for the screen and then
retrieves the context's origin by using the GetDCOrg function:

HDC hdcl C
DWORD dwOri gi n;

hdcl C = CreatelC(" DI SPLAY", NULL, NULL, NULL);
dwOri gin = Get DCOr g(hdcl Q) ;
DeleteDC(hdcl C);

See Also
CreatelC

GetDeviceCaps (2.X)

int GetDeviceCaps(hdc, iCapability)
/* handle of device context */

HDC hdc;

int iCapability;

query
/

/* index of capability to

The GetDeviceCaps function retrieves device-specific information about a given display device.

Parameter
hdc
iCapability

Description

I dentifies the device context.

Specifies the type of information to be returned. It can be one of the following indices:

Index
DRIVERVERSION
TECHNOLOGY

HORZSIZE
VERTSIZE
HORZRES
VERTRES
LOGPIXELSX
LOGPIXELSY
BITSPIXEL
PLANES
NUMBRUSHES
NUMPENS
NUMMARKERS
NUMFONTS
NUMCOLORS
ASPECTX
ASPECTY
ASPECTXY
PDEVICESIZE
CLIPCAPS

SIZEPALETTE

NUMRESERVED

Description
Version number of the device driver.
Device technology. It can be one of the following values:

Value Meaning

DT _PLOTTER Vector plotter
DT_RASDISPLAY Raster display
DT_RASPRINTER Raster printer
DT_RASCAMERA Raster camera
DT_CHARSTREAM Character stream
DT_METAFILE Metdfile
DT_DISPFILE Display file

Width of the physical display, in millimeters.

Height of the physical display, in millimeters.

Width of the display, in pixels.

Height of the display, in raster lines.

Number of pixels per logical inch along the display width.
Number of pixels per logica inch along the display height.
Number of adjacent color bits for each pixel.

Number of color planes.

Number of device-specific brushes.

Number of device-specific pens.

Number of device-specific markers.

Number of device-specific fonts.

Number of entriesin the device's color table.

Relative width of a device pixel used for line drawing.
Relative height of adevice pixel used for line drawing.
Diagonal width of a device pixel used for line drawing.
Size of the PDEVICE internal structure, in bytes.

Clipping capabilities the device supports. It can be one of
the following values:

Vaue Meaning

CP_NONE Output is not clipped.
CP_RECTANGLE Output is clipped to rectangles.
CP_REGION Output is clipped to regions.

Number of entriesin the system palette. Thisindex isvalid
only if the device driver setsthe RC_PALETTE bit in the
RASTERCAPS index; itisavailable only if the driver is
written for Windows 3.0 or later.

Number of reserved entriesin the system palette. This

index isvalid only if the device driver setsthe
RC_PALETTE bit inthe RASTERCAPS index; it is

COLORRES

RASTERCAPS

CURVECAPS

LINECAPS

available only if the driver iswritten for Windows 3.0 or
later.

Color resolution of the device, in bits per pixel. Thisindex
isvalid only if the device driver setsthe RC_PALETTE bit

in the RASTERCAPS index; it is available only if the
driver iswritten for Windows 3.0 or |ater.

Raster capabilities the device supports. It can be a
combination of the following values:

Vaue
RC_BANDING
RC_BIGFONT

RC BITBLT
RC_BITMAPS4

RC_DEVBITS
RC_DI_BITMAP

RC_DIBTODEV

RC_FLOODFILL
RC_GDI20_OUTPUT

RC_GDI20_STATE
RC_NONE

RC_OP DX_OUTPUT
RC_PALETTE

RC_SAVEBITMAP
RC_SCALING
RC_STRETCHBLT

RC_STRETCHDIB

Meaning

Supports banding.
Supports fonts larger than
64K.

Transfers bitmaps.
Supports bitmaps larger than
64K.

Supports device bitmaps.

Supports the SetDIBits and
GetDIBits functions.

Supportsthe
SetDIBitsToDevice function.

Performs flood fills.
Supports Windows version
2.0 features.

Includes a state block in the
device context.

Supports no raster
operations.

Supports dev opaque and
DX array.

Specifies a pal ette-based
device.

Saves bitmaps locally.
Supports scaling.

Supports the StretchBlIt
function.

Supports the StretchDIBits
function. -

Curve capabilities the device supports. It can be a
combination of the following values:

Vaue

CC_NONE

CC _CIRCLES
CC PIE
CC_CHORD
CC_ELLIPSES
CC_WIDE

CC _STYLED

CC WIDESTYLED
CC_INTERIORS
CC_ROUNDRECT

Meaning

Supports curves.

Supports circles.

Supports pie wedges.
Supports chords.

Supports ellipses.

Supports wide borders.
Supports styled borders.
Supports wide, styled borders.
Supportsinteriors.

Supports rectangles with
rounded corners.

Line capabilities the device supports. It can be a
combination of the following values:

Vaue
LC_NONE
LC _POLYLINE

Meaning
Supports no lines.
Supports polylines.

POLY GONALCAPS

TEXTCAPS

LC_MARKER
LC_POLYMARKER
LC_WIDE
LC_STYLED
LC_WIDESTYLED
LC_INTERIORS

Supports markers.
Supports polymarkers.
Supports wide lines.
Supports styled lines.
Supports wide, styled lines.
Supportsinteriors.

Polygonal capabilities the device supports. It can be a
combination of the following values:

Vaue
PC_NONE
PC_POLYGON

PC_RECTANGLE
PC_WINDPOLY GON

PC_SCANLINE
PC_WIDE
PC_STYLED
PC_WIDESTYLED
PC_INTERIORS

Meaning
Supports no polygons.

Supports alternate fill
polygons.

Supports rectangles.

Supports winding number fill
polygons.

Supports scan lines.

Supports wide borders.
Supports styled borders.
Supports wide, styled borders.
Supportsinteriors.

Text capabilities the device supports. It can be a
combination of the following values:

Vaue
TC_OP_CHARACTER

TC_OP STROKE

TC_CP_STROKE

TC_CR_90

TC_CR_ANY

TC_SF_X_YINDEP

TC_SA_DOUBLE

Meaning

Supports character output
precision, which indicates
the device can place device
fonts at any pixel location.
Thisisrequired for any
device with device fonts.

Supports stroke output
precision, which indicates
the device can omit any
stroke of adevice font.

Supports stroke clip
precision, which indicates
the device can clip device
fonts to a pixel boundary.

Supports 90-degree
character rotation, which
indicates the device can
rotate characters only 90
degrees at atime.
Supports character rotation
at any degree, which
indicates the device can
rotate device fonts through
any angle.

Supports scaling
independent of x and y
directions, which indicates
the device can scale device
fonts separately in x and y
directions.

Supports doubled
characters for scaling,
which indicates the device
can double the size of
device fonts.

TC_SA_INTEGER

TC_SA_CONTIN

TC_EA_DOUBLE

TC_IA_ABLE

TC_UA_ABLE

TC_SO_ABLE

TC_RA_ABLE

TC_VA_ABLE

Supportsinteger multiples
for scaling, which indicates
the device can scale the
size of device fontsin any
integer multiple.

Supports any multiples for
exact scaling, which
indicates the device can
scale device fonts by any
amount but still preserve
thex andy ratios.

Supports double-weight
characters, which indicates
the device can make device
fonts bold. If thisbit is not
set for printer drivers,
graphics device interface
(GDI) attempts to create
bold device fonts by
printing them twice.

Supportsitalics, which
indicates the device can
make device fontsitdic. If
thisbit is not set, GDI
assumes italics are not
available.

Supports underlining,
which indicates the device
can underline device fonts.
If thishit is not set, GDI
creates underlinesfor
device fonts.

Supports strikeouts, which
indicates the device can
strikeout device fonts. If
thisbit is not set, GDI
creates strikeoutsfor
device fonts.

Supports raster fonts,
which indicates that GDI
should enumerate any
raster or TrueType fonts
available for thisdevicein
response to acall to the
EnumFonts or
EnumFontFamilies
function. Tf thisbitis not
set, GDI-supplied raster or
TrueType fonts are not
enumerated when these
functions are called.

Supports vector fonts,
which indicates that GDI
should enumerate any
vector fonts available for
thisdevice in response to a
call to the EnumFonts or
EnumFontFamilies
function. Thisissignificant
for vector devices only
(that is, for plotters).
Display drivers (which
must be able to use raster

fonts) and raster printer
drivers always enumerate
vector fonts, because GDI
rasterizes vector fonts
before sending them to the

driver.
TC _RESERVED Reserved; must be zero.
Returns
Thereturn value is the value of the requested capability if the function is successful.
Example

The following example uses the GetDeviceCaps function to determine whether a device supports raster
capabilities and is palette-based. If so, the example calls the GetSystemPal etteUse function.

WORD nUse;

hdc = GetDC(hwnd) ;

i f ((GetDeviceCaps(hdc, RASTERCAPS) & RC PALETTE) == 0) {
ReleaseDC(hwnd, hdc);
break;

}
nUse = GetSystemPaletteUse(hdc);
ReleaseDC(hwnd, hdc);

See Also
LOGFONT

GetDIBits (3.0)

int GetDIBits(hdc, hbmp, nStartScan, cScanLines, IpvBits, Ipbmi, fuColorUse)
HDC hdc; /* handle of device context */
HBITMAP hbmp;

* handle of bitmap

/

UINT nStartScan;

* first scan line to set in destination bitmap

/

UINT cScanLines;

* number of scan lines to copy

/

void FAR* IpvBits;

* address of array for bitmap bits

/

BITMAPINFO FAR* Ipbmi;

* address of structure with bitmap data
/

UINT fuColorUse;

* type of color table

/

The GetDIBits function retrieves the bits of the specified bitmap and copies them, in device-independent
format, into the buffer pointed to by the IpvBits parameter. The Ipbmi parameter retrieves the color format
for the device-independent bits.

Parameter Description

hdc | dentifies the device context.

hbmp | dentifies the bitmap.

nStartScan Specifiesthe first scan line to be set in the bitmap received in the |pvBits parameter.

cScanLines Specifies the number of lines to be copied.

IpvBits Points to a buffer that will receive the bitmap bits in device-independent format.

[pbmi Pointsto a BITMAPINFO structure that specifies the color format and dimension for the
device-independent bitmap.

fuColorUse Specifies whether the bmi Colors members of the BITMAPINFO structure are to contain

explicit RGB values or indicesinto the currently realized Togical palette. The
fuColorUse parameter must be one of the following values:

Value Meaning

DIB_PAL_COLORS Color tableisto consist of an array of 16-bit indicesinto
the currently realized logical palette.

DIB_RGB_COLORS Color table isto contain literal RGB values.

Returns
The return value specifies the number of scan lines copied from the bitmap if the function is successful.
Otherwise, it is zero.

Comments
If the IpvBits parameter isNULL, the GetDIBits function fills in the BITMAPINFO structure to which the
Ipbmi parameter points but does not retrieve bits from the bitmap.

The bitmap identified by the hbmp parameter must not be selected into a device context when the
application calls this function.

The origin for device-independent bitmaps (DIBs) is the lower-left corner of the bitmap, not the upper-left
corner, which is the origin when the mapping modeis MM_TEXT.

See Also
SetDIBits, BITMAPINFO

GetFontData (3.1)

DWORD GetFontData(hdc, dwTable, dwOffset, IpvBuffer, chData)
HDC hdc; /* handle of device context */
DWORD dwTable; /* metric table to

query
/

DWORD dwOffset;

* offset into table being queried
/

void FAR* IpvBuffer;

* address of buffer for font data
/

DWORD chData;
* length of datato query
/

The GetFontData function retrieves font-metric information from a scalable font file. The information to
retrieve isidentified by specifying an offset into the font file and the length of the information to return.

Parameter Description
hdc I dentifies the device context.
dwTable Specifies the name of the metric table to be returned. This parameter can be one of the

metric tables documented in the TrueType Font Files specification, published by
Microsoft Corporation. If this parameter is zero, the information is retrieved starting at
the beginning of the font file.

dwOffset Specifies the offset from the beginning of the table at which to begin retrieving
information. If this parameter is zero, the information is retrieved starting at the
beginning of the table specified by the dwTable parameter. If thisvalueis greater than
or equal to the size of the table, GetFontData returns zero.

IpvBuffer Points to a buffer that will receive the font information. If thisvalueis NULL, the
function returns the size of the buffer required for the font data specified in the dwTable
parameter.

cbData Specifies the length, in bytes, of the information to be retrieved. If this parameter is zero,

GetFontData returns the size of the data specified in the dwTable parameter.

Returns
The return value specifies the number of bytes returned in the buffer pointed to by the IpvBuffer
parameter, if the function is successful. Otherwise, itis-1.

Comments

An application can sometimes use the GetFontData function to save a TrueType font with a document. To
do this, the application determines whether the font can be embedded and then retrieves the entire font file,
specifying zero for the dwTable, dwOffset, and cbData parameters.

Applications can determine whether a font can be embedded by checking the otmfsType member of the
OUTLINETEXTMETRIC structure. If bit 1 of otmfsTypeis set, embedding is not permitted for the font.
[T bit Tis clear, thefont can be embedded. If bit 2 is set, the embedding is read-only.

If an application attempts to use this function to retrieve information for a non-TrueType font, the
GetFontData function returns -1.

Example

The following example retrieves an entire TrueType font file:

HGLOBAL hgl b;
DWORD dwSi ze;
void FAR* | pvBuffer;

dwSi ze = Get Font Dat a(hdc, NULL, OL, NULL, OL); /* get file size */

hgl b = GlobalAlloc(GPTR, dwSize); [/* allocate nenory */
| pvBuf fer = GlobalLock(hgl b);
CGet Font Dat a(hdc, NULL, OL, |pvBuffer, dwSize); /* retrieve data */

The following retrieves an entire TrueType font file 4K at atime:

#def i ne BUFFER SI ZE 4096
BYTE Buf f er [BUFFER _SI ZE] ;
DWORD dwCxX f set ;

DWORD dwSi ze;

dwdf f set = OL;
whi | e(dwSi ze = Get Font Dat a(hdc, NULL, dwOf fset,
Buf fer, BUFFER SI ZE)) {

/* process data in buffer */

dwof f set += dwSi ze:

The following example retrieves a TrueType font table:

HGLOBAL hgl b;
DWORD dwSi ze;
void FAR* | pvBuffer;

LPSTR | pszTabl e;
DWORD dwTabl e;

| pszTable = "cmap";
dwTabl e = *(LPDWORD) | pszTable;/* construct DWORD type */

dwSi ze = Cet Font Dat a(hdc, dwrabl e, OL, NULL, OL); /* get table size */

hgl b = GlobalAlloc(GPTR, dwSize); /* allocate menory */

| pvBuf fer = GlobalLock(hgl b);

CGet Font Dat a(hdc, dwTlabl e, OL, |pvBuffer, dwSize); /* retrieve data */
See Also

GetOutlineTextMetrics, OUTLINETEXTMETRIC

GetGlyphQOuitline (3.1)
DWORD GetGlyphOutline(hdc, uChar, fuFormat, Ipgm, cbBuffer, IpBuffer, I[pmat2)

HDC hdc;

UINT uChar;

/* handle of device context */

* character to query
/

UINT fuFormat;

* format of datato return

/

LPGLYPHMETRICS Ipgm;
* address of structure with glyph metrics
/

DWORD cbBuffer;
* size of buffer for data

/

void FAR* IpBuffer;
* address of buffer for outline data

/

LPMAT2 Ipmat2;

* address of structure with transform matrix
/

The GetGlyphOutline function retrieves the outline curve or bitmap for an outline character in the current

font.

Parameter
hdc
uChar
fuFormat

[pgm
cbBuffer

IpBuffer

[pmat2

Returns

Description
Identifies the device context.
Specifies the character for which information is to be returned.

Specifies the format in which the function isto return information. It can be one of the
following values:

Value Meaning

GGO BITMAP Returns the glyph bitmap. When the function returns, the buffer
pointed to by the IpBuffer parameter contains a 1-bit-per-pixel
bitmap whose rows start on doubleword boundaries.

GGO NATIVE Returns the curve data pointsin the rasterizer's native format,
using device units. When this value is specified, any
transformation specified in the |pmat2 parameter isignored.

When the value of this parameter is zero, the function fillsin a GLY PHMETRICS

structure but does not return glyph-outline data.

Pointsto a GLY PHMETRICS structure that describes the placement of the glyph in the

character cell.

Specifies the size of the buffer into which the function copies information about the

outline character. If thisvalue is zero and the fuFormat parameter is either the

GGO_BITMAP or GGO_NATIVE values, the function returns the required size of the

buffer.

Points to a buffer into which the function copies information about the outline character.

If the fuFormat parameter specifiesthe GGO_NATIVE value, the information is copied

in the form of TTPOLY GONHEADER and TTPOLY CURVE structures. If thisvalueis

NULL and the fuFormat parameter is either the GGO_BITMAP or GGO_NATIVE

value, the function returns the required size of thebuffer.

Pointsto a MAT2 structure that contains a transformation matrix for the character. This

parameter cannot be NULL, even when the GGO_NATIVE valueis specified for the

fuFormat parameter.

The return value isthe size, in bytes, of the buffer required for the retrieved information if the chBuffer
parameter is zero or the IpBuffer parameter is NULL. Otherwise, it is apositive valueif the function is
successful, or -1 if thereisan error.

Comments

An application can rotate characters retrieved in bitmap format by specifying a 2-by-2 transformation
matrix in the structure pointed to by the Ipmat2 parameter.

A glyph outline is returned as a series of contours. Each contour is defined by a TTPOLY GONHEADER
structure followed by as many TTPOLY CURVE structures as are required to describeit. All points are
returned as POINTFX structures and represent absol ute positions, not relative moves. The starting point
given by thé pfxStart member of the TTPOLY GONHEADER structure is the point at which the outline for
a contour begins. The TTPOLY CURVE structures that follow can be either polyline records or spline
records. Polyline records are a series of points; lines drawn between the points describe the outline of the
character. Spline records represent the quadratic curves used by TrueType (that is, quadratic b-splines).

For example, the GetGlyphOQutline function retrieves the following information about the lowercase "i" in
the Arial TrueType font:

dwc = 88 /* total size of native buffer*/

TTPOLYGONHEADER #1 /* contour for dot on i */
cb= 44 /* size for contour */
dwType = 24 /* TT_POLYGON TYPE */
pfxStart = 1.000, 11.000

TTPOLYCURVE #1

wlype = TT_PRI M _LINE

cpf x =3

pfx[0] = 1.000, 12.000

pfx[1] = 2.000, 12.000

pfx[2] = 2.000, 11.000 /* automatically close to pfxStart */

TTPOLYGONHEADER #2 /* contour for body of i */
cb= 44
dwType = 24 /* TT_POLYGON TYPE */
pfxStart = 1.000, 0.000

TTPOLYCURVE #1

wlype = TT_PRI M LI NE

cpf x =3

pfx[0] = 1.000, 9.000

pfx[1] = 2.000, 9.000

pfx[2] = 2.000, 0.000/* automatically close to pfxStart */
See Also

GetOutlineTextMetrics, GLYPHMETRICS, MAT2, OUTLINETEXTMETRIC, POINTEX,
TTPOLYCURVE, TTPOLY GONHEADER

GGO_BITMAP 1

Returns the glyph bitmap. When the function returns, the buffer pointed to by the |pBuffer parameter
contains a 1-bit-per-pixel bitmap whose rows start on doubleword boundaries.

GGO_BITMAP 1

GGO_NATIVE 2

Returns the curve data pointsin the rasterizer's native format, using device units. When thisvalueis
specified, any transformation specified in the Ipmat2 parameter isignored.

GGO_NATIVE 2

GetKerningPairs (3.1)

int GetKerningPairs(hdc, cPairs, Ipkrnpair)

HDC hdc; /* handle of device context */
int cPairs;

* number of kerning pairs

/

KERNINGPAIR FAR* Ipkrnpair;

* pointer to structures for kerning pairs

/

The GetK erningPairs function retrieves the character kerning pairs for the font that is currently selected in
the specified device context.

Parameter Description

hdc I dentifies a device context. The GetKerningPairs function retrieves kerning pairs for the
current font for this device context.

cPairs Specifies the number of KERNINGPAIR structures pointed to by the Ipkrnpair
parameter. The function will not copy more kerning pairs than specified by cPairs.

Ipkrnpair Pointsto an array of KERNINGPAIR structures that receive the kerning pairs when the

function returns. Thisarray must contain at least as many structures as specified by the
cPairs parameter. If this parameter is NULL, the function returns the total number of
kerning pairs for the font.

Returns
The return value specifies the number of kerning pairs retrieved or the total number of kerning pairsin the
font, if the function is successful. It is zero if the function fails or there are no kerning pairs for the font.

See Also
KERNINGPAIR

GetMapMode (2.x)

int GetM apM ode(hdc)
HDC hdc; /* handle of device context */

The GetMapM ode function retrieves the current mapping mode.

Parameter Description
hdc I dentifies the device context.
Returns

The return value specifies the mapping mode if the function is successful.
It can be one of the following values:

Vaue Meaning

MM_ANISOTROPIC Logical units are converted to arbitrary units with arbitrarily scaled axes.
Setting the mapping mode to MM_ANISOTROPIC does not change the
current window or viewport settings. To change the units, orientation, and
scaling, an application should use the SetWindowExt and SetViewportExt

functions.

MM_HIENGLISH Each logical unit is converted to 0.001 inch. Positive x isto the right;
positivey isup.

MM_HIMETRIC Each logical unit is converted to 0.01 millimeter. Positive x is to the right;
positivey isup.

MM _ISOTROPIC Logical units are converted to arbitrary units with equally scaled axes; that

is, one unit along the x-axis is equal to one unit along the y-axis. The
SetWindowExt and SetViewportExt functions must be used to specify the
desired units and the orientation of the axes. GDI makes adjustments as
necessary to ensure that the x and y units remain the same size.

MM_LOENGLISH Each logical unit is converted to 0.01 inch. Positive x isto theright; positive
yisup.

MM_LOMETRIC Each logical unit is converted to 0.1 millimeter. Positive x isto the right;
positivey isup.

MM_TEXT Each logical unit is converted to one device pixel. Positive x isto the right;
positivey is down.

MM_TWIPS Each logical unit is converted to 1/20 of a point. (Because a point is 1/72

inch, atwip is 1/1440 inch). Positive x isto the right; positivey isup.

Example
The following example uses the GetM apM ode function to determine whether the current mapping modeis
MM_TEXT:

i f (Get MapMdde(hdc) !'= MM _TEXT)
TextOut(hdc, 100, -200, "Mapping node nust be MM TEXT", 28);
return FALSE;

See Also
SetMapMode

GetMetaFile (2.x)

HMETAFILE GetMetaFile(lpszFile)
LPCSTR IpszFile; [* address of metefilename */

The GetMetaFile function creates a handle of a specified metafile.

Parameter Description

IpszFile Points to the null-terminated string that specifies the MS-DOS filename of the metéfile.
The metafile is assumed to exist.

Returns

The return value is the handle of ametafileif the function is successful. Otherwise, it isNULL.

Example

The following example uses the CopyM etaFile function to copy a metafile to a specified file, playsthe
copied metafile, uses the GetM efaFile function to retrieve a handle to the copied metafile, uses the
SetWindowOrg function to change the position at which the metafile is played 200 logical unitsto the
right, and then plays the metafile at the new location:

HANDLE hnf, hnf Source, hnfd d;
LPSTR | pszFilel = "M-Test";

hnf = CopyMetaFile(hnf Source, | pszFilel);
PlayMetaFiTe(hdc, hnf);
DeleteMetaFile(hnf);

hnfd d = GetMetaFil e(l pszFilel);
SetWindowOrg(hdc, -200, O0);
PTayMetaFilTe(hdc, hnfd d);

DeleteMetaFile(hnf Sour ce) ;
DeleteMetaFile(hnf A d);

See Also
CopyMetaFile, PlayMetaFile, SetWindowOrg

GetMetaFileBits (2.x)

HGLOBAL GetMetaFileBits(hmf)
HMETAFILE hmf; /* handle of metefile */

The GetMetaFileBits function returns a handl e of the global memory object that contains the specified
metafile as a collection of bits. The memory object can be used to determine the size of the metéfile or to
save the metafile as afile. The memory object should not be modified.

Parameter Description
hmf | dentifies the memory metédfile.
Returns

Thereturn value is the handle of the global memory object that contains the metéfile, if the functionis
successful. Otherwise, it iSNULL.

Comments
The handle contained in the hmf parameter becomes invalid when the GetM etaFileBits function returns, so
the returned global memory handle must be used to refer to the metafile.

When it no longer requires a global memory object that is associated with a metafile, an application should
remove the object by using the Global Free function.

See Also
Global Free

GetNearestColor (2.x)

COLORREF GetNearestColor(hdc, clrref)
HDC hdc; /* handle of device context */
COLORREF clrref; /* color to match */

The GetNearestColor function retrieves the solid color that best matches a specified logical color; the
given device must be able to represent this solid color.

Parameter Description

hdc | dentifies the device context.
clrref Specifies the color to be matched.
Returns

The return value specifies an RGB (red, green, blue) color value that defines the solid color closest to the
clrref value that the device can represent.

See Also
GetNearestPal ettel ndex

GetNearestPal ettel ndex (3.0)

UINT GetNearestPal ettelndex(hpal, clrref)
HPALETTE hpal; /* handle of palette */
COLORREF clrref; [* color to match */

The GetNearestPal ettel ndex function retrieves the index of the logical-palette entry that best matches the
specified color value.

Parameter Description

hpal Identifies the logical palette.
clrref Specifies the color to be matched.
Returns

Thereturn value is the index of the logical-pal ette entry whose corresponding color best matches the
specified color.

Example
The following example uses the GetNearestPal ettel ndex function to retrieve a color index from a palette. It
then creates a brush with that retrieved color by using the PALETTEINDEX macro in acal to the

CreateSolidBrush function.

WORD nCaol or;

HPALETTE hpal ;

DWORD dwBr ushCol ors[8] [8] ;
HBRUSH hbr ;

int x, vy;

/* Initialize the array of brush colors. */

nCol or = Get Near est Pal et t el ndex(hpal, dwBrushCol ors[x][vy]);
hbr = CreateSolidBrush(PALETTEINDEX(nCol or));

/* Use the brush handle. */

Del efeObj ect(hbr);

See Also
CreateSolidBrush, GetNearestColor, GetPal etteEntries, GetSystemPal etteEntries, PALETTEINDEX

GetObject (2.x)

int GetObject(hgdiobj, cbBuffer, IpvObject)

HGDIOBJ hgdiobj; /* handle of object */

int chBuffer; [* size
of buffer for object information

/

void FAR* |pvObject;

* address of buffer for object information

/

The GetObject function fills a buffer with information that defines a given object. The function retrieves a
LOGPEN, LOGBRUSH, LOGFONT, or BITMAP structure, or an integer, depending on the specified
object.

Parameter Description

hgdiobj Identifies alogical pen, brush, font, bitmap, or palette.

cbBuffer Specifies the number of bytes to be copied to the buffer.

[pvODbject Points to the buffer that is to receive the information.

Returns

The return value specifies the number of bytesretrieved if the function is successful. Otherwise, it is zero.
Comments

The buffer pointed to by the [pvObject parameter must be sufficiently large to receive the information.

If the hgdiobj parameter identifies a bitmap, the GetObject function returns only the width, height, and
color format information of the bitmap. The bits can be retrieved by using the GetBitmapBits function.

If hgdiobj identifiesalogical palette, GetObject retrieves an integer that specifies the number of entriesin
the palette; the function does not retrieve the LOGPALETTE structure that defines the palette. To retrieve
information about palette entries, an application can call the GetPal etteEntries function.

Example

The following example uses the GetObject function to fill aLOGBRUSH structure with the attributes of
the current brush and then tests whether the brush styleisBS SOLTD:

LOGBRUSH | b;
HBRUSH hbr ;

Get Qbj ect (hbr, sizeof (LOGBRUSH), (LPSTR) &l b);
if (Ib.lbStyle == BS_SOLTD) {

}

See Also
GetBitmapBits, GetPaletteEntries, GetStockObject, BITMAP, LOGBRUSH, LOGFONT, LOGPALETTE,

GetOutlineTextMetrics (3.1)

WORD GetOutlineTextMetrics(hdc, cbData, [potm)

HDC hdc; /* handle of device context */
UINT cbData;

* size of buffer for information

/

OUTLINETEXTMETRIC FAR* Ipotm;

* address of structure for metrics

/

The GetOutlineTextMetrics function retrieves metric information for TrueType fonts.

Parameter Description

hdc | dentifies the device context.

cbData Specifiesthe size, in bytes, of the buffer to which information is returned.

Ipotm Pointsto an OUTLINETEXTMETRIC structure. If this parameter isNULL, the
function returnsthe size of the buffer required for the retrieved metric information.

Returns

Thereturn value is nonzero if the function is successful. Otherwise, it is zero.

Comments

The OUTLINETEXTMETRIC structure contains most of the font metric information provided with the
TrueTypeformat, including a TEXTMETRIC structure. The last four members of the
OUTLINETEXTMETRIC structure are pointers to strings. Applications should allocate space for these
strings in addition to the space required for the other members. Because there is no system-imposed limit
to the size of the strings, the simplest method for allocating memory isto retrieve the required size by
specifying NULL for the Ipotm parameter in the first call to the GetOutlineTextMetrics function.

See Also
GetTextMetrics, OUTLINETEXTMETRIC, TEXTMETRIC

GetPaletteEntries (3.0)

UINT GetPaletteEntries(hpal, iStart, cEntries, Ippe)

HPALETTE hpal; /* handle of palette */
UINT iStart;

* first palette entry to retrieve

/

UINT cEntries;

* number of entriesto retrieve

/

PALETTEENTRY FAR* Ippe;

* address of structure for palette entries
/

The GetPal etteEntries function retrieves arange of palette entriesin alogical paette.

Parameter Description

hpal Identifies the logical palette.

iStart Specifies the first logical-pal ette entry to be retrieved.

cEntries Specifies the number of logical-pal ette entries to be retrieved.

Ippe Pointsto an array of PALETTEENTRY structures that will receive the pal ette entries.
The array must contain at Teast as many structures as specified by the cEntries
parameter.

Returns

Thereturn value is the number of entries retrieved from the logical palette, if the function is successful.
Otherwise, it is zero.

See Also
GetSystemPal etteEntries, PALETTEENTRY

GetPixel (2.x)

COL ORREF GetPixel (hdc, nXPos, nY Pos)

HDC hdc; /* handle of device context */

int nXPos; [* x-coordinate of pixel to

retrieve *
/

int nY Pos;

* y-coordinate of pixel to retrieve

/

The GetPixel function retrieves the RGB (red, green, blue) color value of the pixel at the specified
coordinates. The point must be in the clipping region; if it is not, the function isignored.

Parameter Description

hdc | dentifies the device context.

nXPos Specifies the logical x-coordinate of the point to be examined.
nY Pos Specifiesthe logical y-coordinate of the point to be examined.
Returns

The return value specifies an RGB color value for the color of the given point, if the function is successful.
Itis-1if the coordinates do not specify apoint in the clipping region.

Comments

Not all devices support the GetPixel function.

See Also

GetDeviceCaps, SetPixel

GetPolyFillMode (2.x)

int GetPolyFillMode(hdc)
HDC hdc; /* handle of device context */

The GetPolyFillMode function retrieves the current polygon-filling mode.

Parameter Description
hdc I dentifies the device context.
Returns

The return value specifies the polygon-filling mode, ALTERNATE or WINDING, if the function is
successful.

Comments

When the polygon-filling mode is ALTERNATE, the system fills the area between odd-numbered and
even-numbered polygon sides on each scan line. That is, the system fills the area between the first and
second side, between the third and fourth side, and so on.

When the polygon-filling mode is WINDING, the system uses the direction in which afigure was drawn
to determine whether to fill an area. Each line segment in a polygon is drawn in either aclockwise or a
counterclockwise direction. Whenever an imaginary line drawn from an enclosed area to the outside of a
figure passes through a clockwise line segment, a count is incremented. When the line passes through a
counterclockwise line segment, the count is decremented. The areaisfilled if the count is nonzero when
the line reaches the outside of the figure.

Example
The following example uses the GetPolyFillMode function to determine whether the current polygon-
filling modeis ALTERNATE:

i nt nPol yFi |l | Mode;

nPol yFi | | Mode = Get Pol yFi | | Mode(hdc) ;
i f (nPol yFill Mde == ALTERNATE) {

}

See Also
SetPolyFillMode

GetRasterizerCaps (3.1)

BOOL GetRasterizerCaps(Ipraststat, cb)

RASTERIZER_STATUS FAR* Ipraststat; /* address of structure for status ~ */

int cb; /
* number of bytesin structure

/

The GetRasterizerCaps function returns flags indicating whether TrueType fonts areinstalled in the
system.

Parameter Description

|praststat Pointsto aRASTERIZER_STATUS structure that receives information about the
rasterizer.

cb Specifies the number of bytes that will be copied into the structure pointed to by the
Ipraststat parameter.

Returns

Thereturn value is nonzero if the function is successful. Otherwise, it is zero.

Comments

The GetRasterizerCaps function enables applications and printer drivers to determine whether TrueTypeis
installed.

If the TT_AVAILABLE flag is set in the wFlags member of the RASTERIZER_STATUS structure, at
least one TrueType font isinstalled. If the TT_ENABLED flag is sef, TrueType is enabled for the system.

See Also
GetOutlineTextMetrics, RASTERIZER STATUS

GetRgnBox (3.0)

int GetRgnBox(hrgn, Iprc)

HRGN hrgn; /* handle of region */

RECT FAR* lprc; /* address of
structure with rectangle

/

The GetRgnBox function retrieves the coordinates of the bounding rectangle of the given region.

Parameter Description

hrgn Identifies the region.

Iprc Pointsto a RECT structure that receives the coordinates of the bounding rectangle.
Returns

The return value is SIMPLEREGION (region has no overlapping borders), COMPLEXREGION (region
has overlapping borders), or NULLREGION (region is empty), if the function is successful. Otherwise,
thereturn value is ERROR.

Example
The following example uses the GetRgnBox function to determine the type of aregion:

RECT rc;
HRGN hr gn;
i nt RgnType;

RgnType = CGet RgnBox(hrgn, &rc);

if (RgnType == COVWPLEXREG ON)

TextOut(hdc, 10, 10, "COWLEXREG ON', 13);
el se if (RgnType == S| MPLEREG ON)

TextOut(hdc, 10, 10, "SI MPLEREG ON', 12);
el se

TextOut(hdc, 10, 10, "NULLREG ON', 10);

See Also
RECT

GetROP2 (2.X)

int GetROP2(hdc)
HDC hdc;

/* handle of device context */

The GetROP2 function retrieves the current drawing mode. The drawing mode specifies how the colors of
the pen and the interior of filled objects are combined with the color already on the screen surface.

Parameter Description
hdc I dentifies the device context.
Returns

The return value specifies the drawing mode if the function is successful.

Comments

The drawing mode is for raster devices only and does not apply to vector devices. It can be any of the

following values:

Value

R2 BLACK

R2 WHITE

R2_NOP

R2 NOT

R2 _COPYPEN

R2 NOTCOPYPEN
R2_MERGEPENNOT

R2_MASKPENNOT
R2_MERGENOTPEN
R2_MASKNOTPEN
R2_MERGEPEN
R2_NOTMERGEPEN
R2_MASKPEN
R2_NOTMASKPEN
R2_XORPEN

R2_NOTXORPEN

Example

Meaning

Pixel isaways black.

Pixel isalways white.

Pixel remains unchanged.

Pixel istheinverse of the screen color.

Pixel isthe pen color.

Pixel isthe inverse of the pen color.

Pixel isa combination of the pen color and the inverse of the screen color
(final pixel = (~screen pixel) | pen).

Pixel isa combination of the colors common to both the pen and the inverse
of the screen (final pixel = (~screen pixel) & pen).

Pixel isacombination of the screen color and the inverse of the pen color
(final pixel = (~pen) | screen pixel).

Pixel isacombination of the colors common to both the screen and the
inverse of the pen (final pixel = (~pen) & screen pixel).

Pixel isa combination of the pen color and the screen color (final pixel = pen
| screen pixel).

Rixgll)i)s the inverse of the R2_ MERGEPEN color (final pixel = ~(pen | screen
pixel)).

Pixel isacombination of the colors common to both the pen and the screen
(final pixel = pen & screen pixel).

Rixgll)i)s the inverse of the R2_ MASKPEN color (final pixel = ~(pen & screen
pixel)).

Pixel isacombination of the colors that are in the pen and in the screen, but
not in both (final pixel = pen ” screen pixel).

ijgll)i)s the inverse of the R2_XORPEN color (final pixel = ~(pen " screen
pixel)).

The following example uses the GetROP2 function to test whether the current drawing modeis

R2_COPY PEN:
i nt nROP;

NROP = Get ROP2(hdc);
if (nROP == R2_COPYPEN)
TextOut(hdc, 100, 100, "ROP is R2_COPYPEN.", 18);

See Also

GetDeviceCaps, SetROP2

GetStockObject (2.x)

HGDIOBJ GetStockObject(fnObject)
int fnObject; [* type of stock object */

The GetStockObject function retrieves a handle of one of the predefined stock pens, brushes, or fonts.

Parameter Description
fnObject Specifies the type of stock object for which to retrieve a handle. This parameter can be
one of the following values:

Value Meaning

BI ACK BRUSH Black brush.

DKGRAY BRUSH Dark-gray brush.

GRAY _BRUSH Gray brush.

HOL | OW BRUSH Hollow brush.

LTGRAY BRUSH Light-gray brush.

NUIL BRUSH Null brush.

WHITE BRUSH White brush.

BLACK _PEN Black pen.

NUII PEN Null pen.

WHITE PEN White pen.

ANS| FIXED FONT Windows fixed-pitch system font.

ANSI VAR FONT Windows variable-pitch system font.

DEVICE DEFAUIT FONT Device-dependent font.

OFM _FIXED FONT OEM-dependent fixed font.

SYSTEM FONT System font. By default, Windows uses the
system font to draw menus, dialog box contrals,
and other text. In Windows versions 3.0 and later,
the system font is a variable-pitch font width;
earlier versions of Windows use a fixed-pitch
system font.

SYSTEM FIXFD FONT Fixed-pitch system font used in Windows
versions earlier than 3.0. This object is available
for compatibility with earlier versions of
Windows.

DEFAULT PAI FTTE Default color palette. This palette consists of the
static colors in the system palette.

Returns
Thereturn value is the handle of the specified object if the function is successful. Otherwise, it isSNULL.
Comments

The DKGRAY_BRUSH, GRAY_BRUSH, and LTGRAY_BRUSH objects should be used only in
windows with the CS_ HREDRAW and CS VREDRAW class styles. Using agray stock brush in any
other style of window can lead to misalignment of brush patterns after awindow is moved or sized. The
origins of stock brushes cannot be adjusted.

Example

The following example retrieves the handle of a black brush by calling the GetStockObject function,
selects the brush into the device context, and fills arectangle by using the black brush:

HBRUSH hbr, hbrd d;

hbr = Get St ockQbj ect (BLACK_BRUSH) ;
hbrd d = SelectObject(hdc, hbr);
Rectangle(hdc, 10, 10, 100, 100);

See Also
GetObject, SetBrushOrg

BLACK_BRUSH 4
Black brush.

BLACK_BRUSH 4

DKGRAY_BRUSH 3
Dark-gray brush.

DKGRAY_BRUSH 3

GRAY_BRUSH 2
Gray brush.

GRAY_BRUSH 2

HOLLOW_BRUSH NULL_BRUSH
Hollow brush.

HOLLOW_BRUSH NULL_BRUSH

LTGRAY_BRUSH 1
Light-gray brush.

LTGRAY_BRUSH 1

NULL_BRUSH 5
Null brush.

NULL_BRUSH 5

WHITE_BRUSH 0
White brush.

WHITE_BRUSH 0

BLACK_PEN 7
Black pen.

BLACK_PEN 7

NULL_PEN 8
Null pen.

NULL_PEN 8

WHITE_PEN 6
White pen.

WHITE_PEN 6

ANS|I_FIXED_FONT 11
Windows fixed-pitch system font.

ANSI_FIXED_FONT 11

ANSI_VAR_FONT 12
Windows variable-pitch system font.

ANSI_VAR_FONT 12

DEVICE_DEFAULT_FONT 14
Device-dependent font.

DEVICE_DEFAULT_FONT 14

OEM_FIXED_FONT 10
OEM -dependent fixed font.

OEM_FIXED_FONT 10

SYSTEM_FONT 13

System font. By default, Windows uses the system font to draw menus, dialog box controls, and other text.
In Windows versions 3.0 and later, the system font is a variable-pitch font width; earlier versions of

Windows use a fixed-pitch system font.

SYSTEM_FONT 13

SYSTEM_FIXED_FONT 16

Fixed-pitch system font used in Windows versions earlier than 3.0. This object is available for
compatibility with earlier versions of Windows.

SYSTEM_FIXED_FONT 16

DEFAULT_PALETTE 15
Default color palette. This palette consists of the static colorsin the system palette.

DEFAULT_PALETTE 15

GetStretchBItM ode (2.x)

int GetStretchBItM ode(hdc)
HDC hdc; /* handle of device context */

The GetStretchBItM ode function retrieves the current bitmap-stretching mode. The bitmap-stretching
mode defines how information is removed from bitmaps that were compressed by using the StretchBlt
function.

Parameter Description
hdc I dentifies the device context.
Returns

The return value specifies the current bitmap-stretching mode--STRETCH_ANDSCANS,
STRETCH_DELETESCANS, or STRETCH_ORSCANS--if the function is successful.

Comments

The STRETCH_ANDSCANS and STRETCH_ORSCANS modes are typically used to preserve
foreground pixels in monochrome bitmaps. The STRETCH_DELETESCANS mode is typically used to
preserve color in color bitmaps.

Example

The following example uses the GetStretchBltM ode function to determine whether the current bitmap-
stretching modeis STRETCH_DELETESCANS; if so, it uses the StretchBlt function to display a
compressed bitmap.

HDC hdcMem
i nt nStretchMde;

nStretchMbde = Get StretchBl t Mode(hdc);

if (nStretchMyde == STRETCH_DELETESCANS) {
StretchBIt(hdc, 50, 175, 32, 32, hdcMem 0, 0, 64, 64,
SRCCOPY) ;

}

See Also
SetStretchBltM ode, StretchBlt

GetSystemPaletteEntries (3.0)

UINT GetSystemPal etteEntries(hdc, i Start, cEntries, [ppe)

HDC hdc; /* handle of device context */
UINT iStart;

* first palette entry to retrieve

/

UINT cEntries;

* number of entriesto retrieve

/

PALETTEENTRY FAR* Ippe;

* address of structure for palette entries
/

The GetSystemPal etteEntries function retrieves arange of palette entries from the system pal ette.

Parameter Description

hdc | dentifies the device context.

iStart Specifies the first system-palette entry to be retrieved.

cEntries Specifies the number of system-palette entries to be retrieved.

Ippe Pointsto an array of PALETTEENTRY structures that receives the palette entries. The

array must contain at Teast as many structures as specified by the cEntries parameter.

Returns
Thereturn value is the number of entries retrieved from the system palette, if the function is successful.
Otherwise, it is zero.

Example

The following example uses the GetDeviceCaps function to determine whether the specified deviceis
palette-based. If the device supports paleties, the GetSystemPal etteEntries function is called, using
GetDeviceCaps again, thistime to determine the number of entriesin the system palette.

PALETTEENTRY pe[MAXNUVBER] ;

hdc = GetDC(hwnd) ;

i f (!(GetDeviceCaps(hdc, RASTERCAPS) & RC PALETTE)) {
ReTeaseDC(hwnd, hdc);
break;

}
CGet SystenPal etteEntri es(hdc, 0, GetDeviceCaps(hdc, SIZEPALETTE),

pe) ;
ReleaseDC(hwnd, hdc);

See Also
GetDeviceCaps, GetPaletteEntries, PALETTEENTRY

GetSystemPaletteUse (3.0)

UINT GetSystemPaletteUse(hdc)
HDC hdc; /* handle of device context */

The GetSystemPal etteUse function determines whether an application has access to the entire system
palette.

Parameter Description
hdc I dentifies the device context. This device context must support color palettes.
Returns

The return value specifies the current use of the system palette, if the function is successful. This
parameter can be one of the following values:

Value Meaning
SYSPAL _NOSTATIC System palette contains no static colors except black and white.
SYSPA| STATIC System palette contains static colors that do not change when an

application realizesitslogical palette.

Comments
The system palette contains 20 default static colors that are not changed when an application realizesits

logical palette. An application can gain access to most of these colors by calling the SetSystemPaletteUse
function.

Example

The following example uses the GetDeviceCaps function to determine whether the specified deviceis
palette-based. If the device supports paleties, the GetSystemPal etteUse function is called.

WORD nUse;

hdc = GetDC(hwnd) ;
i f ((GetDeviceCaps(hdc, RASTERCAPS) & RC _PALETTE) == 0) {

ReTeaseDC(hwnd, hdc);
break;

}
nUse = Get Syst enPal ett eUse(hdc);
ReleaseDC(hwnd, hdc);

See Also
GetDeviceCaps, SetSystemPaletteUse

SYSPAL_NOSTATIC 2
System palette contains no static colors except black and white.

SYSPAL_NOSTATIC 2

SYSPAL_STATIC 1
System palette contains static colors that do not change when an application realizesitslogical palette.

SYSPAL_STATIC 1

GetTextCharacterExtra (2.x)

int GetTextCharacterExtra(hdc)
HDC hdc; /* handle of device context */

The GetTextCharacterExtra function retrieves the current setting for the amount of intercharacter spacing.
Graphics device interface (GDI) adds this spacing to each character, including break characters, when it
writes aline of text to the device context.

Parameter Description
hdc I dentifies the device context.
Returns

The return value specifies the amount of intercharacter spacing if the function is successful.

Comments
The default value for the amount of intercharacter spacing is zero.

See Also
SetTextCharacterExtra

GetTextAlign (2.x)

UINT GetTextAlign(hdc)
HDC hdc; /* handle of device context */

The GetTextAlign function retrieves the status of the text-alignment flags for the given device context.

Parameter Description
hdc I dentifies the device context.
Returns

The return value specifies the status of the text-alignment flags. This parameter can be one or more of the
following values:

Vaue Meaning

TA_BASELINE Specifies alignment of the x-axis and the base line of the chosen font within
the bounding rectangle.

TA _BOTTOM Specifies alignment of the x-axis and the bottom of the bounding rectangle.

TJA_CENTER Specifies alignment of the y-axis and the center of the bounding rectangle.

JA | FFT Specifies alignment of the y-axis and the left side of the bounding rectangle.

TA_NOUPDATECP Specifies that the current position is not updated.

JA_RIGHT Specifies alignment of the y-axis and the right side of the bounding rectangle.

JA_TOP Specifies alignment of the x-axis and the top of the bounding rectangle.

TA_UPDATECP Specifies that the current position is updated.

Comments

The text-alignment flags retrieved by the GetTextAlign function are used by the TextOut and ExtTextOut
functions. These flags determine how TextOut and ExtTextOut align astring of text inrelation to the
string's starting point.
The text-alignment flags are not necessarily single-bit flags and may be equal to zero. To test whether a
flag is set, an application should follow three steps:
1 Apply the bitwise OR operator to the flag and its related flags.

Following are the groups of related flags:

. TA_LEFT, TA_CENTER, and TA_RIGHT
. TA_BASELINE, TA_BOTTOM, and TA_TOP
. TA_NOUPDATECP and TA_UPDATECP

2 Apply the bitwise AND operator to the result and the return value of the GetTextAlign function.
3 Test for the equality of thisresult and the flag.

Example

The following example uses the method described in the preceding Comments section to determine
whether text isaligned at the right, left, or center of the bounding rectangle. If the TA_RIGHT flagis set,
the SetTextAlign function is used to set the text alignment to the |eft side of the rectangle.

switch ((TA_LEFT | TA CENTER | TA RIGHT) & Get Text Align(hdc)) {
case TA_RIGHT:
TextOut(hdc, 200, 100, "This is TA RIGHT.", 17);
SetTextAlign(hdc, TA LEFT);
extout(hdc, 200, 120, "This is TA LEFT.", 16);
br eak;
case TA LEFT:

"case TA_CENTER:

}

See Also
ExtTextOut, SetTextAlign, TextOut

TA_BASELINE 0x0018
Specifies alignment of the x-axis and the base line of the chosen font within the bounding rectangle.

TA_BASELINE 0x0018

TA_BOTTOM 0x0008
Specifies aignment of the x-axis and the bottom of the bounding rectangle.

TA_BOTTOM 0x0008

TA_CENTER 0x0006
Specifies alignment of the y-axis and the center of the bounding rectangle.

TA_CENTER 0x0006

TA_LEFT 0x0000
Specifies alignment of the y-axis and the left side of the bounding rectangle.

TA_LEFT 0x0000

TA_NOUPDATECP 0x0000
Specifies that the current position is not updated.

TA_NOUPDATECP 0x0000

TA_RIGHT 0x0002
Specifies alignment of the y-axis and the right side of the bounding rectangle.

TA_RIGHT 0x0002

TA_TOP 0x0000
Specifies aignment of the x-axis and the top of the bounding rectangle.

TA_TOP 0x0000

TA_UPDATECP 0x0001
Specifies that the current position is updated.

TA_UPDATECP 0x0001

GetTextColor (2.x)

COL ORREF GetTextColor(hdc)
HDC hdc; /* handle of device context */

The GetTextColor function retrieves the current text color. The text color is the foreground color of
characters drawn by using the graphics device interface (GDI) text-output functions.

Parameter Description
hdc I dentifies the device context.
Returns

The return value specifies the current text color as ared, green, blue (RGB) color value, if the functionis
successful. —

Example

The following example sets the text color to red if the GetTextColor function determines that the current
text color is black:

DWORD dwCol or;

dwCol or = Get Text Col or (hdc);
if (dwCol or == RGB(0, 0, 0)) [* if current color is black */
SetTextColor(hdc, RGB(255, 0, 0)); /* sets color to red */

See Also
GetBkColor, GetBkMode, SetBkMode, SetTextColor, RGB

GetTextExtent (2.x)

DWORD GetTextExtent(hdc, |pszString, cbhString)

HDC hdc; /* handle of device context */

LPCSTR lpszString; /* address of
string

/

int cbString;

* number of bytesin string

/

The GetTextExtent function computes the width and height of aline of text, using the current font to
compute the dimensions.

Parameter Description

hdc I dentifies the device context.

[pszString Pointsto a character string.

cbString Specifies the number of bytesin the string.
Returns

The low-order word of the return value contains the string width, in logical units, if the function is
successful; the high-order word contains the string height.

Comments
The current clipping region does not affect the width and height returned by the GetTextExtent function.

Since some devices do not place charactersin regular cell arrays (that is, they kern characters), the sum of
the extents of the charactersin a string may not be equal to the extent of the string.

Example

The following example retrieves the number of charactersin astring by using the Istrlen function, callsthe
GetTextExtent function to retrieve the dimensions of the string, and then uses the LOWORD macro to
determine the string width, in logical units;

DWORD dwExt ent ;
WORD wText W dt h;
LPSTR | pszJustified = "Text to be justified in this test.";

dwExt ent = Get Text Extent (hdc, | pszJustified, Istrlen(lpszJustified));
wlext Wdt h = LOWORD(dwExt ent) ;

See Also
GetTabbedTextExtent, SetTextJustification

GetTextExtentPoint (3.1)

BOOL GetTextExtentPoint(hdc, [pszString, cbString, [pSize)
HDC hdc; /* handle of device context
LPCSTR lpszString;

address of text string

/

int cbString;

* number of bytesin string

/

SIZE FAR* IpSize;

* addressif structure for string size

/

/*

The GetTextExtentPoint function computes the width and height of the specified text string. The
GetTextExtentPoint function uses the currently selected font to compute the dimensions of the string. The
width and height, in logical units, are computed without considering any clipping.

The GetTextExtentPoint function may be used as either a wide-character function (where text arguments
must use Unicode) or an ANSI function (where text arguments must use characters from the Windows 3.x

character set

Parameter Description

hdc | dentifies the device context.

IpszString Pointsto atext string.

cbString Specifies the number of bytesin the text string.

[pSize Pointsto a SIZE structure that will receive the dimensions of the string
Returns

The return value is nonzero if the function is successful. Otherwise, it is zero.

Comments

Because some devices do not place charactersin regular cell arrays--that is, because they carry out
kerning--the sum of the extents of the charactersin a string may not be equal to the extent of the string.

The calculated width takes into account the intercharacter spacing set by the SetTextCharacterExtra

function.

See Also
SetTextCharacterExtra

GetTextFace (2.x)

int GetTextFace(hdc, cbBuffer, |pszFace)

HDC hdc; /* handle of device context */

int cbBuffer; [* size of buffer for face
name

/

LPSTR lpszFace;

* pointer to buffer for face name

/

The GetTextFace function copies the typeface name of the current font into a buffer. The typeface name is
copied as a null-terminated string.

Parameter Description

hdc I dentifies the device context.

cbBuffer Specifies the buffer size, in bytes. If the typeface name islonger than the number of
bytes specified by this parameter, the name s truncated.

|pszFace Points to the buffer for the typeface name.

Returns

The return value specifies the number of bytes copied to the buffer, not including the terminating null
character, if the function is successful. Otherwise, it is zero.

Example

The following example uses the GetTextFace function to retrieve the name of the current typeface, calls
the SetTextAlign function so that the current position is updated when the TextOut function is called, and
then writes some introductory text and the name of the typeface by calling TextOut:

i nt nFaceNaneLen;
char aFaceNane[80] ;

nFaceNaneLen = Get Text Face(hdc, /* returns length of string */
si zeof (aFaceNane), /* size of face-nanme buffer */
(LPSTR) aFaceNane); /* address of face-name buffer */

SetTextAlign(hdc,

A_UPDATECP) ; /* updates current position */
MoveTo(hdc, 100, 100); /* sets current position*/
extOut(hdc, 0, O, /* uses current position for text */

"This is the current face name: ", 31);

TextOut(hdc, 0, 0, aFaceNane, nFaceNanelLen);
See Also

GetTextMetrics, SetTextAlign, TextOut

GetTextMetrics (2.X)

BOOL GetTextMetrics(hdc, Iptm)

HDC hdc; /* handle of device context */
TEXTMETRIC FAR* Iptm;

* pointer to structure for font metrics

/

The GetTextMetrics function retrieves the metrics for the current font.

Parameter Description

hdc | dentifies the device context.

[ptm Points to the TEXTMETRIC structure that receives the metrics.
Returns

Thereturn value is nonzero if the function is successful. Otherwisg, it is zero.
Example

The following example calls the GetTextMetrics function and then uses information inaTEXTMETRIC
structure to determine how many break characters are in a string of text:

TEXTMETRIC tm

int j, cBreakChars, cchString;

LPSTR I pszJustified = "Text to be justified in this test.";
Get Text Metrics(hdc, &m;

cchString = Istrlen(l pszJustified);

for (cBreakChars = 0, j = 0; j < cchString; j++)
i f(*(l pszJdustified + j) == (char) tmtnBreakChar)
cBr eakChar s++;

See Also

GetTextAlign, GetTextExtent, GetTextFace, SetTextJustification, TEXTMETRIC

GetViewportExt (2.x)

DWORD GetViewportExt(hdc)
HDC hdc; /* handle of device context */

The GetViewportExt function retrieves the x- and y-extents of the device context's viewport.

Parameter Description
hdc I dentifies the device context.
Returns

The low-order word of the return value contains the x-extent, in device units, if the function is successful;
the high-order word contains the y-extent.

Example

The following example uses the GetViewportExt function and the LOWORD and HIWORD macros to
retrieve the x- and y-extents for a device context:

HDC hdc;
DWORD dw;
int xViewext, yViewExt;

hdc = GetDC(hwnd);
dw = Get Vi ewport Ext (hdc);
ReleaseDC(hwnd, hdc);

xVi ewext = LOWORD(dw) ;
yVi enExt = HIWORD(dw) ;
See Also

GetViewportExtEx, SetViewportExt

GetViewportExtEx (3.1)

BOOL GetViewportExtEx(hdc, [pSize)
HDC hdc;
SIZE FAR* IpSize;

The GetViewportExtEx function retrieves the x- and y-extents of the device context's viewport.

Parameter Description

hdc | dentifies the device context.

IpSize Points to a SIZE structure. The x- and y-extents (in device units) are placed in this
structure.

Returns

The return value is nonzero if the function is successful. Otherwise, it is zero.

See Also

GetViewportExt, SetViewportExt, SetViewportExtEx

GetViewportOrg (2.X)

DWORD GetViewportOrg(hdc)
HDC hdc; /* handle of device context */

The GetViewportOrg function retrieves the x- and y-coordinates of the origin of the viewport associated
with the given device context.

Parameter Description
hdc I dentifies the device context.
Returns

The low-order word of the return value contains the viewport origin's x-coordinate, in device coordinates,
if the function is successful; the high-order word contains the y-coordinate of the viewport origin.

Example

The following example uses the GetViewportOrg function and the LOWORD and HIWORD macros to
retrieve the x- and y-coordinates of the viewport origin:

HDC hdc;
DWORD dw;
int xViewOrg, yViewOg;

hdc GetDC(hwnd) ;

dw = GetViewportOrg(hdc);
ReleaseDC(hwnd, hdc);

XVi ewdr g = LOWORD(dw) ;

yVi ewOr g = HIWORD(dw) ;

See Also
GetViewportOrgEx, GetWindowOrg, SetViewportOrg

GetViewportOrgEx (3.1)

BOOL GetViewportOrgEx(hdc, |pPoint)
HDC hdc;
POINT FAR* IpPoint;

The GetViewportOrgEx function retrieves the x- and y-coordinates of the origin of the viewport associated
with the specified device context.

Parameter Description

hdc I dentifies the device context.

IpPoint Pointsto a POINT structure. The origin of the viewport (in device coordinates) is placed
in this structure.

Returns

The return value is nonzero if the function is successful. Otherwise, it is zero.

See Also

GetViewportOrg, SetViewportOrg, SetViewportOrgEx

GetWindowExt (2.x)

DWORD GetWindowExt(hdc)
HDC hdc; /* handle of device context */

The GetWindowExt function retrieves the x- and y-extents of the window associated with the given device
context.

Parameter Description
hdc I dentifies the device context.
Returns

The return value specifies the x- and y-extents, in logical units, if the function is successful. The x-extent
isin the low-order word; the y-extent isin the high-order word.

Example

The following example uses the GetWindowExt function and the LOWORD and HIWORD macros to
retrieve the x- and y-extents of awindow:

HDC hdc;
DWORD dw,
i nt xXWndExt, yW ndExt;

hdc = GetDC(hwnd);
dw Get W ndowExt (hdc) ;
ReleaseDC(hwnd, hdc);

XWndExXt = LOWORD(dw) ;
yW ndExt = HIWORD(dw) ;
See Also

GetWindowExtEx, SetWindowExt

GetWindowEXxtEx (3.1)

BOOL GetWindowExtEx(hdc, IpSize)
HDC hdc;
SIZE FAR* IpSize;

This function retrieves the x- and y-extents of the window associated with the specified device context.

Parameter Description

hdc | dentifies the device context.

IpSize Points to a SIZE structure. The x- and y-extents (in logical units) are placed in this
structure.

Returns

The return value is nonzero if the function is successful. Otherwise, it is zero.

See Also

GetWindowExt, SetWindowExt, SetWindowExtEx

GetWindowOrg (2.X)

DWORD GetWindowOrg(hdc)
HDC hdc; /* handle of device context */

The GetWindowOrg function retrieves the x- and y-coordinates of the origin of the window associated
with the given device context.

Parameter Description
hdc I dentifies the device context.
Returns

The low-order word of the return value contains the logical x-coordinate of the window's origin, if the
function is successful; the high-order word contains the y-coordinate.

Example

The following example uses the GetWindowOrg function and the LOWORD and HIWORD macros to
retrieve the x- and y-coordinates for the window origin:

HDC hdc;
DWORD dw;
int xXWndOrg, yWndO g;

hdc = GetDC(hwnd);

dw = Get WndowOr g(hdc);
ReleaseDC(hwnd, hdc);
XWndOrg = LOWORD(dw) ;
yW ndOrg = HIWORD(dw) ;

See Also
GetViewportOrg, GetWindowOrgEXx, SetWindowOrg

GetWindowOrgEXx (3.1)

BOOL GetWindowOrgEx(hdc, |pPoint)
HDC hdc;
POINT FAR* IpPoint;

The GetWindowOrgEx function retrieves the x- and y-coordinates of the origin of the window associated
with the specified device context.

Parameter Description

hdc I dentifies the device context.

IpPoint Pointsto a POINT structure. The origin of the window (in logical coordinates) is placed
in this structure.

Returns

The return value is nonzero if the function is successful. Otherwise, it is zero.

See Also

GetWindowOrg, SetWindowOrg, SetWindowOrgEx

IntersectClipRect (2.x)

int IntersectClipRect(hdc, nLeftRect, nTopRect, nRightRect, nBottomRect)

HDC hdc; 1* handle of device context

int nLeftRect; [* x-
coordinate top-l eft corner of rectangle

/

int NnTopRect;

* y-coordinate top-left corner of rectangle

int nRightRect;
* x-coordinate bottom-right corner of rectangle
/

int nBottomRect;
* y-coordinate bottom-right corner of rectangle

The IntersectClipRect function creates a new clipping region from the intersection of the current region
and a specified rectangle.

Parameter Description

hdc I dentifies the device context.

nL eftRect Specifies the logical x-coordinate of the upper-left corner of the rectangle.
nTopRect Specifiesthe logical y-coordinate of the upper-left corner of the rectangle.
nRightRect Specifies the logical x-coordinate of the lower-right corner of the rectangle.

nBottomRect Specifies the logical y-coordinate of the lower-right corner of the rectangle.

Returns

The return value specifies that the resulting region has overlapping borders (COMPLEXREGION), is
empty (NULLREGION), or has no overlapping borders (SIMPLEREGION). Otherwise, the return valueis
ERROR.

Comments

An application uses the IntersectClipRect function to create a clipping region from the intersection of the
current region and a specified rectangle. An application can also create a clipping region that is the
intersection of two regions, by specifying RGN_AND in acall to the CombineRgn function and then
making this combined region the clipping region by calling the SelectClipRgn function.

The width of the rectangle, specified by the absolute value of nRightRect - nLeftRect, must not exceed 32,
767 units. Thislimit appliesto the height of the rectangle as well.

Example

The following example creates a square clipping region and colorsit red by using ared brush to fill the
client area. The IntersectClipRect function is called with coordinates that overlap the region, and the client
areaisfilled with ayellow brush. The only region colored yellow is the overlap between the region and the
coordinates specified in the call to IntersectClipRect.

RECT rc;
HRGN hr gn;
HBRUSH hbr Red, hbr Yel | ow,

GetClientRect(hwnd, &rc);

hrgn = CreateRectRgn(10, 10, 110, 110);
SelectClipRgn(hdc, hrgn);

hbrRed = CreateSolidBrush(RGB(255, 0, 0));
FillRect(hdc, & C, hbrRed);

IntersectdipRect (hdc, 100, 100, 200, 200);

hbr Yel | ow = CreateSolidBrush(RGB(255, 255, 0));
FillRect(hdc, & c, hbrYelTow);

DeleteObject(hbr Red) ;
DeletelObject(hbr Yel | ow) ;

DeleteObject(hrgn);

See Also
CombineRgn, SelectClipRgn

InvertRgn (2.x)

BOOL InvertRgn(hdc, hrgn)
HDC hdc; /* handle of device context */
HRGN hrgn; /* handle of region

The InvertRgn function inverts the colorsin a given region.

Parameter Description

hdc I dentifies the device context.

hrgn I dentifies the region for which colors are to be inverted.
Returns

The return value is nonzero if the function is successful. Otherwise, it is zero.
Comments

*/

On monochrome screens, the InvertRgn function makes white pixels black and black pixels white. On

color screens, the inversion depends on how the colors are generated for the screen.
Example

The following example sets the device coordinates of and creates a rectangular region, selects the region
into a device context, and then calls the InvertRgn function to display the region in inverted colors:

HRGN hr gn;

hrgn = CreateRectRgn(10, 10, 110, 110);
SelectObject(hdc, hrgn);
TnvertRgn(hdc, hrgn);

DeleteObject(hrgn);

See Also
FillRgn, PaintRgn

|SGDIObject (3.1)

BOOL 1sGDIObject(hobj)
HGDIOBJ hoby; /* handle of amenu */

The IsGDIObject function determines whether the specified handle is not the handle of a graphics device
interface (GDI) object.

Parameter Description
hobj Specifies a handle to test.
Returns

The return value is nonzero if the handle may be the handle of a GDI object. It is zero if the handle is not
the handle of a GDI object. -

Comments
An application cannot use 1SGDIObject to guarantee that a given handle isto a GDI object. However, this
function can be used to guarantee that a given handle is not to a GDI object.

See Also
GetObject

LineDDA (2.x)

void LineDDA (nX Start, nY Start, nXEnd, nY End, Inddaprc, |Param)

int nXStart; [* x-coordinate of line beginning */
int nY Start; [*y-
coordinate of line beginning

/

int nXEnd;

* x-coordinate of line end

/

int nY End;

* y-coordinate of line end

/

LINEDDAPROC Inddaprc;

* address of callback function

/

LPARAM |Param;

* address of application-defined data
/

The LineDDA function computes all successive pointsin aline specified by starting and ending
coordinates. For each point on the line, the system calls an application-defined callback function,
specifying the coordinates of that point.

Parameter Description

nX Start Specifies the logical x-coordinate of the first point.

nY Start Specifiesthe logical y-coordinate of the first point.

nXEnd Specifies thelogical x-coordinate of the endpoint. This endpoint is not part of the line.
nYEnd Specifiesthe logical y-coordinate of the endpoint. This endpoint is not part of the line.
Inddaprc Specifies the procedure-instance address of the application-defined callback function.

The address must have been created by using the MakeProcl nstance function. For more
information about the callback function, see the description of the LineDDAProc
callback function.

[Param Points to 32 hits of application-defined data that is passed to the callback function.
Returns

This function does not return avalue.

Example

The following example uses the LineDDA function to draw adot every two spaces between the beginning
and ending points of aline:

/* Cal |l back function */
voi d CALLBACK DrawbDot s(int xPos, int yPos, LPSTR | phdc)
{ static short cSpaces = 1;

if (cSpaces == 3) {

/* Draw a bl ack dot. */

SetPixel(*(HDC FAR*) | phdc, xPos, yPos, 0);

/* Initialize the space count. */

cSpaces = 1;

el se
cSpaces++;

}
See Also

LineDDAProc, MakeProcl nstance

LineTo (2.x)

BOOL LineTo(hdc, XEnd, yEnd)

HDC hdc; /* handle of device context */

int XEnd; [* x-coordinate of line endpoint ~ */
int yEnd;

* y-coordinate of line endpoint

/

The LineTo function draws aline from the current position up to, but not including, the specified endpoint.
The function uses the selected pen to draw the line and sets the current position to the coordinates (xEnd,
yEnd).

Parameter Description

hdc | dentifies the device context.

xEnd Specifies the logical x-coordinate of the line's endpoint.
yEnd Specifiesthe logical y-coordinate of the line's endpaint.
Returns

Thereturn value is nonzero if the function is successful. Otherwise, it is zero.
Example

The following example sets the current position by using the MoveTo function before calling the LineTo
function. The example uses POINT structures to store the coordinates.

HDC hdc;
POINT ptStart = { 12, 12 };
POINT ptEnd = { 128, 135 };

MoveTo(hdc, ptStart.x, ptStart.y);
LineTo(hdc, ptEnd.x, ptEnd.y);

See Also
MoveTo, POINT

LPtoDP (2.x)

BOOL LPtoDP(hdc, Ippt, cPoints)

HDC hdc; /* handle of device context */

POINT FAR* lppt; /* address of
array with points

/

int cPaints;
* number of pointsin array

The LPtoDP function convertslogical coordinates (points) into device coordinates.

Parameter Description

hdc I dentifies the device context.

[ppt Pointsto an array of POINT structures. The coordinates in each structure are mapped to
the device coordinates of the current device context.

cPoints Specifies the number of pointsin the array.

Returns

The return value is nonzero if the function is successful. Otherwise, it is zero.

Comments

The conversion depends on the current mapping mode and the settings of the origins and extents of the
device's window and viewport.

The x- and y-coordinates of points are 2-byte signed integers in the range -32,768 through 32,767. In cases
where the mapping mode would result in values larger than these limits, the system sets the valuesto -32,
768 and 32,767, respectively.

Example

The following example sets the mapping mode to MM_LOENGLISH and then calls the L PtoDP function
to convert the coordinates of arectangle into device coordinates:

RECT rc;

SetMapMode(hdc, MV LOENGLI SH) ;
SetRect(& c, 100, -100, 200, -200);
CPtoDP(hdc, (LPPOINT) &c, 2);

See Also

DPtoL P, POINT

MoveTo (2.x)

DWORD MoveTo(hdc, X, y)

HDC hdc; /* handle of device context */

intx; /* x-coordinate of new position
inty;

* y-coordinate of new position

/

The MoveTo function moves the current position to the specified coordinates.

Parameter Description

hdc | dentifies the device context.

X Specifiesthe logical x-coordinate of the new position.
y Specifiesthe logical y-coordinate of the new position.
Returns

*/

The low-order word of the return value contains the logical x-coordinate of the previous position, if the

function is successful; the high-order word contains the logical y-coordinate.
Example

The following example uses the MoveTo function to set the current position and then callsthe LineTo

function. The example uses POINT structures to store the coordinates.

HDC hdc;
POINT ptStart = { 12, 12 };
POINT ptEnd = { 128, 135 };

MoveTo(hdc, ptStart.x, ptStart.y);
LineTo(hdc, ptEnd.x, ptEnd.y);

See Also
GetCurrentPosition, LineTo, POINT

MoveToEXx (3.1)

BOOL MoveToEx(hdc, X, y, IpPoint)
HDC hdc; /* handle of device context
int x;

of new position

/

inty;

* y-coordinate of new position

/

POINT FAR* IpPoint;

* pointer to structure for previous position
/

*/
/* x-coordinate

The MoveToEXx function moves the current position to the point specified by the x and y parameters,

optionally returning the previous position.

Parameter Description

hdc | dentifies the device context.

X Specifiesthe logical x-coordinate of the new position.

y Specifiesthe logical y-coordinate of the new position.

IpPoint Pointsto a POINT structure in which the previous current position will be stored. If this
parameter iISNULL, no previous position is returned.

Returns

The return value is nonzero if the call is successful. Otherwise, it is zero.

See Also
MoveTo, POINT

OffsetClipRgn (2.x)

int OffsetClipRgn(hdc, nX Offset, nY Offset)

HDC hdc; [* device-context handle */

int NXOffset; /* offset along x-axis */
int nY Offset;

* offset along y-axis

/

The OffsetClipRgn function moves the clipping region of the given device by the specified offsets.

Parameter Description

hdc I dentifies the device context.

nX Offset Specifies the number of logical unitsto move left or right.
nY Offset Specifies the number of logical unitsto move up or down.
Returns

Thereturn value is SIMPLEREGION (region has no overlapping borders), COMPLEXREGION (region
has overlapping borders), or NULLREGION (region is empty), if the function is successful. Otherwise,
thereturn value is ERROR.

Example

The following example creates an elliptical region and selectsit as the clipping region for a device context.
The OffsetClipRgn function is called repeatedly to move the clipping region from left to right across the
screen. Because only the new clipping region is redrawn each time the Rectangle function is called, the | eft
side of each ellipse remains on the screen when the clipping region moves. When the loop has finished, a
wide blue line with rounded ends stretches from one side of the client areato the other.

RECT rc;

HRGN hr gn;

HBRUSH hbr, hbr Previ ous;
int i;

GetClientRect(hwnd, &rc);

hrgn = CreateEllipticRgn(0, 100, 100, 200);
SelectCTipRgn(hdc, hrgn);

hbr = CreateSolidBrush(RGB(0, 0, 255));

hbr Previ ous = SelectObject(hdc, hbr);

for (i =0; i <rc.right - 100; i++) {

O fsetdipRgn(hdec, 1, 0);

Rectangle(hdc, rc.left, rc.top, rc.right, rc.bottom;
) nectangie

SelectObject(hdc, hbrPrevious);
DeletelUbject(hbr);
DeleteObject(hrgn);

See Also

CreateEllipticRgn, SdlectClipRgn

OffsetRgn (2.x)

int OffsetRgn(hrgn, nXOffset, nY Offset)

HRGN hrgn; /* handle of region ~ */

int NXOffset; /* offset along x-axis */

int nY Offset; /
* offset along y-axis

/

The OffsetRgn function moves the given region by the specified offsets.

Parameter Description

hrgn I dentifies the region to be moved.

nX Offset Specifies the number of logical unitsto move left or right.
nY Offset Specifies the number of logical unitsto move up or down.
Returns

Thereturn value is SIMPLEREGION (region has no overlapping borders), COMPLEXREGION (region
has overlapping borders), or NULLREGION (region is empty), if the function is successful. Otherwise,
thereturn value is ERROR.

Comments
The coordinate values of aregion must not be greater than 32,767 or less than -32,768. The nXOffset and
nY Offset parameters must be carefully chosen to prevent invalid regions.

Example

The following example creates a rectangular region, uses the OffsetRgn function to move the region 50
positive units in the x- and y-directions, selects the offset region into the device context, and then fills it by
using a blue brush;

HDC hdcLocal ;
HRGN hr gn;
HBRUSH hbr Bl ue;
int RgnType;

hdcLocal = GetDC(hwnd);

hrgn = CreateRectRgn(100, 10, 210, 110);
SelectObject(hdc, hrgn);

PaintRgn(hdc, hrgn);

RgnType = O fset Rgn(hrgn, 50, 50);
SelectObject(hdc, hrgn);

if (RgnType == ERROR)
TextOut(hdcLocal , 10, 135, "ERROR', 5);
else if (RgnType == S| MPLEREG ON)
TextOut(hdcLocal, 10, 135, "SIMPLEREQA ON', 12);
else it (RgnType == NULLREG ON)
I TextOut(hdcLocal, 10, 135, "NULLREG ON', 10);
el se
TextOut(hdcLocal , 10, 135, "Unrecogni zed value.", 19);

hbr Bl ue = CreateSolidBrush(RGB(0, 0, 255));
FillRgn(hdc, hrgn, hbrBlue);

DeleteObject(hrgn);
DeleteObject(hbr Bl ue) ;
ReleaseDC(hwnd, hdclLocal);

OffsetViewportOrg (2.x)

DWORD OffsetViewportOrg(hdc, nXOffset, nY Off set)

HDC hdc; /* handle of device context */

int NXOffset; /* offset along x-axis */
int nY Offset;

* offset along y-axis

/

The OffsetViewportOrg function modifies the coordinates of the viewport origin relative to the
coordinates of the current viewport origin.

Parameter Description

hdc | dentifies the device context.

nX Offset Specifies the value, in device units, to add to the x-coordinate of the current origin.
nY Offset Specifies the value, in device units, to add to the y-coordinate of the current origin.
Returns

The low-order word of the return value contains the x-coordinate, in device units, of the previous viewport
origin, if the function is successful; the high-order word contains the y-coordinate.

Comments

The viewport origin isthe origin of the device coordinate system for awindow. By changing the viewport
origin, an application can change the way the graphics device interface (GDI) maps points from the logical
coordinate system. GDI maps all pointsin thelogical coordinate systemto the viewport in the same way
asit mapsthe origin.

To map points to the right, specify a negative value for the nX Offset parameter. Similarly, to map points
down (in the MM_TEXT mapping mode), specify a negative value for the nY Offset parameter.
Example

The following example uses the OffsetWindowOrg and OffsetViewportOrg functions to reposition the
output of the PlayMetaFile function on the screen:

HDC hdcMet a;
HANDLE hnf ;

hdcMet a = CreateMetaFile((LPSTR) NULL);

/* Record the netafile. */

PlayMetaFile(hdc, hnf);

OffsetWindowOrg(hdc, -200, -200);
PlTayMetaFile(hdc, hnf); /* MM TEXT screen output +200 x, +200 y */

O fsetViewport O g(hde, 0, -200);
PlayMetaFile(hdc, hnf); /* outputs -200 y fromlast PlayMetaFile */

DeleteMetaFile(hnf);

See Also
GetViewportOrg, OffsetWindowOrg, SetViewportOrg

OffsetViewportOrgEx (3.1)

BOOL OffsetViewportOrgEx(hdc, nX, nY, IpPoint)
HDC hdc; /* handle of device context
int nX;

add to x-coordinate

/

intnyY;

* device units to add to y-coordinate

/

POINT FAR* IpPoint;

* address of POINT structure

/

*/
/* device unitsto

The OffsetViewportOrgEx function modifies the viewport origin relative to the current values. The

formulas are written as follows:

xNewO = xd dVO + X

yNewO = yA dVO + Y

The new origin is the sum of the current origin and the nX and nY values.

Parameter Description

hdc | dentifies the device context.

nX Specifies the number of device unitsto add to the current origin's x-coordinate.

nY Specifies the number of device unitsto add to the current origin's y-coordinate.
[pPoint Pointsto a POINT structure. The previous viewport origin (in device coordinates) is

placed in this structure. If IpPoint is NULL, the previous viewport origin in not returned.

Returns

The return value is nonzero if the function is successful. Otherwise, it is zero.

OffsetWindowOrg (2.x)

DWORD OffsetWindowOrg(hdc, nXOffset, nY Offset)

HDC hdc; /* handle of device context */

int NXOffset; /* offset along x-axis */
int nY Offset;

* offset along y-axis

/

The OffsetWindowOrg function modifies the window origin relative to the coordinates of the current
window origin.

Parameter Description

hdc | dentifies the device context.

nX Offset Specifiesthe value, in logical units, to add to the x-coordinate of the current origin.
nY Offset Specifiesthe value, in logical units, to add to y-coordinate of the current origin.
Returns

The low-order word of the return value contains the logical x-coordinate of the previous window origin, if
the function is successful; the high-order word contains the logical y-coordinate.

Comments

Thewindow origin isthe origin of the logical coordinate system for awindow. By changing the window
origin, an application can change the way the graphics device interface (GDI) maps logical pointsto the
physical coordinate system (the viewport). GDI maps all pointsin the logical coordinate system to the
viewport in the same way as it maps the origin.

To map points to the right, specify a negative value for the nX Offset parameter. Similarly, to map points
down (in the MM_TEXT mapping mode), specify a negative value for the nY Offset parameter.

Example

The following example uses the OffsetWindowOrg and OffsetViewportOrg functions to reposition the
output of the PlayMetaFile function on the screen:

HDC hdcMet a;
HANDLE hnf ;

hdcMet a = CreateMetaFile((LPSTR) NULL);

/* Record the netafile. */

PlayMetaFile(hdc, hnf);

O f set W ndowOr g(hde, -200, -200);
PlayMetaFile(hdc, hnf); /* MM TEXT screen output +200 x, +200 y */

OffsetViewportOrg(hdc, 0, -200);
PlTayMetaFile(hdc, hnf); /* outputs -200 y fromlast PlayMetaFile */
DeleteMetaFile(hnf);

See Also
GetWindowOrg, OffsetViewportOrg, SetWindowOrg

OffsetWindowOrgEx (3.1)

BOOL OffsetWindowOrgEx(hdc, nX, nY, IpPoint)
HDC hdc; /* handle of device context
int nX;

to add to x-coordinate

/

intnyY;

* logical unitsto add to y-coordinate

/

POINT FAR* IpPoint;

* address of POINT structure

/

*/

/* logical units

The OffsetWindowOrgEx function modifies the viewport origin relative to the current values. The

formulas are written as follows:

XNewD = xA dWO + X

yNewD = yd dWD + Y

The new origin is the sum of the current origin and the nX and nY values.

Parameter Description

hdc | dentifies the device context.

nX Specifies the number of logical unitsto add to the current origin's x-coordinate.

nY Specifies the number of logical unitsto add to the current origin's y-coordinate.
[pPoint Pointsto a POINT structure. The previous window origin (in logical coordinates) is

placed in this structure. If IpPoint isNULL, the previous origin is not returned.

Returns

The return value is nonzero if the function is successful. Otherwise, it is zero.

PaintRgn (2.x)

BOOL PaintRgn(hdc, hrgn)
HDC hdc; /* handle of device context */
HRGN hrgn; /* handle of region */

The PaintRgn function fills aregion by using the current brush for the given device context.

Parameter Description

hdc I dentifies the device context that contains the region to be filled.

hrgn Identifies the region to be filled. The coordinates for the given region are specified in
device units.

Returns

The return value is nonzero if the function is successful. Otherwise, it is zero.

Example

The following example uses the current brush for a device context to fill an eliptical region:

HDC hdc;

HRGN hr gn;

hrgn = CreateEllipticRgn(10, 10, 110, 110);
SelectObject(hdc, hrgn);
Pai nt Rgn(hdc, hrgn);

DeleteObject(hrgn);

See Also
CreateBrushindirect, CreateDIBPatternBrush, CreateHatchBrush, CreatePatternBrush, CreateSolidBrush,
FITRgn

PatBlt (2.x)

BOOL PatBlIt(hdc, nLeftRect, nTopRect, nwidth, nheight, fdwRop)

HDC hdc; /* handle of device context */

int nLeftRect; [* x-
coordinate top-left corner destination rectangle

/

int nTopRect;

* y-coordinate top-left corner destination rectangle

/

int nwidth;

* width of destination rectangle
/

int nheight;

* height of destination rectangle
/

DWORD fdwRop;
* raster operation
/

The PatBlIt function creates a bit pattern on the specified device. The pattern is a combination of the
selected brush and the pattern already on the device. The specified raster-operation code defines how the
patterns are combined.

Parameter Description
hdc | dentifies the device context.
nLeftRect Specifiesthe logical x-coordinate of the upper-left corner of the rectangle that receives
the pattern.
nTopRect Specifiesthe logical y-coordinate of the upper-left corner of the rectangle that receives
the pattern.
nwidth Specifiesthe width, in logical units, of the rectangle that will receive the pattern.
nheight Specifiesthe height, in logical units, of the rectangle that will receive the pattern.
fdwRop Specifies the raster-operation code that determines how the graphics device interface
(GDI) combines the colors in the output operation. This parameter can be one of the
following values:
Value Meaning
PATCOPY Copies the pattern to the destination bitmap.
PATINVERT Combines the destination bitmap with the pattern by using the
Boolean XOR operator.
PATPAINT Paints the destination bitmap.
DSTINVERT Inverts the destination bitmap.
BLACKNESS Turns all output black.
WHITENESS Turns all output white.
Returns
Thereturn value is nonzero if the function is successful. Otherwise, it is zero.
Comments

Theraster operations listed for this function are alimited subset of the full 256 ternary raster-operation
codes; in particular, araster-operation code that refers to a source cannot be used.

Not all devices support the PatBlt function. To determine whether a device supports PatBlt, an application
can call the GetDeviceCaps function with the RASTERCAPS index.

Example
The following example uses the CreateBitmap function to create a bitmap with a zig-zag pattern, and then
uses the PatBIt function to fill the client areawith that pattern:

HDC hdc;
HBI TMAP hbnp;

HBRUSH hbr, hbr Previ ous;
RECT rc;

int azigzag[] = { OxFF, OxF7, OxEB, OxDD, OxBE, Ox7F, OxFF, OxFF };

hbnp = CreateBitmap(8, 8, 1, 1, aZigzag);
hbr = CreatePatternBrush(hbnp);

hdc = GetDC(hwnd);
UnrealizeObject(hbr);

hbrPrevi ous = SelectObject(hdc, hbr);
GetClientRect(hwnd, &rc);

PatBl t (hdc, rc.left, rc.top
rc.right - rc.left, rc.bottom- rc.top, PATCOPY);
SelectObject(hdc, hbrPrevious);

ReleaseDC(hwnd, hdc);

DeleteObject(hbr);
DeleteObject(hbnp) ;

See Also
GetDeviceCaps

Windows 3.1 corrections
The following raster operation has been added:

Vaue Meaning
PATPAINT Paints the destination bitmap.

Pie (2.x)

BOOL Pie(hdc, nLeftRect, nTopRect, nRightRect, nBottomRect, nxStartArc, nyStartArc, nxEndArec,
nyEndArc)

HDC hdc; * handle of device context */

int nLeftRect; /

* x-coordinate upper-left corner bounding rectangle

/

int nTopRect;

* y-coordinate upper-left corner bounding rectangle

/

int nRightRect;

* x-coordinate lower-right corner bounding rectangle
/

int nBottomRect;

* y-coordinate lower-right corner bounding rectangle
/

int nxStartArc;
* x-coordinate arc starting point
/

int nyStartArc;
* y-coordinate arc starting point
/

int nXEndArec;

* x-coordinate arc ending point
/

int nyEndArc;

* y-coordinate arc ending point
/

The Pie function draws a pie-shaped wedge by drawing an elliptical arc whose center and two endpoints
arejoined by lines.

Parameter Description

hdc | dentifies the device context.

nLeftRect Specifies the logical x-coordinate of the upper-left corner of the bounding rectangle.

nTopRect Specifies the logical y-coordinate of the upper-left corner of the bounding rectangle.

nRightRect Specifiesthe logical x-coordinate of the lower-right corner of the bounding rectangle.

nBottomRect Specifiesthe logical y-coordinate of the lower-right corner of the bounding rectangle.

nxStartArc Specifies the logical x-coordinate of the arc's starting point. This point does not have to
lie exactly on the arc.

nyStartArc Specifies the logical y-coordinate of the arc's starting point. This point does not have to
lie exactly on the arc.

nxEndArc Specifies the logical x-coordinate of the arc's endpoint. This point does not haveto lie
exactly on the arc.

nyEndArc Specifies the logical y-coordinate of the arc's endpoint. This point does not haveto lie
exactly on the arc.

Returns

Thereturn value is nonzero if the function is successful. Otherwise, it is zero.

Comments

The center of the arc drawn by the Pie function is the center of the bounding rectangle specified by the
nLeftRect, nTopRect, nRightRect, and nBottomRect parameters. The starting and ending points of the arc
are specified by the nxStartArc, nyStartArc, nxEndArc, and nyEndArc parameters. The function draws the
arc by using the selected pen, moving in a counterclockwise direction. It then draws two additional lines
from each endpoint to the arc's center. Finally, it fills the pie-shaped area by using the current brush.

If nxStartArc equals nxEndArc and nyStartArc equals nyEndArc, the result is an ellipse with asingle line
from the center of the élipse to the point (nxStartArc,nyStartArc) or (nXEndArc,nyEndArc).

The figure drawn by this function extends up to but does not include the right and bottom coordinates.

This means that the height of the figure is nBottomRect - nTopRect and the width of the figureis
nRightRect - nLeftRect.
Both the width and the height of arectangle must be greater than 2 units and less than 32,767 units.

Example
The following example uses a RECT structure to store the points that define the bounding rectangle and
uses POINT structuresto store the coordinates that specify the beginning and end of the wedge:

HDC hdc;

RECT rc = { 10, 10, 180, 140 };
POINT ptStart = { 12, 12 };
POINT ptEnd = { 128, 135 };

Pie(hdc, rc.left, rc.top, rc.right, rc.bottom
ptStart.x, ptStart.y, ptEnd.x, ptEnd.y);

See Also

Chord, POINT, RECT

PlayMetaFile (2.x)

BOOL PlayMetaFile(hdc, hmf)

HDC hdc; /* handle of device context */

HMETAFILE hmf; /* handle of metafile
/

The PlayMetaFile function plays the contents of the specified metafile on the given device. The metafile
can be played any number of times.

Parameter Description

hdc | dentifies the device context of the output device.

hmf | dentifies the metafile to be played.

Returns

Thereturn value is nonzero if the function is successful. Otherwisg, it is zero.
Example

The following example uses the CreateM etaFile function to create a device-context handle of a memory
metafile, draws aline in the device context, refrieves a metafile handle by calling the CloseMetaFile
function, plays the metéfile by using the PlayMetaFile function, and finally deletes the metafile by using
the DeleteM etaFile function:

HDC hdcMet a;
HVETAFI LE hnf ;

hdcMet a = CreateMetaFile(NULL);
MoveTo(hdcMeta, 10, 10);
LineTo(hdcMeta, 100, 100);

hnf = CloseMetaFile(hdcMet a) ;
Pl ayMetaFi T e(hdc, hnf);
DeleteMetaFile(hnf);

See Also
PlayM etaFileRecord

*

PlayMetaFileRecord (2.x)

void PlayMetaFileRecord(hdc, Ipht, Ipmr, cHandles)
HDC hdc; /* handle of device context */
HANDLETABLE FAR* Ipht;

* address of table of object handles

/

METARECORD FAR* |pmr;

* address of metafile record

/

UINT cHandles;

* number of handlesin table

/

The PlayMetaFileRecord function plays a metafile record by executing the graphics device interface (GDI)
function contained in the record. -

Parameter Description

hdc I dentifies the device context of the output device.

Ipht Points to atable of handles associated with the objects (pens, brushes, and so on) in the
metdfile.

[pmr Points to the metafile record to be played.

cHandles Specifies the number of handles in the handle table.

Returns

This function does not return avalue.

Comments

An application typically uses this function in conjunction with the EnumMetafile function to modify and
then play a metéfile. -

Example

The following example creates a dashed green pen and passes it to the callback function for the
EnumMetaFile function. If the first element in the array of object handles contains a handle, that handleis
replaced by the handle of the green pen before the PlayMetaFileRecord function is called. (For this
example, it is assumed that the table of object handles contains only one handle and that it is a pen handle.

)

MFENUMPROC | pEnum\et aPr oc;
HPEN hpenG een;

| pEnunmivet aProc = (MFENUMPROC) MakeProclnstance(

(FARPROC) EnumMetaFileProc, hApplnstance);
hpenG een = CreatePen(PS DASH, 1, RGB(0, 255, 0));
EnumMetaFile(hdc, hnf, | pEnunmvetaProc, (LPARAM) &hpenG een);
FreeProcInstance((FARPROC) | pEnumvet aPr oc);

DeleteObject(hpenG een);

i nt FAR PASCAL EnumMetaFileProc(HDC hdc, HANDLETABLE FAR* | pHTabl e,
METARECORD FARF TpMFR, int cObj, BYTE FARF T pdi ent Dat a)

i f (IpHTabl e->o0bj ectHandl e[0] != 0)
| pHTabl e- >obj ect Handl e[0] = *(HPEN FAR *) | pC i entDat a;
Pl ayMet aFi | eRecord(hdc, | pHTable, | pMFR, cObj);

return 1;
}
See Also
EnumMetdfile, PlayMetaFile

Polygon (2.x)

BOOL Polygon(hdc, Ippt, cPoints)

HDC hdc; /* handle of device context */
const POINT FAR* Ippt;

* address of array with points for vertices

/

int cPoints;

* number of pointsin array

/

The Polygon function draws a polygon consisting of two or more points (vertices) connected by lines. The
system closes the polygon automatically, if necessary, by drawing aline from the last vertex to the first.
Polygons are surrounded by aframe drawn by using the current pen and filled by using the current brush.

Parameter Description

hdc I dentifies the device context.

Ippt Pointsto an array of POINT structures that specify the vertices of the polygon. Each
structure in the array Specifies a vertex.

cPoints Specifies the number of verticesin the array.

Returns

The return value is nonzero if the function is successful. Otherwise, it is zero.

Comments

The current polygon-filling mode can be retrieved or set by using the GetPolyFillMode and
SetPolyFillMode functions.

Example
The following example assigns values to an array of points and then calls the Polygon function:

HDC hdc;
POINT aPoi nts[3];

aPoints[0].x = 50;
aPoints[0].y = 10;
aPoi nts[1].x = 250;
aPoints[1].y = 50;
aPoints[2].x = 125;
aPoints[2].y = 130;

Pol ygon(hdc, aPoints, sizeof(aPoints) / sizeof(POINT));

See Also
GetPolyFillMode, Polyline, PolyPolygon, SetPolyFillMode, POINT

Polyline (2.x)

BOOL Polyline(hdc, Ippt, cPoints)

HDC hdc; /* handle of device context */
const POINT FAR* Ippt;

* address of array with points to connect

/

int cPoints;

* number of pointsin array

/

The Polyline function draws a set of line segments, connecting the specified points. The lines are drawn
from thefirst point through subsequent points, using the current pen. Unlike the LineTo function, the
Polyline function neither uses nor updates the current position.

Parameter Description

hdc | dentifies the device context.

Ippt Pointsto an array of POINT structures. Each structure in the array specifies a point.
cPoints Specifies the number of pointsin the array. This value must be at least 2.

Returns

The return value is nonzero if the function is successful. Otherwise, it is zero.

Example

The following example assigns values to an array of points and then calls the Polyline function:
HDC hdc;
POINT aPoi nts[3];

aPoints[0].x = 50;
aPoints[0].y = 10;
aPoi nts[1] .x = 250;
aPoints[1].y = 50;
aPoi nts[2] . x = 125;
aPoints[2].y = 130;

Pol yl i ne(hdc, aPoints, sizeof(aPoints) / sizeof (POINT));

See Also
LineTo, Polygon, POINT

PolyPolygon (3.0)

BOOL PolyPolygon(hdc, Ippt, IpnPolyCounts, cPolygons)

HDC hdc; /* handle of device context */
const POINT FAR* Ippt; /
* address of array with vertices

/

int FAR* IpnPolyCounts;

* address of array with point counts

/

int cPolygons;

* number of polygonsto draw

/

The PolyPolygon function creates two or more polygons that are filled by using the current polygon-
filling mode. The polygons may be disjoint or overlapping.

Parameter Description

hdc | dentifies the device context.

[ppt Points to an array of POINT structures. Each structure in the array specifies a vertext
of apolygon.

[pnPolyCounts Points to an array of integers, each of which specifies the number of pointsin one of
the polygonsin the array pointed to by the |ppt parameter.

cPolygons Specifies the number of polygons to be drawn. This value must be at least 2.

Returns

The return value is nonzero if the function is successful. Otherwise, it is zero.

Comments

Each polygon specified in acall to the PolyPolygon function must be closed. Unlike polygons created by
the Polygon function, the polygons created by PolyPolygon are not closed automatically.

The PolyPolygon function creates two or more polygons. To create a single polygon, an application should
use the Polygon function.

The current polygon-filling mode can be retrieved or set by using the GetPolyFillMode and
SetPolyFillMode functions.

Example

The following example draws two overlapping polygons by assigning values to an array of points and then
calling the PolyPolygon function:

HDC hdc;

POINT aPol yPoi nts[8];
int aVertices[] ={ 4, 4 };

aPol yPoi nt s[0] . x = 50;
aPol yPoi nts[0].y = 10;
aPol yPoi nts[1] . x = 250;
aPol yPoi nts[1] .y = 50;
aPol yPoi nts[2] .x = 125;
aPol yPoi nts[2].y = 130;
aPol yPoi nts[3] . x = 50;
aPol yPoi nts[3].y = 10;
aPol yPoi nts[4] . x = 100;
aPol yPoi nts[4].y = 25;
aPol yPoi nt s[5] . x = 300;
aPol yPoi nts[5].y = 125;
aPol yPoi nts[6] .x = 70;
aPol yPoi nts[6] .y = 150;
aPol yPoi nts[7] . x = 100;
aPol yPoints[7] .y = 25;

Pol yPol ygon(hdc, aPol yPoi nts, aVertices,
si zeof (aVertices) / sizeof(int));
See Also
GetPolyFillMode, Polygon, Polyline, SetPolyFillMode, POINT

PtinRegion (2.x)

BOOL PtInRegion(hrgn, nXPos, nY Pos)

HRGN hrgn; /* handle of region */

int nXPos; [* x-coordinate of point */
int nY Pos;

* y-coordinate of point

/

The PtInRegion function determines whether a specified point isin the given region.

Parameter Description

hrgn I dentifies the region to be examined.

nXPos Specifies the logical x-coordinate of the point.

nY Pos Specifiesthe logical y-coordinate of the point.

Returns

Thereturn value is nonzero if the point isin the region. Otherwise, it is zero.
Example

The following example uses the PtInRegion function to determine whether the point (50, 50) isin the
specified region and prints the result:

HRGN hr gn;

BOOL fPtln;

LPSTR | pszl nRegion = "Specified point is in region.";

LPSTR | pszNot I nRegi on = "Specified point is not in region.";

fPtIn = PtlnRegi on(hrgn, 50, 50);
if ('fPtIn)
TextOut(hdc, 10, 10, | pszNotl nRegi on,

| strien(l pszNot I nRegi on));
el se

TextOut(hdc, 10, 10, |pszlnRegion, Istrlen(lpszlnRegion));
See Also
RectinRegion

PtVisible (2.x)

BOOL PtVisible(hdc, nXPos, nY Pos)

HDC hdc; /* handle of device context */

int nXPos; /* x-coordinate of point to query *
/

int nY Pos;

* y-coordinate of point to query

The PtVisible function determines whether the specified point is within the clipping region of the given
device context.

Parameter Description

hdc | dentifies the device context.

nXPos Specifies the logical x-coordinate of the point.

nY Pos Specifiesthe logical y-coordinate of the point.

Returns

Thereturn is nonzero if the point is within the clipping region. Otherwise, it is zero.
Example

The following example creates a rectangular region, displays a message inside it, and selects the region as
the clipping region. The PtVisible function is used to determine whether coordinates generated by a
double-click are inside the region. If so, the message changes to "Thank you." If not, the CombineRgn
function is used to create a clipping region that combines the first region with a new region that surrounds
the specified coordinates, and the word "Missed!" is displayed at the coordinates.

HDC hdcLocal ;
HRGN hrgnd i ck, hrgnM ss, hrgnConbi ne;
HBRUSH hbr ;

hdcLocal = GetDC(hwnd);
hbr = GetStockObject(BLACK BRUSH);

hrgnC i ck = CreateRectRgn(90, 95, 225, 120);

FrameRgn(hdcCocal, hrgnQ i ck hbr 1, 1);
extOut(hdcLocal , 100, 100, “Doubl e-click here. ", 18);

§elecfélipRgn(hchocaI , hrgnCI i ck);

if (PtVisible(hdcLocal, Xdick, Ydick)) {
PaintRgn(hdcLocal , hrgnCick);
FrameRgn(hdcLocal , hrgnClick, hbr, 1, 1);
extOut(hdcLocal , 100, 100, "Thank you.", 10);

}

else if (XAick > 0)
hrgnM ss = CreateRectRgn(XClick - 5, YOick - 5 Xdick + 60,

YO ick + 20);

hr gnConbi ne = CreateRectRgn(0, 0, 0, 0);
CombineRgn(hr gnConbi ne, hrgnC ick, hrgnMss, RGN_OR);
SefectClipRgn(hdcLocal , hrgnConbi ne);
FrameRgn(hdcLocal , hrgnCombi ne, hbr, 1, 1);
extOut(hdcLocal, Xdick, YOick, "Mssed!'", 7);

InvalidateRect(hwnd, NULL, FALSE);

DeleteObject(hrgnd i ck);
DeleteObject(hr gnM ss);
DeleteUObject(hr gnConbi ne) ;
RelTeaseDC(hwnd, hdclLocal);
See Also

CombineRgn, RectVisible

QueryAbort (3.1)

BOOL QueryAbort(hdc, reserved)
HDC hdc; [* device-context handle */
int reserved; /* reserved; must be zero */

The QueryAbort function calls the AbortProc callback function for a printing application and queries
whether the printing should be terminated.

Parameter Description

hdc | dentifies the device context.
reserved Reserved; must be zero.
Returns

Thereturn value is TRUE if printing should continue or if there is no abort procedure. Itis FALSE if the
print job should be terminated. The return value is supplied by the AbortProc callback function.

See Also

AbortDoc, AbortProc, SetAbortProc

Rectangle (2.x)

BOOL Rectangle(hdc, nLeftRect, nTopRect, nRightRect, nBottomRect)
HDC hdc; I* handle of device context */

int nLeftRect; [* x-coordinate upper-
left corner

/

int NnTopRect;

* y-coordinate upper-left corner

int nRightRect;
* x-coordinate lower-right corner
/

int nBottomRect;
* y-coordinate lower-right corner

The Rectangle function draws arectangle, using the current pen. The interior of the rectangleisfilled by
using the current brush.

Parameter Description

hdc I dentifies the device context.

nL eftRect Specifies the logical x-coordinate of the upper-left corner of the rectangle.
nTopRect Specifiesthe logical y-coordinate of the upper-left corner of the rectangle.
nRightRect Specifies the logical x-coordinate of the lower-right corner of the rectangle.
nBottomRect Specifies the logical y-coordinate of the lower-right corner of the rectangle.
Returns

The return value is nonzero if the function is successful. Otherwise, it is zero.

Comments

The figure this function draws extends up to, but does not include, the right and bottom coordinates. This
means that the height of the figure is nBottomRect - nTopRect and the width of the figure is nRightRect -
nLeftRect.

Both the width and the height of a rectangle must be greater than 2 units and less than 32,767 units.
Example

The following example uses a RECT structure to store the coordinates used by the Rectangle function:
HDC hdc;

RECT rc = { 10, 10, 180, 140 };
Rectangl e(hdc, rc.left, rc.top,
rc.right, rc.botton);

See Also
PolyLine, RoundRect, RECT

RectInRegion (3.0)

BOOL RectinRegion(hrgn, Iprc)

HRGN hrgn; /* handle of region */

const RECT FAR* lprc; /
* address of structure with rectangle

/

The RectInRegion function determines whether any part of the specified rectangle is within the boundaries
of the given region.

Parameter Description

hrgn I dentifies the region.

Iprc Pointsto a RECT structure containing the coordinates of the rectangle.
Returns

Thereturn value is nonzero if any part of the specified rectangle lies within the boundaries of the region.
Otherwise, it is zero.

Example

The following example uses the RectInRegion function to determine whether a specified rectangleisin a
region and prints the result:

HRGN hr gn;

RECT rc¢ = { 100, 10, 130, 50 };

BOOL f Rectl n;

LPSTR | pszQverl ap = "Sonme overl ap between rc and region.";

LPSTR | pszNoOverlap = "No comon points in rc and region.";

fRectln = RectlnRegi on(hrgn, &rc);
if (!'fRectln)

TextOut(hdc, 10, 10, | pszNoOverlap, Istrlen(lpszNoOQverlap));
el se
TextOut(hdc, 10, 10, |pszOverlap, Istrlen(lpszOverlap));

See Also
PtinRegion, RECT

RectVisible (2.x)

BOOL RectVisible(hdc, Iprc)

HDC hdc; /* handle of device context */
const RECT FAR* lprc;

* address of structure with rectangle

/

The RectVisible function determines whether any part of the specified rectangle lies within the clipping
region of the given device context.

Parameter Description

hdc I dentifies the device context.

Iprc Pointsto a RECT structure that contains the logical coordinates of the specified
rectangle.

Returns

The return value is nonzero if some portion of the rectangle iswithin the clipping region. Otherwise, it is
zero.

Example

The following example paints a clipping region yellow by painting the client area. The RectVisible
function is called to determine whether a specified rectangle overlaps the clipping region. If there is some
overlap, the rectangleisfilled by using ared brush. If there is no overlap, text is displayed inside the
clipping region. In this case, the rectangle and the region do not overlap, even though they both specify
110 as a boundary on the y-axis, because regions are defined as including the pixels up to but not
including the specified right and bottom coordinates.

RECT rc, rcVis;

HRGN hr gn;
HBRUSH hbr Red, hbr Yel | ow,

GetClientRect(hwnd, &rc);
hrgn = CreateRectRgn(10, 10, 310, 110);
SelectCTipRgn(hdc, hrgn);

hbr Yel | ow = CreateSolidBrush(RGB(255, 255, 0));
FillRect(hdc, & c, hbrYelTow);

SetRect(&r cVis, 10, 110, 310, 300);

it (RectVisible(hdc, &rcVis))
hbr Red = CreateSolidBrush(RGB(255, 0, 0));
FillRect(hdc, & cVis, hbrRed);
DeletelUbject(hbr Red);

el se {
SetBkColor(hdc, RGB(255, 255, 0));
extOut(hdc, 20, 50, "Rectangle outside clipping region.", 34);

DeleteObject(hbr Yel | ow) ;
DeleteObject(hrgn);

See Also
CreateRectRgn, PtVisible, SelectClipRgn, RECT

RemoveFontResource (2.x)

BOOL RemoveFontResource(lpszFile)
LPCSTR IpszFile; [* address of string for filename ~ */

The RemoveFontResource function removes an added font resource from the specified file or from the
Windows font table.

Parameter Description

IpszFile Points to a string that names the font resource file or contains a handle of aloaded
module. If this parameter points to the font resource file, the string must be null-
terminated and have the MS-DOS filename format. If the parameter contains a handle,
the handle must be in the low-order word and the high-order word must be zero.

Returns
The return value is nonzero if the function is successful. Otherwise, it is zero.

Comments

Any application that adds or removes fonts from the Windows font table should send a
WM_FONTCHANGE message to all top-level windows in the system by using the SendMessage function
with the hwnd parameter set to OxFFFF.

In some cases, the RemoveFontResource function may not remove the font resource immediately. If there
are outstanding references to the resource, it remains loaded until the last logical font using it has been
removed (deleted) by using the DeleteObject function.

Example

The following example uses the AddFontResource function to add a font resource from afile, notifies
other applications by using the SendMessage function, then removes the font resource by calling the
RemoveFontResource function:

AddFontResource("fontres.fon");
SendVessage(FVWD_BROADCAST, WM_FONTCHANGE, 0, 0);

/* Work with the font. */

i f (i?ermveFont Resource("fontres. fon"))
SendMessage(HWND_BROADCAST, WM_FONTCHANGE, 0, 0);
return TRUE

el se
return FALSE;

See Also
AddFontResource, DeleteObject, SendM essage

ResetDC (3.1)
#include <print.h>

HDC ResetDC(hdc, Ipdm)

HDC hdc; /* handle of device context */
const DEVMODE FAR* |pdm;

* address of DEVMODE structure

/

The ResetDC function updates the given device context, based on the information in the specified
DEVMODE structure.

Parameter Description

hdc | dentifies the device context to be updated.

[pdm Points to a DEVMODE structure containing information about the new device context.
Returns

Thereturn value is the handle of the original device context if the function is successful. Otherwise, it is
NULL.

Comments

An application will typically use the ResetDC function when awindow receives a
WM_DEVMODECHANGE message. ResetDC can also be used to change the paper orientation or paper
bins whiTe printing a document.

The ResetDC function cannot be used to change the driver name, device name or the output port. When
the user changes the port connection or device name, the application must delete the original device
context and create a new device context with the new information.

Before calling ResetDC, the application must ensure that all objects (other than stock objects) that had
been selected into the device context have been selected out.

See Also
DeviceCapabilities, Escape, ExtDeviceMode, DEVMODE, WM_DEVMODECHANGE

ResizePa ette (3.0)

BOOL ResizePa ette(hpal, cEntries)

HPALETTE hpal; /* handle of palette */

UINT cEntries; I*
number of palette entries after resizing

/

The ResizePal ette function changes the size of the given logical palette.

Parameter Description

hpal | dentifies the palette to be changed.

cEntries Specifies the number of entriesin the palette after it has been resized.
Returns

Thereturn value is nonzero if the function is successful. Otherwisg, it is zero.
Comments

If an application calls the ResizePalette function to reduce the size of the palette, the entries remaining in
the resized palette are unchanged. If the application calls ResizePalette to enlarge the palette, the
additional palette entries are set to black (the red, green, and blue values are all zero) and the flags for all
additional entries are set to zero.

RestoreDC (2.X)

BOOL RestoreDC(hdc, nSavedDC)

HDC hdc; /* handle of device context */

int nSavedDC,; [* integer
identifying device context to restore

/

The RestoreDC function restores the given device context to a previous state. The device context is
restored by popping state information off a stack created by earlier calls to the SaveDC function.

Parameter Description

hdc | dentifies the device context.

nSavedDC Specifies the device context to be restored. This parameter can be avalue returned by a
previous SaveDC function. If the parameter is -1, the most recently saved device context
isrestored.

Returns

Thereturn value is nonzero if the function is successful. Otherwise, it is zero.

Comments

The stack can contain the state information for several instances of the device context. If the context
specified by the nSavedDC parameter is not at the top of the stack, RestoreDC deletes all state information
between the instance specified by nSavedDC and the top of the stack.

Example

The following example uses the GetM apM ode function to retrieve the mapping mode for the current
device context, uses the SaveDC Tuncfion to Save the state of the device context, changes the mapping
mode, restores the previous State of the device context by using the RestoreDC function, and retrieves the
mapping mode again. The final mapping mode is the same as the mapping mode prior to the call to the
SaveDC function.

HDC hdclLocal ;

i nt MapMode;

char *aMbdes[] = {"ZERO', "MM TEXT", "MM LOVETRI C', "MM H METRI C',
"MM LOCENGLI SH', "MM HI ENGLI SH', "MM TW PS",
"MM | SOTROPI C', "MM ANl SOTROPI C' };

hdcLocal = GetDC(hwnd);

MapMode = GetMapMode(hdcLocal) ;

TextOut(hdc, 100, 100, (LPSTR) aMdes[MapMode],
strl en(aMobdes[MapMode])) ;

SaveDC(hdcLocal) ;

SetMapMode(hdcLocal , MV LOENGLI SH) ;

MapMode = GetMapMode(hdcLocal) ;

TextOut(hdc, 100, 120, (LPSTR) aMdes[MapMode],
strl en(aModes[MapMode]));

Rest or eDC(hdcLocal , -1);

MapMode = GetMapMode(hdclLocal);
TextOut(hdc, 100, 140, (LPSTR) aMdes[MapMode],
strl en(aModes[Maphode]));

ReleaseDC(hwnd, hdclLocal);

See Also
SaveDC

RoundRect (2.x)

BOOL RoundRect(hdc, nLeftRect, nTopRect, nRightRect, nBottomRect, nEllipseWidth, nEllipseHeight)
HDC hdc; /* handle of device context */

int nLeftRect; [* x-coordinate
upper-left corner

/

int NnTopRect;
* y-coordinate upper-left corner

int nRightRect;
* x-coordinate lower-right corner
/

int nBottomRect;
* y-coordinate lower-right corner

int nEllipseWidth;
* width of ellipse for rounded corners
/

int nEllipseHeight;
* height of ellipse for rounded corners
/

The RoundRect function draws a rectangle with rounded corners, using the current pen. The interior of the
rectangleisfilled by using the current brush.

Parameter Description

hdc | dentifies the device context.

nL eftRect Specifies the logical x-coordinate of the upper-left corner of the rectangle.
nTopRect Specifiesthe logical y-coordinate of the upper-left corner of the rectangle.
nRightRect Specifies the logical x-coordinate of the lower-right corner of the rectangle.
nBottomRect Specifiesthe logical y-coordinate of the lower-right corner of the rectangle.
nEllipseWidth Specifies the width, in logical units, of the ellipse used to draw the rounded corners.
nEllipseHeight Specifiesthe height, in logical units, of the ellipse used to draw the rounded corners.
Returns

Thereturn value is nonzero if the function is successful. Otherwise, it is zero.

Comments

The figure this function draws extends up to but does not include the right and bottom coordinates. This
means that the height of the figure is nBottomRect - nTopRect and the width of the figure is nRightRect -
nLeftRect.

Both the width and the height of arectangle must be greater than 2 units and less than 32,767 units.
Example

The following example uses a RECT structure to store the coordinates used by the RoundRect function:
HDC hdc;

RECT rc = { 10, 10, 180, 140 };
int iEllipseWdth, iEllipseHeight;

EllipseWdth = 20;
i El'li pseHei ght = 40;

RoundRect (hdc, rc.left, rc.top, rc.right, rc.bottom
i EllipseWdth, iEllipseHelght);

See Also
Rectangle, RECT

SaveDC (2.X)

int SaveDC(hdc)
HDC hdc; [* handle of device context */

The SaveDC function saves the current state of the given device context by copying state information
(such as clipping region, selected objects, and mapping mode) to a context stack. The saved device context
can later be restored by using the RestoreDC function.

Parameter Description
hdc I dentifies the device context to be saved.
Returns

Thereturn value is an integer identifying the saved device context if the function is successful. This
integer can be used to restore the device context by calling the RestoreDC function. The return value is
zero if an error occurs.

Comments
The SaveDC function can be used any number of times to save any number of device-context states.

Example

The following example uses the GetM apM ode function to retrieve the mapping mode for the current
device context, uses the SaveDC Tuncfion to Save the state of the device context, changes the mapping
mode, restores the previous state of the device context by using the RestoreDC function, and retrieves the
mapping mode again. The final mapping mode is the same as the mapping mode prior to the call to the
SaveDC function.

HDC hdcLocal ;

i nt MapMode;

char *aModes[] = {"ZERO', "MM TEXT", "MM LOVETRIC', "MV HI METRIC",
"MM LOCENGLI SH', "MM HI ENGLI SH', "MM TW PS",
"MM | SOTROPI C', "MM ANl SOTROPI C' };

hdcLocal = GetDC(hwnd);

MapMode = GetMapMode(hdcLocal) ;

TextOut(hdc, 100, 100, (LPSTR) aMdes[MapMode],
strl en(aMobdes[MapMode])) ;

SaveDC(hdcLocal) ;

SetMapMode(hdcLocal , MV LOENGLI SH) ;

VapMode = GetMapMode(hdcLocal) ;

TextOut(hdc, 100, 120, (LPSTR) aMdes[MapMode],
strl en(aModes[MapMode]));

RestoreDC(hdcLocal , -1);

MapMode = GetMapMode(hdcLocal);
TextOut(hdc, 100, 140, (LPSTR) aMdes[MapMode],
strl en(aModes[MapMode]));

ReleaseDC(hwnd, hdclLocal);

See Also
RestoreDC

ScaleViewportExt (2.x)

DWORD ScaleViewportExt(hdc, nXNum, nXDenom, nY Num, nY Denom)

HDC hdc; /* handle of device context

int NXNum; /* amount by
which current x-extent is multiplied

/

int nXDenom;

* amount by which current x-extent is divided

/

int nY Num;
* amount by which current y-extent is multiplied
/

int nY Denom;
* amount by which current y-extent is divided
/

The ScaleViewportExt function modifies the viewport extents relative to the current values.

Parameter Description

hdc | dentifies the device context.

nNXNum Specifies the amount by which to multiply the current x-extent.

nXDenom Specifies the amount by which to divide the result of multiplying the current x-extent by
the value of the nXNum parameter.

nY Num Specifies the amount by which to multiply the current y-extent.

nY Denom Specifies the amount by which to divide the result of multiplying the current y-extent by

the value of the nY Num parameter.

Returns
The low-order word of the return value contains the x-extent, in device units, of the previous viewport if
the function is successful; the high-order word contains the y-extent.

Comments

The new viewport extents are calculated by multiplying the current extents by the given numerator and
then dividing by the given denominator, as shown in the following formulas:

NXNewWE = (nXd dVE * nXNum) / nXDenom
NYNewE = (nYO dVE * nYNum) / nYDenom

Example

The following example draws arectangle that is 4 logical units high and 4 logical units wide. It then calls
the ScaleViewportExt function and draws a rectangle that is 8 units by 8 units. Because of the viewport
scaling, the second rectangle is the same size asthe first.

HDC hdc;
RECT rc;

GetClientRect(hwnd, &rc);
hdc = GetDC(hwnd) ;
SetMapMode(hdc, MV _ANI SOTROPI C) ;

SetWindowExt(hdc, 10, 10);
SetViewportExt(hdc, rc.right, rc.botton);
Rectangle(hdc, 3, 3, 7, 7);

Scal eVi ewport Ext (hdc, 1, 2, 1, 2);
Rectangle(hdc, 6, 6, 14, 14);
ReleaseDC(hwnd, hdc);

See Also
GetViewportExt

ScaleViewportExtEx (3.1)

BOOL ScaleViewportExtEx(hdc, nXnum, nXdenom, nY num, nY denom, IpSize)

HDC hdc; /* handle of device context */

int nXnum; I*
amount by which current x-extent is multiplied

/

int nXdenom;

* amount by which current x-extent is divided

/

int nY num;
* amount by which current y-extent is multiplied
/

int nY denom;

* amount by which current y-extent is divided
/

SIZE FAR* IpSize;

* address of SIZE structure

/

The ScaleViewportExtEx function modifies the viewport extents relative to the current values. The
formulas are written as follows:

XxNewE = (xA dVE * Xnun) / Xdenom
yNewE = (yA dVE * Ynum) / Ydenom

The new extent is calculated by multiplying the current extents by the given numerator and then dividing
by the given denominator.

Parameter Description

hdc | dentifies the device context.

nXnum Specifies the amount by which to multiply the current x-extent.

nXdenom Specifies the amount by which to divide the current x-extent.

nY num Specifies the amount by which to multiply the current y-extent.

nY denom Specifies the amount by which to divide the current y-extent.

IpSize Pointsto a SIZE structure. The previous viewport extents, in device units, are placed in

this structure. Tf IpSize is NULL, nothing is returned.

Returns
The return value is nonzero if the function is successful. Otherwise, it is zero.

ScaleWindowExt (2.x)

DWORD ScaleWindowExt(hdc, nXNum, nXDenom, nY Num, nY Denom)

HDC hdc; /* handle of device context

int NXNum; /* amount by
which current x-extent is multiplied

/

int nXDenom;

* amount by which current x-extent is divided

/

int nY Num;
* amount by which current y-extent is multiplied
/

int nY Denom;
* amount by which current y-extent is divided
/

The ScaleWindowExt function modifies the window extents relative to the current values.

Parameter Description

hdc | dentifies the device context.

nNXNum Specifies the amount by which to multiply the current x-extent.

nXDenom Specifies the amount by which to divide the result of multiplying the current x-extent by
the value of the nXNum parameter.

nY Num Specifies the amount by which to multiply the current y-extent.

nY Denom Specifies the amount by which to divide the result of multiplying the current y-extent by

the value of the nY Num parameter.

Returns
The low-order word of the return value contains the x-extent, in logical units, of the previous window, if
the function is successful; the high-order word contains the y-extent.

Comments

The new window extents are calculated by multiplying the current extents by the given numerator and then
dividing by the given denominator, as shown in the following formulas:

NXNewE = (nXd dVWE * nXNum) / nXDenom
NYNewE = (nYO dVE * nYNum) / nYDenom

Example

The following example draws arectangle that is 4 logical units high and 4 logical units wide. It then calls
the ScaleWindowExt function and draws a rectangle that is 8 units by 8 units. Because of the window
scaling, the second rectangle is the same size asthe first.

HDC hdc;
RECT rc;

GetClientRect(hwnd, &rc);
hdc = GetDC(hwnd) ;
SetMapMode(hdc, MV _ANI SOTROPI C) ;

SetWindowExt(hdc, 10, 10);
SetViewportExt(hdc, rc.right, rc.botton);
Rectangle(hdc, 3, 3, 7, 7);

Scal eW ndowExt (hdc, 2, 1, 2, 1);
Rectangle(hdc, 6, 6, 14, 14);
ReleaseDC(hwnd, hdc);

See Also
GetWindowExt

ScaleWindowExtEx (3.1)

BOOL ScaleWindowExtEx(hdc, nXnum, nXdenom, nY num, nY denom, 1pSize)

HDC hdc; /* handle of device context */

int nXnum; I*
amount by which current x-extent is multiplied

/

int nXdenom;

* amount by which current x-extent is divided

/

int nY num;
* amount by which current y-extent is multiplied
/

int nY denom;

* amount by which current y-extent is divided
/

SIZE FAR* IpSize;

* address of SIZE structure

/

The ScaleWindowExtEx function modifies the window extents relative to the current values. The formulas
are written as follows:

XNewE = (xO dWE * Xnun) / Xdenom
yNewE = (yd dVEE * Ynum) / Ydenom

The new extent is calculated by multiplying the current extents by the given numerator and then dividing
by the given denominator.

Parameter Description

hdc I dentifies the device context.

nXnum Specifies the amount by which to multiply the current x-extent.

nXdenom Specifies the amount by which to divide the current x-extent.

nY num Specifies the amount by which to multiply the current y-extent.

nY denom Specifies the amount by which to divide the current y-extent.

IpSize Points to a SIZE structure. The previous window extents, in logical units, are placed in

this structure. Tf IpSize isNULL, nothing is returned.

Returns
The return value is nonzero if the function is successful. Otherwise, it is zero.

SelectClipRgn (2.x)

int SelectClipRgn(hdc, hrgn)
HDC hdc; /* handle of device context */
HRGN hrgn; /* handle of region */

The SelectClipRgn function selects the given region as the current clipping region for the given device
context.

Parameter Description
hdc | dentifies the device context.
hrgn Identifies the region to be selected. If thisvalueis NULL, the entire client areais

selected and output is still clipped to the window.

Returns

The return value is SIMPLEREGION (region has no overlapping borders), COMPLEXREGION (region
has overlapping borders), or NULLREGION (region is empty), if the function is successful. Otherwise,
thereturn value is ERROR.

Comments
The SelectClipRgn function selects only a copy of the specified region. Because SelectClipRgn uses only
acopy, the region can be selected for any number of other device contexts or it can be deleted.

The coordinates for the specified region should be specified in device units.

Some printer devices support text output at a higher resolution than graphics output in order to retain the
precision needed to express text metrics. These devices report device units at the higher resolution--that is,
text units. These devices then scale coordinates for graphics so that several reported device units map to
only one graphics unit. Applications should always call the SelectClipRgn function using the text unit.
Applications that must take the scaling of graphics objects in the graphics device interface (GDI) can use
the GETSCALINGFACTOR printer escape to determine the scaling factor. This scaling factor affects
clipping. Tf aregionisused to clip graphics, GDI divides the coordinates by the scaling factor. (If the
region is used to clip text, however, GDI makes no scaling adjustment.) A scaling factor of 1 causesthe
coordinates to be divided by 2; a scaling factor of 2 causes the coordinates to be divided by 4; and so on.

Example

The following example uses the GetClipBox function to determine the size of the current clipping region
and the GetTextExtent function to determine the width of aline of text. If the text will not fit in the
clipping region, the SelectClipRgn is used to make the region wide enough for the text. The output is
clipped to the window regardless of the size of the region specified in the second parameter of
SelectClipRegion.

HRGN hrgnd i p;

RECT rcd i p;

LPSTR | pszTest = "Test of clipping region.";
DWORD dwsStri nglLen;

WORD wExt ent ;

GetClipBox(hdc, & cdip);
dwsStringlen = GetTextExtent(hdc, |pszTest, Istrlen(lpszTest));
wExt ent = LOWORD(dwStringLen);
if (rcdip.right < 50 + wExtent)
hrgnC i p = CreateRectRgn(50, 50, 50 + wkxtent, 80);
Sel ect d i pRgn(hdc, hrgndip);

TextOut(hdc, 50, 60, |pszTest, Istrlen(lpszTest));

DeleteObject(hrgnd i p);

See Also
GetClipBox, GetTextExtent, GETSCALINGFACTOR

SelectObject (2.x)

HGDIOBJ SelectObject(hdc, hgdiobj)

HDC hdc; /* handle of device context */

HGDIOBJ hgdiobj; /* handle of object
/

The SelectObject function selects an object into the given device context. The new object replaces the
previous object of the same type.

Parameter Description
hdc | dentifies the device context.
hgdiobj I dentifies the object to be selected. The object can be one of the following and must
have been created by using one of the listed functions:
Object Functions
Bitmap CreateBitmap, CreateBitmapl ndirect, CreateCompatibleBitmap,
CrealeDIBitmap
Brush CreateBrushindirect, CreateD|BPatternBrush, CreateHatchBrush,
CreaiePatternBrush, CreaieSolidBrush
Font CreateFont, CreateFontIndirect
Pen CreatePen, CreatePenlndirect
Region CreateEllipticRgn, CreateEllipticRgnlndirect, CreatePolygonRgn,
CreateRoundRectRgn, CreaieRectRgn, CreaieRectRgnindirect
Returns

The return value is the handle of the object being replaced, if the function is successful. Otherwise, it is
NULL.

If the hgdiobj parameter identifies aregion, this function performs the same task as the SelectClipRgn
function and the return value is SIMPLEREGION (region has no overlapping borders),
COMPLEXREGION (region has overlapping borders), or NULLREGION (region is empty). If an error
occurs, the return value is ERROR and the previously selected object of the specified type remains
selected in the device context.

Comments

When an application uses the SelectObject function to select afont, pen, or brush, the system alocates
space for that object in its data segment. Because data-segment spaceis limited, an application should use
the DeleteObject function to remove each drawing object that it no longer requires. Before removing the
obj ct, the application should select it out of the device context. To do this, the application can select a
different object of the same type back into the device context; typically, this different object isthe origina
object for the device context.

When the hdc parameter identifies a metafile device context, the SelectObject function does not return the
handle of the previously selected object. When the device context is a metafile, calling SelectObject with
the hgdiobj parameter set to avalue returned by a previous call to SelectObject can cause unpredictable
results. Because metafiles perform their own object cleanup, an application need not reselect default
objects when recording a metafile.

Memory device contexts are the only device contexts into which an application can select a bitmap. A
bitmap can be selected into only one memory device context at atime. The format of the bitmap must
either be monochrome or be compatible with the given device; if it is not, SelectObject returns an error.

Example
The following example creates a pen, uses the SelectObject function to select it into a device context, uses

the pen to draw arectangle, selects the previous pen back into the device context, and uses the
DeleteObject function to remove the pen that was just created:

HPEN hpen, hpend d;

hpen = CreatePen(PS_SOLID, 6, RGB(0, 0, 255));
hpend d = Sel'ect vj ect (hdc, hpen);

*

Rectangle(hdc, 10, 10, 100, 100);
Sel ect Obj ect (hdc, hpend d);
DeleteObject(hpen);

See Also
DeleteObject, SelectClipRgn, SelectPalette

Changes

For Windows 3.1, the SelectObject function returns the same value whether or not it is used in a metéfile.

Under previous versions of Windows, the SelectObject function returned a nonzero value for success and
zero for failure when it was used in a metéfile.

SetAbortProc (3.1)

int SetAbortProc(hdc, abrtprc)

HDC hdc; /* handle of device context */
ABORTPROC abrtprc;

* instance address of abort function

/

The SetAbortProc function sets the application-defined procedure that allows a print job to be canceled
during spooling. This function replaces the SETABORTPROC printer escape for Windows version 3.1.

Parameter Description
hdc | dentifies the device context for the print jaob.
abrtprc Specifies the procedure-instance address of the callback function. The address must

have been created by using the MakeProclnstance function. For more information about
the callback function, see the description of the AbortProc callback function.

Returns
Thereturn value is greater than zero if the function is successful. Otherwise, it isless than zero.

See Also
AbortDoc, AbortProc, Escape

SetBitmapBits (2.x)

LONG SetBitmapBits(hbmp, cBits, IpvBits)

HBITMAP hbmp; /* handle of bitmap */

DWORD cBits; I*
number of bytesin bitmap array

/

const void FAR* |pvBits;

* address of array with bitmap bits

/

The SetBitmapBits function sets the bits of the given bitmap, to the specified bit values.

Parameter Description

hbmp I dentifies the bitmap to be set.

cBits Specifies the number of bytes pointed to by the |pvBits parameter.
IpvBits Pointsto an array of bytes for the bitmap bits.

Returns

Thereturn value is the number of bytes used in setting the bitmap bits, if the function is successful.
Otherwise, the return value is zero.

See Also

GetBitmapBits

SetBitmapDimension (2.X)

DWORD SetBitmapDimension(hbmp, nWidth, nHeight)

HBITMAP hbmp; /* handle of bitmap */

int nWidth; /* bitmap width */

int nHeight; I*
bitmap height

/

The SetBitmapDimension function assigns awidth and height to a bitmap, in 0.1-millimeter units. The
graphics device interface (GDI) does not use these values except to return them when an application calls
the GetBitmapDimension function.

Parameter Description

hbmp | dentifies the bitmap.

nWidth Specifies the bitmap width, in 0.1-millimeter units.
nHeight Specifies the bitmap height, in 0.1-millimeter units.
Returns

The return value is the dimensions of the previous bitmap, in 0.1-millimeter units, if the functionis
successful. The low-order word contains the previous width; the high-order word contains the previous
height.

See Also

GetBitmapDimension

SetBitmapDimensionEx (3.1)

BOOL SetBitmapDimensionEx(hbm, nX, nY, IpSize)

HBITMAP hbm; /* handle of bitmap */

int nX; /* bitmap width *
/

intny;

* bitmap height

/

SIZE FAR* |pSize;
* address of structure for prev. dimensions
/

The SetBitmapDimensionEx function assigns the preferred size to a bitmap, in 0.1-millimeter units. The
graphics device interface (GDI) does not use these values, except to return them when an application calls
the GetBitmapDimensionEX function.

Parameter Description

hbm | dentifies the bitmap.

nX Specifies the width of the bitmap, in 0.1-millimeter units.

ny Specifies the height of the bitmap, in 0.1-millimeter units.

IpSize Pointsto a SIZE structure. The previous bitmap dimensions are placed in this structure.
If IpSizeisNULL, nothing is returned.

Returns

Thereturn value is nonzero if the function is successful. Otherwise, it is zero.

See Also

GetBitmapDimensionEx, SIZE

SetBkColor (2.x)

COLORREF SetBkColor(hdc, clrref)

HDC hdc; /* handle of device context */

COLORREF clrref; /* color specification *
/

The SetBkColor function sets the current background color to the specified color.

Parameter Description

hdc | dentifies the device context.

clrref Specifies the new background color.
Returns

The return value is the RGB value of the previous background color, if the function is successful. The
return value is 0x80000000 if an error occurs.

Comments

If the background mode is OPAQUE, the system uses the background color to fill the gapsin styled lines,
the gaps between hatched linesin brushes, and the background in character cells. The system also usesthe
background color when converting bitmaps between color and monochrome device contexts.

If the device cannot display the specified color, the system sets the background color to the nearest
physical color.

Example
The following example uses the GetBkColor function to determine whether the current background color
iswhite. If it is, the SetBkColor function setsit to red.

DWORD dwBackCol or;

dwBackCol or = GetBkColor(hdc);

i f (dwBackCol or == RGB(255, 255, 255)) { /* if color is white */
Set BkCol or (hdc, RGB(255, 0, 0));/* sets color to red */
TextOut(hdc, 100, 200, "SetBkColor test.", 16);

}

See Also
BitBlt, GetBkColor, GetBkM ode, SetBkM ode, StretchBlt, RGB

SetBkMode (2.x)

int SetBkMode(hdc, fnBkMode)
HDC hdc; /* handle of device context */
int fnBkMode; /* background mode */

The SetBkM ode function sets the specified background mode. The background mode defines whether the
system removes existing background colors on the drawing surface before drawing text, hatched brushes,
or any pen stylethat isnot asolid line.

Parameter Description
hdc | dentifies the device context.
fnBkMode Specifies the background mode to be set. This parameter can be one of the following
values:
Vaue Meaning
OPAQUE Background is filled with the current background color before
the text, hatched brush, or penisdrawn. Thisisthe default
background mode.
TRANSPARENT Background is not changed before drawing.
Returns
The return value is the previous background mode, if the function is successful.
Example

The following example determines the current background mode by calling the GetBkMode function. If
the mode is OPAQUIE, the SetBkMode function sets it to TRANSPARENT.

i nt nBackMbde;

nBackMode = GetBkMode(hdc);

i f (nBackMbde == OPAQUE) {
TextOut(hdc, 90, 100, "This background node is OPAQUE.", 31);
Set BkMbde(hdc, TRANSPARENT);

}

See Also
GetBkColor, GetBkMode, SetBkColor

OPAQUE 2

Background isfilled with the current background color before the text, hatched brush, or pen is drawn.
Thisisthe default background mode.

OPAQUE 2

TRANSPARENT 1
Background is not changed before drawing.

TRANSPARENT 1

SetBoundsRect (3.1)

UINT SetBoundsRect(hdc, IprcBounds, flags)

HDC hdc; /* handle of device context */
const RECT FAR* |prcBounds;

* address of structure for rectangle

/

UINT flags;

* gpecifies information to return

/

The SetBoundsRect function controls the accumulation of bounding-rectangle information for the
specified device context.

Parameter Description

hdc I dentifies the device context to accumulate bounding rectangles for.

[prcBounds Pointsto a RECT structure that is used to set the bounding rectangle. Rectangle
dimensionsare given in logical coordinates. This parameter can be NULL.

flags Specifies how the new rectangle will be combined with the accumulated rectangle. This
parameter may be a combination of the following values:
Value Meaning

DCB_ACCUMULATE Add the rectangle specified by the IprcBounds parameter to
the bounding rectangle (using a rectangle union operation)

DCB_DISABLE Turn off bounds accumulation.
DCB_ENABLE Turn on bounds accumulation. (The default setting for
bounds accumulation is disabled.)
Returns

The return value is the current state of the bounding rectangle, if the function is successful. Like the flags
parameter, the return value can be a combination of DCB__ values, as shown in the following list:

Vaue Meaning

DCB_ACCUMULATE The bounding rectangle is not empty. (This value will always be set.)
DCB_DISABLE Bounds accumulation is off.

DCB_ENABLE Bounds accumulation ison.

Comments

Windows can maintain a bounding rectangle for al drawing operations. This rectangle can be queried and
reset by the application. The drawing bounds are useful for invalidating bitmap caches.

See Also

GetBoundsRect

SetBrushOrg (2.x)

DWORD SetBrushOrg(hdc, nXOrg, nY Org)

HDC hdc; /* handle of device context */

int nXOrg; /* x-coordinate of new origin */
int nYOrg;

* y-coordinate of new origin

/

The SetBrushOrg function specifies the origin that GDI will assign to the next brush an application selects
into the specified device context. -

Parameter Description

hdc | dentifies the device context.

nXOrg Specifies the x-coordinate, in device units, of the new origin. This value must bein the
range O through 7.

nY Org Specifies the y-coordinate, in device units, of the new origin. This value must bein the
range O through 7.

Returns

Thereturn value is the coordinates, in device units, of the previous origin, if the function is successful. The
low-order word contains the x-coordinate; the high-order word contains the y-coordinate.

Comments
The default coordinates for the brush origin are (0, 0).

To dter the origin of abrush, an application should call the UnrealizeObject function, specifying the
handle of the brush for which the origin will be set; call SetBrushOrg; and then call the SelectObject
function to select the brush into the device context.

The SetBrushOrg function should not be used with stock objects.

Example
The following example uses the SetBrushOrg function to shift the brush origin vertically by 5 pixels:

HBRUSH hbr, hbrdQ d;
SetBkMode(hdc, TRANSPARENT) ;
hbr = CreateHatchBrush(HS CROSS, RGB(0, 0, 0));

UnrealizeObject(hbr);
SetBrushOrg(hdc, 0, 0);
hbrd d = SelectObject(hdc, hbr);

Rectangle(hdc, 0, 0, 200, 200);

hbr = SelectObject(hdc, hbrdd); /* desel ects hbr */
UnrealizeObject(hbr); /* resets origin next time hbr selected */
SetBrushOrg(hdc, 3, 5);

hbrd d = SelectObject(hdc, hbr);/* selects hbr again */

Rectangle(hdc, 0, 0, 200, 200);
SelectObject(hdc, hbrd d);
DeleteObject(hbr);

See Also
GetBrushOrg, SelectObject, UnrealizeObject, HHWORD, LOWORD

Corrections

The function purpose statement was incorrect. SetBrushOrg does not alter the origin of the current brush in
adevice context; instead, it setsthe origin for the next brush to be selected into the device context. The
original purpose statement read as follows: "The SetBrushOrg function sets the origin of the current brush
for the specified device context.”

SetDIBits (3.0)

int SetDIBits(hdc, hbmp, uStartScan, cScanLines, IpvBits, Ipbmi, fuColorUse)

HDC hdc; /* handle of device context */

HBITMAP hbmp; /
* handle of bitmap

/

UINT uStartScan;

* gtarting scan line

/

UINT cScanLines;
* number of scan lines
/

const void FAR* |pvBits;

* address of array with bitmap bits

/

BITMAPINFO FAR* Ipbmi;

* address of structure with bitmap data
/

UINT fuColorUse;

* type of color indicesto use

/

The SetDIBits function sets the bits of a bitmap to the values given in a device-independent bitmap (DIB)
specification.

Parameter Description

hdc Identifies the device context.

hbmp | dentifies the bitmap to set the dataiin.

uStartScan Specifies the zero-based scan number of the first scan line in the buffer pointed to by the
IpvBits parameter.

cScanLines Specifies the number of scan linesin the IpvBits buffer to copy into the bitmap
identified by the hbmp parameter.

IpvBits Points to the device-independent bitmap bits that are stored as an array of bytes. The

format of the bitmap values depends on the biBitCount member of the
BITMAPINFOHEADER structure, which isthe first member of the BITMAPINFO
structure pointed to by the Ipbmi parameter.

[pbmi Pointsto a BITMAPINFO structure that contains information about the device-
independent bitmap.

fuColorUse Specifies whether the bmiColors member of the BITMAPINFO structure contains
explicit RGB values or indices into the currently realized Togical palette. This parameter
must be one of the following values:

Value Meaning
DIB_PAL_COLORS The color table consists of an array of 16-bit indicesinto
the palette of the device context identified by the hdc
parameter.
DIB_RGB_COLORS The color table contains literal RGB values.
Returns
The return value is the number of scan lines copied, if the function is successful. Otherwise, it is zero.
Comments

The bitmap identified by the hbmp parameter must not be selected into a device context when the
application calls this function.

To reduce the amount of memory required to set bits from alarge device-independent bitmap on a device
surface, an application can band the output by repeatedly calling the SetDIBitsT oDevice function, placing
adifferent portion of the entire bitmap into the IpvBits buffer each time. The values of the uStartScan and
cScanL ines parameters identify the portion of the entire bitmap that is contained in the IpvBits buffer.

The origin of a device-independent bitmap is the bottom-left corner of the bitmap, not the top-left corner,
which is the origin when the mapping modeis MM_TEXT. GDI performs the necessary transformation to
display the image correctly. -

See Also
SetDIBitsToDevice, BITMAPCOREINFO, BITMAPINFO, BITMAPINFOHEADER

SetDIBitsToDevice (3.0)
int SetDIBitsToDevice(hdc, XDest, YDest, X, ¢y, XSrc, Y Src, uStartScan, cScanLines, [pvBits, Ipbmi,

HDC hdc;
int XDest;

fuColorUse)
/* handle of device context */
/* x-

coordinate origin of destination rect

/
int YDest;

* y-coordinate origin of destination rect

int cx;

* rectangle width
/

int cy;

* rectangle height
/

int XSrc;

* x-coordinate origin of source rect

int YSrc;

* y-coordinate origin of source rect

/

UINT uStartScan;

* number of first scan linein array

/

UINT cScanLines;
* number of scan lines

void FAR* IpvBits;
* address of array with DIB bits

/

BITMAPINFO FAR* Ipbmi;
* address of structure with bitmap info

/

UINT fuColorUse;
* RGB or palette indices
/

The SetDIBitsToDevice function sets bits from a device-independent bitmap (D1B) directly on adevice
surface. The device coordinates specified define a rectangle within the total bitmap. SetDIBitsToDevice
sets the bitsin this rectangle directly on the display surface of the output device associated with the given
device context, at the specified logical coordinates.

Parameter
hdc

XDest

Y Dest

CX

cy

XSrc
YSrc
uStartScan

cScanLines
IpvBits
[pbmi
fuColorUse

Description

Identifies the device context.

Specifiesthe logical x-coordinate of the origin of the destination rectangle.
Specifiesthe logical y-coordinate of the origin of the destination rectangle.
Specifies the x-extent, in device units, of the rectangle in the bitmap.

Specifies the y-extent, in device units, of the rectangle in the bitmap.

Specifies the x-coordinate, in device units, of the source rectangle in the bitmap.
Specifies the y-coordinate, in device units, of the source rectangle in the bitmap.

Specifies the scan-line number of the device-independent bitmap that is contained in the
first scan line of the buffer pointed to by the |pvBits parameter.

Specifies the number of scan lines in the IpvBits buffer to copy to the device.
Points to the DIB bits that are stored as an array of bytes.
Pointsto a BITMAPINFO structure that contains information about the bitmap.

Specifies whether the bmiColors member of the |pbmi parameter contains explicit RGB
values or indices into the currently realized logical palette. This parameter must be one
of the following values:

Value Meaning

DIB_PAL_COLORS The color table consists of an array of 16-bit indicesinto
the currently realized logical palette.
DIB_RGB_COLORS The color table contains literal RGB values.
Returns
Thereturn value is the number of scan lines set, if the function is successful.
Comments

The origin of a device-independent bitmap is the bottom-left corner of the bitmap, not the top-left corner,
which is the origin when the mapping modeis MM_TEXT. GDI performs the necessary transformation to
display the image correctly.

To reduce the amount of memory required to set bits from alarge device-independent bitmap on a device
surface, an application can band the output by repeatedly calling SetDIBitsToDevice, placing a different

portion of the entire bitmap into the IpvBits buffer each time. The values of the uStartScan and cScanLines
parameters identify the portion of the entire bitmap that is contained in the IpvBits buffer.

See Also
SetDIBits, BITMAPCOREINFO, BITMAPINFO

SetMapMode (2.x)

int SetMapM ode(hdc, fnMapM ode)
HDC hdc; /* handle of device context */
int fnMapMode; /* mapping modetoset */

The SetMapM ode function sets the mapping mode of the given device context. The mapping mode defines
the unit of measure used to convert logical unitsto device units; it also defines the orientation of the
device's x- and y-axes. GDI uses the mapping mode to convert logical coordinates into the appropriate
device coordinates.

Parameter Description

hdc | dentifies the device context.

fnMapMode Specifies the new mapping mode. This parameter can be any one of the following
values:

Value Meaning

MM_ANISOTROPIC Logical units are converted to arbitrary units with
arbitrarily scaled axes. Setting the mapping mode to
MM _ANISOTROPIC does not change the current window
or viewport settings. To change the units, orientation, and
scaling, an application should use the SetWindowExt and
SetViewportExt functions.

MM_HIENGLISH Each logical unit is converted to 0.001 inch. Positive x is
to the right; positivey isup.

MM_HIMETRIC Each logical unit is converted to 0.01 millimeter. Positive
x isto theright; positivey is up.

MM_ISOTROPIC Logical units are converted to arbitrary units with equally
scaled axes; that is, one unit along the x-axisis equal to
one unit along the y-axis. The SetWindowExt and
SetViewportExt functions must be used to specify the
desired units and the orientation of the axes. GDI makes
adjustments as necessary to ensure that the xand y units
remain the same size.

MM_LOENGLISH Each logical unit is converted to 0.01 inch. Positive x isto
theright; positivey is up.

MM_LOMETRIC Each logical unit is converted to 0.1 millimeter. Positive x
isto theright; positivey isup.

MM_TEXT Each logical unit is converted to one device pixel. Positive
x isto theright; positivey is down.

MM_TWIPS Each logical unit is converted to 1/20 of a point. (Because
apoint is /72 inch, atwip is 1/1440 inch). Positive x isto
theright; positivey is up.

Returns
The return value is the previous mapping mode, if the function is successful.
Comments

The MM_TEXT mode allows applications to work in device pixels, where one unit is equal to one pixel.
The physical size of apixel varies from device to device.

The MM_HIENGLISH, MM_HIMETRIC, MM_LOENGLISH, MM_LOMETRIC, and MM_TWIPS
modes are useful for applications that must draw in physically meaningful units (such asinches or
millimeters).

The MM_ISOTROPIC mode ensures a 1:1 aspect ratio, which is useful when it isimportant to preserve
the exact shape of an image.

The MM_ANISOTROPIC mode allows the x- and y-coordinates to be adjusted independently.

Example
The following example uses the SetMapM ode function to set the mapping modeto MM_TWIPS and then
uses the CreateFont function to create an 18-point logical font:

HFONT hfont, hfontd d;

i nt MapMbdePrevious, iPtSize = 18;
PSTR pszFace = "Ms Serif";

MapModePr evi ous = Set MapMode(hdc, MM TW PS) ;
hf ont = CreateFont(-i PtSize * 20, 0, 0, 0, O, /* specify pt size */
0, 0, 0O, 0, 0, 0, 0, 0, pszFace); /* and face name only */

hf ontd d = SelectObject(hdc, hfont);

TextOut(hdc, 100, -500, pszFace, strlen(pszFace));
Set MapMode(hdc, MapMbdePr evi ous);
SelectObject(hdc, hfontd d);

DeleteObject(hfont);

See Also
GetMapMode, SetViewportExt, SetWindowExt

SetM apperFlags (2.x)

DWORD SetMapperFlags(hdc, fdwMatch)
HDC hdc; /* handle of device context */
DWORD fdwMatch; /* mapper flag */

The SetMapperFlags function changes the method used by the font mapper when it converts alogical font
to aphysical font. An application can use SetMapperFlags to cause the font mapper to attempt to choose
only aphysical font that exactly matches the aspect ratio of the specified device.

Parameter Description
hdc | dentifies a device context.
fdwMatch Specifies whether the font mapper attempts to match afont's aspect height and width to

the device. When thisvalueis ASPECT_FILTERING, the mapper selects only fonts
whose x-aspect and y-aspect exactly match those of the specified device, and the
remaining bits areignored.

Returns
The return value is the previous value of the font-mapper flag, if the function is successful.

Comments

An application that uses only raster fonts can use the SetMapperFlags function to ensure that the font
selected by the font mapper is attractive and readable on the specified device. Applications that use
scalable (TrueType) fonts typically do not use SetMapperFlags.

If no physical font has an aspect ratio that matches the specifications in the logical font, GDI chooses a
new aspect ratio and selects afont that matches this new aspect ratio. -

SetMetaFileBits (2.x)

HGLOBAL SetMetaFileBits(hmf)
HMETAFILE hmf; /* handle of metefile */

The SetMetaFileBits function creates a memory metafile from the datain the given global memory object.

Parameter Description

hmf I dentifies the global memory object that contains the metafile data. The object must
have been created by a previous call to the GetMetaFileBits function. Note that this
global handle must be cast to an HMETAFILE type to avoid compiler warnings.

Returns
Thereturn value is the handle of a memory metéfile, if the function is successful. Otherwise, it isSNULL.

Comments

After the SetMetaFileBits function returns, the metafile handle it returns must be used instead of the hmf
handle to refer to the metafile. If SetMetaFileBitsis successful, the application should not use or free the
memory handle specified by the hmf parameter, because that handle is reused by Windows.

When the application no longer needs the metafile handle, it should free the handle by calling the
DeleteMetaFile function.

See Also
GetMetaFileBits, Global Free, SetM etaFileBitsBetter

SetMetaFileBitsBetter (3.1)

HGLOBAL SetMetaFileBitsBetter(hmf)
HMETAFILE hmf; /* handle of the metefile */

The SetMetaFileBitsBetter function creates a memory metafile from the data in the specified global-
memory object.

Parameter Description

hmf I dentifies the global-memory object that contains the metafile data. The object must
have been created by a previous call to the GetMetaFileBits function. Note that this
global handle must be cast to an HMETAFILE type to avoid compiler warnings.

Returns

Thereturn value is the handle of a memory metafile, if the function is successful. Otherwise, the return
valueisNULL.

Comments

The global-memory handle returned by SetMetaFileBitsBetter is owned by GDI, not by the application.
This enables applications that use metafiles to support object linking and embedding (OLE) to use
metafiles that persist beyond the termination of the application. An OLE application should aways use
SetM etaFileBitsBetter instead of the SetMetaFileBits function.

After the SetMetaFileBitsBetter function returns, the metafile handle returned by the function should be
used to refer to the metafile, instead of the handle identified by the hmf parameter.

See Also
GetMetaFileBits, SetMetaFileBits

SetPaletteEntries (3.0)

UINT SetPaletteEntries(hpal, iStart, cEntries, Ippe)
HPALETTE hpal; /* handle of palette */
UINT iStart;

* index of first entry to set

/

UINT cEntries;

* number of entriesto set

/

const PALETTEENTRY FAR* Ippe;

* address of array of structures

/

The SetPaletteEntries function sets RGB color values and flags in arange of entriesin the given logical
palette.

Parameter Description

hpal Identifies the logical palette.

iStart Specifiesthe first logical-palette entry to be set.

cEntries Specifies the number of logical-pal ette entries to be set.

Ippe Points to the first member of an array of PALETTEENTRY structures containing the

RGB values and flags.

Returns

Thereturn value is the number of entries set in the logical palette, if the function is successful. Otherwise,
itiszero.

Comments
If the logical paletteis selected into a device context when the application calls the SetPal etteEntries
function, the changes will not take effect until the application calls the RealizePal ette function.

See Also
RealizePalette, PALETTEENTRY

SetPixel (2.x)

COL ORREF SetPixel(hdc, nXPos, nY Pos, clrref)

HDC hdc; /* handle of device context */
int nXPos; [* x-coordinate of pixel to
set

/

int nY Pos;

* y-coordinate of pixel to set

/

COLORREF clrref;

* color of set pixel

/

The SetPixel function sets the pixel at the specified coordinates to the closest approximation of the given
color. The point must be in the clipping region; if it is not, the function does nothing.

Parameter Description

hdc | dentifies the device context.

nXPos Specifies the logical x-coordinate of the point to be set.
nY Pos Specifiesthe logical y-coordinate of the point to be set.
clrref Specifies the color to be used to paint the point.
Returns

Thereturn value is the RGB value for the color the point is painted, if the function is successful. This
value can be different from the specified value if an approximation of that color is used. The return value
is-1if thefunction fails (if the point is outside the clipping region).

Comments

Not all devices support the SetPixel function. To discover whether a device supports raster operations, an
application can call the GetDeviceCaps function using the RC_BITBLT index.

See Also
GetDeviceCaps, GetPixel

SetPolyFillMode (2.x)

int SetPolyFillMode(hdc, fnMode)
HDC hdc; /* handle of device context */
int fnMode; /* polygon-filling mode */

The SetPolyFillMode function sets the specified polygon-filling mode.

Parameter Description

hdc | dentifies the device context.

fnMode Specifies the new filling mode. This value may be either ALTERNATE or WINDING.
The default mode is ALTERNATE.

Returns

The return value specifies the previous filling mode, if the function is successful. Otherwisg, it is zero.

Comments

When the polygon-filling mode is ALTERNATE, the system fills the area between odd-numbered and
even-numbered polygon sides on each scan line. That is, the system fills the area between the first and
second side, between the third and fourth side, and so on.

When the polygon-filling mode is WINDING, the system uses the direction in which afigure was drawn
to determine whether to fill an area. Each line segment in a polygon is drawn in either aclockwise or a
counterclockwise direction. Whenever an imaginary line drawn from an enclosed area to the outside of a
figure passes through a clockwise line segment, a count is incremented (increased by one); when the line
passes through a counterclockwise line segment, the count is decremented (decreased by one). The areais
filled if the count is nonzero when the line reaches the outside of the figure.

Example

The following example uses winding mode to draw the same figure twice. The figure is arectangle that
completely encloses atriangle. Thefirst time the figure is drawn, both the rectangle and the triangle are
drawn clockwise, and both the rectangle and the triangle are filled. The second time, the rectangle is drawn
clockwise, but the triangle is drawn counterclockwise; the rectangle isfilled, but the triangleis not. (If the
figures had been drawn using alternate mode, the rectangle would have been filled and the triangle would
not have been filled, in both cases.)

HBRUSH hbr Gray, hbr Previ ous;

/*
* Define the points for a clockwi se triangle in a clockw se
rect angl e.

POINT aPol yPoints[9] = {{ 50, 601}, { 250, 60 }, { 250, 260 },
50, 260 }, { 50, 60}, { 150, 80},
{ 230, 240}, { 70, 240 }, { 150, 80 }};

int aPolyCount[] ={ 5, 4 };
int cVal ues, i;

hbr Gray = GetStockObject(GRAY_BRUSH) ;
hbr Previ ous = SelectObject(hdc, hbr G ay);

cVal ues = sizeof (aPol yCount) / sizeof (int);

Set Pol yFi | | Mode(hdc, W NDI NG ;/* sets wi nding node */
PolyPolygon(hdc, aPol yPoi nts, aPol yCount, cVal ues);

/* Define the triangle counter-clockw se */

240;
240;

aPol yPoi nt s[6] . x
aPol yPoi nts[7] . x

70; aPol yPoints[6].y
230; aPol yPoints[7].y

for (i = 0; i < sizeof(aPolyPoints) / sizeof (POINT); i++)
aPol yPoi nts[i].x += 300; /* noves figure 300 units right */

PolyPolygon(hdc, aPol yPoi nts, aPol yCount, cVal ues);

SelectObject(hdc, hbrPrevious);

See Also
GetPolyFillMode, PolyPolygon

SetRectRgn (2.X)

void SetRectRgn(hrgn, nLeftRect, nTopRect, nRightRect, nBottomRect)

HRGN hrgn; /* handle of region */

int nLeftRect; [* x-
coordinate top-left corner of rectangle

/

int NnTopRect;

* y-coordinate top-left corner of rectangle

/

int nRightRect;
* x-coordinate bottom-right corner of rectangle
/

int nBottomRect;
* y-coordinate bottom-right corner of rectangle
/

The SetRectRgn function changes the given region into a rectangular region with the specified
coordinates.

Parameter Description

hrgn Identifies the region.

nL eftRect Specifies the x-coordinate of the upper-left corner of the rectangular region.
nTopRect Specifies the y-coordinate of the upper-left corner of the rectangular region.
nRightRect Specifies the x-coordinate of the lower-right corner of the rectangular region.
nBottomRect Specifies the y-coordinate of the lower-right corner of the rectangular region.
Returns

This function does not return avalue.

Comments

Applications can use this function instead of the CreateRectRgn function to avoid allocating more memory
from the GDI heap. Because the memory allocated for the hrgn parameter is reused, no new alocation is
performed.

Example
The following example uses the CreateRectRgn function to create a rectangular region and then calls the
SetRectRgn function to change the region coordinates:

HRGN hr gn;

hrgn = CreateRectRgn(10, 10, 30, 30);
PaintRgn(hdc, hrgn);

Set Rect Rgn(hrgn, 50, 50, 150, 200);
PaintRgn(hdc, hrgn);
DeleteObject(hrgn);

See Also
CreateRectRgn

SEtROP2 (2.x)

int SetROP2(hdc, fnDrawM ode)
/* handle of device context */

HDC hdc;

int fnDrawMode;

/

/* new drawing mode *

The SetROP2 function sets the current drawing mode. The drawing mode specifies how the colors of the
pen and the interior of filled objects are combined with the color already on the screen surface.

Parameter
hdc
fnDrawMode

Returns

Description

I dentifies the device context.

Specifies the new drawing mode. This parameter can be one of the following values:

Vaue

R2 BLACK

R2 WHITE

R2 NOP

R2 NOT
R2_COPYPEN

R2 NOTCOPYPEN
R2_MERGEPENNOT

R2_MASKPENNOT

R2_MERGENOTPEN

R2_MASKNOTPEN

R2_MERGEPEN
R2_NOTMERGEPEN
R2_MASKPEN
R2_NOTMASKPEN

R2_XORPEN

R2_NOTXORPEN

Meaning

Pixel is always black.

Pixel is always white.

Pixel remains unchanged.

Pixel isthe inverse of the screen color.

Pixel isthe pen color.

Pixel istheinverse of the pen color.

Pixel is a combination of the pen color and the inverse of
the screen color (final pixel = (~screen pixel) | pen).

Pixel isacombination of the colors common to both the
pen and the inverse of the screen (final pixel = (~screen
pixel) & pen).

Pixel is a combination of the screen color and the inverse of
the pen color (final pixel = (~pen) | screen pixel).

Pixel is a combination of the colors common to both the
screen and the inverse of the pen (final pixel = (~pen) &
screen pixel).

Pixel is a combination of the pen color and the screen color
(final pixel = pen | screen pixel).

Pixel isthe inverse of the R2. MERGEPEN color (fina
pixel = ~(pen | screen pixel)).

Pixel isacombination of the colors common to both the
pen and the screen (final pixel = pen & screen pixel).

Pixel istheinverse of the R2._ MASKPEN color (final pixel
= ~(pen & screen pixd)).

Pixel isacombination of the colors that arein the pen and
in tgle): screen, but not in both (final pixel = pen ” screen
pixel).

Pixel istheinverse of the R2_XORPEN color (final pixel =
~(pen ” screen pixel)).

The return value specifies the previous drawing mode, if the function is successful.

Comments

The drawing mode is for raster devices only; it does not apply to vector devices.

Drawing modes are binary raster-operation codes representing all possible Boolean combinations of two
variables. These values are created by using the binary operations AND, OR, and XOR (exclusive OR)
and the unary operation NOT.

See Also

GetDeviceCaps, GEtROP2

SetStretchBltMode (2.x)

int SetStretchBltMode(hdc, fnStretchMode)

HDC hdc; /* handle of device context */

int fnStretchMode; /* bitmap-stretching

mode *
/

The SetStretchBItM ode function sets the bitmap-stretching mode. The bitmap-stretching mode defines
how information is removed from bitmaps that are compressed by using the StretchBlIt function.

Parameter Description
hdc | dentifies the device context.
fnStretchMode Sglecifi$ the new bitmap-stretching mode. This parameter can be one of the following
values:
Value Meaning
STRETCH ANDSCANS Uses the AND operator to combine eliminated
lines with the remaining lines. This mode
preserves black pixels at the expense of colored
or white pixels. It is the default mode.
STRETCH_DEIL ETESCANS Deletes the eliminated lines. Information in the
eliminated linesis not preserved.
STRETCH_ORSCANS Uses the OR operator to combine eliminated
lines with the remaining lines. This mode
preserves colored or white pixels at the expense
of black pixels.
Returns

Thereturn value is the previous stretching mode, if the function is successful. It can be
STRETCH_ANDSCANS, STRETCH DELETESCANS, or STRETCH_ORSCANS.

Comments

The STRETCH_ANDSCANS and STRETCH_ORSCANS modes are typically used to preserve
foreground pixels in monochrome bitmaps. The STRETCH_DELETESCANS mode is typically used to
preserve color in color bitmaps.

See Also
GetStretchBltM ode, StretchBlt, StretchDIBits

STRETCH_ANDSCANS 1

Uses the AND operator to combine eliminated lines with the remaining lines. This mode preserves black
pixels at the expense of colored or white pixels. It is the default mode.

STRETCH_ANDSCANS 1

STRETCH_DELETESCANS 3
Deletes the eliminated lines. Information in the eliminated linesis not preserved.

STRETCH_DELETESCANS 3

STRETCH_ORSCANS 2

Uses the OR operator to combine eliminated lines with the remaining lines. This mode preserves colored
or white pixels at the expense of black pixels.

STRETCH_ORSCANS 2

SetSystemPal etteUse (3.0)

UINT SetSystemPal etteUse(hdc, fuStatic)
HDC hdc; /* handle of device context */
UINT fuStatic; [* system-pal ette contents */

The SetSystemPal etteUse function sets the use of static colorsin the system palette. The default system
palette contains 20 static colors, which are not changed when an application realizes its logical palette. An
application can use SetSystemPal etteUse to change this to two static colors (black and white).

Parameter Description
hdc I dentifies the device context. This device context must support color palettes.
fuStatic Specifies the new use of the system palette. This parameter can be either of the
following values:
Vaue Meaning
SYSPAL_NOSTATIC System palette contains no static colors except black
and white.
SYSPAL_STATIC System palette contains static colors that will not
change when an application realizesits logical paette.
Returns

The return value is the previous setting for the static colors in the system palette, if the functionis

successful. This setting is either SYSPAL_NOSTATIC or SYSPAL_STATIC.

Comments

An application must call this function only when its window is maximized and has the input focus.

If an application calls SetSystemPal etteUse with fuStatic set to SY SPAL_NOSTATIC, Windows

continues to set aside two entries in the system palette for pure white and pure black, respectively.

After calling this function with fuStatic set to SY SPAL_NOSTATIC, an application must follow these

steps:

1 Call the UnrealizeObject function to force the graphics device interface (GDI) to remap the logical
pal ette completely whenit is realized. -

2 Readlizethelogical paette.

3 Call the GetSysColor function to save the current system-color settings.

4 Cal the SetSysColors function to set the system colors to reasonable values using black and white.

For example, adjacent or overlapping items (such as window frames and borders) should be set to
black and white, respectively.

5 Sendthe WM_SY SCOLORCHANGE message to other top-level windows to allow them to be
redrawn with the new system colors.

When the application's window loses focus or closes, the application must perform the following steps:

Call SetSystemPaletteUse with the fuStatic parameter set to SY SPAL_STATIC.

Call UnrealizeObject to force GDI to remap the logical palette completely when it is realized.
Realize the logical palette.

Restore the system colors to their previous values.

Send the WM_SY SCOLORCHANGE message.

See Also
GetSysColor, SetSysColors, SetSystemPal etteUse, UnrealizeObject

absh WN B

SetTextAlign (2.x)

UINT SetTextAlign(hdc, fuAlign)
HDC hdc; /* handle of device context */
UINT fuAlign; /* text-alignment flags ~ */

The SetTextAlign function sets the text-alignment flags for the given device context.

Parameter Description
hdc I dentifies the device context.
fuAlign Specifies text-alignment flags. The flags specify the relationship between a point and a

rectangle that bounds the text. The point can be either the current position or coordinates
specified by atext-output function (such as the ExtTextOut function). The rectangle that
bounds the text is defined by the adjacent character cellsin the text string.

The fuAlign parameter can be one or more flags from the following three categories.
Choose only one flag from each category.

Thefirst category affects text alignment in the x-direction:

Value Meaning

TA_CENTER Aligns the point with the horizontal center of the bounding
rectangle.

TA_LEFT Alignsthe point with the left side of the bounding rectangle. This
is the default setting.

TA_RIGHT Alignsthe point with the right side of the bounding rectangle.

The second category affects text alignment in the y-direction:

Value Meaning

TA_BASELINE Aligns the point with the base line of the chosen font.

TA_BOTTOM Aligns the point with the bottom of the bounding rectangle.

TA_TOP Alignsthe point with the top of the bounding rectangle. Thisis

the default setting.
The third category determines whether the current position is updated when text is

written:

Value Meaning

TA_NOUPDATECP Does not update the current position after each call to a
text-output function. Thisisthe default setting.

TA_UPDATECP Updates the current x-position after each call to a text-

output function. The new position is at the right side of the
bounding rectangle for the text. When thisflag is set, the
coordinates specified in calls to the TextOut function are
ignored.

Returns

Thereturn value is the previous text-alignment settings, if the function is successful. The low-order byte
contains the horizontal setting; the high-order byte contains the vertical setting. Otherwise, the return value
is zero.

Comments
The text-alignment flags set by SetTextAlign are used by the TextOut and ExtTextOut functions.

Example

The following example uses the GetTextFace function to retrieve the name of the current typeface, calls
SetTextAlign so that the current position is updated when the TextOut function is called, and then writes
some introductory text and the name of the typeface by calling TextOut:

i nt nFaceNaneLen;
char aFaceNane[80] ;

nFaceNaneLen = GetTextFace(hdc, /* returns length of string */
si zeof (aFaceNane), /* size of face-nane buffer */
(LPSTR) aFaceNane); /* address of face-name buffer */

Set Text Al i gn(hdc,

TA_UPDATECP) ; /* updates current position */
MoveTo(hdc, 100, 100); /* sets current position*/
extOut(hdc, 0, O, /* uses current position for text */

"This is the current face name: ", 31);

TextOut(hdc, 0, 0, aFaceNane, nFaceNanelLen);
See Also

ExtTextOut, GetTextAlign, TextOut

SetTextCharacterExtra (2.x)

int SetTextCharacterExtra(hdc, nExtraSpace)
HDC hdc; /* handle of device context */
int NExtraSpace; [* extra character

spacing
/

The SetTextCharacterExtra function sets the amount of intercharacter spacing. The graphics device
interface (GDI) adds this spacing to each character, including break characters, when it writes aline of text
to the device context.

Parameter Description

hdc | dentifies the device context.

nExtraSpace Specifies the amount of extra space, in logical units, to be added to each character. If
the current mapping mode is not MM_TEXT, this parameter is transformed and
rounded to the nearest pixel.

Returns

The return value is the previous intercharacter spacing, if the function is successful.

Comments

The default value for the amount of intercharacter spacing is zero.

See Also

GetTextCharacterExtra

SetTextColor (2.x)

COLORREF SetTextColor(hdc, clrref)

HDC hdc; /* handle of device context */

COLORREF clrref; /* new color for text *
/

The SetTextColor function sets the text color to the specified color. The system uses the text color when
writing text to adevice context and also when converting bitmaps between color and monochrome device
contexts.

Parameter Description

hdc | dentifies the device context.

clrref Specifies the color of the text.

Returns

Thereturn value is the RGB (red-green-blue) value for the previous text color, if the function is successful.
Comments

If the device cannot represent the specified color, the system sets the text color to the nearest physical
color.

The background color for a character is specified by the SetBkColor and SetBkM ode functions.

Example
The following example sets the text color to red if the GetTextColor function determines that the current
text color is black. The text color is specified by using the RGB macro.

DWORD dwCol or;
dwCol or = GetTextColor(hdc);

i f (dwCol or == RGB(0, 0, 0)) /* if current color is black */
Set Text Col or (hdc, RGB(255, 0, 0)); /* sets color to red */
See Also

GetTextColor, BitBlt, SetBkColor, SetBkMode, RGB

SetTextJustification (2.x)

int SetTextJustification(hdc, nExtraSpace, cBreakChars)

HDC hdc; /* handle of device context */

int nExtraSpace; [* space
to add to string

/

int cBreakChars;

* number of break charactersin the string

/

The SetTextJustification function adds space to the break charactersin a string. An application can use the
GetTextMetrics function to retrieve afont's break character.

Parameter Description
hdc I dentifies the device context.

nExtraSpace Specifies the total extra space, in logical units, to be added to the line of text. If the
current mapping mode isnot MM_TEXT, the value given by this parameter is
converted to the current mapping mode and rounded to the nearest device unit.

cBreakChars Specifies the number of break charactersin the line.

Returns
Thereturn valueis 1 if the function is successful. Otherwise, it is zero.

Comments

After the SetTextJustification function is called, a call to atext-output function (for example, TextOut)
distributes the specified extra space evenly among the specified number of break characters. The break
character is usually the space character (ASCII 32), but it may be defined by a font as some other
character.

The GetTextExtent function istypically used with SetTextJustification. The GetTextExtent function
computes the width of a given line before alignment. An application can determine how much space to
specify in the nExtraSpace parameter by subtracting the value returned by GetTextExtent from the width
of the string after alignment.

The SetTextJustification function can be used to aign aline that contains multiple runsin different fonts.
In this case, the line must be created piecemeal by aligning and writing each run separately.

Because rounding errors can occur during alignment, the system keeps a running error term that defines
the current error. When aligning aline that contains multiple runs, GetTextExtent automatically usesthis
error term when it computes the extent of the next run, allowing the text-output function to blend the error
into the new run. After each line has been aligned, this error term must be cleared to prevent it from being
incorporated into the next line. The term can be cleared by calling SetTextJustification with the
nExtraSpace parameter set to zero.

Example

The following example writes two lines of text inside a box; one of the linesis aligned, and the other is
not. The GetTextExtent function determines the width of the unaligned string. The GetTextMetrics
function determines the break character that is used by the current font; thisinformation isthen used to
determine how many break characters the string contains. The SetTextJustification function specifies the
total amount of extra space and the number of break characters to distribute it among. After writing aline
of aligned text, SetTextJustification is called again, to set the error term to zero.

POINT aPoi nts[5];

int iLMargin = 10, i Rvargin = 10, i BoxWdth;

int cchString;

LPSTR | pszJustified = "Text to be justified in this test.";
DWORD dwExt ent ;

WORD wText W dt h;

TEXTMETRIC tm

int j, cBreakChars;

aPoints[0].x = 100; aPoints[0].y = 50;
aPoints[1].x = 600; aPoints[1l].y = 50;
aPoints[2].x = 600; aPoints[2].y = 200;
aPoints[3].x = 100; aPoints[3].y = 200;

aPoints[4].x = 100; aPoints[4].y = 50;
Polyline(hdc, aPoints, sizeof(aPoints) / sizeof (POINT));

TextOut(hdc, 100 + iLMargin, 100, "Unjustified text.", 17);
cchstring = Istrlen(l pszJustified);

dwExt ent = GetTextExtent(hdc, |pszJustified, cchString);
wlext W dt h = LOWORD(dwExt ent) ;

i BoxWdth = aPoints[1].x - aPoints[O0].Xx;
GetTextMetrics(hdc, & m;

for (cBreakChars = O, = 0;] < cchString; j++)
if (*(lpszJustified + j) == (char) tmtnBreakChar)
cBr eakChar s++;

Set Text Justifi cati on(hdc,
i BoxWdth - wlextWdth - (iLMargin + i Rvargin),
cBreakChars);

TextOut(hdc, 100 + iLMargin, 150, |pszJustified, cchString);

Set Text Justification(hdc, 0, 0);/* clears error term?*/

See Also
GetMapMode, GetTextExtent, GetTextMetrics, SetMapM ode, TextOut

SetViewportExt (2.X)

DWORD SetViewportExt(hdc, nXExtent, nY Extent)

HDC hdc; /* handle of device context */

int nNXExtent; /* x-extent of viewport */
int nY Extent;

* y-extent of viewport

/

The SetViewportExt function sets the x- and y-extents of the viewport of the given device context. The
viewport, along with the window, defines how points are converted from logical coordinatesto device
coordinates.

Parameter Description

hdc | dentifies the device context.

nX Extent Specifies the x-extent, in device units, of the viewport.
nY Extent Specifies the y-extent, in device units, of the viewport.
Returns

The return value is the previous viewport extents, in device units, if the function is successful. The low-
order word contains the previous x-extent; the high-order word contains the previous y-extent. Otherwise,
the return value is zero.

Comments
When the following mapping modes are set, calls to the SetWindowExt and SetViewportExt functions are
ignored:

MM_HIENGLISH
MM_HIMETRIC
MM_LOENGLISH
MM_LOMETRIC
MM_TEXT
MM_TWIPS

When the mapping mode isMM_ISOTROPIC, an application must call the SetWindowExt function
before calling SetViewportExt.

The x- and y-extents of the viewport define how much the graphics device interface (GDI) must stretch or
compress unitsin the logical coordinate system to fit unitsin the device coordinate system. For example, if
the x-extent of the window is 2 and the x-extent of the viewport is 4, GDI convertstwo logical units
(measured from the x-axis) into four device units. Similarly, if the y-extent of the window is 2 and the y-
extent of the viewport is-1, GDI converts two logical units (measured from the y-axis) into one device
unit.

The extents also define the relative orientation of the x- and y-axes in both coordinate systems. If the signs
of matching window and viewport extents are the same, the axes have the same orientation. If the signs are
different, the orientation is reversed. For example, if the y-extent of the window is 2 and the y-extent of
the viewport is-1, GDI converts the positive y-axisin the logical coordinate system to the negative y-axis
in the device coordinate system. If the x-extents are 2 and 4, GDI converts the positive x-axis in the logical
coordinate system to the positive x-axis in the device coordinate system.

Example

The following example uses the SetMapM ode, SetWindowEXxt, and SetViewportExt functionsto create a
client areathat is 10 logical unitSwide and 10 Iogical units high, and then draws a rectangle that is 4
logical unitswide and 4 logical units high:

HDC hdc;
RECT rc;

GetClientRect(hwnd, &rc);

hdc = GetDC(hwnd) ;

SetMapMode(hdc, MM ANI SOTROPI O) ;
SetWindowExt(hdc, 10, 10);

Set Vi ewport Ext (hdc, rc.right, rc.botton;
Rectangle(hdc, 3, 3, 7, 7);

RelTeaseDC(hwnd, hdc);

See Also
GetViewportExt, SetViewportExtEx, SetWindowExt

SetViewportExtEx (3.1)

BOOL SetViewportExtEx(hdc, nX, nY, IpSize)

HDC hdc; /* handle of device context */
int nX; [* x-extent of
viewport

/

intny;

* y-extent of viewport

/

SIZE FAR* IpSize;

* address of struct. with prev. extents

/

The SetViewportExtEx function sets the x- and y-extents of the viewport of the specified device context.
The viewport, along with the window, defines how points are mapped from logical coordinates to device
coordinates.

Parameter Description

hdc | dentifies the device context.

nX Specifies the x-extent of the viewport, in device units.

nY Specifies the y-extent of the viewport, in device units.

IpSize Pointsto a SIZE structure. The previous extents of the viewport, in device units, are
placed in this Structure. If IpSize is NULL, nothing is returned.

Returns

The return value is nonzero if the function is successful. Otherwise, it is zero.

Comments

When the following mapping modes are set, calls to the SetWindowEXxtEx and SetViewportExtEx
functions are ignored:

MM_HIENGLISH
MM_HIMETRIC
MM_LOENGLISH
MM_LOMETRIC
MM_TEXT
MM_TWIPS

When MM_ISOTROPIC mode is set, an application must call the SetWindowExtEx function before it
calls SetViewportExtEx.

See Also
SetViewportExt, SetWindowEXxtEx

SetViewportOrg (2.X)

DWORD SetViewportOrg(hdc, nXOrigin, nY Origin)

HDC hdc; /* handle of device context ~ */

int NXOrigin; [* x-coordinate of new origin *
/

int nY Origin;

* y-coordinate of new origin

/

The SetViewportOrg function sets the viewport origin of the specified device context. The viewport, along
with the window, defines how points are converted from logical coordinates to device coordinates.

Parameter Description

hdc | dentifies the device context.

nXOrigin Specifies the x-coordinate, in device coordinates, of the origin of the viewport. This
value must be within the range of the device coordinate system.

nY Origin Specifies the y-coordinate, in device coordinates, of the origin of the viewport. This

value must be within the range of the device coordinate system.

Returns

Thereturn value is the coordinates of the previous viewport origin, in device units, if the functionis
successful. The low-order word contains the previous x-coordinate; the high-order word contains the
previous y-coordinate. Otherwise, the return value is zero.

Comments

The viewport origin isthe origin of the device coordinate system. The graphics device interface (GDI)
converts points from the logical coordinate system to device coordinates. (An application can specify the
origin of the logical coordinate system by using the SetWindowOrg function.) GDI converts all pointsin
the logical coordinate system to device coordinates in the Same way as it converts the origin.

Example
The following example uses the SetViewportOrg function to set the viewport origin to the center of the
client area and then draws a rectangle centered over the origin:

HDC hdc;
RECT rc;

GetClientRect(hwnd, &rc);

hdc = GetDC(hwnd) ;

Set Viewport Org(hdc, rc.right/2, rc.bottom 2);
Rectangle(hdc, -100, -100, 100, 100);
ReleaseDC(hwnd, hdc);

See Also
SetViewportOrgEx, SetWindowOrg

SetViewportOrgex (3.1)

BOOL SetViewportOrgEx(hdc, nX, nY, IpPoint)
HDC hdc; /* handle of device context
int nX;

of new origin

/

intny;

* y-coordinate of new origin

/

POINT FAR* IpPoint;

* address of struct. with prev. origin

/

*/
/* x-coordinate

The SetViewportOrgEx function sets the viewport origin of the specified device context. The viewport,
along with the window, defines how points are mapped from logical coordinates to device coordinates.

Parameter Description

hdc | dentifies the device context.

nX Specifies the x-coordinate, in device units, of the origin of the viewport.

nY Specifies the y-coordinate, in device units, of the origin of the viewport.

IpPoint Pointsto a POINT structure. The previous origin of the viewport, in device coordinates,

is placed inthisstructure. If [pPoint is NULL, nothing is returned.

Returns

The return value is nonzero if the function is successful. Otherwise, it is zero.

See Also
SetViewportOrg, SetWindowOrgEx

SetWindowExt (2.x)

DWORD SetWindowExt(hdc, nX Extent, nY Extent)

HDC hdc; /* handle of device context */

int nNX Extent; /* x-extent of window */
int nY Extent;

* y-extent of window

/

The SetWindowExt function sets the x- and y-extents of the window associated with the given device
context. The window, along with the viewport, defines how logical coordinates are converted to device
coordinates.

Parameter Description

hdc | dentifies the device context.

nX Extent Specifies the x-extent, in logical units, of the window.
nY Extent Specifies the y-extent, in logical units, of the window.
Returns

Thereturn value is the window's previous extents, in logical units, if the function is successful. The low-
order word contains the previous x-extent; the high-order word contains the previous y-extent. Otherwise,
the return value is zero.

Comments

When the following mapping modes are set, calls to the SetWindowExt and SetViewportExt functions are
ignored:

MM_HIENGLISH
MM_HIMETRIC
MM_LOENGLISH
MM_LOMETRIC
MM_TEXT
MM_TWIPS

When MM _ISOTROPIC mode is set, an application must call the SetWindowExt function before calling
SetViewportExt.

The x- and y-extents of the window define how much the graphics device interface (GDI) must stretch or
compress unitsin the logical coordinate system to fit unitsin the device coordinate system. For example, if
the x-extent of the window is 2 and the x-extent of the viewport is 4, GDI convertstwo logical units
(measured from the x-axis) into four device units. Similarly, if the y-extent of the window is 2 and the y-
extent of the viewport is-1, GDI converts two logical units (measured from the y-axis) into one device
unit.

The extents also define the relative orientation of the x- and y-axes in both coordinate systems. If the signs
of matching window and viewport extents are the same, the axes have the same orientation. If the signs are
different, the orientation is reversed. For example, if the y-extent of the window is 2 and the y-extent of
the viewport is-1, GDI converts the positive y-axisin the logical coordinate system to the negative y-axis
in the device coordinate system. If the x-extents are 2 and 4, GDI converts the positive x-axis in the logical
coordinate system to the positive x-axis in the device coordinate system.

Example

The following example uses the SetMapM ode, SetWindowExt, and SetViewportExt functionsto create a
client areathat is 10 logica unitSwide and 10 logical units high andthen draws arectangle that is 4 units
wide and 4 units high:

HDC hdc;
RECT rc;

GetClientRect(hwnd, &rc);

hdc = GetDC(hwnd) ;

SetMapMode(hdc, MM ANI SOTROPI O) ;

Set W ndowext (hdc, 10, 10);
SetViewportExt(hdc, rc.right, rc.botton;
Rectangle(hdc, 3, 3, 7, 7);

RelTeaseDC(hwnd, hdc);

See Also
GetWindowExt, SetViewportExt, SetWindowEXtEx

SetWindowEXxtEx (3.1)

BOOL SetWindowExtEx(hdc, nX, nY, IpSize)

HDC hdc; /* handle of device context */

int nX; /* x-extent of window
/

intny;

* y-extent of window

/

SIZE FAR* IpSize;

* address of struct. for prev. extents

The SetWindowEXxtEx function sets the x- and y-extents of the window associated with the specified
device context. The window, along with the viewport, defines how points are mapped from logical
coordinates to device coordinates.

Parameter Description

hdc | dentifies the device context.

nX Specifies the x-extent, in logical units, of the window.

nY Specifiesthe y-extent, in logical units, of the window.

IpSize Pointsto a SIZE structure. The previous extents of the window (in logical units) are
placed in thisstructure. If IpSizeis NULL nothing is returned.

Returns

Thereturn value is nonzero if the function is successful. Otherwise, it is zero.

Comments

When the following mapping modes are set, calls to the SetWindowEXxtEx and SetViewportExt functions
are ignored: e

MM_HIENGLISH
MM_HIMETRIC
MM _LOENGLISH
MM_LOMETRIC
MM_TEXT

MM _TWIPS

When MM _ISOTROPIC mode is set, an application must call the SetWindowEXxtEx function before
calling SetViewportExt.

See Also
SetViewportExtEx, SetWindowExt

SetWindowOrg (2.X)

DWORD SetWindowOrg(hdc, nXOrigin, nY Origin)

HDC hdc; /* handle of device context */

int nNXOrigin; [* x-
coordinate to map to upper-left window corner

/

int nYOrigin;

* y-coordinate to map to upper-left window corner

/

The SetWindowOrg function sets the window origin for the given device context.

Parameter Description

hdc I dentifies the device context.

nXOrigin Specifies the logical x-coordinate to map to the upper-left corner of the window.
nY Origin Specifiesthe logical y-coordinate to map to the upper-left corner of the window.
Returns

The return value is the coordinates of the previous window origin, in logical units, if the functionis
successful. The low-order word contains the x-coordinate of the previous window origin; the high-order
word contains the y-coordinate. Otherwise, the return value is zero.

Comments

Thewindow originisthe origin of the logical coordinate system for awindow. By changing the window
origin, an application can change the way the graphics device interface (GDI) converts logical coordinates
to device coordinates (the viewport). GDI convertslogical coordinates to the device coordinates of the
viewport in the same way asit convertsthe origin.

To convert points to the right, an application can specify anegative value for the nXOrigin parameter.
Similarly, to convert points down (in the MM_TEXT mapping mode), the nY Origin parameter can be
negative.

Example

The following example uses the CopyM etaFile function to copy a metafile to a specified file, playsthe
copied metafile, uses the GetMefaFiTe function to retrieve a handle of the copied metdfile, usesthe
SetWindowOrg function o change the position at which the metafile is played 200 logical units to the
right, and then plays the metafile at the new location:

HANDLE hnf, hnf Source, hnfd d;
LPSTR | pszFilel = "MTest";

hnf = CopyMetaFile(hnf Source, | pszFilel);
PlayMetaFilTe(hdc, hnf);
DeleteMetarFile(hnf);

hnf A d = GetMetaFile(l pszFilel);
Set W ndowOr g(hdc, -200, 0);
PlayMetaFile(hdc, hnfd d);

DeleteMetaFile(hnf Sour ce) ;
DeleteMetaFile(hnf A d);

See Also
CopyMetaFile, GetMetaFile, GetWindowOrg, PlayMetaFile, SetViewportOrg, SetWindowOrgEx

SetWindowOrgEx (3.1)

BOOL SetWindowOrgEx(hdc, nX, nY, IpPoint)
HDC hdc; /* handle of device context
int nX;

of window

/

intny;

* y-coordinate of window

/

POINT FAR* IpPoint;

* address of struct. for prev. origin

/

*/
/* x-coordinate

The SetWindowOrgEx function sets the window origin of the specified device context. The window, along
with the viewport, defines how points are mapped from logical coordinates to device coordinates.

Parameter Description

hdc I dentifies the device context.

nX Specifies the logical x-coordinate of the new origin of the window.

ny Specifiesthe logical y-coordinate of the new origin of the window.

IpPoint Pointsto a POINT structure. The previous origin of the window is placed in this

structure. If TpPoint isNULL nothing is returned.

Returns

The return value is nonzero if the function is successful. Otherwise, it is zero.

See Also

GetWindowOrg, GetWindowOrgEx, SetViewportOrgEx, SetWindowOrg

SpoolFile (3.1)

HANDLE SpoolFile(lpszPrinter, |pszPort, |pszJob, IpszFile)

LPSTR IpszPrinter; /* printer name */

LPSTR IpszPort; [* port name */
LPSTR IpszJob;

* job name

/

LPSTR IpszFile;

* file name

The SpoolFile function puts afile into the spooler queue. This function istypically used by device drivers.

Parameter Description

[pszPrinter Points to a null-terminated string specifying the printer name--for example, "HP
Lasterdet 11P".

|pszPort Points to a null-terminated string specifying the local name--for example, "LPT1:". This
must be alocal port.

IpszJob Points to a null-terminated string specifying the name of the print job for the spooler.
This string cannot be longer than 32 characters, including the null-terminating character.

IpszFile Points to a null-terminated string specifying the path and filename of thefileto put in

the spooler queue. Thisfile contains raw printer data.

Returns
Thereturn value is the global handle that is passed to the spooler, if the function is successful. Otherwise,
itisan error value, which can be one of the following:

SP_APPABORT
SP ERROR
SP_NOTREPORTED
SP_OUTOFDISK
SP_OUTOFMEMORY
SP_USERABORT

Comments
Applications should ensure that the spooler is enabled before calling the SpoolFile function.

StartDoc (3.1)

int StartDoc(hdc, Ipdi)

HDC hdc; /* handle of device context */

DOCINFO FAR* Ipdi; I*
pointer to DOCINFO structure

/

The StartDoc function starts a print job. For Windows version 3.1, this function replaces the STARTDOC
printer escape.

Parameter Description

hdc | dentifies the device context for the print jaob.

[pdi Pointsto a DOCINFO structure containing the name of the document file and the name
of the outputfiTe.

Returns

Thereturn value is positive if the function is successful. Otherwise, itis SP_ ERROR.

Comments

Applications should call the StartDoc function immediately before beginning a print job. Using this
function ensures that documents containing more than one page are not interspersed with other print jobs.

The StartDoc function should not be used inside metafiles.

See Also
EndDoc, Escape, DOCINFO

StartPage (3.1)

int StartPage(hdc)
HDC hdc; /* handle of device context */

The StartPage function prepares the printer driver to accept data.

Parameter Description
hdc Identifies the device context for the print job.
Returns

Thereturn value is greater than zero if the function is successful. It isless than or equal to zero if an error
occurs.

Comments
The system disables the ResetDC function between calls to the StartPage and EndPage functions. This
means that applications cannot change the device mode except at page boundaries.

See Also
EndPage, Escape, ResetDC

StretchBlt (2.x)

BOOL StretchBlt(hdcDest, nXOriginDest, nY OriginDest, nWidthDest, nHeightDest, hdcSrc,

nXOriginSrc, nY OriginSrc, nWidthSrc, nHei ghtSrc fdwRop)
HDC hdcDest; [* destination device-context handle */
int nNXOriginDest;
coordinate of origin of destination rectangle
/
int nY OriginDest;
* y-coordinate of origin of destination rectangle

int nWidthDest;

* width of destination rectangle
/

int nHeightDest;

* height of destination rectangle
/

HDC hdcSrc;

* source device-context handle

int NXOriginSrc;

* x-coordinate of origin of source rectangle
/

int nY OriginSrc;

* y-coordinate of origin of source rectangle

int nWidthSrc;
* width of source rectangle
/

int nHeightSrc;

* height of source rectangle
/

DWORD fdwRop;

/* x-

* raster operation
/

The StretchBIt function copies a bitmap from a source rectangle into a destination rectangle, stretching or
compressing the bitmap if necessary to fit the dimensions of the destination rectangle. The StretchBIt
function uses the stretching mode of the destination device context (set by the SetStretchBltMode

function) to determine how to stretch or compress the bitmap.

Parameter Description

hdcDest | dentifies the device context to receive the bitmap.

nXOriginDest Specifiesthelogical x-coordinate of the upper-left corner of the destination rectangle.
nY OriginDest Specifies the logical y-coordinate of the upper-left corner of the destination rectangle.
nWidthDest Specifies the width, in logical units, of the destination rectangle.

nHeightDest Specifiesthe height, in logical units, of the destination rectangle.

hdcSrc | dentifies the device context that contains the source bitmap.

nXOriginSrc Specifies the logical x-coordinate of the upper-left corner of the source rectangle.

nY OriginSrc Specifiesthe logical y-coordinate of the upper-left corner of the source rectangle.
nWidthSrc Specifiesthe width, in logical units, of the source rectangle.

nHeightSrc Specifies the height, in logical units, of the source rectangle.

fdwRop Specifies the raster operation to be performed. Raster-operation codes define how the

graphics device interface (GDI) combines colorsin output operations that involve a
current brush, a possible source bitmap, and a destination bitmap. This parameter can
be one of the following values:

Code Description

BLACKNESS Turns all output black.

DSTINVERT Inverts the destination bitmap.

Returns

MERGECOPY Combines the pattern and the source bitmap by using the
Boolean AND operator.

MERGEPAINT Combines the inverted source bitmap with the destination
bitmap by using the Boolean OR operator.

NOTSRCCOPY Copies the inverted source bitmap to the destination.

NOTSRCERASE Inverts the result of combining the destination and source
bitmaps by using the Boolean OR operator.

PATCOPY Copies the pattern to the destination bitmap.

PATINVERT Combines the destination bitmap with the pattern by using
the Boolean XOR operator.

PATPAINT Combines the inverted source bitmap with the pattern by
using the Boolean OR operator. Combines the result of this
operation with the destination bitmap by using the Boolean
OR operator.

SRCAND Combines pixels of the destination and source bitmaps by
using the Boolean AND operator.

SRCCOPY Copies the source bitmap to the destination bitmap.

SRCERASE Inverts the destination bitmap and combines the result with
the source bitmap by using the Boolean AND operator.

SRCINVERT Combines pixels of the destination and source bitmaps by
using the Boolean XOR operator.

SRCPAINT Combines pixels of the destination and source bitmaps by
using the Boolean OR operator.

WHITENESS Turns all output white.

The return value is nonzero if the function is successful. Otherwise, it is zero.

Comments

The StretchBIt function stretches or compresses the source bitmap in memory and then copies the result to
the destination. If a pattern is to be merged with the result, it is not merged until the stretched source
bitmap is copied to the destination.

If abrushisused, it isthe selected brush in the destination device context.

The destination coordinates are transformed according to the destination device context; the source
coordinates are transformed according to the source device context.

If the destination, source, and pattern bitmaps do not have the same color format, StretchBIt converts the

source and pattern bitmaps to match the destination bitmaps. The foreground and background colors of the
destination device context are used in the conversion.

If StretchBIt must convert a monochrome bitmap to color, it sets white bits (1) to the background color and
black bits (0) to the foreground color. To convert color to monochrome, it sets pixels that match the
background color to white (1) and sets all other pixelsto black (0). The foreground and background colors
of the device context with color are used.

StretchBlt creates a mirror image of abitmap if the signs of the nWidthSrc and nWidthDest or nHeightSrc
and nHeightDest parameters differ. If nWidthSrc and nWidthDest have different signs, the function creates
amirror image of the bitmap along the x-axis. If nHeightSrc and nHeightDest have different signs, the
function creates amirror image of the bitmap along the y-axis.

Not all devices support the StretchBIt function. Applications can discover whether a device supports
StretchBlIt by calling the GetDeviceCaps function and specifying the RASTERCAPS index.

Example

The following example retrieves the handle of the desktop window and usesit to create a device context.
After retrieving the dimensions of the desktop window, the example calls the StretchBIt function to copy
the desktop bitmap into a smaller rectangle in the destination device context.

HWND hwndDeskt op;
HDC hdcLocal ;
RECT rc;

hwndDeskt op = GetDesktopWindow() ;
hdcLocal = GetDC(hwndDesktop);

GetWindowRect(GetDesktopWindow(), &rc);

StretchBl t (hdc, 10, 10, 138, 106,
hdcLocal, 0, 0, rc.right, rc.bottom SRCCOPY);
ReleaseDC(hwndDeskt op, hdcLocal);

See Also
BitBIt, GetDeviceCaps, SetStretchBItMode, StretchDIBits

StretchDIBits (3.0)

int StretchDIBits(hdc, XDest, Y Dest, cxDest, cyDest, XSrc, Y Src, cxSrc, cySrc, |pvBits, |pbmi,
fuColorUse, fdwRop)

HDC hdc; /* handle of device context */

int XDest; /* x-

coordinate of destination rectangle

/

int YDest;

* y-coordinate of destination rectangle

/

int cxDest;

* width of destination rectangle

/

int cyDest;

* height of destination rectangle

/

int XSrc;

* x-coordinate of source rectangle
/

int Y Src;
* y-coordinate of source rectangle
/

int cxSrc;

* width of source rectangle
/

int cySrc;

* height of source rectangle
/

const void FAR* |pvBits;

* address of buffer with DIB bits

/

LPBITMAPINFO Ipbmi;

* address of structure with bitmap data
/

UINT fuColorUse;

* RGB or palette indices

/

DWORD fdwRop;
* raster operation
/

The StretchDIBits function moves a device-independent bitmap (DIB) from a source rectangle into a
destination rectangle, stretching or compressing the bitmap if necessary to fit the dimensions of the
destination rectangle.

Parameter Description

hdc I dentifies the destination device context for a screen surface or memory bitmap.
XDest Specifies the logical x-coordinate of the destination rectangle.

Y Dest Specifies the logical y-coordinate of the destination rectangle.

cxDest Specifiesthe logical x-extent of the destination rectangle.

cyDest Specifiesthelogical y-extent of the destination rectangle.

XSrc Specifies the x-coordinate, in pixels, of the source rectangle in the DIB.

YSrc Specifies the y-coordinate, in pixels, of the source rectanglein the DIB.

cxXSrc Specifies the width, in pixels, of the source rectangle in the DIB.

cySrc Specifies the height, in pixels, of the source rectangle in the DIB.

IpvBits Points to the DIB bitsthat are stored as an array of bytes.

[pbmi Pointsto a BITMAPINFO structure that contains information about the DIB.
fuColorUse Specifies whether the bmiColors member of the Ipbmi parameter contains explicit RGB

(red-green-blue) values or indices into the currently realized logical palette. The
fuColorUse parameter can be one of the following values:

Value Meaning

DIB_PAL_COLORS The color table consists of an array of 16-bit indicesinto
the currently realized logical palette.
DIB_RGB_COLORS The color table contains literal RGB values.
fdwRop Specifies the raster operation to be performed. Raster-operation codes define how the

graphics device interface (GDI) combines colorsin output operations that involve a
current brush, a possible source bitmap, and a destination bitmap. For alist of raster-
operation codes, see the description of the BitBIt function.

Returns
Thereturn value is the number of scan lines copied, if the function is successful.

Comments

The StretchDIBits function uses the stretching mode of the destination device context (set by the
SetStretchBItM ode function) to determine how to stretch or compress the bitmap.

The origin of the coordinate system for a device-independent bitmap is the lower-left corner. The origin of
the coordinates of the destination rectangle depends on the current mapping mode of the device context.

StretchDIBits creates amirror image of abitmap if the signs of the cxSrc and cxDest parameters or the
cySrc and cyDest parameters differ. If cxSrc and cxDest have different signs, the function creates amirror
image of the bitmap along the x-axis. If cySrc and cyDest have different signs, the function creates a
mirror image of the bitmap along the y-axis.

See Also
SetMapMode, SetStretchBItMode, BITMAPINFO

TextOut (2.x)

BOOL TextOut(hdc, nX Start, nY Start, IpszString, cbString)

HDC hdc; /* handle of device context */

int nXStart; /* x-coordinate
of starting position

/

int nY Start;
* y-coordinate of starting position
/

LPCSTR lpszString;

* address of string

/

int cbString;

* number of bytesin string
/

The TextOut function writes a character string at the specified location, using the currently selected font.

Parameter Description

hdc | dentifies the device context.

nX Start Specifies the logical x-coordinate of the starting point of the string.
nY Start Specifiesthe logical y-coordinate of the starting point of the string.
IpszString Points to the character string to be drawn.

cbString Specifies the number of bytesin the string.

Returns

Thereturn value is nonzero if the function is successful. Otherwise, it is zero.
Comments

Character origins are at the upper-left corner of the character cell.

By default, the TextOut function does not use or update the current position. If an application must update
the current position when calling TextOut, it can call the SetTextAlign function with the wFlags parameter
set to TA_UPDATECP. When thisflag is set, Windows ignores the nX Start and nY Start parameters on
subsequent calls to the TextOut function, using the current position instead.

Example

The following example uses the GetTextFace function to retrieve the face name of the current font, cals
SetTextAlign so that the current position is updated when the TextOut function is called, and then writes
some introductory text and the face name by calling TextOut:

i nt nFaceNaneLen;
char aFaceNane[80] ;

nFaceNaneLen = GetTextFace(hdc, /* returns length of string */
si zeof (aFaceNane), /* size of face-name buffer */
(LPSTR) aFaceNane); /* address of face-nane buffer */

SetTextAlign(hdc,

A_UPDATECP) ; /* updates current position */
MoveTo(hdc, 100, 100); /* sets current position*/
TextQut (hdc, 0, O, /* uses current position for text */

"This is the current face nane: ", 31);

Text Qut (hdc, 0, 0, aFaceNane, nFaceNanelLen);
See Also

ExtTextOut, GetTextExtent, SetTextAlign, SetTextColor, TabbedTextOut

UnrealizeObject (2.x)

BOOL UnrealizeObject(hgdiobj)
HGDIOBJ hgdiobj; /* handle of brush or palette */

The UnrealizeObject function resets the origin of a brush or resets alogical paette. If the hgdiobj
parameter identifies a brush, UnrealizeObject directs the system to reset the origin of the brush the next
timeit is selected. If the hgdiobj parameter identifies alogical palette, UnrealizeObject directs the system
to realize the palette as though it had not previously been realized. The next time the application calls the
RealizePalette function for the specified palette, the system completely remaps the logical palette to the
System palette.

Parameter Description

hgdiobj I dentifies the object to be reset.

Returns

Thereturn value is nonzero if the function is successful. Otherwisg, it is zero.
Comments

The UnrealizeObject function should not be used with stock objects.

The UnrealizeObject function must be called whenever a new brush origin is set (by using the
SetBrushOrg function).

A brush identified by the hgdiobj parameter must not be the currently selected brush of any device context.
A palette identified by hgdiobj can be the currently selected palette of a device context.

Example

The following example uses the SetBrushOrg function to set the origin coordinates of the current brush to
(3,5), uses the SelectObject function to remove that brush from the device context, uses the
UnrealizeObject function 1o force the system to reset the origin of the specified brush, and then calls
SelectObject again to select the brush into the device context with the new brush origin:

HBRUSH hbr, hbrd d;
SetBkMode(hdc, TRANSPARENT);
hbr = CreateHatchBrush(HS_CROSS, RGB(0, 0, 0));

Unreal i zeQbj ect (hbr);
SetBrushOrg(hdc, 0, 0);
hbra d = SelectObject(hdc, hbr);

Rectangle(hdc, 0, 0, 200, 200);

hbr = SelectObject(hdc, hbrdd); /* desel ects hbr */

Unreal izeObject(hbr); /* resets origin next tinme hbr selected */
SetBrushOrg(hdc, 3, 5);

hbra d = SelectObject(hdc, hbr);/* selects hbr again */

Rectangle(hdc, 0, 0, 200, 200);

SelectObject(hdc, hbrd d);
DeleteUbject(hbr);

See Also
RealizePa ette, SelectObject, SetBrushOrg

UpdateColors (3.0)

int UpdateColors(hdc)
HDC hdc; /* handle of device context */

The UpdateColors function updates the client area of the given device context by matching the current
colorsin the client area, pixel by pixel, to the system palette. An inactive window with arealized logical
palette may call UpdateColors as an alternative to redrawing its client area when the system palette
changes.

Parameter Description

hdc I dentifies the device context.
Returns

The return value is not used.

Comments

Using UpdateColors to update a client areais typicaly faster than redrawing the area. However, because
UpdateColors performs the color translation based on the color of each pixel before the system palette
changed, each call to this function resultsin the loss of some color accuracy.

GDI functions (3.1)

Terminates a print job

Adds afont to the font table

Replaces entriesin alogical palette

Draws an arc

Copies a bitmap between device contexts
Draws achord

Closes a metafile DC and gets the handle
Creates a region by combining two regions
Copies ametéfile

Creates a device-dependent memory bitmap
Creates a bitmap using BITMAP structure
Creates a brush with the specified attributes
Creates a bitmap compatible with the DC
Creates a DC compatible with the specified DC
Creates a device context

Creates bitmap handle from DIB specification
Creates a pattern brush from aDIB

Creates discardabl e bitmap

Creates an dlliptical region

Creates an dlliptical region

Creates alogical font

Creates afont using a LOGFONT structure
Creates a hatched brush

Creates an information context

Creates a metafile device context
Createsalogical color palette

Creates a pattern brush from a bitmap
Creates apen

Creates apen using aLOGPEN structure
Creates a polygonal region

Creates aregion consisting of polygons
Creates arectangular region

Creates aregion using a RECT structure
Creates a rectangular region with round corners
Creates aresource file with font info
Creates a solid brush with a specified color
Deletes a device context

Invalidates a metafile handle

Deletes an object from memory

Retrieves the capabilities of a device
Displays adialog box for printing modes
Converts device points to logical points
Draws an ellipse

Endsaprint job

Ends apage

Retrieves fonts in a specified family
Enumerates fonts on the specified device
Enumerates metafile records

Enumerates pens and brushes in a device context
Compares two regions for equality

Allows access to capabilities device

Changes clipping region, excluding rectangle
Displays adiaog box for printing modes
Fills an areawith the current brush

Writes character string in rectangular region
Fills aregion with the specified brush

Fills an areawith the current brush

Draws a border around aregion

Retrieves setting of aspect-ratio filter
Retrieves setting of aspect-ratio filter
Copies bitmap bits to a buffer

Retrieves the width and height of a bitmap

Retrieves the width and height of a bitmap
Retrieves the current background color
Retrieves the background mode

Returns current accumulated bounding rectangle
Retrieves the origin of the current brush
Retrieves the origin of the current brush
Retrieves the widths of TrueType characters
Retrieves the character widths

Retrieves arectangle for the clipping region
Retrieves the current position, in logical units
Retrieves the current position, in logical units
Retrieves tranglation origin for device context
Retrieves the device capabilities

Copies the DIB bitsinto a buffer

Retrieves font metric data

Retrieves data for individual outline character
Retrieves kerning pairs for the current font
Retrieves the mapping mode

Creates a handle to a specified metéfile
Creates a global memory object from a metéfile
Retrieves the closest available color
Retrieves the nearest match for a color
Retrieves information about an object
Retrieves metrics for TrueType fonts
Retrieves arange of palette entries

Retrieves RGB color value of specified pixel
Retrieves the current polygon-filling mode
Retrieves status of TrueType fonts on system
Retrieves the bounding rectangle for aregion
Retrieves the current drawing mode
Retrieves handle of stock pen, brush, or font
Retrieves the current bitmap-stretching mode
Retrieves entries from the system palette
Determines the use of an entire system palette
Retrieves the intercharacter spacing

Retrieves the text-alignment flags

Retrieves the current text color

Determines dimensions of specified text string
Retrieves dimensions of specified text string
Retrieves the typeface name of the current font
Retrieves the metrics for the current font
Retrieves the viewport extent

Retrieves the viewport extent

Retrieves the viewport origin

Retrieves the viewport origin

Retrieves the window extents

Retrieves the window extents

Retrieves the window origin

Retrieves the window origin

Creates a clipping region from an intersection
Inverts the colorsin aregion

Determinesif ahandleis not a GDI object
Computes successive pointsin aline

Draws a line from the current position
Convertslogica points to device points
Moves the current position

Moves the current position

Moves aclipping region

Moves aregion by a specified offset

Moves the viewport origin

Moves the viewport origin

Moves the window origin

Moves the window origin

Fills region with brush in given device context

Creates a bitmap pattern

Draws a pie-shaped wedge

Plays ametafile

Plays a metéfile record

Draws a polygon

Draws line segments to connect specified points
Draws a series of polygons

Determines whether apoint isin aregion
Determines whether point isin clipping region
Determines whether to terminate a print job
Draws arectangle

Determines whether rectangle overlaps region
Determines whether rectangle isin clip region
Removes an added font resource

Updates a device context

Changesthe size of alogical palette
Restores the device context

Draws a rectangle with rounded corners
Saves the current state of a device context
Scales the viewport extents

Scales the viewport extents

Scales the window extents

Scales the window extents

Selects clipping region for device context
Selects an object into a device context

Sets the abort function for a print job

Sets the bitmap bits from an array of bytes
Sets the width and height of a bitmap

Sets the width and height of a bitmap

Sets the current background color

Sets the background mode

Controls the bounding-rectangle accumul ation
Setsthe origin of the current brush

Sets the bits of a bitmap

Sets DIB bitsto adevice

Sets the mapping mode

Sets the font-mapper flag

Creates a memory object from the metafile
Creates a memory object from the metafile
Sets the colors and flags for a color palette
Sets a pixel to the specified color

Sets the polygon-filling mode

Changes aregion into a specified rectangle
Sets the current drawing mode

Sets the bitmap-stretching mode

Setsthe use of system-palette static colors
Sets the text-alignment flags

Sets the intercharacter spacing

Sets the foreground color for text

Sets the alignment for text output

Sets the viewport extents

Sets the viewport extents

Sets the viewport origin

Sets the viewport origin

Sets the window extents

Sets the window extents

Sets the window origin

Sets the window origin

Puts afile in the spooler queue

Startsa print job

Prepares a printer driver to receive data
Copies a bitmap, transforming it if required
Moves DIB from source to destination rectangle
Writes character string at specified location

Resets brush origins and realizes pal ettes
Updates colorsin the client area

DRV_CLOSE (3.1)
DRV_CLOSE

The DRV_CL OSE message is the first message sent by Windowsto an installable driver after an
application calls the CloseDriver function.

Parameter Description

dwDriverldentifier Specifies the unique 32-hit identifier returned by the OpenDriver function.
hDriver Identifies the instance of the installable driver that should be closed.
[Paraml Specifies driver-specific data.

[Param?2 Specifies driver-specific data

Returns

Aninstallable driver returns nonzero if its DriverProc function successfully closes the driver. Otherwise, it
returns zero.

Comments
The |Paraml and |Param2 parameters specify the same values as the |Param1 and |Param?2 parameters for
the CloseDriver function.

Each time a driver processes this message, it must decrement a private use-count variable. When the value
of thisvariableis zero, Windows closes the driver.

See Also

DRV_OPEN

DRV_CONFIGURE (3.1)

DRV_CONFIGURE

The DRV_CONFI GURE message is sent to inform an installable driver that it should display its private
configuration dialog box.

Parameter Description

dwDriverldentifier Specifies a unique 32-bit value that identifies the installable driver.

hDriver Identifies an instance of the installable driver.

[Paraml Specifies the handle of the parent window for the configuration dialog box. This
handle isin the parameter's |ow-order word.

[Param?2 Points to an optional DRV CONFIGINFO structure. An installable driver should
verify that this pointer isvalid before using it.

Returns

An installable driver returns nonzero if it processes this message. Otherwise, it returns zero.

Comments

Aninstallable driver that supports the DRV_CONFIGURE message must provide its own dialog box
template and dialog box procedure. It must also record the user's configuration requestsin an appropriate
file. (Thismay be the SY STEM.INI file or some other file used by the driver for this purpose.)

See Also
DRV_QUERY CONFIGURE

DRV_DISABLE (3.1)
DRV_DISABLE

The DRV_DISABLE message is the second message sent by Windows to an installable driver after an
application calls the CloseDriver function.

Parameter Description

dwDriverldentifier Not used.

hDriver |dentifies an instance of the installable driver.
|Param1 Not used.

|Param?2 Not used.

Returns

Aninstallable driver returns zero if it processes this message.

See Also

DRV_CLOSE

DRV_ENABLE (3.1)

DRV_ENABLE

The DRV_ENABLE messageis sent to an installable driver when it is |oaded or reloaded or whenever
Windows isreinstalled after switching to an MS-DOS application.

Parameter Description

dwDriverldentifier Not used.

hDriver |dentifies an instance of the installable driver.
|Param1 Not used.

|Param?2 Not used.

Returns

Aninstallable driver returns zero if it processes this message.
Comments

When the DriverProc function receives this message, it should initialize all of the driver-specific structures
with default values.

See Also
DRV_OPEN

DRV_EXITAPPLICATION (3.1)

DRV_EXITAPPLICATION
The DRV_EXITAPPLICATION message is sent to all installable drivers when an application exits.

Parameter Description
dwDriverldentifier Specifies a unique 32-bit value that identifies the installable driver.
[Paraml Specifies the type of application exit. This parameter can be one of the following
values:
Value Meaning
DRVEA_NORMALEXIT Set if the application terminated normally.
DRVEA_ABNORMALEXIT Set if the application terminated
abnormally (because of an application or
system error).
[Param?2 Not used.
Returns
The value returned by the application isignored for this message.
See Also

DRV_EXITSESSION

DRV_EXITSESSION (3.1)
DRV_EXITSESSION
The DRV_EXITSESSION message is sent to all installable drivers when Windows prepares to exit.

Parameter Description
dwDriverldentifier Specifies a unique 32-bit value that identifies the installable driver.
[Paraml Reserved.

[Param?2 Reserved.

Returns

The value returned by the application isignored for this message.

Comments

The user interface and all other drivers are till enabled when this message is sent.
See Also

DRV_EXITAPPLICATION

DRV_FREE (3.1)

DRV_FREE

The DRV_FREE message is the third message sent by Windows to an installable driver after an
application calls the CloseDriver function.

Parameter Description

dwDriverldentifier Not used.

hDriver |dentifies an instance of the installable driver.
|Param1 Not used.

|Param?2 Not used.

Returns

Aninstallable driver returns zero if it processes this message.
Comments

When an installable driver's DriverProc function receives this message, it should free the memory that was
alocated for al driver-specific Sructures.

DRV_INSTALL (3.1)

DRV_INSTALL

The DRV_INSTALL messageis sent to an installable driver during the driver initialization process.

Parameter Description

dwDriverldentifier Specifies a unique 32-bit value that identifies the installable driver.

hDriver Identifies an instance of the installable driver.

|Param1 Not used.

|Param?2 Points to an optional DRV CONFIGINFO structure. An installable driver should
verify that this pointer isvalid before using it.

Returns

An installable driver returns nonzero if it processes this message. Otherwise, it returns zero.

Comments

When the driver receives this message, it creates an entry for the driver in the SY STEM.INI file and
performs other necessary configuration operations.

DRV_LOAD (3.1)

DRV_LOAD

The DRV_LOAD message is sent to an installable driver to notify the driver that it has been loaded.
Parameter Description

dwDriverldentifier Not used.

hDriver Identifies an instance of the installable driver.

|Param1 Not used.

|Param?2 Not used.

Returns

Aninstallable driver returns nonzero if its DriverProc function successfully loads the driver. Otherwise, it
returns zero.

DRV_OPEN (3.1)

DRV_OPEN

The DRV_OPEN messageis sent to an installable driver each timeiit is opened.

Parameter Description

dwDriverldentifier Specifies a unique 32-bit value that identifies the installable driver.

hDriver Identifies an instance of the installable driver.

[Paraml Points to a null-terminated string containing any ASCI| characters that followed
the driver name in the SY STEM.INI file.

[Param?2 Contains the data specified by the |Param parameter, the third argument in the
OpenDriver function.

Returns

Aninstallable driver returns nonzero if it processes this message. Otherwise, it returns zero.

Comments

If no characters follow the driver name in SY STEM.INI, the |Param1 parameter isa NULL pointer.

See Also

DRV_CLOSE

DRV_QUERYCONFIGURE (3.1)
DRV_QUERY CONFIGURE

The DRV_QUERY CONFIGURE message is sent to an installable driver to determine whether it can be
configured by the user.

Parameter Description

dwDriverldentifier Specifies a unique 32-bit value that identifies the installable driver.
hDriver Identifies an instance of the installable driver.

|Paraml Not used.

[Param?2 Not used.

Returns

An installable driver returns nonzero if it supports custom configuration and is capable of displaying a
configuration dialog box. Otherwise, it returns zero.

See Also
DRV_CONFIGURE

DRV_POWER (3.1)
DRV_POWER

The DRV_POWER message is sent to an installable driver each time the power supply to the associated
device is about to be turned on or off.

Parameter Description

dwDriverldentifier Specifies a unique 32-bit value that identifies the installable driver.
hDriver Identifies an instance of the installable driver.

|Paraml Not used.

[Param?2 Not used.

Returns

An installable driver returns nonzero if it processes this message. Otherwise, it returns zero.

DRV_REMOVE (3.1)

DRV_REMOVE

The DRV_REMOVE message is sent by an application to an installable driver to notify the driver that it is
about to be removed from the system.

Parameter Description

dwDriverldentifier Specifies a unique 32-bit value that identifies the installable driver.

[Paraml1 Not used.

[Param?2 Not used.

Returns

Aninstallable driver returns nonzero if it processes this message. Otherwise, it returns zero.
Comments

When an installable driver receives this message, it should remove necessary entries from the SY STEM.
INI file.

DRV_USER (3.1)

DRV_USER

The DRV_USER message is a user-defined or driver-dependent message.

Parameter Description

dwDriverldentifier This parameter is not predefined; the valueis driver dependent.
hDriver This parameter is not predefined; the valueis driver dependent.
[Paraml This parameter is not predefined; the valueis driver dependent.
|Param?2 This parameter is not predefined; the valueis driver dependent.
Returns

Thereturn value is driver dependent.

Installable-driver messages (3.1)

Indicates that driver should free resources
Indicates that driver should display dialog
Indicates that driver should unhook interrupts
Indicates that driver has been loaded or reloaded
Indicates an application is exiting

Informs drivers that Windows is exiting
Indicates that driver must free all resources
Indicates that driver has been installed

Indicates that driver has been loaded.

Indicates that driver will be opened

Queries driver configuration capabilities
Indicates that device power-source was en/disabled
Indicates that driver will be removed

Indicates that a user-defined action occurred

_hread (3.1)

long _hread(hf, hpvBuffer, chBuffer)

HFILE hf; /* file handle */

void _huge* hpvBuffer; /*
address of buffer for read data

/

long cbBuffer;

* length of data buffer

/

The _hread function reads data from the specified file. This function supports huge memory objects (that
is, objects larger than 64K, allocated using the Global Alloc function).

Parameter Description

hf Identifies the file to be read.

hpvBuffer Pointsto a buffer that is to receive the dataread from the file.
cbBuffer Specifies the number of bytes to be read from thefile.
Returns

The return value indicates the number of bytes that the function read from thefile, if the function is
successful. If the number of bytes read is less than the number specified in cbBuffer, the function reached
the end of the file (EOF) before reading the specified number of bytes. Thereturn valueis-1L if the
function fails.

Comments
MS-DOS error return values are not available when an application calls this function.

See Also
_Iread, hmemcpy, _hwrite

_hwrite (3.1)

long _hwrite(hf, hpvBuffer, cbBuffer)

HFILE hf; /* file handle */
const void _huge* hpvBuffer;

* address of buffer for write data

/

long cbBuffer;

* size of data

/

The _hwrite function writes data to the specified file. This function supports huge memory objects (that is,
objects larger than 64K, allocated using the Global Alloc function).

Parameter Description

hf Identifies the file to be written to.

hpvBuffer Points to a buffer that contains the data to be written to the file.
cbBuffer Specifies the number of bytes to be written to the file.

Returns

The return value indicates the number of bytes written to the file, if the function is successful. Otherwise,
thereturn valueis-1L.

Comments
MS-DOS error return values are not available when an application calls this function.

See Also
hmemcpy, _hread, _Iwrite

_lclose (2.x)

HFILE _Iclose(hf)
HFILE hf; /* handle of fileto close */

The _Iclose function closes the given file. As aresult, the fileis no longer available for reading or writing.

Parameter Description

hf Identifies the file to be closed. This handleis returned by the function that created or last
opened thefile.

Returns

Thereturn value is zero if the function is successful. Otherwise, it is HFILE_ERROR.

Example

The following example copies afile to atemporary file, then closes both files:

i nt cbRead;

PBYTE pbBuf;

/* Allocate a buffer for file I/O */
pbBuf = (PBYTE) LocalAlloc(LMEM_FIXED, 2048);

/* Copy the input file to the tenmporary file. */

do {
cbRead = lIread(hf ReadFile, pbBuf, 2048);
_lwrite(hf TenpFi |l e, pbBuf, cbRead);

} whiTe (cbRead != 0);

/* Free the buffer and close the files. */

LocalFree((HLOCAL) pbBuf);

_lcl ose(hf ReadFi | e);
_lclose(hf TempFi | e);

See Also
_lopen, OpenFile

_lcreat (2.x)

HFILE _lcreat(IpszFilename, fnAttribute)
LPCSTR IpszFilename; [* address of filetoopen */
int fnAttribute; * file attributes */

The _Icreat function creates or opens a specified file. If the file does not exist, the function creates a new
file and opensit for writing. If the file does exist, the function truncates the file size to zero and opens it
for reading and writing. When the function opens the file, the pointer is set to the beginning of thefile.

Parameter Description
[pszFilename Points to a null-terminated string that names the file to be opened. The string must
consist of characters from the Windows character set.
fnAttribute Specifies the file attributes. This parameter must be one of the following values:
Vaue Meaning
0 Normal; can be read or written without restriction.
1 Read-only; cannot be opened for writing.
2 Hidden; not found by directory search.
3 System; not found by directory search.
Returns
The return value is afile handle if the function is successful. Otherwise, it isHFILE_ERROR.
Comments

Use this function carefully. It is possible to open any file, even one that has already been opened by
another function.

Example
The following example uses the _lcreat function to open atemporary file:

HFILE hf TenpFil e;
char szBuf[144];

/* Create a temporary file. */
GetTempFileName(0, "tst", 0, szBuf);

hf TempFil e = _|creat(szBuf, 0);

if (hfTenpFile == HFI LE_ERROR) {
ErrorHandl er () ;
}

llseek (2.X)

LONG _llseek(hf, 10ffset, nOrigin)

HFILE hf; * file handle */

LONG |Offset; /* number of bytesto move
/

int nOrigin;

* position to move from

/

The _IIseek function repositions the pointer in a previously opened file.

Parameter Description

hf Identifies the file.

|Offset Specifies the number of bytes the pointer isto be moved.

nOrigin Specifies the starting position and direction of the pointer. This parameter must be one

of the following values:
Value Meaning

0 Move the file pointer |Offset bytes from the beginning of thefile.
1 Move the file pointer |Offset bytes from its current position.
2 Move the file pointer |0ffset bytes from the end of the file.

Returns
The return value specifies the new offset, in bytes, of the pointer from the beginning of thefile, if the
function is successful. Otherwise, the return value isHFILE_ERROR.

Comments

When afileisinitially opened, the file pointer is positioned at the beginning of thefile. The _llseek
function permits random access to afile's contents by moving the pointer an arbitrary amount without
reading data.

Example
The following example uses the _llseek function to move the file pointer to the end of an existing file:

HFILE hf AppendFi | e;

/* Open the wite file. */

hf AppendFil e = _lopen("append. txt", VR TE);
/* Move to the end of the file. */

if (_I'lseek(hfAppendFile, OL, 2) == -1) {
ErrorHandl er () ;

_lopen (2.x)

HFILE _lopen(IpszFilename, fnOpenMode)

LPCSTR IpszFilename; [* address of filetoopen */

int fnOpenMode; /* file access *
/

The _lopen function opens an existing file and sets the file pointer to the beginning of thefile.

Parameter Description

|pszFilename Points to a null-terminated string that names the file to be opened. The string must
consist of characters from the Windows character set.

fnOpenMode Specifies the modes in which to open the file. This parameter consists of one access
mode and an optional share mode.

Vaue Access mode

READ Opens the file for reading only.

READ_WRITE Opensthefile for reading and writing.

WRITE Opens the file for writing only.

Value Share mode (optional)

OF_SHARE_COMPAT Opens thefile in compatibility mode, allowing
any process on a given machine to open thefile
any number of times. If the file has been opened
]E)ylusi ng any of the other sharing modes, |open

ails.

OF_SHARE_DENY_NONE Opens the file without denying other programs

read or write accessto thefile. If thefile has
been opened in compatibility mode by any other
program, _lopen fails.

OF SHARE DENY_READ Opens the file and denies other programs read
access to thefile. If the file has been opened in
compatibility mode or for read access by any
other program, _lopen fails.

OF SHARE DENY_WRITE Opensthe file and denies other programs write
access to thefile. If the file has been opened in
compatibility mode or for write access by any
other program, _lopen fails.

OF_SHARE_EXCLUSIVE Opens thefile in exclusive mode, denying other
programs both read and write access to thefile.
If the file has been opened in any other mode for
read or write access, even by the current
program, _lopen fails.

Returns
The return value is afile handle if the function is successful. Otherwise, it isHFILE_ERROR.

Example
The following example uses the _lopen function to open an input file:

HFILE hf ReadFil e;
/* Open the input file (read only). */

hf ReadFile = | open("testfile", READ);

if (hfReadFile == HFI LE_ERROR) {
ErrorHandl er () ;

See Also
OpenFile

_Iread (2.x)

UINT _lread(hf, hpvBuffer, cbBuffer)

HFILE hf; /* file handle */

void _huge* hpvBuffer; /*
address of buffer for read data

/

UINT cbBuffer;

* length of data buffer

/

The _Iread function reads data from the specified file.

Parameter Description

hf Identifies the file to be read.

hpvBuffer Points to a buffer that is to receive the data read from the file.

cbBuffer Specifies the number of bytes to be read from the file. This value cannot be greater than
OXFFFE (65,534).

Returns

The return value indicates the number of bytes that the function read from thefile, if the function is
successful. If the number of bytes read is less than the number specified in cbBuffer, the function reached
the end of the file (EOF) before reading the specified number of bytes. Thereturn valueis
HFILE_ERROR if the function fails.

Comments
MS-DOS error return values are not available when an application calls this function.

Example
The following example usesthe _Iread and _lwrite functions to copy data from one file to another:

HFILE hf ReadFil e;

i nt cbRead;

PBYTE pbBuf ;

/* Allocate a buffer for file I/O */

pbBuf = (PBYTE) LocalAlloc(LMEM_FIXED, 2048);

/* Copy the input file to the tenmporary file. */

do {
cbRead = _|Iread(hfReadFile, pbBuf, 2048);
Iwrite(hf TenpFile, pbBuf, cbRead);

} whiTe (cbRead != 0);
/* Free the buffer and close the files. */

LocalFree((HLOCAL) pbBuf);

_Iclose(hf ReadFi | e);
_Iclose(hf TenpFi |l e);

See Also
_hread, _lwrite

_lwrite (2.x)

UINT _lwrite(hf, hpvBuffer, cbBuffer)

HFILE hf; /* file handle */
const void _huge* hpvBuffer;

* address of buffer for write data

/

UINT cbBuffer;

* size of data

/

The _lwrite function writes data to the specified file.

Parameter Description

hf Identifies the file to be written to.

hpvBuffer Points to a buffer that contains the data to be written to thefile.

cbBuffer Specifies the number of bytes to be written to thefile. If this parameter is zero, thefileis
expanded or truncated to the current file-pointer position. This value cannot be greater
than OxFFFE (65,534).

Returns

The return value indicates the number of bytes written to thefile, if the function is successful. Otherwise,
thereturn value isHFILE_ERROR.

Comments
The buffer specified by hpvBuffer cannot extend past the end of a segment.

MS-DOS error return values are not available when an application calls this function.

Example
The following example usesthe _Iread and _lwrite functions to copy data from one file to another:

i nt cbRead;
PBYTE pbBuf;

/* Allocate a buffer for file I/O */
pbBuf = (PBYTE) LocalAlloc(LMEM_FIXED, 2048);

/* Copy the input file to the tenmporary file. */

do {
cbRead = lIread(hf ReadFile, pbBuf, 2048);
_lwite(hf TenpFil e, pbBuf, cbRead);

} while (cbRead !'= 0);

/* Free the buffer and close the files. */

LocalFree((HLOCAL) pbBuf);

_Iclose(hf ReadFi | e);
_Iclose(hf TenpFil e);

See Also
_hwrite, _Iread

AccessResource (2.X)

int AccessResource(hingt, hrsrc)

HINSTANCE hinst; /* handle of module with resource */

HRSRC hrsrc; /* handle of
resource

/

The AccessResource function opens the given executable file and moves the file pointer to the beginning
of the given resource.

Parameter Description

hinst Identifies the instance of the module whose executabl e file contains the resource.

hrsrc Identifies the desired resource. This handle should be created by using the FindResource
function.

Returns

The return value is the handle of the resource file if the function is successful. Otherwisg, it is-1.

Comments

The AccessResource function supplies an MS-DOS file handle that can be used in subsequent file-read
callsto load the resource. Thefile is opened for reading only.

Applications that use this function must close the resource file by calling the _Iclose function after reading
the resource. AccessResource can exhaust available MS-DOS file handles and cause errorsif the opened
fileisnot closed after the resource is accessed.

In general, the LoadResource and L ockResource functions are preferred. These functions will access the
resource more quickly if several resources are being read, because Windows maintains a file-handle cache
for accessing executable files. However, each call to AccessResource requires that a new handle be opened
to the executablefile.

Y ou should not use AccessResource to access executable files that are installed in ROM on a ROM-based
system, since there are no disk files associated with the executabl e file; in such a case, afile handle cannot
be returned.

See Also
FindResource, _Iclose, LoadResource, LockResource

AddAtom (2.x)

ATOM AddAtom(IpszName)
LPCSTR IpszName; /* addressof stringtoadd */

The AddAtom function adds a character string to the local atom table and returns a unique value
identifying the string.

Parameter Description
IpszName Points to the null-terminated character string to be added to the table.
Returns

The return value specifies the newly created atom if the function is successful. Otherwise, it is zero.

Comments

The AddAtom function stores no more than one copy of agiven string in the atom table. If the string is
already in the table, the function returns the existing atom value and increments (increases by one) the
string's reference count.

The MAKEINTATOM macro can be used to convert aword value into a string that can be added to the
atom table by using the AddAtom function.

The atom values returned by AddAtom arein the range 0xC000 through OXFFFF.
Atoms are case-insensitive.

Example
The following example uses the AddAtom function to add the string "Thisis an atom"” to the local atom
table:

ATOM at ;
char szMsg[80];

at = AddAtom("This is an atoni);

if (at ==

MessageBox(hwnd, "AddAtom failed", "", MB_ICONSTOP);
el se
wsprintf(szMsg, "AddAtomreturned %", at);
MessageBox(hwnd, szMsg, "", MB_OK);
See Also

DeleteAtom, FindAtom, GetAtomName, MAKEINTATOM

AllocDStoCSAlias (3.0)

UINT AllocDStoCSAlias(uSel ector)
UINT uSelector; /* data-segment selector */

The AllocDStoCSAlias function accepts a data-segment selector and returns a code-segment selector that
can be used to execute code in the data segment.

Parameter Description
uSelector Specifies the data-segment selector.
Returns

Thereturn value is the code-segment selector corresponding to the data-segment selector if the function is
successful. Otherwise, it is zero.

Comments

The application must free the new selector by calling the FreeSelector function.

In protected mode, attempting to execute code directly in a data segment will cause a general-protection

violation. AllocDStoCSAlias alows an application to execute code that the application had created in its
own stack segment.

Windows does not track segment movements. Consequently, the data segment must be fixed and
nondiscardable; otherwise, the data segment might move, invalidating the code-segment selector.

The PrestoChangoSelector function provides another method of obtaining a code selector corresponding to
a dafa selector.

An application should not use this function unlessit is absolutely necessary, since its use violates preferred
Windows programming practices.

See Also

FreeSel ector, PrestoChangoSel ector

Correction

The previous description of this function indicated that the application should free the selector with the
FreeSel ector function. Applications should not free the selector.

AllocResource (2.x)

HGLOBAL AllocResource(hinst, hrsrc, cbResource)

HINSTANCE hinst; /* handle of module containing resource */

HRSRC hrsrc; 1*
handle of resource

/

DWORD cbResource;

* sizeto allocate, or zero

/

The AllocResource function allocates uninitialized memory for the given resource.

Parameter Description

hinst I dentifies the instance of the modul e whose executable file contains the resource.

hrsrc I dentifies the desired resource. This handle should have been created by using the
FindResource function.

cbResource Specifies the size, in bytes, of the memory object to allocate for the resource. If this
parameter is zero, Windows allocates enough memory for the specified resource.

Returns

Thereturn value is the handle of the global memory object if the function is successful.

See Also

FindResource, LoadResource

AllocSelector (3.0)

UINT AllocSelector(uSel ector)
UINT uSelector; /* selector to copy or zero */

The AllocSelector function allocates a new selector.

Do not use this function in an application unlessit is absolutely necessary, since its use violates preferred
Windows programming practices.
Parameter Description

uSelector Specifies the selector to return. If this parameter specifies avalid selector, the function
returns a new selector that is an exact copy of the one specified here. If this parameter is
zero, the function returns a new, uninitialized sector.

Returns

Thereturn value is a selector that is either a copy of an existing selector, or a new, uninitialized selector.
Otherwise, the return value is zero.

Comments

The application must free the new selector by calling the FreeSelector function.

An application can call AllocSelector to allocate a selector that it can pass to the PrestoChangoSel ector
function.

See Also
PrestoChangoSel ector

AnsiToOem (2.x)

void AnsiToOem(hpszWindows, hpszOem)

const char _huge* hpszWindows; [* address of string to trandlate */

char _huge* hpszOem; /
* address of buffer for string

/

The AnsiToOem function translates a string from the Windows character set into the specified OEM
character set.

Parameter Description

hpszWindows Points to a null-terminated string of characters from the Windows character set.

hpszOem Points to the location where the translated string isto be copied. To trandate the string
in place, this parameter can be the same as hpszWindows.

Returns

This function does not return avalue.

Comments

The string to be translated can be greater than 64K in length.

Windows-to-OEM mappings are defined by the keyboard driver, where this function isimplemented.
Some keyboard drivers may have different mappings than others, depending on the machine environment,
and some keyboard driver support loading different OEM character sets; for example, the standard U.S.
keyboard driver for an IBM keyboard supports |oadable code pages, with the default being code page 437
and the most common alternative being code page 850. (The Windows character set is sometimes referred
to as code page 1007.)

The OEM character set must always be used when accessing string data created by MS-DOS or MS-DOS
applications. For example, aword processor should convert OEM characters to Windows characters when
importing documents from an MS-DOS word processor. When an application makes an MS-DOS call,
including a C run-time function call, filenames must be in the OEM character set, whereas they must be
presented to the user in Windows characters (because the Windows fonts use Windows characters).

Example
The following example is part of adialog box in which auser would create a directory by typing anamein
an edit control:

case | DOK:
Get W ndowText (Get Dl gl t em(hwndDl g, | D_EDI TDI RNAMVE), szDi r Nane,
si zeof (szDi r Nane)) ;
Ansi ToOCen{szDi r Narre, szDi r Nane) ;
nkdi r (szDi r Nane) ;
EndDi al og(hwndDl g, 1);
return TRUE;

See Also
Ansi ToOemBuff, OemToAnNsi

Ansi ToOemBuUff (3.0)

void AnsiToOemBuff(IpszWindowsStr, |pszOemStr, cbWindowsStr)

LPCSTR IpszWindowsStr; /* address of string to trandlate */
LPSTR lpszOemStr;

* address of buffer for translated string

/

UINT cbWindowsStr;

* length of string to trandate

/

The AnsiToOemBuff function trandates a string from the Windows character set into the specified OEM
character set.

Parameter Description

[pszWindowsStr Points to a buffer containing one or more characters from the Windows character set.

[pszOemStr Points to the location where the trandlated string is to be copied. To trandate the
string in place, this parameter can be the same as |pszWindowsStr.

cbWindowsStr Specifies the number of bytes in the buffer identified by the [pszWindowsStr
parameter. If coWindowsStr is zero, the length is 64K (65,536).

Returns

This function does not return avalue.

See Also

AnsiToOem, OemToAnsi

Catch (2.x)

int Catch(lpCatchBuf)
int FAR* IpCatchBuf; /* address of buffer for array */

The Catch function captures the current execution environment and copiesit to a buffer. The Throw
function can use this buffer later to restore the execution environment. The execution environment
includes the state of all system registers and the instruction counter.

Parameter Description
IpCatchBuf Points to a memory buffer large enough to contain a CATCHBUF array.
Returns

The Catch function returns immediately with a return value of zero. When the Throw function is called, it
returns again, this time with the return value specified in the nErrorReturn parameter of the Throw
function.

Comments
The Catch function is similar to the C run-time function setjmp.

Example

The following example calls the Catch function to save the current execution environment before calling a
recursive sort function. The first return value from Catch is zero. If the doSort function calls the Throw
function, execution will again return to the Catch function. Thistime, Catch will return the
STACKOVERFLOW error passed by the doSort function. The doSort function is recursive--that is, it calls
itself. It maintains a variable, wStackCheck, that is used to check to see how much stack space has been
used. If more then 3K of the stack has been used, doSort calls Throw to drop out of al the nested function
calls back into the function that called Catch.

#def i ne STACKOVERFLOW 1

UINT uSt ackCheck;
CATCHBUF cat chbuf ;

{
int i Return;
char szBuf[80];
if ((iReturn = Catch((int FAR*) catchbuf)) !'= 0) {
. /* Error processi ng goes here. */
el se {
uStackCheck = 0; /* initializes stack-usage count */
doSort (1, 100); /* calls sorting function */
br eak;
}
voi d doSort(int sLeft, int sRight)
int sLast;
/*

Det er m ne whether nore than 3K of the stack has been
used, and if so, call Throw to drop back into the
original calling application.

The stack is incremented by the size of the two paraneters,
the two | ocal variables, and the return value (2 for a near
function call).

* Ok Sk Ok X X X X

uSt ackCheck += (sizeof(int) * 4) + 2;

if (uStackCheck > (3 * 1024))
Throw((i nt FAR*) catchbuf, STACKOVERFLOW ;

/* A sorting al gorithmgoes here. */

doSort (sLeft, sLast - 1); /* note recursive call*/
uSt ackCheck -= 10;/* updates stack-check variable */
}
See Also

Throw

CloseSound (2.x)
void CloseSound(void)

This function is obsolete. Use the multimedia audio functions instead. For information about these
functions, see the Microsoft Windows Multimedia Programmer's Reference.

CountVoiceNotes (2.x)

int CountV oiceNotes(nvoice)
int nvoice; /* sound queueto be counted */

This function is obsolete. Use the multimedia audio functions instead. For information about these
functions, see the Microsoft Windows Multimedia Programmer's Reference.

DebugBreak (3.0)
void DebugBreak(void)

The DebugBreak function causes a breakpoint exception to occur in the caller. This allowsthe calling
process to signal the debugger, forcing it to take some action. If the process is not being debugged, the
system invokes the default breakpoint exception handler. This may cause the calling process to terminate.

Returns
This function does not return avaue.

Comments
This function isthe only way to break into a WEP (Windows exit procedure) in adynamic-link library.

For more information about using the debugging functions with Microsoft debugging tools, see Tools

Example
The following example uses the DebugBreak function to signal the debugger immediately before the
application handles the WM_DESTROY message:

case WM_DESTROY:

DebugBr eak() ;
PostQuitMessage(0);
break;

See Also

WEP

DebugOutput (3.1)

void FAR _cdecl DebugOutput(flags, IpszFmt, ...)

UINT flags; [* type of message */

LPCSTR lpszFmt; /* address of
formatting string

/

The DebugOutput function sends a message to the debugging terminal. Applications can apply the
formatting codes to the message string and use filters and options to control the message category.

Parameter Description

flags Specifies the type of message to be sent to the debugging terminal. This parameter can
be one of the following values:
Value Meaning
DBE TRACE The message reports that no error has occurred and supplies

information that may be useful during debugging. Example: "t
Kernel: LoadResource(14AE of GDI)"

DBE WARNING The message reports a situation that may or may not be an
error, depending on the circumstances. Example: "wn Kernel:
GlobaWire(17BE of GDI) (try GlobalLock)"

DBE _FRROR The message reports an error resulting from afailed call to a

B Windows function. The application continues to run. Example:
"err Kernel: Local Shrink(15EA of GDI) (invalid local heap)”

DBE FATAI The message reports an error that will terminate the application.
Example: "fatl User: SetDeskWallpaper(16CA of USER)"
[pszFmt Points to aformatting string identical to the formatting strings used by the Windows

function wsprintf. This string must be less than 160 characters long. Any additional
formatting can be done by supplying additional parameters following IpszFmt.
Specifies zero or more optional arguments. The number and type of arguments depends
on the corresponding format-control character sequences specified in the |pszFmt

parameter.
Returns
This function does not return avaue.
Comments

The messages sent by the DebugOutput function are affected by the system debugging options and trace-
filter flags that are set and retrieved by using the GetWinDebuglnfo and SetWinDebuglnfo functions.
These options and flags are stored in a WINDEBUGINFO structure.

Unlike most other Windows functions, DebugOutput uses the C calling convention (_cdecl), rather than
the Pascal calling convention. As aresult, the caller must pop arguments off the stack. Also, arguments
must be pushed on the stack from right to left. In C-language modules, the C compiler performs this task.

See Also
GetWinDebuglnfo, OutputDebugString, SetWinDebuglnfo, wsprintf, WINDEBUGINFO

DBF_TRACE 0x0000

The message reports that no error has occurred and supplies information that may be useful during
debugging. Example: "t Kernel: LoadResource(14AE of GDI)"

DBF_TRACE 0x0000

DBF_WARNING 0x4000

The message reports a situation that may or may not be an error, depending on the circumstances.
Example: "wn Kernel: GlobalWire(17BE of GDI) (try GlobalLock)"

DBF_WARNING 0x4000

DBF_ERROR 0x8000

The message reports an error resulting from afailed call to a Windows function. The application continues
to run. Example: "err Kernel: Local Shrink(15EA of GDI) (invalid local heap)”

DBF_ERROR 0x8000

DBF_FATAL 0xc000

The message reports an error that will terminate the application. Example: "fatl User: SetDeskWallpaper
(16CA of USER)"

DBF_FATAL 0xc000

DeleteAtom (2.x)

ATOM DeleteAtom(atm)
ATOM am; /* aomto delete */

The DeleteAtom function decrements (decreases by one) the reference count of alocal atom by one. If the
atom'’s reference count is reduced to zero, the string associated with the atom is removed from the local
atom table.

An atom's reference count specifies the number of times the atom has been added to the atom table. The
AddAtom function increments (increases by one) the count on each call. DeleteAtom decrements the count
on each call and removes the string only if the atom's reference count is reduced to zero.

Parameter Description
am | dentifies the atom and character string to be deleted.
Returns

Thereturn value is zero if the function is successful. Otherwise, it is equal to the atm parameter.

Comments

The only way to ensure that an atom has been deleted from the atom tableisto call this function
repeatedly until it fails. When the count is decremented to zero, the next call to the FindAtom or
DeleteAtom function will fail. -

DeleteAtom has no effect on integer atoms (atoms created by using the MAKEINTATOM macro). The
function always returns zero for integer atoms.

Example
The following example uses the DeleteAtom function to decrement the reference count for the specified
atom:

ATOM at ;
at = Del et eAton{at Test);

if (at == NULL)
MessageBox(hwnd, "atom count decrenented",
"DeleteAtoni’, MB_OK);

el se
MessageBox(hwnd, "atom count could not be decrenented",
"Del et eAtoni, MB_ICONEXCLAMATION) ;

See Also
AddAtom, FindAtom, Global DeleteAtom

DirectedYield (3.1)

void DirectedYield(htask)
HTASK htask;

The DirectedYield function puts the current task to sleep and awakens the given task.

Parameter Description

htask Specifies the task to be executed.
Returns

This function does not return avalue.

Comments

When relinquishing control to other applications (that is, when exiting hard mode), a Windows-based
debugger should call DirectedYield, identifying the handle of the task being debugged. This ensures that
the debugged application runs next and that messages received during debugging are processed by the
appropriate windows.

The Windows scheduler executes atask only when there is an event waiting for it, such asa paint
message, or a message posted in the message queue.

If an application uses DirectedYield for atask with no events scheduled, the task will not be executed.
Instead, Windows searches the task queue. In some cases, however, you may want the application to force
a specific task to be scheduled. The application can do this by calling the PostAppM essage function,
specifyingaWM_NULL message identifier. Then, when the application calls DirectedYield, the scheduler
will run the task regardless of the task's event status.

DirectedY ield starts the task identified by htask at the location where it left off. Typically, debuggers
should use TaskSwitch instead of DirectedYield, because TaskSwitch can start atask at any address.

DirectedY ield returns when the current task is reawakened. This occurs when the task identified by htask
walits for messages or uses the Yield or DirectedYield function. Execution will continue as before the task
switch.

DirectedYield islocated in KRNL286.EXE and KRNL386.EXE and is available in Windows versions 3.0
and 3.1.

See Also
PostAppMessage, TaskSwitch, TaskGetCSIP, TaskSetCSIP, Yield

DOS3Call (3.0)
DOS3Call

The DOS3Call function alows an application to call an MS-DOS Interrupt 21h function. DOS3Call can be
called only from assembly-language routines. It is exported from KRNL286.EXE and KRNL386.EXE and
is not defined in any Windows header or include files.

Parameters

Registers must be set up as required by the desired Interrupt 21h function before the application cals the
DOS3Call function.

Returns
The register contents are preserved as they are returned by the Interrupt 21h function.

Comments

Applications should use this function instead of a directly coded MS-DOS Interrupt 21h function. The
DOS3Call function runs somewhat faster than the equivalent MS-DOS Interrupt 21h function running in
Windows.

Example
The following example shows how to prototype the DOS3Call functionin C:;

extern void FAR PASCAL DOS3Cal | (voi d);

To declare the DOS3Call function in an assembly-language routine, an application could use the following
line:

extrn DOS3CALL: far
If the application includes CMACROS.INC, the function is declared as follows:

extrnFP DOS3Cal |
The following exampleis atypical use of the DOS3Call function:

extrn DOS3CALL: far

; set registers

novah, DOSFUNC : DOSFUNC = I nt 21h function nunber
cCal | DOS3Cal |

Fatal AppExit (3.0)

void Fatal AppExit(fuAction, IpszMessageText)

UINT fuAction; /* must be zero */

LPCSTR IpszMessageT ext; /
* gtring to display in message box

/

The Fatal AppEXxit function displays a message box and terminates the application when the message box is
closed. If the user is running the debugging version of the Windows operating system, the message box
gives the user the opportunity to terminate the application or to cancel the message box and return to the
caler.

Parameter Description

fuAction Reserved; must be zero.

IpszM essageText Points to a null-terminated string that is displayed in the message box. The
message is displayed on a single line. To accommodate |ow-resol ution screens, the
string should contain no more than 35 characters.

Returns
This function does not return avalue.

Comments

An application should call the Fatal AppExit function only when it isincapable of terminating any other
way. Fatal AppExit may not always free an application's memory or closeitsfiles, and it may cause a
genera failure of Windows. An application that encounters an unexpected error should terminate by
freeing al its memory and returning from its main message loop.

See Also
FatalExit, TerminateApp

FatalExit (2.x)

void Fatal Exit(nErrCode)
int nErrCode; /* error valueto display */

The Fatal Exit function sends the current state of Windows to the debugger and prompts for instructions on
how to proceed.

An application should call this function for debugging purposes only; it should not call the functionin a
retail version of the application. Calling this function in the retail version will terminate the application.

Parameter Description

nErrCode Specifies the error value to be displayed.
Returns

This function does not return avalue.

Comments

The displayed information includes an error value followed by a symbolic stack trace, showing the flow of
execution up to the point of the call.

The Fatal Exit function prompts the user to respond to an Abort, Break, or Ignore message. Windows
processes the response as follows:

Response Description

A (Abort) Terminate immediately.
B (Break) Enter the debugger.

| (Ignore) Return to the caler.

Y ou can specify any combination of error values for the nErrCode parameter, since the meaning of the
valuesis uniqueto your application. However, the error value -1 must always be reserved for the stack-
overflow message. When this value is specified, Windows automatically displays a stack-overflow
message.

See Also

Fatal A ppExit

FindAtom (2.x)

ATOM FindAtom(lpszString)
LPCSTR IpszString; /* address of stringtofind */

The FindAtom function searches the local atom table for the specified character string and retrieves the
atom associated with that string.

Parameter Description
IpszString Points to the null-terminated character string to search for.
Returns

The return value identifies the atom associated with the given string if the function is successful.
Otherwise (if the string is not in the table), the return value is zero.

Example
The following example uses the FindAtom function to retrieve the atom for the string "Thisis an atom":

ATOM at ;
char szMsg[80];

if ((at = FindAtom("This is an atonm')) ==
MessageBox(hwnd, "could not find atonf,
"FindAtoni, MB_ICONEXCLAMATION);

el se {
wsprintf(szMsg, "atom= %", at);
MessageBox(hwnd, szMsg, "FindAtom', MB_OK);

See Also
AddAtom, DeleteAtom

FindResource (2.x)

HRSRC FindResource(hinst, IpszName, |pszType)

HINSTANCE hinst; /* handle of module containing resource */

LPCSTR IpszName; /
* address of resource name

/

LPCSTR lpszType;

* address of resource type

/

The FindResource function determines the location of aresource in the specified resourcefile.

Parameter Description
hinst | dentifies the instance of the module whose executable file contains the resource.
[pszName Specifies the name of the resource. For details, see the following Comments section.
IpszType Specifies the resource type. For details, see the following Comments section. For
predefined resource types, this parameter should be one of the following values:
Value Meaning
RT_ACCF| FRATOR Accelerator table
RT BITMAP Bitmap resource
RT_CURSOR Cursor resource
RT DIAI OG Dialog box
RT_FONT Font resource
RT_FONTDIR Font directory resource
RT_ICON Icon resource
RT _MENU Menu resource
RT_RCDATA User-defined resource (raw data)
RT_STRING String resource
Returns
Thereturn value is the handle of the named resource if the function is successful. Otherwise, it isNULL.
Comments

If the high-order word of the IpszName or |pszType parameter is zero, the low-order word specifies the
integer identifier of the name or type of the given resource. Otherwise, the parameters are long pointers to
null-terminated strings. If the first character of the string is a pound sign (#), the remaining characters
represent a decimal number that specifies the integer identifier of the resource's name or type. For
example, the string #258 represents the integer 1D 258.

To reduce the amount of memory required for the resources used by an application, the application should
refer to the resources by integer identifier instead of by name.

An application must not call the FindResource and L oadResource functions to load cursor, icon, and string
resources. Instead, it must load these resources by calling the CoadCursor, Loadlcon, and LoadString
functions, respectively.

Although the application can call the FindResource and L oadResource functions to load other predefined
resource types, it should load the corresponding resources by calling the LoadAccelerators, LoadBitmap,
and LoadMenu functions.

See Also
LoadAccelerators, LoadBitmap, LoadCursor, Loadlcon, LoadMenu, LoadResource, LoadString

RT_ACCELERATOR MAKEINTRESOURCE(9)
Accelerator table

RT_ACCELERATOR MAKEINTRESOURCE(9)

RT_BITMAP MAKEINTRESOURCE(2)
Bitmap resource

RT_BITMAP MAKEINTRESOURCE(2)

RT_CURSOR MAKEINTRESOURCE(1)
Cursor resource

RT_CURSOR MAKEINTRESOURCE(1)

RT_DIALOG MAKEINTRESOURCE(5)
Dialog box

RT_DIALOG MAKEINTRESOURCE(5)

RT_FONT MAKEINTRESOURCE(8)
Font resource

RT_FONT MAKEINTRESOURCE(8)

RT_FONTDIR MAKEINTRESOURCE(7)
Font directory resource

RT_FONTDIR MAKEINTRESOURCE(7)

RT_ICON MAKEINTRESOURCE(3)
Icon resource

RT_ICON MAKEINTRESOURCE(3)

RT_MENU MAKEINTRESOURCE(4)
Menu resource

RT_MENU MAKEINTRESOURCE(4)

RT_RCDATA MAKEINTRESOURCE(10)
User-defined resource (raw data)

RT_RCDATA MAKEINTRESOURCE(10)

RT_STRING MAKEINTRESOURCE(6)
String resource

RT_STRING MAKEINTRESOURCE(6)

FreeLibrary (2.x)

void FreeLibrary(hinst)
HINSTANCE hinst; /* handle of loaded library module ~ */

The FreeLibrary function decrements (decreases by one) the reference count of the loaded library module.
When the reference count reaches zero, the memory occupied by the module is freed.

Parameter Description

hinst Identifies the loaded library module.
Returns

This function does not return avalue.

Comments

A dynamic-link library (DLL) must not call the FreeLibrary function within its WEP function (Windows
exit procedure).

The reference count for alibrary module is incremented (increased by one) each time an application calls
the LoadLibrary function for the library module.

Example

The following example uses the LoadL ibrary function to load TOOLHELP.DLL and the FreeLibrary
function to freeit:

HINSTANCE hi nst Tool Hel p = LoadLibrary(" TOOLHELP. DLL");

if ((UINT) hinstToolHelp > 32) {

/* use GetProcAddress to use TOOLHELP functions */

el se {
Er ror Handl er () ;
}

if ((UINT) hinstTool Help > 32)
FreeLi brary(hi nst Tool Hel p); /* free TOOLHELP. DLL */

See Also
GetProcAddress, LoadLibrary, WEP

FreeModule (3.0)

BOOL FreeModule(hinst)
HINSTANCE hinst; /* handle of loaded module */

The FreeModule function decrements (decreases by one) the reference count of the loaded module. When
the reference count reaches zero, the memory occupied by the module is freed.

Parameter Description
hinst I dentifies the loaded module.
Returns

Thereturn value is zero if the reference count is decremented to zero and the module's memory is freed.
Otherwise, the return value is nonzero.

Comments
The reference count for amodule isincremented (increased by one) each time an application callsthe
LoadModule function for the module.

See Also
LoadModule

FreeProclnstance (2.x)

void FreeProcl nstance(lpProc)
FARPROC IpProc; [* instance address of function to free */

The FreeProclnstance function frees the specified function from the data segment bound to it by the
MakeProcl nstance function.

Parameter Description

IpProc Points to the procedure-instance address of the function to be freed. It must be created
by using the MakeProcl nstance function.

Returns

This function does not return avalue.

Comments

After a procedure instance has been freed, attempts to call the function using the freed procedure-instance
address will result in an unrecoverable error.

See Also
MakeProclnstance

FreeResource (2.x)

BOOL FreeResource(hglbResource)
HGLOBAL hglbResource; /* handle of loaded resource ~ */

The FreeResource function decrements (decreases by one) the reference count of aloaded resource. When
the reference count reaches zero, the memory occupied by the resource is freed.

Parameter Description
hglbResource Identifies the data associated with the resource. The handle is assumed to have been
created by using the LoadResource function.

Returns
The return valueis zero if the function is successful. Otherwise, it is nonzero, indicating that the function
has failed and the resource has not been freed.

Comments
The reference count for aresource isincremented (increased by one) each time an application callsthe
L oadResource function for the resource.

See Also
LoadResource

FreeSelector (3.0)

UINT FreeSelector(uSel ector)
UINT uSelector; /* selector to befreed */

The FreeSelector function frees a selector originally alocated by the AllocSelector or AllocDStoCSAlias
function. After the application calls this function, the selector isinvalid and must not be used.

An application should not use this function unlessit is absolutely necessary, since its use violates preferred
Windows programming practices.

Parameter Description
uSelector Specifies the selector to be freed.
Returns

Thereturn value is zero if the function is successful. Otherwise, it is the selector specified by the uSelector
parameter.

Comments

The limit for the selector specified by the uSelector parameter must not be larger than 64K. If the limit of
the selector exceeds 64K, the FreeSelector function may free selectors that are still required by the
program.

See Also
AllocDStoCSAlias, AllocSelector

GetAtomHandle (2.x)

HLOCAL GetAtomHandle(atm)
ATOM am; /* atomtoretrieve handle of */

The GetAtomHandle function retrieves a handle of the specified atom.

This function isonly provided for compatibility with Windows, versions 1.x and 2.x. It should not be used
with Windows 3.0 and later.

Parameter Description

am Specifies an atom whose handle is to be retrieved.

Returns

Thereturn value is ahandle of the specified atom if the function is successful.
See Also

GetAtomName, Global GetAtomName

GetAtomName (2.x)

UINT GetAtomName(atm, |pszBuffer, cbBuffer)

ATOM atm; [* atom identifying character string */

LPSTR IpszBuffer; /* address of
buffer for atom string

/

int chBuffer;

* gize of buffer

/

The GetAtomName function retrieves a copy of the character string associated with the specified local
atom.

Parameter Description

am Specifiesthe local atom that identifies the character string to be retrieved.
IpszBuffer Paoints to the buffer for the character string.

cbBuffer Specifies the maximum size, in bytes, of the buffer.

Returns

The return value specifies the number of bytes copied to the buffer, if the function is successful.

Comments

The string returned for an integer atom (an atom created by the MAKEINTATOM macro) will be anull-
terminated string, where the first character is apound sign (#) and the remaining characters make up the
UINT used in MAKEINTATOM.

Example

The following example uses the GetAtomName function to retrieve the character string associated with a
local atom:

char szBuf[80];
Get At omNane(at Test, szBuf, sizeof(szBuf));

MessageBox(hwnd, szBuf, "Get At onNanme", MB_OK);

See Also
AddAtom, DeleteAtom, FindAtom, MAKEINTATOM

GetCodeHandle (2.x)

HGLOBAL GetCodeHandle(lpProc)
FARPROC IpProc; [* instance address of function — */

The GetCodeHandle function determines which code segment contains the specified function.

Parameter Description

[pProc Points to the procedure-instance address of the function for which to return the code
segment. Typically, this addressis returned by the MakeProcl nstance function.

Returns

The return value identifies the code segment that contains the function if the GetCodeHandle function is
successful. Otherwise, itisNULL.

Comments

If the code segment that contains the function is already |oaded, the GetCodeHandl e function marks the
segment as recently used. If the code segment is not loaded, GetCodeHandle attemptsto load it. Thus, an
application can use this function to attempt to preload one or more segments necessary to perform a
particular task.

See Also
MakeProclnstance

GetCodelnfo (3.0)

void GetCodel nfo(lpProc, |pSeglnfo)

FARPROC IpProc; /* function address or module handle */
SEGINFO FAR* IpSeginfo;

* address of structure for segment information

/

The GetCodel nfo function retrieves a pointer to a structure containing information about a code segment.

Parameter Description
IpProc Specifies the procedure-instance address of the function (typicaly, returned by the
M akeProcl nstance function) in the segment for which information is to be retrieved, or
it specifiesamodule handle (typically, returned by the GetM oduleHandle function) and
segment number.

[pSeginfo Points to a SEGINFO structure that will be filled with information about the code
segment.

Returns

This function does not return avalue.

See Also

GetModuleHandle, M akeProcl nstance

GetCurrentPDB (3.0)
UINT GetCurrentPDB(void)

The GetCurrentPDB function returns the selector address of the current MS-DOS program database (PDB)
, dso known as the program segment prefix (PSP).

Returns

Thereturn value is the selector address of the current PDB if the function is successful.

Example
The following example uses the GetCurrentPDB function to list the current command tail

typedef struct {
WORD pspInt20; /* Int 20h instruction */
WORD pspNext Par agr aph; * segnent addr. of next paragraph */
BYTE resl; /* reserved

|
BYTE pspDi spat cher[5]; /* long call to M5-DOS */
DWORD pspTermi nateVector; /* terminati on address (Int 22h) */
/-k
/*

DWORD pspCont rol CVect or; addr of CTRL+C (I nt 23h) */

DWORD pspCritErrorVector; addr of Crit-Error (Int 24h) */

WORD res2[11]; /* reserved */

WORD pspEnvironment; /* segnment address of environnent */

WORD res3[23]; [/* reserved */

BYTE pspFCB_1[16]; /* default FCB #1 */

BYTE pspFCB _2[16]; /* default FCB #2 */

DWORD res4;/* reserved */

BYTE pspConmmandTail [128]; /* conmmand tail (also default DTA) */
} PSP, FAR* LPSP;

LPSP | psp = (LPSP) MAKELP(Get Current PDB(), 0):

MessageBox(NULL, | psp->pspConmandTail, "PDB Command Tail", MB OK);

GetCurrentTask (2.x)
HTASK GetCurrentTask(void)

The GetCurrentTask function retrieves the handle of the current (running) task.

Returns
The return value is a handle of the current task if the function is successful. Otherwise, it isNULL.

GetDOSEnNnvironment (3.0)
LPSTR GetDOSEnvironment(void)

The GetDOSEnvironment function returns afar pointer to the environment string of the current (running)
task

Returns
Thereturn value is afar pointer to the current environment string.

Comments

Unlike an application, adynamic-link library (DLL) does not have a copy of the environment string. Asa
result, the library must call this function to retrieve the environment string.

Example

The following example uses the GetDOSEnvironment function to return a pointer to the environment, and
then lists the environment settings:

LPSTR | pszEnv;

| pszEnv = Get DOSEnvi ronnent () ;
while (*I pszEnv = "\0") {

/* process the environment string */

/* Move to the next environment string */

| pszEnv += Istrlen(l pszEnv) + 1;

GetDriveType (3.0)

UINT GetDriveType(DriveNumber)
int DriveNumber; *0=A,1=B,andsoon */

The GetDriveType function determines whether a disk drive is removable, fixed, or remote.

Parameter Description

DriveNumber Specifies the drive for which the type is to be determined (0 = drive A, 1 = driveB, 2=
drive C, and so on).

Returns

Thereturn value is DRIVE_REMOVABLE (disk can be removed from the drive), DRIVE_FIXED (disk
cannot be removed from the drive), or DRIVE_REMOTE (driveisaremote, or network, drive), if the
function is successful. Otherwise, the return valueis zero.

Example
The following example uses the GetDriveType function to determine the drive type for all possible disk
drives (letters A through Z):

int iDrive;
WORD wRet ur n;
char szMsg[80];

for (iDrive = 0, wReturn = 0;
(iDrive < 26) && (wReturn !'= 1); iDrive+t+) {

WReturn = GetDriveType(iDrive);
sprintf(szMsg, "drive %: ", iDrive + "A);

switch (wReturn) ({

case O:
strcat(szMsg, "undeterni ned");
br eak;

case DRI VE_REMOVABLE:
strcat(szMsg, "renovable");
br eak;

case DRI VE_FI XED:
strcat(szMsg, "fixed");
br eak;

case DRI VE_REMOTE:

strcat(szMsg, "renote (network)");
br eak;

}
TextOut(hdc, 10, 15 * iDrive, szMsg, strlen(szMsQ));

GetFreeSpace (3.0)

DWORD GetFreeSpace(fuFlags)
UINT fuFlags; /* ignored in Windows 3.1 */

The GetFreeSpace function scans the global heap and returns the number of bytes of memory currently
available.

Parameter Description

fuFlags This parameter isignored in Windows 3.1.
Returns

The return value is the amount of available memory, in bytes.
Comments

The amount of memory specified by the return value is not necessarily contiguous; the Global Compact
function returns the number of bytesin the largest block of free global memory.

In standard mode, the value returned represents the number of bytesin the global heap that are not used
and that are not reserved for code.

In 386-enhanced mode, the return value is an estimate of the amount of memory available to an
application. It does not account for memory held in reserve for non-Windows applications.

See Also
Globa Compact

GetlnstanceData (2.x)

int GetlnstanceData(hinst, npbData, cbData)

HINSTANCE hinst; /* handle of previous instance */

BYTE* npbData; /*
address of current instance data buffer

/

int cbData;

* number of bytesto transfer

/

The GetlnstanceData function copies data from a previous instance of an application into the data area of
the current instance.

Parameter Description

hinst Identifies a previous instance of the application.
npbData Points to a buffer in the current instance.
cbData Specifies the number of bytes to be copied.
Returns

The return value specifies the number of bytes copied if the function is successful. Otherwiseg, it is zero.

GetKBCodePage (3.0)
int Getk BCodePage(void)

The GetK BCodePage function returns the current Windows code page.

Returns

The return value specifies the code page currently loaded by Windows, if the function is successful. It can
be one of the following values:

Vaue Meaning

437 Default (United States, used by most countries: indicates that thereis no OEMANSI.BIN in
the Windows directory)

850 International (OEMANSI.BIN = XLAT850.BIN)

860 Portugal (OEMANSI.BIN = XLAT860.BIN)

861 Iceland (OEMANSI.BIN = XLAT861.BIN)

863 French Canadian (OEMANSI.BIN = XLAT863.BIN)

865 Norway/Denmark (OEMANSI.BIN = XLAT865.BIN)

Comments

The keyboard driver provides the GetkK BCodePage function. An application using this function must
include the following information in its module-definition (.DEF) file:

| MPORTS
KEYBOARD. GETKBCODEPAGE

If the OEMANSI.BIN fileisin the Windows directory, Windows reads it and overwrites the OEM/ANSI
trand ation tables in the keyboard driver.

When the user selects alanguage from the Setup program and the language does not use the default code
page (437), Setup copies the appropriate file (such as XLAT850.BIN) to OEMANSI.BIN in the Windows
system directory. If the language uses the default code page, Setup deletes OEMANSI.BIN, if it exists,
from the Windows system directory.

Example
The following example uses the GetK BCodePage function to display the current code page:

char szBuf[80];
int i, cp, subtype, f_keys, len;

char *apszKeyboards[] = {
"1 BM PX/ XT",
"Aivetti 1CO',
"1 BM AT",
"I BM Enhanced",
"Noki a 1050",
"Noki a 9140",
" St andard Japanese”,

}1
cp = Get KBCodePage();

if ((i = GetKeyboardType(0)) == 0[] i > 7) {
MessageBox(NULL, "invalid keyboard type",
"GetKeyboardType", MB_ ICONSTOP);
break;

}

subt ype = GetKeyboardType(1);
f _keys = GetKeyboardType(?2);

len = wsprintf(szBuf, "% keyboard, subtype %\ n",
apszKeyboards[i - 1], subtype);

len = wsprintf(szBuf + len, " % function keys, code page %",
f_keys, cp);

MessageBox(NULL, szBuf, "Keyboard Information", MB_OK);

See Also
GetKeyboardType

GetKeyboardType (3.0)

int GetK eyboardType(fnK eybl nfo)
int fnKeyblnfo; /* specifiestype of infformation to retrieve */

The GetK eyboardType function retrieves information about the current keyboard.

Parameter Description

fnKeybinfo Determines the type of keyboard information to be retrieved. This parameter can be one
of the following values:

Value Meaning

0 Retrieves the keyboard type.
1 Retrieves the keyboard subtype.
2 Retrieves the number of function keys on the keyboard.

Returns
The return value specifies the requested information if the function is successful. Otherwise, it is zero.

Comments

The subtype is an OEM-dependent value. The subtype may be one of the following values:
Value Meaning

1 IBM PC/XT, or compatible (83-key) keyboard

Olivetti "1CO" (102-key) keyboard

IBM AT (84-key) or similar keyboard

IBM Enhanced (101- or 102-key) keyboard

Nokia 1050 and similar keyboards

Nokia 9140 and similar keyboards

Japanese keyboard

The keyboard driver provides the GetK eyboardType function. An application using this function must
include the following information in its module-definition (.DEF) file:

OO~ WN

~

| MPORTS
KEYBOARD. GETKEYBOARDTYPE

The application can a so determine the number of function keys on a keyboard from the keyboard type.
The number of function keys for each keyboard type follows:

Type Number of function keys

1 10

2 12 (sometimes 18)

3 10

4 12

5 10

6 24

7 This value is hardware-dependent and must be specified by the OEM.

The following example uses the GetK eyboardType function to display information about the current
keyboard:

char szBuf[80];
int i, cp, subtype, f_keys, len;

char *apszKeyboards[] = {
"1 BM PX/ XT",
"Aivetti 1CO',
"1 BM AT",
"1 BM Enhanced",
"Noki a 1050",
“Noki a 9140",

t andard Japanese",

}s
cp = GetKBCodePage();

if ((i = GetKeyboardType(0)) == 0[] i >7) {
MessageBox(NULL, "invalid keyboard type"
"CGet Keyboar dType", MB_ICONSTOP);
br eak;

}

subtype = Get KeyboardType(1);
f _keys = Cet KeyboardType(2);

len = wsprintf(szBuf, "% keyboard, subtype %\n",

apszKeyboards[i - 1], subtype);
len = wsprintf(szBuf + len, " % function keys, code page %",
f_keys, cp);

MessageBox(NULL, szBuf, "Keyboard Information", MB_OK);

GetKeyNameText (3.0)

int Getk eyNameText(IParam, IpszBuffer, coMaxKey)

LONG IParam; [* 32-bit parameter of keyboard message */

LPSTR IpszBuffer; /*
address of abuffer for key name

/

int coMaxKey;

* gpecifies maximum key string length

/

The GetKeyNameText function retrieves a string that represents the name of akey.

Parameter Description

[Param Specifies the 32-bit parameter of the keyboard message (such asWM_KEYDOWN) to
be processed. The GetKeyNameText function interprets the following portions of
|Param:

Bits Meaning

16-23 Character scan code.

24 Extended bit. Distinguishes some keys on an enhanced keyboard.

25 "Don't care" bit. The application calling this function sets this bit to indicate
that the function should not distinguish between left and right CTRL and SHIFT
keys, for example.

IpszBuffer Points to a buffer that will receive the key name.
cbMaxKey Specifies the maximum length, in bytes, of the key name, not including the terminating

null character (this parameter should one less than the size of the buffer pointed to by
the IpszBuffer parameter).

Returns
Thereturn value is the length, in bytes, of the string copied to the specified buffer, if the function is
successful. Otherwise, it is zero.

Comments

The format of the key-name string depends on the current keyboard driver. This driver maintains alist of
names in the form of character strings for keys with names longer than a single character. The key nameis
translated, according to the layout of the currently installed keyboard, into the principal language
supported by the keyboard driver.

Correction

The previous documentation incorrectly listed bit 21 of Iparam as the extended bit and bit 22 as the "don't
care” bit.

GetM oduleFileName (2.x)

int GetM odul eFileName(hinst, IpszFilename, cbFileName)

HINSTANCE hinst; /* handle of module */

LPSTR IpszFilename; /*
address of buffer for filename

/

int cbFileName;

* maximum number of bytesto copy

/

The GetM oduleFileName function retrieves the full path and filename of the executable file from which
the specified module was loaded.

Parameter Description

hinst Identifies the module or the instance of the module.

|pszFilename Points to the buffer that is to receive the null-terminated filename.

cbFileName Specifies the maximum number of bytes to copy, including the terminating null

character. The filenameistruncated if it islonger than cbFileName. This parameter
should be set to the length of the filename buffer.

Returns
The return value specifies the length, in bytes, of the string copied to the specified buffer, if the function is
successful. Otherwise, it is zero.

Example

The following example retrieves an application's filename by using the instance handle passed to the
application in the WinMain function:

i nt PASCAL WinMain(HINSTANCE hi nst, HINSTANCE hPrevlnst,
LPSTR | pCndLi ne, int nCrdShow)
{

char szMdul eNane[260] ;

Get Modul eFi | eNane(hi nst, szMdul eNane, sizeof (szMdul eNane));

See Also
GetModuleHandle

GetModuleHandle (2.x)

HMODULE GetM oduleHandl e(lpszM oduleName)
LPCSTR IpszModuleName; [* address of name of module ~ */

The GetM oduleHandle function retrieves the handle of the specified module.

Parameter Description

[pszModuleName Points to a null-terminated string that specifies the name of the module.
Returns

The return value is the handle of the moduleif the function is successful. Otherwise, itisNULL.
See Also

GetModuleFileName

GetModuleUsage (2.x)

int GetM odul eUsage(hinst)
HINSTANCE hinst; /* handle of module */

The GetM oduleUsage function retrieves the reference count of a specified module.

Parameter Description
hinst I dentifies the module or an instance of the module.
Returns

The return value specifies the reference count of the module if the function is successful.

Comments

Windows increments (increases by one) amodul€'s reference count each time an application calls the
L oadM odule function. The count is decremented (decreased by one) when an application calls the
FreeModule function.

See Also
FreeModule, LoadModule

GetNumTasks (2.x)
UINT GetNumTasks(void)

The GetNumTasks function retrieves the number of currently running tasks.

Returns
The return value specifies the number of current tasks.

GetPrivateProfilelnt (3.0)

UINT GetPrivateProfilelnt(IpszSection, IpszEntry, default, Ipstllename)
LPCSTR lpszSection; [* address of section

LPCSTR lpszEntry; /*
address of entry

/

int default;

* return value if entry not found

/

LPCSTR IpszFilename;

* address of initialization filename

/

The GetPrivateProfilelnt function retrieves the value of an integer from an entry within a specified section
of aspecified initialization file.

Parameter Description

IpszSection ﬁ)i nts to a null-terminated string containing the section heading in the initialization
ile.

[pszEntry Points to the null-terminated string containing the entry whose value is to be retrieved.

default Specifies the default value to return if the entry cannot be found in the initialization
file. This value must be a positive integer in the range 0 through 32,767 (0x0000
through OX7FFF).

|pszFilename Points to a null-terminated string that names the initialization file. If this parameter

does not contain afull path, Windows searches for the file in the Windows directory.

Returns

Thereturn value is the integer value of the specified entry if the function is successful. It isthe value of the
default parameter if the function does not find the entry. The return valueis zero if the value that
corresponds to the specified entry is not an integer.

Comments

The function searches the file for an entry that matches the name specified by the |pszEntry parameter
under the section heading specified by the |pszSection parameter. Aninteger entry in the initialization file
must have the following form:

[section]
entry=value

If the value that corresponds to the entry consists of digits followed by nonnumeric characters, the function
returns the value of the digits. For example, the function would return 102 for the line "Entry=102abc".

The GetPrivateProfilelnt function is not case-dependent, so the strings in the IpszSection and |pszEntry
parameters may contain a combination of uppercase and lowercase | etters.

GetPrivateProfilelnt supports hexadecimal notation. When GetPrivateProfilelnt is used to retrieve a
negative integer, the value should be cast to an int.

An application can use the GetProfilelnt function to retrieve an integer value from the WIN.INI file.

Example
The following example uses the GetPrivateProfilelnt function to retrieve the last line number by reading
the LastLine entry from the [MyApp] section of TESTCODE.INI:

WORD W nt ;
char szMsg[144];

wint = GetPrivateProfilelnt("MApp", "LastLine",
0, "testcode.ini");

sprintf(szMsg, "last line was %d", wint);

MessageBox(hwnd, szMsg, "GetPrivateProfilelnt”, MB_OK);
See Also

GetPrivateProfileString, GetProfilelnt

Windows 3.1 changes

The GetPrivateProfilelnt function supports hexadecimal notation. When the GetPrivateProfilelnt function
is used to retrieve a negative integer, the value should be cast to an int.

GetPrivateProfileString (3.0)

int GetPrivateProfileString(IpszSection, |pszEntry, |pszDefault, IpszReturnBuffer, cbReturnBuffer,
|pszFilename)

LPCSTR IpszSection; [* address of section */

LPCSTR |pszEntry; I*

address of entry

/

LPCSTR IpszDefault;

* address of default string

/

LPSTR IpszReturnBuffer;

* address of destination buffer

/

int cbReturnBuffer;

* gize of destination buffer

/

LPCSTR IpszFilename;

* address of initialization filename

/

The GetPrivateProfileString function retrieves a character string from the specified section in the specified
initialization file.

Parameter Description
IpszSection Points to a null-terminated string that specifies the section containing the entry.
IpszEntry Points to the null-terminated string containing the entry whose associated string is

to beretrieved. If thisvalueisNULL, al entriesin the section specified by the
IpszSection parameter are copied to the buffer specified by the IpszReturnBuffer
parameter. For more information, see the following Comments section.

IpszDefault Points to a null-terminated string that specifies the default value for the given entry
if the entry cannot be found in the initialization file. This parameter must never be
NULL.

IpszReturnBuffer Points to the buffer that receives the character string.

cbReturnBuffer Specifiesthe size, in bytes, of the buffer pointed to by the |pszReturnBuffer
parameter.

|pszFilename Points to a null-terminated string that names the initialization file. If this parameter
does not contain afull path, Windows searches for the file in the Windows
directory.

Returns

The return value specifies the number of bytes copied to the specified buffer, not including the terminating
null character.

Comments

The function searches the file for an entry that matches the name specified by the |pszEntry parameter
under the section heading specified by the |pszSection parameter. If the entry isfound, its corresponding
string is copied to the buffer. If the entry does not exist, the default character string specified by the
IpszDefault parameter is copied. A string entry in theinitialization file must have the following form:

[section]
entry=string

If IpszEntry is NULL, the GetPrivateProfileString function copies all entries in the specified section to the
supplied buffer. Each string will be null-terminated, with the final string ending with two zero-termination
characters. If the supplied destination buffer istoo small to hold all the strings, the last string will be
truncated and followed with two zero-termination characters.

If the string associated with IpszEntry is enclosed in single or double quotation marks, the marks are
discarded when GetPrivateProfileString returns the string.

GetPrivateProfileString is not case-dependent, so the stringsin IpszSection and |pszEntry may contain a
combination of uppercase and lowercase | etters.

An application can use the GetProfileString function to retrieve a string from the WIN.INI file.

The IpszDefault parameter must point to avalid string, even if the string is empty (itsfirst character is
zero).
Example

The following example uses the GetPrivateProfileString function to determine the last file saved by the
[MyApp] application by reading the LastFile entry in TESTCODE.INI:

char szMsg[144], szBuf[80];

GetPrivateProfileString("MApp", "LastFile",
""" szBuf, sizeof(szBuf), "testcode.ini");

sprintf(szMsg, "last file was %", szBuf);
MessageBox(hwnd, szMsg, "GetPrivateProfileString", MB _OK);
See Also

GetProfileString, WritePrivateProfileString

GetProcAddress (2.x)

FARPROC GetProcAddress(hinst, IpszProcName)

HINSTANCE hinst; /* handle of module */

LPCSTR IpszProcName; /* address of
function

/

The GetProcAddress function retrieves the address of the given module function.

Parameter Description
hinst I dentifies the module that contains the function.
IpszProcName Points to a null-terminated string containing the function name, or specifiesthe

ordinal value of the function. If it is an ordinal value, the value must be in the low-
order word and the high-order word must be zero.

Returns
Thereturn value is the address of the module function's entry point if the GetProcAddress function is
successful. Otherwise, it isSNULL.

If the IpszProcName parameter is an ordinal value and a function with the specified ordinal does not exist
in the module, GetProcAddress can still return anon-NULL value. In cases where the function may not
exist, specify the function by name rather than ordinal value.

Comments

Use the GetProcAddress function to retrieve addresses of exported functions in dynamic-link libraries
(DLLs). The MakeProcl nstance function can be used to access functions within different instances of the
current module.

The spelling of the function name (pointed to by the IpszProcName parameter) must be identical to the
spelling as it appears in the EXPORTS section of the source DLL's module-definition (.DEF) file.

Example

The following example uses the GetProcAddress function to retrieve the address of the TimerCount
function in TOOLHELP.DLL:

char szBuf[80];

TIMERINFO ti nmeri nfo;

HINSTANCE hi nst Tool Hel p;

BOOL (FAR *I pfnTi mer Count) (TIMERINFO FAR*);

/* Turn off the "File not found" error box. */

SetErrorMode(SEM_NOOPENFILEERRORBOX) ;

/* Load the TOOLHELP.DLL Iibrary nodule. */

hi nst Tool Hel p = LoadLibrary(" TOOLHELP. DLL");

i f (hinstTool Hel p > H NSTANCE_ERROR) { /* | oaded successfully */
/* Retrieve the address of the TimerCount function. */

(FARPROC) | pf nTi mer Count =
Get ProcAddr ess(hi nst Tool Hel p, "TimerCount");

if (IpfnTinmerCount !'= NULL) {

/* Call the TimerCount function. */

timerinfo.dwSi ze = sizeof (TIMERINFO);

if ((*IpfnTimerCount) ((TIMERINFO FAR *) &tinerinfo)) {

sprintf(szBuf, "task: % u seconds\nVM % u seconds",
timerinfo.dwrsSi nceStart / 1000,

timerinfo.dwrsThi sVM/ 1000);
el se {
strcpy(szBuf, "TimerCount failed");

el se {
strcpy(szBuf, "GetProcAddress failed");
}
/* Free the TOOLHELP.DLL library nodule. */
FreeLibrary(hi nst Tool Hel p);

el se {
strcpy(szBuf, "LoadLibrary failed");

MessageBox(NULL, szBuf, "Library Functions”, MB_ICONHAND);

See Also
MakeProcl nstance

GetProfilelnt (2.x)

UINT GetProfilelnt(IpszSection, |pszEntry, default)

LPCSTR IpszSection; /* address of section */

LPCSTR lpszEntry; /*
address of entry

/

int default;

* return valueif entry is not found

/

The GetProfilelnt function retrieves the value of an integer from an entry within a specified section of the
WIN.INI initialization file.

Parameter Description

IpszSection Points to a null-terminated string that specifies the section containing the entry.
[pszEntry Points to the null-terminated string containing the entry whose valueis to be retrieved.
default Specifies the default value to return if the entry cannot be found. This value can be an

unsigned value in the range 0 through 65,536 or a signed value in the range -32,768
through 32,768. Hexadecimal notation is accepted for both positive and negative values.

Returns

The return value is the integer value of the string following the specified entry, if the function is
successful. The return value is the value of the default parameter if the function does not find the entry.
Thereturn value is zero if the value that corresponds to the specified entry is not an integer.

Comments
The GetProfilelnt function is not case-dependent, so the strings in the IpszSection and |pszEntry
parameters may contain a combination of uppercase and lowercase | etters.

GetProfilelnt supports hexadecimal notation. When the function is used to retrieve a negative integer, the
value should be cast to an int.

An integer entry in the WIN.INI file must have the following form:

[section]
entry=value

If the value that corresponds to the entry consists of digits followed by nonnumeric characters, the function
returns the value of the digits. For example, the function would return 102 for the line "Entry=102abc".

An application can use the GetPrivateProfilelnt function to retrieve an integer from a specified file.

Example
The following example uses the GetProfilelnt function to retrieve the screen-save timeout time from the
WIN.INI file:

WORD wTi meQut ;
char szMsg[80];

wli meQut = GetProfilelnt("w ndows",
"ScreenSaveTi nreQut", 0);

sprintf(szMsg, "timeout tinme is %", wrlineCut);
MessageBox(hwnd, szMsg, "GetProfilelnt", MB OK);

See Also
GetPrivateProfilelnt, GetProfileString

Windows 3.1 changes

The GetProfilelnt function supports hexadecimal notation. When the GetProfilelnt function is used to
retrieve a negative integer, the value should be cast to an int.

GetProfileString (2.x)

int GetProfileString(lpszSection, IpszEntry, |pszDefault, IpszReturnBuffer cbReturnBuffer)
LPCSTR |pszSection; [* address of section */

LPCSTR lpszEntry; /*
address of entry

/

LPCSTR IpszDefault;

* address of default string

/

LPSTR IpszReturnBuffer;

* address of destination buffer

/

int cbReturnBuffer;

* size of destination buffer

/

The GetProfileString function retrieves the string associated with an entry within the specified section in
the WINLINI initiaization file.

Parameter Description
IpszSection Points to a null-terminated string that specifies the section containing the entry.
[pszEntry Points to the null-terminated string containing the entry whose associated string is

to beretrieved. If thisvalueis NULL, all entriesin the section specified by the
IpszSection parameter are copied to the buffer specified by the [pszReturnBuffer
parameter. For more information, see the following Comments section.

IpszDefault Points to the default value for the given entry if the entry cannot be found in the
initialization file. This parameter must never be NULL.

IpszReturnBuffer Points to the buffer that will receive the character string.

cbReturnBuffer Specifiesthe size, in bytes, of the buffer pointed to by the IpszReturnBuffer
parameter.

Returns

Thereturn value is the number of bytes copied to the buffer, not including the terminating zero, if the
function is successful.

Comments

If the IpszEntry parameter isNULL, the GetProfileString function copies all entriesin the specified
section to the supplied buffer. Each string will be null-terminated, with the final string terminating with
two null characters. If the supplied destination buffer istoo small to hold all the strings, the last string will
be truncated and followed by two terminating null characters.

If the string associated with [pszEntry is enclosed in single or double quotation marks, the marks are
discarded when GetProfileString returns the string.

GetProfileString is not case-dependent, so the strings in the IpszSection and IpszEntry parameters may
contain a combination of uppercase and lowercase |etters.

A string entry in the WINL.INI file must have the following form:

[section]
entry=string

An application can use the GetPrivateProfileString function to retrieve a string from a specified file.
The lpszDefault parameter must point to avalid string, even if the string is empty (its first character is
Zero).

Example

The following example uses the GetProfileString function to list all the entries and stringsin the
[windows] section of the WINL.INI file:

int ¢, cc;

PSTR pszBuf, pszKey;
char szMsg[80], szVal[80];

/* Allocate a buffer for the entries.

*/

pszBuf = (PSTR) LocalAlloc(LMEM FIXED, 1024);

/* Retrieve all the entries in the [w ndows] section.

GetProfileString("w ndows", NULL, "",

/*

* Retrieve the string for each entry,

reachi ng the doubl e null

for (pszKey = pszBuf, ¢ = 0;
*pszKey ! =

/* Retrieve the value for each entry in the buffer.

GetProfileString("w ndows"

szVal, sizeof(szVval));

cc = sprintf(szMsg, "% =
TextOut(hdc, 10, 15 * c++,
}

LocalFree((HANDLE) pszBuf);

See Also
GetPrivateProfileString, WriteProfileString

pszBuf,

character.

, pszKey, "not found",
%", pszKey, szVal);
szMsg, cc);

until

"\0'; pszKey += strlen(pszKey) + 1) {

1024);

*/

GetSelectorBase (3.1)

DWORD GetSel ectorBase(uSel ector)
UINT uSelector;

The GetSelectorBase function retrieves the base address of a selector.

Parameter Description

uSelector Specifies the selector whose base address is retrieved.
Returns

This function returns the base address of the specified selector.

See Also

GetSelectorLimit, SetSelectorBase, SetSelectorLimit

GetSelectorLimit (3.1)

DWORD GetSelectorLimit(uSelector)
UINT uSelector;

The GetSelectorLimit function retrieves the limit of a selector.

Parameter Description

uSelector Specifies the selector whose limit is being retrieved.
Returns

This function returns the limit of the specified selector.

See Also

GetSelectorBase, SetSelectorBase, SetSelectorLimit

GetSystemDirectory (3.0)

UINT GetSystemDirectory(IpszSysPath, cbSysPath)

LPSTR IpszSysPath; [* address of buffer for system directory ~ */

UINT cbSysPath; [* size
of directory buffer

/

The GetSystemDirectory function retrieves the path of the Windows system directory. The system
directory contains such files as Windows libraries, drivers, and font files.

Parameter Description

|pszSysPath Points to the buffer that is to receive the null-terminated string containing the path of
the system directory.

cbSysPath Specifies the maximum size, in bytes, of the buffer. This value should be set to at least

144 to allow sufficient room in the buffer for the path.

Returns

The return value is the length, in bytes, of the string copied to the IpszSysPath parameter, not including the
terminating null character. If the return value is greater than the size specified in the chSysPath parameter,
the return value is the size of the buffer required to hold the path. The return value is zero if the function
fails.

Comments

Applications should not create files in the system directory. If the user is running a shared version of
Windows, the application will not have write access to the system directory. Applications should create
filesonly in the directory returned by the GetWindowsDirectory function.

The path that this function retrieves does not end with a backslash unless the system directory is the root
directory. For example, if the system directory is named WINDOWS\SY STEM on drive C, the path of the
system directory retrieved by this function is C;AWINDOWS\SY STEM.

A similar function, GetSystemDir, isintended for use by MS-DOS applications that set up Windows
applications. Windows applications should use GetSystemDirectory, not GetSystemDir.

Example

The following example uses the GetSystemDirectory function to determine the path of the Windows
system directory:

WORD wRet ur n;
char szBuf[144];

WReturn = Get SystenDirectory((LPSTR) szBuf, sizeof(szBuf));
if (WReturn == 0)

MessageBox(hwnd, "function fail ed",
"GetSystenmDirectory”, MB_ICONEXCLAMATION);

else if (wWReturn > sizeof(szBuf))
MessageBox(hwnd, "buffer is too small",
"GetSystenDirectory”", MB ICONEXCLAMATION) ;

el se
MessageBox(hwnd, szBuf, "GetSystenDirectory", MB OK);

See Also
GetWindowsDirectory

GetTempDrive (2.X)

BY TE GetTempDrive(chDrivel etter)
char chDrivel etter; /* ignored */

The GetTempDrive function returns a letter that specifies a disk drive the application can use for
temporary files.

Parameter Description
chDrivel etter This parameter isignored.
Returns

The return value specifies adisk drive for temporary filesif the function is successful. If at |east one hard
disk drive is available, the function returns the letter of the first hard disk drive (usualy C). If no hard disk
drives are available, the function returns the | etter of the current drive.

Example
The following example uses the GetTempDrive function to determine a suitable disk drive for temporary
files:

char szMsg[80];
BYTE bTenpDri ve;

bTempDri ve = Get TenpDrive(0);
sprintf(szMsg, "tenporary drive: %", bTempDrive);

MessageBox(hwnd, szMsg, "CGet TenpDrive", MB_OK);

See Also
GetTempFileName

GetTempFileName (2.x)

int GetTempFileName(bDrivel etter, |pszPrefixString, uUnique, IpszTempFlleName)
BY TE bDrivel etter; [* suggested drive
LPCSTR IpszPreﬂxStrmg,

* address of filename prefix

/

UINT uUnique;

* number to use as prefix

/

LPSTR IpszTempFileName;

* address of buffer for created filename

/

The GetTempFileName function creates a temporary filename of the following form:

drive:\path\prefixuuuu. TMP
The following list describes the filename syntax:

Element Description
drive Drive letter specified by the bDrivel etter parameter
path Path of the temporary file (either the Windows directory or the directory specified in the
TEMP environment variabl€)
prefix All the letters (up to the first three) of the string pointed to by the |pszPrefixString
parameter
uuuu Hexadecimal value of the number specified by the uUnique parameter
Parameter Description
bDrivel etter Specifies the suggested drive for the temporary filename. If this parameter is
zero, Windows uses the current default drive.
[pszPrefixString Points to a null-terminated string to be used as the temporary filename prefix.
This string must consist of characters in the OEM-defined character set.
uUnique Specifies an unsigned short integer. If this parameter is nonzero, it will be

appended to the temporary filename. If the parameter is zero, Windows uses
the current system time to create a number to append to the filename.

IpszTempFileName Points to the buffer that will receive the temporary filename. This string
consists of characters in the OEM-defined character set. This buffer should be
at least 144 bytesin length to allow sufficient room for the path.

Returns

The return value specifies a unique numeric value used in the temporary filename. If the uUnique
parameter is nonzero, the return val ue specifies this same number.

Comments
Temporary files created with this function are not automatically deleted when Windows shuts down.

To avoid problems resulting from converting an OEM character string to a Windows string, an application
should call the _lopen function to create the temporary file.

The GetTempFileName function uses the suggested drive letter for creating the temporary filename,
except in the following cases:
. If ahard disk is present, GetTempFileName always uses the drive letter of the first hard disk.
. If, however, a TEMP environment variable is defined and its value begins with a drive letter, that
drive letter is used.

If the TF_FORCEDRIVE bit of the bDriveL etter parameter is set, the preceding exceptions do not apply.
The temporary filename will always be created in the current directory of the drive specified by
bDrivel etter, regardless of the presence of ahard disk or the TEMP environment variable.

If the uUnique parameter is zero, GetTempFileName attempts to form a unique number based on the
current system time. If afile with the resulting filename exists, the number isincreased by one and the test
for existenceis repeated. This continues until a unique filename is found; GetTempkileName then creates
afile by that name and closesit. No attempt is made to create and open the file when uUnique is nonzero.

Example

The following example uses the GetTempFileName function to create a unique temporary filename on the
first available hard disk:

HFILE hf TenpFil e;
char szBuf[144];

/* Create a temporary file. */
Get TenpFi | eNane(0, "tst", 0, szBuf);
hf TempFil e = _lIcreat(szBuf, 0);

if (hfTenpFile == HFI LE_ERROR) {
ErrorHandl er () ;

See Also
GetTempDrive, _lopen

GetThresholdEvent (2.x)
int FAR* GetThresholdEvent(void)

This function is obsolete. Use the Windows multimedia audio functions instead. For information about
these functions, see the Microsoft Windows Multimedia Programmer's Reference.

GetThresholdStatus (2.x)
int GetThresholdStatus(void)

This function is obsolete. Use the Windows multimedia audio functions instead. For information about
these functions, see the Microsoft Windows Multimedia Programmer's Reference.

GetVersion (2.x)
DWORD GetVersion(void)

The GetVersion function retrieves the current version numbers of the Windows and MS-DOS operation
systems.

Returns
The return value specifies the major and minor version numbers of Windows and of MS-DOS.

Comments

The low-order word of the return value contains the version of Windows, if the function is successful. The
high-order byte contains the minor version (revision) number as a two-digit decimal number. For example,
in Windows 3.1, the minor version number is 10. The low-order byte contains the major version number.

The high-order word contains the version of MS-DOS, if the function is successful. The high-order byte
contains the major version; the low-order byte contains the minor version (revision) number.

Example
The following example uses the GetV ersion function to display the Windows and MS-DOS version
numbers:

int len;
char szBuf[80];
DWORD dw\Ver si on;

dwVer si on = Get Version();
len = sprintf(szBuf, "Wndows version %. %d\n",

LOBYTE(LOWORD(dwVer si on)),
HIBYTE(LOWORD(dwVer si on))) ;

sprintf(szBuf + len, "MS-DOS version %d. %",
HIBYTE(HIWORD(dwVer si on)),
LOBYTE(HIWORD(dwVer si on))) ;

MessageBox(NULL, szBuf, "GetVersion", MB_ICONINFORMATION);

Note that the major and minor version information is reversed between the Windows version and MS-
DOS version.

Win 3.1 correction
Thereturn valueisa DWORD, not aWORD. The high-order word contains the DOS version.

GetWinDebuglnfo (3.1)

BOOL GetWinDebuglnfo(lpwdi, flags)

WINDEBUGINFO FAR* Ipwdi; * address of WINDEBUGINFO structure */

UINT flags; /
* flags for returned information

/

The GetWinDebugl nfo function retrieves current system-debugging information for the debugging version
of the Windows 3.1 operating system.

Parameter Description
[pwdi Pointsto aWINDEBUGINFO structure that is filled with debugging information.
flags Specifies which members of the WINDEBUGINFO structure should befilled in. This
parameter can be one or more of the following values:
Value Meaning
WDI_OPTIONS Fill in the dwOptions member of WINDEBUGINFO.
WDI_FILTER Fill in the dwFilter member of WINDEBUGINFO.

WDI Al OCBREAK Fill in the achAllocModule, dwAllocBreak, and
dwAllocCount members of WINDEBUGINFO.

Returns
Thereturn value is nonzero if the function is successful. It is zero if the pointer specified in the Ipwdi
parameter isinvalid or if the function is not called in the debugging version of Windows 3.1.

Comments
The flags member of the returned WINDEBUGINFO structure is set to the values supplied in the flags
parameter of this function.

See Also
SetWinDebuglnfo, WINDEBUGINFO

WDI_OPTIONS 0x0001
Fill in the dwOptions member of WINDEBUGINFO.

WDI_OPTIONS 0x0001

WDI_FILTER 0x0002
Fill in the dwFilter member of WINDEBUGINFO.

WDI_FILTER 0x0002

WDI_ALLOCBREAK 0x0004
Fill in the achAllocModule, dwAllocBreak, and dwAllocCount members of WINDEBUGINFO.

WDI_ALLOCBREAK 0x0004

GetWindowsDirectory (3.0)

UINT GetWindowsDirectory(lpszSysPath, cbhSysPath)

LPSTR IpszSysPath; [* address of buffer for Windows directory */

UINT cbSysPath; [* size
of directory buffer

/

The GetWindowsDirectory function retrieves the path of the Windows directory. The Windows directory
contains such files as Windows applications, initialization files, and help files.

Parameter Description
|pszSysPath Points to the buffer that will receive the null-terminated string containing the path.
cbSysPath Specifies the maximum size, in bytes, of the buffer. This value should be set to at least

144 to alow sufficient room in the buffer for the path.

Returns

Thereturn value is the length, in bytes, of the string copied to the IpszSysPath parameter, not including the
terminating null character. If the return valueis greater than the number specified in the cbSysPath
parameter, it isthe size of the buffer required to hold the path. The return valueis zero if the function fails.

Comments
The Windows directory isthe only directory where an application should create files. If the user is running
ashared version of Windows, the Windows directory is the only directory guaranteed private to the user.

The path this function retrieves doe